

SEP 2013 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

OSS Enterprise
was struck the other day by a comment made about
installing software. In particular, it was about the
difference in experience between installing the

latest GCC C++ compiler for Windows, and the
latest Community Preview edition of Microsoft’s
Visual Studio 2013. The former is installed by
extracting a compressed file, and then modifying the
PATH environment variable to ensure the correct
binary is picked up at the command line. It took me 5
minutes or so – including downloading it! VS2013
requires the most up-to-date Internet Explorer, took well
over 2 hours to install, and then required a reboot at the
end.

Ok so the GNU tools are command line only, and Visual
Studio installs tools for C#, F#, web and Windows GUI
toolkits, as well as the full IDE, with all that that entails.
The truth is, however, I just wanted the C++ compiler,
in order to hone my C++11 skills, and have at least
two compilers to compare. Visual Studio is considered
a full Enterprise Application, whilst GCC is very often
considered to be a hobbyists tool. Nevertheless, GCC is
used in enterprise environments; in fact, many such tools
seem to be making their way into the Enterprise: where
once upon a time ClearCase and Oracle were clearly
dominant, Git and MySQL are making headway.

Time was an Enterprise System was a one-stop-shop for everything from the
Operating System and hardware up to all the applications. The tail-end of the 20th
century saw a move from mainframe to personal computers in use by big business,
with the result that applications were provided by many people (although Windows
and Microsoft tools had a clear lead). The 21st century seems to be showing a move
from commercial, ‘Enterprise-y’ applications to increased dependence on OSS tools
and custom environments. The rise of the web application developed by start-up
companies has been a driving force for this, I believe. Perhaps ‘The Enterprise’ saw
the benefits of using – and even contributing to – software that could be downloaded
for free, and perhaps even perceived a value-for-money gap in the support contracts
required for the Enterprise Solutions. I wonder what will be ‘Enterprise-y’ tomorrow?

I
Volume 25 Issue 4
September 2013

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Pete Goodliffe, Chris Oldwood,
Roger Orr, Richard Polton,
Mark Radford, Vsevolod
Vlaskine

ACCU Chair
Alan Griffiths
chair@accu.org

ACCU Secretary
Giovanni Asproni
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | SEP 2013

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
13 Code Critique Competition

Competition 83 and
the answers to 82.

15 Two Pence Worth
Share your pearls of
wisdom with others.

17 Standards Report
Mark Radford looks
at some features of
the next C++
Standard.

18 Letters
Richard Polton
writes to the editor.

REGULARS
19 Bookcase

The latest roundup
of book reviews.

20 ACCU Members Zone
Membership news.

SUBMISSION DATES
C Vu 25.5: 1st October 2013
C Vu 25.6: 1st December 2013

Overload 118:1st November 2013
Overload 119:1st January 2014

FEATURES
3 The Ethical Programmer

Pete Goodliffe follows his moral compass.

5 Two Sides of the Code
Vsevolod Vlaskine takes a critical look at the
language of programming.

7 Pen and Paper
Chris Oldwood finds uses for old-fashioned tools.

9 Testing Times
Richard Polton looks at unit tests from a different
perspective.

11 (Re)Reading the Classics
Chris Oldwood looks back at his favourite literature.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Professionalism in Programming # 82
The Ethical Programmer
Pete Goodliffe follows his moral compass.

I might fairly reply to him, “You are mistaken, my
friend, if you think that a man who is worth anything
ought to spend his time weighing up the prospects of
life and death. He has only one thing to consider in

performing any action – that is, whether he is acting
rightly or wrongly, like a good man or a bad one.”

~ Socrates, The Apology

often describe how the quality of a coder depends more on their attitude
than their technical prowess. A recent conversation on this subject led
me to consider the topic of the ethical programmer.

What does this mean? What does it look like? Do ethics even have a
appreciable part to play in the programmer’s life?

It’s impossible to divorce the act of programming from any other part of
the coder’s human existence. So, naturally, ethical concerns govern what
we, as programmers, do and how we relate to people professionally.

It stands to reason, then, that being an ‘ethical programmer’ is a worthwhile
thing; at least as worthwhile as being an ethical person. You’d certainly
worry about anyone who aspired to be an unethical programmer.

Many professions have specific ethical codes of conduct. The
medical profession has the Hippocratic Oath, binding them to
work for the benefit of their patients, and to not commit harm.
Lawyers and engineers have their own professional bodies
conferring chartered status, which require members to abide by
certain rules of conduct. These ethical codes exist to protect their
clients, to safeguard the practitioners, as well as to ensure the
good name of the profession.

In software ‘engineering’ we have no such universal rules. There are few
industry standards that we can be usefully accredited against. Various
organisations publish their own crafted code of ethics, for example the
ACM [1] and the BSI [2]. However, these have little legal standing, nor
are they universally recognised.

The ethics of our work are largely guided by our own moral compass.
There are certainly many great coders out there who work for the love of
their craft and the advancement of the profession. There are also some
shadier types who are playing the game predominantly for their own selfish
gain. I’ve met both.

The subject of computer ethics was first coined by Walter Maner in the
mid 1970s. Like other topics of ethical study, this is considered a branch
of philosophy.

Working as an ‘ethical’ programmer has considerations in a number of
areas: notably in our attitudes towards code, and towards people. There are
also a bunch of legal issues that need to be understood. We’ll look at these
in the following sections.

Attitude to code
Do not write code that is deliberately hard to read, or designed in such a
complex way that no one else can follow it.

We joke about this being a ‘job security’ scheme: writing code that only
you can read will ensure you will never get fired! The ethical programmer
knows that their job security lies in their talent, integrity, and value to a
company, not in their ability to engineer the company to depend on them.

Do not make yourself ‘indispensable’ by writing unreadable or
unnecessary ‘clever’ code.

Do not ‘fix’ bugs by putting sticking-plaster workarounds or quick bodges
in place, hiding one issue but leaving the door open for other variants of
the problem to manifest. The ethical programmer finds the bug,
understands it, and applies a proper, solid, tested fix. It’s the ‘professional’
thing to do.

So, what happens if you’re within a gnat’s whisker of an unmovable
deadline and you simply have to ship code, when you discover an awful,
embarrassing, show-stopping bug? Is it ethical to apply a temporary quick-
fix in order to rescue the imminent release? Perhaps. In this case, it may
be a perfectly pragmatic solution. But the ethical programmer does not let
it rest here: a new task is added to the work pool to track the ‘technical
debt’ incurred and attempts to pay it off shortly after the software ships.
These kinds of band-aid solution should not be left to fester any longer than
necessary.

The ethical programmer aims to write the best code possible. At any point
in time, work to the best of your ability. Employ the most appropriate tools
and techniques that will lead to the best results, e.g.: use automated tests
that ensure quality, pair programming and/or code review to catch
mistakes and sharpen designs.

Legal issues
An ethical, professional programmer understands pertinent legal issues
and ensures that they abide by the rules. Consider, for example, the thorny
field of software licensing.

Do not use copyrighted code, like GPL [3] source, in proprietary code
when the licence does not permit this.

Honour software licences.

When changing jobs, do not take source code or technology from a old
company and transplant parts of it into a new company. Or even show parts
of it in an interview with another company.

This is an interesting topic, as it leads to a large grey area: copying private
intellectual property or code that has a clear copyright notice is clearly
stealing. However, we hire programmers based on their prior experience;
the things they have done in the past. Is re-writing the same kind of code
from memory, without duplicating exact source lines ethical? Is re-
implementing another version of a proprietary algorithm that conferred
competitive advantage unethical, if you’ve hired the designer of that
algorithm specifically for their experience?

Often code is published online with a very liberal licence, merely asking
for attribution. The ethical programmer takes care to make sure attribution
is given appropriately for such code.

 I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net or @petegoodliffe

ethical codes exist to protect their clients,
to safeguard the practitioners, as well as

to ensure the good name of the profession
SEP 2013 | | 3{cvu}

Ensure appropriate credit is given for work you reuse in your
codebase.

If you know that there are legal issues surrounding some technology you’re
using, for example: encryption/decryption algorithms that are encumbered
by trade restrictions, you have to make sure your work does not violate
these laws.

Do not steal software, or use pirated development tools. If you are given
a copy of an IDE make sure that there is a valid licence for you to use it.
Just as you would not pirate a movie, or share copyrighted music online,
you should not use illegally copied technical books.

Do not hack or crack your way into computers or information stores for
which you do not have access authority. If you realise it’s possible to access
such a system, let the administrators know so they can remedy the
permissions.

Next time
In the next installment, we’ll look at ethical approaches to the other people
we interface with. We’ll consider the other developers we work with, our
users, our managers, and our employers. Even ourselves!

And I’ll try to construct a Hippocodic Oath. Stay tuned.

Questions
1. Do you consider yourself an ‘ethical’ programmer? Is there a

difference between being an ethical programmer and an ethical
person?

2. Do you agree or disagree with any of the observations above? Why?

3. Is it ethical to write software that makes bankers fabulously wealthy
if the money they make comes at the expense of other people, who
are not able to exploit the same computing power? Does it make a
difference whether the trading practice is legal or not?

4. If your company is using GPL code in its proprietary products, but
is not fulfilling the obligations of the licence terms (by withholding
its own code), what should you do? Should you lobby for the licence
terms to be met by open sourcing the company’s code? Or should
you ask for that GPL code to be replaced with a closed-source
alternative? If the product has already shipped, should you be a
‘whistle blower’ and expose the licence violation? What if your job
security depended on keeping quiet?

Acknowledgements
Many thanks to Steve Love and Emyr Williams for comments on drafts
of this article.

References
[1] ACM Code of Ethics http://www.acm.org/about/code-of-ethics
[2] BSI code of Contact http://www.bcs.org/server.php?show=nav.6030
[3] The GNU Public License http://www.gnu.org/licenses/gpl.html
4 | | SEP 2013{cvu}

http://www.acm.org/about/code-of-ethics
http://www.bcs.org/server.php?show=nav.6030
http://www.gnu.org/licenses/gpl.html

Two Sides of the Code
Vsevolod Vlaskine takes a critical look at

the language of programming.

n this article, I try to characterize software engineering from the
linguistic point of view. It is not a futile theoretical exercise, but a way
to inform our daily programming practice with the help of simple and

distilled concepts of modern language theory, which are rarely taught to
software professionals.

Such a concept is a practice. Software code is the best illustration of it: by
saying something it necessarily does something: any expression we write
in python or C++ is meant to be executed.

Code as two texts
In human speech, John Austin calls such expressions performative [1], an
idea he introduced in 1955. For example, by saying “I declare you man
and wife”, a priest actually does make a couple husband and wife. He
performs an action just by saying the phrase.

Without going into details, many things we say just describe the situation,
e.g. “it rains”. By contrast, an expression in C or Java is written to perform
an action. Even the data definitions, although seemingly descriptive,
would be useless unless they eventually form ‘words’ in the vocabulary
of executable expressions.

The code has two meanings: what it says and what it actually does. Code
is two texts at the same time: one instructs the computer to do something,
the other expresses what it is. The former is performative (it performs, does
things), the latter expressive (it says, expresses things).

When a programmer writes ++n, the code says that n is incremented by
1. It is correct, but meaningless. One will need to read through the whole
function or for-loop to understand the purpose of incrementing n. It could
possibly be improved by writing ++count but there is still is a question:
‘count’ of what? But at least we are saying what we are doing: counting.

To make things worse, if one writes something like this:

 int increment(int n) { return n - 1; }

the code says one thing, but does another.

These examples are trivial, but they illustrate the common experience that
each disconnection between expression and action makes the code slip
into chaos at least at a polynomial rate, since the mess isn’t additive, but
multiplicative.

Laplace’s daemon – software version
“It is all in my code. Don’t ask me questions, just read it and you will see
how it works.” Throwing code over the fence is still typical in software
teams.

Coding rules like “functions should not be longer than 10 (or whatever
number of) lines” do not address the problem: the function works, but it
does not say what it does. Or rather, it says: “My meaning is exactly the
sum of my instructions. If you go through them one by one, you will know
what I do.” It is like saying that the structure of a building is a sum of its
bricks on top of each other: as true as useless.

In 1814, Laplace suggested a thought-experiment: if someone (e.g. a
superhuman daemon) knew the exact location and speed of all the particles
in the world at a given moment, they would be able to exactly calculate
any future state of the universe.

The determinism in physics expressed in Laplace’s daemon argument
would not work due to the laws of thermodynamics and quantum theory.
However, in software engineering there still persists an illusion of

determinism that when you know every single detail of a program, you will
know what the system is doing. It is the software flavour of Laplace’s
daemon.

Many companies go through it: the founder feverishly produces the first
cut of the system to get it out of the window. Then, if the start-up picks
up, the founder becomes busy with the super-nova expansion and is hardly
available for questions. Then, a bunch of engineers literally spend months
or years digging through, reverse-engineering, and becoming experts in
the twists and dark corners of the original code.

On a smaller scale, engineers often stop too early at decomposing their
code. They give up when they split the functionality into components until
they say: fine, even a child could understand it. However, it is not about
size, but about semantics decomposition. If there still is functional
coupling, or especially the need to look into implementation details to
understand what the code is doing, the design job is not finished.

The reasons Laplace’s daemon does not work in software engineering are
in a way opposite to the ones in physics: it is not entropy or the uncertainty
principle, but the complexity of language playing against the simplicity of
mathematics or logic.

It is not all maths
It is not universal, but common to hear software engineers saying “software
development is essentially a mathematical thing; projects are troubled and
work frustrating, because management tries to apply business logic to
maths, as well as because fresh graduates are not taught maths properly
anymore.”

These laments are true to an extent; indeed, engineers often struggle with
basic mathematical concepts. However, the expectation that if the whole
software enterprise could be organized like mathematical theories, it
would bring rigour, efficiency, and quality into the trade is a big mistake.
Maths is a large part, but not everything in software engineering.

Symbolic systems

Programming and software design essentially are a language enterprise.

In Louis Hjelmslev’s terms [2], mathematics operates with symbolic
systems, whereas programming deals with semiotic ones, and the latter
cannot be reduced to the former.

The distinction is based on the fact that the reference of a sign (e.g. of a
word) and the meaning of the sign are two different things.

In a symbolic system, symbols interact in the same way as what they
symbolize (their references). For example, numbers symbolize countable
objects (say, apples).

Symbols are like text labels in the zoo: the label says ‘elephant’ and we
see an elephant inside of the cage. Instead of operating on the actual
animals (e.g. counting them), we can use the labels on the cages.

That’s how mathematics can be so powerfully applied: if it is reasonable
to assume that elements in the ‘real world’ interact in the same way as the

 I

VSEVOLOD VLASKINE
Vsevolod Vlaskine has over 15 years of programming
experience. Currently, he leads a software team at the
Australian Centre for Field Robotics, University of Sydney.
He can be contacted at vsevolod.vlaskine@gmail.com
SEP 2013 | | 5{cvu}

elements of a mathematical theory, then we could expect that all theorems
of that theory will also be true in the ‘real world’.

For example, natural numbers and their relationships map one-to-one into
piles of apples and therefore all the theorems of number theory will apply
to operations on piles of apples.

Semiotic systems

Unlike mathematics, which is based on symbols, semiotic systems (e.g.
natural language) are based on signs (in this article, we use Hjelmslev’s
terms [3]).

Sign is a unity of two radically different things: its expressive part (for
example, the way a word sounds) and its content [4]. The expressive
system of a language has essentially different relationships between its
parts from the system of its meanings.

These relationships cannot be reduced to a
symbolic system: there is no direct symbol-
referent mapping, since meanings operate in a
system of relat ionships different f rom
expressions: meaning of words vs sound of
words; meaning of a novel vs its expressive
elements (metaphors, text structures, etc);
meaning of a software library (what it does) vs.
its API (how it expresses it).

By the way, it is a very common problem with researchers who become
programmers: being used to symbolic systems from their scientific
experience, in their code, they do not program, they model. They end up
with highly inflexible closed implementations either endlessly
parametrized or semantically rigid, which is the same at the end of the day.
Something that may look like an immense number of degrees of freedom
becomes almost a definition of coupling: if you need to set up and fine-
tune dozens or hundreds of parameters to make your system work, it means
that the system is semantically extremely hard to use. And since the
meaning of the software system is its use (see ‘Meaning is use’), ‘hard to
use’ means ‘meaningless’, devoid of semantic flexibility, meaning only
one thing: itself.

The rise and fall of object-oriented design

Object-oriented design is another example of a failure to tell symbolic and
semiotic apart: in software engineering it has often been perceived as a
sufficient model of the world, creating an illusion that any problem domain
can be expressed purely in terms of classes, objects, and their relationships.
Due to this mix-up of meaning and reference, OOD gets mistaken for a
universal language (i.e. a semiotic system), whereas it was a symbolic one.

Essentially it is saying: class elephant or car in a Java or C++ program
corresponds to elephants in a real zoo or cars on a real road. Then, to design
any software system that can deal with elephants or cars, we simply express
the relationships between the real things through the relationships between
the corresponding classes. This makes OOD essentially a symbolic
system.

However, the limitation of OOD is that we do not deal just with cars. In a
single software system, a car could be a means of transportation, a physical
mechanism, an asset, an obstacle, a consumer item, a registered entity, etc,
all at once. How do we apply OOD? By having one over-sized class car?
Or by having many interrelated classes belonging to various domains?
Clearly, the latter.

But here we are: the sign ‘car’ interacts with other signs differently
depending on what ‘car’ means in various contexts or problem domains.
The system we want to build is semiotic, not symbolic.

Engineers were forced into OO designs which did not acknowledge the
shortcomings of the method. Wherever the naive OOD went beyond its
limitations (trying to solve ‘semiotic’ problems), it caused damage: over-
engineered architectures; brainwashed teams; OO tools, largely
abandoned now, that consumed huge resourses to be developed and sucked
millions of dollars from the users in licence fees. I still think UML was a

waste of time. Scores of ugly, coupled software systems were spawned,
which either failed or, worse, companies are still trying to unscramble.

Software as text in artificial languages – and software development as
collaboration in natural languages – are (implicitly or explicitly) based not
only on maths, but heavily on the methods coming from linguistics and
cannot be reduced to mathematics or another unified system.

Meaning is use
Continuing our example, what do we mean by ‘car’, when we design, say
an automated vehicle? There are multiple domains of its meaning: car in
the context of its mechanics, of fuel consumption, of route planning, of
obstacle avoidance, of asset tracking, etc.

We would like to better understand the relationship between those
meanings on one hand, as well as classes,
libraries, and other software artifacts on the
other.

To design a software system, we need to be clear
about what we mean, when the system
requirement document says ‘car’ or ‘road’, etc.

Ludwig Wittgenstein has influenced most of the
modern philosophy and linguistics, arguing that
generally in any language the meaning of its

words or sentences is their use, and they do not have any meaning beyond
that [5]. It turned a great deal of all traditional philosophy, logic, or
psychology upside down.

Luckily, unlike humanities in general, in software engineering we can
safely say the most (if not the only) important thing about a software
system is how it will be used.

We can state for all the practical reasons, the meaning of any software
system is its use. And therefore, Wittgenstein’s ideas should be highly
relevant to software.

Besides, earlier we figured out that a software system is a semiotic system,
which has two sides, expressive and performative: what a piece of code
says and what it does.

But what exactly does the code do?

Consider the following code snippet:

 db::client client(host, port);
 db::response response = client.send
 ("SELECT name FROM address_book");

We could say: the client class opens a socket, performs checks, sends the
requests, polls the socket for the reponse, etc.

Or we could say: the code creates a database client, sends a request, and
receives response.

The latter is what matters for us when we use the code. After all, the code
is always an instrument, a means to some ends. For those who use it, it is
not important what it does, but rather what they can do with it. And this is
exactly the meaning of ‘the code is its use’ in Wittgenstein’s terms.

On one hand, exposing implementation details destroys its meaning as its
usage. Say, if after construction we had to call client.connect(), it
would likely give out implementation details that are meaningless in the
context of usage.

However, high-level usage is not always a hallmark of meaningful code,
either. If it were true, encapsulation would solve all the problems, and the
latter has been seriously overused in the old-style object-oriented design.

It is the same problem as saying that there is only one ‘car’ class. The actual
car as an entity made of metal and plastic lures us into thinking so.
However, ‘car’ can belong to multiple meaning/use domains (car as a
vehicle, as an obstacle, as an asset, etc).

The meaning of a class is its use, i.e. the meaning is outside of the class
and, thus, a strong force against encapsulation. This leads to the conclusion

Object-oriented design
is another example of a
failure to tell symbolic

and semiotic apart
6 | | SEP 2013{cvu}

In The Toolbox # 4

Two Sides of the Code (continued)
that there should be as little encapsulation as possible. One could also say:
the class should be interpenetrable in as many semantic directions as
possible. Excessive encapsulation blocks exactly this transparency. This
blockage is the price of encapsulation.

Consider encapsulating connectivity, e.g. by using singletons or inversion
of control, as handy as it may look, would be too much:

 db::client client;

It hides the connectivity aspect of the client, which makes testing or
changing the connection parameters very difficult. There is too much
encapsulation.

The following expression:

 db::client client(host, port);

hints that the client connects over a TCP socket. However, it exposes too
much implementation detail.

A more meaningful way of fully exposing the aspects of the client
(connectivity and database interface) might be:

 db::client client(tcp::endpoint(host, port));

Conclusions
Linguistic concepts offer criteria to judge and distill design, code, and
software process in general, looking at the software design of any scale as
a semiotic system rather than symbolic one, and the code as a unity of its
expression and use. This imposes strong requirements of semantic
flexibility and transparency on design and code.

The clear cut between expressive and performative sides allows us to speak
about the code more efficiently during the design and code reviews,
plugging natural language into code-writing.

To put it simply: the craft of software engineering is to make the code to
do what it says and to say what it does.

References
[1] Austin, J.L. How to Do Things with Words. Oxford, Clarendon Press,

1962
[2] Hjelmslev L., Prolegomena to a Theory of Language. The University

of Wisconsin Press, Madison, 1963.
[3] Hjelmslev L., Prolegomena to a Theory of Language. The University

of Wisconsin Press, Madison, 1963, pp. 111–114
[4] Saussure F. de, Course in General Linguistics.
[5] Wittgenstein L., Philosophical Investigations. Basil Blackwell, 1953
Pen and Paper
Chris Oldwood finds uses for old-fashioned tools.

…when people say “bring a notebook” they mean
“bring a laptop”, not “bring a moleskine”

~ @natpryce

“Which is your favourite UML tool?”
I swear by Crayola
~ @jasongorman

irst thing in the morning at work, after turning on my machine and
taking a few gulps of coffee, the next thing I do is get out my notepad
and pen. Despite all the advances in hardware and software and the

plethora of apps on the market designed to aid in every office task, I still
regularly use the old fashioned method of pen and paper.

TODOs
By far the main use of my notebook is a list of things that either needs to
be done or have caught my attention and so possibly deserve further
thought or scrutiny at a later date. Sadly, when it comes to remembering
what I’m (supposed to be) doing I’m like the proverbial goldfish – I find
it all too easy to head off on a tangent and then lose focus on what really
matters at that point. Although I have the ability to remember significant
amounts of code I have written in my programming career I still can’t make
it to the top of the stairs at home without forgetting what it was I went up
there… oh, look, shiny thing!

The sorts of things I end up making a note of are the questions (or quite
possibly the WTFs [1]) that form in my mind as I’m working with both
my own, and other people’s code. I have yet to work in an environment
where code reviews happen formally, regularly and cover 100% of the
codebase. Instead I tend to see what’s changed when I update my local
copy, mostly out of self interest to see where any instability might arise,
but also because I’m just a nosy person who likes to know what’s going on.

Most times the kind of things that raise questions are fairly isolated and
so can often be resolved pretty quickly, especially if the other developer
is happy to take it up there and then. The alternative is a wider issue that
involves looking across the entire codebase for similar cases. For example,
catching every type of exception, e.g. catch(…) in C++ or
catch(Exception) in C#, is a code smell for me when not done on a
module boundary and so I’d reserve a little time to review the codebase
and look for similar occurrences. I probably wouldn’t want to take that on
immediately, but I also don’t want to forget it either.

Naturally when trying to work in an agile kind of way one is often mindful
of eliminating any waste, and these little nuggets of work are no exception.
My notebook acts as a temporary store to record my observations, but at
a later date they can be handled in a variety of ways. It could be that
someone else has picked up on it too and it’s all resolved so I can just
scribble out my note. Or perhaps what I initially thought was a smell turned
out to be insignificant after all. At the other end of the scale are the items
that have since mushroomed into a much larger task and so needs to be
placed on the backlog as a formal piece of work – subject to further
prioritisation of course. In between these two are the little things that aren’t
really important enough to distract me now but I’m not quite sure whether
there is any real substance to them – superficially they might seem to have
value, but perhaps the cost of change could only be justified as part of some
other work.

F

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80s writing assembler on 8-bit
micros; these days it’s C++ and C#. He also
commentates on the Godmanchester duck race.
Contact him at gort@cix.co.uk or@chrisoldwood
SEP 2013 | | 7{cvu}

There was an interesting question raised on accu-general a few weeks back
about tracking new tests that spring to mind whilst writing existing ones.
In this particular instance I will use the code to record my thoughts, perhaps
as a simple comment or more likely as a stub test case that shows up
‘inconclusive’ to make it more visible. If the test is for another class outside
the scope of the current feature it goes in the notebook as that’s probably
a can of worms just waiting to be opened.

In essence the moment when I commit my changes is a natural barrier for
me because it signifies the publishing of a single atomic, tested change in
the codebase. If something needs to happen before
the next commit I might as well just get on and do
it. Otherwise it goes in the book and I can
recalibrate my workload again afterwards.
Assuming I don’t break the build of course…

Diagrams
When I first discovered UML and started playing
with a couple of Enterprise UML tools I, like many
others, thought this was going to be a Big Thing.
Of course it hasn’t really panned out that way, but
what I have got from it is a common vocabulary to
use when knocking up diagrams. Martin Fowler uses the term ‘sketches’
in his UML Distilled book which I prefer as it takes a lot of the formality
out of their use and recasts them as what they most usefully are – a conduit
for further discussion.

What I particularly like about diagrams drawn in my notebook is that they
also contain all the little amendments and annotations that occurred during
the discussion. While the end result might be a nice snapshot of the
destination, the journey often says far more about the contention and ideas
that were explored along the way. Seeing the furiously drawn circles and
underlines again is a great reminder on where the points of contention were
and consequently where future confusion may lie.

Then there is just the immediacy of being able to flick back a few pages
to the diagram in the middle of a discussion. Nothing kills the flow more
than sitting, idly waiting for someone to hunt around in their emails looking
for a picture. You could of course just draw it again, perhaps slightly
differently this time so that the perspective changes. That in itself is a smell
– constantly referring to or drawing the same picture – as it might mean
the design is unintuitive.

If you’re going to knock up a sketch it’s better still if you have a couple
of different coloured pens to hand too. Even just using black and red gives
you a way to call out the more important aspects. Given the wage of an
average programmer it costs very little to buy your own set of pens. You

might need to keep them in a locked drawer though if you ever want them
to remain in your possession for longer than a few days!

Support
Outside the usual run-of-the-mill development notes are the support ones.
When in the heat of battle as I’m trying to resolve a production issue I need
somewhere to jot down my observations. Often these are events that come
from log files or specific data items like a unique customer ID. They often
exist only transiently, appearing perhaps within the command line in my

shell or a SQL query window. After the dust has
settled I like to write-up a short post-mortem that
explains the problem and contains the key data
items in case a similar problem occurs again.

Anything that happens out of the ordinary in
production has the hallmark of an edge case that
will likely feed into some later development, such
as a fix that requires a specific test case. Whilst a
post-mortem email is readily searchable the
margins of my notebook are often a quicker source
when looking for some ‘interesting data’ to put a
test case together.

Post script
My need to write things down was borne out of the frustration of forgetting
things which had the undesirable consequence that I’d go off at a tangent
and therefore disregard the real priority. Sadly it took me a very long time
to realise that the act of writing down notes was what mattered, not that I
had actually written them. It also probably explains why I can remember
much of the code I have written. This turns out to be a well known
phenomenon [2] that is possibly even more effective when handwritten
than typed.

The most important part of this discovery though affects my personal life.
Where before I used to rely, and fail miserably, on trying to remember the
hints my wife would drop for her birthday and Christmas presents; now I
surreptitiously jot them down on my smart phone under the guise of
sending another banal tweet. The old fashioned approach definitely works
better for me in the office but in the great outdoors I’m happy to bow down
to the convenience of modern technology.

References
[1] http://thedailywtf.com/
[2] http://lifehacker.com/5738093/why-you-learn-more-effectively-by-

writing-than-typing

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write
about rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

there is just the
immediacy of being

able to flick back a few
pages to the diagram in

the middle of a
discussion
8 | | SEP 2013{cvu}

http://thedailywtf.com/
http://lifehacker.com/5738093/why-you-learn-more-effectively-by-writing-than-typing
http://lifehacker.com/5738093/why-you-learn-more-effectively-by-writing-than-typing

Testing Times
Richard Polton looks at unit tests from a different perspective.

’m going to make a wild stab in the dark here and suggest that, based
on the title of this article, you’re thinking “Yawn! Another pseud writing
yet another article about TDD.” Let me put your mind at rest. Whilst I

advocate and practice TDD, this is not actually that song, this is just a
tribute [1].

Before we start I ought to be clear that this is a speculative article and so
there’s not going to be any real code here that you can enter and run. It’s
a thought experiment for now that may at some
future point become Real. What I want to talk about
is automatically generating code from unit tests. I’m
sure we’ve all seen the projects which claim to
generate your unit test code for you automatically.
There’s a StackOverflow question [2] about this
very subject. It may be true that it’s a handy way of
establishing a baseline in the case of an inherited
codebase with no tests but that is not what we’re here
to talk about.

This article is going to concern itself with running
the process in the other direction – from test to code. You may ask yourself
why anyone would want to do that. For my part, it seems like a natural
extension of TDD. First of all we decide what it is we wish to do (that is,
implement code that satisfies the functional requirements passed to us),
then we write a test which (eventually) leads to a minimal set of code that
satisfies the test. So, in my mind, what I am imagining is a piece of test
code that demonstrates some aspect of the system we aim to produce but
which does not currently succeed. Then I am imagining some process that
parses that code and extracts interfaces, classes, functions, maxima and
minima and ranges of values, and so on. This automatic process could be
built in to the IDE or exist as a very early step in the build process.

There are existing methods which go some of the way to achieve this aim
but they are not especially common nor are they easy to use. The language
Z [4], for example, exists in this domain but lies outside almost everyone’s
ken. I know I was interested in learning more about Z back in the day but
much time has passed since then and I just haven’t read any more about
it, let alone learnt how to use it correctly. I would surmise that most people
fall into the same group as me here, that is the group of people who have
not had the time (or possibly inclination) to learn Z or another formal
specification language.

Instead, then, let us consider what we might like an automated tool to do
for us. Let us take a very simple unit test as an example.

 [Test]
 public void ThisIsATest1()
 {
 var a = Mock<AnInterface>();
 Assert.IsTrue(a.DoIt());
 }

This test expects two things, an interface and a specific function on that
interface. The test will succeed when the function returns true. So if we
were to build a parser to extract these pieces of information we would be
looking for mocked interfaces, or possibly mocked abstract classes, and
function calls from those interfaces. Conceptually, we should be able to
extract these data from the test. We could parse the source code as it is
presented to the compiler but why do all the heavy lifting ourselves? Let’s
suppose that the unit tests have been compiled and run at least once. In this
case we have assemblies containing the compiled code which we can load
into our generator and parse. Using reflection therefore, we could load the
assembly that contains the tests and then parse each test looking for

mocked interfaces. I imagine building up a dictionary of interfaces names
and the variable names associated with them, a symbol table if you will.
We would also be looking for function calls from the variable. In addition
to the function name we would need to extract the expected return type
and the types in the parameter list. I imagine that much of this could be
made available by the Microsoft Compiler project (Roslyn [3]) but if it is
then that will be the subject of a future article; one in which we present

actual working code. Indeed, this work does seem to
be the sort of thing that a compiler might do.

Okay, so let us suppose we can associate variable
names and interface names. Also let us suppose we
have some dynamic object that represents each of
the functions with the names, return types and
parameter list stored appropriately which we then
associate in some manner with each interface name.
One other piece of information we can infer from the
test is the expected relationship between input data
and output data, i.e. what data we need to provide in

order to cause the test either to succeed (as we have an IsTrue assertion
in our example) or fail. In the example above we have a very simple
relationship: no input data are required at all and the result is always,
insofar as we can determine at this point, true.

Conceptually we probably have enough understanding of the form the data
might take but, at this stage, we don’t have a parser and writing and
presenting one would detract from the time and space available to talk
about our code generator.

Practically, to help with the thought experiment, we might consider
annotating the test code to help us out. After all, the aim of the exercise
isn’t building the parser, it’s automatically generating the code. Let’s use
attributes Interface and Function which we expect to behave in the
following manner

We would like the Function attribute to lead to a code template of the
form

 <ReturnType> <FunctionName>(<ParameterList>)
 {
 return <ExpectedType>;
 }

and for the functions thus produced to be contained within an interface or
class (depending on whether we are producing declarations or function
bodies). The Interface attribute, therefore, should produce an interface
declaration such as

 public interface <InterfaceName>
 {
 }

and, presumably, a class that implements it and contains the function body
described above. If we now rewrite our test code using these attributes we
have Listing 1.

Then we extract the attributes from the test code and use them to build our
program code. I think that Receives and Returns are probably

 I

RICHARD POLTON
Richard has enjoyed functional programming ever
since discovering SICP and feels heartened that
programming languages are evolving back to
LISP. He likes ‘making it better’ and enjoys riding
his bike when he can’t. He can be contacted at
richard.polton@shaftesbury.me

the aim of the
exercise isn’t

building the parser,
it’s automatically

generating the code
SEP 2013 | | 9{cvu}

superfluous because the types should be obtainable from the Expects
attribute but we’ll keep them both for the nonce. We would like our
generator to take the above test code and to produce interface and class
definitions like Listing 2.

This is nice and simple and also highlights a point which I’m sure we all
come across regularly. Tests are of little value if they only verify the
success criteria. If we produced code which only asserted that a function
returned true then we might as well just have a function that does no more
than return true. It satisifies the functional requirements (that the
Expectation is true) and passes the tests after all.

Okay, so that’s simple enough. Now we can make it a bit more involved
by passing a parameter into the function to be tested. Let’s suppose that
the function is a simple predicate – give it one input value and expect true
anything else returns false. How should we specify the expected output
of Verify though? In a declarative model, I propose that we would
specify the rule as the expectation. Therefore, we will write an Expression

as the Expects attribute value with the understanding that the number,
position and type of the parameters corresponds to those of the function
under test. (See Listing 3.)

Our generator will then produce something like Listing 4.

Can we define something more complex? Why not? How about passing
more than one parameter into Verify? Or caching some state in the
constructor which is used in Verify?

Passing more parameters into our test function shouldn’t be too different
from the preceding work. We change the Receives attribute to take
additional types, for example,

 [Function("Verify2"),Receives(int,int),
 Returns(Boolean),Expects((a,b)=>a==b)]
 Assert.IsTrue(a.Verify2(1,1));
 Assert.IsFalse(a.Verify2(1,0));

Note, however, that the rule used in the Expects attribute is not entirely
satisified by the assertions. Again, this is not uncommon in practice and
is something that we should strive to avoid. Our two assertions prove that
the function Verify2 only works as specified in two cases and is
something I would expect a code coverage tool to bring to our attention.
Let’s look at the code our generator might produce for the above test case.

 public Boolean Verify2(int a, int b)
 {
 return a==b;
 }

That is well and good for now, because we specified the functionality
expected in our attributes, but in the ideal implementation of this process,
we would expect the application itself to determine the range of values that
result in a truth response. Had we presented only the assertions it would
not be possible for a generator to deduce anything beyond
Verify2(1,1) should return true and Verify2(1,0) should return
false. In other words, the tests presented do not describe the system
under test.

Let us consider some other assertions. If our unit test contained
Assert.IsGreaterThan or Assert.IsLessThan then our
generator ought to be able to produce program code to suit. That is,

 [Function("GetValue"),Receives(),
 Returns(Boolean),Expects(a=>10<a && a<100)]
 Assert.IsGreaterThan(10, a.GetValue());
 Assert.IsLessThan(100, a.GetValue());

public interface AnInterface
{
 Boolean DoIt();
}

public class AClassThatImplements : AnInterface
{
 public Boolean DoIt()
 {
 return true;
 }
}

Li
st

in
g

2

[Test]
public void ThisIsATest1()
{
 [Interface("AnInterface")]
 var a = Mock<AnInterface>();

 [Function("DoIt"),Receives(),
 Returns(Boolean),Expects(true)]
 Assert.IsTrue(a.DoIt());
}

Li
st

in
g

1

public interface AnInterface
{
 Boolean Verify(int a);
}

public AClassThatImplements : AnInterface
{
 public Boolean Verify(int a)
 {
 return a==1;
 }
}

Li
st

in
g

4

[Test]
public void ThisIsATest2()
{
 [Interface("AnInterface")]
 var a = Mock<AnInterface>();

 [Function("Verify"),Receives(int),
 Returns(Boolean),Expects(a=>a==1)]
 Assert.IsTrue(a.Verify(1));
 Assert.IsFalse(a.Verify(2));
}

Li
st

in
g

3

[Test]
public void ThisIsATest2()
{
 [Interface("AnInterface")]
 var a = Mock<AnInterface>(10);
 [Function("Verify"),Receives(int),
 Returns(Boolean),Expects(a=>a==State1)]
 Assert.IsTrue(a.Verify(10));
 Assert.IsFalse(a.Verify(2));
}

Listing 5

public class AClassThatImplements : AnInterface
{
 public int State {get; private set;}
 public AClassThatImplements(int a)
 {
 State = a;
 }
 public Boolean Verify(int a)
 {
 return a==state;
 }
}

Listing 6
10 | | SEP 2013{cvu}

Testing Times (continued)
How about state? If, in a similar way to the tokens in the Expects
Expression, we use a magic token State1 in our attributes which we
interpret to be the first parameter that we pass to the constructor then we
could write Listing 5, which could lead to program code of the form of
Listing 6.

Although the goal of this article was to ramble on about this code
generation idea I had, as the kinesis became taxis [5] it seems that the
attributes we have introduced to make the parsing easier might be useful
in another setting. Perhaps preconditions, postconditions and invariant
conditions could also be implemented using this attribute scheme. That,
however, I shall leave as an exercise for the reader.

References
[1] Tenacious D – Tribute

http://www.youtube.com/watch?v=_lK4cX5xGiQ
[2] StackOverflow - auto-generation of .NET unit tests

http://stackoverflow.com/questions/142481/auto-generation-of-net-
unit-tests

[3] Roslyn http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx
[4] Z Formal Language – Specification of Computer Programmes

http://en.wikipedia.org/wiki/Z_notation
[5] Taxis or Kinesis (I always loved these terms and what a splendid

opportunity to use them ;-))
http://en.wikipedia.org/wiki/Kinesis_(biology)
(Re)Reading the Classics
Chris Oldwood looks back at his favourite literature.

am a product of the 1980s. Like some (many?) other ACCU members
I cut my teeth on the 8-bit and 16-bit home micros that appeared during
that decade. After an initial period learning BASIC from the bundled

manual I soon realised the only true way to get anything decent out of these
machines was to drop down to machine code. A lack of tooling at the time
(probably due more to a lack of pocket money than products) meant hand-
writing machine code and then poking it into place via a loader written in
BASIC. The computer manuals of the time were very functional in nature,
not in the paradigm sense of the word, but in the more traditional – they
told you what the keywords did and perhaps gave you an example of how
to use them. Any nods to Structured Programming
were, I suspect, strictly for the professional
programmer.

I spent seven years messing around with computers at
home and school before eventually going to university
to study Electronic Systems Engineering. During that
time I did both an ‘O’ Level and an ‘A’ Level in
‘Computer Science’. Despite my ability to program
fast, smooth sprite-style animations in machine code,
my grades were distinctly average. Apparently
‘computers’ are about more than just programming
and so to get a decent grade you need to know a whole
load of other stuff about batch processing, punched
cards, governance and a host of other dreary topics. The fact that my sister,
who knew practically zilch about programming, got an A in both only went
to show that Computer Studies (sic), was a pointless waste of time. The
only things I remember learning in those classes were the cool tricks from
the rich kids whose parents could afford to buy them a BBC Micro. Oh,
and Pascal, well, enough of it to do my A-Level project, but it seemed a
neat language in a quaint sort of way.

As I mentioned recently [1], my decision to study analogue electronics
turned out to be an incredibly poor choice. I had far more success with
digital electronics because I could just stitch the building blocks together
the same way that I would compose functions together in code. The course
contained a few options on Software Engineering, which I selected, but to
be honest C++ just seemed like a massively bloated extension to C. At least
that seemed like a slightly more efficient way to write assembler. We
covered Object-Orientation too, but it took watching the lab assistant turn
our simple text-based ‘shapes’ C++ assignment into an X Window based
version of Asteroids to really grasp the power of some of the concepts.

However, no one appeared to doing any System Programming in C++, so
it all felt quite literally academic.

Of course the real education starts when you leave academia, get a job and
have to deliver real code to real customers. Fortunately my first job was
with a small company that produced PC based desktop publishing software
where quality was high on the agenda, even if the magazine reviewers
didn’t appreciate it. That meant continuous learning was an established
practice brought about, in part, by subscriptions to various publications,
such as Dr Dobbs Journal, Windows Developer Journal, Microsoft

Systems Journal and C/C++ Users Journal. Certain
key books, such as Steve McConnell’s Code Complete
and Steve Maguire’s Writing Solid Code became
mandatory reading as they tried to deal with the
complexity of a codebase that had evolved over many
years into different products and changed platforms
along the way too.

Once I started freelancing I had to replace all that
myself. But the necessity allowed me to discover
Application Development Advisor where I first
encountered the writings of one Kevlin Henney. C++
Report surfaced on my radar too, just before its
demise! At least some of those articles found their way
into book form under the guise of C++ Gems. Around

the same time Scott Meyers had kicked off the Effective C++ series which
led to the style of books where advice was broken down into a number of
‘items’ – most notably the Exceptional C++ series (Herb Sutter) and C++
Common Knowledge (Stephen Dewhurst). They were great books because
they started to highlight the difference between a program that was perhaps
technically correct, but ultimately not maintainable due to the dark corners
of the language that may have been unintentionally exploited.

The other two sorts of books I lapped up were the Design Patterns series
and the ‘Haynes Manuals’ of systems programming. The former, made
famous by the Gang of Four’s Design Patterns, were the two big series:

I

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80s writing assembler on 8-bit
micros; these days it’s C++ and C#. He also
commentates on the Godmanchester duck race.
Contact him at gort@cix.co.uk or@chrisoldwood

the real education
starts when you
leave academia,

get a job and have
to deliver real code
to real customers
SEP 2013 | | 11{cvu}

http://www.youtube.com/watch?v=_lK4cX5xGiQ
http://stackoverflow.com/questions/142481/auto-generation-of-net-unit-tests
http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx
http://en.wikipedia.org/wiki/Z_notation
http://en.wikipedia.org/wiki/Kinesis_(biology)

Pattern Orientated Software Design (POSA) and Pattern Languages of
Program Design (PLoPD). The latter were the various ‘Undocumented’
and ‘Internals’ books, such as Undocumented Windows (Andrew
Schulman) and Windows Internals (Mark Russinovich). I always found
myself working on projects where squeezing every last ounce from a box
was the norm, despite the relative costs of developer versus hardware
suggesting otherwise, and so I’d spent a lot of time learning everything I
could about the platform and language I had always worked with.

And then in 2007 I joined ACCU [2].

Whilst I was clearly comfortable with the mechanics of producing software
for my clients, I found myself beginning to question the more ‘computer
science-y’ side. For instance I realised that I didn’t really know what the
differences were between classes and types, or functions, procedures and
methods, or lambdas and closures, or aggregation and composition, etc. I
had previously been throwing terms around without really knowing if I was
using the correct one. There were also a variety laws and principles, such
the Law of Demeter and SOLID that I knew what they stood for, and had
an appreciation of what they were getting at but was sure I didn’t fully
understand all the forces involved. For example, The
Liskov Substitution Principle (the L in SOLID) talks
about types and not classes: does that matter?

A discussion on the ACCU channel at work led me to
ask what the state of the art was in books on OO. I had
a copy of Object-Orientated Modelling & Design by
James Rumbaugh (1991) that I had rescued from a skip
when moving offices around the turn of the
millennium, but I had only skim read it. Somewhat to
my surprise there wasn’t really anything new. The
books of the same era, such as Grady Booch’s Object
Orientated Design and Bertrand Meyer’s Object-Orientated Software
Construction were still the recommended reading. One slightly newer
book (1996) that came out of the same discussion that I posted on accu-
general was Arthur J. Riel’s Object-Orientated Design Heuristics. The
great thing about old books like these is that they’re ten-a-penny in the
online second hand book shops so it’s not going to break the bank to own
them all.

As I started reading them I also began to look up the references that they
were citing, which in turn led me to even older books and published papers.
Whilst I was aware that technology had obviously changed rapidly over
the years, in contrast, the principles hadn’t. There is always a danger
though that those principles can become redundant without you realising
it, such as the Law of the Big Three in C++ which has largely become a
minor-issue since the invention of the reference-counted smart-pointer.
It’s also common for people to recite phrases such as ‘premature
optimisation is the root of all evil’ without knowing the context in which
it was framed. But do you need to know that, isn’t it just ‘obvious’? I don’t
think so, and I believe it’s the reason Herb Sutter has the item on Premature
Pessimization in his C++ Coding Standards book to highlight the effects
of just glibly trotting out so called ‘best practices’.

One name that came up frequently (apart from Edsger Dijkstra of course)
was David Parnas, the man credited with identifying one of the three pillars
of OO – encapsulation. Whilst many papers and articles of that earlier era
are locked behind subscription based services I managed to uncover a book
with a collection of his papers – Software Fundamentals – and it was going
for about five quid. Parnas is a great writer and putting aside the actual
content itself, which is gold dust, the style he writes in is worthy of
attention alone. I thought I knew what an Abstract Data Type was until I
read his paper on them. Also, reading about what is essentially exception
handling in a paper dated back to the early 1970s is a great reminder of
how timeless a lot of this stuff can be.

You can’t go to an ACCU conference without hearing at least a dozen times
about why we should be designing our code to exhibit low coupling and
high cohesion. Tony Barrett-Powell went one further in 2010 [3] and did
an extensive session all about it and many of the other related principles
too. What was noticeable again was that the works he was referencing were
also the older ones – for example books about Structured Programming. I

found out that Meilir Page-Jones covers the subjects of coupling and
cohesion pretty extensively in Practical Guide to Structured Systems
Design, a book initially published in 1980! Kevlin Henney’s more recent
ACCU conference attempt to recast ‘SOLID’ as ‘FLUID’ just goes to show
there’s still so much more to unearth.

As I suggested earlier you have to be a little careful with what you read in
some of these very old books as there is definitely advice that is a little
dubious 30 to 40 years on. Whilst the programming side is still possibly
valid, it’s more the development process that you may find yourself
wincing at. That said, the definitive classic book of software development
is probably The Mythical Man Month by Fred Brooks. His ‘No Silver
Bullet’ article must be pretty near the top of most referenced works. For
me, though, ‘The Tar Pit’, which is the first chapter, is a great way to
remind yourself why we get up in the morning to follow our chosen path.
Meeting and chatting to Tim Lister at the ACCU conference two years ago
instantly elevated his masterpiece, Peopleware, to the top of my reading
pile. And with good reason because understanding the environment in
which we work can have a significant effect on our productivity as well.

So, what of the output of modern day authors? Are
there any books that I can see others discovering in a
decade’s time or that I’ll find myself returning to again
and again to see what new insights I can glean? One
author that immediately springs to mind is Kent Beck.
His books on Extreme Programming, TDD by
Example and Implementation Patterns have already
become a constant source of reference and, more
importantly, inspiration, with the latter being one of
my favourite programming books of all time. Whilst
his books are short on pages they are jam packed with

goodness and all written in a particularly comforting style.

As I become more experienced and therefore more comfortable with being
able to make software that ‘works’ I can devote more time to what it means
to ‘make it right’. Once upon a time I wanted books to get inside the heart
of the machine or compiler to understand it, now I want books to get inside
the head of the experts to understand what they ‘see’ and what makes them
better programmers.

References
[1] ‘Passionate About Programming or Passionate About Life?’ – C Vu,

July 2013
[2] ‘The Downs and Ups of Being an ACCU Member’ – C Vu, May 2013
[3] http://accu.org/content/conf2010/

accu2010Coupling_TonyBarrettPowell.pdf

I thought I knew
what an Abstract

Data Type was until
I read his paper on

them
12 | | SEP 2013{cvu}

http://accu.org/content/conf2010/accu2010Coupling_TonyBarrettPowell.pdf
http://accu.org/content/conf2010/accu2010Coupling_TonyBarrettPowell.pdf

#include <iostream>

int x;
struct i
{
 i() { x = 0; }
 i(int i) { x = i; }
};

class l
{
public:
 l(int i) : x(i) {}
 void load() {
 i(x);
 }

private:
 int x;
};

int main()
{
 l l(42);
 l.load();
 std::cout << x << std::endl;
}

Li
st

in
g

1

Code Critique Competition 83
Set and collated by Roger Orr. A book

prize is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue's code
his is a slightly different critique from the usual. The following code
was presented to a number of people at the recent ISO C++
standards meeting and we were asked to work out what it would

print. Please do so yourself – and then compile and run it. The critique
part is to reflect on what happens, why it happens, and how to deal with
it.”

(My thanks to Alan Talbot for this interesting example.)

The code is in Listing 1.

Critiques

Paul Floyd <paulf@free.fr>

Indeed very interesting. I'm sure I've seen similar examples, but
nonetheless I fell straight into the trap.

On reading the code, what I wanted it to do was

 l l(42);

to construct an instance of l on the stack with the user defined constructor
and to initialise l’s private member x to 42 in the constructor init list.

 l.load();

Obviously this calls l’s load member function.

 i(x);

Well, that looks like it’s constructing an instance of i on the stack and
passing it the member x. The i constructor that takes an int uses it to set
the global x. Since l.x was constructed to be 42, that’s what cout
displays.

Of course, this is wrong. Let’s compile. GCC 4.2 and 4.6 g++ say nothing.
MS VC++ 2010 just makes a lot of noise abut the standard headers when
compiling with /Wall. clang++ is more helpful:

 /usr/bin/clang++ -Wall -Wextra -Weffc++ -o cc82
 cc82.cpp -g
 cc82.cpp:19:6: warning: private field 'x' is not
 used [-Wunused-private-field]
 int x;
 ^
 1 warning generated.

Eh? Oracle Solaris Studio also gives a hint as to what is up.

 CC +w2 -g -o cc82 cc82.cpp
 "cc82.cpp", line 16: Warning: x hides l::x.

Debugging the code, I saw that it stepped in to the constructor with i that
takes no arguments. The light dawned.

 i(x);

is not a constructor taking x. It’s declaring a local variable x of type i, the
same as i x;. Curse the C and C++ declaration syntax! This uses the i
constructor without arguments

 i() { x = 0; }

which sets global x to 0, which is what cout displays.

So we have 3 x’s. Global x, private x and local x. This explains the
compiler warnings. private x is initialised but never read, and local x
hides private x;

How to deal with it? Well, my first though on seeing global x being
assigned values from i’s constructor was ‘yuck’. Not doing that would be
a good start (and by that I mean using global variables and using a
constructor in a way that has side effects other than constructing). x is
crying out to be a member of i (regular or static, depending on the needs).
Next, as noted, using more than one compiler can be helpful. GCC wasn’t
much use. The next thing to do would be to avoid having three different

T

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk
SEP 2013 | | 13{cvu}

x’s. Let’s imagine that we want to keep the broken design and just want
it to compile and output 42. How to make it ‘just do it’?

What we want for that is

 i local_x(private_x);

So let’s see what

 i x(x);

does.

cc82.cpp:16:8: warning: variable 'x' is
uninitialized when used within its own
 initialization [-Wuninitialized]
 i x(x);
 ~ ^
cc82.cpp:19:6: warning: private field 'x' is not
used [-Wunused-private-field]
 int x;
 ^

Obviously not what we wanted.

Let’s try being a bit more explicit.

 i x(this->x);

No compiler warnings and the output is 42.

Let’s try avoiding the name collisions with just

 i foo(x);

Also compiles and outputs 42.

In summary, this example shows the importance of being able to
understand C and C++ declaration syntax and the rules used for symbol
resolution.

PS I wanted to have a play with cdecl. This is a tool, originally written I
believe by Peter van der Linden (author of Expert C Programming), that
takes a C declaration and converts it into a more or less human readable
form. There’s a C++ version as well, but I couldn’t find an online version
of that. There seem to be several online versions of cdecl, for instance,
http://cdecl.org.

If I give it i(x) then it says it is a syntax error. On the other hand, if I
simply substitute i for something that it knows, say int, then int(x)
gives

 declare x as int

Substituting i back into int, as it were, means that i(x) means ‘declare
x as i’.

Phil Nash <phil.nash@cibc.co.uk>

I was initially stumped too, until I started playing around with it to reveal
the cracks.

Obviously it prints 0, where you might expect it to print 42.

This is because the expression:

 i(x);

is not what you might think it is.

It looks like it’s constructing an anonymous instance of type i and calling
the constructor from int on it, passing the value of the member variable,
x, right?

Wrong.

It’s declaring a variable of type i ... and giving it the name x (which is a
local name that shadows the x used as a member variable).

It becomes a little more obvious if you add a space in there:

 i (x);

The parentheses are redundant here and this is the same as writing:

 i x;

Peter Sommerlad <peter.sommerlad@hsr.ch>

This is a classic and one of the reasons I am such a fan of the C++11
(almost) uniform initializer syntax.

In my C++ class (before C++11) the same problem happened often when
I asked to initialize a standard library container from a pair of istream
iterators as follows. A default-constructed std::istream_iterator
is used as the end iterator and a programmer might try to fill a vector from
std::cin like this:

 using namespace std;
 vector<int> v(istream_iterator<int>(cin),
 istream_iterator<int>());

However, that doesn’t define a vector variable v, but....

...declares a function named v returning a vector<int> and taking two
istream_iterator<int> as arguments (the first one named cin, but
not really relevant in a function declaration). WTF... (as Russel Winder
posted on accu-general).

When learning C or C++, we might have met the old friend function pointer
and that required parentheses in its declaration to bind the asterisk to the
name of the pointer instead of the function call parentheses, because the
latter have a higher priority, e.g., void (*fp)();

This leads me to the explanation that parentheses for grouping are not only
allowed in regular expressions like a*(b+c), but also in declarators. The
corresponding grammar rules are given in chapter 8 [dcl.decl] of the C++
standard (2011) in paragraph 4 (excerpt):

declarator: ptr-declarator

ptr-declarator: noptr-declarator

noptr-declarator: (ptr-declarator)

This means we can put potentially superfluous parentheses around every
declarator we see in a program.

The second grammar aspect of the ambiguity between expressions and
declarations is explained in chapter 6.8[stmt.ambig] of the standard:

An expression-statement with a function-style explicit type
conversion (5.2.3) as its leftmost subexpression can be
indistinguishable from a declaration where the first declarator starts
with a (.

and it resolves it in favour of the declaration:

In those cases the statement is a declaration.

Now let us get back to the example of the code critique. If we look at
member function l::load() we see:

 void load() {
 i(x);
 }

For a naive first time reader this looks like a conversion expression
constructing an object of type i from the member variable x that was
initialized in main with 42. However, what the compiler really reads is
something we could have written as

 i x;

by removing the superfluous parentheses and this is obviously defining a
local variable of type i using its default constructor and naming it x. And
because of the above mentioned rules the default constructor of i sets the
global variable x to zero, not to 42 as many first thought would be the
result.

Now using braces for initializing allows us to construct what might have
been intended by the author without any syntactical ambiguity:

 void load() {
 i{x};
 }

or using my example from above:

 using namespace std;
 vector<int> v{istream_iterator<int>{cin},
 istream_iterator<int>{}};
14 | | SEP 2013{cvu}

However, this usage of uniform initialization syntax also has its ‘gotchas’.
For example, std::vector<int> can be initialized with n elements of
a given value, but

 vector<int> tenfourtytwos{10,42};

will not give us ten elements intialized with 42, but a vector with two
elements initialized with 10 and 42, because the initializer_list
constructor takes precedence over other overloads when the values given
between the curly braces can be interpreted as an initializer list. In these
cases we have to step back to use the (potentially ambiguous) parentheses
syntax for initializing our vector:

 vector<int> tenfourtytwos(10,42);

If you can not use C++11 syntax, you can guarantee the interpretation as
an expression by putting your intended value creation into an expression,
i.e., using a comma operator:

 void load() {
 0,i(x);
 }

but that is ugly.

So what can we remember from it:

Use C++11 uniform initialization syntax whenever possible, avoid
constructing values that you will not use and sidestep side effects (aka
Monads in Haskell) whenever possible.

In general one can add the typical SCC blaming that the given code uses
many bad practices:

 bad names for types and variables. I guess they have been
intentionally obfuscated.

 global variable and using side-effects of object construction to
manipulate it

 not thread safe, because of side-effects and the global variable

 unsuspecting side effect, because of the declaration of local variable
x in load()

Mirko Stocker <me@misto.ch>

I found this issue of the code critique hanging by the coffee machine in
our office. Cleverly placed at this strategic location by Peter Sommerlad,
it didn’t take long to catch my attention. Now, my C++ is a bit rusty, but
after staring at it for a few minutes, I came to the conclusion that the output
one would expect is 42. But there must be something else going on, why
else would it be worthy of the attention of the fine ladies and gentlemen
of the C++ committee?

A second cup of coffee didn’t reveal any more insights, so I took the code
to my favourite C++ IDE – Eclipse CDT – spiced up with some of our plug-
ins. As expected with this kind of obfuscated code, Linticator [1] shows
several warnings about shadowed declarations (see screenshot below).

The last one makes me pause: declaration of symbol 'x' hides symbol 'l::x'.
Declaration? Of course, that's the solution! 'i(x)' is a variable declaration
of type 'i' named 'x', and not a constructor call. This will set the value of
'x' to 0 and not 42.

How can we deal with these pitfalls in the language? By using state of the
art tools like Linticator and other static analysis software that make our
lives a little bit easier.

Reference
[1] http://linticator.com

Balog Pal <pasa@lib.hu>

The provided code presses hard to abuse name lookup, reusing names with
the same identifier i and l hoping it is still valid due to hiding rules. It
actually succeeds in some places, say exploiting that the name of a function
argument hides properly. (Interesting that we even missed one usual trick,
constructor of l could name the argument x and in the initializer list x(x)
would have the proper behavior in isolation...)

However it went one step too far. In the standard we have this rule:

3.3.7 Class scope [basic.scope.class]

The following rules describe the scope of names declared in
classes.

1) The potential scope of a name declared in a class consists not
only of the declarative region following the name's point of
declaration, but also of all function bodies, default arguments,
exception-specifications, and brace-or-equal-initializers of non-
static data members in that class (including such things in nested
classes).

2) A name N used in a class S shall refer to the same declaration
in its context and when re-evaluated in the completed scope of S.
No diagnostic is required for a violation of this rule.

3) If reordering member declarations in a class yields an alternate
valid program under (1) and (2), the program is ill-formed, no
diagnostic is required.

We have x at the global scope and also as member in l. At definition of
l::load x is used and fits description of bullets 2) and 3). So this
program is ill-formed, but the compiler is allowed to not even tell about
it. [Ed: I don’t believe these rules quite apply to this case.]

The answer to ‘what it would print’ then is kind-of moot. A better quality
compiler would still issue the diagnostic but not produce anything to
execute. For the rest, as behavior is only defined for well-formed programs,
anything can happen, including printing something or nothing, or even
posting the correct answer to the Code Critique problem.

Dealing with it is simple: don’t abuse name lookup. Actually the main issue
is trivial to mitigate with some naming convention, like naming global/
namespace variables with a g_ prefix and forbidding that form for anything
else. Even so we can still construct a problematic case with anonymous
namespaces or global types clashing with data members, and carefully
choosing expressions that still work (maybe adding decltype() to the
mix), but the problem potential will get too low to worry about.

Commentary
I think most of those who read this critique and tried to work out what it
would print got a surprise. As most people realised the trouble is the
declaration of the local variable x inside the load() function provides a
superfluous pair of brackets, which to the reader – but not the compiler –
make the call look like a constructor call. This is a relation of the ‘most
vexing parse’ Peter refers to where the writer intends a variable declaration
but produces a function declaration.

The fundamental problem we face here is realising that what the code
actually means is not what we think it should. (I’m not sure whether the
failure of many members of the ISO C++ standards body to recognise the
problem with the breaking code makes things seem better or worse.)

This is where static analysis wins out … except when it doesn’t. The
difficulty with this code is deciding what is actually wrong with it. The

Fi
gu

re
 1
SEP 2013 | | 15{cvu}

http://linticator.com

Code Critique Competition 83 (continued)

Two Pence Worth
An opportunity to share your pearls of wisdom with us.

One of the marvellous things about being part of an organisation like ACCU
is that people are always willing to help out and put in their two-pence-worth
of advice. In this new section of CVu, we’ll capture some of those gems and
print the best ones. If you have your own 2p to add to the collective wisdom
of the group, send it to cvu@accu.org.

“Avoid spelling mistakes in your method names by using operator
overloading instead.”

“Reduce cyclomatic complexity by writing all your code as LINQ
expressions.”

“Make debugging easier by adding an implicit conversion to const
char* to all your classes.”

“Eliminate compiler errors by writing your code in a scripting
language instead.”

“Make sure you build want the customer wants by asking them what
they want.”

“Avoid building the wrong thing by gathering the requirements up-
front and documenting them.”

“Improve your chances of getting a job programming by listing every
technology you’ve heard of on your CV.”

“Avoid subtle performance problems caused by False Sharing by
adding 64 bytes of padding between each data member.”

“If you’re going to add a singleton, please think about it as long as it
takes to change your mind.” rzeh, Chicago
variable is unused, but since it is a user-defined type whose constructor
has side-effects most tools seem to assume this is why the variable was
declared in the first place. If this were to cause a warning many uses of,
for instance, RAII helper objects would also cause (erroneous) warnings.

Clang warns because the private field x is not used – in a bigger example
this might no longer be the case. Oracle CC warns about the local variable
hiding the private member, which is the most useful compiler-generated
warning anyone seems to have found. Perhaps Linticator deserves the prize
for the most useful warnings?

Peter Sommerlad’s advice to prefer brace-initialisation works well for
writing solely in C++11 (and beyond) but sadly many C++ programmers
cannot yet adopt the new language standard unreservedly in their working
environment.

The winner of CC 82
The various entries covered pretty well everything I could think of about
this code. I think on balance Paul Floyd covered the topic best – I found
his explanation clear and thought his use of multiple compilers was a
sensible suggestion. I also liked his reference to cdecl since C++ inherited
the parse problem from C (although since C lacks constructors it is harder

to come up wi th
p l a u s i b l e
b r ea k i ng
examples…)

Thanks to a l l
who s en t i n

en t r i e s and
commented on accu-general. I

hope no-one has given up on C++ (or
even programming at all) after their
initial reaction on seeing the code and
trying to understand why it does what it

does!

Code critique 83
(Submissions to scc@accu.org by Oct 1st)

After demolishing everyone’s confidence of their knowledge of C++ in
CC82 I thought it was time for some Python….
I want to split the set {1,2,3,...,21,22} into two disjoint subsets of 11
numbers such that neither subset contains three consecutive numbers.
The following was an attempt to produce one possible subset. Having
got an ordered sample of 11 from {1,2,3,...,22} I check that the sample
does not contain three consecutive numbers (y[i]-y[i-2] is never 2), nor
are there three consecutive numbers not in the sample (y[i]-y[i-1] is
never greater than 3). But it produces samples meeting neither
condition. Help!” (Yes, the problem with the code is fairly easy – but how
bes t can you he lp the
programmer?)

The code is in Listing 2.

You can also get the current
problem from the accu-
general mail list (next entry is
posted around the last issue's deadline)
or from the ACCU website (http://
www.accu .org / journa l s /) . Th is
particularly helps overseas members
who typically get the magazine much
later than members in the UK and Europe.

import random
x=range(1,23,1)
y=random.sample(x,11)
y=sorted(y)
for i in range(2,11,1):
 if y[i]-y[i-2]==2 or y[i]-y[i-1]>3 or \
 y[1]-y[0]>3:continue
print y

Listing 2
16 | | SEP 2013{cvu}

http://www.accu.org/journals/
http://www.accu.org/journals/

SEP 2013 | | 17{cvu}

Standards Report
Mark Radford reports on the latest from

C++14 Standardisation.

his is the time in the C++ standards process that has a fairly quiet feel
to it. The Bristol ISO meeting seems to be a long time ago (well, four
months, anyway), and the next meeting, in Chicago, is not until late

September. However, things do happen when there are no ISO meetings:
the interim mailing is available [1], the BSI Panel met on Monday 29th
July, and SG1 (Concurrency and Parallelism) met on July 25th and 26th
in Santa Clara, CA, in the US.

The interim mailing contains considerably fewer technical papers than
usual, but it does contain the committee draft for C++14 (N3690). Another
paper of note in the interim mailing is the working draft of the Technical
Specification (TS) for the File System (N3693). I talked a bit about the role
of the TS in my post-Bristol report when I talked about Constraints a.k.a.
‘Concepts Lite’, because that is what SG8 (Concepts) are working to
produce, and SG3 (File System) are working towards the same product i.e.
a TS. Note that this is the first appearance of the file system TS draft.
N3693 says it revises N3505, however N3505 was a library proposal,
whereas N3693 moves the paper forward to be the working draft of the TS.

The committee draft (CD) is the draft on which national bodies are
balloted. Further, national bodies get to make comments on the CD, so it
is the first point at which the standards committee gets feedback on its
work. The ballot is a yes/no vote, but a yes vote can also be accompanied
by comments. The C++14 CD was what the BSI Panel were concerned
with (at the 29th July meeting). The UK’s current intention is to vote yes
to the CD, but with accompanying comments. The idea is that the changes
indicated by our comments will be incorporated into the next draft. Voting
yes at this stage means that our comments do not hold up progress to the
next stage. If we make a comment that is not acted upon, and we feel
strongly about it, we can vote no to the draft at the next stage. However,
it is unlikely that a comment will be ignored, at least without satisfactory
justification. In passing, the ISO C++ web site has a page explaining ISO
procedures including stages and ballots [2].

The meeting on July 29th was taken up with going through, and reviewing,
comments submitted by BSI Panel members. Following the review, a
comment may or may not be accepted (by the BSI Panel as a whole) for
being formally put forward to ISO (via the BSI channels). As it happened,
the meeting also resulted in a few more comments, as a result of the
discussion arising from those already submitted.

One topic that just won’t go away is that of std::future’s destructor
potentially blocking, if the future was returned from std::async. That
is, the destructor blocks until the underlying thread behind the
std::async call completes. This causes problems that I talked about in
my previous report, and at the Bristol meeting there was a move to
introduce changes to fix things (N3637). However, the proposed changes
would break existing code and therefore some controversy has surrounded
the N3637 proposal. At the end of the Bristol meeting N3637 was voted
on by all the national bodies represented to ISO, the result being that there
was no clear consensus. The motion (to incorporate the N3637 proposals
into the working paper) was therefore not carried. The UK has made a
ballot comment asking for several notes to be added to the standard,
clarifying the current behaviour.

This topic was also discussed by SG1 at their Santa Clara meeting. I see
from the minutes that SG1 still cares very much about finding a solution
to this problem. Various options were discussed: one idea that was put
forward is just to deprecate std::async as early as C++14, and introduce
a replacement that doesn’t have the problems associated with

std::async. I’m assuming the motivation (for deprecation) is to allow
time for code to be migrated to the replacement. Actually, deprecated
features frequently never get removed (or at least not for a long time). The
point really, is that deprecation sends a clear message that the feature
should not be used in any new code. It is important to understand, that for
the time being this is just discussion, and no decision has been taken (the
next opportunity to make a firm decision is the Chicago ISO meeting).

The minutes of the Santa Clara meeting have not yet been published in a
mailing, as the interim mailing (see above) came out before the meeting;
I’m assuming these minutes will be in the next mailing (but I don’t know
if there will be another interim mailing, so the next one may be pre-
Chicago).

References
[1] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/

#mailing2013-07
[2] http://isocpp.org/std/iso-iec-jtc1-procedures

T

MARK RADFORD
Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark@twonine.co.uk

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/#mailing2013-07
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/#mailing2013-07
http://isocpp.org/std/iso-iec-jtc1-procedures

18 | | SEP 2013{cvu}

The Reward
Richard Polton writes in suggesting how

we might encourage good code.

 am a great believer in patterns of reuse, and thereby code reduction, as
anyone who has seen my code could testify. Similarly, I am also a strong
believer in test-first development. I preach both of these to anyone who

will listen and probably too much ;-)

We find ourselves in an environment which often fosters a ‘more is more’
attitude and maintains that bigger is better. Even nowadays, when we have
corporate recognition of Open Source code, I still hear development
managers talking about lines of code as if it were a measure of success.
Rewards are handed out accordingly. As time marches on, we make
additive changes to our system and so they become more complex and,
ultimately, literally incomprehensible.

I had a particularly bad experience of this nature at one place of
employment some years back. They had a system that was critical and yet
so dire that I was explicitly instructed on joining that the team’s modus
operandi when confronted with bugs was to fix them with a date condition
so that the original behaviour was retained (in the event of a system re-run
for a past date). The end result was a system that was utterly
unmaintainable. This is a classic vicious circle.

I think that a paradigm shift in the thinking of development managers, and
consequently the developers, is required. There is a learnt mindset to
overcome, the mindset that copying is acceptable, that the rush-to-code is
the correct approach. I have heard, and find it easy to believe given my
personal experience, that significantly more time is spent in supporting the
product and fixing bugs (or features, depending on your perspective, and
that again is part of the problem) after the release than in development so
that in itself should be enough to show the flaws in the mindset. That is,
there must be a better way.

Planning to write, and then writing, reusable code is difficult. Maintaining
high standards in the face of disinterest is difficult. There is an element of
altruism involved, as well as pride in one’s work, but that can be eroded
quickly when powers-that-be have different perspectives, e.g.
development and support budgets being separate and distinct and,
possibly, owned by different people or departments. So it’s all about
education. This is exactly the reason why I have written my articles.

So allow me a moment to spew some key points which I think development
managers should be encouraged to repeat.

 Copy-and-paste is evil. This should go without saying.

 Engage brain before mouth, or in this case, take the time to think
before writing (code or prose, the same applies).

 Constantly re-evaluate your work; re-read what you have written
looking for ways by which you can improve it.

 Always look for patterns. These can become shared, generic code.

 Ask whether someone has solved this problem before (and made the
solution available).

This note came about because of a comment at work. There was a
discussion of developers’ rewards and how to ensure that the behaviours
we wish to encourage are rewarded. The specific point that I identified with
is ‘Reward your junior developers by lines of code written. Reward your
senior developers by lines of code removed.’

Personally, I think that the biggest reward is seeing your code in use. This
is even more true if it is being (re-)used in someone else’s application. This
will never happen while you don’t write reusable code and while the
developer who might reuse your code doesn’t know anything about it or
has no incentive to seek it out. So, perhaps the solution lies in teaching the
junior developers to seek out reusable code and, in that way, perhaps they
will aspire to create their own. Therefore, I finally knuckled down and
made my own toolkit available on both Google Code and NuGet. Search
for functional-utils-csharp or ask me but don’t expect any documentation
yet; I’m not perfect (and I already have to juggle my limited spare time
between making guitar noise and writing articles for this very magazine).

Richard Polton

 I

If you read something in C Vu that you
particularly enjoyed, you disagreed with or
that has just made you think, why not put
pen to paper (or finger to keyboard) and
tell us about it?

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamorous ‘not recommended’ rating, you are entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with books.
Jez Higgins (jez@jezuk.co.uk)
Foundation Game
Design with HTML5
and JavaScript
By Rex van der Spuy. ISBN-
13: 978-1-4302-4716-6

Reviewed by Stefan Turalski

I must admit that whilst
choosing the Foundation
Game Design with HTML5 and JavaScript for a
review I was not aware that I was signing up for
a 750-pages long paperback brick. In
retrospective, I shouldn’t have been surprised as
the subject domain is vast! It seems that we have
not seen those killer HTML5 apps, because
since late 2011 most experts (well, mostly
experts) were busy churning books on and
around the topic. Last time I checked ca.320
titles were published, ranging from beginner’s
overviews, through definitive guides, various
cookbooks and recipes, focusing on
performance, mobile development, usage of
particular JavaScript frameworks or IDEs,
toping the pile with whole book(let)s dedicated
to a specific HTML5 tags and APIs.

Within such variety the Rex van der Spuy’s
work holds, in my opinion, a strong position in
the entry level tier. It will not help you to write
next single-page, WebGL based 3D game,
utilise WebSockets, local storage nor
geolocation, but it will definitely assist in
establishing solid basic knowledge. The clear
narrative, helpful illustrations and thought-
through code samples help reader to stay
engaged and find himself fully immersed and
comfortable in the sea of HTML5 tags,
JavaScripts and CSS code. Rex does not set
prerequisites, thus even a total beginner, who
never closed a HTML tag, will learn enough
basics whilst going over first ~300 pages. A
reader whishing to jump straight into learning
about HTML5’s specific techniques, may need
to scan through the first half of the book, as each
subsequent chapter is based on preceding
discussion. However, there is nothing wrong
with that and it is well worth to brush up on
modern web development tricks.

I must admit that getting the code samples to
work triggered this peculiar joy of seeing pixels
moving around a green screen (note to editor:
green screen should be crossed in final text)
browser window, more or less along the
intentions expressed in code. For that reason
only I would recommend this book to everyone
trying to pass her love of coding to a next
generation of programmers.

P.S. Please be careful whilst ordering print
edition, it seems that some copies are seriously
mis-formated.

Beginning jQuery
By Jack Franklin, published
by Apress, ISBN:
9781430249320, 181 pages.

Reviewed by Alex Paterson

There can be little doubt
that jQuery has made a
significant contribution
to web development since its first release in
2006. It has provided higher-order constructs for
HTML/CSS programming that allow complex
dynamic content to be displayed and
manipulated in more and more impressive ways.

As a C++ programmer with limited exposure to
Javascript, I was hopeful that the book,
Beginning jQuery by Jack Franklin (Apress,
2013), would give me a head-start on a new web
project.

The first two chapters are clearly aimed at those
with little programming experience. An
overview of Javascript is given and the basic
syntax of jQuery is introduced mostly through
practical code examples.

Chapters three and four look at how jQuery can
be used to manipulate the DOM and alter the
content of a web page. Again, code examples are
used to try and explain the concept to the reader.

Chapters five and six give a very brief
introduction to the power of functions in
Javascript and there are further chapters on
animation, ajax, jQuery plug-ins. The book
rounds off with a worked example containing
code elements seen throughout the chapters.

The author has commendably tried to cover a
wide range of topics in a slim volume, however
the presentation clearly lacks some polish. The
most disappointing aspect is the almost
inexcusable lack of diagrams; there are many
areas where the author’s explanation of a
concept should have been accompanied by a
diagram to aid the reader’s understanding. There
are some images in the book, but these are
mostly browser output, jQuery API website
screenshot and kittens. Yes, kittens. Another
area that gave disappointment was the index,
which looks incomplete and only provides
entries for seven letters of the alphabet.

In summary, despite the interesting subject
matter, the readability and presentation issues
made the book almost inaccessible for this
reader.

Test-Driven Database
Development –
Unlocking Agility
By Max Guernsey, III -
Published by Addison Wesley,
2013 ISBN 13: 987-0-321-
78412-4 / ISBN 10: 0-321-
78412-X, 315 pages including
index (no bibliography)

Review by Bob Corrick – Test-driven to
distraction

In a recent Agile Testing Survey [2],
37% say that adopting test-driven development
(TDD) is the most difficult challenge. As Martin
Fowler explains, there are two main benefits of
writing a test (in code) before the functional
code: you get the repeatable tests as well as the
code, and your functional code is easier to call
because you think about how to call it as you
write each test. The main challenge is to
maintain the discipline of refactoring the code,
to improve the design, while continuing to pass
the tests [1].

The book starts by walking through an analogy
with object oriented applications. Chapter 2
ends with the first specific recommendation:
build and modify each database instance
(development, test, production) to the required
SEP 2013 | | 19{cvu}

REVIEWS

accuACCU Information
Membership news and committee reports

View from the Chair
Alan Griffiths
chair@accu.org

Summer is vacation season and
many things slow down or come to a stop – and
the ACCU committee has been participating in
this behaviour. There have been no committee
meetings since my last report and very little that
the committee has needed to deal with.

Next year is going to see some changes in the
ACCU committee. Both Giovanni Asproni (as

Secretary) and I (as Chair) intend to step down.
As yet no-one on the current committee has
shown an interest in taking either post.

In addition, as my last report explained we
already need to find a new Membership
Secretary. While the committee has co-opted
last year’s Membership Secretary (Mick
Brooks) until a more permanent solution is
found he, and we, would appreciate it if a
volunteer stepped forward with a view to
standing for election next year.

This means that it is likely that three key posts
will not have current incumbents standing at the
AGM next year. I personally think that it would
be a good idea that any candidates have
experience of the way that the committee works
beforehand – and if anyone is interested in
standing for election to these post next year I
would urge them to make themselves known and
to seek co-option to the current committee.

There is no need for committee members to
reside in the UK as committee business is
largely conducted over the Internet.

Bookcase (continued)

state, by applying the same version-numbered
scripts in strict sequence. So far, not so bad.

The test-first examples are all for SQL Server,
and the very first one tests whether the database
exists. I prefer not to get in at the deep end, and
don’t have SQL Server, so I copied the scripts
(SQL) out of the NUnit and C# code, and ran
them directly in database sessions (Oracle,
MySQL). One of the early examples is an
elaborate test, using a C# exception, for adding
a unique constraint. Here a simpler script
(inserting two identical emails, and then failing
on adding the database constraint) could be used
to the same end, and could also show how the
test-first technique can be adapted for databases.

This tendency to complexity is distracting, if not
infuriating. In a worked example for a cross-
reference of street intersections, a simple
problem description is followed by two full
pages of ‘big design up front’ as a deliberate
demonstration of how not to do it. When you do
get to the test scripts, they insert some data and

test for a connection depth of 3, whatever that
means. A simple query on a view of street
addresses, listing where other streets intersect,
would be more effective.

You can find an example of refactoring in the
chapter ‘Safely Changing Design’, which is
about checking that data is preserved during a
change. That’s good advice, but the discipline of
refactoring is not treated explicitly until chapter
11. That chapter begins ‘This book isn’t directly
about refactoring’, revealing an outlook that
reflects the challenge identified by Martin
Fowler.

You won’t find any advice on developing
business logic in the database (“you should
never do this”, page 97), or on developing for
‘NoSQL’ databases (despite chapters 14
‘Variations’ and 15 ‘Other Applications’). This
book is not for me, and I can’t recommend it.

Downloadable code is available, all for
Microsoft products as far as I could see: similar

open source tools are described at
datacentricity.net/tsqlt/

References
[1] Martin Fowler online martinfowler.com/

bliki/TestDrivenDevelopment.html
[2] Agile Testing Survey November 2012,

Ambysoft www.ambysoft.com/surveys/
agileTesting201211.html
20 | | SEP 2013{cvu}

martinfowler.com/bliki/TestDrivenDevelopment.html
martinfowler.com/bliki/TestDrivenDevelopment.html
www.ambysoft.com/surveys/agileTesting201211.html
www.ambysoft.com/surveys/agileTesting201211.html

	CVu25-4.pdf
	OSS Enterprise
	The Ethical Programmer
	Pen and Paper
	Two Sides of the Code
	Testing Times
	(Re)Reading the Classics
	Two Pence Worth
	Code Critique Competition 83
	Standards Report
	The Reward
	View from the Chair
	Bookcase

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

