

JUL 2014 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

Over and Under
recently overheard someone criticising an in-house
application for being massively over-engineered.
It struck me that it’s not often I hear this claim.

Actually, as I thought about it, I realised I don’t
hear the term under-engineered either. It’s
certainly implied in some other disparaging
descriptions: hacked, thrown-together, without tests,
etc. All of these things imply software that’s been
created and released with little thought. By extension,
then, over-engineered software has been...what?
Created with too much thought?

I had a picture in my mind of some Heath Robinson
contraption, a many-levered thing held together with bits
of string. Of course, in software, there are indeed levers, but
we call it ‘configuration’. Moreover, it’s not uncommon
for the configuration of a system to get out of hand, with
‘levers’ and ‘switches’ for every part. Perhaps this is
what over-engineering is. It got me wondering
whether the term itself is specific to programming? I
don’t think it’s fair to call even Heath Robinson’s
imaginary machines ‘over engineered’, because
despite being obviously ridiculous and probably
difficult to use, they were often practical solutions to real
problems.

I have heard the term used before, of course, and sometimes to describe systems that
merely had some thought put into their design. I doubt I’m the only programmer who
has had the ‘over-engineered’ criticism levelled because their software had unit tests!

The system I was describing at the start did indeed have unit tests, and even a
discernible ‘architecture’. However, it was seemingly infinitely configurable, with an
endless stream of parameters required for it to even operate. Furthermore, it took the
requirement to be a distributed system as a challenge, and every calculation –
however trivial – was sent over the network in order to, ahem, make best use of
parallelisation. Just these two flaws indicate that too little thought was put into the
design, with the result that it was hard to set up, and made less than optimal use of
resources. Not, in fact, over-engineered at all.

I
Volume 26 Issue 3
June 2014

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Silas S. Brown, Pete Goodliffe,
Malcolm Noyes, Chris Oldwood,
Roger Orr, Mark Radford,
Emyr Williams

 ACCU Chair
chair@accu.org

ACCU Secretary
secretary@accu.org

ACCU Membership
Matthew Jones
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | JUL 2014

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
13 Code Critique Competition

Competition 88 and
the answers to 87.

20 Standards Report
Mark Radford reports
the latest developments
in C++ Standardization.

REGULARS
22 Bookcase

The latest round-up
of book reviews.

24 ACCU Members Zone
Membership news.

SUBMISSION DATES
C Vu 26.4: 1st August 2014
C Vu 26.5: 1st October 2014

Overload 123:1st September 2014
Overload 124:1st November 2014

FEATURES
3 Feature Tracking

Chris Oldwood considers different audiences for tools
to track features.

4 Nothing is Set in Stone
Pete Goodliffe embraces change.

6 VCu Interview with Dr Bjarne Stroustrup
Emyr Williams begins a new series of interviews in
the programming world.

8 Checking Websites for Specific Changes
Silas S. Brown tries to improve developer productivity
in a small way.

9 Being Original
Chris Oldwood reflects on the content of talks and
articles.

10 How to Deconstruct Compile Time FizzBuzz in C++
Without Using Boost
Malcolm Noyes looks under the hood at some C++
template metaprogramming tools.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

JUL 2014 | | 3{cvu}

Feature Tracking
Chris Oldwood considers different audiences

for tools to track features.

common question that comes up on the accu-general mailing list is
about the tools teams can use to track the list of features being
implemented for their product. Depending on the size of the team,

the maturity of the product and the enterprise-ness of the organisation I’ve
used a number a tools in the past. Other factors that have affected my
opinion of the usefulness of a tool have often revolved around how it gels
with the other tools such as the version control system.

For my own personal set of libraries and applications I naturally have very
simple needs. Generally speaking all I want is a one line description of a
bug or feature. Consequently every library and application has a simple
text file called TODO.txt that is (often) an unordered list of features. One
of the good things about keeping this file in the repo alongside the source
code is that it changes as each feature is implemented. Generating the
release notes is then as simple as picking out all the diffs of that file since
the last release label.

More recently I’ve started using an online service (GitHub) to host my
source code repos. Being a service aimed at project hosting, each repo
automatically gains an Issues database and Wiki. The database of issues
provides the next step up from a simple text file as you can track the status
of features in more detail, such as who’s assigned to it, which release it’s
destined for, etc. Because it’s integrated with the source code repo
including a number such as "#42" in the commit message creates a link in
the GitHub UI to the issue with the same number which is good for
software archaeology later.

At the other end of the spectrum are the Enterprise scale products that try
to cater for big teams with heavy development processes that feel the need
to try and track lots of ‘important’ metrics about each feature. They often
come as part of a big suite that plays on their integration as a selling point.
For example, Rational’s ClearCase version control product supports triggers
(that are incredibly annoying) ensuring a change can’t be committed unless
it’s linked to an item in ClearQuest, their feature tracking database.

It’s a noble pursuit to try and ensure that every code change, and therefore
every commit, is related in some way to a formally tracked feature, whether
instigated by the business or the development team itself, as that helps keep
everyone honest. However, I find enforcing that kind of policy increases
the pain of checking in out-of-band changes, such as to the build process,
and only succeeds in enticing developers to bundle unrelated changes
instead. If the tool makes adding a new feature request tedious then it’s
not going to be used the way you might prefer.

Outside the realm of dedicated 3rd party feature tracking products are the
home grown alternatives. Naturally Excel, the Swiss-army knife of the
corporate world, has been pressed into service on many an occasion.
Despite it being painful to enter or read blocks of text with more than a
couple of words, its ability to easily produce charts seems to be a big
consolation prize in some circles. The agile project manager’s fascination
with burn-down charts and the like might fuel this choice.

What is probably the most derided part of the Microsoft Office suite – the
Access database tool – is far more suited to the task, or at least was a decade
or so ago. The only time I’ve ever actually created a database in Access
was to knock up a simple bug tracking database for a very small team I
was in. I’d seen someone do it before at another site I’d worked at and when
the team grew large enough for the single-user problems to start becoming
a drag it was easy to migrate the underlying database engine to something
more heavy-duty, like SQL Server. With the plethora of free options
available today the days of writing your own issue tracker have almost
certainly long gone.

Recently, I’ve had the pleasure of using another of the Enterprise favourites
– JIRA. I appear to have been quite lucky in that my team were using it
how they wanted to, rather than how the project manager might want to.
This meant we kept the ceremony fairly low by only tracking features at
a high-ish level, linking them where appropriate and introducing sub-tasks
when the larger features spanned multiple releases. JIRA can parse the
check-in comments to relate source changes to a feature and supports links
and attachments which are useful for relating associated documentation,
such as design notes, email discussions, manual test cases, etc.

At the TICOSA conference [1] I mentioned in the last edition of this
column [2] there was an interesting question about where to store the
supporting documentation for a feature. Whilst the code might be a good
place to document some specific details about the current implementation,
it isn’t necessarily the best place to ‘Record Your Rationale’ [3]. For this
a wiki might be more appropriate or, if the document requires some richer
content such as UML sketches, then storing them in the repo itself in a
separate docs folder also keeps them close to hand.

The last 12 months has seen me working on a number of greenfield
projects. Our very small team only needed a simple tool that would allow
easy manipulation of stories rather than containing any notably lengthy
text. In each case we used Trello and found it to be more than adequate.
In fact after being forced briefly to use an in-house SharePoint-based
imitation we soon realised how much we missed it! The text in cards can
be written using Markdown for a little extra spice, can contain attachments,
and checklists which are an excellent way to tick off the ‘done, done’
criteria. Cards also have a unique number which can be referenced in the
commit messages. On one project board we had a column named after each
release version and using the JSON export feature of Trello and JQ (a
JSON command-line query tool) I produced some release notes
automatically based on the card number and title.

Whilst a project manager’s perspective of a feature tracking tool will likely
be biased towards prioritisation and progress, as a developer I find I have
different perspectives depending on the state of the feature. Prior to
implementation I also want to know what the most important feature is
along with details of acceptance criteria, etc. Post implementation I’m
often looking for a way to trace a change in the source code back out to
the driver for it so that I can better understand its context. This helps makes
subsequent changes a little safer, especially when tests are scarce such as
in legacy codebases. Sometimes, such as when a serious piece of technical
debt has been accrued, I raise a ticket and embed the ticket number directly
in the code to make it easier for a future maintenance programmer to track
down the supporting notes in case I’m not around when they finally decide
to pay it back.

References
[1] http://www.ticosa.org
[2] C Vu 26-1, March 2014
[3] http://architect.97things.oreilly.com/wiki/index.php/

Record_your_rationale

 A

In The Toolbox #8

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80s writing assembler on 8-bit
micros; these days it’s C++ and C#. He also
commentates on the Godmanchester duck race.
Contact him at gort@cix.co.uk or@chrisoldwood

http://www.ticosa.org
http://architect.97things.oreilly.com/wiki/index.php/Record_your_rationale
http://architect.97things.oreilly.com/wiki/index.php/Record_your_rationale

Becoming a Better Programmer #87
Nothing is Set in Stone
Pete Goodliffe embraces change.

They always say time changes things,
but you actually have to change them yourself.

~ Andy Warhol

here is a strange fiction prevalent in programming circles: once
you’ve written some code then it is sacred. It should not be changed.
Ever.

That goes double for anyone else’s code. Don’t you dare touch it.

Somewhere along the development line, perhaps at the first check-in, or
perhaps just after a product release, the code gets embalmed. It changes
league. It is promoted. No longer riff-raff, it becomes digital royalty. The
once-questionable design is suddenly considered beyond reproach and
becomes unchangeable. The internal code structure is no longer to be
messed with. All of the interfaces to the outside world are sacred and can
never be revised.

Why do programmers think like this? Fear. Fear of getting it wrong. Fear
of breaking things. Fear of extra work. Fear of the cost of change.

There is a very real anxiety that comes from changing code you don’t know
fully. If you don’t understand the logic from the inside-out, if you’re not
entirely sure what you’re doing, if you don’t understand every possible
consequence of a change, then you could break the program in strange
ways or alter odd corner-case behaviour and introduce very subtle bugs
into the product. You don’t want to do that, do you?

Software is supposed to be soft, not hard. Yet fear leads us to freeze our
code solid in an attempt to avoid breaking it. This is software rigor mortis.

Do not embalm your code. If you have ‘unchangeable’ code in
your product then your product will rot.

We see rigor mortis set when the original authors leave a project, and no
one left fully understands their old business-critical code. When it’s hard
to work with legacy code, or to even make a reliable estimate for working
with it, programmers avoid the code’s core. It becomes an untamed code
wilderness, where wild digital beasts roam unfettered. To work in a timely
and predictable way, new functionality is added as new satellite modules
around the edge.

We see rigor mortis set when a product is rolled onto production servers,
and is used by many clients daily. The original system APIs stick because
it will cost too much to change them; so many other teams or services now
depend on them.

Code should never stay still. No code is sacred. No code is ever perfect.
How could it be? The world is constantly changing around it.
Requirements are always in a state of flux, no matter how diligently they
were captured. Product version 2.4 is so radically different from version
1.6 that it’s entirely possible the internal code structure should be totally
different. And we’re always finding new bugs in our old code that need to
be fixed.

When your code becomes a straight jacket then you are fighting with the
software, not developing it. You will be permanently dancing around
necrotic logic and plotting ever more arcane courses around dodgy design.

You are the master of your software; it’s under your control. Do
not let the code, or the processes around it, dictate how the
code grows.

Fearless change
Be the change that you wish to see in the world.

~Mahatma Gandhi

Of course, it is perfectly sensible to fear breaking software. Large software
projects contain myriad subtleties and complexities that must be mastered.
We don’t want to introduce bugs through reckless modification. Only a
fool would glibly make changes without actually knowing what they’re
doing. That’s cowboy coding.

So how do we reconcile courageous modification with fear of error?

 Learn how to make good changes – there are practices that increase
the safety of your work and reduce the chance of error. Courage
comes from a confidence that your modification is safe.

 Learn what makes software easy to change, and strive to craft
software with these attributes.

 Make daily improvements to your code that make it more malleable.
Refuse to compromise code quality.

 Embrace healthy attitudes that lead to flourishing code.

Nothing is set in stone. Not the design. Not the team. Not the process. Not
the code. Understand this, and the part you can play in improving your
software.

To modify code you need courage and skill. Not recklessness.

Change your attitude
To ‘enable’ healthy change in your code the programming team have to
adopt the right attitudes. They must be committed to code quality, and
actually want to write good code.

Fearful, cowardly coding approaches don’t make the grade. We shun: I
didn’t write this. It looks rubbish. I want nothing to do with it. I will venture
into this code as little as possible. This attitude makes the coder’s life a
little easier now, but leads to design rot. Old code becomes stagnant whilst
new driftwood washes up around its edges.

‘Good code’ is not somebody else’s problem. It is your
responsibility. You have the power to make a change, and to
bring about an improvement.

Here are important attitudes, both for the team and for the individual, that
contribute to healthy code growth:

 Fixing wrong, dangerous, bad, duplicated, or dis-tasteful code is not
a distraction, a side-track, or a waste of precious time. It is positively
encouraged. In fact, it is expected. You don’t want to leave weak
spots festering for too long. If you find code that is too scary to
change, then it must be changed!

 Refactoring is encouraged. If you have a job that requires a
fundamental code change to be done properly then do it properly:
refactor. The team understands that this is required, and that some
jobs may take a little longer when we find such problems.

 T

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe
4 | | JUL 2014{cvu}

 No one ‘owns’' any area of the code. Anyone is allowed to make
changes in any section. Avoid code parochialism; it stifles the rate
of change.

 It is not a crime to make a mistake, or to write the wrong code
(accidentally, at least!). If someone fixes or improves your code then
it is not a sign that you are weak, or that the other programmer is
better than you. You’ll probably tinker with their work tomorrow.
That’s just the way it works. Learn and grow.

 No one’s opinion should considered more important than anyone
else’s. Everyone has a valid contribution to make in any part of the
codebase. Sure, some people have more experience in certain areas.
But they are not code ‘owners’ or gatekeepers of the sacred code.
Treating some people’s work as ‘more accurate’ or ‘better’ than
others’ puts them on a false pedestal and demeans the contribution
of the rest of the team.

 Good programmers expect change, because that is what software
development is all about. You need nerves of steel and to not mind
the ground changing underneath you. The code changes quickly; get
used to it.

 We lean on the safety net of accountability. Again, we see reviews,
pair programming and testing (both automated unit tests, and great
QA/developer interactions) being key parts of ensuring our code
remains supple. If you do the wrong thing, or introduce rigidity, it
will be spotted before it becomes a problem.

Make the change
An apocryphal story states that a tourist, lost in a country village, stopped
a local and asked for directions to a town in a distant borough. The villager
spent a moment in careful thought, and then answered slowly: if I were
going there, I wouldn’t start from here!

It sounds silly, but often the best place to start your journey from is not
where you are, in a code quagmire. If you try to move forward you may
sink. It may instead be best to work your way back to a sound point, leading
the code on a route to a local highway, and once there press onto your
destination at greater speed.

Obviously, it’s important to learn how to navigate a route into code; how
to map it, trace it, and understand where it hides surprising side-effects.

Design for change

We strive for code that encourages change. This is code that reveals it’s
shape and intent, and encourages modification through simplicity, clarity
and consistency. We avoid code with side-effects because it is brittle in
the face of change. If you encounter a function that does two things,
separate it into two parts. Make the implicit explicit. We avoid rigid
coupling, and unnecessary complexity.

When an ugly, rigid codebase resists change then we need a battle strategy:
we slowly improve the code day-by-day making safe, piecemeal

improvements; we make changes to lines of code, and to the overall
structure. Over a period of time, we watch it gradually slide into a
malleable shape.

Often it is best to make a series of frequent, small, verifiable
adjustments, rather than one large sweeping code change.

Don’t try to fight with the entire codebase at once. That may be a daunting,
and perhaps intractable, task. Instead identify a bounded section of the
code that you need to interact with, and focus on changing that.

Tools for change

Pay attention now! This is really important: good tooling can help you
make safe changes supremely fast.

A good automated test suite allows you to work fast and work well. It
enables you to make modifications and get rapid, reliable, feedback on
whether your modifications have broken anything. Consider introducing
some kind of verifiable test for the sections of code you pick up, to avoid
errors. Just as code benefits from accountability and a careful review
processes, so do these tests.

Automated tests are an invaluable safety harness that build
confidence in your code changes.

The backbone of your development should be continuous integration: a
server that continually checks out and builds the latest version of the code.
If – heaven forbid – anything bad slips through to break the build, you will
find out about it quickly. The automated tests should be run on the build
server, too.

Pick your battles

Nothing is set in stone, but not everything should be fluid.

Naturally, we pick our battles. We can’t possibly change all of the code
all of the time, whilst simultaneously adding more new work. We will
always find unpleasant code that we can’t fix right now, no matter how
much we’d like to. The job may be too large. Or it may be past the scope
of a mammoth refactor.

There is a certain amount of technical debt that we live with until we get
a chance to make later improvement. This should be factored back into the
project plan. Significant debt becomes work items that are placed onto the
development roadmap, rather than forgotten and left to fester.

Plus ça change
It sounds like a nightmare. Who could possibly work with code that is
constantly changing? It’s hard enough to track many simultaneous many
changes, let alone join in with them!
JUL 2014 | | 5{cvu}

Nothing is Set in Stone (continued)

However, we must embrace the fact that code changes: any code that stands
still is a liability. No code is beyond modification. Treating a section of
code as avoidably scary is counterproductive.

Questions
1. What particular attributes makes software easy to change? Do you

naturally write software like this?

2. How can we balance ‘no code ownership’ with the fact that some
people have more experience than others? How does this affect the
allocation of tasks to programmers?

3. Every project has code that changes frequently, and code that
changes little. The latter code may be staid because it’s not used,

because it is healthily designed for extension by external modules,
or because people actively avoid the nastiness within. How much of
each of these kinds of rigid code do you have?

4. Does your project tooling support your code changes? How can you
improve it?

Becoming a Better Programmer: The Book
Pete’s new book – Becoming a Better Programmer
– is published by O’Reilly. It’s available from
http://shop.oreilly.com/product/0636920033929.do
Dr Bjarne Stroustrup: An Interview
Emyr Williams begins a new series of interviews

in the programming world.

n 2013, I heard Pete Goodliffe talk about becoming a better
programmer, and he lined up panel of experts about how to become a
better programmer. Having heard the talk, I endeavoured to put as much

of it as I could in to practice. During one of the intervals, I had a chance
meeting with Bjarne Stroustrup, who was gracious enough to agree to be
interviewed for my blog. I was also encouraged to publish it in the ACCU
magazine, so here we are.

If you’re a C++ programmer, then Bjarne Stroustrup won’t need any
introduction at all. However, if you are new to C++, then Dr Stroustrup is
the designer and the original implementer of C++. He is currently a
Managing Director in the technology division of Morgan Stanley in New
York, a Visiting Professor in Computer Science at Colombia University,
and a Distinguished Research Professor in Computer Science at Texas
A&M University. His best known published work is The C++
Programming Language which is currently in its 4th edition.

How did you get started in computer programming? Was it a sudden
interest in computing? Or was it a gradual process?

During my last year of high-school, I had to decide whether to go to
university and if so what to study. I decided to study mathematics
because I was pretty good at that in high school, but I wanted a
practical form of mathematics, some kind of applied math. That
way, I would be able to make a living doing math after graduation,
rather than becoming a teacher. So, I enrolled in ‘Mathematics with
Computer Science’ in my home-town university (Aarhus
University) because I mistakenly thought that ‘Computer Science’
was a form of applied math. It was good that I was wrong about that
because I wasn’t as good at math as I thought at the time (though
being a poor mathematician is better than not being a
mathematician) and I absolutely loved Computer Science – and
especially programming – when I eventually was introduced to it in
my second year at university.

What was the first program you ever wrote? And what language did you
write it in?

In my first Computer Science course, we learned several languages
and wrote tiny programs in those. I don’t remember those exercises,
though. The primary language taught was Algol60. The first

program I do remember was a small graphics program written in
Algo60. It was probably my first program that was not a set exercise.
It connected points on a super-ellipse to draw pretty pictures. The
‘user interface’ allowed me to specify the parameters for the super-
ellipse, the number of points, and the number of lines. From a
programming point of view, it combined math with graphics.

What would you say is the best piece of advice you’ve ever been given
as a programmer?

Just one piece of advice? “Test early and often.” But maybe that’s
just my own variant of the old Chicago advice about elections.
[“Vote early and vote often: http://en.wikipedia.org/wiki/
Vote_early_and_vote_often]

Try not to be too clever: Bugs hide in complex code. Be clear and
explicit about what you are trying to build, and how. By ‘explicit’, I
mean ‘write it down in good clear English that others can read’.
Articulating a design is important and helps you when it comes to
construct test cases and write assertions. Always think about how a
piece of code should be used: good interfaces are the essence of
good code. You can hide all kinds of clever and dirty code behind a
good interface if you really need such code.

If you were to start your career again now, what would you do
differently? Or if you could go back in time and meet yourself when you
were starting out as a programmer, what would you tell yourself to focus
on?

I think I would have taken a year off to travel the world and improve
my interpersonal skills. Had I known that I’d spend most of my
career writing in English and giving talks in English, I might have
paid more attention in my foreign language classes. On the other
hand, I have found topics with no apparent practical use (such as
literature, history, and even philosophy) at least as useful as many
specific technical skills. It is good not to have too narrow a focus.

 I

EMYR WILLIAMS
Emyr Williams is a C++ developer who is on a mission to
become a better programmer. His blog can be found at
www.becomingbetter.co.uk
6 | | JUL 2014{cvu}

http://en.wikipedia.org/wiki/Vote_early_and_vote_often
http://en.wikipedia.org/wiki/Vote_early_and_vote_often
http://shop.oreilly.com/product/0636920033929.do

Bertrand Russell: “The time you enjoy wasting is not wasted
time.”

What was the biggest “ah ha” moment or surprise you’ve experienced
when chasing down a bug?

I don’t think this question applies. I dislike debugging and my usual
reaction to finally finding a bug is “How could I be daft enough to
write that!” Alternatively, “What was he/she thinking?” Often, a
simple invariant would have caught the problem early or a slight
restraint on ‘cleverness’ would have avoided the problem altogether.
What I enjoy is to design and to express my designs in code.
Sometimes, the realization of a design can be amazingly beautiful.
‘Getting it’ with the STL (Alex Stepanov’s handiwork) was an
“Aha!” moment. Discovering how to
express the STL better with concepts
comes close.

A lot is said about elegant code these days.
What is the most elegant code you’ve seen?
And how do you define what elegant code is?

I’d say that one of the best answers I’ve
seen for what makes elegant code, is
something I’ve read from ACCU’s own
Roger Orr:

 }

Just that closing brace. Here is where all the ‘magic’ happens in
C++. Variables get destroyed, memory gets released, locks get
freed, files get closed, names from outside the closed scope regain
their meaning, etc. This is where C++ most significantly differs
from other languages. It is interesting to see how destructors – an
invention (together with constructors) from the first week or so of
C++ – have increased in importance over the years. So many of the
modern and most effective C++ techniques critically depend on
them

With the advent of C++ 14 upon us, where do you see C++ going in the
future? Is there anything you’d like to see, or something you’d wish you’d
done differently?

For the future, I’d like to see better concurrency support, concepts
(requirements for template arguments), and increased simplicity. I’d
like to explore the idea of simplicity within C++ with features such
as range-for loops, auto, and libraries that make simple things
simple. “Within C++, there is a much smaller and cleaner
language struggling to get out” (and no, that language is not C, D,
Java, C#, or whatever). I’d like to explore what such a “much
smaller and cleaner language” might look like in general and how
it could be embedded into C++.

The essence of C++ is that it provides a direct map to hardware and
offers mechanisms for very general zero-overhead abstraction. A
future C++ should be better at both. This precludes simple imitation
of many modern ideas and trends. We can learn a lot from other
languages (and always have done so), but direct import of language
features is non-trivial.

The ‘time machine question’ is easier to answer because it has no
effect on reality. We can’t change the past and even if we could, I’m
pretty sure I’m no smarter than 1980s-vintage Bjarne and he had a
much better feel for what was possible at the time. Even the best
time machine would not allow me to compile C++14 on a 1MB,
1MHz, 1985 computer. If I could have dropped the “Concepts Lite”
design on Bjarne’s desk in 1987, we might have avoided a lot of
problems. At that time, I was looking at ways of constraining
template arguments, so I would have recognized the importance of
the ideas. Furthermore, the complexity and compile-time overheads
are minimal so I could have implemented “Concepts Lite” well
using 1980s technology. Of course, working from first principles, I
would not have chosen the C declarator syntax or two-way
conversions between fundamental types, but to fix those, you would

need to take the time machine a few years further back for a chat
with Dennis.

With technology moving so fast these days, where do you think the
next big shift in computer programming is going to be?

Hard to say; there are so many different kinds of programming. I’m
not even sure what the last big shift was. Dynamic languages?
Object-Oriented Programming? Functional Programming? XML?
Virtualization? C? Generic Programming? I’m pretty sure I could
point to areas where each of those answers would be quite
reasonable – as well as areas where each would be ludicrous. The
field of software development is just too huge and diverse for simple
generalizations.

In the parts of the C++ world that I know
best, my guess is that the improved
support for concurrency in C++17
(various higher-level models of
concurrency beyond the basic threads-
and-locks level) will cause major changes
and that concepts (starting with
‘Concepts Lite’) will complete generic
programming’s move into the
mainstream. That combination, coming
on top of the improvements provided in

C++11, should completely change the way C++ is used.

I say “should” rather than “will” because I fear that many will hold
back out of fear of novelty, for lack of intellectual flexibility, or
because of constraints from old code bases. People are more likely
to see the risks and complications of a change than to appreciate the
risks and costs incurred by using outdated tools and techniques.
Maybe, I’m being a bit less optimistic than I should be: people who
have used C++11 tend to complain bitterly when they have to go
back to C++98. Significant progress has been made and we can now
write simpler and better code than we used to. Many people know
that and they are not going to accept “the old ways” forever.

Finally, do you have any advice for any kids or adults who are
looking to start out as a programmer?

Don’t just program. Know what problems you want to solve using
programming. Don’t rush into programming. Work on your
communication skills. And don’t forget to have fun – you are much
better at things you enjoy doing than things you consider tedious.
Learn to see the beauty in elegant and efficient code!

A Tour of C++, for people who want to quickly know what C++11 is, and
his textbook for beginners: Programming: Principles and Practice using
C++, which now uses C++11 and some bits of C++14 is available now
from your usual book reseller.

Try not to be too clever:
Bugs hide in complex

code. Be clear and explicit
about what you are trying

to build, and how
JUL 2014 | | 7{cvu}

8 | | JUL 2014{cvu}

Checking Websites for Specific Changes
Silas S. Brown tries to improve developer productivity

in a small way.

ome years ago I used a Perl program called ‘Web Secretary’ [1] to
alert me to changes on particular web pages. This is a command-line
tool that can be run in a daily ‘cron’ job or whatever, checking the

pages you specify for changes and outputting its results usually to your
email inbox. But sometimes it told me a page had changed and then I found
the change wasn’t very interesting, and I wanted some way of reducing
this ‘noise’.

So I wrote a Python script [2] which checks for changes to specific phrases
on a page, ignoring everything else. It can alert you when a certain phrase
or regular expression is absent (i.e. has been changed or removed), or when
it is present, either in the rendered text of the page or in its source code.
It’s not always possible to point to a particular phrase that would make a
change ‘interesting’, but in a surprising proportion of cases, it is. For
example, if you want to know when the next version of some library is
released but you can’t keep up with all other information on that site, you
could simply monitor its version number.

My script tries to be ‘nice’ to servers, limiting the rate of requests to each
site, re-using connections when possible, sending If-Modified-Since
headers so the server doesn’t have to re-send a page if it hasn’t changed at
all, and of course re-using a fetched copy if there are two or more things
to check on the same page. On the other hand, when dealing with multiple
sites it does send requests in parallel. For each thing you want to check,
you can also set the frequency at which you want to check it, and the page
will be queried at no more than that frequency even if the script is run more
often (useful if some pages change more than others; we don’t want to drain
webmasters’ bandwidths unnecessarily).

Besides the obvious checks that your own sites (and/or redirects) are still
functioning, you might want to selectively monitor changes for:

1. Staying up to date with software you care about. If the download
page says the latest version is 5.4.3, simply monitor this phrase and
you’ll be alerted only when it changes. (If they might add digits to
the existing number, use a regular expression. Of course if you’re on
Linux then you could just rely on the package manager to update
things, but not everything is a package and you might sometimes
want to be ahead of the packagers for a particular piece of software.)

2. Monitoring a wiki when you are interested in a small section of a
page but don’t really mind what happens to the rest of that page. I
sometimes do this to see what happens when I made a small addition
(not that I’d be a troll for putting it back if someone took it out for
good reason, but I might still want to know why that happened);
there are advantages to MediaWiki’s ‘watchlist’ telling you about
all changes to a page, but I don’t have the mental bandwidth to fully
‘adopt’ every page I ever contribute to, so it’s useful to have the
option of at least monitoring a phrase or two that you edited even if
you don’t track what happens to the rest of the page. Of course it’s
always possible that someone will edit what you wrote in a way that
negates the meaning but still includes your original words and
therefore fails to trigger your alert, so you’d need to use good

judgement about when it is and isn’t reasonable to rely on this kind
of monitoring. You can also use it to see if something you deleted
gets reinstated, and this shouldn’t give any false negatives.

3. Checking for replies to any comments you make on other people’s
blogs, when those blogs don’t have a decent function for notifying
you. If the thread is old then you could just monitor the part that says
“36 comments” and see if that changes (although it’s just possible
that a new one will be added and another one deleted at the same
time, leaving the total number unchanged), or you might be able to
find some other phrase on the page that can reasonably be checked
for changes.

4. Checking for the release of a ‘coming soon’ item, or for (changes to)
specific commercial offers without having to sign up to receive
everything from that company (note to companies: please don’t
think such partial monitoring is hurting your customer contact,
because the alternative might be not monitoring you at all). If you’re
‘job hunting’ it can also be useful for doing regular-expression
searches on vacancy lists.

5. Avoiding ‘link rot’. If you maintain a website with external links,
you can set up checks that the pages you link to still contain the
material you were pointing at. (There are tools to check the pages are
still live, but that won’t detect situations where the page is still live
but no longer contains what you were linking to due to a site re-
structure or something, and if a site you link to gets taken over by
criminals then it might harm your search rankings if you don’t fix
that link.)

Checks can be annotated with comments to remind you what to do when
something changes, for example “check the link on the such-and-such
page”.

I find this monitoring script makes me more productive, because I’m less
likely to go off on a tangent thinking “I’ll just check if X has happened
yet” when I know my scripts are checking for X automatically. It also lets
me keep up-to-date with more slow-changing resources than I would if I
had to rely on checking them manually or on subscribing to all of their news
(I still do this for some things but can now be more selective). It still needs
me to maintain a list of things to check, but at least it seems to be a step
in the right direction.

References
[1] Web Secretary http://baruch.ev-en.org/proj/websec/
[2] WebCheck http://people.ds.cam.ac.uk/ssb22/setup/webcheck.html

 S

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk

If you read something in C Vu that you
particularly enjoyed, you disagreed with
or that has just made you think, why not
put pen to paper (or finger to keyboard)
and tell us about it?

http://baruch.ev-en.org/proj/websec/
http://people.ds.cam.ac.uk/ssb22/setup/webcheck.html

JUL 2014 | | 9{cvu}

Being Original
Chris Oldwood reflects on the content of talks and articles.

few years ago I decided to take some time off after completing
another long contract and having reached 10 years of commuting into
London. At that point I had only been a member of ACCU for a

couple of years and I was becoming friends with a few of the more
prominent members. Although said partly in jest there were some niggling
suggestions that I should consider writing about something. Naturally I
downplayed the situation by suggesting that I had nothing worth saying.
After all the stuff I read about in C Vu and Overload was far cooler than
anything I did.

However, during my break the ACCU conference occurred and I
reluctantly agreed to write up a review. This felt like a safe option, as being
a review it was entirely subjective and so I couldn’t really say anything
that might be considered ‘wrong’ per-se. Up to that point the only thing
I’d ever written were some lengthy diatribes to my team mates about the
technical debt in the codebase and how we should probably go about
tackling it. Each email had taken ages to pen and involved constant
refactoring to try and get the tone right. The thought of writing anything
longer wasn’t exactly appealing.

I subsequently decided that the safest route was to self-publish via a blog.
This way nothing could be rejected by an editor and so anything I wrote
was definitely going to see the light of day. Being my own publisher also
meant that I had no deadlines. And so after cranking out a few really safe
posts about what I intended to get out of writing, who the ACCU was, etc.
I started to consider tackling something meatier…

It was then that I realised I really didn’t have anything original to say. As
I looked back at my career as an Enterprise programmer it occurred to me
that I spent my entire career standing on the shoulder of giants. Enterprise
development is all about playing it safe. My job involves using mature
technologies to solve the same problems as other enterprises using patterns
and techniques that have already been discovered and documented by
others years, if not decades, ago. If none of what I do is novel is it a surprise
that I’d have nothing truly interesting to write about? After all, if everyone
reads the same books and blogs, follows the same people on Twitter, etc.
then they’ll already know everything I do; probably more. Who exactly
would be listening?

Seven months later after playing it safe I finally started to consider sticking
my neck on the line. By then I had thought about a technique I had used a
few years back which I pondered might have some merit in it. I put together
a draft, sent it off to a fellow ACCU member who had recently asked me
to look over a couple of their articles and waited for the feedback. The
feedback was really useful but it seemed I still had quite a bit of work to
do to knock the article into shape.

That article sat unfinished in my ‘pending’ folder for over three years! In
the meantime I continued to bash out more safe reviews of the conference,
London branch meetings and a few book reviews for some of the less
technical tomes. I was also cajoled into writing a piece for Desert Island
Books and Inspirational Particles, both still firmly in the more subjective
writing camp. I know others find the Code Critique is a good way to get
started, but there always seemed to be so many comprehensive answers
that once again I didn’t believe I could add anything extra.

So, if you haven’t got anything original to say, what’s the answer –
plagiarise? That’s not really a viable solution. And then it slowly dawned
on me as I started to read more and more of the old classic books and papers
that much of what is said is not necessarily that new anyway, but what is
new is the way it’s presented. As is hopefully apparent from my article in
the previous C Vu about getting to grips with list comprehensions [1] it

took a number of different books, articles, talks and thinking to eventually
understand the concept.

My first non-review style article finally appeared almost 4 years after I
initially plucked up the courage to even begin writing. It was about
accessing more than 4 GB from a 32-bit Windows process and was pretty
niche given that 64-bit was becoming prevalent even in the slow moving
enterprise world by the time it got published. But I had finally bitten the
bullet and stuck my neck out.

I’m a very defensive writer and speaker. I do not have the courage to
suggest what you should or should not do, instead I prefer to present what
I have done, backed up where possible by what my influences are with the
only expectation being that it may be of some value to someone else. But
my fear is that someone will point out what is obvious to everyone else
and negate my entire article or talk by describing how I should be doing
it. It’s not that I’m afraid to be wrong – on the contrary, I want to learn –
but I’d feel upset about wasting not only my time, but the time of the
reviewers and readers.

At the conference this year I spoke to a few people who appear to be under
a similar illusion that they have nothing original to say. For a start they
may work in a different industry to me and have different constraints and
cultures which is already interesting. However, they find that despite the
plethora of content out on the internet their colleagues are still unaware of
many of the concepts and techniques that those more experienced take for
granted.

Maybe the reason many programmers have not grasped something is not
because they are stupid or haven’t bothered reading about it, but is because
nobody has spoken to them in a way that they understand. I’ve tried to
digest the Wikipedia page on monads [2] a number of times but have found
myself lost in a sea of Computer Science babble. There is much said about
Monads which makes me think I probably need to understand them, but
to date no one has spoken to me in a language that I can comprehend.

So if you labour under the belief that everything has already been said and
that no regurgitation of existing ideas is useful then ask yourself this – why
did Kevlin Henney begin his talk on Immutability at this year’s ACCU
conference with a modern take on a 20-year-old article written way back
in issue 8 of Overload [3]?

They say “those who cannot remember the past are condemned to repeat
it” [4]. Perhaps you can help out those of us unaware of some aspects of
the past by ensuring we don't waste time rediscovering it and allowing us
to stand on your shoulders as well in the future.

References
[1] C Vu 26-2 (May 2014)
[2] http://en.wikipedia.org/wiki/Monad_(functional_programming)
[3] ‘Circle & Ellipse – Vicious Circles’, Kevlin Henney, Overload 8,

1995
[4] http://en.wikipedia.org/wiki/George_Santayana

 A

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80s writing assembler on 8-bit
micros; these days it’s C++ and C#. He also
commentates on the Godmanchester duck race.
Contact him at gort@cix.co.uk or@chrisoldwood

http://en.wikipedia.org/wiki/George_Santayana
http://en.wikipedia.org/wiki/Monad_(functional_programming)

How to Deconstruct Compile Time
FizzBuzz in C++ Without Using Boost

Malcolm Noyes looks under the hood at some C++ template
metaprogramming tools.

everal years ago, Adam Peterson published an article [1] explaining
how to implement FizzBuzz at compile time in C++. The code was
very neat, but had a dependency on Boost and didn’t go into great

detail on how it worked, so I thought I’d write it again from scratch and
try to explain my workings. In this article I’m only going to show examples
that would work for very small FizzBuzz sequences because, well, this
is a learning exercise not a typing exercise!

At the end of this article you’ll find the source that I used to run the
examples – up to 16 items in the sequence. Much of what follows is a
variation on the code in chapter 5 of C++ Template Metaprogramming
[2]), in particular the use of mpl::vector and the ‘tiny’ sequence.

First, get an error message
To make this work, we first have to persuade the compiler to print an error
message to the console when we build the program, something like
Listing 1.

This is a simplified version of the mpl::vector example from C++
Template Metaprogramming. In particular note the typedef for 'type'
that indicates the type of the class itself and the typedefs for template
parameters; we’ll be using these in our helper templates. When we compile
this with VS2010, we get this:

1>ClCompile: 1> main.cpp
1>c:\projects\fizzbuzz_example\main.cpp(243): error
C2039: 'compilation_error_here' : is not a member
of 'vector<T0,T1,T2>' 1> with 1> [1> T0=int, 1>
T1=long, 1> T2=double 1>]
1>c:\projects\fizzbuzz_example\main.cpp(243): error
C2146: syntax error : missing ';' before identifier
'res' 1>c:\projects\fizzbuzz_example\main.cpp(243):
error C4430: missing type specifier - int assumed.
Note: C++ does not support default-int
1>c:\projects\fizzbuzz_example\main.cpp(243): error
C2065: 'res' : undeclared identifier

This is promising; it displays the types that we put in, and in the right order.
That’s fine, but the compiler works with types and we need to display
numeric values, so we need a helper to convert integers to types. Andrei
Alexandrescu’s Loki [3] calls this Int2Type and Boost.MPL [4] has
mpl::int_ that does the same thing, but it’s really easy to implement:

 template <int N>
 struct int_
 {
 static const int value = N;
 };

For each distinct value N, this template creates a distinct type, so int_<0>
is a different type from int_<1> etc.

Now we can put this into our ‘error’ template:

 typedef vector<int_<0>,int_<1>,
 int_<2> >::compilation_error_here res;

and we get error output with increasing numeric values, which is what we
want:

1>c:\projects\fizzbuzz_example\main.cpp(250): error
C2039: 'compilation_error_here' : is not a member
of 'vector<T0,T1,T2>' 1> with 1> [1> T0=int_<0>,
1> T1=int_<1>, 1> T2=int_<2> 1>]

Now generate the sequence...
That’s fine, but now we need to generate the list of types so that Fizz,
Buzz and FizzBuzz can be inserted at the right times – C++ Template
Metaprogramming calls this list of types a sequence.

To get a new sequence, we have to append a new type (e.g. int_<1>) to
an existing sequence (int_<0>), i.e. we start with a list of types
containing int_<0>, append a new type int_<1> and end up with a new
sequence containing int_<1>, int_<0>. If we were using Loki we could
just append to its typelists but here we’re modelling our sequence on
mpl::vector so we need to do a bit more work.

Our aim is to push_back a new type to an existing sequence, e.g.:

 ...
 template <class Sequence, class T>
 struct push_back
 : push_back_impl<Sequence, T, ??? >
 {};

It turns out that we can do this if we know the size of the exiting sequence,
i.e. if we have an existing sequence with 0 elements then we can create a
specialisation of push_back_impl to handle that case (we’ll use a
special void_ type to indicate that the element is empty):

 template <class Sequence, class T, int N>
 struct push_back_impl;

 template <class Sequence, class T>
 struct push_back_impl<Sequence, T, 0>
 : vector<T, void_, void_, void_>
 {};

This just ‘adds’ the new type to an empty sequence.

 S

MALCOLM NOYES
Malcolm Noyes is a c++ programmer and author of the
goospimpl mocking library.

struct void_;

template <class T0 = void_, class T1 = void_,
 class T2 = void_, class T3 = void_>
struct vector
{
 typedef vector type;
 typedef T0 T0;
 typedef T1 T1;
 typedef T2 T2;
};
typedef vector<int,long,double>
 ::compilation_error_here res;

Li
st

in
g

1

10 | | JUL 2014{cvu}

Similarly, if the sequence already contained 1 element then we could create
a template that used the one existing type and ‘added’ the new type to that:

 ...
 template <class Sequence, class T>
 struct push_back_impl<Sequence, T, 1>
 : vector<typename Sequence::T0, T
 , void_, void_>
 {};

Now the problem is to know how big our current sequence is, so we first
need to specialise our template for every possible size of sequence (this is
why we’re only working with small sequences!), e.g. for zero size:

 template <>
 struct size_impl<void_,void_,void_,void_>
 : int_<0> {};

This struct will have a static const value = 0 member that we
can use later. For 1 element in the existing sequence:

 ...
 template <class T0>
 struct size_impl<T0,void_,void_,void_>
 : int_<1> {};

Now we can apply this to get the size of the sequence:

 ...
 template <class Sequence>
 struct size : size_impl<typename Sequence::T0
 , typename Sequence::T1, typename Sequence::T2
 , typename Sequence::T3>
 {};

If all the types of the sequence are empty (void_) then the specialisation
size_impl<void_,void_,void_,void_> would get selected,
which as we know has a value member equal to zero. If the first element
had a type (e.g. int<0>) then the specialisation size_impl< int<0),
void_, void_, void_> will get selected, with value = 1. This
process continues for as many types as the sequence can support (four in
this example).

This is a very much simplified version of the code in C++ Template
Metaprogramming, in particular I’ve not implemented ‘apply’
metafunctions to make it clearer what’s going on. Note that here the size
is derived from the int_<> helper template that we defined earlier so that
we can get the ‘value’ later (see Listing 2).

For an existing length, the ‘size’ template will select the ‘best’
specialisation of the size_impl template and add the new type as the last
parameter. So now we can append a new type to another (Listing 3).

The same idea applies here; we use the push_back template to select the
most appropriate push_back_impl template for the existing size. Note
that we’re not checking that the sequence is already full; this shouldn’t be
a problem with our limited use case for this example.

Now we can use the recursive parts of Adam’s RunFizzBuzz to generate
our sequence (Listing 4).

In this case the compiler will use the primary template and will recursively
subtract 1 from the number and then instantiate itself until the number gets
to zero, when it will use the specialisation for ‘0’ to terminate the sequence,
which gives us:

1>c:\projects\fizzbuzz_example\main.cpp(306): error
C2039: 'compilation_error_here' : is not a member
of 'vector<T0,T1,T2,T3>' 1> with 1> [1>
T0=int_<0>, 1> T1=int_<1>, 1> T2=int_<2>, 1>
T3=int_<3> 1>]

template <class Sequence, class T, int N>
struct push_back_impl;

template <class Sequence, class T>
struct push_back_impl<Sequence, T, 0>
 : vector<T, void_, void_, void_>
{};

template <class Sequence, class T>
struct push_back_impl<Sequence, T, 1>
 : vector<typename Sequence::T0, T, void_,
void_>
{};

template <class Sequence, class T>
struct push_back_impl<Sequence, T, 2>
 : vector<typename Sequence::T0, typename
Sequence::T1, T, void_>
{};

template <class Sequence, class T>
struct push_back_impl<Sequence, T, 3>
 : vector<typename Sequence::T0, typename
Sequence::T1, typename Sequence::T2, T>
{};

template <class Sequence, class T>
struct push_back
 : push_back_impl<Sequence, T,
size<Sequence>::value >
{};

Listing 3

template <class T0, class T1, class T2, class T3>
struct size_impl : int_<4> {};

template <class T0, class T1, class T2>
struct size_impl<T0,T1,T2,void_> : int_<3> {};

template <class T0, class T1>
struct size_impl<T0,T1,void_,void_> : int_<2> {};

template <class T0>
struct size_impl<T0,void_,void_,void_> : int_<1>
{};

template <>
struct size_impl<void_,void_,void_,void_> :
int_<0> {};

template <class Sequence>
struct size : size_impl<typename Sequence::T0
 , typename Sequence::T1
 , typename Sequence::T2
 , typename Sequence::T3>
{};

Li
st

in
g

2

template<int i>
struct RunFizzBuzz
{
 typedef int_<i> Number;
 typedef
 typename push_back<typename RunFizzBuzz<i-1>
 ::type, Number>::type type;
};

template<>
struct RunFizzBuzz<0>
{
 typedef vector<int_<0> > type;
};

int main()
{
 typedef RunFizzBuzz<3>::type
 ::compilation_error_here res;
}

Listing 4
JUL 2014 | | 11{cvu}

That looks a lot like what we want, but so far we haven’t output Fizz or
Buzz; we’ll fix that now...

Selecting Fizz
We need to select a different type (Fizz) if the number is divisible by 3.
This calculation is a compile time constant for each template instantiation,
so we can use it as a parameter to a template; if_c is a fairly simple type
selection template that works by specializing for one value of the condition
(in this case false) – see Listing 5.

Now we can add the condition for Fizz (Listing 6), which produces:

1>c:\projects\fizzbuzz_example\main.cpp(327): error
C2039: 'compilation_error_here' : is not a member
of 'vector<T0,T1,T2,T3>' 1> with 1> [1>
T0=int_<0>, 1> T1=int_<1>, 1> T2=int_<2>, 1>
T3=Fizz 1>]

which is exactly what we want!

Selecting Buzz
Adding the additional conditions for Buzz and FizzBuzz is trivial (as
long as we remember to test for FizzBuzz in the right place!):

struct Fizz{}; struct Buzz{}; struct FizzBuzz{};
template<int i> struct RunFizzBuzz { typedef
int_<i> Number; typedef typename if_c<i % 3 == 0,
Fizz, Number>::type condition1; typedef typename
if_c<(i % 5 == 0), Buzz, condition1>::type
condition2; typedef typename if_c<(i % 3 == 0) &&
(i % 5 == 0), FizzBuzz, condition2>::type
condition3; typedef typename push_back<typename
RunFizzBuzz<i - 1>::type, condition3>::type type;
}; template<> struct RunFizzBuzz<0> { typedef
vector<int_<0> > type; };
1>c:\projects\fizzbuzz_example\main.cpp(305): error
C2039: 'compilation_error_here' : is not a member
of 'vector<T0,T1,T2,T3,T4,T5,T6,
T7,T8,T9,T10,T11,T12,T13,T14,T15>' 1> with 1> [1>
T0=int_<0>, 1> T1=int_<1>, 1> T2=int_<2>, 1>
T3=Fizz, 1> T4=int_<4>, 1> T5=Buzz, 1> T6=Fizz, 1>
T7=int_<7>, 1> T8=int_<8>, 1> T9=Fizz, 1> T10=Buzz,
1> T11=int_<11>, 1> T12=Fizz, 1> T13=int_<13>, 1>
T14=int_<14>, 1> T15=FizzBuzz 1>]

Just for completeness, it works on gcc (MingW) too, although it is a little
harder to see...:

$ gcc --version gcc.exe (GCC) 4.8.1 Copyright (C)
2013 Free Software Foundation, Inc. This is free
software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. $ make g++ -c
-Wall main.cpp -o main.o main.cpp: In function 'int
main()': main.cpp:306:13: error:
'compilation_error_here' in 'RunFizzBuzz<15>::type
{aka struct vector<int_<0>, int_<1>, int_<2>, Fizz,
int_<4>, Buzz, Fizz, int_<7>, int_<8>, Fizz, Buzz,
int_<11>, Fizz, int_<13>, int_<14>, FizzBuzz>}'
does not name a type typedef
RunFizzBuzz<15>::type::compilation_error_here res;
^ make: *** [main.o] Error 1

You can find the code used in this article here [5].

References
[1] Adam Peterson’s article on how to implement FizzBuzz at compile

time in C++: http://www.adampetersen.se/articles/fizzbuzz.htm
[2] C++ Template Metaprogramming: http://www.amazon.co.uk/

Template-Metaprogramming-Concepts-Techniques-Beyond/dp/
0321227255/ref=sr_1_1?ie=UTF8&qid=1381403602&sr=8-
1&keywords=c%2B%2B+template+metaprogramming

[3] Loki: http://loki-lib.sourceforge.net/
[4] Boost.MPL: http://www.boost.org/doc/libs/1_54_0/libs/mpl/doc/

index.html
[5] http://www.graoil.co.uk/downloads/fizzbuzz_example.zip

template <class T1, class T2, bool c>
struct if_c_impl
{
 typedef T1 type;
};

template <class T1, class T2>
struct if_c_impl<T1, T2, false>
{
 typedef T2 type;
};

template<bool c, class T1, class T2>
struct if_c : if_c_impl<T1,T2,c>
{};

Li
st

in
g

5

struct Fizz{};

template<int i>
struct RunFizzBuzz
{
 typedef int_<i> Number;
 typedef if_c<i % 3 == 0, Fizz, Number>
condition3;
 typedef typename push_back<typename
RunFizzBuzz<i - 1>::type,
 typename
condition3::type>::type type;
};

template<>
struct RunFizzBuzz<0>
{
 typedef vector<int_<0> > type;
};

Li
st

in
g

6

12 | | JUL 2014{cvu}

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines. We
need articles at all levels of software development experience; you don’t have to write about rocket science or brain
surgery.

What do you have to contribute?

 What are you doing right now? What technology are you using?

 What did you just explain to someone? What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

http://www.adampetersen.se/articles/fizzbuzz.htm
http://www.amazon.co.uk/Template-Metaprogramming-Concepts-Techniques-Beyond/dp/0321227255/ref=sr_1_1?ie=UTF8&qid=1381403602&sr=8-1&keywords=c%2B%2B+template+metaprogramming
http://www.amazon.co.uk/Template-Metaprogramming-Concepts-Techniques-Beyond/dp/0321227255/ref=sr_1_1?ie=UTF8&qid=1381403602&sr=8-1&keywords=c%2B%2B+template+metaprogramming
http://loki-lib.sourceforge.net/
http://www.boost.org/doc/libs/1_54_0/libs/mpl/doc/index.html
http://www.boost.org/doc/libs/1_54_0/libs/mpl/doc/index.html
http://www.graoil.co.uk/downloads/fizzbuzz_example.zip

Code Critique Competition 88
Set and collated by Roger Orr. A book prize is

awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
I was adding items into a map only if they weren't already there and
the code reviewer said I shouldn't be using operator[] - see how I
was doing it in the function called old_way. So I tried to do it better
using the code in new_way. Now the code sometimes works and
sometimes doesn’t – can you help?

The code is in Listing 1.

Critiques
Paul Floyd <paulf@free.fr>

Here’s a code critique without any blatant errors, at least in the sense that
it compiles cleanly and seems to produce the results I expected.

Let’s start by analysing old_way

 void old_way(int key, std::string value)
 {
 if (theMap[key].empty())
 {
 theMap[key] = value;
 }
 }

Firstly, at least for C++98/03, I’d pass in the string argument by const
reference.

In the if condition, the std::map bracket operator will search for key.
This will be a binary search, of complexity O(logn). There are two
possibilities:

1. key is found, and the bracket operator returns a reference to it. If the
mapped string is not empty, the if condition evaluates to false, and
flow passes to the end of the function. The mapped string could be
empty, in which case the if body will be executed.

2. key is not found and the map default constructs a new string at that
position and returns a reference to it. The default constructed string
will evaluate empty() to true, and the body of the if statement will
execute.

When the if body executes, there will be a second call to the bracket
operator (so another O(logn)). This will succeed, and value will be
assigned to the returned reference.

It isn’t clear whether empty strings are allowed in the map, but as it stands
old_way will overwrite existing elements keyed by an empty string.

 old_way(3, std::string());
 old_way(3, "overwrite");

Here the second call will find the empty string inserted by the first call.
Since old_way does not distinguish between a missing element and an
element keyed with an empty string, the second call overwrites the first
insert.

Now lets consider new_way.

 void new_way(int key, std::string value)
 {
 std::map<int, std::string>::iterator it
 = theMap.lower_bound(key);
 if (it->first < key)
 {
 theMap.insert(it,
 MyMap::value_type (key, value));
 }
 }

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

#include <iostream>
#include <iterator>
#include <map>
#include <string>

std::map<int, std::string> theMap;

void old_way(int key, std::string value)
{
 if (theMap[key].empty())
 {
 theMap[key] = value;
 }
}
void new_way(int key, std::string value)
{
 std::map<int, std::string>::iterator it
 = theMap.lower_bound(key);
 if (it->first < key)
 {
 theMap.insert(it,
 std::map<int, std::string>::value_type
 (key, value));
 }
}
namespace std
{
 ostream& operator<<(ostream&,
 map<int, string>::value_type const &rhs)
 {
 return cout << rhs.first
 << "=" << rhs.second;
 }
}
int main()
{
 new_way(1, "test");
 new_way(2, "another");
 new_way(1, "ignored");

 std::copy(theMap.begin(), theMap.end(),
 std::ostream_iterator<
 std::map<int, std::string>::value_type>
 (std::cout, "\n"));
}

Li
st

in
g

1

JUL 2014 | | 13{cvu}

Again, I would pass value by const reference.

First there’s a call to lower_bound, which will return the first element
greater than or equal to key (or end() if all elements are less than key or
the map is empty). Let’s go through these 3 possibilities.

If the key is already in the map, the following test for less than will be false,
and there will be no attempt to insert into the map.

If the key isn’t in the map, but there is at least one element with key greater
than the key being added. In this case the test following lower_bound
will be false and the element is not inserted. This is wrong, and it doesn’t
show up because there in the example, there is no attempt to insert a new
key that is not the largest in the map (the successful insertions have keys
1, 2 then 3). This can be fixed by swapping the order of the arguments to
less than in the test.

The last possibility is that the map is empty or that the key being inserted
is greater than all keys in the map. In this case lower_bound returns
end(). Then the following test checks it->first when it is pointing
to end(). Oops.

dbx has this to say:

Read from uninitialized (rui):

Attempting to read 4 bytes at address 0x8068e68

 which is 144 bytes into a heap block of size 1328 bytes at 0x8068dd8
This block was allocated from:

 [1] operator new() at 0xe910670b

 [2] std::__node_alloc<true,0>::_S_chunk_alloc() at 0xea55d1c2

 [3] std::__node_alloc<true,0>::_S_refill() at 0xea55d0c4

 [4] std::__node_alloc<true,0>::_M_allocate() at 0xea55cfe7

 [5]

std::basic_string<char,std::char_traits<char>,std::allocator<char>

 >::reserve() at 0xea569c68

 [6] std::__copy() at 0xea5bd475

 [7] std::_Init_timeinfo() at 0xea5ba92c

 [8] std::_Locale_impl::make_classic_locale() at 0xea5be306

stopped in new_way at line 37 in file "cc87.cpp"

 37 if (it->first < key)

Changing the test to include a check for end() fixes this,

 if (it == theMap.end() || key < it->first)

When I looked at these uninitialized values, they were always 0, which
means that the it->first < key was always true. However, it would
be impossible to insert an element with a key having a negative value. It
also probably explains the non-deterministic behaviour described.

When the insert does work correctly, it reuses the iterator as a hint for the
insertion position, which will hopefully save on an O(logn) search. I would
recommend adding some debug check or assert to the return from the
insert, as we are expecting the insert to always succeed. This overload of
std::map::insert returns an iterator pointing to either the inserted
element or the existing element.

 MyMap::iterator ret = theMap.insert(it,
 MyMap::value_type
 (key, value));
 assert(ret->first == key)

It’s worth noting that new_way has no problem handling empty strings, so

 new_way(3, std::string());
 new_way(3, "overwrite");

does not overwrite the element with key 3.

Now for the one thing that did stick out even at first glance.

 namespace std
 {
 ostream& operator<<(ostream&,
 map<int, string>::value_type const &rhs)

 {
 return cout << rhs.first
 << "=" << rhs.second;
 }
 }

What’s that? Polluting namespace std, taking an (unnamed) ostream
reference, but sending output to cout. There’s no easy way to define an
operator<< for types that reside in the std namespace. Instead, I just
wrote a boring function

 void printMyMap(std::ostream& ostr,
 const MyMap& myMap)
 {
 for (MyMap::const_iterator iter =
 myMap.begin(); iter != myMap.end(); ++iter)
 {
 ostr << iter->first << "="
 << iter->second << "\n";
 }
 }

(would be a bit nicer with C++11 and foreach).

A couple of style issues. I wouldn’t use a global for theMap, but I suppose
it’s OK for illustrative purposes. I would use a typedef to keep down
the typing, like this

 typedef std::map<int, std::string> MyMap;

Stefan Schiffler <stefan.schiffler@scils.de>

This code contains several mistakes, I will address the most important one
only. First of all the old_way inserts the new value not only if the key
does not exist, but also if it exists but the value string is empty.
Unfortunately new_way makes it worse. The lower_bound function
returns an iterator pointing to the first element which is not considered to
go before key. It might return theMap.end(), so calling it->first in
the new_way function is the most important problem here. It can be fixed
by

 auto it = theMap.find(key);
 if(key==theMap.end()){
 //... insert to the map
 }

But actually what you want to use instead of new_way is

 theMap.insert(std::make_pair(key,value));

which is inserting the new elements if they are not already in the map,
otherwise returning an i terator to the exist ing element . So
std::map::insert exactly does what you want to implement in
new_way by yourself. And the best thing: You do not have to write a test
for it :)

So the complete code would be

 #include <iostream>
 #include <map>
 int main()
 {
 std::map<int, std::string> theMap;
 theMap.insert(std::make_pair(1,"test"));
 theMap.insert(std::make_pair(2,"another"));
 theMap.insert(std::make_pair(1,"ignored"));

 for(auto item : theMap)
 std::cout << item.first << " = "
 << item.second << std::endl;
 return 0;
 }

Dave Cridland <dave@cridland.net>

The code doesn’t work because it’s hitting undefined behaviour, and
misusing lower_bound as well. But let’s stop for a moment and look at
why old_way was the wrong method.
14 | | JUL 2014{cvu}

The old way, of course, mostly works – and moreover, the knowledge of
why it works is clearly visible in the code. The operator[] of a
std::map will instantiate a value with the default constructor
automatically, and so with a sensible class like std::string, you get
an empty string. This is visible in the code, the test for “Is this key in the
map?” is to look at the value and see if it’s an empty string.

If an empty string is actually put there, though, it’ll also be treated as a new
entry, and so a subsequent set would erroneously work:

 old_way(1, ""); // Essentially works.
 old_way(2, "Test"); // Also works.
 old_way(2, "Another test"); // Doesn't insert -
 // so works.
 old_way(1, "Oooops"); // This *does*
 // insert, because the existing value is
 // empty() - fail.

So switching away from using operator[] to test for the key’s presence
is certainly the right choice here – it can also make the code a little faster.

But in the new_way, lower_bound always returns an iterator, just as
operator[] always returns a value. And again, the iterator might have
been invented for the purpose – for an empty std::map for instance,
lower_bound will return the same marker iterator as the Map.end()
does. This, like a NUL at the end of a string, is purely a marker and isn’t a
valid iterator at all, so the moment you dereference it – as in the conditional
in new_way – all bets are off. Because the key is a POD – a Plain Old Data
type rather than an object with a constructor – it may actually exist and
have memory, but it’ll be uninitialized, and the result of the conditional is
undefined behaviour. In other words, nobody can tell you what it’ll do –
it’ll sometimes work and sometimes fail.

So let’s consider the case where the call to lower_bound gives you a
valid iterator. This will be an iterator pointing to the first element that’s
‘not less’ – ie, equal or greater for an int – than the argument. So if the
map contains only a key of 2, and you ask for the lower_bound of 1, it’ll
point at the 2, and your conditional expression will be false. Ask for 3, and
it’ll give you end() – and give you undefined behaviour. Ask for 2, and
it’ll give you 2, and your conditional expression evaluates, finally, the way
you want it to.

When it actually works, the insert is a good one – it’ll use the hint correctly,
though probably ignore it, and thankfully it won’t ever overwrite existing
elements, in part because insert() will only insert a new key into the
map (contrasting with multimap).

Wait... What was that? Your brief was to add “items into a map only if
they weren’t already there”? Ah – that’s what insert() does.

So how about:

 void third_way(int key, std::string value) {
 theMap.insert(std::make_pair(key, value));
 }

In fact, it’s not really clear why you’d want to have a function here at all,
is it?

If you did, you’ll be wanting to have an argument of "const
std::string &" rather than simply "std::string"; this will
remove a copy. With C++11, you can also use a move here in a different
overload. But really, wrapping one relatively simple line of code in a set
of overloaded functions seems like overkill.

The other thing that struck me about the code was the use of the
ostream_iterator – clever stuff, but I note that in the newly defined
operator<< the ostream argument is actually ignored, and cout used
instead. This works in the example given, but it’ll be impressively
confusing if you try to write to a file instead – not only will this write be
directed to standard output, but anything subsequent in the chain of "<<"
operators will be as well. If it’s sufficiently buried, that’ll be an interesting
bug to trace.

Finally, I’d note in passing that if you did want to check for the existence
of the key prior to constructing a std::string from the string literal you

have, you might want to do things with find, not lower_bound, since
it’s generally easier:

 void fourth_way(int key, const char * value) {
 auto it = theMap.find(key);
 if (it == theMap.end()) {
 theMap.insert(std::make_pair(key, value));
 }
 }

You’ll see I’ve used a C++11-ism of auto instead of the full iterator type
name.

But you were right in that you’ll gain a bit of performance when the hint
it present, so perhaps:

 void fifth_way(int key, const char * value) {
 auto it = theMap.lower_bound(key);
 if (it == theMap.end() || it.first != key) {
 theMap.insert(it,
 std::make_pair(key, value));
 }
 }

As I say, this only makes sense if you feel constructing a std::string
before the insert is going to be an issue. Ironically, it will never be in
C++11, because that defines a new templatized overload that’ll only
perform the type conversion if the insert will succeed, so the simplest
solution ends up being the best, in C++11 at least:

 #include <iostream>
 #include <iterator>
 #include <map>
 #include <string>
 std::map<int, std::string> theMap;
 namespace std {
 ostream& operator<<(ostream& os,
 map<int, string>::value_type const & pair) {
 return os << pair.first << "="
 << pair.second;
 }
 }
 int main() {
 theMap.insert(std::make_pair(1, "test"));
 theMap.insert(std::make_pair(2, "another"));
 theMap.insert(std::make_pair(1, "ignored"));
 std::copy(theMap.begin(), theMap.end(),
 std::ostream_iterator<std::map<int,
 std::string>::value_type>(std::cout, "\n"));
 }

Martin Janzen <martin.janzen@gmail.com>

Where to start? First things first: let’s create a typedef for the map.
Writing std::map<int, std::string> everywhere is error-prone,
and clutters up the code needlessly:

 typedef std::map<int, std::string> map_type;

Next, the single instance theMap is a global variable, with all of the usual
associated problems: Functions are inflexible, being usable only with
theMap. Test cases are more difficult to write because we can't count on
starting with a clean map. We may encounter naming conflicts and linkage
errors because theMap isn’t static, nor even in a separate namespace; and
so on.

An improved design might be object-based, encapsulating the map and its
related functions:

 struct TheMap
 {
 typedef std::map<int, std::string> map_type;
 typedef map_type::value_type value_type;
 map_type theMap;
 void insert(int key, std::string value);
 // ...other interface functions...
 };
JUL 2014 | | 15{cvu}

Now we can instantiate one or more maps anywhere we want.

We might further prefer to hide the implementation by making theMap
and its related typedefs private. However, we will then have to write a
potentially large number of forwarding functions if we want to emulate
part or all of the std::map interface.

Alternatively, we could create a class which is derived publicly from
std::map, wrapping only the required constructors (perhaps using C++11’s
constructor inheritance to save typing). However, inheriting from STL
containers, while possible, is usually considered to be best avoided –
possibly a subject for a future Code Critique?

If we’re really sure we need only one instance, and only in this single
compilation unit, we can at least put it into an anonymous namespace,
together with its related functions:

 namespace
 {
 typedef std::map<int, std::string> map_type;
 map_type theMap;

 void map_insert(int key, std::string value) {
 ... }
 }

For simplicity we'll use this approach for the rest of this response.

 * * *

Let’s go on to the insertion function. The code reviewer was correct to say
that the old way is wrong, because std::map::operator[] will insert
a new entry every time you try to search for a key that isn’t already in the
map. This is a memory leak. Also, it’s likely to lead to surprises later; say,
when iterating through a map which now contains a large number of empty
values. And it precludes the possibility of storing an entry whose string
really is supposed to be empty.

Unfo r tuna t e ly , t he new wa y i s a l so wrong . The
std::map::lower_bound() function is not the right tool for the job,
since it doesn’t test for equivalence. Instead, it returns an iterator which
points to the first element whose key is equivalent to or goes after the
specified key; with the result that the code may or may not work depending
on the order in which items are inserted.

The std::map::find() function is probably what the author had in
mind:

 void map_insert(int key, std::string value)
 {
 if (theMap.find(key) == theMap.end())
 theMap.insert(
 map_type::value_type(key, value));
 }

Pa ss ing an i t e r a to r a s a h i n t i n t he f i r s t a rgume n t t o
std::map::insert() is pointless here, so I’ve removed it. The hint
may improve performance if we know that the new entry can be inserted
just before the iterator, but if our search just failed then the iterator will
point to theMap.end(), which doesn’t help.

However, it’s really not necessary to look for the key at all, since the
std::map::insert() function already does exactly what we want. If
key is not already in the map, the entry is inserted; if it is, the map is
unchanged:

 void map_insert(const int key,
 std::string value)
 {
 theMap.insert(
 map_type::value_type(key, value));
 }

In addition, the std::map::insert() function will return a pair
consisting of an iterator and a bool, which respectively point to the entry
for that key and indicate whether an insertion took place. The example code
doesn’t bother to report the outcome, but it might be useful to have the
function return true if an insertion took place:

 bool map_insert(const int key, std::string value)
 {
 return theMap.insert(
 map_type::value_type(key, value)).second;
 }

 * * *

Having fixed the insertion error, let’s turn our attention to the test code,
which raises some rather more interesting issues.

The test operator<<() function has a small bug, in that it accepts an
ostream& parameter but always writes to std::cout.

Worse, though, is the fact that this function has been placed into namespace
std. This is ‘undefined’, according to 17.4.3.1. Template specializations
in namespace std are fine (eg., for std::hash<T>), but new
declarations or definitions are not allowed.

How can we fix this?

If the rhs parameter were a user-defined type, we could put the
operator<<() function into the same namespace as that of the type,
relying on argument-dependent lookup to do the right thing.

Unfo r t una t e ly , r h s r ea l l y i s i n na mespace std , b e ing a
std::map::value_type, so this won’t work here.

There are any number of alternatives:

1. If we’d replaced the global std::map with a class that contains a
std::map, as shown earlier, we could write an operator<<()
function which is qualified by the class name, and ADL will work:

 std::ostream& operator<<(std::ostream& os,
 const TheMap::value_type& rhs)
 {
 std::cout << rhs.first << "=" << rhs.second;
 }

Note that this function may need to be declared as a friend of the
class, depending on the access control we’ve specified.

2. For a plain std::map, though, it’s possible to write a wrapper class
containing only a reference to our map’s value_type, and an
operator<<() function that operates on the wrapper instead:

 struct map_wrapper
 {
 map_type::value_type const &ref;
 map_wrapper(map_type::value_type const &val)
 : ref(val) {}
 };
 std::ostream& operator<<(std::ostream &os,
 map_wrapper const &rhs)
 {
 return os << rhs.ref.first << "="
 << rhs.ref.second;
 }
 std::copy(theMap.begin(), theMap.end(),
 std::ostream_iterator<map_wrapper>(
 std::cout, "\n"));

This works, but is a bit opaque: the purpose of the map_wrapper
class is probably not going to be immediately evident to someone
reading the code for the first time. (A literate comment would help,
but how often do we see that?)

3. We could also provide a function which converts our map’s
value_type to a std::string, for which a suitable
operator<<() is already defined. Then, use
std::transform() to write it to a stream iterator:

 std::string format_map_entry(
 map_type::value_type const &val)
 {
 std::ostringstream os;
 os << val.first << "=" << val.second;
 return os.str();
 }
16 | | JUL 2014{cvu}

 std::transform(theMap.begin(), theMap.end(),
 std::ostream_iterator<std::string>(
 std::cout, "\n"),
 format_map_entry);

This is slightly clearer, but at the cost of a lot of possibly expensive
string manipulation.

4. We could write a function object that does the formatting, then
replace std::copy() with std::for_each():

 struct format_map_entry
 {
 std::ostream &os;
 format_map_entry(std::ostream &s) : os(s) {}
 std::ostream& operator()(
 map_type::value_type const &rhs) const
 {
 os << rhs.first << "="
 << rhs.second << "\n";
 }
 };
 std::for_each(theMap.begin(), theMap.end(),
 format_map_entry(std::cout));

5. Assuming that we’re all using C++11 by now, it’d be clearer to
replace the function object with a lambda function:

 std::for_each(theMap.begin(), theMap.end(),
 [](map_type::value_type const &val)
 {
 std::cout << val.first << "="
 << val.second << "\n";
 };

(To write to a stream other than std::cout, replace [] by [&] or
[&os] to capture the stream by reference.)

6. On the other hand, we could keep it simple and just use a plain old
for loop – or, depending on taste, a fancy new range-based for,
perhaps even with auto:

 for (auto const &val : theMap)
 std::cout << val.first << "="
 << val.second << "\n";

The choice probably comes down to the likelihood that we will need to
reuse the formatting function. In this case it’s trivial, so it doesn’t make
much difference; but if it were more complicated, or needed to be
standardised, or were likely to change frequently, it’d be good to provide
a formatting wrapper or function.

 * * *

Finally, all of this demonstrates that the original tests were completely
inadequate. Because the test keys were added in sorted order, the function
appeared to work despite the presence of a critical bug.

(A TDD purist might point out that, to be fair, the author did write just
enough code to pass the test cases. I suspect that neither the users of this
code nor the author’s boss would be impressed by this line of argument.)

At the very least, we need a few more test cases, in unsorted order,
including some with keys which are negative or zero, as well as some
empty strings:

 int main()
 {
 map_insert(0, "an");
 map_insert(-17, "this");
 map_insert(42, "problem");
 map_insert(-1, "is");
 map_insert(9, "ex");
 map_insert(42, "parrot");
 map_insert(0, "not");
 for (auto const &val : theMap)
 std::cout << val.first << "="
 << val.second << "\n";
 }

Use of a unit test framework such as Google Test, cppunit, or Phil Nash’s
Catch would be a further improvement, making it easy to add automated
checks, and to report failing test cases and a summarized pass/fail result.

James Holland <James.Holland@babcockinternational.com>

The code reviewer was correct when saying that operator[] should not
be used. It is just a pity the reviewer did not say why. After all, the
old_way function code seems to work correctly (although, if elements
with null strings are acceptable, then old_way does not quite work). It is,
perhaps, not as efficient as it could be. It fact, as we shall see later, the
function body can be simplified to the extent that its body becomes a single
statement.

The lack of efficiency comes about because the map is being traversed
twice; once within the predicate of the if statement and once within the
body of the if statement. The predicate first traverses the map to search
for an element with a key of key. If no such element is found, one is
inserted with a value of a default constructed std::string, namely, an
empty string. Now there is definitely an element in the map with a key of
key. Either it had already existed or it has just been inserted by the if
statement. In either case, the empty member function then returns whether
the element’s value (a string) is empty or not. If the string is empty, it was
because its element was just inserted by the if statement and therefore did
not previously exist. The body of the if statement will now be executed
to ‘insert’ the new element. This is where the second traversal takes place.
Once the element is found, its value is changed to 'value' and the old_way
function exits.

In an attempt to heed the reviewer’s advice, the coder constructs a second
function named new_way. Unfortunately, an error was made in the
process. The problem is with the if statement of the new function, shown
below, that is meant to determine whether a particular element exists
within the map.

 if (it->first < key)

After initialisation, the iterator (it) points to the location in the map where
an element with a key of key would be inserted. The location may already
be occupied by an existing element (if there is an existing element with a
key equal to or greater than key) or the location may represent the end of
the map (if there are no existing elements with a key equal to or greater
than key). The latter will certainly be the case if the map is empty. It is
fine to dereference the iterator and obtain the element’s second value if the
iterator points to an existing element. It is not valid to dereference the
iterator if it points to a non-existent element. Unfortunately, this is what
is happening in the if statement of the new_way function. The result is
undefined behaviour. This is why the code sometimes works and
sometimes doesn’t.

To correct the problem the if statement has to be modified. One thing to
notice is that if an element with a key of key does not exist; its lower bound
and upper bound iterators will be equal. If this is the case, the element can
be inserted in the map as required. The iterator already has the lower bound
of the element and so all that needs to be done is to compare the iterator
with the element’s upper bound. The if statement then becomes as shown
below.

 if (it == theMap.upper_bound(key))

The program will now consistently work as expected.

Although new_way function now works correctly, it is no more efficient
that the old_way function. This is because the function is still performing
two traversals; one for lower_bound() and one for upper_bound().
These two functions could be combined into one function, namely,
equal_range(). This will require only one traversal of the map.
Fortunately, however, there is no need to pursue this approach as there is
a simple and more efficient way of achieving the desired effect.

The map member function insert() first checks to see whether an
element already exists within the map. If the element is not in the map, it
is inserted. If it is in the map, no further action is taken. This is exactly
what is required. The resultant new_way function is shown below.
JUL 2014 | | 17{cvu}

 void new_way(int key, std::string value)
 {
 theMap.insert(std::make_pair(key, value));
 }

This version of the new_way also caters for the situation where the
insertion of elements with null strings is valid. This is because insert only
inserts the new element if it cannot find an element in the map with a key
of key; not whether an existing element has a null string.

Marcel Marré <marre@links2u.de> & Jan Ubben

Any sporadic bug hints at undefined behaviour. In this case, the first two
lines of new_way result in undefined behaviour. Querying lower_bound
from a map is not guaranteed to return a dereferenceable iterator. It will
return the map’s end when the key provided is greater than all keys already
in the map, which is, of course, the case when the map is empty.

The returned iterator is unconditionally dereferenced in new_way. A naive
way of fixing this would be to change the condition to:

 if(theMap.end() == it || it->first < key)

However, we can do better by utilising std::map::insert as the
interface suggests, which alone covers the requirements completely. While
it returns whether or not the value was actually inserted into the map, this
is not in fact used in the code, so the whole insertion can be written as:

 void new_way(int key, std::string value)
 {
 theMap.insert(std::map<int,
 std::string>::value_type(key, value));
 }

The reason why the reviewer rejected old_way is also likely due to
misusing the map interface. Using theMap[key] in two lines means that
the lookup for that key is performed twice. Furthermore, if no entry has
been made for key, a default-constructed value for this is added
automatically. This means that in old_way, an empty string would not be
considered a valid entry.

However, there are additional problems with the code.

Overloading functions in namespace std is undefined. Additionally, the
code abuses the interface of operator<< by ignoring the provided
ostream parameter. It forces output to std::cout and returns it, which
can lead to surprising results when chaining output operations into a
different ostream. Therefore, a named function is more appropriate:

 void printWithNewlineToCout(std::map<int,
 std::string>::value_type const & keyValue)
 {
 std::cout << keyValue.first << "="
 << keyValue.second << "\n";
 }

This is used slightly differently:

 std::foreach(theMap.begin(), theMap.end(),
 printWithNewlineToCout);

If this were not merely sample code, one would also not want to use a global
variable for theMap.

Raimondo Sarich <rai@sarich.co.uk>

Stepping back for a moment, I would question the requirement to add to
the map only if the key cannot already be found, regardless of the value.
Let us proceed on the assumption that the requirement is valid.

Firstly, the problem with using operator[] has already been
highlighted, but we should understand the reason: The operator will create
the entry in the map if it does not already exist (using the element’s default
constructor); clearly undesirable in this application.

The observed problem is the intermittent failure. It is interesting to note
that a release build (using VC2010) indeed sometimes works and
sometimes produces no output, whilst a debug build always fails with an
assertion. The failures are caused by the dereferencing of the iterator
returned from lower_bound. map::lower_bound returns an iterator

to the first element in the container whose key is not considered to go
before k (the lookup key), or map::end if all keys are considered to go
before k[1]. Furthermore, map::end does not point to any element, and
thus shall not be dereferenced[2]. The first call of new_way sets it to
map::end, and the subsequent dereferencing (it->first) results in
undefined behaviour. This means the dereference may take any value, and
this is why the code sometimes works; occasionally the essentially random
value is less than key. In the debug build operator-> is checked for
validity, hence the assertion.

new_way needs only a simple fix to make it optimal, as was first pointed
out to me by our distinguished columnist. The find/check/insert-with-hint
idiom first finds the insertion location, checks whether to go ahead with
the insertion, and then performs the insert with a hint, avoiding the need
for a second search (unless the map changes before the insert). Changing
the conditional to if (it == theMap.end()) will do the trick.

The more insidious problem does not cause a failure and allows us to copy
theMap to an ostream_iterator, another popular idiom for container
types. The enabling code is the definition of operator<<, which
demonstrates two problems.

Firstly, it ignores the first parameter and instead always outputs the value
to cout and then returns cout. Although it works in this code, it might
cause some surprise when theMap is output to an ofstream (or indeed
any other map<int,string> is sent to any output stream other than
cout).

The second problem is that the definition is made in namespace std, which
results in undefined behaviour[3]. Unfortunately, the copy-to-
ostream_iterator idiom cannot be applied to a map because the
contained type is a pair. Since both pair and ostream are in namespace
std, the argument dependent lookup for operator<< remains in
namespace std, which does not contain an appropriate definition. Since
we are restricted from changing namespace std an alternative must be
found, reasonable choices being for_each or transform.

A final few niggles:

 A sprinkling of pass by const reference. In the given code,
temporary strings are created from the const char* strings and
then passed by value into new_way resulting in the construction of
another string. It would be interesting to investigate whether a
clever compiler optimises away the superfluous string
construction, but pass by const reference certainly avoids it, and is
also preferable in case an actual string is passed.

 Removing the global variable.

 A couple of typedefs, and referring to std::pair directly,
which I find clearer.

 A namespace so we don’t pollute the global namespace. Not strictly
necessary in this simple example, but a habit worth forming.

And we are done.

 #include <map>
 #include <string>
 #include <iostream>
 #include <algorithm>
 namespace {
 typedef std::map<int, std::string>
 map_int_string;
 typedef std::pair<int, std::string>
 pair_int_string;
 void insert_if_not_found(map_int_string& theMap,
 int key,
 const std::string& value) {
 map_int_string::iterator it =
 theMap.lower_bound(key);
 if (it == theMap.end())
 theMap.insert(it,
 pair_int_string(key, value));
 }
18 | | JUL 2014{cvu}

 void print_pair(const pair_int_string& a) {
 std::cout << a.first << "="
 << a.second << "\n";
 }
 } // namespace Anonymous
 int main() {
 map_int_string theMap;
 insert_if_not_found(theMap, 1, "test");
 insert_if_not_found(theMap, 2, "another");
 insert_if_not_found(theMap, 1, "ignored");
 std::for_each(theMap.begin(), theMap.end(),
 &print_pair);
 }

Or are we? The concept of adding to a map only if the key cannot be found
is more generally applicable, at least to other types of map. Perhaps we
should use templates to capture the general concept, certainly if it might
be used elsewhere. However, this does result in a little overhead of having
to identify the template specialisations we need created, either by calling
the function with the right type or by specifying the template parameters.
The template functions probably belong in a different header and
namespace, but this review is already long enough.

[Ed: complete sample code was provided, but was elided to save space]

References
[1] http://www.cplusplus.com/reference/map/map/lower_bound/
[2] http://www.cplusplus.com/reference/map/map/end/
[3] [C++11: 17.6.4.2.1/1]: The behavior of a C++ program is undefined

if it adds declarations or definitions to namespace std or to a
namespace within namespace std unless otherwise specified. A
program may add a template specialization for any standard library
template to namespace std only if the declaration depends on a user-
defined type and the specialization meets the standard library
requirements for the original template and is not explicitly
prohibited.

Giuseppe Vacanti <giuseppe@vacanti.org>

I’m not too sure what the old_way was trying to achieve. Using
operator[] on a map will either fetch an existing element corresponding
to the key, or create one if it does not exist (assuming a suitable default
constructor is available). Additionally, map[key].empty() does not
test whether there is no element corresponding to key, but in this case (the
value type is std::string) checks whether the string corresponding to
key is empty. If we could consider an empty string as indicating that there
is no value corresponding to key, then old_way would achieve its goal,
but in this case only because the type of the value has a method called
empty().

The new_way has a vague notion that iterators have something to do with
the problem, but why use lower_bound? This method returns an iterator
to an element of the map whose key is no less than the key passed, and the
less-than test is used to determine that there is no key equal to the one
passed to the method. I use lower/upper_bound and equal_range
only if I want to select elements in a map, not if I want to insert a new
element.

In order to insert an elements without replacing an existing one, use, well,
insert (I specify the type fully, but one would use auto here to save some
typing):

 std::pair<
 std::map<int, std::string>::iterator, bool> p
 = theMap.insert(std::make_pair(key, value));

The method insert inserts only if the element does not already exist in
which case p.second==true. p.first points to the newly inserted
element, or the existing element with the same key.

As a side remark, those strings should be passed by constant reference and
not by value.

Commentary
The code in this critique is based on a very common pattern that I have
encountered a number of times over the years. The fundamental problem
is that people over-use the convenience function operator[] provided
in map – in some languages this may be the only, or best, choice in most
cases but this is not the case in C++.

It is also sadly all too common to see people writing their own code to
perform what an existing library call – in this case map::insert –
already does.

One ‘meta’ comment about this critique is with the original reviewer’s
remark: “the code reviewer said I shouldn’t be using operator[]’. It
doesn’t appear that the reviewer gave a clear enough explanation of what
the problem was that needed fixing. I have seen similar problems with
“FIXME” or “TODO” comments in code bases…

The Winner of CC 87
This critique attracted quite a few entries and the problems in the code were
very well covered. There were also some good suggestions for alternatives
to the slightly more subtle problem of defining our own streaming operator
in the std namespace. Marcel and Jan provided an explanation for why
this is a bad thing (other than “it’s illegal”).

However, I was particularly taken with Martin’s discussion about why the
existing tests were poor and to my mind this gave him the edge – and the
prize – for this issue.

Code Critique 88
(Submissions to scc@accu.org by August 1st)

I’m trying to write a simple program to read and process lines of text
from the console. I’ve got a problem – and have stripped the
program down to a small demonstration of the it. If I run the program
and type

add 1 2

it prints, as I’d expect:

add(1 2)

and is back ready to read the next line and I can, for instance, type
subtract 2 3 and it echoes back subtract(2 3).

But if I type just

add

then the program prints

add(

and although it seems to read more lines it no longer seems to
process them.

Additionally, with one compiler (MSVC), I get this warning and don’t
know why:

cast between different pointer to member
representations, compiler may generate incorrect
code – which worries me. To be honest I don’t really know why the
static_cast is needed but I can’t get it work any other way.

Can you help fix the problems presented and perhaps suggest some other
improvements?

The code is in Listing 2 (next page).

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.
JUL 2014 | | 19{cvu}

http://www.accu.org/journals/

Standards Report
Mark Radford reports the latest developments

in C++ Standardization.

ello and welcome to my latest standards report.

The ISO C++ Standards Committee are meeting again soon. The
meeting will be in Rapperswil, Switzerland, 16th–21st June. Given

that the final copy deadline for CVu this time around is the 21st June, in
theory I could cover the first half of the meeting. I did this with last
February’s meeting (Issaquah, WA, USA), but, unfortunately, my current
work commitments make it impractical this time around. Therefore I will
confine myself to looking at some of the papers in the pre-Rapperswil
mailing, which can be found at: http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2014/#mailing2014-05.

As usual, I have much to say about the C++ standards process, but in this
report I first get to write about another standards process, namely one for

the C language. Many thanks to the convenor of the BSI C Panel for
updating me on their progress.

C Standardisation
Last January I reported that the C Panel are working on a floating point
bindings TS, which has five parts to it. Part 1 (binary floating point

 H

MARK RADFORD
Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark@twonine.co.uk
20 | | JUL 2014{cvu}

public:
 int getIdentity() { return id; }
};
// (Stripped down code)
class Calculator : public Processor,
 public virtual Identity
{
public:
 Calculator();
private:
 void add(std::istream &is);
 void subtract(std::istream &is);
 // etc
};
Calculator::Calculator()
{
 addCmd("add",
 static_cast<Pmf>(&Calculator::add));
 addCmd("subtract",
 static_cast<Pmf>(&Calculator::subtract));
}
void Calculator::add(std::istream &is)
{
 // stub ...
 std::cout << "add("
 << is.rdbuf() << ")\n";
}
void Calculator::subtract(std::istream &is)
{
 // stub ...
 std::cout << "subtract("
 << is.rdbuf() << ")\n";
}
int main()
{
 Calculator calc;
 calc.run(std::cin);
}

Listing 2 (Cont’d)

#include <iostream>
#include <map>
#include <sstream>
#include <string>
class Processor;
typedef void (Processor::*Pmf)(
 std::istream &is);
class Processor
{
public:
 void run(std::istream & is);
 void addCmd(std::string const &cmd, Pmf pmf)
 {
 cmds[cmd] = pmf;
 }
protected:
 Processor() = default;
private:
 std::map<std::string, Pmf> cmds;
};
void Processor::run(std::istream &is)
{
 std::string line;
 while (std::getline(is, line))
 {
 std::istringstream iss(line);
 std::string cmd;
 iss >> cmd;
 Pmf pmf = cmds[cmd];
 if (pmf) (this->*pmf)(iss);
 }
}
class Identity
{
 int id = getNext();
 static int getNext()
 {
 static int seed;
 return ++seed;
 }

Li
st

in
g

2

Code Critique Competition 88 (continued)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/#mailing2014-05
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/#mailing2014-05

arithmetic) was at the draft technical specification (DTS) stage. Following
the DTS ballot, part 1 has now been approved for publication (but is not
yet published, although publication is just a matter of time). Part 2 of the
TS (decimal floating point arithmetic) was at the preliminary DTS (PDTS)
stage, but has now moved to the DTS stage, while part 3 (Interchange and
extended types) and part 4 (supplementary functions) will advance to
PDTS ballot soon. Work is being done on part 5 (supplementary attributes)
but there is no public draft yet.

Concurrency and Parallelism
Moving on to C++, once again there is a buzz of activity on the concurrency
and parallelism front. A couple of SG1 (Concurrency and Parallelism
study group) papers (in the pre-Rapperswil mailing) caught my eye: first
was ‘Comments on continuations and executors’ (N4032) by Anthony
Williams. In passing note that document D3904 (mentioned in the first line
of N4032) is the working draft of the concurrency extensions TS, and
appears in the mailing (with revisions) as N3970. In N4032 Anthony
expresses some reservations about the executers section of the
concurrency TS which draws on ‘Executors and schedulers, revision 3’
(N3785). This is not the first time reservations about N3785 have been
expressed: the first incarnation of this paper (N3378) prompted some lively
debate, and some reservations, within the BSI C++ Panel. However, there
have been no competing proposals in the area of scheduled/threaded
execution, until now. In ‘Executors and Asynchronous Operations’
(N4046), Christopher Kohlhoff has done considerable work in presenting
an alternative (note he has also provided a reference implementation of his
proposal). Before leaving the topic of concurrency, I’ll quickly draw
at t en t ion to ano ther paper by Anthony Wi l l i ams en t i t l ed
‘synchronized_value<T> for associating a mutex with a value’ (N4033).
This paper describes a simple and useful idea: a template that encapsulates
the coding for synchronizing access to a single value using a mutex.

Monads
Moving on to things other than concurrency, a work colleague pointed out
to me a paper entitled ‘A proposal to add a utility class to represent
expected monad’ (N4015) by Vicente J. Botet Escriba and Pierre Talbot.
Monads are a concept from the world of functional programming, and this
paper is a proposal for a utility class called expected<E,T>, where T is
the value type, and E is an error type. expected<E,T> is similar to
optional<T> except that expected<E,T> also holds error
information. Note, in passing, that this idea is not new: it appeared back
in 1994 in Barton and Nackman [1], where it was called Fallible<T>.
Barton and Nackman’s Fallible<T> was a little less general in that it
simply held a boolean value to indicate if the value was valid, or if an error
had occurred. The class expected<E,T> described in N4015 is, to my
knowledge, the first time the idea has been proposed for standardisation.

Destructive Move
With the advent of C++11, move operations are a major addition to C++.
Three years later, ‘Destructive Move’ (N4034) by Pablo Halpern identifies
a problem with the way move operations are specified and proposes a
solution. The problem is, the requirement that move constructors leave the
object moved from in a valid (but unspecified) state, means it isn’t always
possible to implement the move constructor in such a way that it can give
a no-throw guarantee. Those who want to know the reasons why, can find
them in the paper. The point is that ‘destructive move’ – a move operation
that does not require the object moved from to be left in a valid state – can
be implemented in such a way that it can give a no-throw guarantee. The
paper proposes the addition of a couple of function templates to the library
in support of destructive move operations.

Uniform Copy Initialisation
Proposals that make aspects of C++ simpler or at least less surprising, are
always welcome. C++11 introduced the uniform initialisation syntax using
curly braces for initialisation rather than parentheses (or an equals sign).

This, among other things, serves to combat programmers being caught out
by C++’s “most vexing parse” [2] (where a declaration such as
std::vector<int> vec(std::istream_iterator<int>
(filename), std::istream_iterator<int>()); is parsed as a
function declaration rather than the declaration of a vector<int> object,
the latter being what was intended). However, with brace style
initialisation, the declaration C c2 = { "Steve", "Brown" }; will
not compile if the relevant constructor in class C happens to be declared
as explicit. This is addressed in Nicolai Josuttis’ ‘Uniform Copy
Initialization’ (N4014). The author says that programmers “...waste a lot
of time looking the reason of the error”, and asserts that the syntax with the
equals sign is not in any sense more dangerous than the syntax without the
equals sign. His proposal is simple: allow the equals sign, and let it have
no effect.

Finally
I can only comment on a few of the papers in the mailing, which contains
many more papers (I counted 86!). For example, each group has its issues/
defects documents. Also I’ll just slip in a quick mention of Andrew
Sutton’s ‘Working Draft, C++ Extensions for Concepts’ (N4040), which
has an updated version. It would have been nice to have reported up to the
minute events from the ISO C++ meeting in Rapperswil which is, at the
time of writing, only a few days away. However, as I said in my
introduction, it really wouldn’t be practical for me to give it real time
coverage this time around. I’ll catch up with events from Rapperswil, but
that’s for next time.

References
[1] Engineering and Scientific C++: An Introduction with Advanced

Techniques and Examples by John J. Barton and Lee R. Nackman,
Addison Wesley, 1994

[2]http://en.wikipedia.org/wiki/Most_vexing_parse
JUL 2014 | | 21{cvu}

http://en.wikipedia.org/wiki/Most_vexing_parse

Bookcase
The latest round-up of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamorous ‘not recommended’ rating, you are entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with books.

Astrid Byro (astrid.byro@gmail.com)
Graphic Icons
By John Clifford, published by
Peachpit Press. 240pp. ISBN
978-0-321-88720-7

Reviewed by Alan Lenton

A rapid (two to four pages
each) illustrated look at the
art movements and
innovators that have
inspired modern graphic design. A must for
budding and experienced graphic designers, not
to mention digital user experience programmers
and designers. The pages are chock full of
illustrations guaranteed to provide inspiration
and example for your day to day work.

Obviously, any book like this must to a certain
extent be a personal choice of the author, but
there was one glaring omission which surprised
me. That of the surrealists, whose influence on
modern design has been massive. In fact a
number of the designers featured cite Man Ray,
for instance, as a major influence. A very strange
absence.

Personally, I would have also included
typographer Matthew Carter who produced the
first digital fonts properly designed for screen
display – the sans-serif Verdana and the
gorgeous serif Georgia. But these are nit-picks.
John Clifford has done an excellent job of
providing something which is fun to read,
educating, and inspiring of new ideas. Go for it!

Recommended.

The Technical and
Social History of
Software
Engineering
By Capers Jones, published
by Addison Wesley in 2013.
ISBN 978-0-321-90342-6
452pp

Reviewed by Alan Lenton

This book has been sitting on my desk for more
than a month since I finished reading it. The
thorny question was, how to review it. So,
what’s the problem? Well, on the one hand it’s
quite interesting, and would be useful to
someone trying to write a history of computing.

On the other hand the title is a complete
misnomer. It’s nothing much to do with the
social history of software engineering, and a
somewhat lopsided view of the technical
history, concentrating on business applications
and the rise of function point metrics, which the
author champions.

After a brief nod towards aspects of pre-digital
computing, the book is basically a linear
description of the commercial market.The
earlier chapters clearly make use of a lot the
information contained in the Wikipedia. This
was not a wise choice. The Wikipedia’s striving
for academic respectability has resulted in vast
swathes of material relating to personal
computing in the 1980s and 90s being removed.
They were either oral history, or from long
defunct computing magazines, and therefore
had no ‘proper’ citations, according to the
Wikipedia. In social history terms this is a
critical omission.

Allied to this is the complete absence of any
discussion about the role of computer games in
the history of computing, both as an introduction
to using computers, and as an influence on
software practitioners. The author briefly
mentions this problem later on in the book, but
makes no attempt to rectify it. It is
understandable that the author is not familiar
with the games industry, coming as he does from
a commercial background. However, he should
have made himself familiar with the industry if
he wanted to write a book on the history of
computing (social or otherwise). The attitude
shown is redolent of a common theme in certain
parts of the industry until the start of the current
century. It is an attitude that considers games to
be a waste of otherwise useful computing power.

Almost completely absent from the book is any
attempt to discuss the social history of
computing – either its effects on society, or the
social development of its practitioners. For
instance, the rise of open source software is as
much about the politics and sociology of
computing, as it is about technical development,
and yet the topic is barely touched in the book.
Neither are the very early struggles of
programmers of the very first computers to
become recognized in their own right, instead of

being considered mere lab technicians by the
academics who wanted to study ‘computing’.

From the point of view of a technical history
there is no feel of an overall concept, leading to
a large proportion of the book being one or two
page summaries of selected companies in the
industry. Even at this level there seems to be no
understanding of the extent to which the big
‘non-computing’ businesses have become, over
the period covered, software houses specializing
in whatever was their business before the rise of
cheap computing power. The classic case for
this is, of course, the big banks who have gone
from being banking houses with a software
department to being software houses with a
banking licence. The fact that most boards of
directors of these bodies have not yet caught up
with the reality of their business does not
absolve the author of a book on software
engineering history from noticing the
metamorphosis!

All in all, a rather disappointing read...

The reviewer is a professional programmer, and
holds a degree in Sociology from Leeds
University.

C++ For the Impatient
By Brian Overland, published by Addison Wesley,
ISBN: 978-0-321-88802-0, pages 657

Reviewed by Andrew
Marlow

Not recommended.

The book consists of 18
chapters on various
aspects of the language,
starting with data,
operators and control
structures and ending
with various library facilities such as
streams, the string class, STL
containers and algorithms, random
numbers and regular expressions. There are
three appendixes: Rvalue references, C++11
feature summary and (rather strangely) tables of
ASCII codes. Each chapter has some exercises
at the end. There are numerous examples and
some diagrams to explain certain things such as
22 | | JUL 2014{cvu}

memory layout issues (trees, hash tables, move
semantics etc).

The title probably derives from the well-known
book TeX for the Impatient, which says of itself
“It will enable you to master TeX at a rapid pace
through inquiry and experiment, but it will not lead
you by the hand through the entire TeX system”.

The trouble is, the C++ book does seem to treat
C++ as the primary interest. This shows in the
way the book is laid out; it is organised by the
classic divisions that one uses to teach
programming languages. This gives the
impression that it will take the reader through
most of C++. This approach does not serve the
impatient reader well.

I have several criticisms of the book:

 Despite claims of aiming at a particular
audience, the book seriously lacks focus.
Several parts seem aimed at complete
beginners, other parts look like reference
summaries for people experienced in
C++.

 The book contains far too much C and
code that is C-like for a book on C++.

 Many of the code examples and exercises
are presented in an order that seems
concerned with language feature
coverage. This causes many of them to
require knowledge of material that is
presented later (without any forward
referencing).

 The chapter and appendices division
seems odd, almost arbitrary. There are
entire chapters devoted to the old C way
of doing things, e.g. the POSIX
datetime functions and C I/O using
printf/scanf which I would not even
have mentioned or would have put in an
appendix. The chapters even occur before

the better C++ way of doing the job (e.g.
C strings are discussed before the STL
string class). The chapters are disparate
and there is nothing to link them together.
Several of them could have been
presented in any order (with the C stuff in
appendices). This has led to a large
number of chapters (20 in all).

 The exercises vary in difficulty to an
amazing degree which makes me think
that the author does not seriously
anticipate that anyone will actually do
them.

 The book was very loose with
terminology. It calls exceptions
‘Structured exception handling’, it refers
to lambdas as ‘lambda technology’, it
describes #include as a labour-saving
device, it conflates exceptions with
miscellaneous runtime errors from the
language or its std libraries, it refers to
associative containers as ‘associated
containers’, it uses preprocessor macros
where modern C++ would use enums or
const variables, exceptions are not
caught by reference, it says that function
prototyping is optional.

 There are inaccuracies:
The description of vector reserve says that
the specified amount of space is reserved;
it actually requests that the vector capacity
be at least enough to contain n elements so
in theory it could allocate more. The std
header to include to get std::pair is
<utility>, not <map>. The vector
template discussion says that
vector<bool> has been deprecated.
Strictly speaking this is not true. There
have been several attempts to deprecate it
and this is ongoing so it is best avoided for
that reason and for the reasons that are
connected with why deprecation is
planned (which are not mentioned in the
book).

 Early on there is a section entitled
‘Dealing with the flashing console’. This
is to do with what happens when one is

using Windows and launching from the
IDE instead of using a long-running DOS
prompt and invoking the program from
that. The program will terminate and take
the transient DOS window with it causing
a window that briefly flashes on the
screen. A non-portable ‘solution’ is given
which is almost immediately retracted and
followed with a portable ‘solution’. In my
opinion it would be much better to say that
one is advised to say cin.ignore(); to
prevent the DOS prompt launched from
the IDE from immediately terminating so
that you can see any console output that
may have been generated.

 Some aspects of C++11 were not covered,
e.g. attributes, defaulting and deleting
special member functions, emplace
functions, Array<>,
forward_list<>, noexcept,
datetime, date, timepoint,
duration, clocks, threads, synchronisation
mechanisms. Now, I realise that it was not
the intention to cover every feature but I
think that there should have been
something at the beginning to mention
which features would be omitted. I think it
was a mistake to exclude the C++11 date
time facilities whilst having a chapter that
discusses the old C way of doing things.

On the plus side, the book is very easy to read.
The style is slightly informal but not too over-
familiar. The explanations and diagrams are
quite good. The reference-like sections are more
readable than they appear at first glance because
they each contain a small example. These
examples are very helpful and typically missing
from similar reference sections in other books.
The book is also quite short, especially
considering how much is covered. Perhaps this
is why it is called C++ for the Impatient. It does
seem to be making an effort to impart the
knowledge without extensive preamble and
background explanations, just enough for
practical purposes. The book has received
glowing reviews from other reviewers on
various web sites and this easy reading was one
of the main reasons. The book is also produced
to a high standard with a lay flat binding, high
quality paper and high quality fonts.

Despite these good points, in my opinion the
sheer number of bad points outweigh the good
and result in a book which I cannot recommend.
JUL 2014 | | 23{cvu}

24 | | MAY 2014

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair in
Waiting
Alan Lenton
chair@accu.org

Well, my hopes of being forced to fight an
election for the post of chair were dashed when
the only person considering standing against me
had to pull out due to a change in his personal
circumstances. You can still vote for me, and for
Malcolm Noyes as the secretary, online, or, if
you want, at the Special General Meeting on 2nd
August 2014. If you haven’t already received the
details in your email by the time CVu is
published, you should be receiving them shortly.

Obviously, ending up with no chair or secretary
was pretty embarrassing. So, the committee will
be looking into the possibility of taking
nominations for officers at the AGM, in the
event that there are no nominations before the
AGM. We will have to change the Constitution
to do that, so if we go down that route, the
decision will be at next year’s AGM.

There’s not a lot to tell you about, because,
without a full complement of officers, the
committee is only allowed to keep things ticking
over, which it has done. Obviously the

committee is concerned about the steady trickle
of membership losses, and resolving this will be
one of the major items on our agenda this
coming year. One of the things we will definitely
be doing is getting draft committee and general
meeting minutes up in the web site’s members’
area as early as possible, rather than waiting for
the minutes to be agreed before publishing them.

On a more personal note, it seems to me that over
the next couple of years ACCU is going to reach
the point where it is going to have to make a
decision about what it really is, and what it wants
to be. Arguably it has suffered since it decided
not to concentrate on C/C++ – although it never
did just concentrate on C/C++. I suspect the
decline in membership is related to its lack of
clarity on this front. In some ways we are still
living off our heritage. The things we are best
known for are the Conference and our
publications – both launched a long time ago by
Francis Glassborow when he was the chair of
ACCU.

We have many very clever people who are
members. The problem is, though, that they have
many other calls on their time – work, family,
their own projects, to name just the most
obvious. Nonetheless, we need the input of
members if we are going to start growing again.
The committee can facilitate that, but it can’t
substitute for the membership.

There are good signs on the horizon – in
particular the slow but steady growth of local
groups. The committee is already looking at
ways to help out, and to provide resources
advertising ACCU membership to those at the
meetings.

But enough of the heavy stuff! I also have a
couple of appeals to make. We need some one
with publicity experience to help out on the
committee in this field. I realize that being an ace
spin doctor is not one of the skills normally

associated with computer programming, but I’m
sure there must be somebody out there with the
right combination!

Secondly, if anyone has any comments or ideas
about how we can improve the website then the
committee would like to hear from you. Rest
assured we will take comments on board, and we
promise we won’t try to intimidate you into
implementing the idea for us...

In the mean time, happy programming, and may
all your bugs be small ones. :)

	CVu26-3.pdf
	Over and Under
	Feature Tracking
	Nothing is Set in Stone
	Dr Bjarne Stroustrup: An Interview
	Checking Websites for Specific Changes
	Being Original
	How to Deconstruct Compile Time FizzBuzz in C++ Without Using Boost
	Code Critique Competition 88
	Standards Report
	Bookcase
	View from the Chair in Waiting

