

JAN 2014 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

On Being Ignorant
Abstraction is selective ignorance

~ Andrew Koenig

ast time I briefly opined about interface names,
and the importance of good abstractions. The
name of a thing is more than just a tag to

identify it; well-named things describe their
purpose in a simple, succint way. In a complex
system, this can be vital to the programmer(s)
maintining it. Well-chosen names for roles in a
program allow the developers and maintainers to
have a high-level – abstract – understanding of the
relationships between those roles, and can concentrate on
having a deep knowledge of all the nuances of just a small
bit, under the hood. If those programmers all needed to
know everything about every implementation of every
interface or type, the volume of information in even quite
small systems can easily become overwhelming.

Good names also form a language, in much the same
way that software Patterns do, and thereby create a
shared vocabulary about a system that the developers
can use to communicate with each other about it at a
high-level. Of course, this isn’t limited to software.
Without abstraction, we’d have difficulty communicating
with each other about anything! Consider the simple task
of arranging to meet someone somewhere: the names we
give places are themselves abstractions, the time of day is a pretty abstract idea, the
act of travelling (Walk? Cycle? Public transport? Swim?) is an implementation detail,
and even the idea of ‘walk’ is an abstraction over the various muscle movements,
force exertion, etc. not to mention the molecular level interactions...

This idea of shared abstractions is partly about communication, but also about
simplicity. If you had to concentrate on every atom in your brain to think, you’d have
little bandwidth to do the thinking that necessitated it. So it is with the names of
interfaces, functions, classes, variables and all the other things that go into
programming. Being able to ignore the fine detail is what makes programming
complex systems possible.

L
Volume 25 Issue 6
January 2014

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Pete Goodliffe, Jez Higgins,
Chris Oldwood, Roger Orr,
Richard Polton, Mark Radford,
Charles Tolman, Adam Tornhill,
Vsevolod Vlaskine

ACCU Chair
Alan Griffiths
chair@accu.org

ACCU Secretary
Giovanni Asproni
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | JAN 2014

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
20 Standards Report

Mark Radford
reports on the latest
from C++14
standardisation.

21 Code Critique Competition
Competition 85 and
the answers to 84.

REGULARS
32 Bookcase

The lastest roundup
of book reviews.

36 ACCU Members Zone
Membership news.

SUBMISSION DATES
C Vu 26.1: 1st February 2014
C Vu 26.2: 1st April 2014

Overload 120:1st March 2014
Overload 121:1st May 2014

FEATURES
3 Speak Up!

Pete Goodliffe speaks on communication.

6 Social Networking
Chris Oldwood describes more of the tools of his
trade.

7 The Soundtrack to Code
Adam Tornhill takes a look at the relationship
between music and concentration.

9 Phenomenal Software Development
Charles Tolman considers the philosophical
implications of software development.

11 An Unexpected Journey
Jez Higgins finds treasure in the new Java.

14 Generating Code from a Unit Test (Part 3)
Richard Polton generates the code to pass his unit
tests.

18 Architectureless Software Design
Vsevolod Vlaskine explores some ideas of simplicity
in software design.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer # 84
Speak Up!
Pete Goodliffe speaks on communication.

The single biggest problem in communication
is the illusion that it has taken place.

~ George Bernard Shaw

t’s the classic stereotype of a programmer: an antisocial geek who slaves
alone, in a stuffy room with dimmed lights, hunched over a console
tapping keys furiously. Never seeing the light of day. Never speaking

to another person ‘in real life’.

But nothing could be further from the truth.

This job is all about communication. It’s no exaggeration to say we
succeed or fail based on the quality of our communication.

This communication is more than the conversations that kick off at the
water cooler. Although those are essential. It’s more than conversations in
a coffee shop, over lunch, or in the pub. Although those are all also
essential.

Our communication runs far deeper; it is multi-faceted.

Code is communication
Software itself, the very act of writing code, is a form of communication.

This works several ways...

Talking to the machines

When we write code we are talking to the computer, via an interpreter. This
may literally be an ‘interpreter’ for scripting languages that are interpreted
at runtime. Or we communicate via a translator: a compiler, or JIT. Few
programmers these days converse in the CPU’s natural language, machine
code.

Our code exists to give a literal list of instructions to the CPU.

Every so often, my wife leaves me a list of jobs to do. Make dinner, clean
the living room, wash the car. If her instructions are illegible, or unclear,
I won’t do what she actually wants me to. I’ll iron the cutlery and hoover
the bathtub. (I’ve learnt to not argue, and do what I’m told, even if it makes
no sense to me.) If she wants the right results, she has to leave me the right
kind of instructions.

It is the same with our code.

Sloppy programmers are not explicit. The results of their code can be the
equivalent of ironed cutlery.

Code is communication with the computer. It must be clear and
unambiguous if your instructions are to be carried out as you
intend.

Since we are not talking in the CPU’s mother tongue, it’s always important
to know what nuances of its language get lost in translation to our
programming language. The convenience of using our preferred language
comes at a cost.

Talking to the animals

Although your code forms an ongoing conversation with your mechanical
friend, the computer, it does not just speak to a CPU.

It speaks to other humans, too – to the other people who share the code
with you, and who have to read what you have written. It is read by the
people you are collaborating with. It is read by the people who review your
work. It is read by the maintenance programmer who picks up your code

later on. It will be read by yourself when you come back in a few months
to fix nasty bugs in your old handiwork.

Your code is communication to other humans. Including you. It
must be clear and unambiguous if others are to maintain it.

This is important.

A high-calibre programmer strives to write code that clearly
communicates its intent. The code should be transparent: exposing the
algorithms, not obscuring the logic. It should enable others to modify it
easily.

If code does not reveal itself, showing what it does, then it will be difficult
to change. And the one thing we know about coding in the real world is
the only constant is change. Uncommunicative code is a bottleneck and
will impede your later development.

Good code is not terse to the point of unreadability. But neither is it lengthy
and laboured. And it is most definitely not filled with comments. More
comments do not make code better they just make it longer; and probably
worse as the comments can easily get out of sync with the code.

More comments do not necessarily make your code better.
Communicative code does not need extra commentary to prop
it up.

Good code is not trickily clever, deftly using ‘advanced’ language features
to such aplomb that it will leave maintenance programmers scratching their
heads. (Of course, the amount of head scratching does depend on the
quality of the maintenance programmers; this kind of thing always depends
on context.)

The quality of our expression in code is determined by the programming
languages we chose to use, and in how we use them. Are you using a
language that allows you to naturally express the concepts you are
modelling?

Obviously, the entire team working on a section of code must be coding
in the same language. It’s not a good idea to add lines of Basic code to a
Python script. If your application is written in C++, the whole team must
all be using C++ or it wouldn’t work. (Yes, someone could be coding C
and they might get away with it, but the code will suffer.)

However, even in an environment using the same programming language,
it is possible to use different dialects and end up introducing
communication barriers. You may adopt different formatting conventions,
or employ different coding idioms (e.g. using ‘modern’ C++ vs ‘C++ as a
better C’).

Of course, using multiple programming languages is not evil. Larger
projects may legitimately be composed of code in more than one language.
This is a standard for big distributed systems where the back-end runs on
a server in one language, with remote clients implemented in other, often
more dynamic browser-hosted, languages. This kind of architecture allows
you to employ the right kind of language for each task. We see, here, yet

 I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete@goodliffe.net or @petegoodliffe
JAN 2014 | | 3{cvu}

another language in play: the language those parts communicate through
(perhaps a REST API with JSON data formatting).

Consider also the natural language you program in. Most teams are based
in the same country, so this is not a concern. However, I often work on
multi-country projects with many non-native English speakers. We made
a concious choice to write all code in English: all variable names,
comments, class/function names, everything. This affords us a degree of
sanity.

I’ve worked on multi-site projects that didn’t do this, and it’s a real problem
having to run code comments through Google Translate to work out if
they’re important or not. I’ve been left wondering whether a variable name
has a Hungarian wart at the start, is misspelled, abbreviated, or if I just have
a very bad grasp of the natural language used.

How well code communicates depends on the programming
language, idioms employed, and the underlying natural
language. All these have to be understood by the readership.

Talking to tools

Our code communicates even further; to other tools that work with it. Here
‘tools’ is not a euphemism for your colleagues.

Your code may be fed into documentation generators, source control
systems, bug tracking software, and code analysers. Even the editors we
use can have a bearing (what character set encoding is your editor using?).

It isn’t unusual to add extra directives to our code to sate these processors’
whinging, or to adapt our code to suit those tools (adjusting formatting,
comment style, or coding idioms).

How does this affect the readability of the code?

Interpersonal communication
Electric communication will never be a substitute for the face of someone

who with their soul encourages another person to be brave and true.
~ Charles Dickens

We don’t just communicate by typing code. Programmers work in teams
with other programmers. And with the wider organisation.

There’s a lot of communication going on here. Because we’re doing this
all the time, high quality programmers have to be high-quality
communicators. We write messages to, speak with, even gesticulate at,
others all the time.

Ways to converse

There are many communication channels we use for conversations, most
notably:

 talking face-to-face

 talking on the phone, one-to-one

 talking on the phone in a ‘conference call’

 talking on VOIP channels (which isn’t necessarily different from the
phone, but is more likely to be hands-free and allow you to send files
over the same communication channel)

 email

 instant messaging (e.g. typing in Skype, on IRC channels, in
chatrooms, or via SMS)

 video conferencing

 sending written letters via the physical postal system (do you
remember that quaint practice?)

 fax (which has largely been replaced by scanners and common
sense; however it still has a place in our comms pantheon because it
is regarded as useful for sending legally binding documents).

Each of these mechanisms is different, varying in: the locations spanned,
the number of people involved at each end of the communication, the
facilities available and richness of interaction (can the other person hear

your tone of voice, or read your body language?), the typical duration,
required urgency and deferrability of a discussion, and the way a
conversation is started (e.g. does it need a meeting request to set up, or is
it acceptable to interrupt someone with no warning?).

They each have different etiquettes and conventions, and require different
skills to use effectively. It is important to select the correct communication
channel for the conversation you need to have. How urgent is an answer?
How many people should be involved?

Don’t send someone an email when you need an urgent answer; email can
sit ignored for days. Walk over to them, ring them, Skype them.
Conversely, don’t phone someone for a non-urgent issue. Their time is
precious, and your interruption will disrupt their flow, stopping them from
working on their current task.

When you next need to ask someone a question, consider whether you are
about to use the correct communication mechanism.

Master the different forms of communication. Use the
appropriate mechanism for each conversation.

Watch your language

As a project evolves it gains its own dialect: a vocabulary of project and
domain specific terms, and the prevalent idioms used to design/think about
the shape of the software design. We also settle on terminology for the
process used to work together (for example, we talk about user stories,
epics, sprints).

Take care to use the right vocabulary with the right people.

Does your customer need to be forced to learn technical terms? Does your
CEO need to know about software development terminology?

Body language

You’d be upset if someone sat beside you, sparked up a conversation, but
spent the whole time facing in the opposite direction. (Or you could pretend
they were from a bad spy movie; “I hear the gooseberries are doing well
this year... and so are the mangoes” [1]).

If they pulled rude faces every time you spoke, you’d be offended. If they
played with a Rubik’s cube throughout the conversation you’d feel less
than valued.

It is easy to do exact this when we communicate electronically; to not fully
respect the person we’re talking with. On a voice-only conversation, it’s
easy to zone out, read email, surf the web, and not give someone else your
full attention.

Having fully embraced our modern, always-connected, broadband age, I
now default to selecting a video-on communication channel. Often I’ll kick
off a conversation that might have been via phone or instant message with
a VOIP video chat. Even if my conversant will never enable their own
video, I like to broadcast a picture so that my face and body language are
clearly visible.

This shows I’m not hiding anything, and fosters a more open conversation.

A video chat forces you to concentrate on the conversation. It engages the
other person more strongly, and maintains focus.

Parallel communication

Your computer is having many conversations at once: talking to the
operating system, to other programs, device drivers, and other computers.
It’s really quite clever like that. We have to make sure that our code
communication with it is clear and won’t confuse matters whilst it’s having
conversations with other code.

That’s a powerful analogy to our inter-personal communication. With so
many communication channels available simultaneously, we could be
engaging in office banter, instant messaging a remote worker, and
4 | | JAN 2014{cvu}

exchanging SMSs with our partner, all whilst participating in several email
threads.

And then the telephone rings. Your whole tottering pile of communication
falls over.

How do you ensure that each of your conversations is clear enough and
well-structured so it won’t confuse any other communication you’re
concurrently engaged in?

I’ve lost count of the number of times I’ve typed the wrong response into
the wrong Skype window and confused someone. Fortunately, I’ve never
revealed company confidential information that way. Yet.

Effective communication requires focus.

Talking of teams
Communication is the oil that lubricates teamwork. It is simply impossible
to work with other people and not talk to them.

This, once more, underscores Conway’s Law. Your code shapes itself
around the structure of your teams. The boundaries of your teams and the
effectiveness of their interactions shapes, and is shaped by, the way they
communicate.

Good communication fosters good code. The shape of your
communications will shape your code.

Healthy communication builds comradery, and makes your workplace an
enjoyable place to inhabit. Unhealthy communication rapidly breaks trust
and hinders teamwork. To avoid this, you must talk to people with respect,
trust, friendship, concern, no hidden motives, and a lack of aggression.

Speak to others transparently, with a healthy attitude, to foster
effective teamwork.

Communication within a team must be free-flowing and frequent. It must
be normal to share information, and everyone’s voice must be heard.

If teams don’t talk frequently, if they fail to share their plans and designs,
then the inevitable consequences will be duplication of code and effort.
We’ll see conflicting designs in the codebase. There will be failures when
things are integrated.

Many processes encourage specific, structured communication with a set
cadence; the more frequent the better. Some teams have a weekly progress
meeting, but this really isn’t good enough. Short daily meetings are far
better (often run as scrums, or stand-up meetings). These meetings help
share progress, raise issues, and identify roadblocks without apportioning
blame. They make sure that everyone has a clear picture of the current state
of the project.

The trick with these meetings is to keep them short and to-the-point;
without care they degrade into tedious rambling discussions of off-topic
issues. Keeping them running on-time is also important. Otherwise they
can become a distractions that interrupt your flow.

Talking to the customer
There are many other people we must talk to in order to develop excellent
software. One of the most important conversations that we must hold is
with the customer.

We have to understand what the customer wants, otherwise we can’t build
it. So you have to ask them, and work in their language to determine their
requirements.

After you’ve asked them once, it’s vital to keep talking to them as you go
along to ensure that it’s still what they want, and that assumptions you
make match their expectations.

Only way to do this is in their language (not yours), using plenty of
examples that they understand: demos of the system under construction.

Other communication

And still, the programmer’s communication runs deeper than all this. We
don’t just write code, and we don’t just have conversations. The
programmer communicates in other ways. For example, by:

 writing code documentation

 writing specifications

 blogging

 writing magazine articles

How many ways are you communicating as a programmer?

Conclusion
First learn the meaning of what you say, and then speak.

~ Epictetus

A good programmer is hallmarked by good communication skills.
Effective communication is:

 clear

 frequent

 respectful

 performed at the right levels

 using the right medium

We must be mindful of this, and practise communication – seek to
constantly improve in written, verbal, and code communication.

References
[1] ‘Secret Service Dentists’, Monty Python’s Flying Circus

Questions
1. How does personality type affect your communication skills? How

can an introverted programmer communicate most effectively?

2. How formal or causal should our interactions be? Does this depend
on the communication medium?

3. How do you keep colleagues abreast of your work without endlessly
bugging them about it?

4. How does communication with a manager differ from
communication with a fellow coder?

5. What kind of communication is important to ensure that a
development project runs successfully?

6. How do you best communicate a code design? They say a picture
speaks a thousand words. Is this true?

7. Do distributed teams need to interact and communicate more than
co-located teams?

8. What are the most common barriers to effective communication
(e.g. different assumptions, language barriers)?
JAN 2014 | | 5{cvu}

6 | | JAN 2014{cvu}

Social Networking
Chris Oldwood describes more of the tools of his trade.

ight back at the very beginning of this series of articles [1] I talked
about how I had found great utility in chat-style software as an
alternative for email to exchange brief messages with my team-mates

about day-to-day events. Those messages are generally asynchronous in
nature and relate to the events going on around me, such as broken builds,
production issues, the forthcoming need for coffee, etc. But when it comes
to aspects of software design the need to converse with a human on a less
constricted form usually takes over. Depending on who’s around at the
time it might mean leaning across a desk, walking down the aisle or putting
a metaphorical pen-to-paper and banging out a thought-inducing email
(largely to self, but with the ability for others to provide feedback).

In the ‘good old days’ they were pretty much your only choices, but the
modern era of smart-phones and ubiquitous internet access means I’m
always within ‘close’ reach of a whole bunch of clever people; some that
I already work with but far more that I don’t. This means I can tap-in to
the ‘wisdom of crowds’ to some degree and
perhaps get feedback in the intervening time
before my colleagues are once again around me
and able to provide that high-bandwidth
communication channel I need to drill down to
the finer details.

Of course dial-up forums like CompuServe and
Cix were around long before the likes of Twitter
and Facebook, as were the Internet-based online
forums such as the Usenet. However, although
the readership was large, it varied widely and
although I made some metaphorical friends the
transport mechanism was not really up for the
social banter that adds a little more character and
background to its users. In fact culturally it was a faux pas to add mindless
chatter because it consumed bandwidth and back then bandwidth cost
serious money when all you had was a modem measured in kilo-bits per
second. In stark contrast, services like Twitter with its so-called ‘micro-
blogging’ format means that the content length is purposefully constrained
and probably means that the transport overhead now dominates the
message size!

It seems ironic after the years of worrying about keeping ‘on topic’ to
purposefully choose to use a service that restricts your freedom. But what
I’ve found with the likes of Twitter is that I can gauge opinion about even
very small matters so long I can squeeze it into 140 characters or less. I
can on occasion stretch to 280 if I want to try the patience of my audience,
but hopefully they’ll forgive me if it’s interesting.

Distilling a problem down to its essence is a tricky problem, but also a
worthy pursuit in its own right as you may even answer your own question
just by going through the motions. The fear of public ridicule can be a
sobering thought too. Occasionally I’ve attempted to frame a question as
a rant to see if I get a ‘me too’ style response or just a ‘look’ of derision.
When you work in a very small or very inexperienced team you sometimes
need to look outside for validation, or a friendly ear. It probably sounds a
little dysfunctional as I should be able to address concerns about my
colleagues and their work directly to them, but in the early stages I like to

keep ‘the air clear’ between us and get a reality check from a third party
first about whether it’s a mountain or a molehill.

Social Networking tools have embraced the whole push model so that you
get a stream of collective consciousness delivered directly to your device.
Assuming that you’re one of those people who doesn’t just follow
everyone in the world and are interested in keeping the data stream down
to a manageable level, there is a continual diet of knowledge and sage
advice to be had. That insight may come in the form of a quote from such
a luminary as Alan Kay or Sir Tony Hoare. Or it may come in the thinly
veiled guise of ‘geek humour’ such as an XKCD [2] cartoon. Or it might
be an off the cuff remark from one of your fellow ACCU colleagues.

My own social networking persona is very much for the purposes of my
professional programming career. Although I clearly make out-of-band
comments, the group of people I follow and the content I generally

consume is of a programming related nature.
Personally I’m not interested in trying to
maintain a separate ‘private’ persona, but I know
of people that do – so that they can keep their
work and personal lives separate as a way of
managing the onslaught of data. Despite probably
overdoing it myself on occasion I do try and stick
with those people that provide the highest signal-
to-noise ratio. Tooling has made a big difference
here by filtering messages in an intelligent way
so you don’t get cross-talk.

The links to blog posts and articles I receive are
often very useful, but I have to squirrel them away
with a bookmark and save them for later
consumption. No, what I really enjoy most are the

little pearls of wisdom that act as continual reminders to think about what
we’re doing. Even with the best intentions I lose focus and find myself
slipping back into dubious habits or not bothering to think hard enough
about what the best name might be for a class or method.

One time I remember lazily naming a class ‘EngineManager’. Before I had
committed it though a tweet (from Allan Kelly, I think) appeared
commenting on the nondescript nature of the term ‘manager’ and so I
renamed it ‘EnginePool’ as that felt a better description because it followed
the Pool pattern from the POSA 3 book [3]. As if by coincidence another
tweet from Nat Pryce arrived bemoaning the use of pattern names in
classes. Oops.

The practice Nat Pryce appeared to be commenting on is a long-standing
joke in Java where there has been a habit of seeing how many Gang of Four
pattern names you can squeeze into one class. In my case I felt I was quite
justified in naming my class with the ‘Pool’ suffix as it documented the
expected behaviour nicely. The point though is that it made me stop and
think.

And that’s what I enjoy most about having a stream of one-liners flowing
though my consciousness every day, they keep me honest and remind me
of the many forces that I need to keep in balance with every line of code
I write.

References
[1] ‘In the Toolbox: Team Chat’, C Vu, May 2013
[2] http://xkcd.com
[3] Pattern-Oriented Software Architecture. Volume 3: Patterns for

Resource Management by Michael Kircher and Prashant Jain (2004).

 R

In the Toolbox # 6

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80s writing assembler on 8-bit
micros; these days it’s C++ and C#. He also
commentates on the Godmanchester duck race.
Contact him at gort@cix.co.uk or@chrisoldwood

Distilling a problem
down to its essence is a

tricky problem but also a
worthy pursuit ... you may

even answer your own
question just by going

through the motions

http://xkcd.com

The Soundtrack to Code
Adam Tornhill takes a look at the relationship

between music and concentration.

o a programmer, noisy work environments are a devastating killer of
job performance. Surprisingly, most workplaces still seem to ignore
the problem and leave the root causes untreated. Instead the

symptoms of a deep, severe problem are left to the individual programmers
to address. A typical treatment involves earphones with music used to
shield out the noise. This choice creates a personal auditory backdrop that
may relieve the immediate stress but it comes at a potential cost. While
music doesn’t necessarily have a negative impact on our performance, it’s
important to understand how the degree and direction of the effect varies
with the task.

The perils of noise
A quarter century ago, the seminal Peopleware made the case against
dysfunctional office environments. In a comprehensive study on the
correlation between noise levels and work performance, Peopleware
reported that individuals in quiet working conditions were ⅓ more likely
to deliver zero-defect work than their unfortunate peers in noisy
environments. Even more interesting was that the correlation was stronger
for increased levels of noise [1].

The results from Peopleware have been supported by multiple studies.
They should be an alarming message to any company that depends upon
the creativity, problem solving skills and quality of its employees.
Translated to money, a ⅓ increase in zero-defect work should be a no-
brainer investment. And that’s even when just considering the immediate
effects and leave the secondary consequences of a dysfunctional work
environment aside. Probably, those secondary effects are even more severe
involving long-term stress, health issues and motivation.

Despite these findings, companies continue to squeeze employees into
crowded office spaces unsuitable for sustained concentration and novel
creative work. And programming is definitely in that category. A failure
to realize and adapt the environment to fit the demands of the tasks will
have significant costs. Given the quarter century since Peopleware
presented their findings I wouldn't hold my breath for an immediate
change. There is no simple cure to the problem. In the meantime we need
strategies to deal with averse working conditions. We need immediate
workarounds and remedies. Music and, to an increasing extent, colored
noise proves to be one such approach.

Music as a tool

To an individual in a noisy office environment, active earphones with a
self-selected choice of audio is often the only practical and legal way to
get rid of undesirable background noise. In situations like this music serves
by minimizing external and unpredictable disturbances. The purpose of the
music is as a tool that allows us to focus on the task at hand.

But music serves in a second role too. It’s in this second role that we
sometimes come to chose music as a coding soundtrack even under quiet
conditions. The idea is that specific music helps us get into a state of flow.
Flow is a state where we are completely absorbed in a specific activity.
It’s a state characterized by full focus and involvement. Flow is a well-
researched state that’s vital to the creative and complex work of software
development.

Using music as a transition into flow is a double-edged sword. Personally,
I often find that specific kinds of music serve as a bridge from previous
activities, say a meeting or writing an e-mail, to the desired state of flow.
Here music allows me to re-focus my attention. However, I do have to

chose my music with care. Just as when we use music to shut-out
disturbances, making the wrong choice runs the risk of either preventing
increased focus or, even worse, pulling me out of a productive flow. To
understand the different factors involved, join me on a brief journey
through the research on music in the work environment.

The motivational dimensions

Before there were computers, in the era of blue collar workers, Wyatt and
Langdon set out to investigate the effects of music on performance among
industrial workers [2]. The workers in the Wyatt and Langdon’s studies
were engaged in simple and repetitive tasks. To them, work wasn’t
fulfilling nor did they have any expectations of developing their own
potential. Work was a way of paying the bills. A necessary evil.

In this context Wyatt and Langdon found that music did improve
performance. There were additional benefits too. With music, the involved
workers felt that the hours of repetitive work passed faster. Music helped
them reduce the boredom of daily routine work.

Software development projects of today are often radically different. Many
programmers enjoy their work. Some of us even invest our spare time in
writing software, perhaps by contributing to the ever evolving open-source
eco-system. To us it’s not about passing time. Rather, the task itself
fascinates us. We want to deliver our best possible work. Not just because
we get paid but rather because programming itself holds value to us.

Ultimately it’s about different sources of motivation. The most important
and well-known psychological distinction is between extrinsic and
intrinsic motivation. Extrinsic motivation is fueled by either an expected
reward or a punishment for the performance or non-performance of a task.
Basically it’s old school management by carrots and sticks.

Extrinsic motivation was what got the workers in the Wyatt and Langdon
study to spend countless hours in the factory in pursuit of a paycheck. The
other type of motivation, intrinsic motivation, is related to something we
perform out of free will. It’s something we do because we find the task
itself interesting. To a passionate programmer, writing code for a new,
exciting project often falls in this category. Consequently, the role of music
in the Wyatt and Langdon studies doesn’t apply. What would then the
consequences be of adding music to our workplace? Let’s find out by
looking into some ideas about our consciousness and attention.

Two-channels, one consciousness

There’s a disturbing fact about human consciousness. Despite our frequent
attempts in the modern world we just cannot perform two conscious
activities in parallel. Human attention doesn’t scale; multiple conscious
tasks will always compete against each other. And the more conscious
involvement in a task, the higher the competition and interference.

If that were bad news regarding our conscious efforts, it may come as a
delight that the majority of our cognitive processes are automatic.
Automatic processes are unconscious brain activities characterized by
their efficiency and effortlessness. Automatic processes are easily

 T

ADAM TORNHILL
With degrees in engineering and psychology, Adam
tries to unite these two worlds by making his technical
solutions fit the human element. While he gets paid to
code in C++, C#, Java and Python, he’s more likely to
hack Lisp or Erlang in his spare time.
JAN 2014 | | 7{cvu}

demonstrated using a sophisticated type of test known as two-channel
experiments. This type of experiment also illustrates one of the perils with
noisy work environments.

In a two-channel experiment, people receive two different streams of
information. A typical research procedure is to read two different
narratives simultaneously, one to each ear of the participant. Since we can
only attend to once conscious stimuli at a time, the two streams just cannot
be merged into a single conscious flow. When exposed to these conflicting
sources of information, the brain selects one of the streams and masks out
the other one. The observable behavior is that information passed to the
mentally masked ear isn’t encoded into the memory of the participant. As
a direct consequence, the participant is unable to recall virtually any of that
information. The competing narrative that
was attended to is of course remembered
well.

The fascinating part starts as we add
information of personal meaning to the
masked stream. A prime example on
information of personal significance is our
own name. As soon as that information of
personal interest is presented our attention
shifts instantly. Our attention now gets re-focused to the previously
masked stream of information. The take-away idea is that while we may
not be consciously aware of what’s happening around us, our brain still
scans and interprets the sensations in our environment.

That mechanism had a clear evolutionary advantaged; as our pre-historic
relatives were daydreaming on their hunting trips, automatic processes
kept them alive by drawing attention to that nasty sabre-toothed tiger that
suddenly sneaked up on them. Today the same mechanism keeps its
importance for survival (just think about crossing a street while absorbed
in deep thoughts). They may also help us get through that cocktail party
without missing out on mentions and gossips about our persona.
Nonetheless the interruptions triggered by our automatic processes are
concentration breakers. They’re well capable of destroying our hard-
worked focus in front of our favorite editor (Emacs). After all, these
processes are about evolutionary survival so who wants to blame them for
doing their work? It’s not their fault the circumstances have changed
drastically.

Today our modern, corporate world presents an environment radically
different from the times when our brains evolved. Imagine yourself in an
intense programming session in a room shared with friendly, yet chatty co-
workers. Those precious automatic processes so vital to our functioning
and survival now becomes a disadvantage and source of constant
frustration. Similarly, surprising sounds and unexpected stimuli call on our
attention. The slam of a coffee mug could well break a deep flow of any
knowledge worker. No wonder that we often turn to music as an auditorial
shield against the outer world.

The cognitive costs of music

Programming may well be the most cognitively challenging task we can
undertake. Not only is the computer ruthless in its execution of our digital
creations. We also need to satisfy the needs of a second audience: our
fellow team members and maintenance programmers. Since that second
group often proves to include our future self, we soon learn about its
importance. As programmers, we thus have to switch between different
levels of details and constantly balance competing dual goals. We have to
constantly learn, re-evaluate and remember large amounts of details and
idiosyncrasies about our languages and technical environments.

This chain of cognitively demanding processes is easy to disturb. The
resulting consequences may be severe. Think about forgetting an edge
case, or perhaps even failing to identify that there is one in the first place.
It may boil down to competency issues, but there is often more to it. For
experienced programmers ineffective encoding is a potential source of
programming errors to come. The typical case is that we fail to remember
a vital detail. Not because we somehow lost the memory traces but simply
because we never attended to the information in the first place. In fact,

failure to remember, the act of forgetting, is often rooted in ineffective
encoding.

Conscious encoding is intimately tied to attention. If our attention is
directed elsewhere or pending between competing stimulus we fail to
commit information to memory. Both noisy environments and self-
selected stimulus like listening to music are encoding distractors.
Distractors that divide our attention. Without an effective encoding
process we never get the information we need to reason about. Our
understanding of the problem at hand is incomplete at best.

Now, picture that our encoding was successful. That brings us to our next
cognitively sensitive mechanism. Our primary tool, the brain, has limited
capacity for the processes programming relies on. One of those core

processes involves the conceptual construct
called working memory. Working memory
is the mental workbench of our mind. It’s
what we use to hold information in our head
and integrate it with existing knowledge. It’s
a cognitive component vital to high-level
reasoning and mental manipulation of
information. Our working memory is also a
strictly limited resource. Depending on the

type of information, our working memory is able to hold a mere 4–7 items
simultaneously. And that’s under ideal conditions; when listening to music
we drain this scarce resource further.

The research on the subject is quite consistent here; when it comes to
cognitively challenging tasks, we perform at optimum in quiet conditions.
If quiet conditions aren’t possible, masking the background noise may
increase performance but never to the optimal level reached under quiet
conditions (see for example Loewen & Suedfeld [5] or Shih, Huang &
Chiang, [6]).

Music or colored noise?
As a way around the cognitive costs of music, some programmers prefer
colored noise. Colored noise is computer generated waves based on
different mathematical models. The best known of these models is
probably white noise, which is a random signal but with equal power in
all frequency bands.

There’s been a lot of interesting research into the field of colored noise.
One frequently quoted study investigated white noise as a tool to increase
attention in young students with attention hyperactivity disorder (ADHD).
And indeed, white background noise helped the students in the study to
reach performance improvements [7]. This sure is promising research. But
the main problem when following up on the results is that they don’t
generalize to the population at large.Worse, the same research team found
that white noise significantly hindered the attention of the students who
normally paid attention.

Taken to our field of programming, these findings suggest that white noise
works well as a noise cancellation technique but, just like music, it cannot
compensate for quiet working conditions. Colored noise isn’t a panacea
either.

The subjective component

Ultimately, the choice between music and colored noise boils down to
personal preferences. A recent study found that the influence of
background music on concentration had more to do with the listener’s
fondness for the music than the particular type of music. It’s an effect that
applies to both ends of the subjective awesomeness spectrum of music
preferences: the music that has the most negative impact on your
concentration is the one that you either strongly like or dislike [3]. The
reasons are probably that the more a certain kind of music affects us
emotionally, be it in a positive or negative way, the more of our cognitive
resources are allocated to attend to it.

That research points us towards a local optimum. Within your musical
preferences there’s likely to be music that’s more or less suitable to code
to. A further guiding principle is found in related neuropsychological

I’d give instrumental music
the upper edge since it’s

associated with other
positive side effects
8 | | JAN 2014{cvu}

The Soundtrack to Code (continued)
research. That research suggests that our brain processes lyrical and
melodic parts separately. For our conclusions, not only does music draw
on our limited cognitive capacity; music with lyrics put an additional load
on our resources. The lyrics seem to be a competitor for our attention.

Choosing our soundtrack

These conclusions leave us with a choice between instrumental music or
colored noise. Both have the capability to reduce the distractions of random
office noise and both imply a slight cognitive performance dip. Which one
do we choose when we have to? Again, it comes down to personal
preferences. Both alternatives will do. I’d give instrumental music the
upper edge since it’s associated with other positive side effects. One such
effect is the common positive mood induction provided by listening to
music. Music may also reduce mental stress and even inspire us on a long-
term basis [4]. So, if it’s going to affect your performance in a negative
way, why not make the best out of it and make the cognitive distractor
enjoyable?

Personally I prefer either instrumental music or music of ambient nature
where the lyrics are less salient. Music, where the voice serves more like
an additional instrument. My preferred choice is atmospheric black metal.
It’s a kind of music where the main goal is to put the listener in a certain
emotional state. It’s music of a highly meditative character that I found
works well for both transitioning into the zone and maintaining my
concentration once there. Similarly I’ve found that certain electronic music
share similar qualities. Your mileage will probably vary.

Summary
All recommendations have to be put in a context. If you’re searching for
a distraction to get you through a repetitive routine task, music is an

excellent choice. It may get you to perform slightly better and make the
task more enjoyable in the process. Lyrics or not, choose your favorite acts
here.

While music may well boost our mood and performance during routine
tasks, it’s negative toll on job performance during novel and cognitively
demanding tasks is significant. The only thing that’s worse with respect
to auditory disturbances is a noisy work environment. Until that root
problem is addressed, music remains a decent workaround with additional
positive benefits on mood and motivation. You personal choice of
soundtrack to code to will probably differ from mine. But for an optimal
performance I recommend selecting music with similar characteristics.

References
[1] DeMarco, T., & Lister, T. (1999). Peopleware: Productive Projects

and Teams (Second Edition)
[2] Kirkpatrick, F. H. (1943). Music in industry.
[3] Huang, R., & Shih, Y. (2011). Effects of background music on

concentration of workers.
[4] Jiang, X., & Sengupta, A. K. (2011). Effect of Music and Induced

Mental Load in Word Processing Task .
[5] Loewen, ,L.J., & Suedfeld, P. (1992). Cognitive and arousal effects

of masking office noise.
[6] Shih, Y., Huang, R., & Chiang, H. (2009). Correlation between work

concentration level and background music.
[7] Söderlund, G., Sikström, S., Loftesnes, J. M., & Sonuga-Barke, E. J.

(2010). The effects of background white noise on memory
performance in inattentive school children.
Phenomenal Software Development
Charles Tolman considers the philosophical implications of

software development.

Why explore phenomenology?
s we have progressed through the industrial revolution into our
current wide ranging use of information technology, there has been
a big change in the form of the tools that we use. The massive impact

of this transition from external physical tools to internal virtual tools has
largely been unconsciously experienced.

Edgar Dykstra back in 1972 was a notable exception when he gave a talk
saying:

Automatic computers have now been with us for a quarter of a century.
They have had a great impact on our society in their capacity of tools,
but in that capacity their influence will be but a ripple on the surface of
our culture, compared with the much more profound influence they will
have in their capacity of intellectual challenge without precedent in the
cultural history of mankind.

Currently our society is heavily based upon the underlying Cartesian
dualistic worldview. Along with this orientation we tend to
focus primarily on results and though this has been necessary, it has some
significant negative consequences. I believe that with the move to virtual
tools, the cracks are beginning to show in the Cartesian worldview and its
appropriateness for modern times. As computing has progressed along
with this has been a questioning of just what it is to be human.

I consider that phenomenology – regardless of whether you can pronounce
it or not! – can lead us to a more integrated worldview and I believe the
industry needs this more balanced, more human, view if it is to
constructively progress.

Overview
I will be starting by providing an overview of my own background. This
is important so that you can get a sense of the experiences and thinking
that have shaped my conclusions. Only then can you be free to decide what
you want to take and what you want to leave.

Then I give some key observations that I’ve made through my career
particularly the one about what I call ‘Boundary Crossing’, followed by a
short overview of some philosophical ideas. But please note I am not an
academic philosopher. Two particular philosophers I highlight are

 A

CHARLES TOLMAN
Charles is a software architect coding mainly in C++.
Starting in electronics in the mid 70s, he moved into
software after getting an Electronic Engineering degree.
He is interested in programmer development as much
as in technical competence. Charles blogs at
http://charlestolman.com
JAN 2014 | | 9{cvu}

Descartes and Goethe as they represent two realms of thought that I
consider relevant in their impact on software development. Notable issues
here are: Knowledge Generation, Imagination and the Patterns movement.

I then have some conclusions about how we might progress into the future
– both with technology development and technology use.

A programmer’s background : Novice – the early years
I started out being interested in electronics at 17 back in 1974. Originally
I was a shy young adolescent nerd who found comfort in the inner world
of thought. Also I was not good at dealing with members of the opposite
sex, which I believe could be quite a common phenomenon among younger
software developers.

Thereafter I gained entry to Southampton University in order to study
electronic engineering gaining my degree in 1979. Even at this stage I
realized that I wanted to move from hardware development to software
development, although I only had an unconscious sense of this physical to
virtual transition.

Early programming tasks were a hobby at the time and were based on
programming games in BASIC on computers I had built from a kit. There
was an initial foray into trying to do an IT records management application
which I messed up completely.

Then came the job in the field of media TV and film editing systems where
I was definitely feeling that I was working with ‘cool’ tech. Definitely a
time of being enticed by the faery glamour of the technological toys.

A programmer’s background : Journeyman – the
dangerous years
It was the next phase of the career that I call the dangerous time. A time
characterized by the following traits:

 Wanting to play with more complex and generic structures. (Many
of which did not actually get used!)

 A focus on the tools rather than the problem.

 The creation of unnecessarily complex systems, letting the internal
idea overshadow the external problem context.

 An arrogance about what could be achieved – soon followed by
absolute sheer panic as the system got away from me.

 No realization that the complexity of thought required to debug a
system is higher than that required to originally design and code the
system.

This phase of a career can last for a long time and highlights the fact that
the programmer needs to become more self-aware in order to progress
from this stage. In fact some people never do.

This can be a real problem when recruiting experienced programmers.
When interviewing I separate the time into two sections. Initially I ensure
that the interviewee has the required level of technical competence, and
once I feel they are more settled I move on to see just how self-aware they
are.

One question I use here is “So tell me about some mistakes?” There are
two primary indicators that I am looking for in any response. The first one
is the pained facial expression as they recall some past mistakes that they
have made in their career and how they have improved in the light of those
experiences. The second is the use of the word ‘I’.

‘I’ is an important word for me to hear as it indicates an ownership and
awareness of the fact that they make mistakes without externalising or
projecting it onto other people or the company. This is important because
it will show the degree of openness that the interviewee has to seeing their
own mistakes, learning from them, and taking feedback. A programmer
who cannot take feedback is not someone I would recruit.

A programmer’s background : Grumpy old
programmer
This ‘Old Grump’ phase is possibly a new one that developers go through
before reaching Master level. I hesitate to describe myself as Master but
am currently definitely at the Old Grump stage! Traits here I have
experienced are:

 Awareness of the limitations of one’s own thinking, after realizing
again and again just how many times one has been wrong in the past.
Particularly easy to notice when debugging.

 Realization that maintenance is a priority, leading to a drive to make
any solutions as simple and clear and minimalist as possible.
Naturally the complexity of the solution will need to match if not
exceed the complexity of the problem. Once one has experienced the
ease with which it is possible to make mistakes it is always worth
spending more time making solutions that are as simple as possible,
yet do the job. An Appropriate Minimalism.

 Code ends up looking like novice code, using complexity and ‘big
guns’ when required.

 A wish to find the true essence of a problem, but when implementing
using balanced judgement to choose between perfection and
pragmatism.

 Most people think that because you are more experienced you are
able to do more complex work. The paradox is that the reason you
do better is that you drop back to a much more simple way of seeing
the problem without layering complexity upon complexity. (This
strongly correlates with the phenomenological approach.)

Philosophical considerations
So I hope that gives you some idea of the changes in thinking that can occur
throughout a career in programming. In subsequent articles I want to draw
out some key observations and link them to philosophical developments
that have taken place over the last 300 years or so.

It is not widely recognized that there has been a sea-change in
philosophical thought during the 1900s and these major changes are
starting to make themselves felt with a vengeance in our society. I intend
to show that the practice of software development can provide significant
insights into how to deal with these changes and I hope to lead you to a
wider vision of what we are doing.

It is not just class diagrams, languages, stand-ups and typing!

the programmer needs to become
more self-aware
10 | | JAN 2014{cvu}

An Unexpected Journey
Jez Higgins finds treasure in the new Java.

teve, who you may have noticed at the front of this very magazine,
recently published narl, a C++ range library, on GitHub [1]. I read
through the code but only caught up with the accompanying

Overload article [2] a few weeks later. I liked the code, but I really liked
the article. I liked it so much, I read it twice. And then I wrote some code
of my own.

A few years ago I gave a couple of talks on doing useful things with
iterators, specifically in Java, looking at using them for filtering,
transformation, and so on. The main idea I was trying to get across was
that while iterators, particularly in Java, are mainly used to loop from one
end of a collection to another, iterators are a useful thing in their own right.
They could iterate over anything, even things that didn’t exist. This is a
more familiar idea in C++, where stream extractors and insertors exist as
part of the standard library, but still not as widely applied as it might be.
This is, I’d suggest, primarily because of the pointer-like nature of C++
iterators, which means you have to write a lot of things twice. As a case
in point, Listing 1 is a snatch of sample code featuring a C++ filtering
iterator [1].

The filter_iterator does what its name suggests and its use is
straightforward, but my those declarations are clunky. Think about trying
to combine it with an another wrapper iterator, perhaps a transformer, and
you can see it would all get very messy very quickly.

Coming back to Java, I think what I was saying was good stuff and
fundamentally sound (I got quoted, almost verbatim but unconsciously I’m
sure, by Kevlin in one of his Conference talks a couple of years back so it
must have been ok), but the code was just as unwieldy to work with:

 Iterator<U> b = new Transformer<T, U>(
 new Filter<T>(list, new Predicate<T> { ... }),
 new Function<T,U> { ... });
 ...

There is SO MUCH NOISE – those pointy brackets, the anonymous
classes, new this, new that, new the other! Plus it’s all in the wrong order.
Actually it’s worse than the wrong order – it’s just in a crazy order. It really
isn’t obvious what’s going on. I did build some quite handy stuff with it,
and other people did too, but I was never really happy with it.

Like Steve, I was also in Andrei’s ranges talk [5]. The ideas he described
and the code he presented were terrific and I got quite excited. However,
I wasn’t working in C++ at the time and I guess I was waiting for Andrei’s
range library to appear. Of course, he headed off and wrote it in D. More
importantly even though what he was describing as a range was,
conceptually, very close to a Java iterator, and it was only a few months
since I’d given my own presentation I just didn't make the connection.
Basically, I am an idiot.

I get it now though, because Steve pulled me by the nose to it through his
article. There’s an elegance and clarity to Steve’s narl stuff. You read the
line and you know what it does (Listing 2).

It’s lovely. It’s why C++ is so cool sometimes – no base classes, no runtime
overheads, clear syntax, extensible, etc, etc. (Steve’s written a one-article
argument for operator overloading and it’s incidental to his main topic.)
Reading that code, I had an epiphany.

So I went back to the Java world I mainly live in now, put back in the base
classes and the runtime overhead, sacrificed the extensibility, but
hopefully managed to retain some of the clarity. Now I’m writing code like

 Iterator<U> = from(list).
 where(new Predicate<T> {...}).
 select(new Function<T, U> {...});

This is does exactly the same thing as the noisy code snippet above except
that what it does is much clearer. There’re still the news and more pointy
brackets than you’d like, but it’s much, much better. That’s quite a good
result.

One of the reasons Steve’s code looks so pleasing is we now live now in
a previously unimaginable crazy futureworld where C++ got lambdas
before Java. Some time next year (and, of course, subject to our corporate
overlords and their various contractual relationships) those of us nurdling
around in Javaland will be able to replace those clunky anonymous classes
with sleek new Java lambdas.

We’ll go from this

 List<U> r = from(list).
 where(new Predicate<T>
 { public boolean test(T t) { ... }).
 select(new Function<T, U>
 { public U apply(T t) { ... }).
 toList();

to this

 List<U> r = from(list).
 where(t -> ...).
 select(u -> ...).
 toList();

Even nicer!

I confess to not having paid a huge amount of attention to Java 8 and its
feature set. It’s been so long coming, it was starting to feel a little like
Perl 6, always just over the horizon. It turns out if we dig a little deeper in
Java 8, we can write this

 List<U> r = list.stream().
 filter(t -> ...).
 map(u -> ...).
 collect(Collectors.toList());

and I can chuck out my code completely. Remarkably this stuff, called
Streams, is baked into the standard java.util package.

 S

JEZ HIGGINS
Programming for over 30 years, using 20 or so different
languages, in a dozen different fields, Jez Higgins is still
trying to work out how to do it properly. If you can help, he
can be contacted at jez@jezuk.co.uk

filter_iterator<int> fb(vec.begin(), vec.end(),
 Even());
filter_iterator<int> fe(vec.end(), vec.end(),
 Even());
for(; fb != fe; ++fb)
{
 ... do something with *fb ...
} // for ...

Li
st

in
g

1

auto r = from(src)
 | where([](const item& i) {
 return i.size() > 0; })
 | select([](const item &i) {
 return i.name(); });

Listing 2
JAN 2014 | | 11{cvu}

I say remarkably because the java.util package, while undeniably Java,
hasn’t laboured very much on the util. The Queue and Deque interfaces
and their implementations, for instance, didn’t arrive until Java 6. The
Objects utility methods didn’t arrive until Java 7. Many of the iterfaces
and classes in util try to give the impression of being useful through
maximalism – they have lots and lots of methods. Lots of methods must
mean more utility, right? Right? Well, no.

Consider the List iterface, which has 23 methods. It includes a full set
of methods to get, set, insert, and remove items from the list at a specific
index, regardless of the fact that you almost certainly only want to perform
those operations on a List that provides O(1) random access. You almost
certainly don’t want to be doing on a linked list for instance. But not only
will Java let you, its library interfaces mandate that a list, any list, all
Lists, must support it.

There’s the rather curious retainAll(Collection<T> coll)
method, which removes everything from the List which isn’t in the
provided collection. I accept there are times when you want to this, but it’s
not so common you need to provide it as a method on all List
implementations. Surely the more common case, given that you’ve
gathered up the things you need into a second collection already is simply
to discard the first collection and keep the second?

A rather striking omission from the List interface is sort. That’s a really,
really common operation and one that could reasonably be provided as a
member method. ArrayList.sort, for instance, could index directly
into its underlying array, while LinkedList.sort would have to go
rather more round the houses. Instead we have the Collections.sort
static method. It’s ‘generic’ in the sense that it works with all List
implementations and treats them all in the same way. And that way is to
copy the list’s contents into an array, sort the array, and then write the
array’s contents back into the list. It’s about as horrible a way to sort a list
as you can think of. (Collections.sort is called sixteen times in the
Java 7 source while List.retainAll is not, as far as I can tell, used in
the Java 7 source at all.)

As an additional oddity, since Java 1.4 java.util has provided the
RandomAccess marker interface to indicate that Lists support fast
random access. Presumably it was dropped in because somebody
somewhere reviewed List and clapped a hand to their forehead while
yelling a loud ‘DOH’. Backward compatibility ruled out changing List
too radically and so RandomAccess was introduced ‘to allow generic
algorithms to alter their behaviour to provide good performance when
applied to either random or sequential access lists’. If you poke around in
the handful of generic algorithms provided in Collections, shuffle
for instance, rotate, or swap, they do all check for and switch on
RandomAccess and act accordingly. But not sort. Even in Java 8, the
single most common List operation copies the list into an array, sorts the
copy, then does a linear traverse to overwrite the original.

By constrast, the new Streams stuff looks terrific (and I’m not just saying
that because it looks virtually identical to the code I wrote) and I hope it
introduces a step-change in how we use Java collections.

Another confession – I didn’t actually set out to write an article about
iterators and ranges. I wrote a number of shorter pieces on my blog which
just seemed to fit together. One of those pieces was, I later discovered, was
picked up on reddit [7] where quite a healthy discussion ensued. A mildly
sarcastic commenter there suggested that this fancy Java 8 Streams
business wasn’t anything new, because it’s existed in Groovy for years.
Well, yes and also no.

Groovy (once the shiny new future of development in Java and now
possibly suffering a mild existential crisis) has a cunning (and/or
dangerous, depending on your outlook) extension (and/or hack, depending
on your outlook) mechanism for grafting new methods into existing
classes. The prime use for these extensions is the Groovy JDK, which adds
any number of methods into the JDK classes to make them, well, make
them more Groovy.

Among the methods added to Iterator are various sort, takes, and
sums, but nothing directly equivalent to filter/map (aka where/

select). There is a grep method added to Collection, but that returns
another Collection. However, this isn’t really what sets Java 8 apart
from Groovy – after all you could always write your own extensions to
add those methods in yourself. The thing that sets Java 8 Streams apart is
the drop dead simple support for parallelism.

Java has had support for parallelism since it was launched, and has
gradually got to the point where it’s actually usable. Streams, to my
untutored look really quite remarkably easy. ACCU stalwart Russel
Winder, who knows far more about high performance numerical
computing than I ever will, often uses quadrature calculation of pi as an
example. Listing 3 is a simple serial version, which on my machine outputs
3.141593 12.560689.

Quadrature calculation of pi is a problem Russel describes as
‘embarrassingly parallel’. What he means by that is that you can divide
the calculation into as many chunks as you like, evaluate them in any order,
combine them back together, and the result is the same. Let’s chunk it up
(Listing 4).

My machine gives

 3.141593 12.379540 1
 3.141593 11.487891 2
 3.141593 9.969373 8
 3.141593 10.028523 16

As you’d expect the same value of Pi, with more or less the same run time.
That for loop is a bit last century, given my current obsession with ranges
and streams. Let’s rewrite the for loop with an integer range and head into
the future with a nice map and sum. (See Listing 5.) Again, as we would
expect, the results are as before.

 3.141593 11.982472 1
 3.141593 11.369035 2
 3.141593 10.302495 8
 3.141593 10.302260 16

Now let’s go parallel. Look carefully or you’ll miss it (Listing 6). As ever,
the value of Pi is unchanged:

 3.141593 12.535362 1
 3.141593 6.488914 2
 3.141593 4.017939 8
 3.141593 1.519504 16
 3.141593 1.522862 32

public class Serial {
 private static void pi() {
 final long startTimeNanos =
 System.nanoTime();
 final int n = 1000000000;
 final double delta = 1.0 / n;
 final double pi =
 4.0 * delta * multiplier(n, delta);
 final double elapseTime =
 (System.nanoTime() - startTimeNanos) / 1e9;
 System.out.println(String.format("%f %f", pi,
 elapseTime));
 }
 static private double multiplier(int count,
 double delta) {
 final int start = 1;
 final int end = count;
 double sum = 0.0;
 for (int i = start; i <= end; ++i) {
 final double x = (i - 0.5) * delta;
 sum += 1.0 / (1.0 + x * x);
 }
 return sum;
 }
 public static void main(final String[] args) {
 pi();
 }
}

Listing 3
12 | | JAN 2014{cvu}

but look at the run time fall! My machine has an i7 with 8 cores and
hyperthreading is on, so 16 threads of execution saturates it and you’d
expect to see a small degradation in speed as you push the number of
chunks beyond that.

To move the calculation from a serial mode to a parallel mode took one
line of code. That’s pretty lovely.

Russel has a vast number of examples in any number of languages in his
Github repository, from where I adapted the code above. I can’t claim to
have read them all but the Java 8 version is one of the easiest to read and

comprehend, ahead even of the Clojure, D, and Go examples. Parallel
processing in readable Java – that really is remarkable!

It’s a funny old business software development. Despite my excitement,
there’s no new computer science anywhere in this article. We can probably
trace the core of ranges and the declaratively functional programming style
they allow to the discussion over coffee that ensued after McCarthy first
delivered his paper on Lisp. There’s a more personal narrative in here –
and again this is not a new conclusion – it’s that software development and
getting better as a programmer is a long game. Everything’s relevant, but
you can never know when until the stars align and the pieces come
together. A lecture from Andrei Alexandrescu, an encounter with C#, and
the arrival of C++ lambdas – over the course of several years – combined
set up Steve to write his library. That proved to be the key that crystallised
out ideas I’d been kicking around for at least as long, and my understanding
of containers and how to manipulate them and their contents has moved
into some kind of higher realm. Trying to put that understanding into code
lead me to dig into Java’s past and then become quite excited about its
future, while learning something new about parallel computing.
Achievement unlocked! Level up! So thanks, Steve. Thanks Andrei.
Thanks everyone.

So, where next?

References and more information
[1] narl - Not Another Range Library, http://github.com/essennell/narl
[2] ‘Range and Elevation’, Overload 117
[3] ‘Finding the Utility in a java.util.Iterator’, http://www.jezuk.co.uk/

accu2007/iterator/
[4] A filtering iterator in C++, http://www.jezuk.co.uk/cgi-bin/view/jez/

2008February#3612
[5] Iterators Must Go!, http://accu.org/content/conf2009/

AndreiAlexandrescu_iterators-must-go.pdf
[6] java.util.List, http://docs.oracle.com/javase/7/docs/api/java/util/

List.html
[7] Nice post on what lambdas will look like in Java 8,

http://www.reddit.com/r/programming/comments/1rumev/
nice_post_on_what_lambdas_will_look_like_in_java_8/

[8] Creating an extension module, http://docs.codehaus.org/display/
GROOVY/Creating+an+extension+module

[9] Pi Quadrature, https://github.com/russel/Pi_Quadrature/

public class SerialChunk {
 private static void pi(int chunks) {
 final long startTimeNanos =
System.nanoTime();
 final int n = 1000000000;
 final int chunkSize = n / chunks;
 final double delta = 1.0 / n;
 double multiplier = 0.0;
 for (int i = 0; i < chunks; ++i)
 multiplier += multiplierChunk(i,
 chunkSize, delta);
 final double pi = 4.0 * delta * multiplier;
 final double elapseTime =
 (System.nanoTime() -
 startTimeNanos) / 1e9;
 System.out.println(String.format("%f %f %d",
 pi, elapseTime, chunks));
 }
 static private double multiplierChunk
 (int chunk, int chunkSize, double delta) {
 final int start = 1 + (chunk * chunkSize);
 final int end = (chunk + 1) * chunkSize;
 double sum = 0.0;
 for (int i = start; i <= end; ++i) {
 final double x = (i - 0.5) * delta;
 sum += 1.0 / (1.0 + x * x);
 }
 return sum;
 }
 public static void main(final String[] args) {
 pi(1);
 pi(2);
 pi(8);
 pi(16);
 }
}

Li
st

in
g

4

import java.util.stream.IntStream;
public class SerialStream {
 private static void pi(int chunks) {
 ...
 double multiplier =
 IntStream.range(0, chunks)
 .mapToDouble(chunk ->
 multiplierChunk(chunk,
 chunkSize, delta)).sum();
 ...
 }
 static private double
 multiplierChunk(int chunk, int chunkSize,
 double delta) { ... }
 public static void main(final String[] args) {
 pi(1);
 pi(2);
 pi(8);
 pi(16);
 }
}

Li
st

in
g

5

import java.util.stream.IntStream;
public class ParallelStream {
 private static void pi(int chunks) {
 ...
 double multiplier =
 IntStream.range(0, chunks).
 parallel().
 mapToDouble(chunk -> multiplierChunk
 (chunk, chunkSize, delta)).sum();
 ...
 }
 static private
 double multiplierChunk(int chunk,
 int chunkSize, double delta) { ... }
 public static void main(final String[] args) {
 pi(1);
 pi(2);
 pi(8);
 pi(16);
 pi(32);
 }
}

Listing 6
JAN 2014 | | 13{cvu}

https://github.com/russel/Pi_Quadrature/
http://docs.codehaus.org/display/GROOVY/Creating+an+extension+module
http://docs.codehaus.org/display/GROOVY/Creating+an+extension+module
http://www.reddit.com/r/programming/comments/1rumev/nice_post_on_what_lambdas_will_look_like_in_java_8/
http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://docs.oracle.com/javase/7/docs/api/java/util/List.html
http://accu.org/content/conf2009/AndreiAlexandrescu_iterators-must-go.pdf
http://accu.org/content/conf2009/AndreiAlexandrescu_iterators-must-go.pdf
http://www.jezuk.co.uk/cgi-bin/view/jez/2008February#3612
http://www.jezuk.co.uk/cgi-bin/view/jez/2008February#3612
http://www.jezuk.co.uk/accu2007/iterator/
http://www.jezuk.co.uk/accu2007/iterator/
http://github.com/essennell/narl

Generating Code from a Unit Test (Part 3)
Richard Polton generates the code to pass his unit tests.

ast time we were talking we had managed to construct some program
code which generated a simple interface definition given some unit
tests as input and we finished with a few suggestions for future areas

of development. Today we are going to create an implementing class from
the interface already constructed. Given the interface declaration syntax
iface, the following code snippet produces a public class, uninspiringly
called className, which implements the interface. Currently the method
bodies do no more than return a default-valued object of the appropriate
type, but first steps So, given the interface declaration, for each of the
function members contained therein construct an implementing function.
Then create a class declaration which incorporates these implementing
functions (Listing 1 and Listing 2), which results in Listing 3.

Very interesting, I hear you say, but how do we generate a meaningful
function body? Clearly, for boolean functions, we can automatically
generate the return statement and supply the correct value roughly half of
the time. However, in order to supply the correct return statement all of
the time we need more information when generating the function itself.
Specifically, we need the assertion method that was used to generate the
function signature when building the interface. This complicates the data
flow slightly as we will need to pass additional information with the syntax
tree we have generated.

Having established that we need to pass the assertion information with the
function signature, how should we go about doing this? We could create
a second parallel data structure which is keyed into the syntax tree that we
generated in some manner. For the purposes of this article, though, let us
modify the manner in which we create the syntax tree that we generate to
describe the interface so that we can store this additional information in
the syntax tree itself, as comments or attributes or similar.

If we choose to represent the additional assertion information in comments
then we can simply render the text of the original code as the comment.
Presumably we could parse the comment into a tree or similar should we
choose to do so. Attributes support a tree structure although not necessarily
the same tree structure as the original node. The downside with the use of
attributes is that we would want the final code to be compilable and
therefore the attribute class used must necessarily exist.

So let us create an AssertionOriginAttribute that we can utilise in
the code generation. If we construct this attribute with the assertion
expression which led to the generation of the function under investigation
then we should be able to recover the information when we try to generate
a compliant function body. This should work particularly well as we
already know how to parse the expression having done so in a previous
article [1].

When building the Syntax.MethodDeclaration sequence in
InterfaceNameAndMethodDeclarations.MethodDecls we
attach an attribute list to each of the interface functions using Listing 4.
This change leads to an interface like Listing 5, which gives us the
information that we need at the same time as being almost valid C#. I
suppose if we made the assertion expression a lambda function then it
would be legal C# but let’s not worry about that now.

Now, when generating the return statement in the class method/function,
we can parse the InvocationExpressionSyntax object contained
within the attribute and determine what the return value is expected to be.
Thus, let us change ConstructImplementingFunction so that,
instead of returning a default 'new T()', we return the expected value.

And so now we have Listing 7.

 L

RICHARD POLTON
Richard has enjoyed functional programming ever
since discovering SICP and feels heartened that
programming languages are evolving back to
LISP. He likes ‘making it better’ and enjoys riding
his bike when he can’t. He can be contacted at
richard.polton@shaftesbury.me

private static ClassDeclarationSyntax
 CreateImplementingClass
 (InterfaceDeclarationSyntax iface)
{
 var memberDecls =

iface.Members.OfType<MethodDeclarationSyntax>()
 .Select(ConstructImplementingFunction);
 return Syntax.ClassDeclaration(
 attributeLists:
 new SyntaxList<AttributeListSyntax>{},
 modifiers: Syntax.TokenList(
 Syntax.Token(SyntaxKind.PublicKeyword)),
 identifier: Syntax.Identifier("className"),
 typeParameterList: null,
 baseList: Syntax.BaseList(
 new SeparatedSyntaxList<TypeSyntax>().
 Add(new [] {Syntax.IdentifierName
 (iface.Identifier)})),
 constraintClauses: null,
 members: Syntax.List<MemberDeclarationSyntax>
 (memberDecls));
}
private static MemberDeclarationSyntax
 ConstructImplementingFunction
 (MethodDeclarationSyntax method)
{
 var returnStmt = Syntax.ReturnStatement(
 Syntax.Token(SyntaxKind.ReturnKeyword),
 Syntax.ParseExpression("new " +
 method.ReturnType.ToString() + "()"),
 Syntax.Token(SyntaxKind.SemicolonToken));
 return Syntax.MethodDeclaration(attributeLists:
 new SyntaxList<AttributeListSyntax> { },
 modifiers: Syntax.TokenList(
 Syntax.Token(SyntaxKind.PublicKeyword)),
 returnType: method.ReturnType,
 explicitInterfaceSpecifier: null,
 identifier: method.Identifier,
 typeParameterList: null,
 parameterList: method.ParameterList,
 constraintClauses: null,
 body: Syntax.Block(statements: new[]
 { returnStmt }));
}

Listing 1

var classDeclaration = interfaceProgramCode.
 Select(CreateImplementingClass);
var classDecl_asString = classDeclaration.
 Select(pc =>
 pc.NormalizeWhitespace().ToFullString());

Listing 2
14 | | JAN 2014{cvu}

As we said above, little steps. At this point we can say that we have
automatically generated a class that correctly implements the expected
interface and satisfies the supplied unit tests. Unfortunately the unit tests
were of low quality. Is there anything else we can infer from the tests as
they are presented? Notice that Verify is called with a literal '1'. It seems
reasonable to assume that the test was expected to succeed because the
parameter was '1' (otherwise what would be the purpose of the parameter?)
so let us parse the attribute and extract the function parameter(s). A
reasonable first attempt at a conformant function body would be something
like

 {
 return parameter == 1;
 }

In o r d e r t o ac h i eve t h i s we n ee d to mo d i fy ou r
DeriveExpectedReturnValue function, let’s rename it to
DeriveExpectedReturnExpression, so that it parses the argument
list at the call site and extracts the parameter passed. So let us change the
function to check for any parameters and, if they exist, parse them. For
example, given the InvocationExpressionSyntax that describes
the assertion statement, we can build an expression to be returned using
the code in Listing 8.

If the predicate evaluates to false then return the literal expression as
before. Now we have Listing 9.

Okay, all well and good. How about we add another test function in which
we call Verify and assert that its return value is false? So, let us add the
below to our unit test suite.

 [Test]
 public void ThisIsATest3()
 {
 var a = Mock<AnInterface>();
 Assert.IsFalse(a.Verify(2));
 }

classDecl_asString.ToList()
Count = 1
 [0]:
 public class className : AnInterface
 {
 public bool DoIt()
 {
 return new bool ();
 }
 public bool Verify(Int32 a)
 {
 return new bool ();
 }
 }

Li
st

in
g

3

WithAttributeLists(
 Syntax.List<AttributeListSyntax>(
 Syntax.AttributeList().WithAttributes(
 Syntax.SeparatedList<AttributeSyntax>(
 Syntax.Attribute(
 Syntax.ParseName
 ("AssertionOriginAttribute"),
 Syntax.AttributeArgumentList(
 callingAssertionExpr.
 ToAttributeArgumentSyntaxList())
)))))

Li
st

in
g

4

interfaceProgramCode_asString.ToList()
Count = 1
 [0]:
 public interface AnInterface
 {
 [AssertionOriginAttribute
 (Assert.IsTrue(a.DoIt()))]
 public bool DoIt();
 [AssertionOriginAttribute
 (Assert.IsTrue(a.Verify(1)))]
 public bool Verify(Int32 a);
 }

Li
st

in
g

5

var expectedReturnValue =
 DeriveExpectedReturnValue(
 (InvocationExpressionSyntax)
 assertionAttrs.Attributes
 .First().ArgumentList.Arguments.
 First().Expression));
// DeriveExpectedReturnValue from the method
// attribute list
var returnStmt = Syntax.ReturnStatement(
 Syntax.Token(SyntaxKind.ReturnKeyword),
 expectedReturnValue,
 Syntax.Token(SyntaxKind.SemicolonToken));

Li
st

in
g

6

classDecl_asString.ToList()
Count = 1
 [0]:
 public class className : AnInterface
 {
 public bool DoIt()
 {
 return true;
 }
 public bool Verify(Int32 a)
 {
 return true;
 }
 }

Li
st

in
g

7

// a.DoIt() or a.Verify(1)
var assertionArgList = expr.DescendantNodes().
 OfType<ArgumentListSyntax>();
// () or (1) in our example
var functionUnderTestArgList =
 assertionArgList.SelectMany(args =>
 args.DescendantNodes().
 OfType<ArgumentListSyntax>());
if (functionUnderTestArgList.
 First().Arguments.Any())
{
 return Syntax.BinaryExpression(
 SyntaxKind.EqualsExpression,
 Syntax.IdentifierName("a"),
 functionUnderTestArgList.First().
 Arguments.First().Expression);
}

Listing 8

classDecl_asString.ToList()
Count = 1
 [0]:
 public class className : AnInterface
 {
 public bool DoIt()
 {
 return true;
 }
 public bool Verify(Int32 a)
 {
 return a == 1;
 }
 }

Listing 9
JAN 2014 | | 15{cvu}

Given the current implementation of DeriveExpectedReturn
Expression this should ‘Just Work’™. Let’s try...(Listing 10).

Ah! Of course! Now we have multiple tests for the same function thus
making our code generator a little more complex. The problem we have
at the moment is that we create a new assertion attribute are created for
each Assertion s tatement. However, with the addition of
ThisIsATest3, we now have two Assertion statements for the single
Verify function. Looking back at the interface generation code we can
see that Verify is now twice-declared there too, cf. (See Listing 11.)

So the problem is at least two-fold. The multiple assertions need to be
folded into the single interface function declaration and also into a single
function body in the implementing class. We need to cast our minds back
to the definition of ConstructMethodDeclarations because, right
now, this is returning one interface having three functions instead of two.
We need something more sophisticated than a GroupBy expression to
bu i ld the declara t ions . Cas t your mind back a whi le . The
ConstructMethodDeclarations function loops through the
assertion statements and, essentially, returns a collection of method
declarations, one for each assertion statement. We need to change this so
that the assertions are grouped in some manner so that we can construct
the AssertionOriginAttribute list and populate it with multiple
assertions.

It seems, therefore, that we need to loop through the assertions first
building a container of interfaces and methods and then loop through the
resulting container grouping the methods Phew, okay back to the
drawing board.

Having recognised that there may be multiple assertions for any given
interface method, we change the function that constructs the interface
method declarations so that interfaceProgramCode_asString
contains (see Listing 12).

The revised ConstructMethodDeclarations function is now as in
Listing 13.

classDecl_asString.ToList()
Count = 1
 [0]:
 public class className : AnInterface
 {
 public bool DoIt()
 {
 return true;
 }
 public bool Verify(Int32 a)
 {
 return a == 1;
 }
 public void Verify(Int32 a)
 {
 return a == 2;
 }
 }

Li
st

in
g

10

interfaceProgramCode_asString.ToList()
Count = 1
 [0]:
 public interface AnInterface
 {
 [AssertionOriginAttribute
 (Assert.IsTrue(a.DoIt()))]
 public bool DoIt();
 [AssertionOriginAttribute
 (Assert.IsTrue(a.Verify(1)))]
 public bool Verify(Int32 a);
 [AssertionOriginAttribute
 (Assert.IsFalse(a.Verify(2)))]
 public void Verify(Int32 a);
 }

Li
st

in
g

11

public interface AnInterface
{
 [AssertionOriginAttribute
 (Assert.IsTrue(a.DoIt()))]
 public bool DoIt();
 [AssertionOriginAttribute
 (Assert.IsTrue(a.Verify(1))),
 AssertionOriginAttribute(
 Assert.IsFalse(a.Verify(2)))]
 public bool Verify(Int32 a);
}

Listing 12

public static Ienumerable<IGrouping<
 string, InterfaceNameAndMethodDeclarations>>
ConstructMethodDeclarations(SemanticModel model,
 IEnumerable<MethodDeclarationSyntax>
 methodsHavingTestAttributes)
{
 var assertedInterfaces =
 new List<AssertedInterface>();
 foreach (var testMethodDeclaration in
 methodsHavingTestAttributes)
 {
 // find the mocks
 var mocks =
 testMethodDeclaration.Body.Statements.
 SelectMany(stmt => stmt.DescendantNodes().
 OfType<GenericNameSyntax>()).
 Where(nm => nm.Identifier.ValueText ==
 "Mock");
 Func<GenericNameSyntax,IEnumerable<string>>
 mockedInterfaceTypes =
 mock => mock.TypeArgumentList.Arguments.
 OfType<IdentifierNameSyntax>().
 Select(ident => ident.Identifier.ValueText);
 // "AnInterface"

 // Find the variable declarations => get the
 // names. Recurse up through the tree from the
 // mocks to find the variable declarations.
 var varDecls = mocks.Select(mock =>
 new { Mock = mock, Decl = mock.Ancestors().
 OfType<VariableDeclarationSyntax>().
 First() });
 var varIdents = varDecls.Select(decl =>
 new { Mock = decl.Mock, Identifier =
 decl.Decl.DescendantNodes().
 OfType<VariableDeclaratorSyntax>().
 First().Identifier });
 var varNames = varIdents.Select
 (decl=>decl.Identifier.ValueText).ToList();

 // find the asserts
 var asserts =
 testMethodDeclaration.Body.Statements.
 SelectMany
 (stmt => stmt.DescendantNodesAndSelf().
 OfType<ExpressionStatementSyntax>()).
 Where(expr => expr.DescendantNodes().
 OfType<IdentifierNameSyntax>().
 Any(node => node.Identifier.ValueText ==
 "Assert"));

 // find the mocks' accesses -> fn names and
 // parameters, return values. We don't care
 // about functions which are not 'assert'ed

Listing 13
16 | | JAN 2014{cvu}

However, we still need to modify the class generation code because it does
not currently recognise multiple assertions for a single function. With a
little tweak to ConstructImplementingFunction to incorporate the
separate equalities into a single logical expression, we have
classDecl_asString (see Listing 14, overleaf).

And that, good reader, is where I will leave it for this instalment.

Reference
[1] CVu 25.4 and 25.5 ‘Generating code from a unit test’parts 1 and 2.

 // so search down from 'asserts' instead of
 // 'testMethodDeclaration.Body.Statements'
 var assertedMocks = asserts.Where
 (stmt => stmt.DescendantNodes().
 OfType<IdentifierNameSyntax>().
 Select(id => id.Identifier.ValueText).
 Intersect(varNames).Any());
 // Assert.IsTrue(a.DoIt());
 Func<ExpressionStatementSyntax,
 IEnumerable<InvocationExpressionSyntax>>
 extractInvocations =
 expr => expr.DescendantNodes().
 OfType<ArgumentListSyntax>().
 SelectMany(node =>
 node.DescendantNodes().
 OfType<InvocationExpressionSyntax>());
 var joinedMocksAndAssertedMocks =
 varIdents.Join(assertedMocks,
 ident => ident.Identifier.ValueText,
 assertedMock =>
 extractInvocations(assertedMock).First().
 DescendantNodes().
 OfType<IdentifierNameSyntax>().
 First().Identifier.ValueText,
 (ident, assertedMock) =>
 new AssertedInterface
 {
 Interface =
 mockedInterfaceTypes
 (ident.Mock).First(),
 AssertedMock = assertedMock,
 Invocation =
 extractInvocations(assertedMock)
 .First()
 });
 assertedInterfaces.AddRange
 (joinedMocksAndAssertedMocks);
 }
 // perform some sort of grouping - we need a
 // single instance of each function but there
 // could be multiple assertions for each
 // function. For each assertedInterface, group
 // all the assertions for each function
 // together
 var groupedInterfaces =
 assertedInterfaces.GroupBy
 (aif => aif.Interface);
 var methodDecls = new
 List<InterfaceNameAndMethodDeclarations>();
 foreach (var groupedInterface in
 groupedInterfaces)
 {
 var groupByFn = groupedInterface.GroupBy(
 grp=>grp.Invocation.DescendantNodes().
 OfType<IdentifierNameSyntax>().Skip(1).
 First().ToString());
 foreach (var gf in groupByFn)
 {
 var methodCalls = gf.ToList();
 var firstInvocation = methodCalls[0];
 var returnType = ExtractAssertionReturnType
 (firstInvocation.AssertedMock);
 // Could call
 // model.GetTypeInfo(invocationExpr) but
 // none of the names involved are defined
 // so the function returns ErrorType, ie
 // unknown
 var invocationArgList =
 firstInvocation.Invocation.ArgumentList
 as ArgumentListSyntax;

Li
st

in
g

13
 (C

on
t’d

)

 var invocationArgs =
 invocationArgList.Arguments;
 var functionParameterTypes =
 invocationArgs.Select(argSyntax =>
 {
 var argType = model.
 GetTypeInfo(argSyntax.Expression).Type;
 return Syntax.Parameter
 (Syntax.Identifier(@"a")).
 WithType(Syntax.ParseTypeName
 (argType.Name));
 });
 var fpt = functionParameterTypes.ToList();

 var method =
 new InterfaceNameAndMethodDeclarations
 {
 Name = groupedInterface.Key,
 MethodDecls = new[]{
 Syntax.MethodDeclaration(returnType,
 gf.Key).
 WithModifiers(Syntax.TokenList(
 Syntax.Token
 (SyntaxKind.PublicKeyword))).
 WithTfmIfTrue(
 t => t.WithParameterList
 (Syntax.ParameterList(
 Syntax.SeparatedList
 <ParameterSyntax>(fpt,
 Enumerable.Repeat(
 Syntax.Token
 (SyntaxKind.CommaToken),
 fpt.Count - 1)))),
 () => functionParameterTypes.Any()).
 WithSemicolonToken(Syntax.Token
 (SyntaxKind.SemicolonToken)).
 WithAttributeLists(
 Syntax.List<AttributeListSyntax>(
 Syntax.AttributeList()
 .WithAttributes(
 methodCalls.Select(invocation=>
 Syntax.Attribute(
 Syntax.ParseName
 ("AssertionOriginAttribute"),
 Syntax.AttributeArgumentList(
 invocation.AssertedMock.
 ToAttributeArgumentSyntaxList()
))).
 ToSeparatedSyntaxList())))
 }
 };
 methodDecls.Add(method);
 }
 }
return methodDecls.GroupBy
 (methodDecl => methodDecl.Name);
}

Listing 13 (cont’d)
JAN 2014 | | 17{cvu}

Generating Code from a Unit Test (Part 3) (continued)
public class className : AnInterface
{
 public bool DoIt()
 {
 return true;
 }
 public bool Verify(Int32 a)
 {
 return a == 1 && a != 2;
 }
}

Li
st

in
g

14

If you read something in C Vu
that you particularly enjoyed,
you disagreed with or that has
just made you think, why not
put pen to paper (or finger to
keyboard) and tell us about it?
Architectureless Software Design
Vsevolod Vlaskine explores some ideas of

simplicity in software design.

Complexity of system architecture
hen one designs software, what comes out of it? An architecture,
is not it? Or is it? The word ‘architecture’ applied to software has
so many distorting connotations that I am trying to consciously

expel it from my vocabulary.

The architectural approach assumes a vision of the system where its
components connect, interact, build on top of each other, to form the whole
edifice functioning as one organism. Such a vision maybe important in a
project, but only as, well, a vision rather than the master blueprint from
which the system eventually materializes.

Once we admit that we are building ‘a software system’ the next inevitable
design step would be to split it into parts, establish their relationships as
subordination, aggregation, connections, interfaces, data flows, etc. Then
we further analyse the parts in the same vein, etc. Even when we look at
the system’s aspects or views (functional aspect, security aspect,
deployment aspect, testing aspect, etc), we consider those in their turn as
systems, just like various systems of the human body.

This approach seems to have served us well for a few centuries of industrial
manufacturing. It has been used in software for decades, too. Is there a
problem at all?

It is commonplace that once an upfront software architectural blueprint is
eventually implemented, the result often bears little semblance to the
original design, due to all the implementation details, adjustments, special
cases, undocumented, but necessary features, etc.

The agile approach deals with this inconsistency, suggesting that we
should elaborate and beef up the software architecture of our system in
incremental steps in parallel with its actual implementation, adapting it
according to the feedback from the on-going implementation and changing
requirements and therefore architectural design and implementation
happen in parallel in a tight incremental loop. This makes the system
design more adequate, but very tedious to maintain, overburdened with
details, and frankly, from my observations, even those engineers who
complain about the lack of documentation are slack at doing their own bit,
when it comes to updating the design diagrams.

Thus, since the primacy of the architectural approach does not seem to
match our daily practice, the question to ask is:

When we design software, do we really work on some sort of
architecture first, or are we essentially doing something else, and the

architecture comes only as a convenient afterthought or supporting
act?

To get closer to the answer, let us ask ourselves why in the first place we
even need to design a ‘system architecture’.

Because it represents the system that we are trying to build? But from all
the experience, it does not. I wrote on some of the conceptual reasons for
it in ‘On Software Design, Space, and Visuality’ [1] and ‘Two Sides of
the Code’ [2] and as we discussed just now, practice shows that the final
implementation most of the time only vaguely and inadequately is
reflected in the upfront or even incremental architectural design.

It seems that the motivation of the software design is not so much accuracy,
but simplicity, the need to grasp a complex system in simple terms, before
it is even built, so that the customers, management, and project team could
understand and share various aspects of the product as a whole in the course
of the project. Therefore, the simplicity of expression is perhaps the
primary goal of the architectural design.

Some of the tools to achieve this simplification are various types of UML
diagrams, state machine diagrams, database diagrams, etc. Their usage is
demonstrated with elegant pictures in textbooks. However, in most real-
life designs, the number of states, tables, or connections renders the
diagram an illegible dog breakfast, especially if you would like to maintain
the consistency of the documentation and the code. The alternative is to
leave less essential connections out of picture, but that usually makes the
diagram too generic to communicate much beyond creating in the upper
management the impression that the system is ‘designed’ and ‘planned’.

Therefore, we need simplicity to be able to work on a software system, but
representing it as an ‘architecture’ does not quite scale: it either has too
many entities and connections there, or, when some of them are hidden, it
does not tell you much.

Let us re-formulate what we are trying to achieve: we need a simple
adequate way to work on a software system.

Programming essentially is a pragmatic language activity, as I tried to
show in ‘Two Sides of the Code’ [2]: every statement we write in C++ or

 W

VSEVOLOD VLASKINE
Vsevolod Vlaskine has over 15 years of programming
experience. Currently, he leads a software team at the
Australian Centre for Field Robotics, University of Sydney.
He can be contacted at vsevolod.vlaskine@gmail.com
18 | | JAN 2014{cvu}

Python, being executed by the computer, does something. Thus, tracing
how the design methods plug in into language (both natural and artificial)
may help us to understand how to achieve a simpler, more structured, and
more adequate view of a software system.

Simplicity of language. Laplace and the Centipede
Laplace’s demon is a 19th century hypothesis: if an omniscient demon
knew the positions and speeds of all the particles in the universe at a given
moment, he would be able to calculate the exact state of the universe at
any time in the past and future.

This hypothesis does not hold because of the laws of thermodynamics and
quantum mechanics.

However, the software version of Laplace’s demon [3] still persists: if we
have the full source code of a software system, it seems that we should be
able to tell exactly what the system does. Without going into theory, from
practice we see most of the time how the projects that started with an
architectural design end up with the convoluted code base that requires a
score of engineers – a bunch of full-time Laplacian demons – and even they
are not able to answer how exactly the product would behave in any given
situation. There also is no way to thoroughly document its endless state
space.

The software version of Laplace’s demon fails due to the delusion that a
system can be accurately represented by its description. The full
documentation trivially – and uselessly – equates to the full code. It
happens because the language elements just do not behave like physical
objects [2]. The complexity that we are trying to limit in our design effort
is not the complexity of things (e.g. of a car, or of the human body), but
the complexity of language.

Unlike physical objects, breaking down into parts does not necessarily
simplify things in language. It is the Centipede’s predicament: when asked
how she walks with so many legs, the centipede became so confused, while
reflecting upon her movement, that she could not walk anymore. It is a
well-known psychological effect [4], but it is equally true for the software
projects that get stifled from the analysis paralysis of the top-down design.

Without the risk of being misunderstood, we say ‘walk’, instead of
‘contract such and such muscles in such and such sequence’. And we say
‘go to the pharmacy’ instead of ‘walk 100 metres, turn left, walk another
200 metres, etc...’. The language actually is very simple: just with a few
words it helps us efficiently act in immensely complex contexts.

Capability deployment. Brandom
For a good design, we need to be able to speak about the system in simple
meaningful terms.

What we need is the right vocabulary. The difference between a system
architecture and a vocabulary is that the architecture essentially captures
parts of the system wired up by the relations between them, whereas the
vocabulary is like a toolbox: there is no need to draw relationships or
connections between a hammer and saw, but when used together they let
one do all types of carpentry.

At the design level, the vocabularies should be sufficient for the client to
tell what he wants to do with the system, i.e. tell user stories. The design
task is to express what needs to be done to fulfil a collection of user stories.

If we are asked to implement an online clothing store, perhaps with a
virtual fitting room, we will need a web interface, some image processing
algorithms, a database, a payment system, etc. We would go through each
user story, making sure these items would certainly cover the required
functionality, once they are are cobbled together somehow. Rather than
drawing a system diagram, it is sufficient for us to know that we can
compose those items with each other in various ways to cover user stories.

Now, we have an adequate bullet-point list, the implementation
vocabulary (website, database, etc) for the user story vocabulary (find,
display, fit, purchase, etc).

It is important that there is not a single user vocabulary, but a number of
them. In our example, the payment-related user stories perhaps will have

nothing to do with the fitting-room user stories. Those two will form
separate vocabularies or mini-languages. In the same way, the
implementation vocabularies also are many: choice of the front end is
pretty much decoupled from the database, etc.

As the next step of working on our product, we write user stories regarding
website, database, etc necessary to be able to accomplish the online-store
user stories. What was an ‘implementation’ vocabulary, becomes a ‘user’
vocabulary.

Say, for the user story ‘fit a shirt’, the ‘implementation’ stories might be:
‘let user choose her/his figure type’, ‘upload user photo’, ‘morph the shirt
image’, etc. These ‘implementation’ stories become user stories of the next
level. We need to devise a list of things that would be sufficient to satisfy
them. This list will become the next ‘implementation’ vocabulary, etc,
until at a certain step we realize that we can express our vocabularies as
library entries or collection of applications, rather than todo lists in the
natural language. Importantly, it happens not when the vocabularies and
stories become ‘simple enough’ and without further analysis we can jump
to their implementation, but when the stories simply can be written down
in the programming language rather than in the natural language. This
design process is two-way: not only top-down, departing from client user
stories, but also from the point of view of building clear-cut capabilities
(of the organization, the team, and the codebase).

Robert Brandom in his book Between Saying and Doing [5] makes this
process more formal. Although his book is generally about language and
meaning, it is very relevant to software engineering.

One of the main concerns of the language theory addressed in Brandom’s
book is the question of meaning: how do the words mean anything?
Following Wittgenstein, Quine, and Sellars, Brandom says that semantics,
the meaning of the words in a vocabulary, has to be established through
their pragmatics, i.e. how those word are actually used in the language, ‘the
practices of deploying various vocabularies rather than the meanings they
express’ [5, p.3].

Since software engineering is a practical thing, it is simpler and more
radical, in a way. It is simpler, because, unlike a theoretical discipline,
whatever works better represents a sufficient validation of its method. It
is more radical, since ‘use’ in software means not just ‘use in language’:
all statements and expressions in a programming language do something
(they are performative in Austin’s sense [6], [2]). Pragmatics of
programming are much stronger than that of generic phrases like ‘it rains’,
since in software development everything needs to be not only meaningful,
but also effectual.

Further in his book, Brandom explores the relationships between the
meanings of various vocabularies. He maintains that the meaning is not
self-contained in language, but is in its usage, its pragmatics, showing that
various vocabularies are pragmatically mediated, calling it ‘pragmatic
expressive bootstrapping’.

In ‘Two Sides of the Code’ [2], I wrote about two sides of software code:
it tells us something as well as being executable and therefore does
something, calling these two sides ‘expressive’ and ‘performative’, which
is practically synonymous to Brandom’s terms.

If we have a vocabulary that represents certain capabilities (e.g. various
software concepts: database, website, algorithms, etc) and want to express
a new vocabulary of meanings (e.g. elements of our online store), we need
to deploy the former vocabulary, i.e. in software terms, simply by using
the former to implement the elements of the latter. As we saw above, the
first vocabularies can be implemented by deploying yet another
implementation vocabulary, etc.

While not so obvious in the philosophy of language, this step seems almost
trivial in the context of software engineering.

Some conclusions
Since the isomorphism of the software feature-implementation
relationship with the meaning-making structure is so trivial, design and
implementation of software systems conforms with the structure of
JAN 2014 | | 19{cvu}

Architectureless Software Design (continued)

Standards Report
Mark Radford reports on the latest from C++14 standardisation.

ello, welcome to this edition of my standards report, and a happy new
year to all the readers.

Since my first report as Standards Officer, a year and a half ago, my
reports have focused on the C++ standards process. In that first report I
wrote: “would anyone reading this, who is involved in a relevant standards
process, please make themselves known to me?”. Unfortunately no one
has been in touch, hence the focus remains on the C++ standards process
– because I’m involved in it, and therefore I can write about it. Once again
though, if you have knowledge of any other standards processes that should
be reported on in this column, would you please contact me? I can be
emailed at: standards@accu.org.

As some readers may be aware, the BSI C Panel has been not been active
in quite some time. I’m not sure how long it’s been, but I think it amounts
to years rather than months. However, that is all about to change because
that panel is now reforming. I got in touch with the reformed panel’s
convenor and obtained some information on what is going on in WG14
(http://open-std.org/JTC1/SC22/WG14), the international C standards
committee (the C equivalent of C++’s WG21).

Things currently being worked on include:

 Processing defect reports for C11

 C IEC 60559:2011 (IEEE 754-2008) floating point bindings. There
are five parts, two of which have reached the ballot stage. Part 1
(binary floating point arithmetic) is at the Draft Technical
Specification (DTS) ballot stage, while Part 2 (decimal floating
point arithmetic) is at the Preliminary Daft Technical Specification
(PDTS) ballot stage

 C language extensions to support parallelism. There is a study group
working on this, but currently the work has not reached the level of
an actual proposal to WG14

 A secure coding rules for C specification (TS 17961:2013) was
recently published. This is a specification for static analysers.

Currently no work is being done on the next major revision of the C
standard. The convenor did comment that WG14 will no doubt start that
work at some point. The floating point and parallelism work currently
being done is aimed at Technical Specifications (see my May 2013
standards report for more information on what that means). Once the Panel
has their mail reflector up and running (they have asked ACCU to host it
for them), they will be working on UK positions for the ballots on the
floating point bindings.

Unfortunately this edition of my report will be short but, before I finish,
I’ll briefly return to the C++ standards process...

In my previous report I mentioned that the post-Chicago mailing was (at
the time of writing) yet to be published: it is now available at http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/#mailing2013-10.
Readers may remember that in my post-Bristol report, I wrote about
Andrew Sutton’s ‘Concepts Lite’ presentation I had seen. I also mentioned
that the Concepts study group (SG8) were working towards a TS rather
than getting Concepts Lite into the C++14 standard. The first (early) draft
of this TS (N3819) is now available in this mailing.

That’s it for this report. However there is an ISO C++ meeting coming up
in mid February 2014, so hopefully production schedules will permit me
to write something about this in my report for the March 2014 CVu.

H

MARK RADFORD
Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark@twonine.co.uk
meaning-making in language. Once again confirming that software
design is essentially a language activity and therefore the linguistic laws
and concepts are highly applicable here.

The purpose of the software design, rather than drawing ‘relationships’
between the entities like database, website, etc, is deploying a collection
of vocabularies or mini-languages on top of each other that eventually
would be sufficient to build a vocabulary fulfilling the product user stories.
Libraries and collections of utilities are good examples of such mini-
languages: software design is not about building system architecture,
but about defining a collection of mini-languages. Those mini-
languages (closely related to Pattern Languages) express not only the user
features of a software product, but all its implementation details.

One mini-language is expressed through deploying another one. However
it is not their hierarchy that matters, but the ability to produce new
statements. Capturing a limited number of relations and connections in
a system architecture is an unnecessary semantic coupling: too much too
early. Instead, a good designer keeps the number of predefined
relationships in the system to the absolute minimum and deploys
decoupled, semantically sufficient capabilities – libraries, concepts,
naming conventions, domains of natural language, etc – as performative
phrases, statements, or user stories.

(Another interesting corollary is that the whole idea of ontologies as the
formal representation of ‘knowledge as a set of concepts within a domain,
and the relationships between those concepts’ [7] very likely may be a dead
end.)

Lots of things in this article may look trivial, but over years I noticed that
far too many software engineers seem to think that if something is trivial,
it is not worth doing (because after all they are here to excel in the complex
stuff), whereas to me, one of the main virtues in software design is the
ability to speak simply about complex things.

References
[1] V. Vlaskine, ‘On Software Design, Space, and Visuality’ CVu,

vol.25, issue 3, July 2013
[2] V. Vlaskine, ‘Two Sides of the Code’ CVu, vol.25, issue 4,

September 2013
[3] http://en.wikipedia.org/wiki/Laplace's_demon
[4] http://en.wikipedia.org/wiki/The_Centipede's_Dilemma
[5] R. Brandom, Between Saying and Doing: Towards an Analytic

Pragmatism.
[6] J. L. Austin, How to Do Things with Words.
[7] http://en.wikipedia.org/wiki/Ontology_(information_science)
20 | | JAN 2014{cvu}

http://open-std.org/JTC1/SC22/WG14
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/#mailing2013-10
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/#mailing2013-10
http://en.wikipedia.org/wiki/Laplace’s_demon
http://en.wikipedia.org/wiki/The_Centipede’s_Dilemma
http://en.wikipedia.org/wiki/Ontology_(information_science)

#include <iostream>
#include <map>
#include <memory.h>
#include <sstream>
#include <string>

// This is the Key -- it is "plain ole data"
struct Key
{
 char ch;
 int i;
 char ch2;
};

typedef std::map<Key, std::string> Map;

std::ostream & operator<<(std::ostream & os,
 Key const & key)
{
 std::cout << "{" << key.ch << ","
 << key.i << "," << key.ch2 << "}";
 return os;
}

bool operator<(Key lhs, Key rhs)
{
 return memcmp(&lhs, &rhs, sizeof(Key)) < 0;
}

// Add an item to the map
void add(Map &map, Key key)
{
 std::ostringstream oss;
 oss << key.ch << key.i << key.ch2;
 map[key] = oss.str();
}

Li
st

in
g

1

Code Critique Competition 84
Set and collated by Roger Orr. A book prize

is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
I want to use a data structure as a key in a map, but it isn’t working as
I expect. I’ve simplified the code down to a shorter example that shows
the problem – can you help explain why?

I’m expecting to get output of:

 Testing k1 {c,42,y} => c42y
 Testing k2 {p,57,x} => p57x

But I (sometimes!) get output like this instead:

 Testing k1 {c,42,y} => c42y
 Testing k2 {p,57,x} =>

but I don’t understand why. I’ve added some extra output at the end but
I still don’t see it.

The code is in Listing 1.

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero@howzatt.demon.co.uk

// Add an item to the map
void add(Map &map, char ch, int i, char ch2)
{
 Key key;
 key.ch = ch;
 key.i = i;
 key.ch2 = ch2;

 add(map, key);
}

int main()
{
 Map map;

 Key k1 = {'c', 42, 'y'};
 add(map, k1);

 add(map, 'p', 57, 'x');
 Key k2 = {'p', 57, 'x'};

 std::cout << "Testing k1 " << k1 <<
 " => " << map[k1] << std::endl;
 std::cout << "Testing k2 " << k2 <<
 " => " << map[k2] << std::endl;

 // Testing the first element
 Key k = map.begin()->first;
 std::cout << "First: " << k <<
 " => " << map[k] << std::endl;

 k = map.rbegin()->first;
 std::cout << "Last: " << k <<
 " => " << map[k] << std::endl;

 std::cout << "Contents of the map:\n";
 for (Map::iterator it = map.begin();
 it != map.end(); ++it)
 {
 std::cout << it->first <<
 " => " << it->second << std::endl;
 }
}

Listing 1 (cont’d)
JAN 2014 | | 21{cvu}

Critiques

Paul Floyd <paulf@free.fr>

On my first scan over the code, I saw struct Key and I thought ‘char
int char, that won’t pack nicely’. Then I saw the operator< used for
the map and I thought ‘memcmp on a struct that is not nicely packed,
looks bad’.

This is the crux of the problem. struct Key, on 32bit systems with 4byte
alignment has a memory layout that looks like

 char ch; <1 byte>
 <3 bytes padding>
 int i; <4 bytes>
 char ch2; <1 byte>
 <3 bytes padding>

for a total size of 12 bytes.

I’ll get back to the subject of member data ordering at the end.

std::memcmp is going to compare all of the struct Key memory,
including the 6 padding bytes. So the big question is, what goes into those
bytes? This of course depends on how the key is created.

In the 2nd overload of the function add there is

 Key key;
 key.ch = ch;
 key.i = i;
 key.ch2 = ch2;

so key is created on the stack and its fields are default initialized (Key has
a trivial compiler synthesized constructor which default initializes the
POD members, which in practice means that they are left uninitialized).
This means the padding is junk. Then the fields are assigned values.

Getting down to some assembler [line numbers probably different from the
original source], I see

/ Line 57
 movsbl 12(%ebp),%eax
 movb %al,-16(%ebp)
.L71:
/ Line 58
 movl 16(%ebp), %eax
 movl %eax, -12(%ebp)
.L72:
/ Line 59
 movsbl 20(%ebp),%eax
 movb %al,-8(%ebp)
.L73:
/ Line 61
 pushl $0
 pushl $0
.L_y38:
 pushl -8(%ebp)
.L_y39:
 pushl -12(%ebp)
.L_y40:
 pushl -16(%ebp)
 movl 8(%ebp), %eax
 pushl %eax
 call
__1cDadd6FrnDstdDmap4nDKey_n0AMbasic_string4Ccn0ALc
har_traits4Cc__n0AJallocator4Cc____n0AEless4n0B___n
0AJallocator4n0AEpair4Ckn0B_n0E_______1_v_

So, 2 1-byte moves for the 2 chars and a long move (32bit) for the int.
It looks like the struct is copied by value onto the stack for the call to map
using 3 long (32bit) pushes, so the padding gets copied as-is.

Then there is the Key that is passed to the 1st overload of add. This gets
passed a Key that is initialized as

 Key k1 = {'c', 42, 'y'};

This time the members are value initialized.

 / Line 69
 .L_y45:
 .L_y60:
 movl .LI203, %eax
 movl %eax, -28(%ebp)
 .L_y46:
 .L_y61:
 movl .LI203+4, %eax
 movl %eax, -24(%ebp)
 .L_y47:
 .L_y62:
 movl .LI203+8, %eax
 movl %eax, -20(%ebp)

 3 long moves (32bit).

Looking at the data associated with that

 .LI203:
 .byte 0x63
 .zero 3
 .4byte 0x2a
 .byte 0x79
 .set .,.+3
 .type .LI203,@object
 .size .LI203,12
 .align 4

This looks to me like the padding is explicitly set to zero (though I’m not
so certain for the .set that corresponds to the trailing padding).

Getting back to the C++ code, in this extract

 add(map, 'p', 57, 'x');
 Key k2 = {'p', 57, 'x'};

 std::cout << "Testing k2 " << k2 <<
 " => " << map[k2] << std::endl;

the Key added to the map and the Key k2 are initialized differently , so
when operator[] is used with k2, memcmp compares differently (junk
padding bytes) and a new entry is added to the map.

If by chance the padding bytes of k2 and the Key used for the map match,
then the output will be as ‘expected’.

Just to confirm the issue, I ran the program with dbx and memory access
checking on (access -check) and I got:

Read from uninitialized (rui):
Attempting to read 1 byte at address 0xfeffe5b8
 which is at top of stack
stopped in std::_Rb_tree<Key,std::pair<const
Key,std::basic_string<char,std::char_traits<char>,s
td::allocator<char> >
>,std::_Select1st<std::pair<const
Key,std::basic_string<char,std::char_traits<char>,s
td::allocator<char> > >
>,std::less<Key>,std::allocator<std::pair<const
Key,std::basic_string<char,std::char_traits<char>,s
td::allocator<char> > > > >::key_comp at line 355
in file "_tree.h"
 355 _Compare key_comp() const { return
_M_key_compare; }

How to fix the problem? Well, there are several possibilities. One might
be to make sure that the padding is always initialized to the same value,
e.g., by allocating with std::calloc or explicitly setting all bytes in
Key with std::memset. I don’t like this as it is more a reactive cure than
pro-active prevention. Slightly better would be to add explicit padding
members like char pad1[3]; and to write a user defined constructor(s)
which always initialize the padding to a known state. Still, this is a
maintenance headache.
22 | | JAN 2014{cvu}

Another possibility would be to get rid of the padding. This is easier said
than done, particularly for padding at the end of data structures. If you do
use something like #pragma pack, this will have a performance
overhead as most CPUs work best at their natural word size (which is why
the padding was added in the first place).

Lastly, the best fix is not to use std::memcmp for the Key operator<.

The ‘canonical’ way of supplying an operator< for a data structure is
to perform memberwise operator<, in this sort of fashion:

 if (lhs.ch == rhs.ch)
 {
 if (lhs.i == rhs.i)
 {
 return lhs.ch2 < rhs.ch2;
 }
 else
 {
 return lhs.i < rhs.i;
 }
 }
 else
 {
 return lhs.ch < rhs.ch;
 }

I noticed that the function calls use pass by value for Key. Pass by reference
would be more efficient, using a const reference.

To wrap up, I’ll get back to the question of ordering of data members. To
my mind, you have 3 reasons for choosing your ordering:

1. Readability – putting logically related members together to aid
understanding.

2. Optimize for speed. Place members such that they play nice with the
cache.

3. Optimize for space. Roughly speaking, try to group members of the
same size together to minimize the amount of padding inserted. E.g.,
in this case, Key would be smaller if the two char members were
grouped together:

 struct Key
 {
 char ch;
 char ch2;
 int i;
 };

This would give a size of 8 bytes:

 char ch; <1 byte>
 char ch2; <1 byte>
 <2 bytes padding>
 int i; <4 bytes>

This is better, but it still doesn’t make the padding problem go away.

Björn Fahller <baccu@fahller.se>

The key to understanding the problems with this code, is to understand how
the compiler generates the data layouts, and how Map’s operator[]
works. Assuming 32-bit integers and 8-bit chars the type

 struct Key
 {
 char ch;
 int i;
 char ch2;
 };

will be represented in memory as:

+---+---+---+---+---+---+---+---+---+---+---+---+
| ch| / | / | / | i |ch2| / | / | / |
+---+---+---+---+---+---+---+---+---+---+---+---+

i takes up 4 bytes, ch and ch2 one byte each, but there are unused gaps
marked /. The gaps are padding to ensure correct alignment of members,

in this case the integer member i. These gaps are not required to be
initialized to anything, and are unlikely to hold any predictable values.

There are several problems with this, but the obvious one for this example
is the comparison:

 bool operator<(Key lhs, Key rhs)
 {
 return memcmp(&lhs, &rhs, sizeof(Key)) < 0;
 }

memcmp() will compare the memory range, byte by byte, until a
difference is detected. Comparing two Key objects initialized with the
same values are likely to have differences in the padding mentioned above.

This becomes important with std::map<Key, std::string>, since
map uses operator< on the key for all lookup and insertion operations,
and t h i s i s p robab ly wha t g o e s w r o ng i n t h e p r o gr a m .
Map::operator[](Key) will create a new element if none is found.
Due to the uninitialized gap-bytes, it is likely that this happens, and this
would then return a newly default constructed, and thus empty, string.

Depending on the requirements of the user, it may or may not be enough
to ensure that the gaps have predictable values. If the sort order is
important, and if the program is to be portable, the sort order of the integer
field will depend on the byte order of words (endianness) of the CPU.

Writing a correct operator< for multiple-fields is not difficult, but it is
tedious:

 bool operator<(Key lhs, Key rhs)
 {
 if (lhs.ch < rhs.ch) return true;
 if (lhs.ch > rhs.ch) return false;
 if (lhs.i < rhs.i) return true;
 if (lhs.i > rhs.i> return false;
 return lhs.ch2 < rhs.ch2;
 }

If a c++11 compliant compiler is used, it is better to use the tie() function
template to generate tuples, for lexicographical comparisons are
generated:

 bool operator<(Key lhs, Key rhs)
 {
 return std::tie(lhs.ch, lhs.i, lhs.ch2) <
 std::tie(rhs.ch, rhs.i, rhs.ch2);
 }

There are more things to say about the memory layout, though. Half of the
12 bytes required by Key are wasted. Changing the order of the members
in Key will reduce the memory consumption:

 struct Key {
 int i;
 char ch;
 char ch2;
 };

will be laid out as (again assuming 32-bit integers)

 +---+---+---+---+---+---+---+---+
 | i | ch|ch2| / | / |
 +---+---+---+---+---+---+---+---+

Note that there are still two uninitialized gap-bytes, making the structure
require 8 bytes instead of 6 as one might have guessed. The reason for this
is again to get the correct alignment for the integer i. This is not obvious
when looking at one Key in isolation, but look what happens when several
are used in an array:

Key keys[2]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| i | ch|ch2| / | / | i | ch|ch2| / | / |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
 \ keys[0] / \ keys[1] /

Still, the wasted space is reduced from 6 to 2 bytes per object.
JAN 2014 | | 23{cvu}

The existence of these gaps still renders memcmp() unsuitable for
operator<(), although it is possible if you insist, by ensuring that only
the memory occupied by initialized data is compared. This can be done on
POD types using the offsetof macro.

 bool operator<(Key lhs, Key rhs)
 {
 return memcmp(&lhs, &rhs,
 offsetof(Key, ch2) + 1) < 0;
 }

offsetof(Key, ch2) will evaluate to 5, since ch2 is at that offset in
the memory layout, and then add 1 for the size of ch2. I strongly advise
against using this technique, though, since it is horrendously brittle in the
face of change, by no means obvious to the reader, and still not portable
across CPU-architectures if the sort order of the integer field is important.
Experiment with the technique to learn, and then go with std::tie()
instead.

Ken Duffill <kenduffill@gmail.com>

Let’s start with the output you see (sometimes!):

 Testing k1 {c,42,y} => c42y
 Testing k2 {p,57,x} =>

What does this tell us?

Looking for the code that generates this output we find:

 std::cout << "Testing k1 " << k1 << " => " <<
 map[k1] << std::endl;
 std::cout << "Testing k2 " << k2 << " => " <<
 map[k2] << std::endl;

Clearly, the output tells us that k1 and map[k1] are both OK.

And we can see that k2 is fine, but map[k2] is not. Why would that be?

Let’s first try to find out what map[k2] really means.

std::map is being used as an associative array here. The index of the
subscript operator is the key that is used to identify the element. But there
is a gotcha when using std::map as an associative array.

When using the key as the index for which no element yet exists, a new
element is inserted in the map automatically. This can be very useful, as
it is when the method add is called to add an entry into the map; which it
does with the following line of code:

 map[key] = oss.str();

What this actually does is tries to overwrite the element of map[key] with
the new value. As this key probably doesn’t exist std::map creates one
with the default std::string (ie an empty string) as the element.

Then the code assigns the string oss.str() (which was created from the
members of struct Key) to the element of the newly created map entry.

This may be a little inefficient, using the insert method of std::map
may be more efficient, but you may have deliberately chosen to do it this
way, because insert will fail if the key already existed whereas what you
are doing will not, it will just overwrite the element of the existing entry
with the newly created element. Your choice.

But in the line of code

 std::cout << "Testing k2 " << k2 << " => " <<
 map[k2] << std::endl;

std::map would create an entry if we are accessing a non existent key
and the element again would be created using the default constructor for
type std::string (an empty string). This is what we see with the output

 Testing k2 {p,57,x} =>

map[k2] returns an empty string, because k2 did not exist in the map.
But why does map[k2] not exist?

Looking for the declaration of k2, that looks OK, but wait, we are not
adding k2 to the map! We are adding a temporary struct Key made
from the same parameters, which looks to be identical to k2, but is not k2,
to the map.

So how would std::map find an entry in the map, and why does it not
consider the temporary struct Key to be the same as k2?

The answer is that std::map considers two entries to be equal if neither
entry is less than the other. That is why we have to declare the operator<
method.

Now we get to the coding error that is causing all our problems. And,
incidentally, is a problem which I actually encountered in my real work
very recently (somebody else’s code, of course).

This implementation of operator< makes the fundamental error of
assuming that struct Key contains memory only for the declared items.
This is wrong for two reasons: Alignment and padding. Most processors
expect and therefore the compiler will ensure, that int data items are
aligned on an int address boundary. That is to say that on a 32-bit machine
the address of an int will always be a multiple of 4. They will also start
a struct on the same boundary. Because you declare an int after the
char which is the first element in the struct, the int cannot start on
the next memory address as that would not at be an address that is a
multiple of four. Therefore there will be some unused space between ch
and i in struct Key.

Similarly at the end of the struct, there may be some padding. Often the
compiler will round up the size to a multiple of four bytes, for its own
convenience. In general you do not know this and therefore should not rely
on there being no unused space at the end of your declarations in a
structure.

Now, if there are padding and alignment issues in your structure then that
extra memory will not be initialised, and therefore may or may not compare
correctly when comparing with another struct Key. The contents will
be entirely unpredictable. This is where the ‘(sometimes!)’ comes in in
your unexplained output.

There are usually #pragmas to tell the compiler not to do these things,
they cost (quite a lot) in processing, but are useful if it matters to you that
there is no unused space. For example, when constructing complex data
to send down some data channel where bandwidth is an important
consideration. And, you can also help the compiler by reordering the
declarations so that big items come first and the smaller ones are at the end.

But a better solution is to change the implementation of the operator<
so method that instead of using memcmp to compare all the memory
(including the uninitialised memory) in struct Key it just compares
each element within one structure with its corresponding element in the
other. For example:

 bool operator<(Key lhs, Key rhs)
 {
 if (lhs.ch != rhs.ch)
 {
 return lhs.ch < rhs.ch;
 }
 if (lhs.i != rhs.i)
 {
 return lhs.i < rhs.i;
 }
 return lhs.ch2 < rhs.ch;
 }

Hey presto, your problem goes away.

So, you thought I had finished, did you? No, there is more. I have a
hankering to do some refactoring.

Ideally we should have some unit tests in place that we would run between
each refactoring in order to prove that the behaviour hasn’t changed, but
as I have neither the time nor the space here to create those unit tests here
I will leave that as an exercise for the reader.

Refactoring 1

The new operator< method takes two parameter, both are Keys, and
both are passed by value. There will be a small processing overhead in
passing by value, as this means that the contents will be copied every time
the method gets called.
24 | | JAN 2014{cvu}

A small change to improve performance, just a little, is to pass the
parameters by reference. Further, as the contents of both keys are not
modified, they are only looked at, then they should be const references.
Like this:

 bool operator<(Key const &lhs, Key const &rhs)
 {
 if (lhs.ch != rhs.ch)
 {
 return lhs.ch < rhs.ch;
 }
 if (lhs.i != rhs.i)
 {
 return lhs.i < rhs.i;
 }
 return lhs.ch2 < rhs.ch;
 }

Compile and run the code (and your unit tests if you have created them),
and see that the behaviour hasn’t changed.

Refactoring 2

Now we find that this new operator< method can be made a member
of struct Key. To do this we lose the lhs parameter, but we must
remember to make the method itself const so as to tell the compiler that
running this method doesn’t change the internals of the object.

It is always good practice to make methods that don’t change the internal
state of a class or struct const, it is a good habit to get into, but in this
case it is actually essential otherwise std::map will not recognise it as
the comparison function it needs. Move its declaration into the struct
declaration and operator< now looks like this:

 bool operator<(Key const &rhs) const
 {
 if (ch != rhs.ch)
 {
 return ch < rhs.ch;
 }
 if (i != rhs.i)
 {
 return i < rhs.i;
 }
 return ch2 < rhs.ch;
 }

Compile and run the code (and your unit tests if you have created them),
and see the behaviour hasn’t changed.

Now there is a large part of me that wants to keep refactoring until I can
get the data members of Key to be private. BUT, I realise that that is
actually quite a lot of work and, more importantly, most of that work is
‘fiddling about with’ the strings that are used to create or output not the
Key itself, but the element part of the map that is generated from the Key.

It is a good idea at this point to keep in mind the single responsibility
principle (SRP).

Key’s single responsibility is to maintain the Key that will go into the map.
In order to do that it must be able to construct a Key and compare two keys.
That is all it needs to do. The fact that in this test case the parts of the Key
are also used in the element, is an implementation detail of this particular
application, and probably only temporary during the development of the
app. So there is no profit in wasting time making the data items private
(not right now, anyway).

The only other refactoring I would like to do is to give Key a constructor.
You will see, shortly, how this really benefits the code structure for the
rest of the app.

Refactoring 3

Add a constructor for struct Key like this:

 Key(char chParam, int iParam, char ch2Param)
 {
 ch = chParam;
 i = iParam;

 ch2 = ch2Param;
 }

In order for app to still work we must change the declarations of k1 and
k2 thus:

 Key k1('c', 42, 'y');
 Key k2('p', 57, 'x');

Finally, we need to change the creation of the temporary struct Key in
the method add(Map &map, char ch, int i, char ch2) to Key
key(ch, i, ch2);

Now the app code is starting to look much simpler, isn’t it?

Compile and run the code (and your unit tests if you have created them),
and see the behaviour hasn’t changed.

Refactoring 4

Now we don’t even need the variable key to hold the temporary struct
key in the method add(Map &map, char ch, int i, char ch2),
we can create that inline thus: add(map, Key(ch, i, ch2));

Finally you can now see that the method add(Map &map, char ch,
int i, char ch2) isn’t even necessary by changing

 add(map, 'p', 57, 'x');

to

 add(map, Key('p', 57, 'x'));

The second add method can be removed and the app code becomes even
simpler, cleaner, and easier to maintain.

Oh, and once again, to avoid the unnecessary copy in the add method, we
should make the Key parameter passed by const reference instead of by
value.

Compile and run the code (and your unit tests if you have created them),
and see the behaviour hasn’t changed.

Now I feel better, I will stop.

James Byatt <grumpyjames@gmail.com>

Ah, maps. A celebrated source of C++ esoteria. I first came across this CC
on a train, and, as such, only had my own personal prejudices to help me
out. Here’s the JamesLINT output. Do be warned though – JamesLINT is
a bit rusty, and has also been known to be somewhat jaded by prior
experience, rather than standard led.

Problem on line 3: ‘When in Rome...’

Importing C headers is almost always a bad sign; not least because I have
little idea what they do, or the motivation to find out. A whole bundle of
people far smarter than I have spent many man years of work wrapping up
this memcpy nonsense in more pleasant abstractions, it seems wholly rude
to reintroduce these crudities without first attempting to find the
appropriate C++ idiom.

Problem on line 8: Key should be immutable

Const the fields, provide a constructor. What is this, the 90s?

Problem on line 25: Why aren’t those Key inputs references to const?

Problem on line 27: See problem #1

Ugh. Would it have been that hard to delegate to the relevant operators for
char and int? I seem to remember there being a library function for doing
comparisons of arbitrary numbers of fields, as well.

I wouldn’t be surprised if this were the problem (possibly because of some
alignment bits in the binary representation of Key).

Problem on line 35: Using [] to insert into a map.

The mixed semantics of the operator make it a minefield. It is used for both
entry and retrieval, and, when used for insert, default constructs a string,
and then copies the value string over it. Woe betide you should your value
type not be default constructable.

Recommended: use insert with std::make_pair instead (or
whatever fancy new tricks C++11 offers to avoid copying (emplace?))

Problems in method main():
JAN 2014 | | 25{cvu}

Lots of using [] for map lookup – this will work just fine for strings, but
might not in general (I’m willing to bet no-one will remember to migrate
all these usages when the value type changes). Use find(), please.

Compiler output

Quite a lot of output from JamesLINT, there. What does the compiler have
to say for itself?

 g++ -Wall -pedantic Map.cpp

Nothing at all in the way of warnings – now, that is a first.

The usual suspects

My suspicion here is that the various pass by value semantics and that use
of memcmp is going to be the problem. Let’s verify a small part of that
suspicion: that Key is being padded with some alignment bits:

 int main()
 {
 + std::cout << "Key has size " << sizeof(Key)
 << std::endl;
 + std::cout << "int has size " << sizeof(int)
 << std::endl;
 + std::cout << "char has size "
 << sizeof(char) << std::endl;

One might expect that sizeof(Key) == sizeof(char) +
sizeof(int) + sizeof(char), however:

 Key has size 12
 int has size 4
 char has size 1

It is not the case; each field is aligned at a four byte boundary. I am guessing
those extra alignment bits are not always the same when we get to that call
to memcmp; a problem perhaps exacerbated by all the pass by value
semantics. Let’s see if the problem goes away if we amend that.

 -bool operator<(Key lhs, Key rhs)
 +bool operator<(Key const &lhs, Key const &rhs)
 -void add(Map &map, Key key)
 +void add(Map &map, Key const &key)

 Testing k1 {c,42,y} => c42y
 Testing k2 {p,57,x} =>

Heh – no – we’re in no better shape. Without getting the debugger out, let’s
just try rewriting that operator without the memcmp.

Removing memcmp
 bool operator<(Key const & lhs, Key const & rhs)
 {
 - return memcmp(&lhs, &rhs, sizeof(Key)) < 0;
 + if (lhs.ch < rhs.ch) {
 + return true;
 + } else if (lhs.ch > rhs.ch) {
 + return false;
 + } else if (lhs.i < rhs.i) {
 + return true;
 + } else if (lhs.i > rhs.i) {
 + return false;
 + } else if (lhs.ch2 < rhs.ch2) {
 + return true;
 + } else if (lhs.ch2 > rhs.ch2) {
 + return false;
 + }
 + return false;
 }

 Testing k1 {c,42,y} => c42y
 Testing k2 {p,57,x} => p57x

Aha. Ugly, but correct. If we were in C++11 land, we could make our lives
easier by making Key a std::tuple, and then we wouldn’t need to
drudge through all that boilerplate. This is left as an exercise for the reader.

So, without really understanding what was broken, we’ve got a working
implementation merely by fixing the more glaring JamesLINT issues. Is

that good enough? Of course it isn’t. Let’s figure out what was going on
with that memcmp.

Understanding the memcmp problem

 add(map, 'p', 57, 'x');
 Key k2 = {'p', 57, 'x'};

Heh. I totally missed that we were building the key objects twice in the
main method. Let’s use the old crappy operator< and pass k2 in by
reference rather than attempting to build it again.

 - add(map, 'p', 57, 'x');
 Key k2 = {'p', 57, 'x'};
 + add(map, k2);

 Testing k1 {c,42,y} => c42y
 Testing k2 {p,57,x} => p57x

...and that fixes it. Excellent. So the problem was actually creating two
completely different instances of the plain old data, and expecting their
alignment bits to be the same. Someone with a copy of the standard could
probably point you at a place where this guarantee is explicitly not given...

...perennial short cut taker that I am, though, I’m just going to write a quick
test program to see what happens on my machine.

Alignment
 Key k2 = {'p', 57, 'x'};
 Key k3 = {'p', 57, 'x'};
 print_bytes(&k2, sizeof(Key));
 print_bytes(&k3, sizeof(Key));
 print_key(k3);

Here, print_bytes prints a hex representation of each byte in the given
pointer, and print_key copies the key before passing it to
print_bytes – implementations elided for being too dull (and, also,
because the code I used was copy pasted from stack overflow, and used
printf, for shame).

 [70 00 00 00 39 00 00 00 78 2e 40 00]
 [70 09 c7 c4 39 00 00 00 78 2f 40 00]
 [70 09 c7 c4 39 00 00 00 78 2f 40 00]

Here, at least, it looks like alignment bits are preserved on copy, but not
zeroed on object creation. That seems sensible enough, although I now feel
vaguely silly for thinking that copying Key by value would introduce
differences given the object layout.

So, what did we learn?

Don’t mix abstraction levels! Key is a C++ struct, an object, while
memcmp is a function for comparing two completely arbitrary pointers.
Implementing operator< using something from <memory.h> was a
poor choice.

Using the standard library correctly is fun and profitable, if occasionally
requiring of you to read the manual a wee bit.

Judicious use of const & can hide a multitude of sins. JamesLINT will
still judge you, though.

It’s a good idea to read the whole of the source code before diving in and
trying to fix it (oops).

Carl Gibbs <carl@carlgibbs.co.uk>

Why doesn’t it work? Because using memcmp() to compare the contents
of a structure is neither good practice nor correct. By trying to compare
raw bytes of memory you’re circumventing the C++ language and making
assumptions about how the compiler will translate your program.

It’s not correct because C++ can add padding to the structure Key in
memory in order to align fields on machine-word boundaries for the fastest
possible addressing and this padding may not be initialised. So on a 32-
bit compiler you’re likely to really get:

 struct Key
 {
 char ch;
 int rubbish[3];// uninitialised, random values
26 | | JAN 2014{cvu}

 int i;
 // no padding cos int already size of a
 // machine-word
 char ch2;
 int moreRubbish[3]; // uninitialised, random
 // values
 };

memcmp() will compare these random padding bytes and because it’s not
just comparing the data you expected, can give a different answer than you
expect.

Note: Some compilers will always set the same values in the padding bytes,
especially in a debug build so the application might work. The release build
from the same compiler is still likely to save time by not initialising the
padding and so fail.

A second reason is that byte ordering on your machine may make it never
correct. An x86 CPU is little-endian so int i = 256 will put the
following in memory (still a 32-bit compiler):

 char i0 = 0; // least-significant byte first,
 // so memcmp() will not compare
 // integers as expected
 char i1 = 1;
 char i2 = 0;
 char i3 = 0;

But a Motorola 68000 is big-endian so int i = 42 will put the following
in memory:

 char i3 = 0;
 char i2 = 0;
 char i1 = 1;
 char i0 = 0; // least-significant byte last,
 // so memcmp() will compare
 // integers as expected

This will leave the std::map in the wrong order.

std::map relies on operator< working correctly. If 2 Keys that you
think are the same don’t compare the same then std::map won’t
understand they are the same.

This explains why k1 behaves as expected even with this bug while k2
does not. Because we are using a bitwise copy of k1 in the map, even the
bits in the padding, k1 and the key in the map are identical when compared
with memcmp().

 Key k1 = { 'c', 42, 'y' };
 add(map, k1); // bitwise copy of k1 in the
 // map with exactly the same padding

But k2 is created separately from the equivalent key in the map, so has
different random padding, so k2 and the key in the map are not identical
when compared with memcmp().

 add(map, 'p', 57, 'x'); // map with key
 // entry {p,57,x} with some random padding
 Key k2 = { 'p', 57, 'x' }; // k2 with visible
 // values {p,57,x} but with some different
 // random padding

While most compilers allow you to override whether to put padding bytes
in, this approach definitely would be considered ‘unobvious magic’ or
‘reason to hate you’ by the next developer working on this code.

A better approach is to ensure you only compare the fields you know about.
One easily extended way to write this is:

 bool operator<(Key lhs, Key rhs)
 {
 if (lhs.ch != rhs.ch) {
 return lhs.ch < rhs.ch; }
 if (lhs.i != rhs.i) {
 return lhs.i < rhs.i; }
 if (lhs.ch2 != rhs.ch2) {
 return lhs.ch2 < rhs.ch2; }
 return false;
 }

This makes it both correct and clearly shows precedence of the fields to
later developers. On a modern optimising, inlining compiler it’s also likely
to be as fast as the memcmp(). Work with the language, don’t try to
circumvent it.

Brian Ravnsgaard Riis <brian@ravnsgaard.net>

There is one basic misunderstanding that prevents this code from
producing the expected result. Aside from that, though, there are some
stylistic issues that immediately caught my eye when typing the code to
test run it.

To begin with, I am very much at a loss to understand which problem using
this convoluted Key in a std::map is supposed to solve. However, as
stated, the code is simplified, so I may not have the whole picture. And I
digress.

Typing the entire code into cc84.cpp and throwing g++ 4.8.2 at it gives a
clean compile, even with -Wall specified. As Bjarne Stroustrup states in
Programming: Principles and Practice: “If your program has no compile-
time errors and no link-time errors, it’ll run. This is where the fun really
starts.”

Indeed. Running it gives this output:

 Testing k1 {c,42,y} => c42y
 Testing k2 {p,57,x} =>
 First: {c,42,y} => c42y
 Last: {p,57,x} => p57x
 Contents of the map:
 {c,42,y} => c42y
 {p,57,x} =>
 {p,57,x} => p57x

Not quite what we expected. The coder has added some helpful debugging
output at the end but failed to gain further insights. However, it should be
immediately obvious that there are three elements in the map, two of which
have the same key! In other words, the map is corrupted! std::map
maintains a strict weak ordering on its contents, sorted on the key using
std::less, which defaults to operator<(). The coder knows this,
since he has provided an operator<(Key, Key), but still somehow a
duplicate has crept in. Let’s take a look at this function.

It is a simple call to memcmp on copies of the provided Key arguments. I
have a sneaking suspicion that just comparing those two objects’ raw
memory (including padding!) is too simplistic, so I try to code it out
instead, and immediately come up with a simple, short and wrong answer:

 bool operator<(Key lhs, Key rhs)
 {
 return
 lhs.ch < rhs.ch &&
 lhs.i < rhs.i &&
 lhs.ch2 < rhs.ch2;
 }

This gives the following output:

 Testing k1 {c,42,y} => p57x
 Testing k2 {p,57,x} => p57x
 First: {c,42,y} => p57x
 Last: {c,42,y} => p57x
 Contents of the map:
 {c,42,y} => p57x

Well, that wasn’t exactly an improvement! Granted, the map is not corrupt
any longer, but it certainly does not contain the objects I thought I put in
there. Of course, I have now specified that lhs is less than rhs only if all
its members are less than all of rhs’ members. This is not right at all!

What I want is to compare each member, one by one. If the first is less
we’re done. If it’s greater we’re also done and can return false. Otherwise
we check the next member. The resulting function looks like this:

 bool operator(Key const& lhs, Key const& rhs)
 {
 return
 lhs.ch < rhs.ch ||
JAN 2014 | | 27{cvu}

 (lhs.ch == rhs.ch &&
 (lhs.i < rhs.i ||
 (lhs.i == rhs.i &&
 lhs.ch2 < rhs.ch2)));
 }

Notice I changed one of the stylistic issues as well and passed the
arguments by reference-to-const instead of by value. The program now
outputs:

 Testing k1 {c,42,y} => c42y
 Testing k2 {p,57,x} => p57x
 First: {c,42,y} => c42y
 Last: {p,57,x} => p57x
 Contents of the map:
 {c,42,y} => c42y
 {p,57,x} => p57x

Bingo. The resulting operator< is a bit verbose, but it’s correct!

So, let’s clean up the rest of the code a bit.

In operator<<() we take a reference to some std::ostream and then
use std::cout regardless. Why? We may want to stream the Key object
to a stringstream or a file instead. We should use the supplied
ostream object. Recompiling confirms that we have broken nothing; we
get the same output.

As stated above there is no reason for operator< to take Key objects by
value; reference-to-const will do. And, since we’re no longer using
memcmp, which gave the wrong result anyhow, we can remove the
memory.h #include.

Finally I would note that the comparison function can be made
significantly less verbose if you can use C++11. std::less for tuples
already does the right thing, so we can just create tuples-of-references
to Key’s members and use operator< directly:

 bool operator<(Key const& lhs, Key const& rhs)
 {
 return
 std::tie(lhs.ch, lhs.i, lhs.ch2) <
 std::tie(rhs.ch, rhs.i, rhs.ch2);
 }

You need to #include <tuple> for this to work portably.

As I stated first, the entire scenario makes me wonder a bit, but at least a
correct operator< for Key objects makes Key usable in associative
containers. std::set, std::multiset, and std::multimap are all
broken for Key objects if using the original operator<.

Emil Nordén <emilnorden@yahoo.se>

The problem here is a combination of structure padding and the use of
memcmp.

By using memcmp to compare the Key structs, a byte-by-byte comparison
of the memory is made. Given the current layout of the Key struct there
will be some padding added to the struct after the fields ch and ch2, and
since the values stored in padded memory are undefined, chances are high
that two seemingly identical Key instances will not be considered equal
when comparing them using memcmp because of garbage values in the
padded memory.

This also explains why it would appear to work at random times, you were
just lucky enough to get the same garbage values in the padded memory!

The solution to this problem is either to rearrange the fields of the Key
struct:

 struct Key
 {
 int i;
 char ch;
 char ch2;
 }

or to tell your compiler not to pad the struct (using GCC in this example.
For other compilers, consult your manual!):

 struct __attribute__ (packed) Key
 {
 char ch;
 int i;
 char ch2;
 }

or finally, to implement your own Key comparison function without using
memcmp:

 bool operator<(Key lhs, Key rhs)
 {
 if(lhs.ch != rhs.ch)
 return lhs.ch < rhs.ch;
 else if(lhs.i != rhs.i)
 return lhs.i < rhs.i;
 else
 return lhs.ch2 < rhs.ch2;
 }

Joe Wood <joew60@yahoo.com>

When I first read the supplied code and accompanying output, my first
reaction was ‘Ah map’, because using a new key with the operator[]
causes a new entry in the map. However it is not obvious where the new
key was being introduced.

However, before getting into the bowels of map, lets do a little re-factoring
and tidying up.

Personally, I like local functions to be declared static, just to stop
namespace pollution. It might also improve optimisation, but I do not think
that is our primary goal here. So prefix the two Key functions
(operator< and operator<<) and both adds with static.

main contains several output lines which are excellent candidates for re-
factoring into separate functions. So let’s create two new functions called
showElement to display a map element. The initial code will be

 static void showElement(
 const std::string & text,
 const Key & k,
 const std::string & v) {
 std::cout << text << k << " => "
 << v << std::endl;
 }

and

 static void showElement(
 const std::string & text,
 Map & map,
 const Key & k) {
 const std::string value = map[k];
 showElement(text, k, value);
 }

With these two functions in place, most calls to iostream can be
replaced.[1] Notice in the second overloading of showElement we must
declare map without const because the operator[] can update the
map.

Having factored out the call to map[k], we can replace it with a call to
map.at(k), which is new in C++11 [2]. However, at throws an
exception if k is not found rather than silently adding a default constructed
new pair to the map with a key of k. Hence for some unknown k',
map[k'] is basically equivalent to map.insert(std::make_pair
(k', std::string()) [3].

Since at throws an exception for unknown k, we need to catch this since
we are not expecting any unknown keys in our map. Hence rewrite the
second showElement as

 static void showElement(
 const std::string & text,
 const Map & map,
 const Key & k) {
 try {
28 | | JAN 2014{cvu}

 const std::string value = map.at(k);
 showElement(text, k, value);
 }
 catch(const std::out_of_range& e) {
 std::cerr << "Error: the key '" << k
 << "' is not defined in "
 << "the supplied map"
 << std::endl;
 throw;
 }
 }

Notice that we have changed the map parameter to be const, since we do
not want to write into the map. On an exception we have displayed an error
message and re-raised the exception. In a production system we might want
to do something more appropriate to the underlying system.

Finally we find the first (but not the only bug). When run, the second (if
you have been following along with the code changes) call to
showElement throws an exception. Whoa, what, why? It looks as if we
are looking up the newly inserted Key k2, but map thinks we are adding
a new entry. Time to get the debugger out. We know that map uses
operator< to determine where to place new entries and for internal
searches.

So a breakpoint on operator< and a look at the passed in Keys. As
expected, we soon get a comparison of what appears to be k2 versus k2.
However, looking at the code in operator<, it uses memcmp and
sizeof(Key) to compare keys. Now, sizeof(Key) (on my system) is
12 bytes, so there is some extra padding hidden inside Key, as we would
expect sizeof(ch)+sizeof(i)+sizeof(ch2) to be (again on my
system) 6 bytes. Sure enough, the language specification allows for extra
bytes to pad data onto suitable boundaries.

A naïve fix is to change the declaration of Key to

 struct __attribute__((__packed__)) Key
 {
 char ch;
 int i;
 char ch2;
 }

This may work on some machines, but it suffers from three principal
problems, viz.

 It is compiler specific.

 It assumes knowledge of memory layout, and little-endian integers.

 It is brittle and not obviously related to the contents of Key, adding
a new field would (potentially) invalidate existing runtime
behaviour.

Let’s just pause for a moment and think about struct Key. The original
code explicitly wanted Key to be Plain Old Data (POD). Why? We are not
told. Perhaps because it interfaces with some other code, and the layout is
important. This is another reason for rejecting the naïve approach.
Basically POD must only use C-style datatypes, so that it can statically
initialised, and not have virtual functions [4].

Returning to the map lookup problem. Before getting stuck into the
comparison function, operator<, it is worth reminding ourselves that
this must produce a strict weak ordering, in particular if the same Key is
supplied to both parameters, it must return false, since Map determines
key equality by

 !(k1<k2) && !(k2<k1) => k1==k2

memcmp performs a byte by byte lexicographical comparison between the
specified memory areas, up to the specified maximum number of bytes,
returning zero if both blocks are equal, a negative number if the first is less
than the second, and a positive number otherwise. Which is why the naïve
padding seems to work.

We want [5] a lexicographical comparison of ch followed by i and finally
ch2. Which can be done by

 return
 this->ch < k.ch ||
 (this->ch == k.ch && this->i < k.i) ||
 (this->ch == k.ch && this->i == k.i &&
 this->ch2 < k.ch2);

That’s a bit of a mouth full. Fortunately, the new C++11 tuple library offers
some much needed simplification. Given two tuples t1 and t2, we can
perform a lexicographical comparison (element by element) just by
writing t1 < t2. So all we need to do is convert the needed fields of Key
into a tuple, enter make_tuple. (We need to add #include <tuple>
at the top of the code).

So our Key’s comparison operator< function becomes

 static bool operator<(const Key &lhs,
 const Key &rhs) {
 return std::std::make_tuple(lhs.ch, lhs.i,
 lhs.ch2)
 < std::make_tuple(rhs.ch, rhs.i,
 rhs.ch2);
 }

Well it’s better, but I do not like spelling out Key’s fields in two different
places. We can write a helper function in C++11, as

 #define keyTuple(k) \
 (std::make_tuple(k.ch, k.i, k.ch2))
 auto mktuple(const Key & k) ->
 decltype(keyTuple(k)) {
 return keyTuple(k);
 }
 #undef keyTuple

And change operator< to be

 static bool operator<(const Key & lhs,
 const Key & rhs) {
 return mktuple(lhs) < mktuple(rhs);
 }

The first add function can have a reference to Key rather than passing it
by value, hence

 static void add(Map &map, const Key &key) {
 // as before

We can make a few minor changes to main, with C++11 support. Before
declaring map, add the line

 static_assert(std::is_pod<Key>::value,
 "Key must be a POD type");

This will cause a rejection at compilation time, if Key is not a POD. Change
the various begin/ends to cbegin/cend as we don’t want to modify the
map. We might as well take advantage of C++ foreach loop, e.g.

 for (const auto & entry : map) {
 showElement("", entry.first, entry.second);
 }

Finally running the resultant code, we get the expected output

 Testing k1 {c,42,y} => c42y
 Testing k2 {p,57,x} => p57x
 First: {c,42,y} => c42y
 Last: {p,57,x} => p57x
 Contents of the map
 {c,42,y} => c42y
 {p,57,x} => p57x

Notes
[1] Not shown because it is straight forward and lengthy, for example the

line std::cout << "Testing k1 " << k1 << " => "
<< map[k1] << std::endl; can be replaced with
showElement("Testing k1 ", map, k1);.

[2] map.at can be simulated with map.find in older C++ with some
additional logic. Left as an exercise.

[3] There is a semantic difference between operator[] and insert
if the key is already in the map. insert will not overwrite the
JAN 2014 | | 29{cvu}

previously stored value whilst operator[] does update the stored
value.

[4] Prior to C++11 t he requirements on POD datatypes were even
stricter.

[5] Well presumably we want, its not actual explicitly stated in the
problem.

Balog Pal <pasa@lib.hu>

It’s so much joy to meet a problem intro having words ‘I simplified’, and
presentation of expected and actual behavior. It made it definitely worth
taking the trouble to look for the cause. :)

‘Map’ is also mentioned, for that I usually ask questions in advance of even
looking at the code for the usual suspects:

 Did you modify a key sitting inside the set/map?

 Did you use a function that breaks the rules (irreflexive,
antisymmetric, transitive for both < and equivalence)?

 Did you invalidate some of the iterators?

In my experience that trio smokes out most of the problematic cases and
gained me some ‘seer’ points, so we will pay special attention to those
while scanning the code. This is just a raw run, we’ll go deep later.

 In the include section there’s an odd <memory.h>

 struct Key raises ‘suboptimal layout’ warning placing int
between chars

 typedef to name 'Map' in global namespace

 operator<< that takes the stream to write to but writes to cout
really

 operator< that takes arguments by value

 operator< uses memcmp in implementation without the usual
page-full of comments explaining why it will be okay

 strange pair of add functions that are hopefully not for production
but just helpers to write the test/demo.

 First add takes Key by value without a good reason

 Second add shouts for a Key constructor or a make_Key function

 aggregate init of Key in main that’s not incorrect but creates
fragility

 pasted lines in main, all cout << could better be a function taking
k and one string

 a for loop that could use auto or even better be replaced by
for_each or copy

That’s twelve notes for 80 lines of code, something to work with. Looking
back to initial questions, we can put iterators and mutation to rest, but the
< function looks like the hit, and is one likely source of undefined
behavior. A good and hopefully frightening summary of memcmp is found
here: http://www.codepolice.org/c/memcmp.html with all references, I
will just summarize what’s relevant for our case:

 memcmp compares raw bytes of memory (as unsigned char)

 The contents of ‘holes’ used as padding for purposes of alignment
within structure objects are indeterminate.

If used in the compare function for map, the last is a showstopper. As
having the indeterminate values in padding sends transitivity down the
drain. To have a fighting chance we must make sure to not have any
padding holes and all bytes and bits in the memory must be part of our Key
object. We can’t do that just with the standard features, but real
implementations may provide tools. For example using MSVC targeting
WIN32/x86 we can use #pragma pack(1) or a compiler switch /Zp1.
With that the Key structure will take 6 bytes of memory and fully
predictable with memcmp. But it’s good to know that if we use that same
pragma pack with gcc (supported with same semantics) and a SPARC V9
target, we will still get a 3 byte hole between ch and i, and i must be aligned
on n*4 address.

Suppose we are on a friendly target and can force a hole-less layout, is it
okay to use memcmp for the case? It still depends. Now the function will
actually provide the required strict weak order and the insert+retrieve cases
will work as expected. If our map is just used for the associations and was
picked over unordered_map for unrelated reasons, it’s okay. But if we
are also interested in the actual order, we’re open to more surprises. As
memcmp works on raw bytes it will give us an order dependent on memory
patterns, that may significantly differ from the semantics of < on the
original elements. Starting with char ch, if char is signed on our
platform it will compare differently in memcmp that will reinterpret it as
unsigned char. The int will also face the sign-related problem in x86,
where at least unsigned int would get us the same results. But on a
big-endian platform the ordering would differ massively due to swapped
bytes. On other platforms we might meet some different representation,
say signed 0 that compares equal natively but not so in memcmp. Or having
some unused bits in the memory pattern.

So the best advice is to just not use memcmp for this purpose in the first
place. And in the rare case it fits, make sure to add a big deal of
static_asserts, unit tests and documentation that guards all those
fragile assumptions. Oh yeah, and if we do use it, make sure to #include
<string.h> where it lives according to the standard for some time –
MSDN still lists that odd <memory.h> but it’s better to keep the code
portable.

What to do instead? Well, unfortunately the code that compares elements
is not elegant, especially as all the proposals to add a 3-way compare
operator to the language got nowhere. There’s the lazy man’s approach that
uses std::pair, chain of those or std::tuple, sacrificing the
descriptive names to have access to the stock, well-implemented operators.
A less intrusive alternative is to assemble the pair/tuple only in the compare
function, which is subject to runtime cost. However we have a new,
promising facility that uses std::tie:

 #include <tuple>
 struct Key
 {
 int i; // put int to front for best
 // potential layout
 char ch;
 char ch2;
 bool operator <(Key const& rhs) const
 {
 return std::tie(ch, i, ch2)
 < std::tie(rhs.ch, rhs.i, rhs.ch2);
 }
 };

This reads fine, we only need to make sure to match the order on the two
sides, and hopefully the optimizer will figure out the same code as our
manual chain of comparing the elements.

Fixing this and using os instead of std::cout in the << operator
should fix the behavior and we can look at the minor issues.

As baseline I’d give this structure a constructor like:

 explicit Key(char ch=0, int i=0, char ch2=0) :
 ch(ch), i(i), ch2(ch2) {}

or this without the defaults and another without parameters. (I could accept
leaving the state uninitialized if there were some extremely good reason;
however I fail to recall an example from the last decade... :) Certainly
using healthy names for parameters that I’m sure were just anonymised as
part of the simplification process. It’s a little less fragile compared to raw
aggregates. Unfortunately having three integral arguments it’s still too
easy to pass them in the wrong order even to a ctor.

If we decide to work with aggregates, we had better tighten the reviews
and make initialization mandatory. The form in the second add function
has no good reason, and should just be

 add(key, Key{ch, i, ch2});

or with old compilers we would use the same form as inside main().
Certainly the whole function is better scrapped, most likely it is there,
30 | | JAN 2014{cvu}

along with all those by-value arguments to create more chance to have
different noise in the padding and produce the misbehavior.

I put the op< in the struct as member rather than hanging it out of the
class. The difference is not big (especially if we don’t mess up the params),
but if the compare is the natural ‘one way’ for this struct it looks better
in the class. While if it was outside because one module used it with an
arbitrary content, that is the wrong approach. In that case it should not be
the op<, rather a function that has the word Less somewhere and tells us
the specifics. And that shall be used with the map definition (an unfair
hassle), to avoid confusion and possible ODR violation when another guy
creates the operator with the other arbitrary content.

We have a comment around key that it’s supposed POD, good to know that
adding nonvirtual functions, including in-class op< will not change that
– unlike adding a ctor. Much of the reasoning to stick with PODs is worth
a review – I have seen too many times it was not really a requirement. But
it might be, say because the struct is used in a public C interface. (Well,
those cases in my practice were even more enforced with packing and other
instrumentation that made sure the layout is the one as we think...). It’s
still no reason to drop handy C++ features, we can use that bare POD struct
as base class (or member) of a proper C++ one with ctors, operators and
whatever other utility. And happy to provide the raw data to the picky
clients.

I must notice that this time we have a sample with perfect whitespace
format, probably supported from a tool. I normally prefer keeping the &
with the type rather than spaced on both sides, but that is up to local taste.

Commentary
This problem obviously piqued people’s interest and many of the issues
with the code were well covered by the critiques offered.

However, the reason I originally picked the code wasn’t really highlighted;
which was that the program demonstrated the dreaded ‘undefined
behaviour’ as it makes control flow decisions based on the uninitialised
padding bytes. There’s also no guarantee that reading the uninitialised data
will give the same result each time. Where optimisers come across
uninitialised values they are at liberty to assume the value is whatever
makes their job easiest: hence when adding an uninitialised value it may
be assumed to be zero and when multiplying assumed to be one.

Also note that since compilers know that the padding is not required it is
not necessarily copied when the object is – I believe clang does this for
the trailing alignment padding, whereas at least one other deliberately
doesn’t do this as it causes too many surprises for users.

Tools that perform static or dynamic analysis of the program and notify
of uninitialised memory access are extremely useful when finding this sort
of problem: only one of the critiques mentioned this.

Finally you may notice that although many of the entrants implemented
an operator< there were several different forms for this – which makes
it harder to check quickly for correctness. It may well be that the form using
std::tie will eventually become the de facto standard once C++11
adoption is more widespread.

The Winner of CC 84
This critique had many good entries – thank you to all who took time to
put metaphorical pen to paper. I have decided to award the prize to Björn
– his clear explanation, with line drawings, of the reason for the trailing
padding helped me make my decision.

Code Critique 85
(Submissions to scc@accu.org by Feb 1st)

I’m trying to write a function to read an integer from a string but I
always seem to get zero. Can you advise me?

The code is in Listing 2.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website

(http://www.accu.org/journals/). This
particularly helps overseas members
who typically get the magazine
much later than members in
the UK and Europe.

#include <algorithm>
#include <iostream>
#include <string>

// Parse integer with optional commas
int readInt(std::string s, int v = 0)
{
 if (s.empty()) return v;
 if (s[0] == ',')
 std::remove(s.begin(), s.end(), ',');
 int digit = s[0] - '\0';
 if (digit < 0 || digit > 9) return v;
 return readInt(s.substr(1), v * 10 + digit);
}

int main(int argc, char **argv)
{
 for (int i = 1; i != argc; ++i)
 {
 int const v = readInt(argv[i]);
 std::cout << argv[i] << ':' << v << '\n';
 }
}

Listing 2
JAN 2014 | | 31{cvu}

http://www.accu.org/journals/

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamorous ‘not recommended’ rating, you are entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with books.
Jez Higgins (jez@jezuk.co.uk)
Android
Android App Development

By Wallace Jackson, published
by Apress

Reviewed by Paul Johnson

Not recommended

I have quite a number of
issues with this rather
weighty tome. It's not that it’s badly
written; it isn’t.

It’s not that it’s too short; at 507 pages
that accusation can’t be levelled against it. The
problem is that it doesn’t actually do what it says
it does.

The pace is slow and there is remarkably very
little in the way of code in there. Sure it goes into
XML and spends chapter 1 in setting up the IDE
(which you know is a personal bug bear of
mine), but it then starts spending a stack load of
time on using GIMP, Audacity and a pile of
other applications that while they are good for
chopping audio and editing images, really hasn’t
anything to do with app development.

If you chop out the sections that are peripheral
to development or really don’t have anything to
do with development, you end up with a fairly
good book that gives a reasonable coverage to
app development – nothing too in-depth, but not
too scant.

There are much better books out there for app
development. This one is a set aside and leave.

50 Android Hacks
By Carlos Sessa, published by
Manning, ISBN 978-1-617290-
56-5

Reviewed by Paul Johnson

Highly recommended

I’ve been developing for
Android now for almost 2
years, always in C# so I was half
expecting this to be another blah-blah-
java-blah-eclipse-blah book. It isn’t.
It’s actually full of useful information on how to

get the best out of Android with the right amount
of technical detail and well documented
examples.

Each example has the version of Android it
works from and each example line is
commented with additional bullet points for
each line, so even if you’re like me and only use
the Xamarin offering with .NET, the code is
accessible and structured.

The author also has a sense of humour which is
essential in a book of this type which could have
quickly become a dry tome.

If I had a spare couple of hours, I’d port the code
over to C# for a wider audience, but when your
schedule is a hectic one at best, I’ll just say that
this is a cracker and deserves the shelf space.

The C++ Programming
Language
The C++ Programming
Language (4th Edition)
By Bjarne Stroustrup.
published by Addison-Wesley,
ISBN 978-0-321-56384-2

Reviewed by Alan Lenton

This is not a book for novice programmers. It’s
also not a book about the differences between
C++98 and C++11. Neither is it a traditional
style tutorial or just reference book, though it has
an index good enough to make it usable as such.

So what is it then?

Its avowed purpose is to provide intermediate
and advanced C++ programmers with a
thorough grounding in modern C++ defined as
being post 2011 ISO standard. The book makes
few concessions to how things were done in
C++98, its purpose is to show you how they
should be done in C++11.

The book is divided into four main parts – ‘A
Tour of C++’, ‘Basic Facilities’, ‘Abstraction
Mechanisms’, and ‘The Standard Library’. I’ll
look at each of them in turn.

The first section is, at first sight, a bit odd. It’s a
100-page rapid look at how things fit together in
C++ without going into too much detail at any

point. I wasn’t sure at first, but after a while I
realized that I could start to see how the new
facilities would be used, even though the setting
was relatively simple.

You can do this sort of thing when you write for
developers who already use the language,
because you don’t have to worry about using
common facilities that haven’t yet been formally
introduced. Some people may not like it, but if
it’s not your cup of tea it can be skipped without
causing too many problems later on.

In the second part we start to cover the basics in
more detail. I found the section on references
particularly useful, covering, as it does, both
lvalue and rvalue references. As readers
probably know rvalue references were
introduced in the latest standard, but their
treatment in this book is typical of the treatment
all the way through – as part of a whole, not
something bolted on afterwards.

One thing this section has that I haven’t seen in
most books is a chapter on source files and
programs which covers not only linkage, but
headers, ODR, and initialization.

The third part covers abstraction mechanisms –
broadly speaking classes, templates, generic
programming and metaprogramming. Much of
the material in this section is hard work. That’s
not the fault of the author. He is dealing with
complex, abstract, concepts which require
concentration to understand. You can’t simplify
them, or you lose the essence of the ideas. Be
prepared to give the material your undivided
attention, or you will get lost.

The fourth and final part of the book covers the
Standard Library. It’s only about 400 pages long
(though I have whole books shorter than that!)
but it’s packed with useful material ranging over
the whole library. The problem is that the library
is big, and this is perhaps the one place where
you will find it necessary to have some more
specialist books on your shelf in addition to this
one.

It’s not that there is anything wrong with the
section. Quite to the contrary, there is much in
it that is excellent, but it just doesn’t have the
space to cover everything with enough
examples. The most obvious need is in the
32 | | JAN 2014{cvu}

concurrency chapters. The library concurrency
material is all there, but there simply isn’t space
to deal in depth with how to use it safely. I think
that the part of my programming shelf dealing
specifically with C++ will not only have this
book on it but also The C++ Standard Library
by Nico Josuttis and C++ Concurrency in
Action by Anthony Williams.

Overall there are a couple of things which I
particularly liked. One is the ‘Advice’ sections
at the end of each chapter, one or two liners
which make some suggestions about the best
way to go about doing the things covered in the
chapter. They aren’t proscriptive but they
represent good advice to bear in mind.

Second, I, for one, found particularly useful the
brief examples given in the book. The way they
are constructed makes no concessions to pre-
C++11 code, and shows how one of the minds
behind the standard intended the new material to
be used. I’m sure that some of those who follow
the work of the standards bodies closely will
recognize echoes of arguments in some of the
book’s explanations of various features!

I got a lot out of this book. More than I expected,
and I suspect I’m a better programmer for that.
I would be careful who I recommend it to,
because, as I said at the start of this review, it’s
not for beginners.

Coda: This book is physically heavy. It’s 1,300+
pages, including the index (which as I said
earlier, is good enough to make it useful as a
reference). I have the paperback edition, I
imagine the hardback is even heavier. There
have been reviews suggesting that the book is
not well constructed. I carried it back and forth
to work on the tube (subway) and train for a
month, and it’s still fine, a little battered,
perhaps, but certainly not coming apart. I think
that any early problems there may have been
must have been fixed.

If you are considering purchasing the Kindle
edition you should be aware that there are both
tables and diagrams in the book, something I’ve
found are often not handled all that well in
electronic readers.

Reviewed by Paul Floyd

Though the 2nd edition came out about
the time that I started writing C++ code,
for some reason I never read it, and I
started off with ‘D&E’ followed by the
3rd edition of this book. And frankly, I
did not enjoy the 3rd edition, to the extent that I
relegated it to a far shelf at home.

The 4th edition is much improved. I feel that the
author has benefited greatly from his other
writing and teaching experiences. This makes
the book flow better, from the code to the
descriptions and the associated advice.

It almost goes without saying that the coverage
of C++ is compendious, but where I felt this
book is really strong is not just the description
of the nuts and bolts but the explanations of the
design choices and how various C++ features
work together. It’s a big book, yet rather dense.

I suspect that I’ll have to read it again before
long in order to digest it well.

I have two slight criticisms. Firstly, I thought
that there was a bit too much about concepts,
clearly something close to the author’s heart.
Secondly, there is a bit of a negative tone on the
coverage of threads (and a preference for
processes, reflecting the author’s experience
perhaps?).

Review and Testing
Software Inspection
By Tom Gilb and Dorothy Graham,
published by Addison Wesley
(1993), ISBN: 0-201-63181-4

Reviewed by Paul Floyd

This is one of two books that I
read recently on software
reviews. I bought it partly
because in my current job we
do ‘code reviews’ and I wanted to get some ideas
for participating in and running such reviews.
None of my previous employers had ever done
any sort of organized reviews. The other factor
in my purchasing this book was my generally
positive experience of reading two other books
by Tom Gilb (namely Competitive Engineering
and Principles of Software Engineering
Management).

This book is fairly high up on the prescriptive
scale. It describes Software Inspection (note the
capital letters) as invented by Michael Fagan at
IBM in the 70s. Other software inspection
methods (no capitals) are described, but mostly
in terms of how less efficient they are than the
real thing.

The parts of the book are introduction (chapters
1–3), the grist of Software Inspection (chapters
4–7), more details on running the process and
solving problems in the process (chapters 8–12).
The next two parts of the book cover case studies
(chapters 12–17) and the appendices, five of
them, mostly templates for plans and reports to
use in the inspection process.

Well, I wasn’t entirely convinced. Though there
are a few success stories, I imagine that it is
difficult to get buy-in for such a heavy method
from management and engineering.

Peer Reviews in
Software
By Karl E. Wegers, published by
Addison Wesley (2001), ISBN: 0-
201-73485-0

Reviewed by Paul Floyd

I bought this for much the same reasons as
Software Inspection. I also quite liked two books
by the author (namely Software Requirements
and More About Software Requirements). Of the
two books this is the slighter tome. Due to its
more recent publishing date, it was possible to
include web links to ‘extras’ like report
templates.

Inspection isn’t the only method covered,
covering the gamut from formal inspection
down to desk checking and ad-hoc checks.
Having said that, inspection does get the lion’s
share of the coverage. The tone of the writing is
also far more relaxed, being less prescriptive and
more informative. I felt that my thinking was
very much on the same wavelength, in particular
chapter 1 (quality motivation for using reviews)
and chapter 9 (measuring the results, and in
particular the little bit on measurement
dysfunction illustrated with a Dilbert cartoon).

One thing that was mildly annoying was the
chapter introductions that use presumably
fictional little scenes to illustrate the point of the
coming chapter. That might just be me, as I’ve
never liked this sort of artifice in non-fiction.

How Google Tests
Software
By James Whittaker, Jason Arbon,
Jeff Carollo, published by Addison
Wesley (2012), ISBN: 0-321-80302-7

Reviewed by Paul Floyd

There are some technical books that read a bit
like a novel. Then there are some that read like
an encyclopaedia. And again there are some that
read like a collection of short stories. This book
is a collection of bits and bobs that clearly falls
into the last category. There’s a lot about Google
and the Google culture – in part the book reads
like an advert for Google hiring and required
reading for newly inducted Google testers.

The book gives an overview of the people
(SETs, basically a developer/tester role and TEs,
test engineers) that are behind the testing. Tools
are covered, without going into too much detail.
I must say that I envy the Google CI system.
Selenium/WebDriver gets quite a few mentions,
which I suppose makes sense as it is close to
their core business.

Whilst I wasn’t expecting the book to literally fit
its title and explain the Google systems in detail,
I do think that a bit more structure would have
helped. There are bits that feel like someone
took their Dictaphone to the coffee machine and
left it on while a gang of people were chatting
casually. Then again, perhaps that’s how things
are inside Google.

Miscellaneous
Windows via C/C++
By Jeffrey Richter and
Christophe Nasarre, published
by Microsoft Press, ISBN: 978-
0-7356-6377-0

Reviewed by Paul Floyd

It may be C and C++, but it
has a strange Windows API
dialect from my UNIX developer perspective,
with lots of
VeryLongCamelCaseFunctionNames with
even longer argument lists (often with
MultipleVersionsEx). Not to mention the odd
JAN 2014 | | 33{cvu}

relic from 61 bit Windows like DWORDs. The
good news is that this book gives concise
coverage of the Windows API in a native
manner. The concise aspect is not to be
undervalued. The book isn’t small at about 770
pages, but I dread to think how it would have
turned out had the authors aimed for
comprehensiveness.

The parts that I found most interesting were the
sections on I/O completion ports, thread pools
ans structured exception handling. I also
appreciated the tips and pointers to tools like
DumpBin.exe and Rebase.exe.

The Basics of Cyber
Warfare
By Steve Winterfeld and Jason
Andress, published by
Synrgress ISBN 978-0-12-
404737-2

Reviewed by Alan Lenton

Cyber Warfare is one of the two really hot topics
in the US Military-Industrial establishment (the
other is drone aircraft, in case you are
wondering), and this book is for those who wish
to get in on the ground floor. With the reduction
in budgets (actually, budget increases), all the
armed forces are casting around for new
justifications for larger shares of the pie, and all
have set up their own ‘cyber-commands’. This
book is firmly rooted in that milieu.

Needless to say, you won’t find a reasoned
analysis of the subject, or even a justification for
it, in this book. The section headed ‘Cyber War
– Hype or Reality’ occupies less than one page
in a 150 page tract. I’m sure I don’t have to tell
you what its conclusion was! What this book
does do, and does very well, is to provide the
senior management of companies wishing to
become part of this highly lucrative business
with the jargon and enough of a basic
understanding to not make fools of themselves.

Along the way it provides the largest selection
of military bureaucratic acronyms I’ve ever
come across – in just one page it introduces the
reader to TTPs, InfoSec, Net Centric Warfare,
IA, CNO, CNE, CNA, CND (Computer
Network Defense – not Campaign for Nuclear
Disarmament!), and IO... And that’s just the
start. I read the book with a kind of warped
fascination. This stuff would make a great basis
for a game about cyber-warfare, but would
provide little of use for most people in IT, or
even IT security.

Oh, and one comment for the publisher, the days
when it was acceptable to use bad photocopies
of leaflets (in this case an old Verisign leaflet)
as an aid to understanding are long since past!

Computer Systems
By Randall E. Bryant, David R.
O’Halloran, published by
Pearson (2011), ISBN: 0-13-
713336-7

Reviewed by Paul Floyd

There aren’t many books like this about, and
their scarcity increases their value. Clearly this
is aimed at the undergraduate, and I felt that I
missed out a lot by not doing the exercises (my
excuse is that I do most of my reading over
breakfast or on public transport).

The authors try to cover computer systems from
the ground up. After the basics, they go into
lengthy coverage of machine code. Next up is a
cover the basics of processor design, developing
a simplified x66 basic processor (which they call
y86). This is then enhanced by adding
pipelining, out-of-order execution and an
explanation of hazards. The next chapter is on
performance from the perspective of the
compiler and the code that it has to deal with.
The last chapter in the first section covers caches
and the memory hierarchy.

Section 2 kicks off with a chapter on linking, a
topic that generally gets little coverage. After
this, as the topics get to higher levels of
computer systems, I felt that the ground was
better trodden and the scarcity value decreased.
The last few chapters cover Unix systems
programming in the same vein as W. Richard
Stevens. Some of the low level C stuff was
lacking government health warnings – setjmp/
longjmp are described without saying anything
about C++ exceptions and threads. I was a bit
disappointed that the chapter on threading didn’t
get down to instruction reordering and its impact
on thread safety.

Arduino In Action
By Martin Evans, Joshua Noble,
Jordan Hochenbaum, published by
Manning (2013), ISBN:
9781617290244

Reviewed by Andrew Marlow

Recommended but with
reservations.

The Arduino is a credit card sized single-board
microcontroller for use in various home
electronics projects. The Arduino has an
development IDE and several open source
libraries to help interface the Arduino to other
devices.

This book is a practical guide to using and
controlling the Arduino and connected devices
via its programming language and by all sorts of
electronic components, typically connected
using breadboard. The components include
LEDs, LCDs, speakers, sensors and various
kinds of motor.

The book says it is aimed at beginners, but in my
opinion the book is much more suited to a more
experienced developer and someone who is
quite familiar with electronics. The projects start
simple but after the first third of the book the
pace gathers exponentially with briefer and
briefer explanations with more and more
material simply glossed over. It makes an
excellent start as a beginners book but the
programming language is not covered or
introduced properly (it is covered in an
appendix) so its use becomes more mysterious

as the projects become more complex. The use
of electronics terminology is also a bit loose and
has a tendency to slip into jargon (trimpot, pull-
down resistor etc). The more complex projects
start to bandy terms about with no explanation
at all. For example, the face tracker project
mentions a Haar Cascade without explaining
what it is or how it is relevant. The beginners part
is excellent which is the main reason I
recommend the book despite the problems.

The book structure is not clear from the table of
contents. There is an introduction and brief
history of the Arduino, some simple projects to
control things like LEDs and speakers, then
projects that are more complex. There is section
on wearables, creating your own shield (an
interfacing circuit board), and integration with
other environments and languages for more
even complex projects. These include face
tracker, a graphic equalizer and temperature
monitor.

There is a large amount of material to cover. The
organisation and presentation of the book as a
whole does not help with this. The divisions
appear to be quite arbitrary and the section and
chapter titles are vague. For example, the book
is supposedly in two sections, getting started and
putting the Arduino to work. This is not helpful.
Divisions based on project complexity and use
of additional circuitry and devices would have
been more useful.

Arduino programs, known as sketches, start off
quite useful, but become less so as the book
progresses. This is for several reasons: the
language is not introduced properly and starts
off looking like C, but C++ aspects such as
classes are used later on with no introduction or
explanation. The code has various clashing
styles that overall give the impression of
multiple authors with different backgrounds,
experiences and coding conventions.

The balance between prose and code fragments
is about right but as the code becomes more
involved the explanations become shorter.
Some aspects, such as why certain baud rates are
chosen for the serial line, are barely mentioned
at all. Also the circuit diagrams vary a little in
style and layout conventions. The diagrams in
the wearables chapter are noticably different in
style. The shield chapter in particular has some
departures from the conventions of previous
chapters. The diagrams show the shield as a
picture rather than a rectangle, grounded
resistors are shown using the ground symbol
rather than being connected to the GND line and
there are no photographs to illustrate how the
circuit diagrams work out in practise (there are
helpful photographs in most of the rest of the
book). Some of the circuit diagrams are made
using fritzing (the diagrams have a small note to
this effect) but fritzing is not mentioned in the
text (There is a one line mention on the inside
cover).

Shields are mentioned several times in the early
parts of the book without saying what they are.
There is a dedicated chapter on shields that even
34 | | JAN 2014{cvu}

coveres how to make your own. Surely the first
reference could have explained what they are
with a forward reference to the detailed chapter.

Later chapters cover external interfaces such as
the ethernet port, USB port, using other circuitry
such as shields, breakout boards and special
leads to use WiFi, Bluetooth and connect to
Nintendo Wii, the XBox and Apple phones.
There is nothing on how to interface the Arduino
to an Android phone, which is a bit suprising.

The book is dated 2013 but unfortunately does
not mention the more recent Arduino boards.
The Leonardo looks to take over the position of
the Uno but the book uses the Uno most of the
time. The graphic equalizer project uses the java
audio library Tritonus. This is a suprising choice
since it is linux only (not mentioned in the book)
and the last news item on the website is dated
2003 (i.e. it looks to have been neglected for ten
years).

The synthesiser project towards the end of the
book uses PureData (Pd) which is a visual
programming language. The visual
programming aspect of Pd does not get the
proper mention that it should. There is even a
text listing of the generated code, which surely
defeats the point. This is compounded by the fact
that the Pd diagrams are small and of low
quality.

The book covers a huge range of electronic
projects and does start with some very simple
ones. This makes the book appealing, despite the
problems referred to. There are lots of
photographs and many of these show assembled
breadboards corresponding to the circuit
diagrams. This will be of particular help to the
beginner. The experienced programmer and
electronics hobbyist will probably find the later
projects very interesting and fun to do.

My overall impression of the book is that is
started with a good emphasis for the beginner
but lost this as time went on during the writing,
during which many aspects got insufficient
treatment, creating a rushed feel, compounded
by the clashing styles and conventions. Still, the
breadth is impressive and serves as a useful
starting point for the more advanced projects.

Emergent Design
By Scott L. Bain, published by
Addison Wesley. ISBN: 978-0-
321-88906-5

Reviewed by Gail Ollis

I really struggled to see
what this book is for.
When in a charitable mood
I think that it might have
been intended as an introductory text to give
beginners an introduction to all the practices
they should be aware of as a professional
software developer – a broad overview to get
them asking the right questions and to prepare
the ground for reading some important books
later. This is not what the book claims to be,
though it could indeed be a less daunting
prospect than a bookshelf-crushing collection of

essential reading presented all at once. On less
charitable days, I think the author must have
chosen to publish this as a book because you
can't sell a one-page bibliography.

The rather harsh judgement stems from my
question about the purpose of the book. This
volume of 400 or so pages is not (obviously!) a
comprehensive guide to patterns, testing,
refactoring, coding style and object oriented
design. Instead it takes samples of good advice
from a range of classic works on these topics.
These are perhaps a good start in explaining the
importance and usefulness of knowing and
understanding concepts that the profession finds
useful, but it's not enough to go very far with
applying them. A reader not already familiar
with the referenced works will need to read those
too, so why not give them just enough to whet
their appetite for that? This book is a lot longer
than it needs to be and would be better as a thin
volume of Practices every programmer should
know – giving the flavour of these, illustrating
why they are important and helping readers to
identify which ideas warrant the most
immediate attention in their own circumstances.

A reader who is already familiar with the cited
texts will not learn anything new from this book.
The author seems to lack of a clear
understanding of just who his audience is.
Sometimes he refers to books and their authors
as though they are already known to the reader
and only later, if at all, pauses to introduce them.
The referenced titles and names are in fact
almost certainly already well-known to ACCU
members. The back-cover claim that the book
‘provides developers, project leads and testers
powerful new ways to collaborate, achieve
immediate goals, and build systems that
improve in quality with each iteration’ (my
emphasis) is not accurate. They are new only in

the sense that they are not universally known and
adopted ways. That they are not universal is
evident from the author’s banging of a
professionalism drum, which gets increasingly
irritating with every repetition. There seems
little point in labouring the value of adopting
professional practices to a reader who has
already shown some regard for their own
development by picking up a book they hope to
learn from.

Clarity of purpose is lacking not just in writing
for a particular audience but also in expounding
the theme set out in the book’s title. The term
‘Emergent Design’ is used in two different
contexts: how software development processes
have changed over time, and how a software
system can be designed to evolve smoothly over
time rather than inevitably decay as changes
come along. The former does not really warrant
space in this book; how we came to reach our
current understanding of what constitutes good
software development practice is of little use,
even for those with experience of how things
once were, in a book which will be read to learn
how to do things better within a very different
paradigm. The latter theme is more apposite; the
author should have stuck to this and kept the
book more focused on the value of important
current practices. With a couple of small
exceptions the book’s advice on these is not poor
advice – but it is a rather random rehashing of
subset of ideas from a good, solid collection of
other, well-respected works. My
recommendation is to cut to the chase and read
the books in the bibliography instead.
JAN 2014 | | 35{cvu}

36 | | JAN 2014

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Alan Griffiths
chair@accu.org

We’re approaching the deadline for
nominations for committee posts. At the time of
writing there are a number of posts without
candidates standing. In particular both the
current Chair and Secretary are standing down
and there have been no candidates proposed.

Under the constitution, nominations of
candidates for these posts are needed by the
Secretary before the 11th February. Naturally,
candidates can be nominated for other positions
too – even those for which there is a sitting
candidate.

The committee is in the process of putting
descriptions of the current posts and roles onto
the website – by the time you read this they
should be available in the members’ area.

If no-one stands for election to either the Chair
or Secretary posts before the 11th February then
the incoming committee will have an interesting
situation to deal with. I don’t know what they

will do but the constitution does allow them to
appoint someone to fill roles.

The duties of The Chair should not terrify
anyone. They fall into two categories: presiding
over meetings and representing either the
committee or the organization. Neither is
particularly onerous or time consuming.

There are two types of meetings the chair
presides at: committee meetings and general
meetings. There are perhaps a half dozen
committee meetings during the year and one
Annual General Meeting. The people involved
in these sometimes need prompting to move on
to the next agenda i tem or a vote, but
proceedings are generally relaxed and not
difficult to run.

This bi-monthly C Vu report ‘From The Chair’
is probably the most persistent task – as every
couple of months it is necessary to submit a few
hundred words to the C Vu editor. The
occasional emails from outside the organization
that require a response are rare and seldom need
much consideration.

I’m not standing down because of the burden of
these duties, but because I’ve achieved what I set
out to do when I stood for the post:

 There is more transparency in committee
proceedings so members can see who on
the committee is (or is not) dealing with
the work.

 Committee meetings are now able to
accommodate remote attendance both by
committee members and by interested
ordinary members.

 There is a new constitution that
recognizes the global aspirations of the
ACCU.

 The website reflects more of the activity
happening within the ACCU.

Of course, there is still work to be done. Most
importantly, the membership numbers are
falling.

I don’t have a plan for the future of ACCU so I’m
stepping down to make room for someone who
does.

Is that you?

Getting Ready for the 2014 AGM
Officers Elections and Motion Proposals

The next AGM will be the first where full remote voting will take
effect. The changes from previous years have deep implications for the
way officers are elected and motions are proposed.

The deadlines for the next AGM are:

12 January 2014 Announce Deadline

11 February 2014 Proposal Deadline

1 March 2014 Draft Agenda Deadline

15 March 2014 Agenda Freeze

22 March 2014 Voting Opens

12 April 2014 AGM

Members interested in standing for any committee post must notify the
current Secretary in writing (letter or email), including the names of a
proposer and a seconder, on or before the Proposal Deadline. Please
note that the same person cannot stand for more than one role in the
same election.

In the same way, members interested in proposing a motion have to do
so on or before the Proposal Deadline. The only exception is:

Motions that don’t affect the running of the organisation can
be accepted from the floor at the presiding member’s
discretion

(section 7.6.2 of the constitution) .

I encourage you to look at the constitution here http://accu.org/
index.php/constitution, especially sections 5 and 7, for more details.
You can seek early feedback on ideas for motions by writing to the
accu-members@accu.org mailing list (joined from your subscription
profile on the website).

On a final note, I want to remind you that Alan Griffiths, the Chair,
and I (the Secretary) will not be standing for election again. These are
arguably the two most important roles in the committee. The
committee needs new people with new ideas. Perhaps you should
consider putting your name forward...

For any questions and clarifications, feel free to email me at
secretary@accu.org.

Giovanni

	CVu25-6.pdf
	On Being Ignorant
	Speak Up!
	Social Networking
	Phenomenal Software Development
	The Soundtrack to Code
	An Unexpected Journey
	Generating Code from a Unit Test (Part 3)
	Standards Report
	Architectureless Software Design
	Code Critique Competition 84
	Bookcase
	Getting Ready for the 2014 AGM
	View from the Chair

