

MAR 2014 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

The Ecumenical Programmer
hat is ACCU? What is it about? What does it
represent? What’s it for? When ACCU
began, it was all about C and C++ – the

latter in particular. It’s important to put it in it’s
time to understand why: C++ was undergoing its
first round of ISO standardisation. ACCU was an
informal bridge between ‘users’ and ‘experts’
(although it’s impossible to make a clear distinction),
and provided a platform for people to write and read
about the latest developments in the C++ Standard.

Since those early days, ACCU has changed much.
Although the magazines are still being printed (obviously
– you’re reading one!), the content has broadened
immensely. Similarly, the annual Conference is no longer
as strongly focussed on the C++ element that really
dominated its early days. Today, the ACCU represents a
much wider community of software developers
working across the industry from embedded systems
to large-scale cloud-based web-applications. It’s not
that C++ or C have become irrelevant to us, rather that
other technologies have become more important.
Crucially I think, ACCU is about more than just the
technologies: it is about the Practice of programming,
which is so much more than just typing in code. The
difference between good and bad coding practice is important to developers and
managers alike – and even to users. The most important thing to managers and users
is that they shouldn’t have to care – they should be able to assume it.

And that’s what ACCU is. It is the community around software development that
fosters good practice and provides a way for people from lots of different disciplines
– whether from different programming languages, different aspects of a team, or
different sectors of the industry – to find out about new things, and share their
experiences. We all have something to learn from each other, and we all have
something to share. Whether you’re a beginning programmer coding for fun, an old
hand trying to make your first steps on the management ladder, or someone who
already manages a team, ACCU is relevant to everyone involved in the business of
producing software.

W
Volume 26 Issue 1
March 2014

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Silas S. Brown, Glen Fury, Pete
Goodliffe, Chris Oldwood, Roger
Orr, Mark Radford, Vsevolod
Vlaskine

 ACCU Chair
Alan Griffiths
chair@accu.org

ACCU Secretary
Giovanni Asproni
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | MAR 2014

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
19 Standards Report

Mark Radford
reports on the latest
from C++14
standardisation.

20 Code Critique Competition
Competition 86 and
the answers to 85.

REGULARS
24 Bookcase

The latest roundup
of book reviews.

24 ACCU Members Zone
Membership news.

SUBMISSION DATES
C Vu 26.2: 1st April 2014
C Vu 26.3: 1st June 2014

Overload 121:1st May 2014
Overload 122:1st July 2014

FEATURES
3 Where Linq Contains a Defect

Glen Fury shares his investigation of a hidden defect.

7 Software Archaeology
Chris Oldwood digs up some ancient remains.

9 Wallowing in Filth
Pete Goodliffe sinks into some terrible code.

11 The Soundtrack to Code 2: Going Classical
Silas S. Brown gives us his taken on ‘Music for
Coding’.

12 Developer Freedom
Chris Oldwood muses on the liberties we should and
should not enjoy.

15 Staying in Touch: Performative Negotiation
Vsevolod Vlaskine joins the dots between three
practices to reduce technical cost.

17 From Raspberry Pi to the Cloud
Silas S. Brown shares his experiences with porting to
AppEngine and OpenShift.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Where Linq Contains a Defect
Glen Fury shares his investigation of a hidden defect.

t’s Christmas day. On Boxing Day, new software would be in control
of setting the sale prices for my employer’s online store. It was the first
real run of the application, the application had been in use for almost a

week, and was able to change the price of individual products. However,
I had never tried to update the prices of all ~3000 products at once. A
serious testing oversight.

I decided Christmas night, my belly full, my head spinning just right, I
should give it a test run. I was rostered on for support: if it did not work
they would call me anyway. I connected to the VPN and setup my machine
and simulated the price update for Boxing Day. The result: a
StackOverflowException, crashing the whole application. Merry
Christmas.

I found the code causing the problem (see Listing 1) when changing the
prices of all the products in our catalogue skus and sites contained
~3000 records. I did some quick tests with small alterations to the code. I
found the segment sku.Contains() && site.Contains() was
causing the problem. How or why such a function would cause a
StackOverflowException I had no idea. But with not much time

before Boxing Day, I tried something quickly and found a fix that worked
and deployed it (Listing 2). This is one of the few cases where I thought
it was better to ask forgiveness than permission.

The fix worked the application set the prices ready for Boxing Day.

Further investigations
January when our dev lead came back from his Christmas break I reported
the problem. He was incredulous, so I recreated the problem by turning
back the clock to Boxing Day and running the application. Thankfully it
did throw a StackOverflowException.

The source of the code was now looked into closely. I was the original
author, and can say that the code was written as an attempted optimisation:
to grab from the repository only the products required. On review we found
what I had written was inefficient. I had chosen to use arrays, this allowed
for duplicate string values to exist in the variables skus and sites. So
an adjustment was made we altered the code to use HashSets (Listing 3).
That way the code might achieve what it was designed to, and remove the
StackOverflowException.

This was successful , the code ran without crashing with a
StackOverflowException. Although the execution was much slower
than we expected, taking about a minute to run.

We theorised that it may have just masked the exception by reducing the
amount of stack it required. To test this hypothesis we doubled the

HashSet’s size (Listing 4).

The result of the testing was a
StackOverflowException.
So the HashSet did not fix the
problem. So we tried changing the
point of the execution to retrieve
t h e d a t a b y r e m ov i n g t he
.ToList() (see Listing 5).

This solution did not work either,
a s i t a l so t h r ew a
StackOverflowException.
At this point I began to speculate
on the value of reducing the set of
p r o du c t s p u l l e d f ro m t he
database. There were only ~3000
products anyway. In this instance,
a full site sale, nearly all the
products were updated. Why not
forgo the optimisation especially
as it seemed to expose a defect in
Linq, and Entity Framework 4.

At this point we started tracking
how long the function took to run

under different solutions. I also tried the code without the Where
function (Listing 6).

This worked. However, I wanted to try one more option (Listing
7) – Hot Fix with Hashsets.

This worked without throwing a StackOverflowException.
Under the instruction and with the help of the Dev Lead, we tested
the code solutions above in 32-bit and 64-bit builds, and with 3000,
and 6000 products so that we might understand the defect better.
The results are shown in Table 1.

 I

GLEN FURY
Glen’s dad taught him how to program for fun when he
was a teenager. He’s been programming professionally
since 2006 mostly in e-commerce, and for fun again since
mid 2013. He can be contacted at furg0998@gmail.com

string[] skus = skuSitePrices.Select(ssp => ssp.SKU.Identifier).ToArray();
string[] sites = skuSitePrices.Select(ssp2 => ssp2.SiteId.ShortName).ToArray();
IList<ProductSitePrice> productSitePrices =
unitOfWork.ProductSitePriceRepository.FindAll().Where(
psp => skus.Contains(psp.Product.SKU) &&
sites.Contains(psp.Site.SiteName)).ToList();
/*
The FindAll() returns a DbSet<ProductSitePrice> object.
The application uses EntityFramework4 The Where returns an IQueryable
(note the insertion of ToList())
*/

Li
st

in
g

1

string[] skus = skuSitePrices.Select(ssp => ssp.SKU.Identifier).ToArray();
string[] sites = skuSitePrices.Select(ssp2 => ssp2.SiteId.ShortName).ToArray();
IList<ProductSitePrice> productSitePrices =
unitOfWork.ProductSitePriceRepository.FindAll().ToList().Where(
psp => skus.Contains(psp.Product.SKU) &&
sites.Contains(psp.Site.SiteName)).ToList();
/*
(note the insertion of ToList())
*/

Li
st

in
g

2

ISet<string> skus = new HashSet<string>(skuSitePrices
.Select(ssp => ssp.SKU.Identifier);
ISet<string> sites = new HashSet<string>(skuSitePrices
.Select(ssp2 => ssp2.SiteId.ShortName));
IList<ProductSitePrice> productSitePrices =
unitOfWork.ProductSitePriceRepository.FindAll().Where(
psp => skus.Contains(psp.Product.SKU) &&
sites.Contains(psp.Site.SiteName)).ToList();

Li
st

in
g

3

MAR 2014 | | 3{cvu}

Experimenting
A large set or array run against a database using the Contains
method has an upper limit, and performance seemed sluggish. Why
did running the same Linq statement run so much quicker on a list?

I came up with the hypothesis, that the Array or Set was being used
with an Entity Framework dbset was unpacked by a recursive
function, and thus causing a StackOverflowException. What
else causes a StackOverflowException? So I set about
experimenting to see if I could prove my hypothesis.

Firstly I wanted to see if the issue was peculiar to the application, or
it could be reproduced with a basic example. So I started a new
console project, created a simple edmx and created a database, but left
the database empty. I thought perhaps an empty database might not
have the same problem, and that adding data to the database might
skew any performance results (Figure 1).

Then I went about trying to reproduce the original problem, and see if I
c o u l d f i n d a n a pp r ox i m a t e s w e e t s po t w he re t h e
StackOverflowException would occur.

I simply tried to reproduce the defect with the code in Listing 8.

After a couple of tests, where I changed the value of the ArraySize I
found the StackOverflowException happening occurred regularly at
12000, but not at 11500.

I t he n app l i e d my ho t f i x t o s ee i f i t p r even t e d t he
StackOverflowException, and it did. I had successfully replicated
the issue.

The Contains(t1Item.value) method when ran on a List object it
performed as expected, but when being run on a database set it did not.

I speculated that as the where statement must be translated into SQL at
some point when run against a database. So I needed to find out how it
was translated to SQL. I expected it would be translated into a statement
like

 SELECT * FROM table1
 WHERE value IN ('1', '2', '3', '4' … '5000');

as that is how I would write the SQL statement.

I looked at what the argument I was passing to the Where method: t1Item
=> searchList.Contains(t1Item.value) . I t i s a n
Expression<Func<table1,bool>> and the Body of the Expression is
a MethodCallExpression. The method is Contains, and the two
parameters are the t1Item.value and the other the members of the

ISet<string> skus = new HashSet<string>(skuSitePrices
.Select(ssp => ssp.SKU.Identifier);
 List<string> _skus = skus.ToList();
 foreach(string sku in _skus)
{
 skus.Add(sku + "_____");
}
ISet<string> sites = new HashSet<string>(skuSitePrices
.Select(ssp2 => ssp2.SiteId.ShortName));
 List<string> _sites = sites.ToList();
 foreach(string site in _sites)
{
 sites.Add(site + "_____");
}
IList<ProductSitePrice> productSitePrices =
unitOfWork.ProductSitePriceRepository.FindAll().Where(
psp => skus.Contains(psp.Product.SKU) &&
sites.Contains(psp.Site.SiteName)).ToList();

Listing 4

string[] skus = skuSitePrices.Select(ssp =>
ssp.SKU.Identifier).ToArray();
string[] sites = skuSitePrices.Select(ssp2 =>
ssp2.SiteId.ShortName).ToArray();
IQueryable<ProductSitePrice> productSitePrices =
unitOfWork.ProductSitePriceRepository.FindAll().Where(
psp => skus.Contains(psp.Product.SKU) &&
sites.Contains(psp.Site.SiteName));
 ...
 foreach(ProductSitePrice psp in productSitePrices) {
 ...
 /* update the prices */
 }

Listing 5

IList<ProductSitePrice> productSitePrices =
unitOfWork.ProductSitePriceRepository.FindAll()
.ToList();

Listing 6
Fi

gu
re

 1
4 | | MAR 2014{cvu}

Code Option 32-bit 3000 products 32-bit 6000 products 64-bit 3000 products 64-bit 6000 products

Listing 1: Original Failed
StackOverflow Exception

Failed
StackOverflow Exception

Failed
StackOverflow Exception

Failed
StackOverflow Exception

Listing 2: Hotfix Success in ~2,000ms Success in ~5,000ms Success in ~2,000ms Success in ~5,000ms
Listing 3: HashSets Success in ~60,000ms Success in ~220,000ms Success in ~65,000ms Failed

StackOverflow Exception
Listing 4: HashSets Doubled Success in ~230,000ms Failed

StackOverflow Exception
Failed
StackOverflow Exception

Failed
StackOverflow Exception

Listing 5: Late Execution Failed
StackOverflow Exception

Failed
StackOverflow Exception

Failed
StackOverflow Exception

Failed
StackOverflow Exception

Listing 6: No Filtering Success in ~2,900ms Success in ~13,000ms Success in ~2,800ms Success in ~8,800ms
Listing 7: Hotfix with Hashset Success in ~1,600ms Success in ~4,500ms Success in ~1,800ms Success in ~4,500ms

Table 1

public static Expression<Func<table1, bool>>
 GenerateContainsExpression(string[] array)
{
 ParameterExpression paramTable1 =
 Expression.Parameter(typeof(table1),"t1");
 MemberExpression memberExpression =
 LambdaExpression.PropertyOrField(paramTable1,
 "value");
 BinaryExpression mainExpression = null;
 for (int i = 0; i < array.Length; i++)
 {
 ConstantExpression constantExpression =
 Expression.Constant(array[i]);
 BinaryExpression expression =
 Expression.Equal(memberExpression,
 constantExpression);
 if (null == mainExpression)
 {
 mainExpression = expression;
 }
 else {
 mainExpression =
 Expression.OrElse(mainExpression,
 expression);
 }
 }
 return Expression.Lambda<Func<table1, bool>>
 (mainExpression, new ParameterExpression[]
 { paramTable1 });
}

Li
st

in
g

9

searchList array. This didn’t help me decipher what the SQL would look
like, as the MethodCallExpression still needed to be translated to SQL.

So I reduced the ArraySize to 10 and wrote a Linq to SQL statement,
and used the ToTraceString() method to find what SQL was
generated.

 string result = (from t1 in tc.table1
 where searchResults.Contains(t1.value) select t1)
 as ObjectQuery<table1>).ToTraceString();

The result was:

 SELECT
 [Extent1].[Id] AS [Id],
 [Extent1].[value] AS [value]
 FROM [table1] AS [Extent1]
 WHERE (N'0' = [Extent1].[value]) OR
 (N'1' = [Extent1].[value]) OR
 (N'2' = [Extent1].[value]) OR
 (N'3' = [Extent1].[value]) OR
 (N'4' = [Extent1].[value]) OR

 (N'5' = [Extent1].[value]) OR
 (N'6' = [Extent1].[value]) OR
 (N'7' = [Extent1].[value]) OR
 (N'8' = [Extent1].[value]) OR
 (N'9' = [Extent1].[value])

The Contains was transformed into a number of OR
statements, this supported part of my hypothesis, the
members of the array were being cycled through one by
one. However, it did not prove that there was a recursive
function responsible for the translation.

I thought that I should try to do the same, turn the
Contains into a number of OR statements, perhaps I could write a
function that did so without causing a StackOverflowException. So
I wrote the code in Listing 9 to receive my SearchList and return an
Expression of OR statements. I then changed my Where statement to
the following:

 Expression<Func<table1, bool>> filter =
 GenerateContainsExpression(searchList);
 List<table1> result =
 tc.table1.Where(filter).ToList();

Once I confirmed it worked on a small number of items I decided to run
it against the original to see which would out perform the other. The results
rounded to the nearest 50 milliseconds are shown in Table 2.

M y fu n c t i on w a s o u t pe r f o r m e d , i t c a u s e d a
StackOverflowException to occur when there was only 5500 items
in the list. Why? I looked at what I was generating. The expression, is in
fact an expression tree, with branches of OrElse Binary Expressions. The
StackOverflowException was not caused by a recursive function
generating the expression but rather reading the expression itself used too
much stack. If that was the case, why was my function not performing as
well? When I looked at the code, it became obvious. My expression tree
was very lopsided.

So I rewrote my function to create a less lopsided expression tree (see
Listing 10).

I tested this new function, and compared the results to the original. My
results were as in Table 3 and Figure 2.

So my new function performed as well as the original. I had found the cause
of the problem. A limitation of binary expressions.

This limitation does not seem so bad on its own. To me it makes sense,
who would under normal circumstances write an expression tree of that
size. But there is the problem. Using searchList.Contains, I never
expected it to be transformed into a huge expression tree that would be
unable to execute. After all it is a very simple function it takes very little
time to write, further if I were writing the output in SQL I would have used
an IN statement.

So there is a problem here allowing a Contains in the Where method
when it is not capable of handling arrays of reasonable size. Entity
framework by its nature converting expressions to SQL cannot handle any
type of expression. For example you can’t compare non entity objects, or
custom properties of your entities. If you do try this, Entity Framework will
throw a NotSupportedException.

P e r ha ps f o r a Contains i t s hou ld a l so t h row a
NotSupportedException, and leave it to the developer to find the best
way to generate the expression. It was only through writing a code to

Li
st

in
g

8 public static int ArraySize = 12000;
static void Main(string[] args)
{
 string[] searchList = new string[ArraySize];
 for (int i = 0; i < ArraySize; i++)
 {
 searchList[i] = i.ToString();
 }
 using (testContainer tc = new testContainer())
 {
 List<table1> result =
 tc.table1.Where(t1Item =>
 searchList.Contains(t1Item.value)).ToList();
 }
}

Li
st

in
g

7 ISet<string> skus = new HashSet<string>(skuSitePrices
.Select(ssp => ssp.SKU.Identifier);
ISet<string> sites = new HashSet<string>(skuSitePrices
.Select(ssp2 => ssp2.SiteId.ShortName));

IList<ProductSitePrice> productSitePrices =
unitOfWork.ProductSitePriceRepository.FindAll().ToList().Where(
psp => skus.Contains(psp.Product.SKU) &&
sites.Contains(psp.Site.SiteName)).ToList();
MAR 2014 | | 5{cvu}

6 | | MAR 2014{cvu}

Li
st

in
g

10

Items in searchList
Original

(milliseconds)
Generate Contains

Expression (milliseconds)

500 750 800
1000 1500 1500
1500 3650 2900
2000 5900 5550
2500 9150 9150
3000 13550 13150
3500 18550 17150
4000 24600 22000
4500 29350 28650
5000 31350 32700
5500 43600 StackOverflow
6000 49100
6500 59350
7000 65250
7500 77500
8000 85350
8500 101200
9000 113500
9500 128100

10000 145000
10500 158450
11000 169300
11500 178850
12000 StackOverflow

Ta
bl

e
2

public static Expression<Func<table1, bool
GenerateContainsExpression(string[] array)
{
 ParameterExpression paramTable1 =
 Expression.Parameter(typeof(table1),"t1");
 MemberExpression memberExpression =
 LambdaExpression.PropertyOrField(paramTable1,
 "value");
 List<BinaryExpression> expressions =
 new List<BinaryExpression>();
 for (int i = 0; i < array.Length; i++)
 {
 ConstantExpression constantExpression =
 Expression.Constant(array[i]);
 expressions.Add(Expression.Equal
 (memberExpression, constantExpression));
 }
 while (expressions.Count > 1)
 {
 List<BinaryExpression> newList =
 new List<BinaryExpression>();
 for (int i = 0; i < expressions.Count;
 i += 2)
 {
 if (i + 1 >= expressions.Count)
 {
 // must be an odd number of expressions
 newList.Add(expressions[i]);
 }
 else
 {
 newList.Add(Expression.OrElse
 (expressions[i], expressions[i + 1]));
 }
 }
 expressions = newList;
 }
 return Expression.Lambda<Func<table1,
 bool>>(expressions[0],
 new ParameterExpression[] { paramTable1 });
}

generate an expression of a number of ORs that I was able to see the
difficulty and problems with applying this to a large array.

The other solution would be to change how a Contains is translated into
SQL, if it was translated into an SQL IN I think would be able to
outperform the current implementation. I expect that too would have its
limitations.

A further solution would be to create a new type of BinaryExpression
that could take a list of binary exceptions and a comparison type, eg OR,
AND . This would allow for a much flatter expression tree and
StackOverflowExceptions would not be caused. 
Items in
searchList

Original (ms)
Generate
Contains

Expression (ms)

Generate Contains
Expression Improved

Tree (ms)

500 750 800 850
1000 1500 1500 1700
1500 3650 2900 3400
2000 5900 5550 6350
2500 9150 9150 9450
3000 13550 13150 14200
3500 18550 17150 18600
4000 24600 22000 23700
4500 29350 28650 28550
5000 31350 32700 33600
5500 43600 StackOverflow 43400
6000 49100 53500
6500 59350 62050
7000 65250 70150
7500 77500 82650
8000 85350 92400
8500 101200 103200
9000 113500 116200
9500 128100 126000

10000 145000 139750
10500 158450 153250
11000 169300 174000
11500 178850 188750
12000 StackOverflow StackOverflow

Table 3
Figure 2

In The Toolbox #7
Software Archaeology
Chris Oldwood digs up some ancient remains.

Don’t ever take a fence down
until you know why it was put up

~ Robert Frost

hanging software is hard. It’s especially hard when you’re new to
the team or codebase and don’t know the history of the people or the
application. Making any change is not just as simple as adding,

replacing or removing lines of code. There are also the higher-order aspects
to consider, such as whether it fits in stylistically, idiomatically and within
the existing design principles. In a really old codebase these can be
particularly hard to pin down as they will have
undoubtedly changed over time. For example, new code
written today under C++ 11 is going to be quite different
to code written years ago under C++ 98 and that will need
to be factored in when trying to understand what’s going
on.

Small-scale archaeology
Putting to one side the stylistic and idiomatic aspects
which may well be at the whim of the author, the design
can be a lot harder to understand. Many years ago I worked on an old C++
codebase for a big finance institution. My role was purely technical and I
was initially tasked with fixing various memory leaks and deadlocks
within its highly threaded services. Whilst tracking down one leak I came
across some code that looked something like this:

 ContextPtr getContext(long contextId)
 {
 static ContextPtr cachedContext;
 if (cachedContext.get() &&
 cachedContext->Id() == contextId)
 return cachedContext;
 cachedContext = Context::Load(contextId);
 new ContextPtr(cachedContext);
 return cachedContext;
 }

The spurious extra copy of the smart-pointer was downright weird. I could
assume that it was just a cut-and-paste error or dead code, but it seemed
too random for that, especially in such a short function. So I decided to
consult the version control system to see what it could tell me about its past
life.

This function appeared to have a somewhat chequered history. Although
it had now been stable for a couple of years its birth was a little more
tortuous. The author had originally started without the spurious smart-
pointer copy. They then started adding random try/catch blocks in different
places, presumably because the code was crashing under mysterious
circumstances. Finally the try/catch blocks were gone and there appeared
to be a couple of attempts to mess with the smart-pointer value and
reference count before settling on the final implementation. But what was
going on?

The missing piece of the puzzle is what the object being pointed to
contained – a COM object, and a remote one at that. Putting this knowledge
together with the static local variable, which we know will be destroyed
after main() exits, and it all starts to make sense. The author was having
lifetime issues because COM was uninitialised before the C++ based
context object was destroyed. This caused the DCOM remote proxy to
throw an exception during invocation of the destructor during process
shutdown. This explains why the try/catch blocks were presumably
having no effect – they were notionally in the wrong place.

Ultimately what the author really needed was a weak-pointer. The full-
blown smart-pointer based single item cache was keeping the object alive
far longer than necessary. The cached reference was a useful optimisation
but the lifetime was deterministically controlled elsewhere. Once I’d
worked all this out I switched from the home-brew smart-pointer type to
one in Boost and the original problem (the memory leak – a huge one) was
fixed.

All this was ‘derived’ from the version control history and the author
hadn’t written any check-in comments either which might have saved me

time. But there was also some other interesting metadata
about the check-ins that I found interesting too – each
commit appeared to be followed by a formal build (the file
with the build number changed) and was hours apart. This
suggested to me that the changes were never tested locally
first. After all, why bother to check-in the intermediate
steps if they didn’t work? This was years before Git was
fashionable and there were no automated tests in sight. It
appears as if the changes were tested by deploying into the
shared development environment and waiting to see what
happened.

When I came to test my own changes I discovered just how hard it was to
test the component in isolation. In particular the large, monolithic service
that formed the heart of the system was not amenable to localised testing
at all without some serious refactoring. I concluded that whilst the
developer was clearly keen to try and resolve the issue the environment
and development process did not seem to be supporting him in making that
happen easily.

Tribal knowledge
Sometimes we’re lucky and the person who wrote the code is still around
so we can try and shortcut some of the digging around. If they’re still
working on the project you have the opportunity to transfer some of the
more implicit design knowledge that seeps away over time. More recently
I came across a change to a very simple C# extension method I had written
for the String class. This was my original version:

 public static bool IsEmpty(this string value)
 {
 return (value.Length() == 0);
 }

Which had been changed to this:

 public static bool IsEmpty(this string value)
 {
 return String.IsNullOrEmpty(value);
 }

For those non-C# readers there is a subtle difference in behaviour that
happens when the value is a null reference. In my original implementation
a NullReferenceException will be thrown, whereas in the revised
version it will be silently ignored. Looking back in the source code repo I
studied the associated changes and realised that this change was made to
fix a problem with null string references coming in through the web API

 C

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80s writing assembler on 8-bit
micros; these days it’s C++ and C#. He also
commentates on the Godmanchester duck race.
Contact him at gort@cix.co.uk or@chrisoldwood

I discovered
just how hard it
was to test the
component in

isolation
MAR 2014 | | 7{cvu}

framework in certain scenarios. I proposed that the fix was in the wrong
place as it changed the semantics of the extension method [1]. After a brief
discussion we refactored the code, added a couple of unit tests to document
the extension method behaviour and got on with our lives. Sometimes it’s
easy to forget how even a simple, 1-line method can hide such detail.

Unearthing patterns
Having the author around doesn’t always help though. There are
programmers you’ll meet who are not quite so amenable to such
discussions and will instead get easily offended if they suspect you’re
questioning their judgment.

As you might deduce from the Robert Frost quote at the very beginning I
always approach any codebase with the assumption that the author is a
smarter programmer than me and knows more about the problem domain
too. At least, until I know for definite that isn’t the case. This means when
I see code that isn’t obviously simple [2] I err on the side of caution and
assume that I might be about to learn something new. This is almost always
true because even if I don’t learn something new about the language,
libraries or problem domain I will probably learn something about the
author or environment instead.

One time I came across the following declaration in a C++ codebase:

 std::vector<std::string*> hostnames;

My instinct clearly told me this was wrong as RAII almost always rules,
but being new to the project and having the author just feet away I politely
quizzed them on it. The response was a very confrontational “Are you
reviewing my code?” After trying my best to explain my good intentions
I escaped with the knowledge I sought – the code was wrong. More
importantly I came away knowing a lot more about the author’s character.

Once you see some code where a programmer has made what could be
considered ‘a fundamental mistake’, you immediately begin to question
where else they may have made it. The version control system can tell you
what other commits someone’s made and with a sprinkling of command-
line magic it’s often possible to see where they’ve been and what they’ve
touched. In this instance I restricted myself to just the most critical areas
of the code but it paid dividends as I chalked up a couple more memory
leaks.

Although somewhat jaded by this experience I decided it was still my duty
to point out to an ex-project member, who only worked down the hall, that
19 of the memory leaks I’d just unearthed were due to him forgetting to
mark the base class destructor virtual even though they were managed by
a smart-pointer. Fortunately he was far more grateful for the feedback.

Blame
One of the most useful tools in modern
source control systems is Blame.
Whilst its name might suggest it be used
for nefarious purposes, such as starting
a witch-hunt, it would be far better

thought of as ‘Excavate’. Starting with a revision it will show you who last
touched each line of code and what commit it came from. From there you
can trace back through the past changes looking at the evolution of the file.
Sadly the one thing it doesn’t show is where code has been deleted which
can be a useful lead some times.

Revision graph
The other key tool in the VCS arsenal is the revision graph. This tool shows
you the birds-eye view of a file’s history – what commits have taken place,
their check-in comments, what branches changes have been made on, how
and when they were merged and what labels or tags have been applied.

If you have a bug and you want to know what versions of your product the
bug appears in this is almost certainly your starting point.

TICOSA
I’ve mostly only been concerned with small-scale software archaeology
as it’s usually directly related to a change I’ve needed to make.
Occasionally I’ve done some larger scale spelunking, such as rating
contributors by their percentage of empty check-in comments, but nothing
much more than that.

In January of this year I attended The (First) International Conference on
Software Archaeology [3] at the Museum of London. There were a number
of other ACCU members present and we spent the day finding out a bit
more about how software archaeology might be used in other ways. Given
its infancy, the message was fairly clear that whilst analysing the history
of a codebase can be interesting, we’re still not sure exactly what the value
is. Nonetheless it was a useful day and hopefully in subsequent years we’ll
get to find out how it can be used more effectively. 

References
[1] http://chrisoldwood.blogspot.co.uk/2013/09/extension-methods-

should-behave-like.html
[2] http://en.wikipedia.org/wiki/Tony_Hoare#Quotations
[3] http://ticosa.org/

I always approach any codebase with the assumption
that the author is a smarter programmer than me and
knows more about the problem domain too
8 | | MAR 2014{cvu}

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

http://ticosa.org/
http://en.wikipedia.org/wiki/Tony_Hoare#Quotations
http://chrisoldwood.blogspot.co.uk/2013/09/extension-methods-should-behave-like.html
http://chrisoldwood.blogspot.co.uk/2013/09/extension-methods-should-behave-like.html

Becoming a Better Programmer # 85
Wallowing in Filth
Pete Goodliffe sinks into some terrible code.

As a dog returns to its own vomit,
so fools repeat their folly

Psalms 26:11

e’ve all encountered it: quicksand code. You wade into it
unawares, and pretty soon you get thank sinking feeling. The code
is dense, not malleable, and resists any effort made to move it.

The more effort you put in, the deeper you get sucked in. It’s the man-trap
of the digital age.

How does the effective programmer approach code that is, to be polite, not
so great? What are our strategies for coping with crap?

Don’t panic, don your sand-proof trousers, and we’ll wade in...

Smell the signs
Some code is great. Like fine art, or well-crafted poetry. It has discernible
structure, recognisable cadences, well-paced meter, a coherence and
beauty that make it enjoyable to read and a pleasure to work with.

But, sadly, that is not always the case.

Some code is messy and unstructured: a slalom of gotos that hide any
semblance of algorithm. Some is hard to read: with poor layout and shabby
naming. Some code is cursed with an unnecessarily rigid structure: nasty
coupling and poor cohesion. Some code has poor factoring: entwining UI
code with low-level logic. Some code is riddled with duplication: making
the project larger and more complex than it need be, whilst harbouring the
exact same bug many times over. Some code commits ‘OO abuse’:
inheriting for all the wrong reasons, tightly associating parts of code that
have no real need to be bound. Some code sits like a pernicious cuckoo in
the nest: C# written in the style of JavaScript.

Some code has even more insidious badness: brittle behaviour where a
change in one place causes a seemingly unconnected module to fail. The
very definition of code chaos theory. Some code suffers from poor
threading behaviour: employing inappropriate thread primitives or
exercising a total lack of understanding of the safe concurrent use of
resources. This problem can be very hard to spot, reproduce, and diagnose,
as it manifests so intermittently.

(I know I shouldn’t moan, but sometimes I swear that programmers
shouldn’t be allowed to type the word thread without first obtaining a
licence to wield such a dangerous weapon.)

Be prepared to encounter bad code. Fill your toolbox with sharp
tools to deal with it.

To work effectively with alien code, you need to able to quickly spot these
kinds of problem, and understand how to respond.

Wading into the cesspit
The first step is to take a realistic survey of the coding crime scene. You
arrive at the shores of new code. What are you wading into?

The code may have been given to you with a pre-attached stigma. No one
wants to touch it because they know it’s foul. Some quicksand code you
discover yourself when you feel yourself sinking.

It’s all too easy to pick up new code and dismiss it because it’s not written
in the style you’d prefer. Is it really dire work? Is it truly quicksand code,
or is it merely unfamiliar? Don’t make snap judgements about the code,
or the authors who produced it, until you’ve spent some time investigating.

Take care not to make this personal.

Understand that few people set out to write shoddy code. Some filthy code
was simply written by a less capable programmer. Or by a capable
programmer on a bad day. Once you learn a new technique or pick up a
team’s preferred idiom, code that seemed perfectly fine a month ago is an
embarrassing mess now and requires refactoring.

You can’t expect any code, even your own, to be perfect.

Silence the feeling of revulsion when you encounter ‘bad’ code.
Instead, look for ways to practically improve it.

The survey says...
We’ve already looked at techniques for navigating a new codebase in
‘Navigating a Route’ [1].

As you build a mental model of a new piece of code, you can begin to gauge
it’s quality using benchmarks like:

 Are the external APIs clean and sensible?

 Are the types used well-chosen, and well named?

 Is the code layout neat and consistent? (Whilst this is certainly not a
guarantee of underlying code quality, I do find that inconsistent,
messy, code tends also to be poorly structured and hard to work
with. Programmers who aim for high-quality malleable code also
tend to care about clean, clear presentation. But don’t base your
judgement on presentation alone.)

 Is the structure of co-operating objects simple and clear to see? Or
does control flow unpredictably around the codebase?

 Can you easily determine where to find the code that produces a
certain effect?

It can be hard to perform this initial survey. Maybe you don’t know the
technology involved, or the problem domain. You may not be familiar with
coding style.

Consider employing software archaeology in your survey: mine your
revision control system logs for hints about the quality. Determine: how
old is this code? How old is it in relation to the entire project? How many
people have worked on it over time? When was it last changed? Are any
recent contributors still working on the project; can you ask them for
information about the code? How many bugs have been found and fixed
in this area? Many bug fixes centred here indicates that the code is poor.

Working in the sandpit
You’ve identified quicksand code, and you are now on the alert. You need
a sound strategy to work with it.

What is the appropriate plan of attack?

 Should you repair the bad code?

 Should you perform the minimal adjustment necessary to solve your
current problem, and then run away?

 W

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe
MAR 2014 | | 9{cvu}

 Should you cut out the necrotic code and replace it with new, better
work?

Gaze into your crystal ball. Often the right answer will be informed by your
future plans. How long will you be working with this section of code?
Knowing that you will be pitching camp and working here for a while
influences the amount of investment you’ll put in. Don’t attempt a
sweeping re-write if you haven’t the time.

Also, consider how frequently this code has been modified up to now.
Financial advisors will tell you that “past performance is not an indicator
of future results”. But often it is. Invest your time wisely. This code might
be unpleasant, but if it has been working adequately for years without
tinkering, it is probably inappropriate to ‘tidy it up’ now, especially if
you’re unlikely to need to make many more changes in the future.

Pick your battles. Consider carefully whether you should invest
time and effort in ‘tidying up’ bad code. It may be pragmatic to
leave alone it right now.

If you determine that it is not appropriate to embark on a massive code re-
work right now, that doesn’t mean you are necessarily left to drift in a sea
of sewage. You can wrestle back some control of the code by cleaning
progressively...

Cleaning up messes
Whether you’re digging in for the long haul, or just making a simple fix-
and-run, heed Robert Martin’s advice and follow the ‘Boy Scout rule’:
“Always leave the camp ground cleaner than you found it.” It might not be
appropriate to make a sweeping improvement today, but that doesn’t mean
you can’t make the world a slightly less awful place.

Follow the Boy Scout Rule. Whenever you touch some code
leave it better than you found it.

This can be a simple change: address inconstant layout, correct a
misleading variable name, simplify a complex conditional clause, split a
long method into smaller, well-named sub-functions.

If you regularly visit a section of code, and each time leave it slightly better
than it was, then before long you’ll wind up with something that might be
classified as good.

Making adjustments
The single most important advice when working with messy code is this:

Make code changes slowly, and carefully. Make one change at
a time.

This is so important that I’d like you to stop, go back, and read it again.

There are many practical ways to follow this advice. Specifically:

 Do not change code layout whilst adjusting functionality. Tidy up
the layout, if you must. Then commit your code. Only then make
functional changes. (However, it’s preferable to preserve the
existing layout unless it’s so bad that it gets in the way.)

 Do everything you can to ensure that your ‘tidying’ preserves
existing behaviour. Review and inspect your changes. Get extra sets
of eyeballs on it. This is the prime directive of refactoring: the well-
known set of techniques for improving code structure. This goal
only be reached effectively if the code is wrapped in a sound set of
unit tests. It is likely that messy code will not have any tests in place;
so consider whether you should first write some tests to capture
important code behaviour.

 Adjust the APIs that wrap the code without directly modifying the
internal logic. Correct naming, parameter types and ordering;
generally introduce consistency. Perhaps introduce a new outer

interface; the interface you wish that that code had. Implement it in
terms of the existing API. Then at a later date you can re-work the
code behind that interface.

Have courage in your ability to change the code. You have a safety net:
source control. If you make a mistake, you can always go back in time and
try again. It’s probably not wasted effort, as you will have learnt about the
code and its adaptability in doing so.

Sometimes it is worth boldly ripping out code, in order to replace it. Badly
maintained code that has seen no tidying or refactoring can be too painful
and hard to correct piecemeal. There is an inherent danger in replacing
code wholesale, though: the unreadable mess of special cases might be like
that for a reason. Each bodge and code hack encodes an important piece
of functionality that has been uncovered through bitter experience. Ignore
these subtle behaviours at your peril.

An excellent book that deals with making appropriate changes in
quicksand code is Micheal Feather’s Working Effectively with Legacy
Code [2] In it, he describes sound techniques to introduce seams into the
code; places where you can introduce test points and most safely introduce
sanity.

Bad code? Bad programmers?
Yes, it’s frustrating to be slowed down by bad code. The effective
programmer does not only deal well with the bad code, but also with the
people that wrote it. It is not helpful to apportion blame for code problems.
People don’t tend to purposefully write drivel.

There is no need to apportion blame for ‘bad’ code.

Perhaps the original author didn’t understand the utility of code
refactoring, or see a way to express the logic neatly. It’s just as likely there
are other similar things you do not yet understand. Perhaps they felt under
pressure to work fast and had to cut corners (believing the lie that it helps
you get there faster; it rarely does).

But of course, you know better.

If you can: enjoy the chance to tidy. It can be very rewarding to bring
structure and sanity to a mess. Rather than see it as a tedious exercise, look
at it as a chance to introduce higher quality.

Treat it as a lesson. Learn. How will you avoid repeating these same coding
mistakes yourself?

There was a container class. It was central to our project. Internally, it
was foul. The API stank, too. The original coder had worked hard to
wreak code mischief. The bugs in it were hidden by the already
confusing behaviour. Indeed, the confusing behaviour was a bug
itself.

One of our programmers, a highly skilled developer, tried to refactor
and repair this container. He kept the external interface intact, and
improved many internal qualities: the correctness of the methods, the
buggy object lifetime behaviour, performance, and code elegance.

He took out nasty, ugly, simplistic, stupid code and replaced it with the
polar opposite. But in his effort to maintain the old API this new version
was internally far too contrived, more like a science project than useful
code. It was hard to work with. Although it succinctly expressed the old
(bizarre) behaviour, there was no room for extension.

We struggled to work with this new version, too. It had been a wasted
effort.

Later on, another developer simplified the way we used the container:
removing the weirder requirements, therefore simplifying the API. This
was a relatively simple adjustment to the project. Inside the container,
we removed swathes of code. The class was simpler, smaller, and
easier to verify.

Sometimes you have to think laterally to see the right improvement.

The curious case of the container code
10 | | MAR 2014{cvu}

The Soundtrack to Code 2: Going Classical
Silas S. Brown gives us his take on

‘Music for Coding’.

his is a response to Adam Tomhill’s article ‘The Soundtrack to Code’
in C Vu January 2014. My suggestions for moments when music is
required to aid concentration and/or reduce distractions will always

be classical music, but readers who are not experts in that field might have
difficulty choosing which pieces to try.

As a preliminary experiment to see if this can work for you, I highly
recommend downloading the Open Goldberg Variations from
www.opengoldbergvariations.org – this was a KickStarter-funded project
to produce a high-quality public-domain recording of Bach’s Goldberg
variations, played on the piano by German-Japanese pianist Kimiko
Ishizaka. This will give you about an hour and a half of gentle piano music
which sounds more ‘natural’ than any synthesizer and may well help you
concentrate. Try the Goldbergs – go on, try it (it won’t cost anything to
download) – if it doesn’t work for you then feel free to skip the rest of this
article, but give it a chance.

If you can’t get enough of Bach played that well on the piano, then after
the Goldbergs I suggest looking for a recording of the 48 Preludes and
Fugues, otherwise known as The Well-Tempered Clavier, for example the
one played by Daniel Barenboim. Warner Classics sells a 5 CD boxed set,
giving you nearly 5 hours of music (if you load them all onto the computer
you don’t have to change the CDs). It’s important to use a good recording
that brings out the feel of the music rather than just playing notes.

Also worth looking out for is Bach’s Brandenburg Concertos
(instrumental, 2 hours); get a good period-instruments recording if
possible. You might also want to try the nine Beethoven symphonies on
period instruments (Gardiner, or the Hanover Band); if the name
‘Beethoven’ makes you think of dreary modern performances by the likes
of von Karajan then you might be pleasantly surprised by the sound of the
‘period performance’ (historically-informed performance) movement.
Basically, as musical instruments have been developed over the years, the
hardware the music was originally written for had somewhat different

characteristics to what we have now, so to bring out its original beauty you
need to be aware of these differences and perhaps use a good emulation.
(Think of trying to play classic games on modern hardware that gets the
speed all wrong for example.)

Another ‘boxed set’ of symphonies you might like to try is Schubert’s (9
symphonies, 4.5 hours). You might be able to borrow this and others from
a public library before committing to buying it. (Some libraries let you
listen to music in the library on headphones without charge; take your
laptop and figure out the Wi-Fi.)

Other names to look out for: Sammartini (concerti and sonatas), Scarlatti,
Colpron, Pamela Thorby (a very good recorder player who digs up all kinds
of interesting early music), Vivaldi (and no, I don’t just mean the Four
Seasons: try his concertos), Telemann (many instrumental works),
Guerrieri (sonatas), and perhaps Heinichen. All of this is ‘early music’
originally written for the soundtracks of royal courts and such; if it was
good enough to accompany the writing of their master-plans or whatever,
then it might also do for your coding.

Note that I’m deliberately steering clear of the so-called ‘popular classics’,
because I’m assuming that most people have written those off as too
boring, or have heard them too often in shops, etc. There are many more
interesting and unusual instrumental works which can make good
‘thinking music’ and also enjoyable listening, so don’t write off ‘classical’
until you’ve tried a good variety of it. 

 T

Wallowing in Filth (continued)

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk
Check your attitude as you make improvements. You might think that you
know better than the original author. But do you always know better?

I’ve seen this story play out many times: a junior programmer ‘fixed’ a
more experienced programmer’s work, with the commit message
‘refactored the code to look neater’. The code indeed looked neater. But
he had removed important functionality. The original author later reverted
the change with the commit message: ‘refactored code back to working’. 

Questions
1. Why does code frequently get so messy?

2. How can we avoid this from happening in first place? Can we?

3. What are the advantages of making layout changes separately from
code changes?

4. How many times have you been confronted with distasteful code?
How often was this code really dire, rather than ‘not to your taste’?

References
[1] ‘Navigating a Route’ Pete Goodliffe. In: CVu Volume 24 Issue 6,

January 2013. ISSN: 1354-3164
[2] Working Effectively with Legacy Code. Michael Feathers. ISBN:

978-0131177055

Get the book!
Pete’s new book – Becoming a Better
Programmer – is now available as an early-
access edition.

You can get it at an introductory price at
 http://gum.co/becomingbetter
MAR 2014 | | 11{cvu}

http://gum.co/becomingbetter
www.opengoldbergvariations.org

Developer Freedom
Chris Oldwood muses on the liberties we should

and should not enjoy.

All employees are equal, but some
employees are more equal than others

~ George Orwell (mostly)

hen it comes to the subject of access to the Internet developers
are quite clearly far more equal than any other sort of employee
in the business. Or at least some think so, but are we?

Over the last decade I’ve found myself working at some big corporations
– the kind of places where IT is a part of the
business, but not the actual business itself (despite
what you might choose to believe about its
importance today). As a consequence there is
almost a Mexican standoff between the security
team, whose purpose is to keep the company safe,
and the developers/testers/support staff whose job
is to provide and maintain solutions to solve
business problems. To perform this function
effectively invariably requires accessing some
content and/or downloading additional tools that
the company does not already provide for. So
what’s the big deal?

Fear, uncertainty and doubt
The landscape has changed dramatically over the last 20 years where
malicious content has evolved from being the result of misguided
individuals with something to prove, to being a business – if you consider
organised crime a business that is. At least, that’s if you believe what the
security industry tells us. Throw in the recent revelations about
government spying and I don’t think it’s hard to see why the paranoia levels
in the security departments of these big corporations are at Spinal Tap [1]
levels.

Take my own personal web site as an example of where the level of
corporate trust is almost certainly very low. I have always made the source
code available alongside every tool I’ve ever published as a courtesy to
anyone who might be interested. But let’s face it, how many developers
download the source code, sift through it to make sure there aren’t any
exploits, then build it and finally see if it’s going to be useful? Virtually
none, I’d wager. In fact I’d question whether the licence agreement even
gets an airing.

No, what we do is see if the web site looks legitimate, i.e. it’s not just a
random IP address for an FTP site somewhere on the planet, and if we think
it looks trustworthy we’ll go ahead and try it. In the case of the really
popular sites, like NuGet, I bet we don’t even give security a second
thought; after all, if big companies like Microsoft are posting content on
there it has to be totally legit, right? From a security team’s perspective,
seeing how some of us behave, I’d suggest that free, 3rd Party components
and frameworks are like dancing pigs [2] for developers.

OK, I get that executable content can be really dangerous in the same way
that granting my normal account admin rights on the production system is

dangerous; I want to be protected from my own stupidity. What I definitely
don’t get though is the apparent danger caused by non-executable content,
like blogs. Are ‘The Powers That Be’ afraid we’ll somehow become
subverted by poisonous articles that will generate an uprising to overthrow
the management? Or are they just afraid we’ll waste time by looking at
the football scores which will undoubtedly lead to even more wasted time
as we argue over the relative merits of a 4-4-2 formation? If the worry is

that we might try and sell the source code for
profit, then I think they have an over-inflated
notion of ‘quality’ as plenty of the enterprise code
I’ve seen would be worth less than the USB stick
used to traffic it!

Talking of admin rights, why is so hard to obtain
those on my local machine? Luckily plenty of
software copes these days without needing local
admin rights. In fact I’m writing this on Word
2002 using an LUA-style [3] account under
Windows XP. Even modern versions of Visual
Studio play nicely, but there are still times when
elevation is required by my job – unless testing,

debugging and deployment has been removed from my job description.
Once again, what are they afraid of? Surely the worst damage I can really
do is screw up my own machine? Or perhaps they’re afraid I’ll install
DOOM and flood the network with IPX/SPX traffic? Is it my problem the
company can’t partition its network effectively to isolate critical services
from those under test? Installing DOOM is not an accident, but designing
and building a service where it’s all too easy to attach the development and
production instances together by accident is equally negligent.

Enterprise developers
The only other answer I can come up with is that I’m ‘the wrong sort of
developer’. Is the vast majority of software development in the enterprise
actually the writing of macros for Excel and doing customisation of 3rd
party products? If the development of custom services (native or managed)
is in the minority I can see how we ‘builders’ might appear to be so overly
demanding compared to the ‘tweakers’. Perhaps there is an assumption too
that the modern technique of unit testing helps us to eliminate all those
nasty external dependencies and so reduces the need to do any sort of
system level testing on our own machines, right? In fact isn’t that why they
have a QA department?

So far in this article I’ve pretty much failed to be even vaguely objective,
and that really was my goal when writing it. We all know what the status
quo is; the question is how to overcome it. What can we do to try and
convince those in control that to do our jobs effectively we need the reins
to be loosened so that we can access more of the internet than our peers?
Whilst unfettered internet access for all is possibly the desired end state,
with a focus on educating employees to act responsibly, I’m not convinced
that’s a realistic expectation for an enterprise in the short term to medium
term.

Static content
When it comes to non-executable content I don’t believe we need to have
any more rights than someone in, say, the Accounts or Marketing
department. In a large organisation with open-plan offices it should be as
culturally unacceptable to view inappropriate content as it would be to

 W

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80s writing assembler on 8-bit
micros; these days it’s C++ and C#. He also
commentates on the Godmanchester duck race.
Contact him at gort@cix.co.uk or@chrisoldwood

malicious content has
evolved from being the

result of misguided
individuals with

something to prove, to
being a business
12 | | MAR 2014{cvu}

stick Page 3 pin-ups around your desk. In an agile working environment
the demands of constant communication make it virtually impossible to
do anything other than your job as you’ll be collaborating regularly. And
that’s before you take into account the effects of pair programming for
keeping you honest.

What I suspect the non-developer employees don’t realise is quite how
much we rely on the internet to do our job. Whilst there are the obvious

vendor support sites for the core products we use, there are also the big
self-help sites like Stack Overflow. But even allowing access to these is
only part of the equation because often the simple answer is just not enough
and the salient details are in some blog post that is then linked to. Like it
or not blogs are the modern knowledge base for programmers so
categorising them as ‘personal pages’ along with Twitter and Facebook is
to completely miss the point. When your job is also your hobby, which it
is for many in our profession, then the meaning of ‘personal’ no longer
distinguishes it from ‘professional’.

When they introduced a draconian content filter at a major financial
institution I had recently started at, I decided to seek out the team
responsible for the change and try to describe how much pain they were
causing and to see if they couldn’t loosen it somewhat. After a few days
of quizzing everyone I knew I managed to track down a chap in the security
department and met with him to put forward my case. After showing some
examples of blogs that were clearly relevant to ‘the business of
programming’ he accepted that the filter was too coarse. However he
played the ‘but it’s group policy’ card to explain why content categorised
by the 3rd party content filter as ‘social’ was forbidden. Exceptions, he
said, could be made, but he also intimated that the process for getting
content checked and accepted was not a priority.

Later, back at my desk I noticed that any content could also be given a
secondary category. Knowing that the primary category of ‘Computers/
Internet’ was allowed I went back to the security team with a proposal. If
I could convince the 3rd party content filter vendor to re-categorise
blocked blog content from simply ‘personal pages’ to the more specific
‘personal pages and computers/internet’ would they allow it? They said
‘yes’ and added that re-categorisation by the vendor was much quicker
than their process.

OK, so this is far from the perfect outcome, but it did feel like I had at least
managed to make some progress as I opened access to a number of popular
blogs. More importantly I had found out who to contact and got to discuss
the issue with them. In the end I decided the only way to instigate any
further change would be to show how an outage was a direct result of an
inability to do my job properly so that there was a monetary value to the
loss. Unsurprisingly the right opportunity never arose because I just
needed to get on with my job and I’d got used to using my phone to view
blocked content instead. I briefly looked into trying to claim my phone bill
back as an expense, but that just created far more pain for me (being
a contractor) than for them due to the ridiculous paperwork involved.

Executable content
Access to static information is only one cornerstone of our jobs;
another is tools. This includes both entire programs, such as the classic
UNIX command line utilities, and libraries which we consume
directly within our own applications. Whilst it might be an interesting
personal exercise to write an XML or JSON parser, that’s not really the
best way for us to be spending our customer’s money. Component-level
reuse is mandatory if we are to create our own applications as efficiently
as possible, unless there is an especially good reason to build them
ourselves (e.g. legal). The same goes for tools – we shouldn’t be writing
our own compiler or web browser either.

This rather thorny issue is probably where a large part of the problem lies.
Executable content is mostly opaque, except for scripts or where you’re
building it from source code, and that means it’s hard to trust by default.
Anyone who has ever been involved in a virus clean-up operation knows
how time-consuming it can be. Most organisations now run virus scanners
by default and although they do interfere with compilation and
development duties, the impact is minimal unless it’s set to scan everything

(which sadly does happen). One option to reduce their impact is
to get a company-wide policy agreeing that certain folders (e.g.
C:\Work) or certain processes (e.g. DEVENV.EXE) are excluded.

Aside from a virus attack, allowing developers and support staff
to being able to run arbitrary programs, especially ones they don’t
truly understand, also comes with a risk of consuming other
resources, such as network bandwidth. One morning I arrived at

work faced with investigating why our clients couldn’t access our services.
It turned out we’d used up our entire month’s bandwidth allowance
overnight. This it transpired was down to someone not understanding how
BitTorrent works. Aside from the direct financial cost of paying for more
bandwidth, there is an indirect cost too in a loss of confidence by their
clients.

There is also the subject of licence agreements. Most blog posts don’t come
with a multi-page licence agreement for you to consume before reading
on – programs and libraries do, however. Ensuring that your staff are only
using correctly licensed software is hard. Apart from the obvious common
collections, like the UNIX toolset, there are many smaller, more
specialised tools that we need only temporarily to solve an immediate
problem. However we might not even know if it’s the right tool for the job
without first trying it out – the classic problem of chickens and eggs. If
choice is going to be limited, then there must also be an understanding that
we’ll have to resort to using the wrong tool for the job and that comes with
a price.

The ironic thing is one of the reasons we choose to use third party tools
and libraries in the first place is because we know writing security
conscious stuff is hard and most of us are not qualified to do that reliably
ourselves. By increasing security around their employees they have
inadvertently reduced their ability to produce secure applications.

Black-listing dangerous content is never going to workable, so the only
recourse will be white-listing. The question is whether it’s possible to put
together a white-list with enough low-risk software that would strike a
balance between providing enough of the most common tools we need,
without leaving anything obvious out. Whilst the perfect tool for a one-off
problem might be a ground-breaking new programming language, I’d
wager the problem is also solvable, albeit with a little more effort, in one
of the more common, general-purpose languages such as C++ or Python.
Specialised tools definitely have their place, but they also have a cost, and
getting access to them is just one.

Local admin rights
Disallowing local admin rights on a machine for a normal user is a good
defence-in-depth measure; it helps the user to protect themselves from
their own mistakes. But as we’ve just established, developers need these
same rights because they often have to evaluate tools. If they’re expected

to handle deployment or do some form of local end-to-end testing they may
need to install, configure and debug their applications whilst running as
services. The alternative is essentially remote debugging, which is a
painful experience at the best of times. It also takes a test environment out
of action and creates a single point of contention which is the whole reason
we have our own machines in the first place.

the demands of constant communication
make it virtually impossible to do
anything other than your job

we know writing security conscious
stuff is hard and most of us are not

qualified to do that reliably ourselves
MAR 2014 | | 13{cvu}

Once again the problem is no doubt one of trust. The theory must be that
if you allow someone the right to install software, any software, they will
clearly use it to abuse their position. Whilst
we’ve seen that it’s possible to create bigger
problems by being granted such powers, this kind
of problem only goes to highlight a lack of
pa r t i t i on ing w i th in t he o rga n i s a t i on s
infrastructure. Production services must be
isolated from development services and there
should be some kind of airlock required to bridge
them; in fact this problem is probably one of the
best adverts for cloud-based computing.

Ultimately though, if you can’t trust your
developers and support staff to be given admin
rights to their own machines how on earth are you
going to trust them with the keys to crown
jewels? I’ve t r ied to have a grown-up,
responsible conversation in the past to help
establish trust by promoting a policy where my
day-to-day account should not also be used for
support. I was told that, whilst it sounded like a good idea in theory, they
didn’t have enough licences for their 3rd party account management tool
to allow it. I then suggested that the cost of accidental failure would
probably dwarf that, but my comment was not appreciated.

If I really had to give up this right my (Windows) development machine
would need to come pre-configured with a bare minimum of: Visual
Studio, the VCS client, a decent Notepad replacement and Gnu on
Windows (or equivalent). Of course I’d be the first one out the door the
moment the contract came up for renewal.

Who’s our champion?
They say every problem in Computer Science can be solved using an extra
level of indirection, can that work here? One option would be to stop doing
in-house development altogether and just outsource it all. That way we’d
be working for a company whose bread-and-butter is IT and so they stand
a better chance of understanding our needs. Sadly the rise of Agile means
that close collaboration with our customer is called for and that puts us
straight back into the client’s offices again, but this time with even less
influence.

The other candidate for overseeing our well being in a big corporation is
the Enterprise Architecture team. These people are allegedly the gate
keepers of the company’s IT strategy. Their role, as I’ve always understood
it, is to look after the big picture and I can’t think of a bigger IT picture
than providing the basic tools that every architect, developer, tester and
administrator needs to do their job. Sadly it’s an exclusive club concerned
only with ‘design’; what programmers apparently do is merely ‘an
implementation detail’. Where is the equivalent department for us? There
is no ‘Enterprise Implementation’ team that I’ve heard of.

The closet thing I have ever seen to something like this was called The
Technology Council. Their role was to try and maintain a level of
consistency across the various tool chains that the in-house projects needed
so that the skill sets of both its developers and support staff were more
portable across its applications. It also tackled the licensing issue and
potential impedance mismatch problems between applications and
operations. However, it didn’t seem to include internet access as one of its
mandates.

The only other approach I’ve thought of would be to take a leaf out of the
eXtreme Programming manual and get someone from the security team to
sit with us in a pair programming kind of way. Then they might at least
see what we face and the compromises we have to make.

Whatever solutions we come up with starts with us finding the right person
to talk to and that’s often the first hurdle which we stumble on straight
away. Blocked content is usually presented in a ‘big brother’ fashion with
stern words to make you feel intimated. Nowhere on the page does it give
you details of the person or team you should consult if you feel access to

the content would be beneficial to getting your job done and is therefore
in fact in the businesses own interest in granting you permission.

Summary
As a freelance programmer I live and work at the
bottom of the corporate food chain. As such I
know I can’t begin to imagine what it must be like
to try and manage even a small company, let
alone a large corporation with thousands of
workers, each with different roles and abilities. I
know it’s not personal and that I’m only being
tarred with the same brush as the rest of the
workers because i t ’s easier to create a
homogeneous environment.

But surely there must be a way forward; a way
for me to do my job without even having to
contemplate doing things that either put me out
of pocket, risk violating the terms of my contract
or just make me look incompetent because

everything takes longer than it should. 

References
[1] http://en.wikipedia.org/wiki/Up_to_eleven
[2] http://en.wikipedia.org/wiki/Dancing_pigs
[3] http://en.wikipedia.org/wiki/Principle_of_least_privilege

if you can’t trust your
developers and support
staff to be given admin

rights to their own
machines how on earth

are you going to trust
them with the keys to

crown jewels
14 | | MAR 2014{cvu}

http://en.wikipedia.org/wiki/Up_to_eleven
http://en.wikipedia.org/wiki/Dancing_pigs
http://en.wikipedia.org/wiki/Principle_of_least_privilege

Staying in Touch: Performative Negotiation
Vsevolod Vlaskine joins the dots between

three practices to reduce technical cost.

Three expensive things
oupling, staying out of touch, and speculation, none of them being
intrinsically evil (e.g, a quick concept-proof prototype may be highly
coupled), all of them have a very high price tag. However, since their

price is the time wasted in the (near) future, just like with credit cards, many
of us tend to turn a blind eye to the inevitable pain of payback.

Coupling: rule of the second use case

It is one of the most expensive things in software development.

Writing decoupled – i.e. having no unnecessary dependencies – code does
not take much longer, but it requires the additional effort of the constant
concentration not only on the problem domain, but on the semantic quality
of one’s libraries or applications.

Since in its early days, the success of a project often is measured in terms
of speedy ‘modelling’ of the problem domain rather than sound codebase,
the engineers tend to go slack on the latter.

However, the coupled code scales very poorly: the initially upbeat speed
of development inevitably gets reduced exponentially almost to a
standstill: the coupled code allows less and less change and natural growth,
but only hacks; it contains more and more murky corners; the team gets
stuck in permanent fire-fighting and reverse engineering of each other’s
code. Then the management intervenes with measures rarely targeting the
right problem, things somewhat improve, and the project keeps limping
from crisis to crisis.

A trivial, but common example: protocol packet parsing gets coupled with
the transport protocol, for example in a single function. Both may have
bugs. In case of a failure, we cannot tell straight away what caused the bug:
parsing or packet acquisition. To get a rough gauge: if there are 3 bugs in
the parsing and 5 in the transport, the bugs will interfere with each other
and thus the number of failures will multiply, as will the effort of their
localization. Due to this multiplication effect, the complexity of a system
will grow exponentially, as well as the maintenance time, unless the system
is designed in a decoupled way where each element can be tested,
debugged, and refactored independently. The price of coupling (e.g. in
terms of effort) is exponential.

Thus, relentless decoupling. The engineers often stop at the point, when
the components are ‘simple enough’, rather than going for the rigorous
quest for the minimum semantically cohesive vocabulary orthogonal in
itself and with other problem domains.

Any amount of coupling, even in the obvious things, introduces a
multiplicative component in the price tag of a class or utility. Thus, points
of coupling piling on top of each other add an exponential component to
the price tag of the whole system.

A while ago, I wrote a library, in which one class had a boolean member.
True was the natural default value for it, but I set it to false by default,
since it was more convenient for the system I was working on. The library
was a success and found a broad usage across a number of projects.
However, as its usage spread it soon exposed the annoying dent: most of
the time, the user had to construct an instance of the class and then set that
member to true by hand. If she forgot to do that, it would produce strange
behaviour, and every time it would take fifteen minutes to realise what was
going on. I coupled two design considerations, dozens of applications used
the class, thus changing the default to true potentially could break lots
of things, and we had to live with the inconvenience.

The most dramatic decoupling of the code happens with the second use
case. The second use case introduces new force, semantic tension in the
class usage, which most of the time calls for more decoupling in it.

Fitting the code to a second use case is different from generalization.
Generalization may follow from the second use case, but it is not the same.
Generalization is finding abstract features that are common: say,
generalizing a collection of countable objects as a templated vector. The
second use case emphasizes not what is in common, but what is different.

As a simple example, assume, we have a map of city roads, which we load
from a file and then perform some search on it. Should our roadmap class
load from file on construction? Or have a method load()? If we have a
second use case where the roadmap is a result of cutting a map region, i.e.
loading does not semantically belong to it, which suggests that for a better
decoupling load() perhaps should be a standalone deserialization
function.

In the absence of anything else, the testing pretty much becomes such a
second use case, since the automated test suite imposes quite a different
usage onto the software artefact under test: for the practical usage of the
class the most mainstream scenarios are most important, whereas the test
with a good coverage focuses much more on marginal cases. Testing also
forces us to decouple the cumbersome construction of a class from its use,
avoiding involved mocking, etc: the class or library should offer itself for
testing. Whenever it is hard to tell from the test code what is being tested,
or the test does not demonstrate artefact usage, or mocking in it is not
brought to the minimum, it indicates lack of design in the artefact and
introduces coupling between the artefact and its test. Whenever an
engineer, if asked why his code is not well-tested, complains that ‘that
functionality is inherently hard to test’, you almost certainly will find a lot
of coupling in his code.

The second use makes the well-decoupled code shine. But when the second
use is resolved by even more coupling, it locks the coupled code: once two
semantically different usages pile on top of it, it is much more difficult to
refactor.

Staying out of touch

Efficient communication is one of the main premises in agile – and one of
the most violated ones. Whenever there is a lack of direct communication
between stakeholders – no direct touch, the engineer most certainly will
make wrong design and coding decisions, since he is forced to do too much
too early, assume, guess, and pre-empt, rather than wait for the right
information. There is nothing terribly bad about it, it just is very expensive:
any wrong decision based on lack of information means branching in the
development tree. Any branching introduces exponential component into
the development time. This puts a quantitative estimate on the agile
communication tenet: whenever it is broken, the price rockets
exponentially.

Staying out of touch has been plaguing the absolute majority of the projects
I have seen or heard of: the project leader would not have time to
communicate with his team, the team would not be in contact with the

 C

VSEVOLOD VLASKINE
Vsevolod Vlaskine has over 15 years of programming
experience. Currently, he leads a software team at the
Australian Centre for Field Robotics, University of Sydney.
He can be contacted at vsevolod.vlaskine@gmail.com
MAR 2014 | | 15{cvu}

clients, the engineers would have no faintest idea about each other’s work,
etc.

‘Staying in touch’ expresses an immediate connection when someone
keeps a tactile contact with something else of different nature. It is not
meddling or intrusion, but a contact by touch only – meaning that there
should not be any separating distance either. Such a notion of touch is not
fuzzy or subjective. It has to be stringent to work.

For example, in physics it is causal relations. The things that don’t produce
any effects are out of touch with our world. In mathematics it is exactness.
The mathematics is resting not so much on its philosophical foundations
that always have been disputed and notoriously wobbly (e.g. due the
existential status of mathematical objects or their truth value). The
exactitude of mathematical touch is not about the truth of its foundations,
but about having no gaps in each step of the proof. For arts and crafts the
method of refined touch is quite literal (see e.g. [1]). The famous saying
of William Morris, “You can’t have art without resistance in the material”
means that craft exists only at the point touch.

This might be another reason why writing software is so often compared
to arts, craft, which, I think, is not a romantic metaphor, but a reference to
a method. As for the commonality between software and mathematics, it
lies to a large extent in the rigour of leaving no gaps – but not in the same
way. I will talk about the software way below.

Speculation is cheap

Not at all, since it is a special case of staying out of touch – but one that
seems to be abused most often.

A typical situation: a design discussion that drags forever because of all
the ‘maybe’ and ‘should’. Each ‘maybe’ or ‘if’ is a point of branching in
the discussion introducing an exponential component into the time spent.
Speculative reasoning may look like a cheap way of logically exploring
all the possibilities before doing actual work, but when the reasoning tries
to reach too far, the branching discussions start seriously eating into the
development time.

In the same manner, sometimes during the planning people suggest, say:
let us try those three libraries and then choose, after all it takes just two
days for each. Trying this and that: sometimes it has to be done, but in
general, when you decide to try several cheap things, it means that your
development tree forks, introducing an exponential component into the
development time.

Discussions consume expensive resources. 15 minutes of 4 engineers
talking equals to 1 man-hour that could have been spent on writing code.
Rather than saying discussions are useless, I simply say: they are too
expensive to be wasted.

The other common part of speculative meetings is pursuing social or
political purposes, or asserting someone’s ego. I feel it is extremely
damaging for the software process, but maybe those things are important
for social bonding, establishing common values, or selling the ideas. The
analysis of these aspects requires a different method and I would not go
there. In my experience, it is important to spot and separate them from the
technical purpose-driven conversations.

‘Technical’ not necessarily means ‘design’. It can be about planning,
setting up collaborative environment, a strategy of interviewing job
candidates – anything with a clear outcome or problem to solve. And if
things are fuzzy, then we need to make an effort to distinguish between
two sources of vagueness: lack of decisive facts to inform the discussion
on one hand, and ‘politics’ on the other.

Mostly, we cannot obtain the missing decisive facts just by talking, but
only by making pragmatic steps of doing something. After a couple of
‘maybe’ or ‘if’, it makes sense to pause and instead figure out what would
reduce uncertainty before getting back to the discussion: instead of
speculating on both possible outcomes, find what action would rule out one
of the branches. E.g. we could try to build a concept-proof prototype, run
a decisive test, contact the stakeholder who knows, etc.

Moreover, although it may sound counterintuitive, but even if people argue
about a specific design decision, as healthy a discussion as it may seem,
in all my experience the best course of action is to stop the dispute, write
down the assumptions of both parties, and come up with an experiment or
proof of concept that would resolve the argument. This is similar to the
validated learning in Eric Ries’ Lean Startup [2]. Most of the time, it is
not about one’s logical argumentation to convince, but about forces to
balance (as in pattern languages): unlike the logical arguments that need
to be refuted, the forces do not need to be cancelled, but just balanced.
Therefore, a good decisive experiment not so much negates one argument
and validates the other, but rather prototypes a design balancing the forces.
(In such a game of proofs, it is easy to get carried away, though. Therefore,
at any moment I keep asking: ‘What is the capability we are trying to
achieve?’)

As for the political part, my pragmatic step is branching it into another
meeting, whenever possible. For example, it is common during a design
talk that people dig their heels on a general topic like language choice,
parallelism, software process, etc. As fun as it may be, it is rarely
productive. If my position permits, I always suggest as early as I can: ‘Yes,
it is a big important thing, which deserves a separate conversation.’ I urge
the most vehement party to later choose time, agenda, and invite everyone.
Interestingly, in my experience, those follow-up meetings never happen.

Performative negotiation
Whenever I spot coupling, staying out of touch, or speculation, it induces
in me the gut-wrenching feeling probably similar to the one in a computer
scientist, when he is told to quickly offer a practical solution to an NP-
complete problem, because this is what they are: exponential, stressful, and
intractable – in the case of software process, for no good reason most of
the time.

Semantic coupling commonly happens, when an engineer works in solitary
long enough. It is not about time: once he stops articulating what he is
doing he has been alone long enough. The quiet concentration time is
central to our profession, but it only exacerbates the peril of the over-fitting
of the code to a specific use case, which is almost a definition of coupling.
To get a second use case or second pair of eyes the programmer has to stop
doing and talk instead. Frequent and structured code reviews for one are
not so much for catching bugs, but for fixing the expressive aspect of
software, making it more meaningful, i.e. usable and intuitive in more
contexts. Thus, stop doing and talk.

On the other, a purposeful software discussion should transform a set of
practical inputs into a list of concrete actions, which would produce
decisive results and pose problems for the next conversation. Thus, stop
talking and do.

Brought to the extreme, any action is accompanied with a talk, or rather
expressed in it. I call this style of work performative negotiation: any
discussion or negotiation is about the meaning of a concrete action in a
given context. We articulate any action as we perform it.

The pair programming in XP is exactly an instance of such an extreme.
The Scrum stand-up meetings are another example: the talk articulates the
progress between yesterday’s and today’s action.

In other engineering disciplines, they speak about the construction of a
bridge or an engine. In software engineering, the communication is an
immediate extension of the code. The programming artefacts comprising
our vocabularies: libraries, databases, patterns, etc. In a design discussion,
we map those vocabularies into the user stories, which become the
expressive part of the next step of implementation. The two sides of
performative negotiation correspond, or rather are extension of, the two
sides the code [3].

Performative negotiation in software engineering is synonymous to
staying in touch. The touch between two actions or pragmatic steps is
articulated in an expressive vocabulary (in Brandom’s words “what needs
to be said to be able to do something” [4]); the communication is structured
by removing the forking ‘if’ or fuzzy ‘maybe’ by a decisive practical step:
‘what needs to be done to be able to say something’. [ibid.]
16 | | MAR 2014{cvu}

Staying in touch. Performative negotiation (continued)

The common critique of performativity is that it takes the human part out
of communication. It requires “normalized and governable individuals” [5]
for the march of performativity [6], so that they ‘perform’, i.e. produce
things, relationships, or qualities valued and desired in a given company,
group, or society. Anything beyond that is worthless, since it simply cannot
be valued or expressed in the language used by the group (akin to Lyotard’s
Differend [7]). Therefore, social and technological performativity has been
criticized as dehumanizing and oppressive.

However, the texts that brought the concept of performativity to
prominence, like Lyotard’s Postmodern Condition [8], seem to mix it with
plain productivity, whereas the latter really is just a consequence of the
former.

In the context of software development, one of the main forces is the
tension between development discipline and guaranteed achievement of
the goals on one hand and having independently thinking, motivated, and
diverse talents in the team, on the other.

Therefore, principle of performative negotiation does not simply focus on
delivering desired products or producing value. One of its main
applications is exactly producing new vocabularies, and planes of
meaning, if something cannot be expressed in the existing conceptual
framework. That belongs to the negotiative part of it. A new library may
open a new dimension or meaning space for more articulate applications
that can be combined and used in a different way; or a new way of
communication between team members may make their work and life
experience more wholesome.

The discovering or creating of new dimensions and articulating new
meanings is the true sense of production and putting things at work, the

pride of the software craftsman. Things are put at work not by action alone
(an ugly coupled library overfit to only one specific job usually does not
take us far) and not by expression alone (a proclaimed company policy or
a design diagram are rather ideological and void of content). At the point
when action and expression become the one, a new meaning starts emitting
and new things happening. In this sense, performative negotiation always
is transformative and metaphorical, since it makes us take a leap from one
vocabulary or language to another. That’s why writing software is often
compared with writing poetry [9]: the main vehicle of poetry is metaphor
and ‘poiesis’ means ‘making’, ‘creating’, ‘bringing forth’, ‘an action that
transforms’. 

References
[1] Yanagi Soetsu, The Unknown Craftsman.
[2] E. Ries, The Lean Startup.
[3] V. Vlaskine, ‘Two Sides of the Code’ CVu, vol.25, issue 4,

September 2013
[4] R. Brandom, Between Saying and Doing: Towards an Analytic

Pragmatism.
[5] M.Foucault, Discipline and punish.
[6] James D. Marshall, ‘Performativity: Lyotard and Foucault Through

Searle and Austin’ Studies in Philosophy and Education, 1999,
Volume 18, Issue 5, pp 309–317

[7] J-F.Lyotard, The Differend: Phrases in Dispute.
[8] J-F.Lyotard, The Postmodern Condition: a Report on Knowledge.
[9] ‘Software development as community poetry writing’

http://alistair.cockburn.us/
Software+development+as+community+poetry+writing
From Raspberry Pi to the Cloud
Silas S. Brown shares his experiences with

porting to AppEngine and OpenShift.

n 2012, ACCU’s Overload team was kind enough to edit and publish
my article on web annotation [1], which described a server I was
running to automatically annotate some Chinese online reference

material. Shortly after that Overload went to print, I received my
Raspberry Pi, a small, low-cost, low-power ARM-based board which can
be used as a silent server [2], and I set things up so that the Pi was running
my server most of the time but the PC took over when it happened to be
switched on. This was possible because my server is a Tornado-based
event-driven affair (and the other Web server is also event-driven, being
based on Nginx), so things were light enough to run on the Pi, and I must
confess there was a certain amount of self-satisfaction at being able to look
at the 2-inch box on the back of my desk and think ‘that’s doing all my
serving’ (especially on an otherwise bad day).

I was hosting my Pi on a good fibre-optic home broadband connection with
a public IP and membership of a free Dynamic DNS service. But since my
part-time job with a startup has now disappeared and I am left with only
my occasional assistant teaching (and things may stay that way for some
time given my bad track record as an interviewee and the fact that
relocation is not an option), I needed to cut costs and the fibre-optic
broadband had to go. I explained to Virgin Media that I had been paying
for them as a necessary tool for a remote job and after my redundancy I
can no longer justify to myself continuing to pay for this lavish service.
When they finally accepted my notice to cancel, I set my mobile to give
their number a ‘personalized ring-tone’ of silence [3] to save myself from

their attempts to call it about 3 times a day for the entire 30 days (invariably
ringing off before I’d have time to pick up; it was probably a ‘power dialler’
calling dozens of people at once and stopping when any single one of them
answers, and I imagined they wanted to say “we’ll give you 50p off if you
sign up for 99 years” or some such pitch). After this was out of the way,
however, I no longer had any place to run the Raspberry Pi server. I thought
about entrusting the Pi to friendly well-connected neighbour (it is after all
completely silent and takes only about 3 watts of power, although you do
have to run your router 24/7 as well), but I didn’t fancy the thought of it
being pulled apart by their toddlers or pets, so I started to think about ‘The
Cloud’ i.e. datacentres.

Making your home in a datacentre can be surprisingly cheap, even free for
small experiments (which they obviously hope you will scale up in future).
It also feels good to think that a small fraction of a datacentre server plus
connectivity should take less power overall than a home fibre-optic
connection. The Pi’s load is tiny, but if it requires a connection that
wouldn’t otherwise be there then the connection itself must also be
counted. Whether it will save even more power to ask the datacentre to co-

 I

SILAS S. BROWN
Silas S. Brown is a partially-sighted Computer Science post-doc in
Cambridge who currently works in part-time assistant tuition. He has
been an ACCU member since 1994 and can be contacted at
ssb22@cam.ac.uk
MAR 2014 | | 17{cvu}

http://alistair.cockburn.us/Software+development+as+community+poetry+writing

locate your Pi is less clear: their virtual systems might be able to swap out
your app when it’s inactive, but the Pi runs 24/7 no matter what. A full
treatment of power impact is beyond the scope of this article, as it involves
where and how the power is generated, how much cooling is needed in that
town, and even how they make the magnets when replacing turbines; it
might be worth comparing providers on this – Google seems more
transparent than Amazon, and GreenQloud in Iceland is worth a look – but
I can’t see a reason to feel bad about using any data centre to replace a home
connection. At any rate, the two providers I looked at that are currently
offering free small quotas for experimentation – AppEngine and
OpenShift – both involve virtualisation.

Google AppEngine and RedHat Openshift are both called Platform as a
Service (PaaS) providers: they provide a ‘platform’ of pre-installed tools
(including Python and other programming languages) and APIs which you
use without having root access to the virtual machine. This contrasts with
Infrastructure as a Service (IaaS) like Amazon’s AWS cluster which gives
you root access on your own virtual machine which you have to set up
yourself. (OpenShift are currently using Amazon AWS as their back-end,
and might have some kind of deal, since AWS licenses Red Hat, but I don’t
have any insider knowledge about cross-licensing deals.) AppEngine and
OpenShift’s current business models are to allow free use of a small but
very reasonable quota for hobbyists and bootstrap startups, in the hope that
some of these will go on to have larger requirements that are chargeable.
AWS also allows a free small start, but it is time-limited. The other services
might also be time-limited but they haven’t told us yet. Cloud services can
change on the whim of the companies that run them (as was demonstrated
with the controversial retirement of Google Latitude et al), so my advice
is use it while it’s there but don’t rely on it.

Obviously you wouldn’t want to upload any code that you really wouldn’t
want the cloud company to see, but most of them seem professional enough
(after all their reputations are on the line); a larger danger is over-reliance
on a specific company’s API, so try to avoid that: policies and limits could
change at any time, and you never know when you might want to bring
the server back in house.

AppEngine
AppEngine was perhaps the simplest environment to set up and also seems
easier to scale quickly. I made my Python script [4] use Tornado in
multithreaded WSGI mode, which means Google is free to start and stop
as many instances as their algorithms and quotas see fit. They give you a
wildcard subdomain of appspot.com, or you can use your own domain but
for the latter you do need complete control of an entire domain (a simple
subdomain of a Dynamic DNS service will not do for AppEngine, although
it does currently work on OpenShift).

For AppEngine, I needed to create a file called app.yaml with contents
like Listing 1.

I placed this file, my script and a symlink to Tornado into a directory (some
Tornado versions also need you to create empty ‘placeholder’ versions of
fcntl.py and ssl.py), and then used the AppEngine SDK’s
downloadable ‘appcfg.py’ tool to push it to the server. It works
reasonably well, apart from little nags like inability to access Google’s
search results (looks like somebody in their wisdom decided that Google
search results will not be available to Google AppEngine, so I filed a bug
report, which doesn’t seem to have been looked at, and went off and used,
dare I mention it with Google as my platform provider, a non-Google
search engine).

OpenShift
Compared with AppEngine, I found OpenShift a bit more complex to set
up and perhaps less efficient (a virtual server instance, which OpenShift
calls a ‘gear’, has to run at all times, rather than WSGI instances being
started and stopped on-demand), but it does have some advantages. For
one thing, unlike with AppEngine, OpenShift servers may run binaries that
you’ve written in C and compiled yourself (they’re not limited to only the

supplied interpreted languages). To compile C or C++ (or whatever) you
will need to install a RedHat-compatible Linux distribution such as
CentOS, which I did using Vagrant and VirtualBox [5] so I didn’t have to
change my main Debian-based setup; although it’s possible to run the
compiler on the server they give you, this is best done for small programs
only, as it can easily run out of resources; anyway it’s usually quicker to
compile locally and upload the binary.

Also, OpenShift currently has no trouble using Dynamic DNS hostnames
as long as you set OpenShift not to scale your application (unless your
Dynamic DNS provider supports CNAME records). OpenShift doesn’t
seem to ‘do’ wildcard domains though.

To use OpenShift you need to install a utility called RHC (Red Hat Cloud?)
and type (for example) rhc setup and rhc app create myApp
python-2.7. Then use rhc git-clone myApp and you have a Git
repository. To add Tornado, put it into the install_requires section
of setup.py, and run it from app.py. To push all this to the server and
start it, simply git commit -a and git push.

If you don’t want OpenShift to restart your server when pushing, create a
file called .openshift/markers/hot_deploy and it won’t restart,
but remember to delete this file before pushing something that you do want
to restart, or alternatively use rhc app restart after pushing, which
might lead to slightly less downtime than a normal deploy but I haven’t
measured this properly.

If you’re worried about taking up space, you can delete your git history
like this:

 git update-ref -d refs/heads/master
 git commit -m "removed git history to save space"
 git push --force

and then do rhc ssh and enter these commands:

 cd git/*.git
 git reflog expire --all --expire-unreachable=now
 git gc --aggressive --prune=now

but that does have the disadvantage of throwing away your git history, so
it probably shouldn’t be done unless you’re really low on space (or have
committed some very large files you really shouldn’t have committed).

OpenShift can also run cron jobs (see their documentation for where to put
it), although if writing a Python job that calls out to the shell, SHELL might
not be something you recognise unless you set it. Mail sent using the
default ‘mail’ command might disappear, due to other SMTP servers
rejecting the machines on the EC2 cluster, so you might need to establish
a tunnelled connection to your own SMTP server to send mail. 

References
[1] ‘Web Annotation with Modified-Yarowsky and Other Algorithms’

Overload issue 112 (December 2012) p.4 (PDF p.5)
[2] www.raspberrypi.org
[3] Silent MIDI file (52-byte silent ringtone) http://people.ds.cam.ac.uk/

ssb22/compos/noise.html#silent
[4] Web Adjuster http://people.ds.cam.ac.uk/ssb22/adjuster/
[5] www.vagrantup.com (see box links under www.vagrantbox.es,

however the CentOS might give you only 512M unless you change
it in the Vagrantfile after your ‘vagrant init’; try 2048 if you have the
RAM)

application: large-print-websites
version: 1
runtime: python27
api_version: 1
threadsafe: true
handlers:
- url: .*
 script: wrapper.myApp

Listing 1
18 | | MAR 2014{cvu}

www.raspberrypi.org
http://people.ds.cam.ac.uk/ssb22/compos/noise.html#silent
http://people.ds.cam.ac.uk/ssb22/compos/noise.html#silent
http://people.ds.cam.ac.uk/ssb22/adjuster/
www.vagrantup.com
www.vagrantbox.es

Standards Report
Mark Radford reports the latest from

the C++14 Standards effort.

ello and welcome to my latest standards report. Recently it occurred
to me that I haven’t (at least for quite a while) given any coverage to
how people can involve themselves in the standards process.

Therefore, before I get into what’s been happening recently, I’ll say a little
about this. First I’ll summarise the standards committee structure and then
I’ll explain how to get involved.

Regular readers of my reports (and I know for a fact there are at least two
of them) will have noticed there are two entities I mention quite a lot: these
are the BSI C++ Panel and the ISO C++ Standards Committee. The ISO
C++ Standards Committee is the international C++ standards committee,
often referred to simply as the ‘standards committee’ for short. It is
comprised of representations from many countries around the world. Each
representation comes from the standards body of a member country. The
recognised standards body for the UK is BSI, and the BSI C++ Panel
represents the UK to the (ISO) standards committee. When the standards
committee holds a meeting, the UK delegation is made up of members of
the BSI C++ Panel.

If you want to get involved in the standards process, and you are a UK
resident, the first step is to join the BSI Panel. Residents of other countries
will need to join the equivalent panel/committee of their national standards
body (e.g. ANSI in the US). The BSI Panel holds several meetings per year,
mostly scheduled around the ISO meetings. The remaining meetings this
year are on the following dates: 17 March, 9 June, 21 July, 27 October and
15 December (all Mondays). They will be held at the BSI building,
Chiswick High Road, London, starting at 10am and finishing at 5pm (with
discussions almost always continuing afterwards in a nearby pub). If
you’re interested in participating (or think you might be), then please get
in touch. The email address is: joining@cxxpanel.org.uk. By the way, you
might have heard roles such as the Principle UK Expert (PUKE, for short)
mentioned, along with the names of various committees (e.g. IST5), and
other such jargon. Don’t let that put you off. If you want to get involved
you can simply come along to a BSI Panel meeting and participate in the
technical discussion without concerning yourself with BSI/ISO committee
structure and surrounding jargon. Please be aware that if you want to come
along to a Panel meeting you need to get in touch a couple of weeks in
advance. This is to make sure you receive a copy of the Calling Notice for
the meeting, which (as part of the BSI security procedure) you will need
to produce at the BSI reception desk.

It’s very much back to C++ coverage this time, as the ISO C++ standards
committee is meeting 10th – 15th February (Issaquah, WA, USA). I won’t
be at the meeting, however I will be keeping up with the updates coming
back from that meeting. Unfortunately I will not be able to give the meeting
the coverage I would like to, as I am writing this report during the week
of the meeting, with the CVu production deadline looming. Steve Love
(CVu editor) is very accommodating when it comes to me submitting my
reports right up to the production deadline, however this time the deadline
is slightly earlier than usual so, sadly, I will only be able to cover the first
half of the meeting at the most. Note in passing that the January (pre-
Issaquah) mailing is available at http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2014/#mailing2014-01.

Moving on to the news I have so far from Issaquah...

First some good news: it was reported after the Monday session, that the
C++14 standard is still on track to be shipped this year. Second, some bad
news: SG11 (Databases) has disbanded owing to the chair stepping down.
So far no one has volunteered to chair this SG, but I’m assuming it could/

would reform if anyone did. It’s work has not come to an end as it will be
continued by the Library Extensions Working Group (LEWG). However,
an ‘out of the box’ database connectivity API is fundamental in modern
programming, and is available in popular languages such as Java and C#.
Therefore I can only see the demise of the SG dedicated to this area of
development as a setback for the development of C++.

The Library Working Group (LWG) spent some time on Monday
successfully prioritising all of their 176 active issues. On Tuesday morning
the LWG was in joint session with SG3 (see below), and in the afternoon
they had a joint session with the Library Extensions Working Group
(LEWG). This saw the meeting split into two groups to review the papers
that form the inputs to the Library Fundamentals TS. This work continued
on Wednesday morning. Meanwhile, the Core Working Group (CWG)
have been working their way through their issues list. Later in the week
they plan to review the Concepts Lite proposal with the plan of creating a
working paper for the planned TS.

Those who follow the activities of SG1 (Concurrency and Parallelism)
may be aware of the shared_mutex type that was introduced following
the Bristol meeting of spring 2013. On Monday SG1 spent some time
discussing paper N3891, a last minute proposal (submitted by Gor
Nishanov and Herb Sutter) that shared_mutex should be renamed
shared_timed_mutex. Readers interested in the full details can read
N3891 for themselves. Briefly though, the rational is that the working
paper (N3797) currently specifies three t imed mutex types:
timed_mutex, recursive_timed_mutex and shared_mutex.
N3891 argues for the renaming to avoid a glaring inconsistency. This
generated some discussion within SG1 because, although C++14 hasn’t
yet shipped, some were uneasy about making the change so very late in
the day. Another option put forward (during the meeting) was to remove
shared_mutex from C++14. At the end of the discussion, two straw
polls were held to obtain the level of consensus for (1) the renaming option,
and (2) the removal option. The results of these polls were very much in
favour of renaming and very much against removal. Note that the result
of the straw poll does not mean the renaming option will be adopted. That
will be decided at the end of the week in a full committee vote (i.e. one
vote per national body).

On Tuesday morning there was a meeting of SG3 (File System) in joint
session with the LWG. This was to discuss the open issues relating to the
File System TS. The bulk of these were comments from the national
bodies. As far as the UK is concerned the most substantive issue is the lack
of a relative() operation to return the relative path. However, another
topic of concern was unique_path() and an associated potential
security vulnerability.

There is evidence that there is a general demand for relative(),
because it is the most commonly requested extension to the Boost File
System library. Note that the TS currently defines what the term ‘relative
path’ means (section 4.18 relative path [fs.def.relative-path]). Two polls
were taken: the first was on whether or not relative() should be in the
File System TS, and the second on whether it should be in the initial version
of the TS. Both polls returned a result of very much in favour. When

H

MARK RADFORD
Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark@twonine.co.uk
MAR 2014 | | 19{cvu}

Standards (continued)
unique_path() was discussed the initial discussion centred around
renaming it as the current name does not reflect what it actually does.
However the discussion then turned to whether unique_path() should
be included in the File System TS at all. The result of the poll was very
much in favour of removal, so that is what will happen. Note that the File

System TS is owned by SG3, therefore SG3 can update this TS to reflect
the results of these polls i.e. a full committee vote is not needed.

At this point I have to stop reporting and get this report shipped. Much
more will happen this week in Issaquah, but I’m afraid any reporting of it
will have to wait until my next report.
#include <algorithm>
#include <iostream>
#include <string>
// Parse integer with optional commas
int readInt(std::string s, int v = 0)
{
 if (s.empty()) return v;
 if (s[0] == ',')
 std::remove(s.begin(), s.end(), ',');
 int digit = s[0] - '\0';
 if (digit < 0 || digit > 9) return v;
 return readInt(s.substr(1), v * 10 + digit);
}
int main(int argc, char **argv)
{
 for (int i = 1; i != argc; ++i)
 {
 int const v = readInt(argv[i]);
 std::cout << argv[i] << ':' << v << '\n';
 }
}

Li
st

in
g

1

Code Critique Competition 86
Set and collated by Roger Orr. A book prize is

awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
I’m trying to write a function to read an integer from a string but I always
seem to get zero. Can you advise me?

The code is in Listing 1.

Critiques

Juan Antonio Zaratiegui Vallecillo a.k.a. Zara
<zaravalle@gmail.com>

1. The problem lies on the conversion from ASCII digit to integer.

 int digit = s[0] - '\0';

This will give us digit = ord(s[0]), e.g. 53 for digit '5'. With
digit=48...57 for digits '0'..'9', next line

 if (digit < 0 || digit > 9) return v;

will always return v. As the recursive evaluation function is initially
seeded with v=0, readInt will return 0.

The simple solution is substituting the first mentioned line with

 int digit = s[0] - '0';

which correctly gives digit=0..9 for s[0]='0'..'9', as required for the
simple cases

2. The removal of commas

 if (s[0] == ',')
 std::remove(s.begin(), s.end(), ',');

is deceivingly simple. And wrong.

For instance, '1,23' is converted into 1233 (at least with my
compiler, gcc 4.8. This is UB!). The problem lies on using
std::remove algorithm, which does not really remove the data,
but returns an iterator to the first invalid position.

The correct line would be:

 if (s[0] == ',')
 s.erase(std::remove(
 s.begin(), s.end(), ','), s.end());

This way, all invalid data is really erased form the string, and '1,23'
is converted to 123, as desired.

But this will only remove all commas, not taking into account any
format rule. If we would like the comma to be placed only after
thousands and millions... we should probably perform the comma-
removal (and validity checking!) prior to entering the recursive
function, and removing the comma-removal for inside it.

3. This function takes no caution on possible overflows. Good code
design should provide this check.

Hushan Jia <hushan.jia@gmail.com>

Hushan provided a simple correction.

#include <algorithm>
#include <iostream>
#include <string>
// Parse integer with optional commas
int readInt(std::string s, int v = 0)
{
 if (s.empty()) return v;
 if (s[0] == ',')
 std::remove(s.begin(), s.end(), ',');
 int digit = s[0] - '0'; // <=====

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk
20 | | MAR 2014{cvu}

 // a backslash here mistakenly, which has
 // very different meaning
 if (digit < 0 || digit > 9) return v;
 return readInt(s.substr(1), v * 10 + digit);
}

int main(int argc, char **argv)
{
 for (int i = 1; i != argc; ++i)
 {
 int const v = readInt(argv[i]);
 std::cout << argv[i] << ':' << v << '\n';
 }
}

Paul Floyd <paulf@free.fr>

This is a small example, and there are a couple of easy fixes to get it to
work approximately correctly. The first is to change the character literal
from '\0' to '0' in parseInt. Secondly, simply remove()ing the
commas is insufficient. string::erase() ought also be called to finish
the job.

The next issue that I have with the code is performance. The recursive call
to parseInt repeatedly calls remove() and copies substrings. If the
string class has a small string optimization, this might be acceptable. I
would recommend:

a) Using erase/remove to remove the all the commas in one go

b) Make the function iterative rather than recursive to avoid making
copies. If you really, really want to have recursion, then split the
function into two, the first function that strips commas and calls the
second, the second being recursive taking either iterators or reference
and index to the string rather than copies of substrings.

Unfortunately, this is the tip of the iceberg. Below the water line lurk a host
of questions. My main question is ‘why remove commas’? Is this to be able
to handle either raw numbers and thousands separated numbers? If the
latter, then as it stands the code will happily accept ill-formed numbers like
"1,,,0". Also hard coding the thousands separator is not a good idea if you
want your software to be used outside of the UK and USA. Here in France,
the full stop is used as the thousands separator. There are standard
functions for converting from strings to integers, such as std::strtol
and stoi (C++11). Unfortunately it doesn't seem too clear to me whether
they systematically support thousands separators and locales. Using
stringstreams might be a better bet, but again there may be issues with
locales being well supported. In conclusion, I’d probably try
stringstreams first, and only then try writing my own function.

Giuseppe Vacanti <giuseppe@vacanti.org>

This code can be made to work by addressing a number of issues:

The call to std::remove is not enough to achieve the actual elimination
of elements from a container (in this case the character ','). In this context
‘remove’ means ‘take off from the position occupied’ rather than ‘get rid
of’. Characters matching ',' are moved to the end of the string, and their
actual elimination must be achieved through a call to string’s erase.

After a call to string’s erase the string could actually be empty, so a new
check for the empty string must be carried out.

The character '\0' is not the character corresponding to 0. One should use
'0' or the hexadecimal value 0x30.

Something else to remark:

Parsing of the input string stops if a character other than a digit or a coma
is found, in particular this means that a negative integer cannot be parsed.
I assume this is by design.

The program breaks down if the resulting integer exceeds the maximum
value that an int can hold. The useful range can be increased by changing
to an unsigned integer type (this also makes the inability to parse a negative
digit explicit), possibly a longer one (uint64_t in c++11, for instance).

I sprinkled a few const around, where appropriate, and I stored the value
to be returned in a separate variable, as I find that makes checking things
in a debugger easier.

With these changes the program (omitted to save space) does what was
intended, for instance:

 cc85>./solution-1 ,0,1,2,3,4,5,6,7,8,9,0,aaa,2
 ,0,1,2,3,4,5,6,7,8,9,0,aaa,2:1234567890

A better solution is presented in the following code where I use the new
regular expressions facilities (here via Boost.Regex because my version
of gcc does not yet support them, but the syntax is the same), and
_caboost::lexicalst to catch any overflow.

 #include <boost/regex.hpp>
 #include <boost/lexical_cast.hpp>
 #include <iostream>
 #include <algorithm>
 #include <string>
 #include <cstdint>
 typedef uint64_t my_int_type;
 const boost::regex e("^(\\d+).*");
 // Parse integer with optional commas

 my_int_type readInt(std::string s) {
 s.erase(std::remove(
 s.begin(), s.end(), ','), s.end());
 boost::smatch match;
 if(boost::regex_match(s, match , e)){
 if(match.size() == 2){
 const std::string new_s = match[1];
 const my_int_type xx =
 boost::lexical_cast<my_int_type>(new_s);
 return xx;
 }
 } else {
 return 0;
 }
 }

 int main(int argc, char **argv)
 {
 for (int i = 1; i != argc; ++i)
 {
 my_int_type const v = readInt(argv[i]);
 std::cout << argv[i] << ':' << v << '\n';
 }
 }
 cc85>./solution-2 ,0,1,2,3,4,5,6,7,8,9,0,aaa,2
 ,0,1,2,3,4,5,6,7,8,9,0,aaa,2:1234567890

Marcel Marré and Jan Ubben <marre@links2u.de>

The code contains two bugs, with the first hiding the second initially.

The initial problem is that '\0' in the line

 int digit = s[0] - '\0';

is not the character '0', but the numerical value 0, which means that digit
will not be in the correct range for decimal characters. Hence, the function
quickly aborts and always returns 0. The corrected line is thus

 int digit = s[0] - '0';

The second problem is undefined behaviour due to the line

 std::remove(s.begin(), s.end(), ',');

Because std::remove cannot change the size of a container, it moves
later entries further up in the container and any trailing entries are 'valid,
but undefined'. In particular, trailing digits could (and do, in gcc-4.7.3)
remain and lead to too large a number being returned. For example, calling
std::remove as above on the string "23,456" could yield the string
"234566". The usual idiom is the 'erase-remove' one, where the line
becomes

 s.erase(std::remove(s.begin(), s.end(), ','));
MAR 2014 | | 21{cvu}

With these changes the function will work correctly, but is still far from
elegant. Unnecessary recursion with substring copies for each step are both
slow and memory inefficient.

A C++ 11-compliant proposal looks as follows:

int readInt(std::string const & s)
{
 int v = 0;
 for(auto const c : s)
 {
 if (c == ',') continue;
 int const digit{c - '0'};
 if (digit < 0 || digit > 9) break;
 v = v * 10 + digit;
 }
 return v;
}

This has a couple of advantages. It avoids the need for substring copies,
and requires no changes to the string, so we can take a const reference as
parameter.

Herman Pilj <herman.pijl@telenet.be>

I sometimes wonder whether Roger is the ghost writer behind the code
snippets of ‘the longest continuously advertised software tool’. [Ed: no, but
I do like them!]

I found the int digit = s[0] - '\0'; quite eye-catching, but there
were other problems lurking around the corner.

Each time I encounter a recursive function, the name Fibonacci pops up
in my mind. Recursive functions usually look elegant and deceivingly
simple. Because the recursion has to stop somewhere, there must be a base
or fundamental case where the result is straightforward.

It often leads to compact code, but one of the major drawbacks of recursive
code is its execution (in)efficiency.

Let’s continue though to look at the code as it is and criticize it (that is what
Code Critique is about, isn’t it).

First I would like to start to question the way the arguments are passed. I
prefer to pass an argument by const reference instead of by value (I strongly
dislike the expression ‘const reference’, it really should be called
‘reference to const’).

 int readInt(std::string const & s, int v = 0);

As readInt is a recursive function the end criterion of the recursion or
the fundamental case has to be identified. At first sight, an empty string
looks like a good candidate for the end criterion.

Then the code attempts to remove the leading commas. The code to skip
the leading commas is the school example of the standard library’s
remove booby trap. How many programmers already have been fooled
by the treacherous name of the algorithm remove that eventually doesn’t
seem to remove at all anything from the container. In order to effectively
remove the commas, the string needs to be resized.

 {
 std::string::iterator end =
 std::remove(s.begin(), s.end(), ',');
 s.resize(end - s.begin());
 }

The code that follows then tries to find out whether the next character is a
digit.

The first problem with this code, it that it assumes that the remaining string
is non-empty because it tries to dereference the first character of the string.

The second problem is that the code assumes that the digits have
consecutive character codes.

This is for sure the case in ASCII and apparently also in EBCDIC.

[I don’t know whether Eb is an existing first name but trying to pronounce
IBM’s character encoding acronym EBCDIC as a word could sound
offending.]

The character '0' is not the same as '\0', so that typo ensures that the parsing
ends here when you pass real numbers. I wrote a function runTests with
asserts like

 assert(readInt("5"), 5);

And it coredumps immediately because readInt always returns zero
because the value of digit is always out of range because of the typo.

In order to find out whether the next character is a digit, you should use
the isdigit function from <cctype> excluding the empty string case.
It uses the default locale to find out with the character type facet that the
character is a digit.

 if (s.empty() or not isdigit(s[0])) return v;

And then ...

The function then tries to recursively call itself.

I consider that as reasonably dangerous. The recursive function is already
too complex. I would rather opt for a recursive function readDigit.

 int readDigit(std::string const &s, int v = 0)
 {
 if (s.empty() or not isdigit(s[0])) {
 return v;
 }
 const int digit = s[0] - '0';
 return readDigit(s.substr(1),
 v * 10 + digit);
 }

I would write the readInt as

 skipWhiteSpaceAndCommas

 recursively call readDigit

Because I wanted to wr i te some C++11 code , I t rans la ted
skipWhiteSpaceAndCommas into

 std::string::const_iterator skipIt =
 std::find_if_not(s.begin(), s.end(),
 [](char c)->bool
 {return isspace(c) or c == ',';});
 const std::string s1(skipIt, s.end());

Here again the character type facet is used to decide which characters are
to be considered as space (typically characters like SPC, TAB). The code
so far is not able to parse the sign, something like +12 or -54 should be
al lowed. So I would inser t a funct ion readSign between
skipWhiteSpaceAndCommas and readDigit(s).

What about overflows like 12345678901231456?

What about leading zeros?

What about error/exception handling?

Why not disallowing commas, initialize an istringstream and just use
the extraction operator

 std::istream& operator>>(int &)

And if you then want to use a custom locale, you can simply imbue it on
the stream.

Commentary
This critique is an example of a common problem – someone trying to
implement for themselves a relatively standard function (‘read an integer
from a string’), but doing it without the breadth of experience needed to
do it well.

I think the best answer for the question ‘Can you advise me?’ is ‘Yes –
look for an existing solution.’

As two of the critiques mentioned, you can simply use the standard
stringstream class and, if you want to skip comma delimiters, imbue
an appropriate locale. Sadly the current state of support for different locales
in standard C++ is less usable / consistent than we might want, but boost
offers Boost.Locale which does seem to fill in some of the gaps.

Sticking with just standard C++ readInt could be re-written as
22 | | MAR 2014{cvu}

 int readInt(char const *locale,
 std::string const &s)
 {
 std::istringstream iss(s);
 iss.imbue(std::locale(locale));
 int ival(0);
 iss >> ival;
 return ival;
 }

and now, depending on locale support in your chosen environment you can
choose to handle different conventions for the thousands separators. With
Microsoft C++, for instance, this call:

readInt("en-GB", "1,234")
returns 1234 and

readInt("es-ES", "1.234")
also returns 1234, but – sorry Paul –

readInt("fr-FR", "1.234")
doesn’t return 1234 – in this implementation the locale is expecting
a ‘non-breaking space’ character ('\u00a0') as the thousands
delimiter.

Using a standard solution means it already deals with issues some people
touched on, such as leading - (or +) signs and detecting mis-placed
commas.

In my experience the best response to a quite a number of queries is to ‘un-
ask the question’: rather than trying to fix the code the person is trying to
write it may be more helpful better to find an alternative (and possibly even
a standard) solution.

No-one really tackled the question of error handling – to my mind the
contract of this function is inadequate as it simply stops at the first incorrect
character and returns what it has so far parsed; with no indication that there
were any unparsed characters left.

The Winner of CC 85
This critique attracted several entrants, all of whom correctly identified the
‘obvious’ fault of using '\0' (although only Marcel and Jan stated what the
value of this is – and no-one actually pointed out why this has the numerical
value of 0 – which is because it is an octal (!) escape sequence). Many also
noticed the incorrect use of std::remove – an easy mistake to make (and
perhaps a good example of a poor name choice.) Fixing this then surfaces
the possibility of the string now being empty, which also needs a change
to be made.

Giuseppe makes good use of regular expressions in his second solution,
which are a powerful technique for string manipulation in C++11, although
in this particular case it may be slightly over complicated.

Both Paul and Herman (possibly because of location) both mentioned
locales which, while not mentioned by the original problem posed, are
likely to be a general thing to bear in mind in today’s international world
where the users of your programs may well be using a different language
and conventions from your own. They also both mentioned the standard
facilities provided by stringstreams and locales for handling the job
of converting a string into an integer.

In my opinion Herman provides a slightly fuller critique of the original
problem and a good explanation of things to think about in general with
recursive algorithms so I have awarded him the prize for this issue’s
contest.

Code Critique 86
(Submissions to scc@accu.org by April 1st)

This code works for me but not for my co-worker. I get

 31-Mar-2013 01:30:00

and they get:

 java.text.ParseException: Unparseable date:
 "2013-03-31T01:30:00-04:00"

What’s wrong with their machine? I can’t easily check as they’re in
a different country!”

Can you solve the mystery and identify any other reasons why the code
might be problematic?

The code is in Listing 2.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

import java.text.*;
import java.util.*;
public class DateTimeTest
{
 static String format =
 "yyyy-MM-dd'T'HH:mm:ss-SSS";
 public static void main(String[] args)
 {
 SimpleDateFormat sdf =
 new SimpleDateFormat();
 sdf.applyPattern(format);
 sdf.setLenient(false); // Require 2-digits
 testParse(sdf);
 }
 static void testParse(SimpleDateFormat sdf)
 {
 Date then = new Date();
 try
 {
 then = sdf.parse(
 "2013-03-31T01:30:00-04:00");
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 System.exit(1);
 }
 DateFormat df =
 DateFormat.getDateTimeInstance();
 System.out.println(df.format(then));
 }
}

Listing 2
MAR 2014 | | 23{cvu}

http://www.accu.org/journals/

24 | | MAR 2014

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Alan Griffiths
chair@accu.org

I need to bring two issues to your
attention. They seriously affect the running of
the organisation and need you to act.

The first issue is the make-up of the committee.
There are only seven posts for which candidates
are standing at the election. (You can see details
on the members area of the website.) None of the
posts is being contested so, barring the
unforeseeable, we can predict next year’s
committee will be the candidates that have
stood.

Seven committee members is a worryingly
small number (there are fifteen currently listed).
A committee of seven means that three members
including an officer is a quorum. In addition, two
of our ‘officer’ posts will be vacant. These are
the Chair and Secretary.

The constitution requires us to have four officers
and something must be done.

The first thing that can be done about this is to
invoke clause 5.3.4 of the constitution:

If no candidate for an officer position is
nominated according to the procedure in
5.3.3, nominations for a caretaker to fill
the vacancy can be taken from the floor.
The duty of a committee with at least one
caretaker officer will be to organise a new

election for that role. In the meantime,
that committee will be limited to ordinary
administration of the organisation.

During the AGM someone can be appointed as
a ‘caretaker’ Chair and/or Secretary. They don’t
have to be present but as this is one of the few
cases where things can happen at the AGM
without prior notice to the membership it would
be helpful if the presiding member can validate
their willingness to stand at (or prior to) the
AGM. Note that such an appointment would
only be until the committee can organise an
election.

The elected committee can also co-opt
additional members to the committee for vacant
roles. This comes under two parts of the
constitution:

5.4.1 Should any member of the
Committee resign or cease to act during
the life of the Committee, or a vacancy
otherwise arise, the Committee shall
have the power to co-opt a member of the
Association to fill the vacancy.
5.4.2 The Committee shall have the
power to co-opt any member of the
Association for a particular service. Co-
optees shall have voting rights on
matters pertaining to the service for
which they were co-opted.

This power is normally used to co-opt people to
roles with special requirements (such as the
Conference Chair). It could, in theory, be used

to fill posts left vacant at the AGM but doing so
would leave the membership with no say in an
important decision.

In view of the above, the incoming committee
will be meeting after the AGM in order to deal
with any co-options. The details are not
confirmed at the time of writing, but they will
likely be in one of the smaller conference rooms
during the afternoon break. If you are willing to
help out in some way, please attend (or, if you
can’t attend, let them know).

The second matter is the ‘hardship fund’ the
ACCU has been maintaining to support the
memberships of individuals who could not
finance themselves. However, there have been
decreasing calls on this fund over time and
nothing has been paid out for some years. (Many
of the original reasons for ‘hardship’ – such as
difficulty converting currency – are less
frequent than they were.)

The approximate balance of this hardship fund
is £2,000.

The view of the committee is that this fund no
longer serves its original purpose. We’ve asked
f o r s ug g e s t i on s bu t no n e hav e b e e n
forthcoming.

I’m proposing a motion at the AGM to
discontinue the ‘Hardship fund’ and roll this
money into the general finances. If this is
accepted committee can still allocate funds to
hardship cases if and when they occur.

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have
it. I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamorous ‘not recommended’ rating, you are entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with books.
Jez Higgins (jez@jezuk.co.uk)

Cracking the Coding
Interview
By Gayle Laakmann McDowell,
ISBN: 978-0-9847828-0-2,
published 2012, 498 pages (of
which >300 are answers to
questions)

I bought this book the last
time that I was looking to
change jobs. In the event, I changed jobs before
I had time to read it. Now I’m on the other side
of the interviewing table and I thought that it
might be a source of ideas.

Overall, I found the general advice to be sound.
Prepare yourself, know your target company and
some background on large US-based

multinationals like Google, Apple, Microsoft
and Yahoo.

The technical questions and answers were, I felt,
rather unexceptional. Mostly the code is Java,
with the aim of being easy to understand. In
particular in the Bit Manipulation chapter I kept
on saying to myself “that won’t work reliably in
C or C++”. In the chapter dedicated to C and C++
(which is almost entirely C++), several things
shocked me

1. use of #define for constants

2. use of raw pointers and even malloc/
free (though somewhat predictably, the
pointers segue into virtual functions); I
would expect candidates to show a better
understanding of the use of the heap and

the stack and for me systematic overuse of
new is java++ – C++ written in a Java
dialect rather than idiomatic C++.

3. no mention of exceptions

4. no mention of C++11

5. question as to why derived class
destructors need to be virtual.

One last sin, it’s all a bit computer science-y (as
Press et al. might say). There’s a lot on
algorithms, recursion and even databases, but
when it comes to a tiny bit of numerical analysis,
I have the impression that the author is lost at
sea. The example in question is oriented towards
data structures used to evaluate a “mathematical
expression ...Ax^a + Bx^b ...”. I suspect that a
polynomial is intended, but the text does state
that the exponents are of type double. No
mention of the requirements for rapid and
accurate evaluation of the expression. Who
cares if the answer
is NaN when the
inputs are
wrapped in a nice
class!

	CVu26-1.pdf
	The Ecumenical Programmer
	Where Linq Contains a Defect
	Software Archaeology
	Wallowing in Filth
	The Soundtrack to Code 2: Going Classical
	Developer Freedom
	Staying in Touch: Performative Negotiation
	From Raspberry Pi to the Cloud
	Code Critique Competition 86
	Standards Report
	Bookcase
	View from the Chair

