

SEP 2014 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

Look but don’t touch
here are a couple of news stories in the technology
world causing a bit of a hoo-hah at the moment.

On the one hand, there is the growing ‘Internet of
Things’, household and other common (but not
obviously computer-based) items such as heating
systems, refrigerators, car instrumentation and even
guidance systems, and so on, that are coming ‘Online’,
becoming controllable from – and reporting status to –
personal computers and phone-apps. On the other hand, there
is the growing maturity of quantum computers, a new breed of
super computer potentially capable of processing speeds far
exceeding that which today's technology can manage.

To take them in reverse order, the potential for quantum
algorithms to easily crack today’s strong encryption
techniques is causing concern. RSA is the commonly held
example, because its security is based on it being
computationally infeasible to crack. Quantum computers of
sufficient power and size might defeat public-key
encryption relatively easily. The reason for concern over this
should be obvious.

The other hand’s concern over the Internet of Things is that even basic security
doesn’t seem to have entered into the minds of those designing many Internet-
connected thermostats, traffic lights, and refrigerators. In fact, many common
‘Internet of Computers’ devices like home routers and the like seem to come with
hard-wired default administrator passwords, and broadcast their willingness to
communicate to anyone who knows how to listen.

I’m probably sounding very like a member of the tin-foil-hat brigade by now, but I do
try to take my online privacy relatively seriously, so it matters whether my router is
susceptible to buffer overflow attacks, and perhaps even more whether my car can be
tricked by a man-in-the-middle attack. I also don’t particularly like the idea of
someone being able to use a known admin password to log into my house thermostat
– if only because from there they could possibly stage to one of the real computers!

The logical conclusion of these two things together is that all security and privacy
needs to be protected by quantum cryptography, meaning that maybe quantum
programming would need to become more popular. I wonder what a quantum high-
level programming language looks like?

T
Volume 26 Issue 4
September 2014

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Pete Goodliffe,Paul Grenyer,
Matthew Jones, Chris Oldwood,
Roger Orr, Mark Radford,
Alex Paterson

 ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | SEP 2014

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
16 Standards Report

Mark Radford reports
the latest developments
in C++ Standardization.

17 Code Critique Competition
Competition 89 and
the answers to 88.

REGULARS
20 ACCU Members Zone

Membership news.

SUBMISSION DATES
C Vu 26.5: 1st October 2014
C Vu 26.6: 1st December 2014

Overload 124:1st November 2014
Overload 125:1st January 2015

FEATURES
3 Testing Times

Pete Goodliffe exhorts us to test code effectively.

8 A Secure Data Centre in the Heart of ... Bowthorpe
Paul Grenyer takes a tour of MigSolv’s facility.

9 What Do People Do All Day?
Matthew Jones gives some insight as to what his job
involves.

11 Beware setlocal Behaviour in Visual C++ 2012 & 2013
Alex Peterson investigates a bug in the Visual C++
runtime library.

14 Revisiting the Gang of Four
Chris Oldwood reflects on things missed first time
around.

15 Talk in Code
Andy Balaam presents some tips on clear
communication.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer #88
Testing Times
Pete Goodliffe exhorts us to test code effectively.

Quality is free, but only to those who are willing to pay heavily for it.
~ Tom DeMarco and Timothy Lister

Peopleware: Productive Projects and Teams

est-driven development: to some it’s a religion. To some, it’s the only
sane way to develop code. To some, it’s a nice idea that they can’t
quite make work. And to others, it’s a pure waste of effort.

What is it, really?

TDD is an important technique for building better software, although there
is still confusion over what it means to be test-driven, and over what a unit
test really is. Let’s break through this and discover a healthy approach to
developer testing, so we can write better code.

Why test?
It’s a no-brainer: we have to test our code.

Of course you run your new program to see whether it
works. Few programmers are confident enough, or
arrogant enough, to write code and release it without
trying it out somehow. When you do see corners cut, the
code rarely works first time: problems are found, either
by QA, or – worse – when a customer uses it.

Shortening the feedback loop

To develop great software, and develop it well, programmers need
feedback. We need to receive feedback as frequently, and as quickly as
possible. Good testing strategies shorten the feedback loop, so we can work
most effectively:

 We know that our code works when it’s used in the field and returns
accurate results to users. If it doesn’t, they complain. If that was our
only feedback loop, software development would be very slow and
very expensive. We can do better.

 To ensure correctness before we ship, the QA team tests candidate
releases. This pulls in the feedback loop; the answers come back
more quickly, and we avoid making expensive (and embarrassing)
mistakes in the field. But we can still do better.

 We want to check our new subsystems work before integrating them
into the project. Typically, a developer will spin up the application
and execute their new code as best they can. Some code can be rather
inconvenient to test like this, so it’s possible to create a small
separate test harness application that exercises the code. These
development tests again reduce the feedback loop; now we find out
whether our code is functioning correctly as we work on it, not later
on. But we can still do better.

 The subsystems are comprised of smaller units: classes, and
functions. If we can easily get feedback on correctness and quality
of code at this level then we reduce the feedback loop again. Tests
at the smallest level give the fastest feedback.

The shorter the feedback loop, the faster we can iterate over design
changes, and the more confident we can feel about our code. The sooner
we learn that there’s a problem, the easier and less expensive the fix is,
because our brain is still engaged with the problem and we recall the shape
of the code.

To improve our software development we need rapid feedback,
to learn of problems as soon as they appear. Good testing
strategies provide short feedback loops.

Manual tests (either performed by a QA team, or by the programmer
inspecting their own handiwork) are laborious and slow. To be at all
comprehensive, it requires many individual steps that need repeating each
time you make a minor adjustment to the code.

But hang on, isn’t repeated laborious work something that computers are
good at? Surely we can use the computer to run the tests for us
automatically. That speeds up the running of the tests, and helps to close
the feedback loop further.

Automated tests with a short feedback loop don’t just help you to develop
the code. Once you have a selection of tests you needn’t throw them away.
Stash them in a test pool, and keep running them. In this way your test code
works like a canary in a mine – signalling any problem before it becomes
fatal. If in the future someone (even you on a bad day) modifies the code
to introduce errant behaviour (a functional regression) the test will point
this out immediately.

Code that tests code

So the ideal is to automate our development testing as much as possible:
work smarter, not harder. Your IDE can highlight syntax errors as you type
– wouldn’t it be great if it could show you test breakages at the same speed?

Computers can run tests rapidly, and repeatedly, reducing the feedback
loop. Although you can automate desktop applications with UI testing
tools, or use browser-based technology, most often development tests see
the coder writing a programmatic test scaffold that invokes their
production code (the SUT: System Under Test), prodding it in particular
ways to check that it responds as expected.

We write code to test code. Very meta.

Yes, writing these tests takes up the programmer’s precious time. And yes,
your confidence in the code is only as good as the quality of the tests that
you write. But it’s not hard to adopt a test strategy that improves the quality
of your code and makes it safer to write. This helps reduce the time it takes
you to develop code: more haste, less speed. Studies have shown that a
sound testing strategy substantially reduces the incidence of defects. [1]

It is true that a test suite can slow you down if you write brittle, hard to
understand tests, and if your code is so rigid that a change in one method
forces 1,000,000 tests to be re-written. That is an argument against bad test
suites, not against testing in general (in the same way that bad code is not
an argument against programming in general).

Who writes the tests?

In the past some have argued for the role of a dedicated ‘unit test engineer’
who specialises in verifying the code of an upstream programmer. But the
most effective approach is for the programmers themselves to write their
own development tests.

T

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe

The shorter the feedback loop, the faster we
can iterate over design changes, and the

more confident we can feel about our code
SEP 2014 | | 3{cvu}

After all, you’d be testing your code as you write it, anyway.

We need tests at all levels of the software stack and
development process. However, programmers particularly
require tests at the smallest scope possible, to reduce the
feedback loop and help develop high-quality software as
quickly and easily as possible.

Types of test
There are many kinds of test, and often when you hear someone talk about
a ‘unit test’ they may very likely mean some other kind of code test. We
employ:

 Unit tests

Unit tests specifically exercise the smallest ‘units’ of functionality
in isolation, to ensure that they each function correctly. If it’s not
driving a single unit of code (which could be one class or one
function), in isolation (i.e. without involving any other ‘units’ from
the production code), then it’s not a unit test.

This isolation specifically means that a unit test will not involve any
external access: no database, network, or file system operations will
be run.

Unit test code is usually written using an off-the-shelf ‘xUnit’ style
framework. Every language and
environment has a selection of these, and
some have a de-facto standard. There’s
nothing magical about a testing framework
and you can get a long way writing unit tests
with just the humble assert. We’ll look at
frameworks later.

 Integration tests

These tests inspect how individual units integrate into larger
cohesive sets of cooperating functionality. We check that the
integrated components glue together and interoperate correctly.

Integration tests are often written in the same unit test frameworks;
the difference is simply the scope of the system under test. Many
people’s ‘unit tests’ are really integration-level tests, dealing with
more than one object in the SUT. In truth, what we call this test is
nowhere near as important as the fact the test exists!

 System tests

Otherwise known as end-to-end tests, these can be seen as a
specification of the required functionality of the entire system. They
run against the fully integrated software stack, and can be used as
acceptance criteria for the project.

System tests can be implemented as code that exercises the public
APIs and entry points to the system, or they may drive the system
from outside using a tool like Selenium, a web browser automator.
It can be hard to realistically test all of an application’s functionality
through its UI layer, in which case we employ subcutaneous tests
that drive the code from the layer just below the interface logic.

Because of the larger scope of system tests, the full suite of tests can
take considerable time to execute. There may be much network
traffic involved or slow database access to account for. The set-up
and tear-down costs can be huge to get the SUT ready to run each
system test.

Each of these levels of developer test establishes a number of facts about
the SUT, and constructs a series of test cases that prove that these facts
hold.

There are different styles of test-driven development. A project can be
driven by a unit-test mentality: where you would expect to see more unit
tests than integration tests, and more integration tests than system tests. Or
it may be driven by a system-test mentality: the reverse, with far fewer unit
tests. Each kind of test is important in its own right, and all should be
present in a mature software project.

When to write tests
The term TDD (that is, Test-Driven Development) is conflated with test-
first development, although there really are two separate themes here. You
can ‘drive’ your design from the feedback given by tests without
religiously writing those tests first.

However, the longer you leave it to write your tests, the less effective those
tests will be: you’ll forget how the code is supposed to work, fail to handle
edge cases, or perhaps even forget to write tests at all. The longer you leave
it to write your tests, the slower and less effective your feedback loop will
be.

The test-first ‘TDD’ approach is commonly seen in XP circles. The mantra
is: don’t write any production code unless you have a failing test. The test-
first TDD cycle is:

1. Determine the next piece of functionality you need. Write a test for
your new functionality. Of course, it will fail.

2. Only then implement that functionality, in the simplest way
possible. You know that your functionally is in place when the test
passes. As you code, you may run the test suite many times. Since
each step adds a small new part of functionality, and therefore a
small test, these tests should run rapidly.

3. This is the important part that’s often overlooked: now tidy up the
code. Refactor unpleasant commonality. Restructure the SUT to

have a better internal structure. You can do
all this with full confidence that you won’t
break anything, as you have a suite of tests to
validate against.

4. Go back to step 1 and repeat until you have
written passing test cases for all of the
required functionality.

This is a great example of a powerful, and gloriously short, feedback loop.
It’s often referred to as the red-green-refactor cycle in honour of unit test
tools that show failing tests as a red progress bar, and passing tests as a
green bar.

Even if you don’t honour the test-first mantra, keep your feedback loop
short and write unit tests during, or very shortly after, a section of code.
Unit tests really do help ‘drive’ our design: not only does it ensure that
everything is functionally correct and prevent regressions, it’s also a great
way to explore how a class API will be used in production: how easy and
neat it is. This is invaluable feedback. The tests also stand as useful
documentation of how to use a class once it’s complete.

Write tests as you write the code under test. Do not postpone
test-writing, or your tests will not be as effective.

This test-early/test-often approach can be applied at the unit, integration,
and at the system level. Even if your project has no infrastructure for
automated system tests, you can still take responsibility and verify the lines
of code you write with unit tests. It’s cheap and, given good code structure,
it’s easy. (Without good code structure, an attempt to write a test will help
drive you towards better code structure.)

Another essential time to write a test is when you have to fix a bug in the
production code. Rather than rush out a code fix, first write a failing unit
test that illustrates the cause of the bug. Sometimes the act of writing this
test serves to show other related flaws in the code. Then apply your bugfix,
and make the test pass. The test enters your test pool, and will serve to
ensure the bug doesn’t reappear in the future.

When to run tests
You can see a lot by just looking.

~ Yogi Berra

Clearly, if you develop using TDD, you will be running your tests as you
develop each feature to prove that your implementation is correct and
sufficient.

write unit tests during,
or very shortly after,

a section of code
4 | | SEP 2014{cvu}

But that is not the only life of your test code.

Add both the production code and its tests to version control. Your
test is not thrown away, but joins the suite of existent tests. It lives
on to ensure that your software continues to work as you expect.
If someone later modifies the code badly, they’ll be alerted to the
fact before they get very far.

All tests should run on your build server as part of a Continuous Integration
toolchain. Unit tests should be run by developers frequently on their
development machines. Some development environments provide
shortcuts to launch the unit tests easily; some systems scan your filesystem
and run the unit tests when files change. However I prefer to bake tests
right into the build/compile/run process. If my unit test suite fails, the code
compilation is considered to have failed and the software cannot be run.
This way, the tests are not ignorable. They run every time the code is built.
When invoked manually, developers can forget to run tests, or will ‘avoid
the inconvenience’ whilst working.

Injecting the tests directly into the build process also encourages tests to
be kept small, and to run fast.

Encourage tests to be run early and often. Bake them into your
build process.

Integration and system tests may take too long to run on a developer’s
machine every compilation. In this case, they may justifiably run only on
the CI build server.

Remember that code-level, automated testing doesn’t remove the need for
a human QA review before your software release. Exploratory testing by
real testing experts is invaluable, no matter how many unit, integration, and
system tests you have in place. An automated suite of tests avoids
introducing those easily fixable, easily preventable mistakes that would
waste QA’s time. It means that the things the QA guys do find will be really
nasty bugs, not just simple ones. Hurrah!

Good development tests do not replace thorough QA testing.

What to test
Test whatever is important in your application. What are your
requirements?

Your tests must, naturally, test that each code unit behaves as required,
returning accurate results. However, if performance is an important
requirement for your application, then you should have tests in place to
monitor the code’s performance. If your server must answer queries within
a certain timeframe, include tests for this condition.

You may want to consider the coverage of your production code that the
test cases execute. You can run tools to determine this. However, this tends
to be an awful metric to chase after. It can be a huge distraction to write
test code that tries to laboriously cover every production line; it’s more
important to focus on the most important behaviours and system
characteristics.

Good tests
Writing good tests requires practice and experience; it is perfectly possible
to write bad tests. Don’t be overly worried about this at first – it’s most
important to actually start writing tests than to be paralysed by fear that
your tests are rubbish. Start writing tests and you’ll start to learn.

Bad tests become baggage: a liability rather than an asset. They can slow
down code development if they take ages to run. They can make code
modification difficult, if a simple code change breaks many hard-to-read
tests.

The longer your tests take to run, the less frequently you’ll run them, the
less you’ll use them, the less feedback you’ll get from them. The less value
they provide.

I once inherited a codebase that had a large suite of unit tests; this seemed
a great sign. Sadly, those tests were effectively worse legacy code than the
production code. Any code modification we made caused several test
failures in hundreds-of-lines-long test methods that were intractable, dense
and hard to understand. Thankfully, this is not a common experience.

Bad tests can be a liability. They can impede effective
development.

A good test:

 has a short, clear, name, so when it fails you can easily determine
what the problem is (for example: new list is empty)

 is maintainable: it is easy to write, easy to read, and easy to modify

 runs quickly

 is kept up to date

 runs without any prior machine configuration (e.g. you don’t have
to prepare your file system paths or configure a database before
running it)

 does not depend on any other tests that have run before or after it;
there is no reliance on external state, or on any shared variables in
the code

 tests the actual production code (I’ve seen ‘unit tests’ that worked
on a copy of the production code – a copy that was out of date. Not
useful. I’ve also seen special ‘testing’ behaviour added to the SUT
in test builds; this, too, is not a test of the real production code.)

These are some common smells of badly constructed tests:

 tests that sometimes run, sometimes fail (often this is caused by the
use of threads, or racy code that relies on specific timing, by reliance
on external dependencies, the order of tests being run in the test
suite, or on shared state)

 tests that look awful and are hard to read/modify

 tests that are too large (large tests are hard to understand, and the
SUT clearly isn’t very isolatable if it takes hundreds of lines to set
up)

 tests that exercise more than one thing in a single test case (a ‘test
case’ is a singular thing)

 tests that attack a class API function-by-function, rather than
addressing individual behaviours

 tests for third party code that you didn’t write (there is no need to do
that unless you have a good reason to distrust it)

 tests that don’t actually cover the main functionality or behaviour of
a class, but that hide this behind a raft of tests for less important
things (if you can do this, your class is probably too large)

 tests that cover pointless things in excruciating detail, e.g. property
getters and setters

 tests that rely on ‘white-box’ knowledge of the internal
implementation details of the SUT (this means you can’t change the
implementation without changing all the tests)

 tests that only work on one machine

Sometimes a bad test smell indicates not (only) a bad test, but also bad code
under test. These smells should be observed, and used to drive the design
of your code.

code-level, automated testing doesn’t
remove the need for a human QA review

before your software release
SEP 2014 | | 5{cvu}

What does a test look like?
The test framework you use will determine the shape of your test code. It
may provide a structured set up, and tear down facility, and a way to group
individual tests into larger fixtures.

Conventionally, in each test there will be some preparation, you then
perform an operation, and finally validate the result of that operation. This
is commonly known as the arrange-act-assert pattern. For unit tests, at the
assert stage we typically aim for a single check – if you need to write
multiple assertions then your test may not be performing a single test case.

Listing 1 shows an example Java unit test method that follows this pattern:

 Arrange: we prepare the input

 Act: we perform the operation

 Assert: we validate the results of that operation

Maintaining this pattern helps keep tests focused and readable.

Of course, this test alone does not cover all of the potential ways to use
and abuse String capitalisation. We need more tests to cover other inputs
and expectations. Each test should be added as a new test method, not
placed into this one.

Test names

Focused tests have very clear names, that read as
simple sentences. If you can’t easily name a test case,
then your requirement is probably ambiguous, or you
are attempting to test multiple things.

The fact that the test method is a test is usually implicit
(because of an attribute like the @Test above), so you
needn’t add the word test to the name. The example
a b o ve n e e d n o t b e c a l l e d
testThatStringsCanBeCapitalised.

Imagine that your tests are read as specifications for your code; each test
name is a statement about what the SUT does, a single fact. Avoid
ambiguous words like ‘should’, or words that don’t add value like ‘must’.
Just as when we create names in our production code, avoid redundancy
and unnecessary length.

Test names need not follow the same style conventions as production code;
they effectively form their own domain-specific language. It’s common to
see much longer method names and the liberal use of underscores, even in
languages like C# and Java where they are not idiomatic (the argument
being strings_can_be_capitalised requires less squinting to
read).

The structure of tests
Ensure that your test suite covers the important functionality of your code.
Consider the ‘normal’ input cases. Consider also the common ‘failure
cases’. Consider what happens at boundary values, including the empty or
zero state. It’s a laudable goal to aim to cover all requirements and all the
functionality of your entire system with system and integration tests, and
cover all code with unit tests. However, that can require some serious
effort.

Do not duplicate tests: it adds effort, confusion and maintenance cost. Each
test case you write verifies one fact; that fact does not need to be verified
again, either in a second test, or as part of the test for something else. If
your first test case checks a precondition after constructing an object, then
you can assume that this precondition holds in every other test case you
write – there is no need to reproduce the check every time you construct
an object.

A common mistake is to see a class with five methods, and think that you
need five tests, one to exercise each method. This is an understandable (but
naïve) approach. Function-based tests are rarely useful since you cannot
generally test a single method in isolation. After calling it, you’ll need to
use other methods to inspect the object’s state.

Instead, write tests that go through the specific behaviours of the code. This
leads to a far more cohesive and clear set of tests.

Maintain the tests

Your test code is as important as the production code, so consider its shape
and structure. If things get messy, clean it, and refactor it.

If you change the behaviour of a class so its tests fail, don’t just comment
out the tests and run away. Maintain the tests. It can be tempting to ‘save
time’ near deadlines by skipping test cleanliness. But rushed carelessness
here will come back to bite you.

On one project, I received an email from a colleague: I was working on
your XYZ class, and the unit tests stopped working, so I had to remove them
all. I was rather surprised by this, and looked at what tests had been
removed. Sadly, these were important test cases that were clearly pointing
out a fundamental problem with the new code. So I restored the test code
and ‘fixed’ the bug by backing out the change. We then worked together
to craft a new test case for the required functionality, and then re-
implemented a version that satisfied the old tests and the new.

Maintain your test suite, and listen to it when it talks to you.

Picking a test framework

The unit/integration test framework you use shapes
your tests, dictating the style of assertions and checks
you can use, and the structure of your test code (e.g.
are the test cases written in free functions, or as
methods within a test fixture class?).

So it’s important to pick a good unit test framework.
It doesn’t need to be complex or heavyweight.
Indeed, it’s preferable to not chose an unwieldy tool.

Remember, you can get very very far with the humble assert: I often
start testing new prototype code with just a main method and a series of
asserts.

Most test frameworks follow the ‘xUnit’ model which came from Kent
Beck’s original Smalltalk SUnit. This model was ported and popularised
with JUnit (for Java) although there are broadly equivalent
implementations in most every language, for example NUnit (C#) and
CppUnit (C++). This kind of framework is not always ideal; xUnit style
testing leads to non-idiomatic code in some languages (in C++, for
example it’s rather clumsy and anachronistic; other test frameworks can
work better; check out Catch [2] as a great alternative).

Some frameworks provide pretty GUIs with red/green bars to clearly
indicate success or failure. That might make you happy, but I’m not a big
fan. I think you shouldn’t need a separate UI or a different execution step
for development tests. They should ideally be baked right into your build
system. The feedback should be reported instantly like any other code
error.

System tests tend to use a different form of framework, where we see the
use of tools like Fit [3] and Cucumber [4]. These tools attempt to define
tests in a more humane, less programmatic manner, allowing non-
programmers to participate in the test/specification-wring process.

@Test
public void stringsCanBeCapitalised()
{
 String input =
 "This string should be upper case.";
 String expected =
 "THIS STRING SHOULD BE UPPER CASE.";

 String result = input.toUpperCase();

 assertEquals(result, expected);
}

we aim to place
truly isolated units

of code into the
‘system under test’

Li
st

in
g

1

6 | | SEP 2014{cvu}

No code is an island
When writing unit tests, we aim to place truly isolated units of code into
the ‘system under test’. These units can be instantiated without the rest of
the system being present.

A unit’s interaction with the outside world is expressed through two
contracts: the interface it provides, and the interfaces it expects. The unit
must not depend on anything else – specifically not on any shared global
state or singleton objects.

Global variables and singleton objects are an anathema to
reliable testing. You can’t easily test a unit with hidden
dependencies.

The interface that a unit of code provides is simply the methods, functions,
events and properties in its API. Perhaps it also provides some kind of
callback interface.

The interfaces it expects are determined by the objects it collaborates with
through its API. These are the parameter types in its public methods or any
messages it subscribes to. For example: an Invoice class that requires a
Date parameter relies on the date’s interface.

The objects that a class collaborates with should be passed in as constructor
parameters, a practice known as parameterise from above. This allows
your class to eschew hard-wired internal dependencies on other code,
instead having the link configured by its owner. If the collaborators are
described by an interface rather than a concrete type, then we have a seam
through which we can perform our tests; we have the ability to provide
alternative test implementations.

This is an example of how tests tend to lead to better factored code. It forces
your code to have fewer hard-wired connections and internal assumptions.
It’s also good practice to rely on a minimal interface that describes a
specific collaboration, rather than on an entire class that may provide much
more than the simple interface required.

Factoring your code to make it ‘testable’ leads to better code
design.

When you test an object that relies on an external interface, you can provide
a ‘dummy’ version of that interface in the test case. Terms vary in testing
circles, but often these are called test doubles. There are various forms of
doubles, but we most commonly use:

 Dummys

Dummy objects are usually empty husks – the test will not invoke
them, but they exist to satisfy parameter lists.

 Stubs

Stub objects are simplistic implementations of an interface, usually
returning a canned answer, perhaps also recording information
about the calls into it.

 Mocks

Mock objects are the kings of test double land, a facility provided by
a number of different mocking libraries. A mock object can be
created automatically from a named interface, and then told up-front
about how the SUT will use it. A SUT test operation is performed,
and then you can inspect the mock object to verify the behaviour
was as expected.

Different languages have different support for mocking
frameworks. It’s easiest to synthesize mocks in languages with
reflection.

Sensible use of mock objects can make tests simpler and clearer.
But, of course, you can have too much of a good thing. Tests that are

encumbered by complex use of many mock objects can become very
tricky to reason about, and hard to maintain. Mock mania is another
common smell of bad test code, and may highlight that the structure
of the SUT is not correct.

Conclusion
If you don’t care about quality,

 you can meet any other requirement
~ Gerald M. Weinberg

Tests help us to write our code. They help us to write good code. They help
maintain the quality of our code. They can drive the code design, and serve
to document how to use it. But tests don’t solve all problems with software
development. Edsger Dijkstra said: Program testing can be used to show
the presence of bugs, but never to show their absence.

No test is perfect, but the existence of tests serves to increase confidence
in the code you write, and in the code you maintain. The effort you put
into developer testing is a trade-off; how much effort do you want to invest
in writing tests to gain confidence? Remember that your test suite is only
as good as the tests you have in it. It is perfectly possible to miss an
important case; you can deploy into production and still let a problem slip
through. For this reason, test code should be reviewed as carefully as
production code.

Nonetheless, the punchline is simple: if code is important enough to be
written, it is important enough to be tested. So write development tests for
your production code. Use them to drive the design of your code. Write
the tests as you write the production code. And automate the running of
those tests.

Shorten the feedback loop.

Testing is fundamental and important. This article can only really scratch
the surface, encourage you to test, and prompt you to find out more about
good testing techniques.

Questions
1. Which is the best development test technique: test-first, or test (very

shortly) after coding? Why? How has your experience shaped this
answer?

2. Why do QA departments not traditionally write much test code, and
generally focus on running through test scripts and performing
exploratory testing?

3. How can you best introduce test-driven development into a
codebase that has never received automated testing? What kind of
problems would you encounter?

4. Investigate Behaviour-Driven Development. How does it differ
from ‘traditional’ TDD? What problems does it solve? Does it
complement or replace TDD? Is this a direction you should move
your testing in?

Acknowledgments
With thanks to Seb Rose, Chris Oldwood and Steve Love for their valuable
and timely input into this article.

References
[1] Janzen & Saiedian. ‘Test-driven development concepts, taxonomy,

and future direction’, 2005. Published in: Computer (Volume 38,
Issue 9)

[2] The Catch unit test framework. Available from: http://github.com/
philsquared/Catch

[3] Fit. Available from: http://fit.c2.com
[4] Cucumber. Available from: http://cukes.info
SEP 2014 | | 7{cvu}

http://github.com/philsquared/Catch
http://github.com/philsquared/Catch
http://fit.c2.com
http://cukes.info

8 | | SEP 2014{cvu}

A Secure Data Centre in the Heart of...
Bowthorpe

Paul Grenyer takes a tour of MigSolv’s facility.

’ve been a fan of Blake’s 7 [1] since I was a little boy. The producers
always used the most fantastic locations for filming the futuristic
science fiction series. Part of the ‘Children of Auren’ was even filmed

at the Metropolitan University near where I lived in Leeds.

Little did I know there is now an ideal Blake’s 7 set in Norwich!

Silicon Broads
The term ‘Silicon Broads’ started being bandied around shortly
before SyncNorwich’s TechCrunch [2] event in November 2013. Around
the same time I was contacted by a PR company
working for a company called MigSolv [3], who
were looking to do a story on whether Norwich
could build another Tech City or Silicon Fen.

Part of the discussion included an invite to visit and
tour MigSolv’s high security data centre in
Bowthorpe. It was more than six months before
Sean Clark, who has recently taken over the
Norfolk Tech Journal, and I were able to take
advantage of the generous offer...and we weren’t
disappointed.

About two years ago, MigSolv acquired the site
from Aviva and invested £12 million refurbishing
it. It consists predominantly of two large halls which can hold rack upon
rack of computers. A bomb proof mound stands between them. Six
generators, which can be spun up in seconds to take over from the UPSs,
ensure that in the event of a major power cut the site keeps running. The
site is served by two different mains power feeds and a number of different
internet connections converge on the site from different directions and
providers. It is monitored 24 hours a day from an onsite control room.

Security measures
Security is tight. You cannot visit the site without an appointment and you
must provide photo ID on arrival. There’s a perimeter fence tens of metres
from the main buildings that is topped with barbed wire. Entry is through
a manned gatehouse through a turnstile.

We were met by Jacob Barreth who works in sales at MigSolv. Jacob is
an extremely well informed and articulate individual. He doesn’t just know
about his company and their site in Norwich, but clearly understands the
market, MigSolv’s place in it and the forces affecting the clients who use
the site now and in the future. Jacob also has a keen interest in digital rights.

The tour
After a long chat (that I could happily have enjoyed all afternoon) about
MigSolv’s business, their facility in Norwich and the technical community
in Norwich, Sean and I were taken on a tour of the fascinating site. It started
outside where we were shown the generators and talked through many of
the external security features. We were then taken through the various

staging areas through which a customer would receive, unpack and
provision their hardware before it is installed in one of the data centre halls.
The final door into each hall requires an iris scan.

The halls are immense dust free environments. They were much warmer
than I expected because, as Jacob explained, it’s far more environmentally
efficient to provide air conditioning locally to the racks, rather than to the
entire room, (and it costs less which means their customers pay less).

In the background there was the constant hum of the air extractors and the
light was subdued but ample. Each bank of racks is fed power and

networking from beneath the floor and kept
locked. We wouldn’t have been able to gain access
to any individual bank. At either end of the halls
are cages which are sectioned off areas for the
telecommunications providers that provide the
Internet connections and are designed so that only
they can access them from doors and passageways
external to the main hall.

Jacob talked us through the fire suppression
system which uses gas to put out any fire detected
in plant areas and fine sprinklers in the main data
halls. Let’s face it, in a data centre there’s not much
that will actually burn, so if you do have a fire

you’ve already got huge problems.

Final thoughts
Before we knew it the full three hours allocated had passed and, after an
exchange of business cards, Jacob took us back outside the windowless
building and pointed us towards the turnstiles that would take us back to
security. It turns out that the turnstiles themselves were a bit of an ingenuity
test and it took us a few minutes to work out how to get out!

I came away very impressed by the facility and the attitude of MigSolv
themselves.

The halls are vast and I can easily imagine Avon and the rest of the Blake’s
7 crew charging through them hotly pursued by the federation. MigSolv
are keen to engage with the local tech community and in particular with
start-ups and SMEs to demonstrate the services they provide.

I am sure we, as the local tech community, will be hearing much more from
them, starting in the very near future.

References
[1] http://blakes7.com/
[2] https://www.youtube.com/user/SyncNorwich/videos
[3] http://www.migsolv.com/

I

it’s far more
environmentally

efficient to provide air
conditioning locally to
the racks, rather than

to the entire room

PAUL GRENYER
Paul Grenyer is a husband, father, software consultant,
author, testing and agile evangelist. He can be contacted at
paul.grenyer@gmail.com

If you read something in C Vu that you
particularly enjoyed, you disagreed with
or that has just made you think, why not
put pen to paper (or finger to keyboard)
and tell us about it?

http://blakes7.com/
https://www.youtube.com/user/SyncNorwich/videos
http://www.migsolv.com/

This article was inspired – you could even say ‘requested’ – by Chris
Oldwood’s post on accu-general:

A plea – more articles on what kind of programming you do
Hi All,

Something I’ve tried to do in my own articles in C Vu and
Overload is to try and give some context to the kind of
programming I do, because I know it’s different from what many
others do. In particular I’m interested to know what kinds of
constraints, or lack of them others have to put up with.

For example, I remember an accu-general thread about unit
testing and how that might/might not be as easy to apply in the
gaming industry. Those in the embedded market have
historically avoided C++, when perhaps it’s certain features of
C++ they couldn’t afford. Floating-point maths is apparently a no-
no in finance, unless you’re doing large volumes of risk
calculations and then performance trumps precision (well, in the
bits of finance I worked in). How does the inability to patch a video
game because it’s delivered on a read-only cartridge affect the
development process?

I don’t know about anybody else in ACCU, but I want to know
more about the kinds of stuff other people do. And in particular
what makes it different to what I do. I appreciate it’s often tricky
to know what’s different (unconscious incompetence) but in
those cases when you have had to make a trade-off – what was
it and why? When have you read a blog post or book about some
cool technique and then shouted at it because it has no place in
your industry/organisation/etc?

I’m sure the editors of our C Vu and Overload journals would be
more than happy to receive more content...

Hopefully, this will be the first of a series.

The inspiration behind the series...

MATTHEW JONES
Matthew started programming with BBC Basic, and then
learned C during a VI form summer job. He has been
programming professionally for over 20 years, having
moved on to C++, and usually works on large embedded
systems. He can be contacted at m@badcrumble.net

What Do People Do All Day?
Matthew Jones gives some insight as to what his job involves.

his is the first in what I hope will be a series of ‘What Do People Do
All Day’ articles [1] written by us, the members of ACCU. As the
title suggests, this is about what we do, day-to-day, in our jobs. It was

called into existence by Chris Oldwood, on accu-general [2] – see sidebar.
I hope there will be many more, much like the ‘Desert Island Books’ series
in CVu. Whether this actually happens is down to you!

Software spans a huge variety of languages, tools, market sectors, and
countries. I have vague notions of what people in the banks in Canary
Wharf do, but I bet I’m mostly wrong. I would like to know, and I suspect
most readers would too. I know Chris does.

There are several aspects to why we might want to know. It is partly just
curiosity, or nosey-neighbour curtain twitching trying to see what’s going
on next door. We always want validation: proof from others that we’re not
alone in working the way we do, and that our problems and struggles are
not unique. And I suspect there’s always a secret hope that we will find
that our job actually is the best in the world, and we really are better at
software than everyone else.

Being the first, this stands as a template for others to follow, if you want.
But think for yourselves! You’re all individuals.

Background
By most people’s standards I am a ‘real time’ and ‘embedded’ software
engineer. But I spend most of my time writing medium to high level,
portable, generic code. I usually work on large systems rather than ‘proper’
embedded stuff (by which I mean 8 bit micros, assembler/C, JTAG
debuggers and the like).

At the moment I am working as a permie at a small company, the software
director of which is an old friend from university. I came here a year ago
because I had been toying with the idea of working somewhere small for
years. I had a rose tinted day-dream of no bureaucracy, transparent
communication and everyone pulling their weight.

Before this I had worked in a series of large, usually multinational,
companies; in multi-person teams on projects that usually spanned years
rather than months. It has been interesting, but frustrating, as most people
in that situation will agree.

The team
At the top we have the software director. He is also the general manager.
He founded the company about 10 years ago, based on software that he
had started writing 10 years before that. As general manager he looks after
most of the day-to-day operation of the company including the production
team who assemble, pack and ship the various products. This often
prevents him from coding, so every now and then he either works from
home, or takes himself off for a week or so, part holiday and part coding
retreat. This is where some new features come from – straight from his
head into the product.

Out of a staff of a dozen or so, there are 4 software engineers. One joined
straight from university, about 5 years ago. Although he is the most junior,
he’s been there the longest, and is actually the mainstay of the team. He’s
also the IT guy, and the website guy, and the e-shop guy, and the Linux
expert and so the list goes on. He is critical to the operation of the
development team, and the business as a whole.

One of the developers works on truly embedded stuff: he writes VHDL as
well as C, and works on PCB design, firmware and code. He also works
from home in a different city so we only see him occasionally: every month
or so we have progress meetings which he attends.

Apart from me, the other developer is a contractor who mostly works for
us but goes off for weeks at a time on non-development jobs relating to
our industry. This gives him excellent experience with both our products,
and the competition, and he can wear the customer hat when we’re
discussing requirements or solutions to problems.

Lastly, there’s me. On paper I have the most experience of anyone, having
worked in a broader range of industries, but this is worth little in practice,
except under the blanket of ‘with age comes experience’. Luckily for me
I was put to work on a new product which sits alongside the existing range.
This was a double edged sword; although I had a clean sheet, I also had to
learn everything from scratch.

The software
We have one code base. As I mentioned above, parts of it are now getting
on for 20 years old. Unsurprisingly this shows; it is 90% old-school C, with
the attendant style and design failings. There is a lot of cut-and-paste (it is
the fastest way for the director to add new features). We have 1000 line
switch statements. We have about 3 main include files, each of which

 T
SEP 2014 | | 9{cvu}

tops 1000 lines. The application state is spread all over the place. This is
what happens when one person develops by themselves for years, without
keeping up with current thinking. Having said all that, the code is ‘brutally
fast’ (to quote a colleague), and it works.

The old code is hard to understand, and fragile if you don’t know it well.
It follows its own coding standards and conventions, but these are mostly
rules and techniques in the original author’s head. When he follows them,
preconditions are met, variable names make sense and the code works.
When anyone else starts making changes things can go wrong, and fast.
So we have quite naturally fallen into an
arrangement where each developer usually sticks
to their own code, and therefore their own area of
expertise. But this also means we have different
coding styles and language dialects. We are not
at the point where this can be homogenised; the
old code is not going to get changed without good
reason, and the director readily confesses to only
really understanding a core subset of C, let alone
C++.

The main software runs in our physical products,
which use touch screens and a variety of input devices, and which use
medium to high-end embedded processors running Linux. There is also a
software only version which has graphical emulation of the product’s front
panel. This runs on Windows, Mac and Linux. We manage all this using
the Qt framework [3].

We use Subversion [4] for revision control, and Buildbot [5] is triggered
by commits to the trunk, whereupon it builds all the different flavours of
the product, resulting in installers that are ready to release, should we feel
the need. Once we have a green build releasing it is simply a case of
copying the installers onto the download website and updating the
webpage.

Releases are ad-hoc. There is a product roadmap but it is a sketch rather
than something to frame on the wall and point at when we’re late with a
feature. We tend to release several times a month, usually when there is a
new feature or two worthy of release. Bug fixes that have happened along
the way are released by default, although sometimes we make specific
releases to fix critical issues. There are no code branches; we release from
the trunk, and all products run the same version of software (subject to the
users upgrading). Considerable effort goes into ensuring backward, and
forward, compatibility with configuration data and the like. Above the
product roadmap we have the calendar with two large trade shows a year.
These are the deadlines for new products or major new features.

Testing is manual. We are expected to test our own code changes, and we
have a couple of support people who are meant to put each release
candidate through its paces. This is patchy and unreliable because they
have plenty of other things to do (like answering customers’ calls). I felt
the need to write some unit tests for some critical parts of my code that I
just couldn’t properly test manually. These will become automated when
they reach the top of my todo list.

The process
We have no formal development process. However, we are pretty agile
(although only a few of us would even know the term!).

Being all in one office, we all know what is going on in the development
team. With forthcoming work we are expected to tell, rather than ask.
There’s always plenty to do and I’ve never had to ask for a task. We state
our forthcoming work in weekly email reports, which allows the director
to comment on priority and direction (he is the director after all!).
Sometimes on a Monday he might say, “This week you need to work on
X because I did Y over the weekend,” where Y could be ‘thought about
it’, ‘fixed a bug’, ‘added a feature’, ‘spoke to a customer’, ‘got a support
call’ and so on. It’s never quite a case of dropping everything, but we do
make 90 degree turns sometimes.

Requirements come from the directors (HW and SW) and are usually
verbal. As we work on a feature the requirements will be thrashed out

amongst ourselves. When I started I wrote a SW requirement specification
mainly as a tool to aid my own understanding, and to trigger review and
debate. Since then I haven’t maintained it because I’ve learned the ropes
and we haven’t had anything new enough to require significant up-front
thinking. We rarely have design meetings, and I have never seen a SW
design document. Mainstream features evolve from the existing code and
rarely involve significant re-writing or re-design. Because each of us tends
to work alone on an area of the code, most of the time we quietly ‘just do it’.

To many who are used to working in large companies with QA
departments, processes, reviews and project
plans, this might feel like the wild west. In many
ways it is, but it works pretty well. We just don’t
seem to need those trappings. There is sufficient
(but never enough!) communication, and the
team is experienced enough to turn out code that
does the job. It can be ugly at times, but it hides
inside a product that is functional, reliable,
established, and well respected by its users.

The future
When I arrived I was pleasantly surprised to find Buildbot running
automatically. Of course this was the work of the youngest developer. I
was amazed to find that we had something like 3000 compiler warnings.
A lot of them were silly things, but hiding amongst them (and going
unnoticed) were a few serious ones. I couldn’t stand this because the noise
constantly distracted me when writing new code, so I lead a crusade. Now
we have green builds, and -Werror in the makefile [6].

Everybody understands that we have to isolate the old code, and with it
the director’s involvement in the day-to-day development of ‘the new
stuff’. We know that the long term goal is to extricate the true core from
what is currently thought of as ‘the core’, but in reality is a mix of core
logic, GUI, and application state machines. We have had a number of
casual discussions (waiting for the kettle to boil – we don’t have a water
cooler!) about gradually re-writing the GUI using the full power of Qt, and
hiding the core using MVC [7] and its ilk. We know the core will never
be modernised, but it can be distilled.

Whatever we do there is enormous inertia in the existing product, and the
force that four employees can apply is small. The needs of the business
heavily outweigh any ideals. Being a small company there is a constant
tension between the needs of the old code, adding features cost effectively,
and the staff wage bill. I retain my sanity by retreating to my code which
is clean [8], moderately SOLID [9] and where all is beauty and light.
Actually I’m starting to revisit my own legacy code from a year ago, when
I was effectively prototyping the product, and not liking what I see! It just
goes to show how your own style and ideas change as you work.

References
[1] http://www.goodreads.com/book/show/

313375.Richard_Scarry_s_What_Do_People_Do_All_Day_
https://en.wikipedia.org/wiki/Richard_Scarry

[2] 8 March 2014: Oldwood, Chris on accu-general: A plea - more
articles on what kind of programming you do

[3] http://qt-project.org/
[4] http://subversion.apache.org
[5] http://buildbot.net
[6] https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
[7] https://en.wikipedia.org/wiki/MVC_model
[8] http://blog.cleancoder.com/
[9] https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

I felt the need to write
some unit tests for some
critical parts of my code

that I just couldn’t
properly test manually

What do you do all day? If you want to share with us the great way
you go about your day-to-day work, or the frustrations of working in
a dysfunctional environment, or anything in between, get in touch!
Send your experiences to cvu@accu.org
10 | | SEP 2014{cvu}

https://en.wikipedia.org/wiki/MVC_model
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
http://qt-project.org/
http://www.goodreads.com/book/show/313375.Richard_Scarry_s_What_Do_People_Do_All_Day_
http://www.goodreads.com/book/show/313375.Richard_Scarry_s_What_Do_People_Do_All_Day_
https://en.wikipedia.org/wiki/Richard_Scarry
http://subversion.apache.org
http://buildbot.net
http://blog.cleancoder.com/

Beware setlocale Behaviour in
Visual C++ 2012 & 2013

Alex Paterson investigates a bug in the
Visual C++ runtime library.

his article describes how investigating a crash in a popular open
source library led to the discovery of a change in behaviour in the C
runtime library implementation that could have a significant

detrimental impact on applications using C runtime locales across multiple
threads that are compiled with Visual C++ 2012 & 2013.

Debugging a crash in GDAL
A crash was reported in a project using the Geospatial Data Abstraction
Library (GDAL), a popular library for handling geospatial data and
reading/writing various geospatial data formats. [1] [2]

The person experiencing the crash had recently upgraded their build
platform to use a new version of Visual Studio (from 2005 to 2012) and
had also upgraded to a new build of GDAL. At some point they found their
previously stable program often crashed, producing the same stack trace
each time. They investigated the problem and came up with a small test
program that could replicate the problem; it did some basic reading of
geospatial data on multiple threads and I used it to replicate the crash for
myself. The test application was investigated further by using Microsoft's
excellent Application Verifier [3] tool and, after rebuilding the entire
GDAL library in debug mode (requiring some build file tweaks [4]), it
became apparent that the problem was in the area of locale handling.

Isolating the problem

Another test program was created, this time replicating the locale
behaviour of the GDAL code without directly using it.

This program corrupts memory on Visual C++ 2012 and 2013, but not on
2010 and earlier. Increasing THREAD_COUNT increases the frequency of
corruption events. These issues can be detected in the debugger by running
the program with the Application Verifier ‘Basics’ checks enabled. Listing
1 shows code isolating the problem with setlocale.

This program starts two workers threads, each of which calls
setlocale() to query the current locale in a tight loop (setlocale
being used to both change and query the current locale). Sounds simple,
but even this small test program was hitting an Application Verifier
breakpoint for heap corruption. The stack trace (Listing 2, overleaf) was
indicating that the problem was in the part of the runtime library code that
was updating the locale, which was surprising because my test program
wasn’t updating the locale.

As Microsoft include the source code of their C runtime library in their
compiler distribution, examining the code revealed that even just querying
the locale appears to cause some shared state to be modified.

What is a locale?
Due to the wonderful variety of different cultures we have on our planet,
data presentation varies between regions, using different formatting and/
or ordering according to local standards and customs. As an example, ask
yourself what the value of the following is:

 1.125

If you live in the UK, you’re likely to read it as floating point value between
1 and 2, but if you live in mainland Europe, you might read it as one
thousand, one hundred and twenty five. This presents a problem for any
code that needs to deal with translating this information from human-
readable form (i.e. strings) to internal representation (e.g. a variable of type
float), or vice-versa.

A locale in the C runtime sense is essentially a set of data that describe the
data presentation standards for a given region/culture. They are essential
in not only being able to present information on screen to a user, but also
in reading data. If I wanted to read a file that included coordinate
information, then I need to know what locale the data is stored in so that
I can interpret the decimal point correctly.

Finding a hypothesis
In an attempt to take an easy step to rule out any problems introduced by
the change of compiler version, I tried my test program in Visual C++
2005, the version that was being used before the upgrade. To my surprise,
my test program did not crash, suggesting a change in behaviour of the
runtime library and/or compiler. So what could Microsoft have done to
affect C locale handling between these two different versions of their
compiler? Comparing the setlocale runtime library code between versions
2005 and 2012 of Visual C++ showed significant changes.

To give a quick bit of background, the C standard defines the following
method for setting the locale: char * setlocale (int category,
const char * locale). In the Microsoft world, there are two
variations of this method, one standard following the above specification
and one to support wide characters: wchar_t * _wsetlocale (int
_category, const wchar_t * _wlocale). So we

T

ALEX PATERSON
Alex Paterson is a programmer working mostly with C++
and PL/SQL in the field of GIS and Intelligent Transport
Systems. He lives and works in the North East of England
and can be contacted at alex@tolon.co.uk.

#include <locale.h>
#include <process.h>
#include <stdio.h>
#include <windows.h>

const int THREAD_COUNT = 2;

void setlocale_loop(void*)
{
 while(1)
 setlocale(LC_NUMERIC, NULL);
 //query the current locale
}

int main()
{
 for (int i = 0; i < THREAD_COUNT; i++)
 _beginthread(&setlocale_loop, 0, NULL);

 Sleep(60 * 1000);
 /*sleep main thread for 60 seconds*/
}

Li
st

in
g

1

SEP 2014 | | 11{cvu}

have two different setlocale methods, one for char and another for
wchar_t. In Visual C++ 2005 setlocale() implements the querying
and changing of the locale as expected, but the _wsetlocale() variation
performs some wchar_t * to char * string conversion and then
delegates the work to setlocale(). So despite there being two different
functions for changing the locale there is really only one implementation,
which seems like a good approach and follows the DRY [5] philosophy.

In Visual C++ 2012, the situation is reversed. _wsetlocale() does the
actual work and setlocale() delegates to it; different editions of
Microsoft’s Visual C++ compiler were examined and it appears that the
former implementation was last shipped in 2010 and the latter shipped in
both 2012 and 2013.

Verifying the hypothesis

To verify that the problem was due to this change, I wrote another test
program using _wsetlocale, which this time crashed when built with
2005, but ran without a problem when built with 2012. (Listing 3 is test
program code using the wchar_t variation of setlocale.)

So in Visual C++ 2005, a very similar problem existed, but it was
in the non-standard _wsetlocale method.

The crux of the problem seems to be that the setlocale method modifies
the global locale storage even though only a query is requested. Coupled
with reference-counted storage of the locale data and some gaps in the
locking mechanism means that calling setlocale concurrently from
multiple threads in VC++ 2012/2013 (or _wsetlocale prior to this)
should be treated with caution.

This change in behaviour is most unfortunate, as the problem has moved
to the standard setlocale method, which I believe will be used by far
more applications than the _wsetlocale version (most C code aiming

to be platform independent will be using setlocale). I shudder to think
of how many programs and libraries that require localisation are now
running the risk of hitting this problem.

It is difficult to know how widespread this issue really is, but it seems to
me that any cross-platform C or mixed C/C++ program might be
susceptible to the same problem if they support locales across multiple
threads. One of the more likely candidates for hitting this problem are those
applications that are concerned with processing data that may be localised.
GDAL falls into this category as when it is reading data from the various
geospatial formats it supports, it primarily needs to understand the decimal
point representation (dot vs comma).

What does the Standard say?

In the C99 [6] and C11 [7] standards, setlocale is defined in §7.11.1.1.
In C99, paragraphs 2, 5 and 7 are most relevant to this discussion:

 Para 2 - The setlocale function selects the appropriate portion of
the program’s locale as specified by the category and locale
arguments. The setlocale function may be used to change or
query the program’s entire current locale or portions thereof...

 Para 5 - The implementation shall behave as if no library function
calls the setlocale function.

 Para 7 - A null pointer for locale causes the setlocale function to
return a pointer to the string associated with the category for the
program’s current locale; the program’s locale is not changed.

In C11, paragraphs 2 and 7 are the same, but paragraph 5 is modified to
the following:

 Para 5 - A call to the setlocale function may introduce a data race
with other calls to the setlocale function or with calls to functions
that are affected by the current locale. The implementation shall
behave as if no library function calls the setlocale function.

This update to paragraph 5 seems sensible when considering calls that
modify the locale, but surely it shouldn’t apply to calls that are merely
querying the current program locale? Paragraph 5 states that concurrent
calls to setlocale may introduce a data race, but paragraph 7 tells us
that when querying the locale, the program’s locale is not changed. Surely
if we’re not modifying the program’s locale, there shouldn’t be any
possibilty of a data race?

Digging deeper / a curious comment

It seems that these crashes only happen when our concurrent calls to query
the locale include the delegating version of the method. Examining the
code of the delegating methods gives us a couple of good clues that the
runtime coders aren’t too confident about what is going on! The code
includes some resource locking and reference-counted storage, which

ntdll.dll!_RtlReportCriticalFailure
ntdll.dll!_RtlpReportHeapFailure
ntdll.dll!_RtlpLogHeapFailure
ntdll.dll!_RtlpCoalesceFreeBlocks
ntdll.dll!@RtlpFreeHeap
ntdll.dll!_RtlFreeHeap
kernel32.dll!_HeapFree
msvcr110.dll!free(void * pBlock=0x00769650) Line 51
msvcr110.dll!__freetlocinfo(threadlocaleinfostruct * ptloci=0x00740000) Line 202
msvcr110.dll!_updatetlocinfoEx_nolock(threadlocaleinfostruct * * pptlocid, threadlocaleinfostruct *
ptlocis) Line 250
msvcr110.dll!_wsetlocale(int _category=4, const wchar_t * _wlocale=0x00000000) Line 569
msvcr110.dll!setlocale(int _category=4, const char * _locale=0x00000004) Line 50
SetLocaleThreadSafety.exe!setlocale_loop(void * __formal=0x00000000) Line 9
msvcr110.dll!_callthreadstart() Line 255
msvcr110.dll!_threadstart(void * ptd) Line 237
kernel32.dll!@BaseThreadInitThunk
ntdll.dll!___RtlUserThreadStart
ntdll.dll!__RtlUserThreadStart

Li
st

in
g

2

/* This crashes in MSVC 2010 and earlier.
Note the use of _wsetlocale, the wide character
variant of setlocale. */

void setlocale_loop(void*) {
 while(1)
 _wsetlocale(LC_NUMERIC, NULL);
}

int main() {
 for (int i = 0; i < 2; i++)
 _beginthread(&setlocale_loop, 0, NULL);

 Sleep(60 * 1000);
 /*sleep main thread for 60 seconds*/
}

Li
st

in
g

3

12 | | SEP 2014{cvu}

makes sense as some form of locking and reference-counting is required
in order to prevent shared locale resources being changed whilst being used.

Comments taken from the Microsoft C runtime library implementation of
_wsetlocale in Visual C++ 2005 (wsetloca.c) are shown in Listing 4.

Workaround

The workaround added to GDAL is to use a synchronisation method to
prevent it from making concurrent calls to either setlocale or
_wsetlocale. This has been done by providing a wrapper method which
uses critical section semantics to prevent concurrent calls to the underlying
setlocale method. This is far from ideal as it only prevents concurrent
setlocale calls in one library; the workaround would need to be
implemented in all susceptible libraries until such a time that the
underlying issue in the runtime library has been resolved.

Conclusion
Put simply, beware setlocale in Visual C++ 2012 and 2013!

There is a race condition in Visual C++ 2010 and earlier when querying
the locale using the non-standard _wsetlocale function, but not the
standard setlocale one. In Visual C++ 2012 and 2013 this situation is
reversed; there is a race condition when querying the locale using
setlocale, but not _wsetlocale. This change in behaviour may have
an impact on any programs compiled with the Microsoft C runtime library
that use locales across multiple threads.

The problem may have previously existed for _wsetlocale, but I
believe that this non-standard version is called far less often than
setlocale (i.e. most platform-independent code is probably using
setlocale in all cases rather than having special cases to call
_wsetlocale on Windows). The change in behaviour has the
unfortunate effect that when some libraries and programs are recompiled
in Visual C++ 2012 and later, the stability may not be as good as when
they were compiled in previous versions.

Recommendations
The implementation of setlocale and _wsetlocale in the Visual
C++ C runtime library should be addressed to remove the current race
condition. The C standard states that querying the locale should not change
the program’s locale, so any setlocale queries should not have
problems, even if they are concurrent. A shared synchronisation primitive
between the setlocale and _wsetlocale implementation could solve
the problem, preventing any concurrent execution across both methods.
There are other routines that must use the current locale, but these do not
exhibit the same race condition. For example, using sprintf
concurrently to write float values into a string does not yield any problems
in either VC++ 2005 or VC++ 2012.

With regard to the ‘risky’ comment. In the 2012 and 2013 editions of
Visual C++, the curious comment appears in both the setlocale and
_wsetlocale methods, suggesting both an overuse of copy-and-paste
and perhaps a lack of diligence when reviewing code. In code as critical
as this, I am surprised that such as comment is present, but I do have a lot
of respect for the programmer who wrote it in the first place; their comment

is essentially a red flag telling us that they have
written some code or have found some code that
has a bit of a smell and it really should be sorted
out at some point. [8]

Code reviews are an important tool for software
developers, but they should not be over-used.
However, in something like a runtime library,
especially one as mature as Visual C++, I would
expect every change to be reviewed. Either this is
not happening or the quality of the code review
appears to be questionable.

The issue with concurrent setlocale query calls has
been raised with Microsoft. [9]

Further work
In this case the ‘risky’ code could have been found by searching the
runtime library source code for the string "risk". If we were to extend this
search to include some other ‘code smell’ phrases, such as "don’t know"
(as in “I don’t know what this code does”, which I have seen in the wild,
although not on my present project I hasten to add), or “to do”, then this
may be a useful method of detecting some areas of the codebase that
require further attention.

So my suggestion is that you occasionally search your own codebases for
some of these words and phrases. I have done this myself with some
interesting results, but I won’t bore you with the self-incriminating
details...

References
[1] GDAL Ticket 5366: Access violation (Crash) with

OGRCreateCoordinateTransformation (http://trac.osgeo.org/gdal/
ticket/5366)

[2] GDAL - Geospatial Data Abstraction Library
(http://www.gdal.org)

[3] Microsoft Application Verifier (http://msdn.microsoft.com/en-us/
library/aa480483.aspx)

[4] GDAL can now produce PDB files for proper debugging on
Windows using the WITH_PDB=1 flag (http://trac.osgeo.org/gdal/
ticket/5420)

[5] Orthogonality and the DRY Principle (http://www.artima.com/intv/
dry.html)

[6] C99 Language Specification with TC changes, final draft
(http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf)

[7] C11 Language Specification, final draft (http://www.open-std.org/
jtc1/sc22/wg14/www/docs/n1570.pdf)

[8] A ‘code smell’, as defined in Clean Code, A Handbook of Agile
Software Craftsmanship, Robert C. Martin, 2009, Prentice Hall.

[9] Bug report logged with Microsoft (https://connect.microsoft.com/
VisualStudio/feedback/details/794122)

...
/*
 * Note that we are using a risky trick here. We are adding this
 * wlocale to an existing threadlocinfo struct, and thus starting
 * the wlocale's wrefcount with the same value as the whole struct.
 * That means all code which modifies both threadlocinfo::refcount
 * and threadlocinfo::lc_category[]::wrefcount in structs that are
 * potentially shared across threads must make those modifications
 * under _SETLOCALE_LOCK. Otherwise, there's a race condition
 * for some other thread modifying threadlocinfo::refcount after
 * we load it but before we store it to wrefcount.
 */
...

Li
st

in
g

4

SEP 2014 | | 13{cvu}

http://trac.osgeo.org/gdal/ticket/5366
http://trac.osgeo.org/gdal/ticket/5366
http://www.gdal.org
http://msdn.microsoft.com/en-us/library/aa480483.aspx
http://msdn.microsoft.com/en-us/library/aa480483.aspx
http://trac.osgeo.org/gdal/ticket/5420
http://trac.osgeo.org/gdal/ticket/5420
http://www.artima.com/intv/dry.html
http://www.artima.com/intv/dry.html
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://connect.microsoft.com/VisualStudio/feedback/details/794122
https://connect.microsoft.com/VisualStudio/feedback/details/794122

14 | | SEP 2014{cvu}

Revisiting the Gang of Four
Chris Oldwood reflects on things missed first time around.

y education as a programmer recently took another unexpected turn
as quite by accident I discovered the difference between types and
classes. Whilst I was aware there was a difference, I had never felt

that my skills as a programmer were sufficiently
impaired to feel the need to go out and discover the
answer proactively.

This serendipitous moment came by way of a link
in a tweet to a StackOverflow question written
way back in 2012. It involved a comment made by
James Coplien about the book Design Patterns
and asked “Are there any patterns in GoF?” [1].
The accepted answer, which finally came some 18
months later from James Coplien himself, caused
me to go back and read the ‘Introduction’ chapter
of the seminal Design Patterns book [2]. When I
reached Section 1.6, ‘How Design Patterns Solve
Design Problems’, I found the difference between
class and type described clear as day under the
subsection ‘Class versus Interface Inheritance’:

It’s important to understand the difference between an object’s class
and its type…The class defines the object’s internal state and the
implementation of its operations. In contrast, an object’s type only
refers to its interface…

It turns out Section 1.6, which is only 16 pages long, is an absolute
goldmine of information on the object-orientated (OO) paradigm,
containing such gems as the sections: ‘Programming to an Interface, not
an Implementation’, ‘Inheritance versus Composition’, ‘Delegation,
Inheritance versus Parameterized Types’ and ‘Designing for Change’.

In some respects I find this sudden gain in clarity a little disturbing because
I know I read that section for (at least) a second time, as I always read my
books from cover-to-cover (eventually). So why did I not remember this
particular nugget within the book, even if it was 20 years ago, as I do so
many other gems in other books? For example, the discussion of noumena

and phenomena and the essence of objects in the weighty tome on OLE
by Kraig Brockschmidt [3] is far more tenuous, and yet apparently far more
memorable.

I think Emyr Williams probably hit the spot in his
recent Becoming a Better Programmer blog post
‘Concepts Not Syntax’ [4]. At the start of your
professional programming career you just don’t
have the capacity to take in everything that you
consume, especially when you’re being paid to
write code. And unless you come from a
Computer Science background in the first place
you need to make a choice about what you focus
on. I now realise I unconsciously chose to focus
on learning the technology –platforms and
programming languages – which means I’m now
paying catch up to understand what it all means.

This isn’t the first time either. My career is
littered with examples of where I finally really

managed to grok something just as it goes out of fashion, e.g. COM, batch
files, etc. With functional programming grabbing the headlines and object-
orientation being given its last rites it’s somewhat apt that now is the time
I start to discover what I probably should have known 20 years ago.

Irrespective of whether James Coplien is right or not on whether they are
really idioms, and not patterns as Alexander intended, the book still
contains some thoroughly useful knowledge about learning the principles
behind OO.

References
[1] http://stackoverflow.com/questions/12981021/are-there-any-

patterns-in-gof
[2] Design Patterns: Elements of Reusable Object-Orientated Software

by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
published by Addison Wesley, 1994

[3] Inside OLE by Kraig Brockschmidt, published by Microsoft Press,
revised edition 1995

[4] ‘Concepts Not Syntax’ by Emyr Williams in his Becoming a Better
Programmer blog: http://becomingbetterdotnet.wordpress.com/
2014/04/26/concepts-not-syntax/

M

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80s writing assembler on 8-bit
micros; these days it’s C++ and C#. He also
commentates on the Godmanchester duck race.
Contact him at gort@cix.co.uk or@chrisoldwood

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

At the start of your
professional

programming career
you just don’t have the

capacity to take in
everything that you

consume

http://stackoverflow.com/questions/12981021/are-there-any-patterns-in-gof
http://stackoverflow.com/questions/12981021/are-there-any-patterns-in-gof
http://becomingbetterdotnet.wordpress.com/2014/04/26/concepts-not-syntax/
http://becomingbetterdotnet.wordpress.com/2014/04/26/concepts-not-syntax/

SEP 2014 | | 15{cvu}

Talk in Code
Andy Balaam presents some tips on clear communication.

ast week we had an extended discussion at work about how we were
going to implement a specific feature.

This discussion hijacked our entire Scrum sprint planning meeting [1]
(yes, I know, we should have time-boxed it [2]). It was painful, but the guy
who was going to implement it (yes, I know, we should all collectively own
our tasks) needed the discussion: otherwise it wasn’t going to get
implemented. It certainly wasn’t going to get broken into short tasks until
we knew how we were going to do it.

Anyway, asides aside, I came out of that discussion bruised but triumphant.
We had a plan not only on how to write the code, but also how to test it. I
believe the key thing that slowly led the discussion from a FUD-throwing
[3] contest into a constructive dialogue was the fact that we began to talk
in code.

There are two facets to this principle:

1. Show me the code
As Linus once said, “Talk is cheap. Show me the code.” [4].

If you are at all disagreeing about how what you’re doing will work, open
up the source files in question. Write example code – modify the existing
methods or sketch a new one. Outline the classes you will need. Code is
inherently unambiguous. White board diagrams and hand-waving are not.

Why wouldn’t you do this? Fear you might be wrong? Perhaps you should
have phrased your argument a little less strongly?

Is this slower than drawing boxes on a whiteboard? Not if you include time
spent resolving the confusion caused by the ambiguities inherent in line
drawings.

Does UML [5] make whiteboards less ambiguous? Yes, if all your
developers can be bothered to learn it. But why learn a new language when
you can communicate using the language you all speak all day – code?

2. Create a formal language to describe the problem
If your problem is sufficiently complex, you may want to codify the
problem into a formal (text-based) language.

In last week’s discussion we were constantly bouncing back and forth
between different corner cases until we started writing them down in a
formal language.

The language I chose was an adaptation of a Domain-specific language [6]
I wrote to test a different part of our program. I would love to turn the cases
we wrote down in that meeting into real tests that run after every build (in

fact I am working on it) but their immediate value was to turn very
confusing ‘what-if’s into concrete cases we could discuss.

Before we started using the formal language, the conversations went
something like this:

Developer: If we implement it like that, this bad thing will happen.

Manager: That’s fine – it’s a corner case that we can tidy up later if we
need it.

Developer: (Muttering) He clearly doesn’t understand what I mean.

Repeat

After we started using the formal language they went something like this:

Developer: If we implement it like that, this bad thing will happen.

Me: Write it down, I tell you.

Developer: (Typing) See, this will happen!

Manager: That’s fine – it’s a corner case that we can tidy up later if we
need it.

Developer: (Muttering) Flipping managers.

Summary
The conversation progresses if all parties believe the others understand
what they are saying. It is not disagreement that paralyses conversations
– it is misunderstanding.

To avoid misunderstanding, talk in code – preferably a real programming
language, but if that’s too verbose, a text-based code that is unambiguous
and understood by everyone involved.

References
[1] http://www.scrumalliance.org/pages/scrum_ceremonies
[2] http://en.wikipedia.org/wiki/Timebox
[3] http://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt
[4] http://lkml.org/lkml/2000/8/25/132
[5] http://en.wikipedia.org/wiki/Unified_Modeling_Language
[6] http://www.martinfowler.com/bliki/DomainSpecificLanguage.html

 L

ANDY BALAAM
Andy is happy as long as he has a programming language and a
problem. He finds over time he has more and more of each. You can
find his many open source projects at artificialworlds.net or contact him
on andybalaam@artificialworlds.net

You can’t copy and paste them, and you can’t (easily) keep what
you did with them, and you can’t use them to communicate over
long distances.

And don’t even try and suggest an electronic whiteboard. In a few
years they may solve all of the above problems, but not now. They
fail the “can I draw stuff?” test at the moment.

Even when electronic whiteboards solve those problems, they won’t
solve the fact that lines and boxes are more ambiguous and less
detailed than code in text form.

If you all know and like UML, that makes your diagrams less
ambiguous, but still they often don’t allow enough detail: why
bother?

Whiteboards

http://www.scrumalliance.org/pages/scrum_ceremonies
http://en.wikipedia.org/wiki/Timebox
http://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt
http://lkml.org/lkml/2000/8/25/132
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://www.martinfowler.com/bliki/DomainSpecificLanguage.html

16 | | SEP 2014{cvu}

Standards Report
Mark Radford reports current discussions in

C++ Standardisation.

ello and welcome to my latest standards report.Since my last report,
the ISO C++ committee has met (Rapperswil, 16th–21st June), and
the BSI C++ Panel had its post-Rapperswil meeting on 21st July.

Also, the post-Rapperswil mailing has been published [1].

For reasons I’ll discuss at the end of this report, no work was done on the
C++ working draft in Rapperswil. Instead, the meeting focussed its
attention on doing work on the TS (technical specification) documents that
are currently under development, as well as addressing defect reports. The
status of each TS is reported in the Rapperswil meeting minutes (N4053),
but I’ll just mention that the Filesystem TS has made significant progress,
with work being done on ballot resolution in order to progress it to the DTS
(draft technical specification) stage.

Of all the things that were discussed in Rapperswil, I’ve singled out two
to go into more detail about: the removal of the ‘Executers and Schedulers’
section from the concurrency TS, and the modules SG discussions. The
former because of the potentially significant step it represents in the
development of the concurrency TS. The latter because, although there are
no important decisions to report, the addition of modules to C++ would
represent a big change to the language. I also want to talk about two
discussions from the BSI C++ Panel meeting: firstly, the proposal to add
a ‘const-propagating wrapper’ to the standard library, and second, the
proposal to consider allowing return expressions in curly braces to be
subject to conversions even if the conversion is explicit. In the former case
this is because the proposal is a very simple one, but it’s so useful. In the
latter case, because of the impact the proposal could have on the language,
including the potential for silent changes to existing code.

The first discussion from Rapperswil I want to talk about is that concerning
the paper Working Draft, Technical Specification for C++ Extensions for
Concurrency (N4107). Compare this with its predecessor version (N3970,
which can be found in the previous mailing), and you may notice a whole
section has been removed. As I mentioned above, I am referring to the
section that was entitled ‘Executers and Schedulers’. The ‘Executers and
Schedulers’ section was based on the proposal in ‘Executors and
schedulers, revision 3’ (N3785), a proposal that has been around for a
while and has been through several revisions. When the BSI Panel first
discussed N3378 (the original version of N3785) opinions were mixed.
Reasons for not favouring it varied, but many of them are summarised in
Christopher Kohlhoff’s paper Executors and Asynchronous Operations
(N4046) which can be found in the pre-Rapperswil mailing. N4046 was
discussed by the Concurrency and Parallelism Study Group (SG1) in
Rapperswil, and it was met with a positive reception. SG1 are now
considering which of the two alternatives to adopt. One thing that came
out of the Rapperswil discussions is that SG1 would like to see wording
for N4046. Wording is not supplied by N4046 because the author wanted
to see what kind of reception it received before doing further work. Given
the response from Rapperswil, I’m assuming there will be a revision of the
paper that supplies wording (as well as taking account of any other
feedback the author has received). The BSI C++ Panel conducted a follow
up discussion on this paper at the meeting on July 21st. Given the interest
in N4046, Christopher Kohlhoff (its author) was urged to attend the next

ISO meeting (Urbana, IL, in November), given the contributions he could
make to the discussion on this proposal.

SG2, the Modules Study Group, were once again active at the Rapperswil
meeting, the last time being in Chicago last year. At the Chicago meeting
they discussed some things in general as well as some high level goals. In
Rapperswil they were discussing A Module system for C++ (N4047). As
far as I can see the first appearance of this paper was in the pre-Rapperswil
mailing, so it won’t have been discussed (by the ISO committee) before.
Looking at the minutes of SG2s discussion, I can’t see any firm
conclusions I can report. However, from the discussion, it is clear that some
problems are far from easy to solve. For example, could pre-processor
macros be exported from a module?

Moving on to the BSI C++ Panel meeting, the first discussion I want to talk
about concerns the paper A Proposal to Add a Const-Propagating Wrapper
to the Standard Library (N4057), authored by Jonathan Coe and Robert
Mill. This proposal addresses the behaviour of const member functions
when they access const pointer members of the class. Specifically, if a
member pointer is declared const type *p; then p is treated as const,
but what it points to is not (note that this is the case even for some types of
smart pointer, as illustrated in the paper). The paper proposes a
propagate_const<T> wrapper that propagates the ‘constness’ through
to the object pointed to. I feel this paper is proposing something that is long
overdue. It was well received in the Panel discussion.

A paper that received a very different reception by the Panel is Herb Sutter’s
Let return {expr} Be Explicit, Revision 2 (N4074). This paper proposes that
an expression surrounded by curly braces, in a function return statement,
should be considered explicit. That is to say: if a conversion is required,
and the conversion is declared with the explicit qualifier, then in this special
case the conversion can be executed without any explicit conversion in the
return statement. Herb Sutter argues that this (inability to perform the
conversion automatically) results in the most hated kind of error message
that (to quote the paper) effectively says: “I know exactly what you meant.
My error message even tells you exactly what you must type. But I will make
you type it”. That sounds logical on the surface, but there’s more to it. In
fact, there is so much more to it, that this is one of those cases where others
have felt compelled to produce what you might call a ‘rebuttal’ paper. The
problem is that ignoring the requirement for an explicit conversion can lead
to unintended loss of information. Howard Hinnant and Ville Voutilainen
give several such examples in their paper Response To: Let return {expr}
Be Explicit (N4094) which gives the counter arguments and examples. The
Panel felt that the change proposed by N4074 would be a bad thing and that
the more support gained by N4094, the better.

That almost concludes this edition of my standards report, but just before
I sign off, I’ll give an update on where we are with C++14. The current
draft is now at its DIS (draft international standard) stage until 15th August,
awaiting yes/no votes from national bodies (a recommendation has been
passed on to the BSI that the UK should vote ‘yes’). What happens next
depends on whether or not there are any ‘no’ votes. If there are none, the
DIS is passed in its current form (without the need for a further round of
votes) and will become an international standard. If there are any ‘no’
votes, the draft will be updated to take comments into account, before
moving to its FDIS (final draft international standard) stage.

References
[1] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/

#mailing2014-07

 H

MARK RADFORD
Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark@twonine.co.uk

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/#mailing2014-07
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/#mailing2014-07

Code Critique Competition 89
Set and collated by Roger Orr. A book prize is

awarded for the best entry.

Participation in this competition is open to all members, whether novice
or expert. Readers are also encouraged to comment on published entries,
and to supply their own possible code samples for the competition (in any
common programming language) to scc@accu.org.

Last issue’s code
I’m trying to write a simple program to read and process lines of text from
the console. I’ve got a problem – and have stripped the program down
to a small demonstration of the it. If I run the program and type

add 1 2

it prints, as I’d expect:

add(1 2)

and is back ready to read the next line and I can, for instance, type
subtract 2 3 and it echoes back subtract(2 3).

But if I type just

add

then the program prints

add(

and although it seems to read more lines it no longer seems to process
them.

Additionally, with one compiler (MSVC), I get this warning and don’t
know why: cast between different pointer to member
representations, compiler may generate incorrect
code – which worries me.

To be honest I don’t really know why the static_cast is needed but
I can’t get it work any other way.

Can you help fix the problems presented and perhaps suggest some other
improvements? The code is in Listing 1.

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

 std::string cmd;
 iss >> cmd;
 Pmf pmf = cmds[cmd];
 if (pmf) (this->*pmf)(iss);
 }
}
class Identity
{
 int id = getNext();
 static int getNext()
 {
 static int seed;
 return ++seed;
 }
public:
 int getIdentity() { return id; }
};
// (Stripped down code)
class Calculator : public Processor,
 public virtual Identity
{
public:
 Calculator();
private:
 void add(std::istream &is);
 void subtract(std::istream &is);
 // etc
};
Calculator::Calculator()
{
 addCmd("add",
 static_cast<Pmf>(&Calculator::add));
 addCmd("subtract",
 static_cast<Pmf>(&Calculator::subtract));
}
void Calculator::add(std::istream &is)
{
 // stub ...
 std::cout << "add("
 << is.rdbuf() << ")\n";
}
void Calculator::subtract(std::istream &is)
{
 // stub ...
 std::cout << "subtract("
 << is.rdbuf() << ")\n";
}
int main()
{
 Calculator calc;
 calc.run(std::cin);
}

Listing 1 (Cont’d)

#include <iostream>
#include <map>
#include <sstream>
#include <string>
class Processor;
typedef void (Processor::*Pmf)(
 std::istream &is);
class Processor
{
public:
 void run(std::istream & is);
 void addCmd(std::string const &cmd, Pmf pmf)
 {
 cmds[cmd] = pmf;
 }
protected:
 Processor() = default;
private:
 std::map<std::string, Pmf> cmds;
};
void Processor::run(std::istream &is)
{
 std::string line;
 while (std::getline(is, line))
 {
 std::istringstream iss(line);

Li
st

in
g

1

SEP 2014 | | 17{cvu}

Critiques
No-one took up the challenge this time; so we have no critiques. Those of
you who meant to write one but didn’t quite get round to it can try to put
finger to keyboard for this one instead!

Commentary
The code has two main problems; the first the presenting problem where
the program stops responding to user input and the second one related to
the mysterious error message.

This is a stripped down version of a large program and so the actual content
of the methods is a bit simplistic. However, it is a common enough pattern
for many classes of program where you want to read input from the user
and perform different operations, each of which requires slightly different
additional input to be supplied.

One common problem with such programs is getting the input back to a
known state when the user provides incorrect data. At first sight it seems
that this program has avoided the problem since it reads input, one line at
a time, into an std::string (the variable line in Processor:::run),
so bad input provided on one line shouldn’t affect the processing of the
next line. So why does the program appear to be ignoring further input?

In fact, it isn’t: what’s happening here is in fact that the output stream is
‘poisoned’ while handling the bad input. The program writes the remainder
of the input stream argument is to std::cout by passing it the rdbuf()
from the input stream. Unfortunately for us the C++ standard for this
output operation states: “If the function inserts no characters, it calls
setstate(failbit)”. So when the input stream read buffer is empty
cout will be left in ‘fail’ state – the program in fact continues to process
input from the user; it has simply stopped writing any output to
std::cout!

This is different behaviour from what happens when streaming an empty
string, for example:

 Std::string emptyString("");
 std::istringstream emptyStream("");

 std::cout << emptyString.str(); // no output
 assert(std.cout); // cout is still OK

 std::cout << emptyStream.rdbuf(); // no output
 assert(cout.fail()); // in 'fail' state

I’m not sure why this is the behaviour – I think it is something to do with
the fact that writing a streambuf is treated as an unformatted I/O
operation – but the end result in the case of this program is to mark
std::cout in error and so subsequent output operations all fail.

So how can we fix this problem? There are several possible approaches
we could take; for example we could check the input stream is not empty
before trying to write the rdbuf(), we could set std::cout to throw
an exception on fail state, or we could clear the fail bit using
std::cout.clear() after each line of output. The right response will
depend on the functional requirements of our program: in this case I might
simply check there are characters available (using !is.eof()) before
streaming the rdbuf to cout.

The second problem is the casting of the pointer to member function: we
are trying to cast a pointer to a member of the Calculator class to a
pointer to a member of Processor, a base class.

There are two problems with this. This first problem is that the resulting
pointer to member can be invoked against any object of the Processor
class, or classes derived from it, which includes ones that aren’t instances
of a Calculator and so don’t contain the target method.

What would happen with code like this?

 Pmf p = static_cast<Pmf>(&Calculator::add));
 Processor baseOnly;
 (baseOnly.*p)(is); // oh dear ...

We are trying to invoke the add method against an object of the
Processor type, which has no such method. That explains why the code
needs to use a static_cast<> to convert to the target type as what we
are doing is type-unsafe. (Note that it is safe to cast in the reverse direction:
if we take a pointer to a member of the base class and cast it to a pointer
to a member of a derived class there is no potential for harm since the
instance of the derived class will contain every method in the base class:
either it is inherited from the base class or it is overridden somewhere in
the class hierarchy.)

The second problem is more subtle: the static_cast<> is not
guaranteed to work. The internal representation of pointer-to-member
must be capable of containing the information necessary, when it is
invoked, to obtain a this pointer from the supplied target pointer and to
locate the target function. Since the target function may be a virtual
function this is not a simple as merely storing the function address.

Implementations vary in how they achieve this: one technique (used by
Microsoft Visual Studio) utilises different sized objects depending on how
complicated the class hierarchy is and whether virtual functions are
involved. The consequence is that a pointer-to-member of a fairly simple
base class may be too small to hold the all the information required for a
pointer-to-member of derived class with a complicated class hierarchy.
You can see this at work when using the Microsoft compiler by printing
the result of sizeof on the two pointer-to-member types. For example
with a 64bit build:

 sizeof(&Calculator::add): 16
 sizeof(Pmf): 8

Other implementations, notably gcc, use a fixed sized object for all pointer-
to-member functions and generate an internal helper function to ‘wrap’ the
target member function for the more complex cases. While this may be
very slightly more wasteful of memory it does mean that casting between
pointer-to-members of different classes in a hierarchy is safe whenever the
actual type of the target object is compatible with the member function held
in the pointer-to-member.

This divergence in implementation means the mechanism used in this
example is not guaranteed to work. In practice, as long as the base class
has a ‘similar-enough’ layout to the derived class, it does work. In this
example we have a derived class with a virtual base class and consequently
the pointer-to-member needs to contain information about how to generate
the this pointer for the correct sub-object. However, the offset
conversion for the this pointer between Calculator and the
Processor base class is 0 and so, in this specific example, we can call
members of the Calculator class from pointer-to-members of the base
class in the MSVC case. If we make add into a virtual function then
the program crashes when we try to invoke it using a pointer-to-member
of Processor as the format used in this class (which has no virtual
members) does not hold enough information to be able to find the virtual
function to call.

An alternative approach is to avoid the problem by using one of the more
recent techniques added to the language, such as std::function, and
not using the pointer-to-member mechanism directly. For example:

 typedef
 std::function<void(std::istream &is)> Func;

Then change Pmf to Func in the addCmd method and in the type of the
field cmds to:

 void addCmd(std::string const &cmd, Func func)
 {
 cmds[cmd] = func;
 }
 std::map<std::string, Func> cmds;
18 | | SEP 2014{cvu}

And then populate it with:

 Calculator::Calculator()
 {
 using namespace std::placeholders;
 addCmd("add",
 std::bind(&Calculator::add, this, _1));
 …

Finally, you can call the function using:

 Func func = cmds[cmd];
 if (func) func(iss);

I find std::function is simpler than trying to use pointers-to-members
directly and you also gain flexibility if, for some reason, one of the methods
you wish to invoke is in a different object completely.

This final small nit is that using cmds[cmd] modifies the map if an
unknown command is encountered by adding a new entry. I would prefer
using find and testing the item exists.

 void Processor::run(std::istream &is)
 {
 ...
 iss >> cmd;
 auto iter = cmds.find(cmd);
 if (iter != cmds.end())
 {
 iter->second(iss);
 ...
 }

Code Critique 89
(Submissions to scc@accu.org by October 1st)

It must be time for a C one, I think.

I’m trying to write a simple program to shuffle a deck of cards, but it
crashes. What have I done wrong?

The code is in Listing 2.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

typedef struct Card
{
 int color;
 int suit;
 int value;
} Card;

typedef Card Deck[52];

void LoadDeck(Deck * myDeck)
{
 int i = 0;
 for(; i < 51; i++)
 {
 myDeck[i]->color = i % 2;
 myDeck[i]->suit = i % 4;
 myDeck[i]->value = i % 13;
 }
}

void PrintDeck(Deck * myDeck)
{
 int i = 0;
 for(;i < 52; i++)
 {
 char *colors[] = {"black", "red"};
 char *suits[][2] =
 {{"clubs", "spades"},
 {"hearts", "diamonds"}};
 printf("Card %s %d of %s\n",
 colors[myDeck[i]->color],
 myDeck[i]->value,
 suits[myDeck[i]->color]
 [myDeck[i]->suit]);
 }
}

void Shuffle(Deck * myDeck)
{
 int i = 0;
 for (; i < 52; i++)
 {
 int n = sizeof(Card);
 int to = rand() % 52;
 Card tmp;
 memcpy(&tmp, myDeck[i], n);
 memcpy(myDeck[i], myDeck[to], n);
 memcpy(myDeck[to], &tmp, n);
 }
}

int main()
{
 Deck myDeck;
 memset(&myDeck,0,sizeof(Deck));
 LoadDeck(&myDeck);
 PrintDeck(&myDeck);
 Shuffle(&myDeck);
 PrintDeck(&myDeck);
 return 0;
}

Listing 2 (cont’d)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

enum
{
 black,
 red
};

enum
{
 Hearts,
 Diamonds
};

enum
{
 Clubs,
 Spades
};

Li
st

in
g

2

SEP 2014 | | 19{cvu}

http://www.accu.org/journals/

20 | | SEP 2014

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Alan Lenton
chair@accu.org

Well, I’ll start by thanking those of
you who turned out to vote for me. I know there
wasn’t a choice, but it’s nice to know that ACCU
members are prepared to turn out and vote.
Predictably no one (except committee members)
turned up to the Special General Meeting – those
who would normally come had already cast their
vote online, and there was no other business to
draw people to the meeting.

That being the case we had a committee meeting
immediately after the Special General Meeting.
The draft minutes should be available for
members by the time you read this.

Last issue I asked if there was anyone who could
help out with publicity.Unfortunately no one
flocked to answer my request, so we are still
looking.

And while I’m on the subject of the last ‘View
from the Chair’, I haven’t exactly been
inundated with suggestions about how we could
make the web site better. Which reminds me, the
committee also asked me make an appeal for
help migrating the membership system. So
that’s three things: publicity, web site
improvements, and membership system
migrations.

Ask not what ACCU can do for you, but what
you can do for ACCU (apologies to John F.
Kennedy).

OK, moving on, the question of the day is
‘Whither ACCU’. An important question, and
one that’s going to present us with some stark
choices in the next few years. For a number of
years we have been faced with a slow, but
steady, decline in membership. If this continues,
at some stage we will become unviable as an
organization. The failure to elect two of the
officers at the last Annual General Meeting was
a wake up call.

In view of this the committee has decided to hold
a meeting in the autumn at which the only item
on the agenda will be a discussion on how to
reverse this situation. This is not to assume that
only the committee has ideas on how to tackle
this problem! We would be happy – very happy
– to consider suggestions from members. I know
for a fact that a significant number of members
have their own ideas about where we should be
going and how to grow. Drop me an email
(chair@ACCU.org) if you have an opinion on
this matter, and I’ll collate the suggestions for
the committee to consider. Whatever conclusion
the committee comes to will go out to the
membership long before any decisions are made
at the AGM, and there will be time to put
alternatives.

On a happier note, details of the keynote
speakers for the 2015 Conference are out –
Andrei Alexandrescu, James Coplien, Alison
Lloyd, and Alex Neumann from CERN. Keep an
eye on the web site for more details. By the time
you read this magnificent magazine (hi Steve,

can I have somewhere other than the last page
in future, please?) the call for papers should be
out. Go for it!

Well, I guess that’s about all for this issue.
Happy programming, and may all your compiler
template errors be less that six screens long for
each error...

	CVu26-4.pdf
	Look but don’t touch
	Testing Times
	A Secure Data Centre in the Heart of... Bowthorpe
	What Do People Do All Day?
	Beware setlocale Behaviour in Visual C++ 2012 & 2013
	Revisiting the Gang of Four
	Talk in Code
	Standards Report
	Code Critique Competition 89
	View from the Chair

