www.accu.org

l "o_'m.e'

el Ethical*Brog i‘m" NE v
! Pet ooo e
InTrnve Terellerex: Ced Sk
A 5 Crlis GYdW@

. (Cpeie mgCoFroa n| gi

- \ - [}ltel ar lto
T o Py on Fe)f Slzrex

; AN, Bu%ss

(Ulnlevﬁlnm },\Tﬂn A C to%c on

Slst@

ﬁ. .f'_*u ;
' "'» %

@’@
A

AR

3

AR h

{cvu

Volume 25 Issue 9
November 2013

ISSN 1394-3164
Www.accu.org

Steve Love
cvu@accu.org

Jez Higgins
jez@jezuk.co.uk

Silas Brown, Andy Burgess,
Pete Goodliffe, Paul Grenyer,
Dirk Haun, Chris Oldwood,
Roger Orr, Richard Polton,
Mark Radford

ACCU Chair
Alan Giriffiths
chair@accu.org

ACCU Secretary

Giovanni Asproni
secretary @accu.org

ACCU Memhership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

{cvu}

developers that interfaces have a capital ‘I’

prefix to indicate that they are interfaces. In
fact, the .Net naming guidelines suggest it’s good
practice; more than that, those guidelines also
recommend that some ‘standard’ implementation’s
name should differ only by removing the ‘I’.
IFindThisStrange. Amongst other reasons, the name of
the interface is the name that most of the code should be
using, and not having the prefix would extend the lives of
programmers’ keyboards everywhere. More seriously, |
think that having a class/interface pair where the name of
the class is the same as the name of the abstraction without
an ‘I’ suggests that insufficient thought has been put into

It’s become deeply ingrained in many C#

either the name or the abstraction.

There are other seemingly religious beliefs in the C#/
Net community (not just there, but I’'m picking on C#
programmers this month) such as the idea that Garbage
Collection absolves you from any responsibility with
regard to the lifetimes of your objects, that Singletons
(plural, obviously) are Good™ and that constructors

shouldn’t throw exceptions. A quick hunt on say

StackOverflow.com for ‘Singleton’ will reward you with more results than you could
possibly read in a lifetime! Within those results, you’ll find myriad implementations,
with accompanying arguments as to why that one is better than this one, along with
techniques for creating multiple instances of a Singleton type, and how to write one
where the underlying implementation can be changed. It’s one of the reasons I find
StackOverflow so entertaining. Just occasionally you’ll stumble across a small voice
enquiring if anyone’s thought about not using a Singleton...“If you only want one,

only create one.”

There are, then, things I would like to know. Why is it so important to be able to
distinguish an interface from a class by its type? How many people have ever needed
just one instance of a type? Really really really? How hard would it be to create a new
language with constructors that have return values? When, exactly, can I have my

memory back? You know where to
send the answers by now.

STEVE LOVE
FEATURES EDITOR

The official magazine of ACGU

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers — and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
WWW.accu.org.

Membership costs are very low as this is a non-profit
organisation.

NOV 2013 [{cvu} | 1

{cvu}

DIALOGUE

15 Standards Report
Mark Radford
reports the latest
from the C++
Standards meetings.

13 Code Critique Competition
Competition 84 and
the answers to 83.

19 Norfolk Developers
Conference
Paul Grenyer
presents the Norfolk
Developers
Conference.

REGULARS

20 ACCUMembers Zone
Membership news.

FEATURES

3 The Ethical Programmer

Pete Goodliffe acts ethically. Again.

9 Trying Python For Size

Andy Burgess takes his first steps in Python.

L |

The Windows KP Threat: A Call to Action

Silas S. Brown brings an imminent problem to our

attention.
9 Static Code Analysis

Chris Oldwood wants more than just syntax checking.

10 Generating Code from a Unit Test, Part the Second
Richard Polton continues his quest to generate code

from tests.

14 Why We Need To Reconsider How We Do Technical

Dirk Haun makes a case for doing presentations

differently.

SUBMISSION DATES

CVu256: 15t December 2013
CVu26.1: 15 February 2014

Overload 119:15 January 2013
Overload 120:15' March 2014

WRITEFORG VU

Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!

Send articles to cvu@accu.org. The friendly magazine production

team is on hand if you need help or have any queries.

ADVERTISE WITH US

The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

2 [{cvu} [NOV 2013

COPYRIGHTS AND TRADE MARKS

Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.

By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

Becoming a Better Programmer # 83

The Ethical Programmer (Part 2)

Pete Goodliffe acts ethically.

Treat others as you would want them to treat you.
~ Matthew 7:12

his is the second installment in a mini-series on ‘ethics’ in
T programming. We’ve already looked at an ethical approach towards

the code we write and considered the specific legal obligations we
must observe.

However, being ethical drives much deeper than this; towards an
equivalent of the medical Hippocratic Oath.

An ethical approach implies certain attitudes towards other people:
towards users, team mates, managers, employers and so on. Even towards
yourself. Let’s look at this in more detail.

At the end of this article, I promise you a new Hippocodic Oath. Why
should doctors have all the fun?

Attitude to people

We’ve already considered some ‘ethical attitudes’ towards people, since
we write code primarily for the audience of other programmers, not for the
compiler. Programming problems are almost always people problems,
even if the solutions have a technical nature.

Good attitudes towards code are also good attitudes to other
programmers.

Imagine yourself as a heroic coder. The kind of programmer who wears
their underwear atop their trousers, and not simply as a geeky fashion faux
pas. Now: do not abuse your super powers for evil. Only write software
for the good of mankind.

In practice, this means: don’t write viruses or malware. Don’t write
software that breaks the law. Don’t write software to make people’s life
worse, either materially, physically, emotionally or psychologically.

Don’t turn to the dark side.

Do not write software that will make another person’s life
worse. This is an abuse of power.

And here we open a wonderful new can of worms: is it ethical to write
software that makes some people very rich at the expense of poorer people,
if it doesn’t break any laws? Is it ethical to write software to distribute
pornographic content, if the software itself breaks no laws? You can argue
that people are exploited as a byproduct of both activities. Is it ethical to
work in these industries? This is a question that I can only leave for the
reader to answer.

‘What about working on military projects? Would an ethical programmer
feel comfortable working on weapons systems that could be used to take
a life? Perhaps such a system will actually save lives by acting as a
deterrent against attack. This is a great example of how the ethics of
software development is a philosophical topic, not an entirely black and
white affair. You have to reconcile yourself with the consequences your
code has on other peoples’ lives.

Team mates

The people you encounter most frequently in your programming career are
your team-mates; the programmers, testers, etc, who you work with closely
day by day. The ethical programmer works conscientiously with all of
them, looking to honour each team member, and to work together to
achieve the best result possible.

Again.

Speak well of all people. Do not engage in gossip or back-biting. Do not
encourage jokes at the expense of others.

Always believe that anyone, no matter the level of mature or how
inexperienced, has something valuable to contribute. They have an opinion
that is worth hearing, and should be able to put forward points of view
without being shot down.

Be honest and trustworthy. Deal with everyone with integrity.

Do not pretend to agree with someone when you believe they are wrong;
this is dishonest and rarely useful. Constructive disagreements and
reasoned discussions can lead to genuinely better code design decisions.
Understand what level of ‘debate’ a team member can handle. Some people
thrive on intense, passionate intellectual debate; others are frightened by
confrontation. The ethical programmer seeks to engage in the most
productive discussion result without insulting or offending anyone. This
isn’t always possible, but it the goal is to always treat people with respect.
Do not discriminate against anyone, on any grounds, including: gender,
race, physical ability, sexual orientation, mental capability, or skill.

The ethical programmer takes great care to deal with ‘difficult people’ in
the most fair, transparent way, attempts to diffuse difficult situations, and
works to avoid unnecessary conflict.

Treat others as you would like them to treat with you.

Manager/scrum master/team

Many issues that may be seen as agreements between you and your
manager can also be seen as ethical contracts between you and the other
members of the team, since the manager acts as a bridge with the team.

Do not take credit for work that is not yours, even if you take someone
else’s idea and modify it to fit the context a bit.

Do not give an unnecessarily high estimate for the complexity of a task,
just so that you can slack off and do something more enjoyable on the
pretence of working hard on a tricky problem.

If you see looming issues that will prevent the smooth running of the
project, report it as soon as you notice. Do not hide bad news because you
don’t want to worry or offend someone, or be seen to be a pessimistic
killjoy. The sooner issues are raised, planned around, and dealt with, the
smoother the project will go for everyone.

If you spot a bug in the system, report it. Put a bug in the fault tracking
system. Don’t turn a blind eye and hope that no one else will notice it.

The ethical programmer takes responsibility for the quality of
the product at all times.

Do not pretend to have skills or technical knowledge that you do not
possess. Don’t put a project schedule in danger by committing to a task
you cannot complete, just because you think it’s interesting and you’d like
to work on it.

If you realise that a task you’re working on is going to take significantly
longer to complete that you expected, voice that concern as soon as

PETE GOODLIFFE

Pete Goodliffe is a programmer who never stays at the

same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete @ goodliffe.net or @ petegoodliffe S

NOV 2013 I{cvu}| 3

{cvu}

possible. The ethical programmer does not keep it quiet in order to save
face.

When given responsibility for something, honour the trust placed in you.
Work to the best of your ability to fulfil that responsibility.

Employer
Treat your employer with respect.

Do not reveal company confidential information, either source code,
algorithms, or inside information. Do not break the terms of your
employment contact.

Don’t sell work you have done for one company to another, unless you
have express permission to do so.

However, if you realise that your employer is engaged in illegal activities,
it is your ethical duty to raise it with them, or report their malfeasance as
appropriate. The ethical programmer does not turn a blind eye to wrong-
doing just to keep their own job secure.

Do not falsely represent, or bad mouth your employer in public.

Yourself

The ethical programmer keeps themself up to date on good programming
practice.

They do not work so hard that they burn themself out. This is not only
personally disadvantageous, but also bad news for the whole team. Hours
and hours of extra work, week in, week out, will lead to a tired programmer,
which will inevitably lead to sloppy mistakes, and a worse final outcome.
The ethical programmer understands that, although its nice to look like a
hero who works incredibly hard, it’s not a good idea to set unrealistic
expectations and to burn yourself out.

A tired programmer is no use to anyone. Do not over-work.
Know your limits.

You have a right to expect the same ethical conduct from others you work
with.

The Hippocodic Oath

What would the ideal programmers’ code of ethics look like? The
documents formulated in [1] and [2] are formal, lengthy and hard to recall.

We need something pithier; more of a mission statement for the ethical
programmer.
I humbly suggest:

| swear to cause no harm to the code, or to the business; to seek
personal advancement, and the advancement of my craft. | will perform
my allotted tasks to the best of my ability, working harmoniously with my
team. | will deal with others with integrity, working to make the project,
and the team, maximally effective and valuable.

rocket science or brain surgery.
What do you have to contribute?

T ACCU NEEDS
B 7 (” % I~
L.\ |

4 |{cvu}| NOV 2013

B What are you doing right now?

B What technology are you using?

B What did you just explain to someone?

B What techniques and idioms are you using?

Conclusion
Ethics is in origin the art of recommending to others
the sacrifices required for cooperation with oneself.
~ Bertrand Russell

How much you care about this kind of thing depends on your level of
diligence, your professionalism, and your personal moral code. Are you
in the programming game for fun, enjoyment, and the development of great
code? Or are you in it for yourself, for career development (at the expense
of others, if necessary), to make as much money as you can, and hoist
yourself above others on the professional ladder?

It’s a choice. You can chose your attitude. It will shape the trajectory of
your career.

I find my attitudes shaped by my desire to write good code and to
participate in a community that cares about working well. I seek to work
amongst excellent developers that I can learn from. As a Christian, I have
a moral framework that encourages me to prefer others over myself and
to honour my employers. This shapes the way I act.

I conclude from what we’ve seen above that there are (at least) two levels
to the ethical programming career: the mandate to ‘do no harm’ is the base
level, to not tread on people, or be involved in work that exploits others.
Beyond this is a more involved ethical mantra: to only work on projects
that provide sound social benefits, to specifically make the world better
with your talents, and to share knowledge in order to advance the
programming craft. I suspect that many people ascribe to the first camp
of ethics. Fewer feel the urge, or able to devote themselves to the cause of
the second.

How do your beliefs and attitudes shape the way you work? Do you think
you are an ethical programmer? B

References

[1] ACM Code of Ethics http://www.acm.org/about/code-of-ethics

[2] BSI code of Conduct
http://www.bcs.org/server.php?show=nav.6030

1. What should you do if you identify another programmer acting
‘unethically’. How does this answer differ if they are a co-worker, a
friend, someone who you’ve been asked to give a reference for, or a
coder you’ve met but do not work directly with?

2. How do software patents fit into the world of ethical programming?

Should your passion for software development have any bearing on
how much you care about ethical issues? Does a passionate
programmer act more ethically than a career coder?

C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about

For further information, contact the editors: cvu@accu.org or overload @accu.org

http://www.acm.org/about/code-of-ethics
http://www.bcs.org/server.php?show=nav.6030

{cvu}

Trying Python for Size (Part 1)

Andy Burgess takes his first steps in Python.

standards-checking super checklist tool, used by Tesco and

Morrison supermarkets’ suppliers on Windows, suggested they’d
like to make it cross-platform. I also had a requirement from a
hardware-developer contact to create a cross-platform front-end for his
devices, so [started investigating where I’d like to direct future efforts for
my software development.

My client, for whom I’ve written an industry leading

I experimented with multiple cross-platform development environments
— PHP-GTK appealed, because I develop websites in PHP, but the
environment seems largely abandoned nowadays, so I moved away from
investigating that further. I experimented with MonoDevelop — a good
environment making Windows-style exes run on other platforms, but I
didn’t really want to be tweaking Windows EXEs to run on other
platforms. I never really got into Qt, but again it looked promising. Real
Basic also seemed really good, but I wanted to be able to develop software
to run on the Raspberry Pi too, and Real Basic fell down here. I also looked
into Servoy, which is a fantastic piece of cross-platform software, but the
licensing model wouldn’t work for me.

I’ve always been a bit averse to using IDE’s (Interactive Development
Environments), because I don’t necessarily want to work in the same way
as has been programmed. Ifit’s at all possible, I’d rather use the command
line and a basic editor (I can even use DOS’s EDLIN!), rather than
someone else’s idea of what’s best to program with (however, I’ve got
quite good with Eclipse for Android Programming), but I digress.

I develop quite a few websites through a basic text editor (TextWrangler
on the Mac) and a local Apache server, and although they don’t have the
‘Intellisense’ of helping you with the code — like Microsoft’s Visual Studio
tools, I’'m happier that way, probably because it’s the way I originally
learnt to program! I’m pretty quick at the Unix VI (or VIM) editor too.

What about Python?

I bought a Raspberry Pi when the devices first came out, and waited 3
months for it to arrive. As a RISC OS enthusiast, I wanted to see if that
worked on the Raspberry Pi — it does, but I’m not discussing that here.

Whilst browsing a book in my local bookshop on developing for the
Raspberry Pi in the Python language, and thinking of my hardware client’s
job, I thought I’d find out a little more about the Python language. I always
seem to have problems installing software on Unix or Linux — there always
seems to be a missing ‘dependency’, and I always hit a wall trying to find
out how to get through all the dependencies. My main driving force into
looking into python was that Mac OS is written over a Unix
implementation (Darwin), and that a lot of the Unix command-line tools
were already installed, but was python?
I was already comfortable with the Terminal application in Mac OS
(Applications — Terminal), so started it up and at the prompt:
[MacBookPro:~] andy$%
I typed
python
and received:
Python 2.7.3 (v2.7.3:70274d53cldd, Apr 9 2012,
20:52:43)
[GCC 4.2.1 (Apple Inc. build 5666)
darwin
Type "help", "copyright",
for more information.
>>>

(dot 3)] on

"credits" or "license"

Good! That meant python was already installed on my Mac’s OS X
(Mountain Lion). [was on the older python (version 2.7.3). There’s a new
version, python 3 which is heavily under development, and is promised to
be vastly different, but I was happier with the older version for the moment.

Now it’s not abundantly clear what to do here, so I typed
quit
and received

Use quit() or Ctrl-D (i.e. EOF) to exit
>>>

Ah, that’s how I get out! I typed
quit()
... and left python.

I did the same on my Suse Linux computer and received the same kind of
prompt, except that I only had python version 2.5.2 on that computer.

I checked on my Windows 7 PC in the ‘cmd’ (command) window, which
I still — incorrectly — call the ‘DOS window’.

python
and received
Invalid command or file name.

That was to be expected. I’d not installed Python, and I didn’t expect
Windows to have it as standard.

The Python website [1] has downloads for all the usual platforms,
including more improved versions than those already installed on Mac OS.
I had to work out which processor my Windows environment was using
(by using Control Panel — System), I was using 32 bit Windows, so
downloaded the relevant Python 2.7.5 installer, and the relevant Python
3.3.2 installer. They can both live together on your Windows system. |
concentrated on Python 2.

The Windows installation of Python, introduced me to the windowing
Python Shell. It was also available somewhere on my Mac, but I’d not
found it. From the windowing shell, I could create a new program window
by using File — New. The IDLE editor appeared.

Right, now, I knew that I had Python on all three environments, I needed
to learn what what it’s about.

Learning Python

I browsed a few online tutorials about Python — initially in assessing how
I could use it on my Raspberry Pi. One of the best I found at
www.zetcode.com

ANDY BURGESS

Andy Burgess comes from a background in green-screen
programming, using COBOL and ALGOL on mainframes.
He now runs his own business in Web development and
is interested in cross-platform mobile development. He
can be contacted at andy @jet-net.co.uk

NOV 2013 I{ecvu}| 5

www.zetcode.com

{cvu}

On that site is an introduction to the language [2]. There are also further
tutorials on GUI programming in python.

The code can be entered in a text editor — e.g. Unix’s Vi or VIM (or
Windows’ Edit or Notepad), or interactively using the IDLE editor. IDLE
has some useful features for someone like me who doesn’t normally like
IDEs. If you have a bug in your program, the error is displayed in the
interactive window, and the line is highlighted in red (if a semantic error)
in the IDLE editor. Also pressing the tab key on the Mac brought up some
intellisense-type syntax suggestions, but not always when I wanted it!

Python works like a well-structured program, but is more intelligent in its
structure than, say PHP or Visual Basic. It’s “minimalistic’. No more do
you have to fiddle about matching missing curly brackets (C, C++, PHP,
Java etc), Ifs and End Ifs (Visual Basic, ASP, ASP.NET) or even
begins and ends (Algol and Pascal). The number of white space
characters determine the beginning and end of the block.

Whitespacing indentation
Instead of C, PHP or Java code:

class fred()
{
function open ()
{
command 1;
command 2;
}
function close()
{
command 3;
command 4;

You would use

class fred():
<tab>open (self) :
<tab><tab>commandl:
<tab><tab>command2:
<tab>close (self) :
<tab><tab>command3:
<tab><tab>command4:

so you get code looking like:

class fred():
open (self) :
commandl
command2

close (self) :
command3
command4

The fact that the close () function has only one <tab> rather than two,
tells python that this is another function at the same level as open () . Neat,
and no need for wondering if you’ve closed the right bracket at the right
time (and the amount oftimes I’ve had to do thatin PHP, I won’t mention!).

The one ‘gotcha’ in creating classes in Python is that you have to include
a reference to the class using self as a parameter to functions.

I considered this a very elegant method of programming, as you don’t have
to remember if the statement ends with a curly bracket, an End If, End
While or whatever; however I did have to remember that the else
statement needs a colon after it — else:.

The only ‘common’ statement that other languages seem to have that
Python does not is the Case or Switch statement. That statement is
implemented using i £ e1i£ statements. Not brilliant, but not too much
of a heartache.

6 |{cvu} | NOV 2013

Array indexes are like Algol using colons to separate the indices. For
example, in PHP an Array would be referenced with $myarray[0,1],
in Visual Basic this would be myarray (0,1), and in Python would be
myarray[0:1].

Python provides try ... except structures, which seem to be common in
most modern languages, but still a bit of a new concept for a dinosaur like
me.

Comments are prefixed with # — like they can be with PHP, but // and
/* ... */"are more commonly used. You cannot use /* ... */ in python.

Python is extremely strict with code spacing, whereas languages like PHP,
Cand Visual Basic aren’t that bothered if one line (notinan i f orawhile)
is a little indented. e.g. for the code
if fred==1:
print "one"
print "two"
Python will moan

"Theres an error in your program:
Unexpected indent"

Also mixing tabs and fixed spacing causes the language to moan too - it’s
best to use one or the other. There is a function in IDLE Format — Untabify
Region to convert tabs to spaces, but in practice for me, sometimes it
worked, sometimes it didn’t when I used a file I’d created in another editor.

Like internet pages or email, you can specify a encoding type for the
content of the program. Commonly UTF-8 is used through the directive:

-*- coding: utf-8 -*-
at the top of your program. Also like in Unix-based languages like Perl you
can specify a ‘she bang’ to tell the interpreter that this code is Python:

#!/usr/bin/env/python
but in my experience this can be omitted.

Python can also be used to create HTTP requests which would allow
applications to communicate with an external website.

GUI Development

There are two options I’ve considered for developing apps with a GUI
interface in Python — TkInter and wxPython. I believe GTK can be used
too, but I’ve not looked into that. The one thing I really love about GUI
development on Python is that you can write the code manually — like I
used to do with Fox Pro. This is also a drawback in that it doesn’t really
help you if you don’t know where to start.

Tkinter

Idiscovered that there was a GUI thing for Python called Tkinter [3], which
looked really promising as code generated looked ‘native’ for the
destination operating system. What was more appealing was that it was
already available for my Mac, and was already installed, so no messing
about with missing dependencies. Tkinter is python’s de-facto standard
GUI package, which also lent it credibility for me. It’s great for really
simple apps, but if you need to use more complicated things like webpages
within your application you may struggle.

WxPython

I’d come across wxWidgets as being available for Python (called
wxPython [4]), this GUI framework is more powerful than Tkinter, but it’s
an additional installation for Python.

I really struggled previously trying to install wxWidgets for my Mac
previously outside of Python (the dreaded dependencies issue struck
again), but installing it for Python was relatively straightforward for Mac,
PC and Linux. From my experience, wkPython can do far, far more than
Tkinter can do.

Watch out for more details of GUI development using Python in a later
article.

{cvu}

The Windows KP Threat: A Gall to Action

Silas S. Brown brings an imminent problem to our attention.

cheaply from her company, as they were getting rid of their old

stock. You can probably guess the rest. The box is running
Windows XP, which reaches end of life on April 8, 2014, and her company
are evidently dealing with their obsolete hardware by dumping it on
employees.

M y friend showed me her new computer. She had bought it quite

Continuing to run Windows XP after April 2014 will be a major security
risk. As a Microsoft security engineer pointed out on their blog [1],

When Microsoft releases a security update...criminals will...identify the
specific section of code that contains the vulnerability...develop code
that will allow them to exploit it on systems that do not have the security
update installed on them. They also try to identify whether the
vulnerability exists in other products...if a vulnerability is addressed in
one version of Windows, researchers investigate whether other versions
of Windows have the same vulnerability...the Microsoft Security
Response Center...[releases] security updates for all affected products
simultaneously...But after April 8, 2014, organizations that continue to
run Windows XP won’t have this advantage over attackers any longer.
The very first month that Microsoft releases security updates for
supported versions of Windows, attackers will reverse engineer those
updates, find the vulnerabilities and test Windows XP to see if it shares
those vulnerabilities. If it does, attackers will attempt to develop exploit
code that can take advantage of those vulnerabilities on Windows XP.
Since a security update will never become available for Windows XP to
address these vulnerabilities, Windows XP will essentially have a ‘zero
day’ vulnerability forever.

I shouldn’t have to tell ACCU readers what this means. If the owners of
these machines continue to connect them to the Internet (as the majority
of them undoubtedly will), then malware is going to steal credentials and
perform other nasties on a grand scale. People who receive these machines
delude themselves into thinking that a simple virus checker will save them.
It will not.

If organizations want to get rid of their Windows XP machines, they
shouldn’t just dump them on employees who don’t know the risks.
Otherwise they are shooting themselves in the foot. What if some of those
employees keep company confidential information on their home
computers? Even if that’s not the case, does the company really want their
employees to suffer from malware at home?

Since it’s not usually possible to upgrade the version of Windows on a
piece of hardware that’s not up to spec for newer versions, the obvious
choice is to put GNU/Linux on the old hardware. Ideally the machines
should be donated to an outfit which can do this before finding good homes
for them, or at the very least, employees and others who take them should

SILAS S. BROWN

Silas Brown is a partially-sighted Computer Science post-doc in
Cambridge who works part-time in assistant tuition and part-time for a
startup. He’s been developing language-related software since events
in Cambridge led him to acquire fluent Chinese. He has been an ACCU
member since 1994. Silas can be contacted at ssb22@cam.ac.uk

Trying Python for Size (Part 1) (continued)

Databhase
see https://www.ssucet.org/mod/resource/view.php?id=440

Python can read mySQL databases. This is a major draw to the language
for me, as my websites make use of mySQL databases. There are two
implementations of mySQL for Python — MY SQL-python and pyMySQL.
I didn’t manage to get MY SQL-Python to cooperate for me, but had great
success with pyMySQL. I intend to do a later article on mySQL for python
(using pyMySQL).

I had come across many Python code web pages with the . py extension
on the web — so also knew that I could potentially incorporate it into a
website. In reality you need to ensure that your ISP will provide access to
the cgi-bin folder to run server scripts. ISPs appear to be reluctant to do
this as it opens up potential vulnerabilities to the world wide web in Python
or Perl programs. I’ve run successful basic Python scripts on my test
server, but not really gone much further. It may be something I’1l want to
investigate in future.

Python can be made executable. py2app makes an Apple Mac OS X
application, and py2exe makes a Windows EXE. I’ve experienced success
with these two applications making Python executables on Mac OS and
Windows (I couldn’t get Tkinter programs working, but wxWidgets ones

did), but have not had success on Linux. PyInstaller promises to provide
the ability to make EXEs on Mac OS, Windows and Linux, but I couldn’t
get it to work properly on my Mac, so have not, as yet pursued it further.

The things I really like about Python are its simplicity, like old interpreted
languages like BBC BASIC or Microsoft’s QBASIC. I feel it has the power
of a language like C, but is more meaningful to read and work with. I like
its ability to create cross-platform GUI applications, and I like the way it’s
web-capable and can use databases.

Ilike its block-structure, and love the fact that you don’t have to remember
to open and close brackets (or i £s and endi £5), just reduce the indentation
to close the block. I like the fact that extras — like wxWidgets can easily
be downloaded and incorporated into the language.

But it’s not just me who obviously thinks this way. There are a vast amount
of code-snippets available on the internet to help you achieve what you
want to achieve. The language is well supported, and appears to be in
constant development. I’'m completely sold on it, even though it’s free! ®

References

[1] http://www.python.org/download/
[2] www.zetcode.com/lang/python/
[3] www.zetcode.com/gui/tkinter/

] www.zetcode.com/wxpython/

NOV 2013 | {cvu}| 7

www.zetcode.com/gui/tkinter/
www.zetcode.com/wxpython/
http://www.python.org/download/
www.zetcode.com/lang/python/
https://www.ssucet.org/mod/resource/view.php?id=440

{cvu}

be provided with information regarding a suitable Linux
distribution (my current recommendation for beginners is
Mint Xfce 13 [2] which has a 2017 end-of-life and can be
upgraded thereafter, but it’s possible that this won’t run on
all old hardware so perhaps a range of distributions should
be considered).

To play a small part in the warning work, [have now placed
asnippet of Javascript (Listing 1) in the template that drives
my personal website [3].

Using document.write to add an extra script in this way
means that I can make xp.js as big as | want without slowing
down users of more modern browsers. (In HTML 5 it’s not }
necessary to give a ‘language’ or ‘type’ attribute to the

| would welcome more
suggestions for heginner-friendly
Linux distributions that will work
on as much Windows XP hardware
as possihle

‘script’ element, and all earlier browsers defaulted to Javascript anyway.)
True, the above will work only if Javascript is available and switched on,
but it’s a safe bet that the vast majority of the target audience will have it,
and using Javascript means I can host the site on a server that can’t do a
lot of server-side processing. Anyway if you do browser-specific things
on the server then you have to tell web proxies that your pages are
User-Agent specific, which is not very nice to the proxies. Also, making
it Javascript means that inside xp.js I can add the contents of Listing 2.

I then tell them how to repent in sackcloth and ashes by installing Linux
(after taking a backup of their important files, of course, in case it goes
wrong). I’ll probably change the countdown to a days count somewhere
around the 40-days mark to make it more ‘proper’, and I’ll have to think
of something to say after doomsday has passed as well.

I urge everyone reading this to consider if there is any website on which
they have latitude to place a similar script. It won’t disturb most of the
readers, and you will be doing a big favour for those who ended up with
old XP machines. Of course, if your site is entirely about software
development then it’s likely that all your readers will be aware of this
problem already, but if you have any non-development material (or any
material that you send friends and family to) then you could be doing
people a favour by warning them. If anyone here works for a major Web
portal or search engine then you might be able to perform the favour for
even more people.

Additionally, I would welcome more suggestions for beginner-friendly
Linux distributions that will work on as much Windows XP hardware as
possible (i.e. machines from around the year 2000 onwards), but still have
good security support, a reasonable collection of drivers, and a fairly
modern WINE setup for running those pesky few Windows applications
that it’s hard to find alternatives for (e.g. the CD-ROM reference book they
like or whatever). Mint fits the latter two requirements quite nicely, and
the Xfce version is the least resource-hungry, but I know there are some
old laptops that modern Mint Linux can’t load its desktop on (you might
need an old version of Knoppix or similar instead, which is more of a
security compromise although it’ll almost certainly still be better than XP).

Finally, if anyone works for an organization currently involved in throwing
out a load of XP kit, please try to encourage them to warn the recipients
that the OS will need changing. I’d like to see Microsoft themselves put
out a final security update to Windows XP which causes the user to be
warned in no uncertain terms that their machine is no longer secure, but I
doubt if they will: they’d probably think it’s not in their commercial
interests if it might result in people switching to a non-Microsoft operating
system rather than continue to be addicted to Windows and upgrade their

8 |{cvu} | NOV 2013

<script><!-- check for old Windows:

if (navigator.userAgent.indexOf ("Windows NT 5")>-1)
document.write ("<script src=\"xp.js\"></"+"script>")
//-=-></script>

if (navigator.userAgent.indexOf ("Windows NT 5.1")>-1) {
var d=new Date(), d2=new Date("April 8, 2014");
document.write ("<h1>Only " + \
Math.floor ((d2.getTime () -d.getTime())/604800000)+ \
" weeks more, and your computer will be overthrown!</hl>");

PCs once they’re fed up with the malware. On the other hand, adding a
final warning via an update ought to gain them good publicity points for
‘doing the right thing’, and the users concerned are not the highest
spenders, so perhaps it would be a good commercial move for them after
all. m

References

[1] http://blogs.technet.com/b/security/archive/2013/08/15/the-risk-of-
running-windows-xp-after-support-ends.aspx

[2] http://www linuxmint.com/edition.php?id=113

[3] http://people.ds.cam.ac.uk/ssb22/ (add xp.js to see the source of the
XP warning script)

JOIN ACCU

You've read the magazine,
Now join the association
dedicated to improving your
coding skills.

ACCU is a worldwide non-profit
organisation run by
programmers for programmers.

Join ACCU to receive our bi-
monthly publications C Vu and
Overload. You'll also get
massive discounts at the ACCU
developers' conference, access
to mentored developers
projects, discussion forums,
and the chance to participate
in the organisation,

How to join
Go to www.accu.org and
click on Join ACCU

Membership types

Basic personal membership
Full personal membership
Corporate membership

What are you waiting for? Student membership

professionalism in programming
www.accu.org

)

http://blogs.technet.com/b/security/archive/2013/08/15/the-risk-of-running-windows-xp-after-support-ends.aspx
http://blogs.technet.com/b/security/archive/2013/08/15/the-risk-of-running-windows-xp-after-support-ends.aspx
http://www.linuxmint.com/edition.php?id=113
http://people.ds.cam.ac.uk/ssb22/

In The Toolhox # 5

Chris Oldwood wants more than just syntax checking.

a really gnarly bug. If it’s a really tough one you might even be

inclined to punch the air in a physical gesture that reflects the effort
you put into finding it. Of course we’d all wish this was never needed; that
we’d always write bug free code. Or at least track it down very quickly
during (unit) testing when the code is freshest in our minds.

T here is a certain level of satisfaction to be gained from tracking down

The antithesis of this is tracking down a bug only to find that a tool could
have easily pointed it out for you. I find this kind of bug soul destroying
because I know I’ve just wasted part of my life doing something the very
machine I’'m programming could have saved me from. Static Code
Analysis is one of those tasks that a machine is perfectly suited to as it
systematically reviews your code and points out those places where the
dragons may be lying in wait.

Toerris human

One of the most common mistakes I used to make in my earlier days was
the ‘assignment instead of comparison’ inside an i £ statement, e.g. writing
if (x = 2) instead of if (x == 2).Another common mistake I used
to fall foul of was uninitialised variables. There was always a desire to
avoid unnecessarily initialising a variable with a default value despite the
danger of ending up with a code path that might use its uninitialised value.
The mantra of ‘not paying for what you don’t use’ can lead you to
prematurely optimise your code’s execution speed at the cost of
significantly increased development time, and subsequent hair loss.

There have been attempts to try and write code in a different style as a way
of avoiding some of the more common mistakes. One of the most notable
is probably the swapping of the arguments in an if statement so that you
would end up trying to assign to a literal value instead of the variable, e.g.
instead of writing if (x == 2) youuse if (2 == x).But that just
makes the code harder to read, and anyway it doesn’t work when non-
const variables are involved. The SINGLE ASSIGNMENT pattern [1],
which gets an added boost via const in C++and £inal in Java, is a more
human friendly approach to the problem, e.g.

const std::string input = getInput();

const size_t index = input.find first of('<');

if (index == std::string: :npos)

The free lunch?

Contorting your code to avoid common coding problems should not be
your first line of inquiry. This is even more true today as the very first bit
of advice in Steve Maguire’s 1993 book Writing Solid Code, is this:

Enable all the optional warnings in your compiler.

Those more familiar with the similarly aged Code Complete by the other
Steve (McConnell) have to wait a little longer for the same advice, almost
until the end of the book (Chapter 26 — Debugging) but it’s still there. This
should be done in companion with enabling ‘warnings as errors’ to make
sure you don’t just try and ignore what the compiler might be trying to tell
you. Yes, in many cases the warnings are possibly benign, but if you fail

CHRIS OLDWOOD

Chris is a freelance developer who started out as a
bedroom coder in the 80s writing assembler on 8-bit
micros; these days it's C++ and C#. He also
commentates on the Godmanchester duck race.
Contact him at gort@cix.co.uk or@ chrisoldwood

to deal with the issue there-and-then you risk missing the really important
stuff in a sea of trivia when it finally rears its ugly head.

The best part about that advice is that it’s pretty much free. You’ve already
paid for the compiler (either in pennies or time) and so you might as well
put it to good use. In these modern times where there is an abundance of
Open Source Software, even if you aren’t using it for your production
builds, it can still be used as an additional pair of eyes that will cast a second
opinion on your codebase.

For many years I was perfectly happy using /W4 /WX with Visual C++
and felt reasonably smug that I was getting some decent static analysis (this
was long before they added the extra code analysis). Then, after a fair bit
of refactoring I managed to get GCC to at least compile parts of my
codebase (not all and it still wouldn’t link) and yet I was amazed at how
much extra free static analysis [had been missing out on. GCC highlighted
another 14 potential issues that Visual C++ was silent on. And this was
before I had turned on the standards compliance and portability settings
(which I had little need for production-wise). Clearly a propriety company
like Microsoft has a vested interest in making money from their extra
smarts and with an Enterprise-style budget you may get more out-of-the-
box, but it just goes to remind us that the OSS offerings can often play and
even outsmart their rivals in the big leagues.

As an aside the main place where the most refactoring was needed was in
my COM components. I had a bit of extra work to manually convince the
MIDL compiler to throw out something GCC could directly consume, as
Visual C++ invokes it automatically, and I had to provide some
workarounds for VC++ specific extensions like __uuidof. But, once that
was done it meant a whole lot more code could be put under the
microscope. In particular it highlighted a number of places in my error
handling where I had switched from a custom string implementation (that
had the same memory footprint as a char*) to std: : string and [was
passing it by value to a print£ () style variable args function.

With potentially so much on offer before getting your wallet out you might
be thinking there is little point in spending any money on custom tooling.
Aside from the grief I’d get from at least one prominent ACCU member
by suggesting that strategy, it’s simply not true — there is definitely a lot
of'value in tools like the venerable Lint. For starters not all languages even
need a compiler, e.g. JavaScript, and so that’s not even an option.
Secondly, even if you do have a compilation step, custom tools like Lint
can provide more extensive coverage simply because they’re more focused
in finding bugs in your code instead of generating binaries. Going back to
JavaScript for a moment, Douglas Crockford, author of JavaScript: The
Good Parts, illustrates nicely in his book how a tool like JSLint is essential
due to some pretty ugly language features.

If you think that the cost of a licence for a commercial tool like PC-lint (as
opposed to one of the more extortionately priced tools) is too much,
consider how much programmer time you’ve lost through bugs like
uninitialised variables or missing/badly written copy constructors. Whilst
working for a large bank, I was turned down access to PC-lint because they
only had a handful of licences. During that project I know of at least two
occasions where programmers had lost an entire day tracking down a bug
caused by just such an issue and both developers were paid more per day
than a single licence of the software that could have found it for them.

Of course there is a start-up cost in introducing such a tool and that cost
is much larger on a legacy system, but as Anna-Jayne Metcalfe showed in
her 2008 ACCU London [2] talk, you don’t have to jump in and try to fix

NOV 2013 I{ecvu}| 9

{cvu}

Generating Gode From a Unit Test,

Richard Polton continues his quest to generate code from tests.

possibility of automatically generating programme code from a suite

of unit tests, reasoning that this, really, was the trick that TDD has
missed. Clearly, given a full set of requirements and a suite of tests which
encode these requirements, we should be in a position to produce a working
programme that satisfies the requirements. However, right now, to the best
of my knowledge, this is not possible (at least for those of us who use NET
such as myself). When I had thought about this originally I had thought
that some complex parser that understands C# (given that C# is going to
be the target language) would be required and, rather than fill valuable CVu
space with parsers, which we’ve all seen before, I wondered about adding
attributes to the test code and using reflection on the compiled assembly.
The problem with this, though, is that you have to be able to compile the
code in order to load the assembly and this somewhat defeats the object
of'the exercise. That is, you would have to implement stubs at the very least
for all of the interfaces being tested, and that is exactly what we are trying
to achieve automatically!

"ello again! Last time we were here | was speculating about the

However, it occurred to me that a parser for C# already exists courtesy of
those nice folk at Microsoft. Roslyn [1] is Microsoft’s codename for their
new .NET compiler toolchain which we are told will become part of the
Visual Studio suite at some point. Using Roslyn, it should be possible to
extract the required metadata from the unit tests. And so, as soon as I could,
I downloaded the latest release of Roslyn and commenced reading. If you
want to reproduce my code then you will need to download the Sept2012
CTP [2] (or newer if one becomes available during the writing and

RICHARD POLTON

Richard has enjoyed functional programming ever
since discovering SICP and feels heartened that
programming languages are evolving back to
LISP. He likes ‘making it better’ and enjoys riding
his bike when he can’t. He can be contacted at
richard.polton @ shaftesbury.me

Static Code Analysis (continued)

everything right at the start. You need to start small, enabling only the
analysis of the most serious problems and then progress from there. Whilst
integration into your build pipeline is an excellent eventual goal, just
running it regularly manually should pay early dividends.

Once you get passed the hardcore problems you might begin to wonder
how much value there is in some of the softer complaints or suggestions
the tool makes. ReSharper, which is a tool for the .Net world (although
they’re moving into the realms of C++) will point out where you can pass
an iterator instead of a container, because it can see that you’ve only
iterated it. While both forms are technically correct, given the lack of
const in C# along with the standard containers being mutable, you’re
probably taking unnecessary liberties. Similarly I’ve seen cases where
ReSharper spots that methods and even whole classes can be declared
static which saves on unnecessary heap churn. The lack of free functions
in C# coupled with an attitude that ‘static is bad’ [3] means that some
designs overuse Object-Orientation when a simple function will suffice.

Learning aid

This brings me along nicely to my final reason for using such a tool — it’s
also a learning aid. As we get more experienced we make far less of the
fundamental errors as we begin to remember the things that constantly trip
us up, but in the early days we’re like a toddler as we keep falling over.
Switch to a new language though, and even if we’re an experienced
developer we can still regress back to that toddler stage if there are enough
differences. Even moving to a new project that uses a newer version of the
same language can surprise you as you might have forgotten all the cool
things they added but you've yet to be able to get practical experience with.

My own move from long term C++ developer to n00b C# developer was
helped in part by a similarity in the languages around the basic constructs
but also through the use of a static code analysis tool to show me the finer

10 I{evu} | NOV 2013

details. More recently the move from .Net 3.5 to .Net 4.0 means that named
and optional arguments are now at my disposal which I keep forgetting
(although it’s the former rather that latter which I’'m more interested in).

By far the biggest win though has been in learning LINQ, which can be
accessed either directly via the C# extension methods, or through the
syntactic sugar the language provides. In the beginning I could write the
really obvious SQL-like format pretty quickly but some of the more subtle
forms, such as when transforming to a Dictionary, I struggled with. When
I saw the tool suggest it could change the structure of my code I first
guessed what it might do, then reveal what the answer was. If I didn’t get
it right I’d switch back and forth with the editor’s Undo/Redo command
to try and understand what it was proposing.

Even now when I see an error message, say, from the compiler I generally
try not to read what the actual error messages says, instead favouring to
just jump right to the code to see if I can quickly spot what the compiler
has picked up.

Keen control

It’s tempting when you see a barrage of issues reported by a tool like this
to just go through blindly and accept the changes it suggests on the basis
that ‘it’s always right’. In the case of some of the LINQ transformations
I’ve seen it do I'd definitely question that wisdom. A tool like this should
be there to watch your back and do your bidding, don’t let it get out of
control and start writing your code for you. The code it generates may be
syntactically correct but it may not express it in the most human readable
way and share your design intent. B

References

[1] http://en.wikipedia.org/wiki/
Assignment_(computer_science)#Single assignment

[2] Taming the Lint Monster — 20th November 2008.

[3] https://twitter.com/codemonkey uk/statuses/385518295958683649

http://en.wikipedia.org/wiki/Assignment_(computer_science)#Single_assignment
http://en.wikipedia.org/wiki/Assignment_(computer_science)#Single_assignment
https://twitter.com/codemonkey_uk/statuses/385518295958683649

{cvu}

using System;
using NUnit.Framework;
using Mogqg;

namespace UnitTestTesting

Anyway, the Roslyn API exposes a function
SyntaxTree.ParseText () that accepts a string of programme code
and parses it to return a syntax tree which can subsequently be queried.

Looking at our example code, we can see that the interfaces in which we
are interested are used in methods, each of which is contained within the

{ same TestsInHere class, which are annotated with the Test attribute.
[TestFixture] We would expect the syntax tree to be something like: Using, Using,
public class TestsInHere Using, Namespace -> Class -> Method, Method, Method. For
{ the purposes of this article, we will assume some structure to the test
[Test] methods. Therefore, we will search for identifiers having the value Mock
public void TestDoIt() which are contained within variable declarations (instead of temporary
{ instances of Mock<>). If we can find these declarations, we should be able
var a = Mock<AnInterface>(); to find the variable name associated with the declaration and then search
Assert.IsTrue(a.DoIt()); the test method for accesses of that variable name. In this way we can build
} up acollection of names (properties, methods) that the interface is expected
to present. We also assume that we are searching for these accesses within
[Test_:] . . Assert statements. First, though, take a look at the syntax tree which we
public void Testverify() produced by applying the SyntaxWalker presented in [4] in which we have
{ var b = Mock<AnInterface> () : highlighted the nodes of interest. (See Listing 2.)
Assert.IsTrue (b.Verify (1)) ; Armed with the syntax tree, we can issue an XPath-like query to extract
} all the syntax nodes that represent method declarations that have a ‘Test’
attribute. Owing to the syntax for attributes in C#, it is possible for a
private static bool Predicate(int c) method to have a list of lists of attributes. For example, we could
{ theoretically be presented with code like
return c>=0; [Author="Bob" ,Place="office"]
} [Test,Ignore("Because I want to go home")]
} public void ATestMethod() { }
) where ATestMethod has a list of two lists of attributes; Author and
[-] Roslyn.Compilers.CSharp.CompilationUnitSyntax
[oaol
[-] Roslyn.Compilers.CSharp.***NamespaceDeclarationSyntax*** -- corresponds to 'namespace
UnitTestTesting'
[.] Roslyn.Compilers.CSharp.IdentifierNameSyntax
[-] Roslyn.Compilers.CSharp.***ClassDeclarationSyntax*** -- corresponds to 'public class TestsInHere'

[-] Roslyn.Compilers.CSharp.AttributeListSyntax
[-] Roslyn.Compilers.CSharp.AttributeSyntax

[.] Roslyn.Compilers.CSharp.IdentifierNameSyntax
[-]1 Roslyn.Compilers.CSharp.***MethodDeclarationSyntax***

TestDoIt()'

[-] Roslyn.Compilers.CSharp.AttributeListSyntax

[oool

-- corresponds to 'public void

[-]1 Roslyn.Compilers.CSharp.***MethodDeclarationSyntax*** -- corresponds to 'public void

TestVerify () '

[-] Roslyn.Compilers.CSharp.AttributelListSyntax

[cool

[-] Roslyn.Compilers.CSharp.***MethodDeclarationSyntax***

Predicate (int a)'

[.] Roslyn.Compilers.CSharp.PredefinedTypeSyntax

[oool

publication of this article) because there were some API changes which
were incompatible with the prior CTP release.

With this all in mind, let us begin. I present below a simple test harness
for a set of equally simple requirements. We must produce a programme
that implements an interface, called AnInterface, which provides two
functions, called DoIt and Verify. DoIt is a function that takes no
parameters and returns a boolean value that indicates the success or
otherwise of the operation. Verify is a function that expects an integer
parameter and returns a boolean indicating whether the integer conforms
to some predicate, to be determined later. Below then, is a non-exhaustive
test harness. I make no attempt to cover all possibilities at this point; the
purpose of this exercise is to show that it is possible to generate code
automatically from the tests provided. (See Listing 1.)

The first thing we need to do is pass the code above to our Roslyn
programme. In our case we are going to pass it as a string but if this were
for real then we would doubtless be loading a file or something similar.

-- corresponds to 'private static bool

Place in the first list; and Test and Ignore in the second. Therefore,
the code to extract the Test-annotated methods looks more complicated
than it really is. (See Listing 3.)

If we pass the syntax tree that describes our example code above then
methodsHavingTestAttributes contains the nodes in the syntax
tree that correspond to the methods TestDoIt and TestVerify. These

var methodsHavingTestAttributes =
syntaxTree.GetRoot () .DescendantNodes () .
OfType<MethodDeclarationSyntax>() .

Where (mdecl=>mdecl.Attributelists.
Any (attrListSyntax=>attrListSyntax.Attributes.
Any (attrSyntax=>(attrSyntax.Name as
IdentifierNameSyntax) .Identifier.
ValueText=="Test"))) ;

NOV 2013 | {cvu}| 11

{cvu}

var compilation =
Compilation.Create ("UnitTesting") .
AddReferences (MetadataReference.
CreateAssemblyReference ("mscorlib")) .
//AddReferences (MetadataReference.
// CreateAssemblyReference ("nunit.framework")) .
AddSyntaxTrees (syntaxTree) ;

var theMockVariableDeclarations =
testMethodDeclaration.Body.Statements.
OfType<LocalDeclarationStatementSyntax>() .

Select(stmt => stmt.Declaration).
Cast<VariableDeclarationSyntax>() .

Where (varDecl => varDecl.DescendantNodes () .
OfType<GenericNameSyntax> () .
Any (nm => nm.Identifier.ValueText == "Mock")) ;

two nodes are also trees and so the syntax nodes beneath them (in the trees)
describe the bodies of these two methods. Given these two nodes, the next
step in our algorithm is to identify the interfaces that are being mocked in
the tests. Before we can do that, however, we need to create a semantic
model of the syntax tree for reasons we shall come to later.

To create the semantic model we must first create a Compilation. Let
us give it a name, we choose "UnitTesting" (no prizes for originality
there) and attachmscorlib as a reference. As we are not currently aiming
to establish the meaning of all the symbols, we won’t include the NUnit
Framework just yet. That may come in a future article. For now, we want
to parse the syntax tree and find all the methods that have a Test attribute.
Add the syntax tree and lo! we have a Compilation (Listing 4).

Having created our Compilation, we can then create a semantic model
of the code.

var model =
compilation.GetSemanticModel (syntaxTree) ;

And so with that little diversion behind us let us continue in our quest to
extract the interface and methods.

Having calculated methodsHavingTestAttributes, we loop
through the sequence and, for each method having a Test attribute, we
find all of the variable declaration nodes in the method body which are
declaring a variable of generic type Mock<>. (See Listing 5.)

In the test methods in our example, we find the nodes containing the
declarations var a = Mock<AnInterface>(); and var b =
Mock<AnInterface> () ; As theMockVariableDeclarations
contains the tree of syntax nodes which describes the variable declaration,
we need to navigate down the syntax tree to the literal Mock token again,
bearing in mind that there may be multiple identifiers in the variable
declaration. From this point we know the relative location of the generic
type parameters and so we read them into the MockedTypes property in
our helper class NameAndInterface. We can also assume that we know
the relative location of the variable declarator node and so we traverse back
up the tree (in a neither-robust-nor-generic manner, see I told you there
would be certain assumptions made didn’t I?) so that we can determine the
name of the mock variable itself. (See Listing 6.)

In our example, varNamesAndInterfaces will contain "a" and
{"AnInterface"} for TestDoIt() and "b" and
{"AnInterface"} for TestVerify ().

Now that we know the names of the variables which have been declared
to have our Mock<> type in our test method, we need to search for all the
call sites in the code where they are accessed so that we can determine the
set of properties and methods that are being called in the test method and
are, therefore, expected to be present in the interface. The nodes we are
looking for (yes, these are the nodes you are looking for) are
MemberAccessExpressionSyntax nodes so let us find all nodes in
the syntax trees for each of our test methods which are
MemberAccessExpressionSyntax nodes. From these we can

12 I{cvu} | NOV 2013

var varNamesAndInterfaces =
theMockVariableDeclarations.

SelectMany (varDecl => varDecl.DescendantNodes () .
OfType<GenericNameSyntax>()) .

Where (nm => nm.Identifier.ValueText == "Mock") .

Select (mock => new NameAndInterface

{

Name = (mock.Parent.Parent.Parent as
VariableDeclaratorSyntax) .
Identifier.ValueText,

MockedTypes = mock.TypeArgumentList.Arguments.
OfType<IdentifierNameSyntax>() .

Select (ident => ident.Identifier.ValueText)
b

var variableAccesses = testMethodDeclaration.
Body .DescendantNodes () .
OfType<MemberAccessExpressionSyntax>() .

Where (acc => (acc.Expression as
IdentifierNameSyntax) .Identifier.
ValueText == varName) ;

exclude any member access nodes which do not belong to the variables
we have discovered. So for a given variable varName, the nodes which
access it are as shown in Listing 7.

Taking the variableAccesses container we can determine the names
of the property or method that is being accessed.

var functionNames =
variableAccesses.Select (acc => (acc.Name as
IdentifierNameSyntax) .Identifier.ValueText) ;

For our two example test methods, we expect the functionNames to
contain {"DoIt"} and {"Verify"} respectively. Okay, so for our test
method we have found all the Mock<> variables and all the property and
method names that the interface is expected to supply. Now we need to
determine the number and type of each of the parameters expected by each
of the methods. This code snippet is not very sophisticated. We have
assumed that the method will have only one parameter even though we
have written it as a container operation. Of course, we could dynamically
generate the name of each of the parameters but for simplicity we have
chosen to call the parameter p. (See Listing 8.)

Having calculated the parameter list, we need to determine the expected
return type of the property or function. For the purposes of this article we
assume that only Assert.IsTrue is possible and therefore we can
deduce that the return type must be boolean. Were we to do this in a more
general way, we would make use of the semantic model that we

var invocationExpr = accesses.First() .Parent as
InvocationExpressionSyntax;

// Could call model.GetTypelInfo (invocationExpr)

// but none of the names involved are defined so

// the function returns ErrorType, ie unknown

var invocationArgList =
invocationExpr.ArgumentList as
ArgumentListSyntax;

var invocationArgs = invocationArgList.Arguments;

var functionParameterTypes =
invocationArgs.Select (argSyntax =>

var argType =
model .GetTypelInfo (argSyntax.Expression) .
Type;
return Syntax.Parameter (Syntax.Identifier
("p")) .WithType (Syntax.ParseTypeName
(argType.Name)) ;
b

{cvu}

var callingAssertionExpr =
invocationExpr.Parent.Parent.Parent as
InvocationExpressionSyntax;
// Assert.IsTrue (a.DolIt())

// Need SemanticModel here to determine type of

// the assertion function parameter. For now, we

// know that IsTrue expects a bool

var n = (callingAssertionExpr.Expression as
MemberAccessExpressionSyntax) .Name.
Identifier.ValueText;

var returnType = Syntax.ParseTypeName
(n == "IsTrue" ? "bool" "void") ;

constructed earlier in order to find the types of the expressions. The syntax
tree only shows us the tokens that are supplied and the grammatical types
of these tokens.

From the invocation expression node we navigate up the tree to find the
assertion function that is calling. In the first test method this is
Assert.IsTrue(a.DoIt()). Given the limited set of assertion
expressions available it would be possible to build a simple lookup table
containing assertion procedure and expected parameter types although the
more generic approach of using the semantic model is to be preferred.

yield return
new InterfaceNameAndMethodDeclarations

{

Name = mockedInterfaceTypes.First(),

MethodDecls = new[]{

Syntax.MethodDeclaration (returnType,

functionNames.First()) .
WithModifiers (Syntax.TokenList
(Syntax.Token (SyntaxKind.PublicKeyword))) .
WithTfmIfTrue (
t => t.WithParameterList(

Syntax.ParameterList (Syntax.
SeparatedlList<ParameterSyntax> (fpt,
Enumerable.Repeat (Syntax.Token
(SyntaxKind.CommaToken) ,
fpt.Count - 1)))),

() => functionParameterTypes.Any()) .
WithSemicolonToken (Syntax.Token
(SyntaxKind.SemicolonToken)) }

}i

Without the semantic model we recognise that IsTrue () expects a
boolean parameter. Therefore we know that the return type of our tested
function or property must be bool. (See Listing 9.)

var interfaceProgramCode =
interfacesAndMethodDecls.Select (
o => Syntax.InterfaceDeclaration (
attributelists: new
SyntaxList<AttributeListSyntax> { },
modifiers: Syntax.TokenList
(Syntax.Token (SyntaxKind.PublicKeyword)) ,
typeParameterList: null,
//TypeParameterListSyntax,
baseList: null, //new BaseListSyntax(),
constraintClauses: Syntax.List
<TypeParameterConstraintClauseSyntax>() ,
identifier: Syntax.Identifier (o.Key),
members :
Syntax.List<MemberDeclarationSyntax>(o.ToList () .
electMany (i=>i.MethodDecls)))) ;

var interfaceProgramCode asString =
interfaceProgramCode.Select (pc =>
pc.NormalizeWhitespace () .ToFullString()) ;

interfaceProgramCode asString.ToList()
Count = 1
[0]: "public interface AnInterface\r\n
{\r\n public bool DoIt();\r\n
public bool Verify(Int32 p);\r\n}"

Then, armed with the function name, the parameter list and the return type
we construct the syntax tree for the method declaration and add it to the
results container. (See Listing 10.)

As a last step in the syntax tree parsing, we group all of the discovered
interfaces and methods by the interface name.

interfaceMethodDecls.GroupBy (ifn => ifn.Name) ;

Finally we constuct a new syntax tree containing the discovered interface
together with its properties and methods (see Listing 11), and the resulting
programme code is in Listing 12.

Don’t just take my word for it though, download the code [3] and run it
yourself. You never know, it might even work :-D

Also, let me point you to a couple of other related sites I found while
battling with the Roslyn API documentation. They should give you more
launch points if you are thinking about writing some Roslyn code of your
own or even if you only want to look at some other people’s code that
makes use of Roslyn. Anyway, you could do worse than visit these URLs
in references [5], [6] and [7]. In addition, there are plenty of questions of
StackOverflow [8]. Even I asked one.

Next steps in no particular order:
B Generate an implementing class (easy),
® Generate function signatures with distinct parameter names (easy),

® Parse the unit tests to establish the rules that are being tested so that
general statements can be made about the expected behaviour of the
methods being tested (less easy),

B Generate function bodies that satisfy the tests in the implementing
class (also less easy),

® Use the semantic model to determine the function return types
instead of a hard-coded lookup table (relatively easy),

B Remove some, or all, of the assumptions made about the structure of
the test code and replace them with tree-parsing code (not
impossible).

References

[1] Roslyn http://social. msdn.microsoft.com/Forums/vstudio/en-US/
home?forum=roslyn

[2] Roslyn Sept 2012 CTP release http://msdn.microsoft.com/en-us/
vstudio/roslyn.aspx

[3] Google Code prototype-builder https://code.google.com/p/
prototype-builder/

[4] Syntax Walker http://www.amazedsaint.com/2012/07/bending-
your-code-like-anders-with-c.html

[5] Using the Roslyn Syntax API http://blogs.msdn.com/b/csharpfaq/
archive/2011/11/03/using-the-roslyn-syntax-api.aspx

[6] Custom refactoring http://visualstudiomagazine.com/articles/2012/
03/15/roslyn-ctp-custom-refactoring_1.aspx

[7] Implementing a Code Action http://blogs.msdn.com/b/csharpfaq/
archive/2012/02/06/implementing-a-code-action-using-roslyn.aspx

[8] StackOverflow: Roslyn http://stackoverflow.com/search?q=roslyn

NOV 2013 | {cvu}| 13

http://social.msdn.microsoft.com/Forums/vstudio/en-US/home?forum=roslyn
http://social.msdn.microsoft.com/Forums/vstudio/en-US/home?forum=roslyn
http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx
http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx
https://code.google.com/p/prototype-builder/
https://code.google.com/p/prototype-builder/
http://www.amazedsaint.com/2012/07/bending-your-code-like-anders-with-c.html
http://www.amazedsaint.com/2012/07/bending-your-code-like-anders-with-c.html
http://blogs.msdn.com/b/csharpfaq/archive/2011/11/03/using-the-roslyn-syntax-api.aspx
http://blogs.msdn.com/b/csharpfaq/archive/2011/11/03/using-the-roslyn-syntax-api.aspx
http://visualstudiomagazine.com/articles/2012/03/15/roslyn-ctp-custom-refactoring_1.aspx
http://visualstudiomagazine.com/articles/2012/03/15/roslyn-ctp-custom-refactoring_1.aspx
http://blogs.msdn.com/b/csharpfaq/archive/2012/02/06/implementing-a-code-action-using-roslyn.aspx
http://blogs.msdn.com/b/csharpfaq/archive/2012/02/06/implementing-a-code-action-using-roslyn.aspx
http://stackoverflow.com/search?q=roslyn

{cvu}

Why We Need To Reconsider How We Do
Technical Presentations

Dirk Haun makes a case for doing presentations differently.

that you have to present, it’s impossible to make them exciting.

Besides, the audience expects to see all those technical details and
will frown upon slides that only show photos.
Right?
No, of course not. The perceived lack of actual content is a common
misunderstanding of how modern and more visual presentations really
work and what they can accomplish. Presentation Zen, probably the most
influential modern presentation style, is not
really about showing pretty pictures — it’s
about giving the audience what they need,
but in a way that helps them remember the
content and that encourages them to act on
the message of the presentation.

T echnical presentations aren’t TED talks. With all the facts and figures

In the tech world especially, presentations
are used to transfer knowledge and
information. So we have this urge to put all
the information that we have about a topic
up on our slides, to make it available to our
audience.

However, there’s scientific evidence that this approach doesn’t work;
people simply can’t read and listen at the same time. So your audience will
have to decide what to do — which usually means that they’re going to read.
It’s up there on the screen, so it must be important, right?

Also, if all the information you want to pass on with your talk is on your
slides — why are you standing in front of them? It would be more effective
to send the information by email and save the audience the travel cost.

In other words, trying to transfer information this way is rather inefficient.

There’s another aspect to consider: People will soon forget the majority
of what you told them. 30 days after your presentation, they will have
forgotten about 90% of the content. These numbers actually date back to
research published by the German psychologist Herman Ebbinghaus in
1885. So it’s not a problem of our modern age; it’s how the human memory
works.

All this bad news should make it clear that we need to reconsider our
approach to technical presentations. Your talk should still include all the
information, but it should be presented in such a way that your audience
listens to you, the speaker, instead of trying to read your slides. In order
to help them remember, you can provide them with visual hooks, since our
brains are better at remembering visuals — and the emotions they evoke.

In these days of the omnipresent internet search, it’s easy to find the
information you need with only a few keywords; that’s all your audience
needs to remember.

Mind you, your talk should still make a strong case for your topic. You
still need to research it and prepare it in a way that convinces your audience
that the topic is relevant. But you don’t need to put all that information up
on your slides.

Dirk Haun is an Open Source enthusiast interested in
presenting, learning, and continuous improvement. He
currently serves as a non-executive member on the ACCU
Committee and can be contacted at dirk@haun-online.de

14 |{cvu} | NOV 2013

it's about giving the audience
what they need, but in a way

that helps them remember the
content and that encourages
them to act on the message

The tradition for tech talks is to make the slides available after the talk.
Slides of the more visual kind obviously aren’t going to help the audience
much then. But that’s okay. As we’ve seen, the traditional bullet point-
laden slide isn’t good as a slide during a presentation. It turns out it isn’t
good at helping people look up things afterwards either.

The typical slide from a typical tech talk is what Garr Reynolds refers to
as a “slideument”: A strange hybrid of a slide and a document, that doesn’t
really work as either of them. So it only makes sense to separate them
entirely: Have visually oriented slides that
support you during your presentation; and
if the audience is of the sort that insists on
having the hard facts being made available
to them, provide a handout; i.e. a proper
document. Or you could post a write-up of
the talk on your company’s website (which
has all sorts of other benefits, including
more traffic to your website). Or you could
simply record your presentation and make
the video available online.

To summarise, it’s time to say goodbye to the old bullet point-laden slides
in tech talks. If you really want to make an impact with your audience, your
slides need to take a step back, into a supporting role. Free them from all
the clutter that could just as easily be found with a simple web search.
Instead, focus on preparing your topic for your target audience: What do
they already know about the topic? What do they expect from you?

Yes, it’s more work doing presentations this way. The presentation is
important to you, isn’t it? Then it should (and will!) be worth the effort. B

This article was originally written for CTOvision.com and subsequently
featured on May 1st, 2013, on that website.

Advertise in C Vu & Overload

807 of readers make purchasing
decisions, or recommend products
for their organisations.

-

Reasondable rates. Flexible options.
Discounts available to corporate

members. y

Contact ads@accu.org for info.

Mark Radford reports the latest from the
C++ Standards meetings.

elcome to my latest standards report!
w Before I start talking about recent events, let me just tie up a loose
end from my previous standards report. You may remember that
I talked a bit about the SG1 (the Concurrency and Parallelism study group)
meeting held in Santa Clara. At the time the minutes of that meeting had
not been published in a mailing, but I was assuming they would be in the

next mailing. This has now happened: these minutes were published in the
pre-Chicago mailing and can be found in document N3709 (see below).

Since last time two face to face C++ standards events have taken place:
The BSI C++ Panel met on 16th September, and the international ISO
committee met in Chicago (23rd-28th September). Also, the pre-Chicago
mailing has been published (http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2013/#mailing2013-09). At the time of writing this report, the
post-Chicago mailing has yet to be published, so some of the papers I
mention will not be publicly available yet. Each ISO meeting has a wiki
for that meeting, and papers not in the pre-meeting mailing can be posted
on the wiki so they are available at the meeting. I have seen it mentioned
on one of the mail reflectors that the deadline for the post-Chicago mailing
was October 11th, so I can’t imagine it will be very long now.

Naturally the dominant topic for the BSI C++ Panel meeting was the
forthcoming Chicago ISO meeting. Much of the day was taken up with
discussing the national body ballot comments. Much discussion time was
taken up with the matter of std: : future (i.e. its destructor potentially
blocking when the future is returned from std: : async), as a number of
the national body comments are about this. The biggest problem
surrounding this whole issue is that none of the potential solutions are very
popular. One solution is to just deprecate std: :async and introduce a
replacement with a different return type. However (as someone pointed
out) the correct name for a function that does what std: : async does, is
‘async’. Therefore, if std: : async were to be deprecated, what would
we call the replacement? More about deprecating std: : async below.

Another topic of discussion was the paper N3747, ‘A Universal Model for
Asynchronous Operations’. There are papers already out there containing
proposals to extend std: : future: N3634 proposed the addition of a
member function ‘then ()’ which would allow a continuation to be
supplied, while N3650 is about resumable functions. These proposals set
a clear direction with std: : future being the standard way to handle
asynchronous operations in C++. In N3747, author Christopher Kohlhoff

WWw RCCU.DRG

argues that there are some disadvantages with tying C++ in to an approach
using only std: : future. He makes the case that std: : future is not
the only approach, arguing for a universal approach that uses both futures
and callbacks.

The issue of std: : future returned from std: : async took up most of
the Monday afternoon SG1 discussion time. While there was support for
deprecating std: : async, doing so in C++14 was ruled out. The majority
support was for deprecating it, and introducing its replacement, post
C++14 i.e. aiming for C++17. However, there was a consensus for adding
wording (to the working paper) clarifying the current std: : async/
std: : future behaviour; Herb Sutter has written a paper containing
suggested wording in N3776 (one of those not yet published outside the
standards committee). A formal motion to incorporate N3776 into the
working paper was passed.

Since the Bristol meeting, another concurrency/parallelism topic SG1 has
started to discuss is vectorisation (see the Wikipedia article if you want to
read an explanation [1]). In Bristol, ‘A Proposal to add Single Instruction
Multiple Data Computation to the Standard Library’ (N3571) was
discussed, but did not get a consensus to move forward. However, in
Chicago two new papers were included in the discussions: ‘SIMD Vector
Types’ (N3759) proposes a library solution, while ‘C++ Needs Language
Support For Vectorization’ (N3774) argues that vectorisation needs
support from the language/compiler, and a lack of such support incurs a
considerable performance cost of between a factor of 2 and 4. Note that
N3774 is not yet published outside the standards committee.

The paper ‘A Parallel Algorithms Library’ (N3724) proposes an extension
to the C++ library providing access to parallel execution for a broad range
of algorithms. At sixty-seven pages, it is a very long paper. I mention it
here because, with N3724 also proposing support for vectorising
algorithms, there is overlap with the vectorisation papers I talked about
above. SG1 discussed N3724 on Thursday afternoon, the result being a
strong consensus (nobody was against it) for turning the paper into the
working draft for a TS.

Finally, returning to N3747, which I’ve already mentioned, above, when
talking about the BSI Panel meeting. Author Christopher Kohlhoff was
unable to be in Chicago, but his paper was presented by other members of
the UK delegation. The objective was to determine if there was enough
interest to make it worth the author doing more work in this area. Following
some discussion, a straw poll revealed the answer to be ‘yes’, with fifteen
of those present in favour, and none against!

Reference
[1] http://en.wikipedia.org/wiki/
Vectorization %28parallel computing%29

Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark @twonine.co.uk

NOV 2013 |{cvu} | 15

http://en.wikipedia.org/wiki/Vectorization_%28parallel_computing%29
http://en.wikipedia.org/wiki/Vectorization_%28parallel_computing%29

{cvu}

Gode Critique Gompetition 84

Set and collated by Roger Orr. A book
prize is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Lastissue’s code

| want to split the set {1,2,3,...,21,22} into two disjoint subsets of 11
numbers such that neither subset contains three consecutive numbers.
The following was an attempt to produce one possible subset. Having
got an ordered sample of 11 from {1,2,3,...,22} | check that the sample
does not contain three consecutive numbers (y[i]-y[i-2] is never 2), nor
are there three consecutive numbers not in the sample (y[il-y[i-1] is
never greater than 3). But it produces samples meeting neither
condition. Help!

The code is in Listing 1.

Critiques
Juan Antonio Zaratiegui Vallecillo a.k.a. Zara <zara@coit.es>

This CC is too easy: You are testing a condition and doing nothing with
the test result.

Using the condition as written, we can use its result to select a new list of
integers:

import random
x=range(1,23,1)
found=False
while not found:
y=random.sample(x,11)
y=sorted(y)
found=True
for i in range(2,11,1):
if y[i]-y[i-2]==2 or y[i]-y[i-1]>3 or y[1]-y[0]>3:
found=False
break

printy
Now it works as required.

Russel Winder <russel@winder.org.uk>

Well, where to start? Obviously this is a Python 2 script and it should be
Python 3! We can deal with this by making the print a function call rather
than a statement. Of course there is so much else wrong with this code that
the Python version is just the beginning.

The specification mentions sets but there are no sets anywhere in the code,
everything is lists. Agreed the test for acceptability of a subset is best
handled by using a sorted list but the result should be a set not a list.

Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf and the City. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be contacted
at rogero @ howzatt.demon.co.uk

16 I{cvu} | NOV 2013

import random
x=range(1,23,1)
y=random.sample(x,11)
y=sorted(y)
for i in range(2,11,1):
if y[il-y[i-2]==2 or y[i]-y[i-1]>3 or y[1]-y[0]>3:continue

printy

The lines:

y=random.sample(x,11)
y=sorted(y)

should (arguably) either be:

y=random.sample(x,11)
y.sort()

or:
y=sorted(random.sample(x,11))
the rebinding of y in the original is not wrong but is potentially misleading.

In a similar (improve the code presented) vein, the code uses the three
parameter range function with third parameter 1, which is the default. It
should just use the two parameter range function: it’s more Pythonic not
to mention values that are defaults.

Then there is the £or loop which is clearly a long-winded way of doing
nothing: the loop iterates making a check and then moving to the next
iteration. This is of course at the heart of the failing of the code, there is
no difference in control flow whether the expression is true or false. (Given
this is Python that should, of course, be True or False.) Dare a I say,
classic misuse of continue?

The code sequence tries to create one subset, but in fact both subsets need
checking independently to see if the constraints on a successful result are
met.

So trying to construct a solution, the start point has to be creating a
predicate to check whether an iterable (could be a set, list, tuple,..., but
we expect a set with its uniqueness property) meets the condition of not
having three or more consecutive numbers. Perhaps something such as:

def isAcceptable(x):
| = sorted(x)
for i in range(2, len(l)):
if I[i] - I[i-2] <= 2:
return False
return True

Then if the requirement is only to find the first acceptable solution
involving some random selection, then perhaps the following suffices to
deliver up a pair of sets:

{cvu}

def partition(original, sampleSize):
while True:
putative_1 = frozenset(sample(original, sampleSize))
putative_2 = original - putative_1
if isAcceptable(putative_1) and isAcceptable(putative_2):
return putative_1, putative_2

The script is then

if _name__=="_main__"
print(partition(frozenset(range(1, 23)), 11))

If randomness is not required then perhaps just do less work:
print({1,2, 5, 6, 9, 10, 13, 14,17, 18, 21, 22}, {3, 4, 7, 8, 11, 12, 15, 16, 19, 20})

This solution is correct by construction. Not to mention I actually tested
it. Talking of which, a final point, there should be tests for this, best place
to encode the requirements! Everyone will have noted that my proposed
solution has been structured for testability and, indeed, has been tested.
Code available on request.

This program suffers from one fairly obvious problem; the if statement
does not actually affect the control flow. However this check simply
verifies whether the initial random sample fails to satisfy the required
conditions, an additional loop and a little more framework is needed to try
another random sample until a successful solution is found.

The algorithm itself is slightly complicated as it only tests one of the
sample sets and infers the other set contains no runs of three consecutive
numbers by checking there are no large gaps in the existing sample.
Unfortunately the test doesn’t work at the end points; so if the other set
starts {1,2,3,...} orends {...,20,21,22} the program will incorrectly report
success. It is possible to fix this, but I suspect the approach Russel takes
of doing the simpler test for consecutive numbers on both the sets is a much
safer option, unless and until (a) performance is shown to be a problem
and (b) the alternative algorithms is shown to be faster.

Of course, the while program does somewhat assume a successful solution
is possible otherwise the resultant program will loop forever. Perhaps in
this case it is sufficiently obvious; if not it might be necessary to ‘place an
elephant in Cairo’ [1] to ensure the algorithm terminates.

Additionally, simply trying another random sample could be slightly
inefficient if solutions are sparse as the algorithm may well result in trying
permutations already covered before — and the result is unlikely to be
different a second time (!). An initial random selection followed by a cycle
through all the possible permutations might be slightly better if the
overhead is proved to be significant.

Reference
[1] http://en.wikipedia.org/wiki/Elephant in_Cairo

The winner of CC 83

This critique was deliberately relatively simple to try and encourage some
new entrants; so I welcome Zara to the list of published code critiques.

Zara’s critique was correct and his example does now produce correct
output (apart from the boundary condition I mention above), but perhaps
needs a little more explanation to help the writer of the code understand
what they’ve done wrong.

Russel gave a more complete critique, although his solution doesn’t
actually mention ‘random’ (there is (presumably) an implicit from random
input sample at the start of the script.) Russel also refactored the code into
a couple of helper functions, which I feel makes it easier to understand and
also allows the possibility of testing the parts of the algorithm.

So I have awarded Russel the prize for this critique.

Late critique for CC82

We have had a late entry for Code Critique 82. The code is in Listing 2,
to save you hunting.

Balog Pal <pasa@Ilib.hu>

The provided code presses hard to abuse name lookup, reusing names the
same identifier i and 1 hoping it is still valid due to hiding rules. It actually
succeeds in some places, say exploiting that the name of a function
argument hides properly. (Interesting that we even missed one usual trick,
constructor of 1 could name the argument x and in the initializer list x (x)
would have the proper behaviour in isolation...)

However it went one step too far. In the standard we have this rule:
3.3.7 Class scope [basic.scope.class]

1 The following rules describe the scope of names declared in
classes.

1 The potential scope of a name declared in a class consists
not only of the declarative region following the name's point
of declaration, but also of all function bodies, default
arguments, exception-specifications, and brace-or-equal-
initializers of non-static data members in that class
(including such things in nested classes).

2 A name N used in a class S shall refer to the same
declaration in its context and when re-evaluated in the
completed scope of S. No diagnostic is required for a
violation of this rule.

3 If reordering member declarations in a class yields an
alternate valid program under (1) and (2), the program is ill-
formed, no diagnostic is required.

We have x at the global scope and also as a member in 1. At definition of
1::1load, x is used and fits description of bullets 2) and 3). So this
program is ill-formed, but the compiler is allowed to not even tell about it.

The answer to ‘what it would print’ is thus kind of moot. A better quality
compiler would still issue the diagnostic and not produce anything to
execute. For the rest, as the behaviour is only defined for well-formed
programs, anything can happen, including printing something or nothing,
or even posting the correct answer to this the SCC entry.

#include <iostream>
int x;

struct i

{
i() { x=0; }
i(int i) { x =

};

i; }

class 1
{
public:
1(int i) : x(i) {}
void load() {
i(x);
}
private:
int x;

};

int main()
{
1 1(42);
1.load();
std: :cout << x << std::endl;

NOV 2013 | {cvu}| 17

http://en.wikipedia.org/wiki/Elephant_in_Cairo

{cvu}

The ‘how to deal’ part is simple: just stop lookup abuse for good. Actually
the main issue is trivial to mitigate with some naming convention, like
name global/namespace variables with g__ prefix and forbid that form for
anything else. Having that we can still construct problematic case with
anonymous namespace or clashing global types against data members,
carefully choosing expressions that are still work (maybe adding
decltype () to the mix), but the problem potential will get way too low
to worry about.

[Ed: I'm not persuaded 3.3.7 applies to i (x) since when the body of load
is evaluated the meaning of x is unambiguous, whatever the ordering of the
member declarations. However Pal’s general direction about avoiding
ambiguity and the potential dangers of ill-formed programs still stand.]

Code critique 84

(Submissions to scc@accu.org by Dec 1st)

| want to use a data structure as a key in a map, but it isn’t working as
| expect. I've simplified the code down to a shorter example that shows
the problem — can you help explain why?

I’'m expecting to get output of:

Testing k1 {c,42,y}
Testing k2 {p,57,x}

But | (sometimes!) get output like this instead:

Testing k1 {c,42,y} => cd2y

Testing k2 {p,57,x} =>
but I don’t understand why. I've added some extra output at the end but
| still don’t see it.

=> c42y
=> p57x

The code is in Listing 3.

#include <iostream>
#include <map>
#include <memory.h>
#include <sstream>
#include <string>

// This is the Key -- it is "plain ole data"
struct Key
{

char ch;

int i;

char ch2;

}i
typedef std::map<Key, std::string> Map;

std: :ostream & operator<<(std::ostream & os,
Key const & key)
{
std::cout << "{" << key.ch << ","
<< key.i << "," << key.ch2 << "}";
return os;

bool operator<(Key lhs, Key rhs)
{
return memcmp (&lhs,

&rhs, sizeof (Key))

}

// Add an item to the map

void add(Map &map, Key key)

{
std: :ostringstream oss;
oss << key.ch << key.i << key.ch2;
map [key] = oss.str();

}

18 I{cvu} | NOV 2013

// Add an item to the map
void add(Map &map, char ch, int i, char ch2)
{

Key key;

key.ch = ch;

key.i = i;

key.ch2 = ch2;

add (map, key) ;

}

int main()

{
Map map;
Key k1 = {'c', 42, 'y'};
add (map, k1) ;
add (map, 'p', 57, 'x'");
Key k2 = {'p', 57, 'x'};

std::cout << "Testing kl " << kl <<

" => " << map[kl] << std::endl;
::cout << "Testing k2 " << k2 <<
" => " << map[k2] << std::endl;

// Testing the first element
Key k = map.begin()->first;
std::cout << "First: " << k <<

" => " << map[k] << std::endl;

k = map.rbegin()->first;
::cout << "Last: " << k <<
" => " << map[k] << std::endl;

std: :cout << "Contents of the map:\n";
for (Map::iterator it = map.begin() ;
it !'= map.end(); ++it)
{
std: :cout << it->first <<
" => " << it->second << std::endl;

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

000111101100
0 1111000000111¢
P11110100001000001110110]

111011114

http://www.accu.org/journals/

{cvu}

Paul Grenyer presents the Norfolk Developers Conference.

Developers one day Agile and tech conference. The conference will

take place on Friday 28th February 2014 at the Kings Centre in
Norwich. Building on the hugely successful Agile and technical tracks
from this year’s SyncConf, NorDevCon will also feature a cloud and big
data track, a workshop track and a combined local speaker and
SyncDevelopHER (bringing together women in IT) track. The hugely
successful conference dinner will be back as well as a reception hosted by
Virgin Wines.

N aked Element Ltd. is proud to present NorDevCon, the Norfolk

nor(DEV):con '

To be kept up-to-date with NorDevCon, please join the mailing list:
http://eepurl.com/BZ-an

and follow the conference on twitter: @nordevcon

The speakers

NorDevCon has a fantastic speaker line up in 2014. Some of the most
popular speakers from this year’s SyncConf will be returning along with
plenty of new speakers from around the country and from the local area.
We’re still working on the opening keynote speaker and hoping to secure
a popular figure from the software craftsmanship community.

Nat Pryce and Steve Freeman, the authors of Growing Object Oriented
Software Guided by Tests, will be closing the conference. Their book took
the software community by storm with its outside-in approach to
automated testing.

After speaking at SyncConf, Kevlin Henney, Phil Nash, Ian Robinson
(Neo Technology) and Norwich favorite Liz Keogh will all be returning
to Norwich for NorDevCon. Local speakers include Danielle Ashley, Dom
Davis (Virgin Wines), Janet Randall (Aviva) and Pete Roome (ex Pandr).

The workshop track will see the return to Norwich of Jon Jagger’s
CyberDojo, an F# workshop from recent Norfolk Developers speaker Phil
Trelford (Trayport), who will also be doing a presentation session on F#,
and Russel Winder who will be providing hands on experience of the
Spock testing framework.

Chris O’Dell (7digital) will be speaking about continuous delivery,
Anthony Saxby (Microsoft) will be speaking in the new cloud and big data
track, Rachel Davies (Unruly Media) will be returning to Norwich to tell
us about Agile at Unruly Media and Jon Skeet (Google) will be speaking
about C#.

More speakers will be announced as they are confirmed.

The venue

The King’s Centre is a high quality conference venue in the centre of
Norwich with 14 different rooms to suit individual requirements. The
centre offers conference rooms, meeting rooms, breakout rooms and a 650
seater auditorium. The auditorium is pictured at the top of the page.

The conference dinner

The conference dinner will be held at the venue in the evening following
the conference. In this unique experience the speakers remain seated while
the conference attendees move round between courses. This is your
opportunity to speak to your favorite speakers of the day. The price

includes three courses and two glasses of wine per person. There will also
be a bar.

Last year the conference dinner was one of the highlights of the conference
and sold out! Please make sure you purchase your dinner ticket at the same
time as your conference ticket.

The Virgin Wines reception

Virgin Wines will be hosting a reception at the venue between the end of
the conference and the start of the conference dinner. As well as a glass of
wine courtesy of Virgin Wines there will also be a bar. Places are limited
so please make sure you get your free Virgin Wines reception ticket at the
same time as your conference ticket.

Once again we are getting a lot of support from technical organisations in
the form of sponsorship. Confirmed sponsors for NorDevCon include:

Virgin Wines
Neo Technology
Norfolk Tech Journal

There are currently still some sponsorship packages available:
B Associate £250
Logo on slide and mention during intro
Tweets & Mentions from @NorDevCon and @NorfolkDev

Logo on website

PAUL GRENYER

Paul Grenyer is a husband, father, software consultant,
author, testing and agile evangelist. He can be contacted
at paul.grenyer@gmail.com

NOV 2013 I{cvu} | 19

http://eepurl.com/BZ-an

Membership news and committee reports

Alan Griffiths
chair@accu.ory

It was a different millennium when

I joined the ACCU. In fact it wasn’t even called
the ACCU at that time. While the internet
existed and some people had internet we were a
long way from having instant access to the
wisdom and knowledge that today we can get
from a quick search on a phone.

The primary sources of information were
manuals, books, magazines and journals but I
found that many of the articles available were
useless to me — they were targeted at an audience
that were happy to have a program work at all.
I was past that point. There were a very few

books that attempted to address the question of
‘how to do it well’ (as opposed to ‘how to do it
atall”) but they too were hard to find as they were
probably not stocked at the local book-store
(and, unlike now, there were no online reviews).

What I discovered with the ACCU was unique:
other people who were interested in developing
their craft and sharing what they discovered.
Techniques, cool hacks, recommended books
and tools poured through this channel of
communication. Firstly through the C Vu
Journal, then through email, Overload, the
conference and the Mentored Developers
programme.

Another thing that I gained was to make
associates and friends with many of these people

with whom I shared the journey. This was a great
benefit to me (as the people I worked with lacked
the same joy I found in finding better ways to do
things).

Now most of the journals and magazines have
disappeared and in their place are websites. I can
find new techniques and cool hacks if they are
described in terms that occur to me when using
a search engine. Books too are easily found on
the internet — along with recommendations and
even previews. Tools can be downloaded at the
click of a button.

If we wish to simply to share the journey of
becoming a better developer then that too can be
found on the internet via, for example, blogs.

What is left for the ACCU?

Static Code Analysis (continued)

B Partner £1500

Logo on slide and mention during intro

Tweets & Mentions from @NorDevCon and @NorfolkDev

Logo on website
Banner
Exhibit

m Elite £3000

Logo on slide and mention during intro

Tweets & Mentions from @NorDevCon and @NorfolkDev

Logo on website

Banner

Tickets now available

NorDevCon promises to be even bigger and better than this year’s

SyncConf. I hope you’re looking forward to it as much as we are! Tickets

went on sale on 1 November 2013 at:
http://nordevcon2014.eventbrite.co.uk/

Web: nordevcon.com

Twitter: @nordevcon

Mailing list: http://eepurl.com/BZ-an

community.

We are very lucky in Norwich to have a thriving and highly active tech

Complementing the existing tech community, Norfolk Developers is
peeling back the high level and going straight to the heart of software
development practices and processes. It has already brought a
number of national and international speakers to Norwich and there
are plans for local speakers and workshops in the near future.

Exhibit
Speaking Slot (to all conference attendees)

If you are interested in sponsoring NorDevCon, please email
nordevcon@nakedelement.co.uk. You might want to try something new or wish to take your software
development up to the next level. Norfolk Developers is jumping depth-
first into the detail and bringing you practical value. We make it easy
for you to access knowledge, progress and prosper in the highly

specialised and valuable field of software engineering.

Naked Element Ltd. is a made to measure software development
services provider. Whether you need complex, enterprise-level
software integrations, a made to measure web application or a mobile
app, we have the experience and skills to meet your needs.

Norfolk Developers was founded by Paul Grenyer (Director at Naked
Element Ltd, SyncNorwich co-founder and Norfolk Tech Journal
founder), Dom Davis (lead developer at Virgin Wines) and Ben Taylor
(CEO at Rainbird Technologies Ltd.). Meetups usually take place on
the first Wednesday of the month and are usually held in the offices of
sponsors Virgin Wines. Each meetup boasts two 60 minute
presentations.

We work with clients at all organisational levels, to advise on strategies
and to implement solutions.

nor(DEV):

20 |{cvu} | NOV 2013

www.zetcode.com
http://nordevcon2014.eventbrite.co.uk/
http://eepurl.com/BZ-an
nordevcon.com

	CVu25-5.pdf
	IInterface and Other Religions
	The Ethical Programmer (Part 2)
	Trying Python for Size (Part 1)
	The Windows XP Threat: A Call to Action
	Static Code Analysis
	Generating Code From a Unit Test, Part the Second
	Why We Need To Reconsider How We Do Technical Presentations
	Standards Report
	Code Critique Competition 84
	Norfolk Developers Conference
	View from the Chair

