

JUL 2013 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

A beginner again
recently decided that it had been far too long
since I’d written C++, at least more than a
few lines to explore the syntax or

behaviour of some feature or other. At the
conference in particular, I tried hard to
listen and comprehend knowledgeable
people discussing features of C++11, but
I’m afraid most of it went in one ear and out
the other, for the simple reason that I don’t
really think in C++ any more.

I’ve spent most of the last decade writing lots
of C# code, with just a couple of professional
interludes requiring C++. In one of those cases, I
was restricted to pre-1998 C++ (I’ll leave you to
guess which compiler for MS Windows I was
required to use). In fact, for that problem, the lack of
‘modern’ features didn’t really hinder me; it was
really a pure OO design, and that compiler handles
pure ABCs and virtual functions just fine. But I
digress. I’ve become a C# programmer. I play a
little with Python, a tiny bit of JavaScript, and
can follow VBA code, but C# has been my
main language for almost a dozen years.

So it was time to see if I could re-learn C++.
Bjarne Stroustrup, on his home page and in some
articles (available from
http://www.stroustrup.com/) describes the 2011
revision of C++ as feeling like a whole new language,
and I understand why that is. However, sitting down to write some real C++ code felt
a little like getting back into an old chair; it took a little while to remember where the
comfy parts are, and some of the worn bits with holes in, and the broken spring that
sticks in your backside if you sit on the wrong bit. I won’t say the memories came
flooding back – more dribbling, to be honest – but I’m finding the exercise in
recalling what I once knew, combined with learning new features a very satisfying
experience.

And yes, all those years writing C# code now informs how I design and write C++ – a
process that once went very much the other way.

I
Volume 25 Issue 3
July 2013

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Frances Buontempo,
Pete Goodliffe, Becky Grenier,
Chris Oldwood, Roger Orr,
Mark Radford, Vsevolod Vlaskine,
Anthony Williams

ACCU Chair
Alan Griffiths
chair@accu.org

ACCU Secretary
Giovanni Asproni
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | JUL 2013

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
17 Code Critique Competition

Competition 82 and
the answers to 81.

22 Standards Report
Mark Radford looks
at some features of
the next C++
Standard.

23 ACCU Conference 2013
Anna-Jayne
Metcalfe shares her
memories.

25 Inspiration (P)articles
Frances Buontempo
inspires the next
generation of
programmers.

REGULARS
26 Bookcase

The latest roundup
of book reviews.

28 ACCU Members Zone
Membership news.

SUBMISSION DATES
C Vu 25.4: 1st August 2013
C Vu 25.5: 1st October 2013

Overload 117: 1st September 2013
Overload 118:1st November 2013

FEATURES
3 On Software Design, Space, and Visuality

Vsevolod Vlaskine examines the motivations behind
design visualisation.

4 Passionate About Programming or Passionate About Life?
Chris Oldwood takes up the baton in the Passionate
debate.

6 All the World’s a Stage...
Anthony Williams shows how Actors simplify
multithreaded code in C++11.

11 How I Wrote My First Technical Presentation
Becky Grenier shares her preparations for giving a
tech talk.

12 Wrapper Scripts
Chris Oldwood automates his toolkit for an easier and
more predictable life.

15 The Ghost of a Codebase Past
Pete Goodliffe leads us down memory lane.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

On Software Design, Space, and Visuality
Vsevolod Vlaskine examines the motivations

behind design visualisation.

eing a very visual person, I am not trying to say in this article that
there is no merit in drawing diagrams as a part of software design
and documentation. However, what I find really weird is the

relatively common assumption that drawing pictures is universally good
for software design, to the extent that a large part of the industry makes
the graphic representation the centrepiece of the software design with the
whole cottage industry around it.

As an example, for many years, UML has been promoted as the Unified
Modeling Language, suggesting that it has all what you could possibly
need for software design.

Perhaps it happens partly because software documentation without
pictures is a notorious remedy for insomnia. Also, upper management and
marketing love charts and drawings, especially with the drama of colour.

More importantly, the technical blueprint as a hallmark of the industrial
era is expected to perform just as well in information technology.

The problem is that the picture essentially is a spacial representation. It
portrays entities in space and therefore imposes a very particular view of
the world (and ways of modelling it) as well as limits of what can be
expressed in such a graphic language.

It starts with the suggestion to split the system into its major components,
just like a car that consists of the frame, engine, wheels, etc. Then each
component can be decomposed into smaller modules, etc. Technical
drawings historically fit this purpose very well.

Then, the types of diagrams start to proliferate to assign visual symbols to
various kinds of semantic relationships. The picture suggests the design
where there are entities and relationships. Entities are represented by
squares, matchstick men, time axes, etc. They roughly refer to a ‘place’ in
the visual space. The relationships between the entities roughly correspond
to ‘distances’ and ‘directions’ between ‘places’. (There is already a
problem with such a break-down. The inventor of Pattern Languages,
Christopher Alexander, demonstrated [1] that top-down analysis can
represent complex heterogeneous systems only very poorly.)

Many highly efficient concepts are hard – but more importantly unnatural
– to express in the world of entities and their relationships. Various
transient objects, like scoped locks and transactions, may be good
examples, because from a pragmatic point of view we would not think
about them as objects, but rather qualities, interactions, semantic
transformations and flows. Of course, we probably could invent diagrams
to depict them, but why do it, if they find an essentially better expression
in human or programming language?

In Jack W. Reeves’ words [2], believing that there can be a suitable visual
representation for any aspect of software modelling is like being convinced
that “‘different language’ really just means a different dialect of English”.
To open a can of worms here: the native language of programming is the
programming language. My experience has convinced me that the
language of design is C, or C++, or python, etc, as opposed to UML. But
going there would divert us too much from the critique of the visual
metaphor as the purpose of this article.

UML comes from the early object-oriented paradigm in which the world
is represented as a collection of types, instances and relationships. The
limits of such an approach have been demonstrated by the semantic shift
in modern languages. Take a look at the seminal C++ books by Meyers,
Alexandrescu, Sutter, and others: there are not many pictures in them. Ask

yourself why or try to draw diagrams that would adequately represent those
concepts of the modern C++.

I wonder whether choosing UML as the preferred language for Software
Patterns has made the books on them less read and patterns more often
misunderstood, being considered not as a semiotic system, but as a list of
illustrated recipies. Even Christopher Alexander’s book A Pattern
Language [3], a dictionary of architectural patterns (what can be more
visual?), does not contain too many illustrations.

When the translation between ideas and language gets funneled through a
unified graphic representation, things get lost. Contrary to the
conventional: “a picture is worth a thousand words”, a word can awaken
a thousand pictures. While the picture merely explains, the word creates
and transforms.

The visual in the Western tradition has been a vehicle of power and control.
The tension the visual representation brings in is the one between visibility
and transparency. They do not presume each other. Visibility is about total
exposure, surveillance, fixed schematics for the purposes of
accountability, unified control, the panopticon. Transparency is rather
about not obstructing the flows. Flows mean not only efficient operation,
but also the ability to morph and change.

In a strange twist, ‘visible’ and ‘transparent’ often become synonyms in
process management, while in the vernacular ‘transparent’ means exactly
the opposite: ‘invisible’. When visibility gets mistaken for transparency
in a software team, design and documentation are required upfront, get
divorced from the code, and very quickly lose their consistency with the
functionality. With the latter drifting away from the document, ‘visible’
returns to its original connotation of ‘non-transparent’, ‘opaque’: the
pictures and documentation do not reflect what the system does. They
block the view.

One could say an organizational process is transparent, if nothing urges
you to know its details, nothing makes you suspicious. Then, the next
desired quality of a transparent process would be: as long as it flows
smoothly, it is invisible, unnecessary to see. To achieve it, we need to get
rid of the pictures as much as possible, remove them as a source of noise
and instead focus on a good guarantee that only if something goes wrong,
then the wrong part will become visible.

For example, test-driven development could be an example: we express
the proper functioning and semantics of the system not through diagrams,
but through test suits so that while they pass, we do not need to worry about
them.

Similarly, in Scrum, as long as the burndown chart moves down smoothly,
there is not much to talk about besides the brief scrum updates, but once
the team observes a growing hump on it, it clearly indicates which part of
the sprint has become a blockage. The low organizational overhead in
Scrum not only saves time, but reduces noise in the system.

Approaching it from the other end: whatever needs to be visible or
visualized should be suspicious and should not be taken on board without

B

VSEVOLOD VLASKINE
Vsevolod Vlaskine has over 15 years of programming
experience. Currently, he leads a software team at the
Australian Centre for Field Robotics, University of Sydney.
He can be contacted at vsevolod.vlaskine@gmail.com
JUL 2013 | | 3{cvu}

Software Design, Space, and Visuality (continued)

a good reason. Things are visible because they are opaque, which means
that they represent a solid structure capable of blocking flows.

For example, stakeholders tend to perceive Gantt charts as the true image
of resource allocation. However, any non-trivial project has too much
uncertainty and simply does not flow exactly according to the plan. Gantt
charts misrepresent the project and introduce milestones or deliveries at
the wrong places.

Over-engineered applications or over-structured teams require
visualizations exactly because they are opaque, blocking flows and lines
of sight too easily. (One almost could consider visual design as a kind of
negative space, a system of points of blockage and failure – and effectively
that is what test-driven development is a remedy for.)

Software artifacts and the design process are functional and flow-oriented.
Therefore, non-obstructing flow (in any sense: code flow, data flow, flow
of design activities, human communication flow) is more essential than
structural visibility. Also, they have close affinity to change and time, not
only its linear axis, but also its qualitative, transformational structure,
which is not necessary linear. Take ‘software life-cycle’ as a colloquial

example of cyclic time structures in software design; or ‘time-to-market’
expressing not just linear time, but a finite strongly structured segment of
it. Spatial representation of qualitative aspects of time is doubtful, while
languages (natural or artificial) have been developing exactly to reflect and
express such temporal qualities.

Of course, everything changes, when pictures and diagrams are used as
transient, disposable, molecular, optional elements of collaboration, much
like words of the spoken, written, or programming language.

References
[1] Christopher Alexander, A City Is Not a Tree. Architectural Forum,

Vol 122. 1965 http://www.rudi.net/pages/8755
[2] Jack W. Reeves, ‘What Is Software Design: 13 Years Later’

Developer.* Magazine. 23 February 2005.
http://www.developerdotstar.com/mag/articles/
reeves_13yearslater.html

[3] Christopher Alexander et al, A Pattern Language: Towns, Buildings,
Construction. 1977
Passionate About Programming or
Passionate About Life?

Chris Oldwood takes up the baton in the Passionate debate.

Life moves pretty fast. If you don’t stop and look
around once in a while, you could miss it.

~ Ferris Bueller.

here is a recurring topic that crops up at the ACCU Conference during
the lightning talks and this year was no exception. In the first round
of lightning talks Björn Fahller asked the question ‘Why Are (Only)

We Here?’ And in the second set, Mike Long continued the trend with a
talk entitled ‘Passionate vs. Professional’.

Interestingly the use of the term ‘passionate’ was itself questioned by Seb
Rose in his own 12" edition of the lightning talks
with ‘Are You Passionate?’ For those who weren’t
there I suggest you look the word up in the
dictionary and draw your own conclusions. For
what it’s worth I agree with Seb’s sentiment, but
I’m still going to stick to what I believe we mean
by the word as it adds fuel to this particular fire…

So, let me ignite it now by suggesting that not
everyone who works as a computer programmer
does it because they are passionate about it. Yes,
some of us cut our teeth on a home computer and
are still bemused how we ended up getting paid to do what was essentially
our hobby before entering employment. But that only applies to some of
us. That’s right; lots of people actually do a job for reasons other than the
love of it.

Many of the people I have worked with in the past do enjoy what they do.
To go back to Seb’s point about the word ‘passionate’, let me suggest (after
clicking Shift+F7 to bring up the Thesaurus) the slightly watered down
‘enthusiastic’ instead. Programming is a career that they have chosen
because they are genuinely interested in the subject. But I have also worked
with others for whom programming was never really the end goal – they
do it because it pays reasonably well (very well in certain industries) and
perhaps they’re better at it than other careers they originally had in mind.

They are not, and never expect to be, The Best of the Best, but does every
programmer have to aspire to be that?

When I went to university back in the late ’80s I studied Electronic Systems
Engineering. My choice was based on my dream of working in the Audio
industry because I loved music and I loved my hi-fi. It turned out that I
sucked really badly at analogue electronics! However I had slightly more
success in the digital realm and eventually discovered that writing software
was an actual profession, and one that I might be a little better (and
therefore more successful) at.

I am one of the lucky ones who managed to make
a course correction early in life and end up doing
what I had already been doing for the 7 years prior
to university, but hopefully in a somewhat more
‘professional’ manner. Of course not everyone is
fortunate enough to have their path laid out clearly
before them and so instead they fall into a job that
pays the bills and then see where it goes. And so,
if the mortgage is covered and it’s not detestable,
then why shouldn’t that be enough for some?

There’s that word ‘professional’ this time. What
does that mean exactly? I can tell you I believe it doesn’t include
committing a load of changes that haven’t even been compiled just before
going off on a week’s holiday. But what about some of the practices that
many of us feel are beneficial to a sustainable system, say, test-first versus
test-later or continuous integration? What’s the penance

T

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s C++ and C# on Windows in big
plush corporate offices. He is also the commentator for
the Godmanchester Gala Day Duck Race and can be
contacted via gort@cix.co.uk or @chrisoldwood

each of us has a right to
devote as much or as

little time ... to our
career progression as

we see fit
4 | | JUL 2013{cvu}

for not adopting these and continuing to work in an ‘old fashioned’ way?
If the goal is to deliver working software then surely how that’s achieved
is of secondary importance to if it’s achieved?

I once worked with a chap at a big corporation who was purely in ‘the
programming profession’ to fund his non-working life. This was quite an
eye opener for me as I couldn’t fault his rationale even though the
inefficiencies of his development style used to annoy the hell out of me. I
tried (largely in vain) to evangelise about the virtues of certain modern
development practices but ultimately they fell on deaf ears. His
performance wasn’t brilliant, but via perspiration he would end up
delivering something that works. Is it ‘unprofessional’ to get the job done
in ways that perhaps not everyone agrees on? As his peer I had to leave
him to it; just so long as what he did had no direct affect on my ability to
deliver.

You can of course argue that poor design, lack of tests, blah, blah, blah all
leads to an increased delivery time for subsequent changes and so it will
eventually affect my ability to make changes. But I do not feel that is of
my concern – that is a management issue to me. Like it or not software
development is rife with politics and the ‘performance’ of an individual is
just one facet that determines the make-up of a team. Much to the chagrin
of one manager I worked with, you can’t just fire someone because you’ve
found a better replacement. Anyone who has ever worked in a large
corporation will wince when I mention the term ‘head count’ – a pejorative
used to describe why you sometimes have to settle for the 10th best
interview candidate instead of holding out for the 1st or 2nd.

In (my) ideal world there would be a causal relationship between
‘coolness’ of project, quality of team members, and rate of pay; with them
all increasing together. Sadly it’s more likely that there is an inverse square
law in effect somewhere as there are industries that seem to rely on youth
and adoration to compensate for a lack of remuneration. Conversely you’d
expect Finance, with its deeper pockets, to only hire the best-of-the-best;
but I can assure you that hypothesis doesn’t hold water either.

Coming back to the original question then, I wonder if there is an
expectation that ACCU conference attendees (or SPA, QCon, etc.) are
considered by some as ‘the norm’, whereas those who choose explicitly
not to go are somehow ‘exceptional’ for not wanting to better themselves?
There is a third group of people who are even unaware of such events, but
I’m guessing the most curiosity comes from those who choose to ignore
our evangelism rather than embrace it. I don’t believe anyone genuinely
goes out of their way to be a Luddite, although people can become
disgruntled when they believe they have been treated unfairly. Instead I’ve
come to see my fellow programmers as people with different abilities, and
more importantly, with different priorities. They all have a desire to learn
and improve; it’s just that they’ve chosen a rate that is much lower than
we have chosen for ourselves. Is it ‘unprofessional’ to be a slow learner?

I’m sure I didn’t fool anyone with the purposefully controversial title that
suggests it’s impossible to enjoy a career in programming and at the same
time enjoy a fruitful life. In essence it’s a thinly veiled attempt to re-cast
the age old debate of ‘live to work’ or ‘work to live’ into a programming
context. Clearly each of us has a right to devote as much or as little time,
outside our normal working day, to our career progression as we see fit.

What I’m going to suggest, and I’m sure I’ll be labelled a heretic for
suggesting it, is that the next time you are presented with the question of
why you are there, is to first ask yourself why you’re not snowboarding
on the Alps, lazing on the beach soaking up the rays or curled up on the
sofa reading a trashy novel?

 Best in class security features
 Global or individual license control
 Hardware and software licenses
 Multi-platform solution

CodeMeter®
Licensing made Easy

WIBU-SYSTEMS LTD | The Mansion Bletchley Park | MK3 6DS Bletchley, Milton Keynes, United Kingdom
+44 20 314 747 27 | sales@wibu.co.uk | www.wibu.com

CodeMeter comes in multiple form factors to meet all diversified needs Start testing its full potential now:
Order CodeMeter SDK at www.wibu.com/uk/sdk
JUL 2013 | | 5{cvu}

Introducing Intel Parallel Studio XE 2013

Develop top application performance while
minimising development, tuning and testing
time and effort.

We make it happen

Intel® Parallel Studio XE combines:

Industry-leading compilers
Performance and parallel libraries
Error checking tools
Performance profiling tools

All the World’s a Stage...
Anthony Williams shows how Actors simplify

multithreaded code in C++11.

andling shared mutable state is probably the single hardest part of
writing multithreaded code. There are lots of ways to address this
problem; one of the common ones is the actors metaphor. Going back

to Hoare’s Communicating Sequential Processes [1], the idea is simple –
you build your program out of a set of actors that send each other messages.
Each actor runs normal sequential code, occasionally pausing to receive
incoming messages from other actors. This means that you can analyse the
behaviour of each actor independently; you only need to consider which
messages might be received at each receive point. You could treat each
actor as a state machine, with the messages triggering state transitions.

This is how Erlang processes work: each process is an actor, which runs
independently from the other processes, except that they can send
messages to each other. Just::thread Pro: Actors Edition [2] adds library
facilities to support this to C++. In the rest of this article I will describe
how to write programs that take advantage of it. Though the details will
differ, the approach can be used with other libraries that provide similar
facilities, or with the actor support in other languages.

Simple actors
Actors are embodied in the jss::actor class. You pass in a function or
other callable object (such as a lambda function) to the constructor, and
this function is then run on a background thread. This is exactly the same
as for std::thread, except that the destructor waits for the actor thread
to finish, rather than calling std::terminate.

 void simple_function(){
 std::cout<<"simple actor\n";
 }

 int main(){
 jss::actor actor1(simple_function);
 jss::actor actor2([]{
 std::cout<<"lambda actor\n";
 });
 }

The waiting destructor is nice, but it’s really a side issue – the main benefit
of actors is the ability to communicate using messages rather than shared
state.

Sending and receiving messages
To send a message to an actor you just call the send() member function
on the actor object, passing in whatever message you wish to send.
send() is a function template, so you can send any type of message – there
are no special requirements on the message type. You can also use the
stream-insertion operator to send a message, which allows easy chaining
e.g.

 actor1.send(42);
 actor2.send(MyMessage("some data"));
 actor2<<Message1()<<Message2();

Sending a message to an actor just adds it to the actor’s message queue. If
the actor never checks the message queue then the message does nothing.
To check the message queue, the actor function needs to call the
receive() static member function of jss::actor. This is a static
member function so that it always has access to the running actor,
anywhere in the code – if it were a non-static member function then you
would need to ensure that the appropriate object was passed around, which
would complicate interfaces, and open up the possibility of the wrong
object being passed around, and lifetime management issues.

The call to jss::actor::receive() will then block the actor’s thread
until a message that it can handle has been received. By default, the only
message type that can be handled is jss::stop_actor. If a message of
this type is sent to an actor then the receive() function will throw a
jss::stop_actor exception. Uncaught, this exception will stop the
actor running. In the following example, the only output will be "Actor
running", since the actor will block at the receive() call until the stop
message is sent, and when the message arrives, receive() will throw.

 void stoppable_actor(){
 std::cout<<"Actor running"<<std::endl;
 jss::actor::receive();
 std::cout<<"This line is never run"<<std::endl;
 }

 int main(){
 jss::actor a1(stoppable_actor);
 std::this_thread::sleep_for
 (std::chrono::seconds(1));
 a1.send(jss::stop_actor());
 }

Sending a "stop" message is common-enough that there’s a special
member function for that too: stop(). a1.stop() is thus equivalent to
a1.send(jss::stop_actor()).

Handling a message of another type requires that you tell the receive()
call what types of message you can handle, which is done by chaining one
or more calls to the match() function template. You must specify the type
of the message to handle, and then provide a function to call if the message
is received. Any messages other than jss::stop_actor not specified
in a match() call will be removed from the queue, but otherwise ignored.
In the following example, only messages of type int and std::string
are accepted; the output is thus:

 Waiting
 42
 Waiting
 Hello
 Waiting
 Done

The code is in Listing 1.

It is important to note that the receive() call will block until it receives
one of the messages you have told it to handle, or a jss::stop_actor
message, and unexpected messages will be removed from the queue and
discarded. This means the actors don’t accumulate a backlog of messages
they haven’t yet said they can handle, and you don’t have to worry about
out-of-order messages messing up a receive() call.

These simple examples have just had main() sending messages to the
actors. For a true actor-based system we need them to be able to send

H

ANTHONY WILLIAMS
Anthony is the author of C++ Concurrency in Action. He has
worked in a myriad of languages over the years, and enjoys
the challenge of solving new problems. He can be
contacted at anthony@justsoftwaresolutions.co.uk
6 | | JUL 2013{cvu}

messages to each other, and reply to messages. Let’s take a look at how
we can do that.

Referencing one actor from another
Suppose we want to write a simple time service actor, that sends the current
time back to any other actor that asks it for the time. At first thought it looks
rather simple: write a simple loop that handles a ‘time request’ message,
gets the time, and sends a response. It won’t be that much different from
our simple_receiver() function in Listing 1:

 struct time_request{};
 void time_server(){
 while(true){
 jss::actor::receive()
 .match<time_request>([](time_request r){
 auto now=std::chrono::system_clock::now();
 ????.send(now);
 });
 }
 }

The problem is, we don’t know which actor to send the response to – the
whole point of this time server is that it will respond to a message from
any other actor. The solution is to pass the sender as part of the message.
We could just pass a pointer or reference to the jss::actor instance,
but that requires that the actor knows the location of its own controlling
object, which makes it more complicated – none of the examples we’ve
had so far could know that, since the controlling object is a local variable
declared in a separate function. What is needed instead is a simple means
of identifying an actor, which the actor code can query – an actor reference.
The type of an actor reference is jss::actor_ref, which is implicitly
constructible from a jss::actor. An actor can also obtain a reference
to itself by calling jss::actor::self(). jss::actor_ref has a
send() member function and stream insertion operator for sending
messages, just like jss::actor. So, we can put the sender of our
time_request message in the message itself as a jss::actor_ref
data member, and use that when sending the response (see Listing 2).

If you use jss::actor_ref then you have to be prepared for the case
that the referenced actor might have stopped executing by the time you
send the message. In this case, any attempts to send a message through the
jss::actor_ref instance will throw an exception of type
jss::no_actor. To be robust, our time server really ought to handle that
t o o – i f a n u n ha nd l e d e xc e p t i o n o f a n y t y pe o t h e r t h a n
jss::stop_actor escapes the actor function then the library will call

void simple_receiver(){
 while(true){
 std::cout<<"Waiting"<<std::endl;
 jss::actor::receive()
 .match<int>([](int i){
 std::cout<<i<<std::endl;})
 .match<std::string>([]
 (std::string const&s){
 std::cout<<s<<std::endl;});
 }
}

int main(){
 {
 jss::actor a(simple_receiver);
 a.send(true);
 a.send(42);
 a.send(std::string("Hello"));
 a.send(3.141);
 a.send(jss::stop_actor());
 } // wait for actor to finish
 std::cout<<"Done"<<std::endl;
}

Li
st

in
g

1 void time_server(){
 while(true){
 jss::actor::receive()
 .match<time_request>([](time_request r){
 auto
 now=std::chrono::system_clock::now();
 try{
 r.sender<<now;
 } catch(jss::no_actor&){}
 });
 }
}

Listing 3

struct time_request{
 jss::actor_ref sender;
};
void time_server(){
 while(true){
 jss::actor::receive()
 .match<time_request>([](time_request r){
 auto now=
 std::chrono::system_clock::now();
 r.sender<<now;
 });
 }
}
void query(jss::actor_ref server){
 server<<time_request{jss::actor::self()};
 jss::actor::receive()
 .match<std::chrono::system_clock::
 time_point>(
 [](std::chrono::system_clock::time_point){
 std::cout<<"time received"<<std::endl;
 });
}

Li
st

in
g

2

struct pingpong{
 jss::actor_ref sender;
};
void pingpong_player(std::string message){
 while(true){
 try{
 jss::actor::receive()
 .match<pingpong>([&](pingpong msg){
 std::cout<<message<<std::endl;
 std::this_thread::sleep_for
 (std::chrono::milliseconds(50));
 msg.sender<<pingpong{
 jss::actor::self()};
 });
 }
 catch(jss::no_actor&){
 std::cout<<"Partner quit"<<std::endl;
 break;
 }
 }
}
int main(){
 jss::actor ping(pingpong_player,"ping");
 jss::actor pong(pingpong_player,"pong");
 ping<<pingpong{pong};
 std::this_thread::sleep_for
 (std::chrono::seconds(1));
 ping.stop();
 pong.stop();
}

Listing 4
JUL 2013 | | 7{cvu}

std::terminate. We should therefore wrap the attempt to send the
message in a try-catch block (Listing 3).

We can now set up a pair of actors that play ping-pong (Listing 4).

This will give output along the lines of the following:

 ping
 pong
 ping
 pong
 ping
 pong
 ping
 pong
 ping
 pong
 ping
 pong
 ping
 pong
 ping
 pong
 ping
 pong
 ping
 pong
 Partner quit

The sleep in the player’s message handler is to slow everything down – if
you take it out then messages will go back and forth as fast as the system
can handle, and you’ll get thousands of lines of output. However, even at
full speed the pings and pongs will be interleaved, because sending a
message synchronizes with the receive() call that receives it.

That’s essentially all there is to it – the rest is just application design. As
an example of how it can all be put together, let’s look at an implementation
of the classic sleeping barber problem.

The Lazy Barber
For those who haven’t met it before, the problem goes like this: Mr Todd
runs a barber shop, but he’s very lazy. If there are no customers in the shop
then he likes to go to sleep. When a customer comes in they have to wake
him up if he’s asleep, take a seat if there is one, or come back later if there
are no free seats. When Mr Todd has cut someone’s hair, he must move
on to the next customer if there is one, otherwise he can go back to sleep.

Let’s start with the barber. He sleeps in his chair until a customer comes
in, then wakes up and cuts the customer’s hair. When he’s done, if there
is a waiting customer he cuts that customer’s hair. If there are no customers,
he goes back to sleep, and finally at closing time he goes home. This is
shown as a state machine in Figure 1.

This translates into code as shown in Listing 5.The wait loops for
‘sleeping’ and ‘cutting hair’ have been combined, since almost the same
set of messages is being handled in each case – the only difference is that
the ‘cutting hair’ state also has the option of ‘no customers’, which cannot
be received in the ‘sleeping’ state, and would be a no-op if it was. This

allows the action associated with the ‘cutting hair’ state to be entirely
handled in the lambda associated with the customer_waiting message;
splitting the wait loops would require that the code was extracted out to a
separate function, which would make it harder to keep count of the
haircuts. Of course, if you don’t have a compiler with lambda support then
you’ll need to do that anyway. The logger is a global actor that receives
std::strings as messages and writes the to std::cout. This avoids
any synchronization issues with multiple threads trying to write out at
once, but it does mean that you have to pre-format the strings, such as when
logging the number of haircuts done in the day. The code for this is shown
in Listing 6.

Let’s look at things from the other side: the customer. The customer goes
to town, and does some shopping. Each customer periodically goes into
the barber shop to try and get a hair cut. If they manage, or the shop is
closed, then they go home, otherwise they do some more shopping and go
back to the barber shop later. This is shown in the state machine in Figure 2.

This translates into the code in Listing 7. Note that the customer interacts
with a ‘shop’ actor that I haven’t mentioned yet. It is often convenient to

Fi
gu

re
 1

void barber_func()
{
 bool go_home=false;
 unsigned haircuts=0;
 while(!go_home)
 {
 logger<<std::string("barber is sleeping");
 bool can_sleep=false;
 do
 {
 jss::actor::receive()
 .match<customer_waiting>(
 [&](customer_waiting c){
 logger<<std::string
 ("barber is cutting hair");
 c.customer<<start_haircut();
 std::this_thread::sleep_for
 (std::chrono::milliseconds
 (1000*(1+(rand()%5))));
 c.customer<<done_haircut();
 ++haircuts;
 })
 .match<no_customers>(
 [&](no_customers){
 can_sleep=true;
 })
 .match<closing_time>(
 [&](closing_time){
 go_home=true;
 });
 }
 while(!can_sleep && !go_home);
 }
 std::ostringstream os;
 os<<"barber is going home. He did
 "<<haircuts<<" haircuts today";
 logger<<os.str();
}

Listing 5

void logger_func(){
 for(;;){
 jss::actor::receive()
 .match<std::string>([](std::string s){
 std::cout<<s<<std::endl;
 });
 }
}
jss::actor logger(logger_func);

Listing 6
8 | | JUL 2013{cvu}

have an actor that represents shared state, since this allows access to the
shared state from other actors to be serialized without needing an explicit
mutex. In this case, the shop holds the number of waiting customers, which
must be shared with any customers that come in, so they know whether
there is a free chair or not. Rather than have the barber have to deal with
messages from new customers while he is cutting hair, the shop acts as an
intermediary. The customer also has to handle the case that the shop has
already closed, so the shop reference might refer to an actor that has

finished executing, and thus get a jss::no_actor exception when
trying to send messages.

The message handlers for the shop are short, and just send out further
messages to the barber or the customer, which is ideal for a simple state-
manager – you don’t want other actors waiting to perform simple state
checks because the state manager is performing a lengthy operation; this
is why we separated the shop from the barber. The shop has 2 states: open,
where new customers are accepted provided there are fewer than the
remaining spaces, and closed, where new customers are turned away, and
the shop is just waiting for the last customer to leave. If a customer comes
in, and there is a free chair then a message is sent to the barber that there
is a customer waiting; if there is no space then a message is sent back to
the customer to say so. When it’s closing time then we switch to the
‘closing’ state – in the code we exit the first while loop and enter the
second. This is all shown in listing 8.

Fi
gu

re
 2

enum class haircut_status{
 had_haircut,no_room,shop_closed
};
haircut_status try_and_get_hair_cut
 (unsigned customer,jss::actor_ref shop){
 std::ostringstream os;
 os<<"customer "<<customer<<
 " goes into barber shop";
 logger<<os.str();
 try{
 shop<<customer_enters{
 jss::actor::self()};
 }
 catch(jss::no_actor){
 os.str("");
 os<<"customer "<<customer<<
 " finds barber shop is closed";
 logger<<os.str();
 return haircut_status::shop_closed;
 }
 haircut_status status=haircut_status::no_room;
 jss::actor::receive()
 .match<start_haircut>(
 [&](start_haircut)
 {
 os.str("");
 os<<"customer "<<customer<<
 " is having a haircut";
 logger<<os.str();
 jss::actor::receive()
 .match<done_haircut>(
 [&](done_haircut)
 {
 os.str("");
 os<<"customer "<<customer<<
 " is done having a haircut";
 logger<<os.str();
 }
);
 status=haircut_status::had_haircut;
 }
)

Li
st

in
g

7

 .match<no_room>(
 [&](no_room)
 {
 os.str("");
 os<<"customer "<<customer<<
 " leaves because there is no room";
 logger<<os.str();
 status=haircut_status::no_room;
 }
)
 .match<shop_closed>(
 [&](shop_closed)
 {
 os.str("");
 os<<"customer "<<customer<<
 " finds barber shop is closed";
 logger<<os.str();
 status=haircut_status::shop_closed;
 }
);
 os.str("");
 os<<"customer "<<customer<<
 " leaves barber shop";
 logger<<os.str();
 try{
 shop<<customer_leaves();
 }
 catch(jss::no_actor){
 }
 return status;
}
void customer_func(unsigned i,
 jss::actor_ref shop)
{
 std::ostringstream os;
 os<<"customer "<<i<<" goes to town";
 logger<<os.str();
 haircut_status status;
 do{
 os.str("");
 os<<"customer "<<i<<" is shopping";
 logger<<os.str();
 std::this_thread::sleep_for
 (std::chrono::milliseconds
 (500*(rand()%20)));
 }
 while((status=try_and_get_hair_cut(i,shop))
 ==haircut_status::no_room);
 os.str("");
 os<<"customer "<<i<<" is going home";
 logger<<os.str();
}

Listing 7 (cont’d)
JUL 2013 | | 9{cvu}

The messages are shown in listing 9, and the main() function that drives
it all is in listing 10.

Exit stage left
There are of course other ways of writing code to deal with any particular
scenario, even if you stick to using actors. This article has shown some of
the issues that you need to think about when using an actor-based approach,
as well as demonstrating how it all fits together with the Just::Thread Pro
actors library. Though the details will be different, the larger issues will
be common to any implementation of the actor model.

References
[1] Communicating Sequential Processes, C.A.R Hoare, 1985.

http://www.usingcsp.com/
[2] Just::Thread Pro: Actors Edition, http://www.stdthread.co.uk/pro/

void shop_func(jss::actor_ref barber)
{
 bool closed=false;
 unsigned waiting_customers=0;
 unsigned const max_waiting_customers=3;

 std::ostringstream os;
 logger<<std::string("shop opens");

 while(!closed)
 {
 jss::actor::receive()
 .match<customer_enters>(
 [&](customer_enters c){
 ++waiting_customers;
 os.str("");
 os<<"shop has "<<waiting_customers<<"
 customers";
 logger<<os.str();
 if(waiting_customers<=
 max_waiting_customers){
 barber<<customer_waiting{c.customer};
 } else
 c.customer<<no_room();
 })
 .match<customer_leaves>(
 [&](customer_leaves){
 if(!--waiting_customers)
 {
 logger<<"last customer left shop";
 barber<<no_customers();
 } else{
 os.str("");
 os<<"shop has
 "<<waiting_customers<<" customers";
 logger<<os.str();
 }
 })
 .match<closing_time>(
 [&](closing_time c){
 logger<<std::string("shop closing");
 closed=true;
 barber<<c;
 });
 }

 while(waiting_customers){
 os.str("");
 os<<"shop has "<<waiting_customers<<"
 customers";
 logger<<os.str();
 jss::actor::receive()
 .match<customer_enters>(
 [&](customer_enters c){
 ++waiting_customers;
 logger<<"customer turned away
 because shop closed";
 c.customer<<shop_closed();
 })
 .match<customer_leaves>(
 [&](customer_leaves){
 if(!--waiting_customers)
 {
 logger<<"last customer left shop";
 }
 });
 }
 logger<<std::string("shop closed");
}

Li
st

in
g

8 struct customer_waiting
{
 jss::actor_ref customer;
};
struct customer_enters
{
 jss::actor_ref customer;
};
struct customer_leaves
{};
struct start_haircut
{};
struct done_haircut
{};
struct closing_time
{};
struct no_room
{};
struct shop_closed
{};
struct no_customers
{};

Listing 9

int main()
{
 {
 jss::actor barber(barber_func);
 jss::actor barbershop
 (shop_func,jss::actor_ref(barber));
 unsigned const count=20;
 jss::actor customers[count];

 for(unsigned i=0;i<count;++i)
 {
 std::ostringstream os;
 os<<"Starting customer "<<i;
 logger<<os.str();
 customers[i]=jss::actor(customer_func,i,
 jss::actor_ref(barbershop));
 }

 std::this_thread::sleep_for
 (std::chrono::seconds(20));
 barbershop<<closing_time();
 }

 logger.stop();
}

Listing 10
10 | | JUL 2013{cvu}

http://www.usingcsp.com/
http://www.stdthread.co.uk/pro/

JUL 2013 | | 11{cvu}

How I Wrote My First Technical Presentation
Becky Grenier shares her preparations for giving a tech talk.

This was a letter to the DevChix (www.devchix.org) mailing list, a
technical community for and by women in software development. My
thanks to Becky Grenier for agreeing to share it with ACCU, where I
hope it’ll inspire people in our community, too.

ust write a great description for your talk, send it in, and then you’ll have
no choice but to pull it together sometime before the conference.” As
I gave this advice to a friend, I saw that this could be the answer to my

own public speaking aversion as well. If I waited until after I had put
together a great presentation it was just never going to happen.

So, a few weeks later I sent an email to a local user group suggesting a
topic I had recently learned quite a bit about and implemented for work,
the Apache Solr Search Server. They were very receptive and we set a date
about one month away, on which I would give the presentation.

The panic set in two weeks from the presentation date. I thought I should
learn more about Apache Solr and tried to read the book I had, but it was
more like desperate scanning since I didn’t really have enough time for that
anymore. Then, when I saw the date of my talk was a little over a week
away I began on the slides. It was the first time I had used PowerPoint in
over a decade. I had no idea how to start so I just forced myself to keep
making slides until I had about 15, which I thought was a good start for a
30-minute presentation. This took quite a few hours and quite a few beers.
They were terrible slides and I knew it, basically just lists of bullet-points.
And my self-doubt kept walloping me over the head after each one saying,
“this sucks, your topic sucks and so do you”. Which is hard to get past when
the work you are doing does actually suck. And so it was with great
difficulty that I finished my first draft.

A couple of saintly friends of mine were willing to sit through my first
practice. Not only were they terrible slides, but it was a boring topic as well
and I was not a good presenter. They stopped me shortly after I had begun
and said they were having trouble following. I hadn’t defined several
terms. I hadn’t really said what Apache Solr was. I hadn’t explained why
someone might want to use it. It was hard for them to pay attention when
they didn’t know the relevance. It was just me talking about configuration
files. Instead, they said, I should tell a story. (I thought, ‘Once upon a time
there was this software program...’) They were right, and I had to start the
whole thing over again, which I did that very night, with a few less beers
this time.

Thus began my endless rounds of practising, and then tearing apart my
slides. I practised in front of both technical and non-technical people. I
ended up defining every technical term I used, even things I was pretty sure
my audience would know, such as ‘API’. As my sister told me, it takes
10 seconds to offer a quick definition and it is a kindness to anyone who
might not know. Slowly my presentation took on a shape with an
introduction, middle, and conclusion, and with all necessary pieces such
as ‘About Me’ and ‘Questions’. I allowed the rising panic I felt as the date
approached to drive me to keep practising. I got pretty good at explaining
my slides. I had even put in a few that made people laugh. I practised six
times in all.

On the day of my presentation, I was nervous still (maybe the panic had
just become habit by then) but felt more confident due to all the time I had
put in. If I didn’t do well, at least I had given it my best shot, but I was
pretty sure I had beat that presentation into something decent. Finally it
was time to speak, and it went pretty well. The audience laughed at the
appropriate spots. A few times I felt like my knees were trembling but the
feedback I got was that I didn’t seem nervous (evidence that nobody can
tell). At the last minute I had decided to demo an app made with that
technology so they could see it in action, and that ended up not working,

but I was able to skip over that pretty quickly. It was just an extra anyway,
not fundamental to understanding my topic. I told my audience I was a new
public speaker and asked for any feedback they might have (something I
read in ‘Lean In’), and everyone said I did great and there was nothing
negative.

Then I was so relieved to be done and have this monkey of a presentation
off my back. I was proud of myself for doing something that scared me so
much, and I had created a pretty good talk that I could give again. It was
surprising, not only to me but to those friends who had watched my initial
efforts, how much improved my final presentation was – almost
unbelievable. And I have volunteered to give it again already, to a different
group in a few weeks, and I’m not that nervous about it anymore.

So the moral to this story is that all you have to do to become a public
speaker is just find somewhere to start and keep going.

BECKY GRENIER
Rebecca Grenier is a Software Developer for EatingWell
Magazine in Vermont, USA. She began programming at
age 12, when she and her twin sister created infinite
loops in GW BASIC to insult each other repeatedly. She
can be reached at rebeccagrenier@gmail.com

“J

In The Toolbox # 3
Wrapper Scripts
Chris Oldwood automates his toolkit for an easier

and more predictable life.

t the ACCU conference this year, Pete Goodliffe
hosted a session titled ‘Becoming a Better
Programmer’. Part of it involved a number of

people (that Pete had invited) spending a few minutes
describing what they believe has helped make them a
better programmer. One such person was the editor of
this very journal – Steve Love – who picked Automation
as his topic. If you read his editorial from a few issues back you’ll know
that, like Pete and Steve, I too prefer to simplify things when I find myself
doing the same task over and over. The full subjects of both automation
and scripting are huge in themselves, but there is a particular intersection
that at first might seem almost trivial and yet can quickly grow into
something more useful – wrapper scripts.

Simplifying existing tools
If you’ve ever worked with SQL Server from the command line you’ll have
come across the bundled SQLCMD.EXE tool. This, along with its
forerunner OSQL.EXE, is the traditional tool for executing SQL
statements (and script files) against a SQL Server instance. Like many
mature command line tools, it’s a bit of a Swiss-Army knife and has
sprouted a myriad of options and switches to control how you feed SQL
text into it and how the results and errors are handled after execution. For
example the following command will fetch the current time on a local
instance using the current user credentials:

 C:\> SQLCMD -E -S .\SQLEXPRESS -d master-b -m 10
 -Q "select getdate();"

The -b and -m switches are technically unnecessary when running
interactively, but the moment you start running SQL batches from scripts
you’ll likely add them if you want anything out of the ordinary to cause
execution to stop and SQLCMD to return an error code. Then there is the
annoyance factor of just getting the command line slightly wrong. If you
forget the -E you’ll get a weird login failure, or if you use -q instead of
-Q it won’t terminate after executing the SQL. Case-sensitive command
line tools do nothing to help ensure a calm, quiet working environment
either.

One tried and trusted solution to these ‘problems’ is to turn to the venerable
Wiki and document lots of command lines as snippets that you can just
cut-and-paste directly into your shell. Anyone who has ever tried that from
a Word document where Word has been ‘smart’ and converted the simple
dashes to ‘smart’ dashes will know how fraught with danger this idea is.
That’s before you consider what happens when the wiki becomes
unavailable (and I can guarantee a development server has an SLA
measured in months) or you begin to appreciate the shear tediousness of
what it is you’re actually doing.

Another more personal alternative is to use your shell or some 3rd party
tool to create little macros for your favourite commands. However, I feel
this is a bit like writing your own tests – if it’s good enough for you, then
why not the rest of the team? After all, when a new team member joins

they’re probably going to have to go through the same process. So, you
can give them a leg-up by storing a set of project-specific pre-canned
scripts that help with the most common scenarios.

In a sense it’s a bit like Partial Function Application because, whereas a
tool like SQLCMD has to allow for the different modes of operation in
general, your development environment will almost certainly be far more
specific. This means you can exploit that knowledge by first cutting down
on any superfluous arguments. The command below, for example, creates
a new database on a local instance:

 C:\> SQLCMD -E -S .\SQLEXPRESS -d master -Q
 "create database MyTestDb;"

The only real variables in the command are the instance (.\SQLEXPRESS)
and the database name (MyTestDb), the rest is boilerplate stuff. So, let’s
create a batch file that accepts just those two parameters, and more
importantly has a memorable name (CreateDatabase.cmd):

 @SQLCMD -E -S %1 -d master -Q "create database
 %2;"

Now we can just use this simple script to create a test database in future:

 C:\> CreateDatabase .\SQLEXPRESS MyTestDb

Error handling
Of course just like any other code we write we have to consider the
handling of errors and so we should add a sprinkling of that too – first to
check we have the required number of arguments, then to pass back any
error returned by the actual tool:

 @echo off
 if /i "%1" == "" call :usage & exit /b 1
 if /i "%2" == "" call :usage & exit /b 1

 SQLCMD -E -S %1 -d master -Q "create database %2;"
 if errorlevel 1 exit /b %errorlevel%

 :usage
 echo Usage: %~n0 ^<instance^> ^<database^>
 goto :eof

If you have bothered to write a usage message, then you could also choose
to add a couple of extra lines to provide a consistent and modern way to
query it (although this somewhat starts to defeat the original purpose of
the exercise – simplification!):

 if /i "%1" == "-?" call :usage & exit /b 0
 if /i "%1" == "--help" call :usage & exit /b 0

Now, at this point I’m sure you’re beginning to question whether the script
is starting to get so complicated that you’ll be spending more time writing
it than what you (and hopefully your colleagues) will eventually save by
using it. To decide that I suggest you consult the recent XKCD titled ‘Is
It Worth the Time?’ [1].

A

CHRIS OLDWOOD
Chris is a freelance developer who started out as a
bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s C++ and C# on Windows in big
plush corporate offices. He is also the commentator for
the Godmanchester Gala Day Duck Race and can be
contacted via gort@cix.co.uk or @chrisoldwood

One tried and trusted solution to these
‘problems’ is to turn to the venerable Wiki and
document lots of command lines as snippets
12 | | JUL 2013{cvu}

However it should also be fairly obvious that this is just boilerplate code
that can be copied from a template. One such template (for batch files) can
be found in my blog post ‘Windows Batch File Template’ [2].
Consequently I’ve found putting these kind of scripts together quite trivial
and it also allows for some other common simple scenarios to be easily
accommodated.

Personalisation
As a rule of thumb the point of these sorts of scripts is to allow a more
unified development experience through the use of some common tools.
Also the development environment should allow for the redundancy to be
hidden or removed as we saw above. But there are times when each
developer (and the build machine itself counts as another developer) needs
to provide some personal configuration data.

Once again the database example fits the bill nicely. In many organisations
you can install a database locally, but not everywhere allows this (you can
thank an overreaction to the 2003 Slammer virus for that). Although not
ideal, you may also have to deal with minor differences in development
machine configuration such as where the instance is installed (a fresh
install and an upgrade can be different). For example nearly every
developer may have a local copy of SQL Server Express and be quite happy
calling their unit test database ‘UnitTest’, in which case you might as well
save them a bit more typing and just default to those values:

 set instance=%1
 set database=%2

 if /i "%instance%" ==
 "" set instance=.\SQLEXPRESS
 if /i "%database%" == "" set database=UnitTest

An alternative approach is to use optional environment variables to specify
the default values so that you never need to pass any arguments if you
decide to tow the party line:

 set instance=%personal_instance%
 set database=%personal_database%

 if /i "%instance%" == "" set instance=%1
 if /i "%database%" == "" set database=%2

 if /i "%instance%" == "" call :usage & exit /b 0
 if /i "%database%" == "" call :usage & exit /b 0

Ultimate flexibility comes from combining the two approaches so that you
can keep things really simple for the vast majority of use cases, but you
still have the ability to override things at any point by supplying different
values on the command line. In my experience database development is
the one place where this has actually proved to be quite useful.

Developer sandbox set-up
If you’re going to allow (or need to accommodate) some element of
personalised configuration then make sure it is optional. There is nothing
more soul-destroying on your first day of a new job than being presented
with a 30-page manual on what steps you need to take to configure your
development machine so that you can actually do your job. And if you
think I’m exaggerating by recounting a 30-page document – I’m not!

For me the steps required to get up and running on a new project should
be as simple as:

1. Install version control software

2. Fetch development branch codebase

3. Build code and run tests

Step 3 might look like it should be split into two, but it’s not because that’s
exactly what the build machine will be doing and so whatever it does I
should be able to do, too. At this point I know that I can replicate what the
build machine does and so I’m good to go.

Script composition
After you’ve created a few simple scripts it then becomes easier to see how
you can combine them with other simple scripts to accomplish ever bigger
tasks. Although it was never envisaged it would end up that way, many of
the build processes I’ve been involved with in the past few years have
ended up taking an imperative approach mainly due to the incremental
approach of layering together many simple scripts to create a more
complex process. The same goes for the deployment side as well.

For example the deployment process started out as two simple scripts that
wrapped invoking MSIEXEC.EXE – one to install the package and one to
uninstall it. The wrappers allowed me to handle the common error codes
(e.g. 1605) that occur when the package is already installed/uninstalled.
Once the NT services were written another simple wrapper around
SC.EXE was created to start/stop them. These where then combined into
a larger script that ensured the services were started/stopped before/after
the packages installed/uninstalled. Add in another simple script to ensure
any errant processes are terminated (PSKILL.EXE), another to copy the
files from a known share to the local machine (ROBOCOPY.EXE) and
finally a top-level script to act as the root for a Scheduled Task and you
suddenly have an automated deployment process that even Heath
Robinson would be proud of.

Scripting objects
On Windows there is a slight variation on this theme of driving command
line tools using a very basic language; which is to drive ‘objects’ instead.
If you consider the batch file language as the glue that binds together
disparate console-style processes, then VBScript is the same simple glue
that binds together objects exposed via COM. It might seem an expensive
way to do business, but if your architecture is that classic pairing of a
Visual Basic front-end and a C++ back-end then you’ve already done most
of the heavy lifting. It might sound perverse but I’ve worked on a project
where the entire build process was a library of VBScript files that were
stitched together by using Windows Script Host (.WSF) files. It’s not
something a sane person would consider doing today but 10–15 years ago
it was Microsoft’s answer to the lack of scripting on Windows. That said,
in a locked down production environment with legacy servers it might still
be your only choice.

In a way that ideology still exists today in the guise of PowerShell. COM
has been replaced by its modern heir – .Net – and the PowerShell language
provides a much cleaner binding because .Net itself underpins it. Of course
the pipeline model still exists too although it’s been ‘enhanced’ to flow
objects instead of simple lines of text. Once again, if your core technology
is already .Net you’ve done the heavy lifting and consuming your
components via scripts is pretty easy. PowerShell may be Microsoft’s first
choice, but the model works equally well with both F# and IronPython in
the driving seat, although the latter seems to be sorely neglected these days.

Capturing pipelines
Of course none of this is going to replace the venerable UNIX pipeline
which, despite its simple text based nature, lives on exactly because it’s
simple and an army of programmers have created a wealth of small, well-
focused tools that are designed to be composed to create something bigger
than the sum of its parts.

Oftentimes I’ll need to do a little text processing and it ends up being a
disposable one-liner. But other times I realise it actually might be useful
to my team mates. There is a certain level of personal gratification in
publishing your Byzantine one-liners to your fellow developers and if they
only see the light of day once in a blue moon then the XKCD chart [1] rules.
But if you think it’ll get a frequent work out then you might want to
consider encapsulating it within a script for ease of use.

A few years ago I started work on a new project that sprouted the need to
process line-based text files at every turn. This caused me to reacquaint
myself with SED & AWK as part of a rediscovery of the classic pipeline.
In fact you’ll find my delight documented in this very journal as part of
the ‘Inspirational (P)articles’ series [3].
JUL 2013 | | 13{cvu}

F

D
a
fi
w

D
te
th
m
b

D

D
fa
+
+
+

In one particular case after the system had gone live I started needing to
compare some published CSV files between the development, test and
production environments as part of the testing strategy. The files were not
directly comparable so a little pre-processing was needed to first remove
the noise. Old hands will no doubt recognise that a sprinkling of SED is
one way to replace some variable string patterns with fixed (and therefore
comparable) text:

 SED "s/Timed-Out/ERROR/g" | SED "s/OutOfMemory/
 ERROR/g"

Due to the non-deterministic nature of a SQL SELECT without an ORDER
BY clause (which would have been an unnecessary burden on SQL Server)
the file needed to be sorted. The best key to sort on was not the leftmost
in the file which meant treating the file as having delimited fields:

 SORT -t "|" -k 3,4

Finally, every time the file had new fields appended in a release they
needed to be ignored when doing regression testing:

 CUT -d "|" -f 1-24

The output was always fed directly to a GUI based diff
tool in case there were differences to investigate and so
structurally the script looked like Listing 1.

There was no reason (apart from the usual lack of time and
a suitably privileged account) why that last step couldn’t

have used the normal DIFF tool and been automated to capture the
differences in a report every morning.

Gall’s Law [4] says that a complex system that works is invariably found
to have evolved from a simple system that worked. Build, test and
deployment processes in particular seem to have a habit of growing
organically and judicious use of little scripts can be one way of slowly
piecing together functionality by building on the existing set of tried and
trusted tools.

References
[1] http://xkcd.com/1205
[2] http://chrisoldwood.blogspot.co.uk/2010/06/windows-batch-file-

template.html
[3] C Vu Journal Vol 23 #1 (March 2011) and

http://chrisoldwood.blogspot.co.uk/2010/11/reacquainting-myself-
with-sed-awk.html

[4] http://en.wikipedia.org/wiki/Gall's_law

SED %1 … | SED … | SED … | SORT … | CUT … > "%TEMP%\lhs.csv"
SED %2 … | SED … | SED … | SORT … | CUT … > "%TEMP%\rhs.csv"
GUIDIFF "%TEMP%\lhs.csv" "%TEMP%\rhs.csv"

Li
st

in
g

1

14 | | JUL 2013{cvu}

Archer Yates Associates Ltd » Tel: +44 (0)1608 659900 » www.archer-yates.co.uk

We are a leading, professionally recognised event
management company. With over 30 years experience
of organising and managing events, from conception
right through to completion, on all scales from an
executive board meeting to large annual conferences.

Let us help you create a memorable event that reflects
and exceeds your targets and expectations. We can
research, plan, deliver and evaluate every element
from travel to destination, hotel and entertainment
to technical production and booking management.

Got an event to plan?
Let Archer Yates Associates

take the strain.

For a no obligation chat and to help you develop your ideas
further, contact our friendly team on 01608 659900 or email
Managing Director Julie Archer at Julie@archer-yates.co.uk

“Today’s Solution to Tomorrow’s Event”

or more information, visit www.coverity.com/development-testing

evelopment testing is an emerging category, including a set of processes and software, such
s static analysis, designed to help developers, management, and the business easily find and
x quality and security problems early in the development cycle, as the code is being written,
ithout impacting time to market, cost, or customer satisfaction.

evelopment testing augments traditional testing, including QA functional and performance
sting and security audits, providing development teams with a quick and easy way to test
eir code for defects in a non-intrusive manner, so development stays focused on innovation,
anagement gets visibility into problems early in the cycle to make better decisions, and the

usiness continues to deliver high quality products to market for competitive advantage.

MANAGEMENT

Increases visibility for better decision
making, creates a predictable release
process (on-schedule, on-budget), reduces
costly support and production issues
downstream, and provides consistent
measurement of teams against common
metrics to track improvement over time.

SECURITY

process by eliminating a portion of security
issues upfront, and helps focus testing and
remediation efforts on the problems that
require their expertise.

QUALITY ASSURANCE

by receiving a higher quality build from the
start, reduces wasted testing time due to
buggy code, and focusses testing efforts on
the problems that require their expertise.

DEVELOPMENT

Finds hard-to-spot defects in code,

fast – without requiring subject-matter
expertise, reduces the time spent on
re-work and de-bugging, and enhances
skills by showing developers where they
are most susceptible to error.

evelopment Testing

Management

Quality Assurance

Development Security

EVELOPMENT TESTING =
ster time to market + reduced cost

 greater customer satisfaction and brand equity
 increased visibility and traceability
 improved cross team collaboration + less risk

http://en.wikipedia.org/wiki/Gall’s_law
http://chrisoldwood.blogspot.co.uk/2010/11/reacquainting-myself-with-sed-awk.html
http://chrisoldwood.blogspot.co.uk/2010/06/windows-batch-file-template.html
http://chrisoldwood.blogspot.co.uk/2010/06/windows-batch-file-template.html
http://xkcd.com/1205

Professionalism in Programming # 81
The Ghost of a Codebase Past
Pete Goodliffe leads us down memory lane.

I will live in the Past, the Present, and the Future.
The Spirits of all Three shall strive within me.
I will not shut out the lessons that they teach!

~ Charles Dickens (A Christmas Carol)

ostalgia isn’t what it used to be. And neither is your old code. Who
knows what functional gremlins and typographical demons lurk in
your ancient handiwork? You thought it was perfect when you wrote

it – but cast a critical eye over your old code and you’ll inevitably bring
to light all manner of code gotchas.

Programmers, as a breed, strive to move onwards. We love to learn new
and exciting techniques, to face fresh challenges, and to solve more
interesting problems. It’s natural. Considering the rapid turnover in the job
market, and the average duration of programming contracts, it’s hardly
surprising that very few software developers stick with the same codebase
for a prolonged period of time.

But what does this do to the code we produce? What kind of attitude does
it foster in our work? I maintain that exceptional programmers are
determined more by their attitude to the code they write and the way they
write it, than by the actual code itself.

The average programmer tends not to maintain their own code for too long.
Rather than roll around in our own filth, we move on to new pastures and
roll around in someone else’s filth. Nice. We even tend to let our own ‘pet
projects’ fall by the wayside as our interests evolve.

Of course, it’s fun to complain about other people’s poor code, but we
easily forget how bad our own work was. And you’d never intentionally
write bad code, would you?

Revisiting your old code can be an enlightening experience. It’s like
visiting an ageing, distant relative you don’t see very often. You soon
discover that you don’t know them as well as you think. You’ve forgotten
things about them, about their funny quirks and irritating ways. And you’re
surprised at how they’ve changed since you last saw them (perhaps, for
the worse).

Looking back at old code you’ve produced, you might shudder for a
number of reasons...

Presentation
Many languages permit artistic interpretation in the indentation layout of
code. Even though some languages have a de-facto presentation style,
there are still large gamut of layout issues which you may find yourself
exploring over time. Which ones stick tends to depend on the conventions
of your current project, or on your experiences after years of
experimentation.

A classic example from the C++ programmer camp: many developers
follow standard library layout:

 class standard_style
 {
 int variable_name;
 bool method_name();
 };

and some have more Java-esque leanings:

 class JavaStyle
 {
 int variableName;
 bool methodName();
 };

A simple difference, but it profoundly affects the code you work on in
several ways.

Another example that, pertinent to my current workplace, is the layout of
C++ member initialiser lists. We used to write something like this:

 Foo::Foo(int param)
 : member_one(1),
 member_two(param),
 member_three(42)
 {
 }

That’s not too unfamiliar a style. However, we have recently switched to
a style that places the comma separators at the beginning of the following
line, thus:

 Foo::Foo(int param)
 : member_one(1)
 , member_two(param)
 , member_three(42)
 {
 }

There are a number of advantages to this style (it’s easier to ‘knock out’
parts in the middle via preprocessor macros, or comments, for example).
This scheme can be employed in a number of layout points (e.g. lists of
all sorts of things: members, enumerations, lists of base classes, and more),
providing a nice consistent style. There are also disadvantages: one of the
major cited issues being that it’s not as ‘common’ as the former layout
style. IDEs’ default auto-layout also tends to fight with this scheme.

I know over the years that my own presentation style has changed wildly,
depending on the company I’m working for at the time.

As long as a style is employed consistently in your codebase, this is really
a trivial concern and nothing to be embarrassed about.

The state of the art
Most languages have rapidly developed their in-built libraries. Over the
years the Java libraries have grown from a few hundred helpful classes to
a veritable plethora of classes, with different skews of the library
depending on the Java deployment target. Over the many C# revisions the
standard library has burgeoned. As languages grow their libraries accrete
more features.

And as those libraries grow, some of the older parts become deprecated.

Such evolution (which is especially rapid early in a language’s life) can
unfortunately render your code anachronistic. Anyone reading your code
for the first time might presume that you didn’t understand the newer
language/library features, when those features simply did not exist when
the code was written.

For example, when C# added generics, the code you would have written
like this:

 ArrayList list = new ArrayList(); // untyped
 list.Add("Foo");
 list.Add(Int(3)); // oops!

 N

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net or @petegoodliffe
JUL 2013 | | 15{cvu}

with its inherent potential for bugs, would have become:

 List<string> list = new List<string>();
 list.Add("Foo");
 list.Add("Bar");

There is a very similar Java example with surprisingly similar class names!

The state of the art moves much faster than your code. Especially your old,
untended code.

The splendid new C++11 language features and library support has made
much old C++ code look questionable. The introduction of a language-
supported threading model and library renders third-party thread libraries
(often implemented with rather questionable APIs) redundant. The
introduction of lambdas removes the need for a lot of verbose hand-
written ‘trampoline’ code. The range-based for helps remove a lot
of syntactical trees so you can see the code’s design ‘wood’. Once
you start using these facilities, returning to older code without them
feels like a marked retrograde step.

Idioms
Each language, with its unique set of language constructs and library
facilities, has a particular ‘best practice’ method of use. These are the
idioms that experienced users adopt, the modes of use that have become
honed and preferred over time.

These idioms are important. They are what experienced programmers
expect to read; they are familiar shapes that enable you to focus on the
overall code design rather than get bogged down in macro-level code lines.
And they usually formalise patterns that avoid common mistakes or bugs.

It’s perhaps most embarrassing to look back at old code, and see how un-
idiomatic it is. If you now know more of the accepted idioms for the
language you’re working with, your old non-idiomatic code can look quite,
quite wrong.

Many years ago, I worked with a team of C programmers moving (well,
shuffling slowly) towards the (then) brave new world of C++. One of their
initial additions to a new codebase was a max helper macro, shown below
(do you know why we have the brackets in there?):

 #define max(a,b) ((a)>(b)) ? (a) : (b))

 void example()
 {
 int a = 3, b = 10;
 int c = max(a, b);
 }

After some time, someone revisited that early code and, knowing more
about C++, realised how bad it was. They re-wrote it in the more idiomatic
C++ below. This fixed some very subtle lurking bugs, as shown in
Listing 1.

The original version also had another problem: the macro name clobbers
a function name in the C++ standard library, with all sorts of unpleasant
side-effects. This hints at a further problem: wheel reinvention. The best

solution is to just use the built-in std::max function that always existed.
It’s obvious in hindsight:

 // don't declare any max function

 void even_better_example()
 {
 int a = 3, b = 10;
 int c = std::max(a,b);
 }

This is the kind of thing you’d cringe about now, if you came back to code
like this. But you had no idea about it back in the day.

Design decisions
Did I really write that in Perl? Did I really use such a simplistic sorting
algorithm? Did I really write that by hand, rather than just using a built-in
library function?

As you learn more, you realise that there are better ways of formulating
your design in code. This is the voice of experience.

Bugs
Perhaps this is the reason that drags you back to an old codebase.
Sometimes coming back with fresh eyes uncovers obvious problems that
you missed at the time. After you’ve been bitten by certain classes of bug
(often those that the common idioms steer you away from) you begin to
naturally see potential bugs in the code. It’s the programmer’s sixth sense.

Conclusion
Looking back over your old code is like a code review for yourself. It’s a
valuable exercise to do; perhaps you should take a quick tour through some
of your old work. Do you like the way you used to program? How much
have you learnt?

Does this kind of thing actually matter? If your old code’s not perfect but
it works, should you do anything about it? Should you go back and ‘adjust’
the code? Probably not – if it ain’t broke don’t fix it. Often the code does
not rot, unless the world changes around it (compiler versions break your
old code, or the latest library version no longer let you compile).

It’s important to appreciate how times have changed, how the
programming world has moved on, and how your personal skills have
improved over time. Finding old code that no longer feels ‘right’ to you is
actually a Good Thing: it shows that you have learnt and improved.
Perhaps you don’t have the opportunity to revise it now, but knowing
where you’ve come from helps to shape where you’re going in your coding
career.

Like the ghost of Christmas past, there are interesting cautionary lessons
to be learnt from our old code if you take the time to look at it.

Questions
1. How does your old code shape up in the modern world? If it doesn’t

look too bad, does that mean that you haven’t learnt anything new
recently?

2. How long have you been working in your primary language? How
many revisions of the language standard or built-in library have
been introduced in that time? What languages features have been
introduced that have shaped the style of the code you write?

3. Consider some of the common idioms you now naturally employ.
How do they help you avoid errors?

template <typename T>
inline max(const T &a, const T&b)
{
 // Look mum! No brackets needed!
 return a > b ? a : b;
}

void better_example()
{
 int a = 3, b = 10;

 // this would have failed using the macro
 // because ++a would be evaluated twice
 int c = max(++a, b);
}

Li
st

in
g

1

exceptional programmers are
determined more by their attitude to the
code they write and the way they write it,

than by the actual code itself
16 | | JUL 2013{cvu}

Code Critique Competition 82
Set and collated by Roger Orr. A book prize is

awarded for the best entry

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last Issue's Code
“I am new to C++ and trying to write some objects to disk and read them
back in. How can I get the pointer to the objects that are read back in?”

Where would you start with trying to help this newcomer?

The code is in Listings 1, 2, 3 and 4.

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

/*
 * Bike.h
 */

#ifndef BIKE_H_
#define BIKE_H_

#include <iostream>
#include <string>
#include <vector>
#include <iterator>
#include <algorithm>
#include <iomanip>
#include <ios>

class Bike {
 Bike* address; // Pointer to Bike object
 std::string name;
 double price;
 std::string make;

public:
 //Bike(); // eliminate to avoid ambiguity
 Bike(Bike* a, const std::string& n =
 "unknown", double p=0.01,
 const std::string& m="garage") :
 address(a), name(n), price(p), make(m){}
 virtual ~Bike();

 inline std::string getName(){return name;}
 inline double getPrice(){return price;}
 inline std::string getMake(){return make;}
 inline Bike* getAddress(){return address;}

 static void writeToDisk(
 std::vector<Bike> &v);
 static void readFromDisk(std::string);
 static void splitSubstring(std::string);
 static void restoreObject(
 std::vector<std::string> &);
};

std::ostream& operator << (std::ostream& os,
 Bike &b);

#endif /* BIKE */

Li
st

in
g

1

/*
 * Bike.cpp
 */
#include "Bike.h"
//Bike::Bike() {} // TODO Auto-generated stub
Bike::~Bike() {} // TODO Auto-generated stub
std::ostream& operator << (std::ostream& os,
 Bike &m){
 os << std::left << std::setw(10)
 << m.getAddress() << "\t"
 << m.getName() << "\t"
 << m.getPrice() << "\t" << m.getMake();
 return os;
}

/*
 * file_io.cpp
 */
#include "Bike.h"
#include <fstream>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <vector>
#include <cstring>
#include <sstream>
#include <algorithm>
// Write objects to disk
void Bike::writeToDisk(std::vector<Bike> &v){
std::ofstream out_2("bike_2.dat");
for (auto b:v){
 out_2 << b.getAddress() << ':'
 << b.getName()
 << ':'<< b.getPrice() << ':'
 << b.getMake() << std::endl;
 }
out_2.close();
}
//--
//Read from disk into vector and make objects
void Bike::readFromDisk(
 std::string bdat) // "bike_2.dat"
{
 std::cout << "\nStart reading: \n";
 std::vector<char> v2;
 std::ifstream in(bdat);
 copy(std::istreambuf_iterator<char>(in),
 std::istreambuf_iterator<char>(),
 std::back_inserter(v2));
in.close();

Listing 3
Listing 2
JUL 2013 | | 17{cvu}

Critiques

Paweł Zakrzewski <pawel@zakrzewski.cc>

I would wager that the person asking this question is new to programming
in general. To get a pointer – or any value in fact – from a function, one
should return it, write it to a reference parameter of said function or write
it to a global variable (throwing an exception with that value is also
possible, but that’s plain abuse of language features that are meant for
something else). The most natural way is to return them, so that’s what I
would suggest. That being said, there are numerous things wrong with the
proposed program, and lack of understanding of the way functions work
is but one of them. I’ll try to list the issues in order of their severity,
beginning with program-breaking ones, followed by runtime performance
issues and finishing with some comparatively minor annoyances.

The way serialization is implemented gives away author’s lack of foresight
and experience. Not only the methods deal with non class-specific code,
but also they are too specific. Adding network or database support would
require a pair of methods each and if a class Car was to be created, no code
could be reused. The best way to implement serialization is not
implementing it at all and using an already existing well designed and
tested solution, for example Boost.Serialization from Boost libraries. If
that is impossible, only two methods should be created: one for
serialization, one for deserialization, and they should be medium-agnostic,
most likely reading and writing from/to a stream.

When handling disk I/O the author forgets to check whether the stream is
open af ter construct ion. std::ifstream::is_open and
std::ofstream::is_open should be called for input and output
respectively. From a performance point of view, in case of bigger files, v2
should reserve memory for all of the file contents, otherwise multiple
unnecessary real locat ions wi l l occur . To get the f i le s ize,
std::ifstream::seekg() and std::ifstream::tellg()
functions should be used.

 std::vector<char> v2;
 std::ifstream in(bdat);
 if(!in.is_open()) { /* error handling */ }
 in.seekg(0, std::ios::end);
 v2.reserve(in.tellg());
 in.seekg(0, std::ios::beg);
 copy(...); // as in the example

In the same function, a std::string s2 is created from v2, using a
constructor that takes a null-terminated character string. The parentheses
around v2[0] are superfluous, but don’t change the meaning. If v2
contains null characters, which, given the Bike::writeToDisk()
function, is unlikely, not all data will be copied. Otherwise, v2 will be
accessed outside of its boundaries, which is undefined behaviour. In my
opinion, v2 is unnecessary and the string should be used in its place from
the beginning of the function.

Just a few lines below, there’s another instance of not checking the returned
value.

std::string::find_first_of() returns std::string::npos
when it doesn’t find the required character. The current code doesn’t check
fo r t ha t a nd i f t ha t h a p p e n s , posObj+1 i n s2 =

for(auto a:v2){
 std::cout << a; // Debug output
 }
std::string s2(&(v2[0])); // Vector in String
std::cout << "\nExtract members:\n";
while (!s2.empty()){
 // objects separated by \n
 size_t posObj = s2.find_first_of('\n');
 std::string substr = s2.substr(0,posObj);
 s2=s2.substr(posObj+1);
 splitSubstring(substr);
 }
}
void Bike::splitSubstring (std::string t){
 // Save the address and the members in v3
std::vector<std::string> v3{(4)};
size_t posM; // [in substring]
int i;
for (i=0; i<4; i++){
 posM = t.find_first_of(':');
 v3[i] = t.substr(0,posM);
 if (posM==std::string::npos) break;
 t=t.substr(posM+1);
 }
for(auto member:v3){
 std::cout << std::setw(10) << std::left
 << member << " \t";}
 restoreObject(v3);
 std::cout << std::endl;
 v3.clear();
}
void Bike::restoreObject
 (std::vector<std::string> &v3){
 Bike* target; // I want the object here ...
 double p;
 std::stringstream ss(v3[2]);
 ss >> p;
 Bike dummy{&(dummy),v3[1], p, v3[3]};
 target = &(dummy);
 std::cout << "\nRestore: " << *target
 << std::endl;
}

Li
st

in
g

3
(c

on
t’d

) /*
 * main_program.cpp
 */

#include "Bike.h"
#include <fstream>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <vector>
#include <cstring>
#include <sstream>
#include <algorithm>

int main(){
 std::cout << "start\n";
 std::vector<Bike> v;
 Bike thruxton{&(thruxton), "Thruxton",
 100.00 , "Triumph"};
 Bike sanya{&(sanya)};
 Bike camino{&(camino), "Camino ",
 150.00, "Honda"};
 Bike vespa{&(vespa), "Vespa ",
 295.00, "Piaggio"};

 v.push_back(thruxton);
 v.push_back(sanya);
 v.push_back(camino);
 v.push_back(vespa);

 for(Bike b:v) std::cout << b << std::endl;
 // using overloaded << operator

 Bike::writeToDisk(v);
 // restore objects
 Bike::readFromDisk("bike_2.dat");
 // where are the restored objects??
 return 0;
}

Listing 4
18 | | JUL 2013{cvu}

s2.substr(posObj+1) will evaluate to 0 (if two’s complement is
used) or std::numeric_limits<size_t> ::max() (in one’s
complement), which will end with an infinite loop (s2 will never change,
since std::string::substr(0) returns a copy of the string) or
std::out_of_range being thrown respectively.

That loop is also a cause for numerous unnecessary copies. Instead of
assigning s2’s substring to s2, s2.erase(0,posObj) would be more
effective. It’s also possible to iterate over s2’s lines without modifying it
at all:

 for(auto it = std::begin(s2),
 e = std::end(s2); it != e;){
 auto found = std::find(it, e, '\n');
 // returns end of string iterator if nothing
 // is found
 std::string substr{it, found);
 splitSubstring(substr); // this name should
 // be changed
 it = found;
 }

The naming scheme used leaves a lot to be desired. For some reason
function Bike::splitSubstring calls Bike:: restoreObject,
which is supposed to deserialize a single Bike object. This name is
extremely misleading and any code created later may break the program.
What’s more, it’s most likely not supposed to be used outside of the class,
yet it is in its public section.

Another thing worth noting is the Bike::address pointer that is used
to keep address of the instance that owns it. While not strictly wrong from
the language point of view, it only serves as distraction and possible
ambiguity for anyone reading the code, as the same result can be achieved
using operator& or std::addressof on Bike objects and this
pointer in Bike’s methods. What’s more, the implicitly created copy
constructor will copy other instance’s address, which may break the
program and cause undefined behaviour if dereferenced when a vector of
Bikes is reallocated. My suggestion is to remove that pointer and its
getter.

Including commented out declaration and definition of a default
constructor doesn’t eliminate it. In this case, the desired effect is achieved
by supplying a non-default constructor. If the author wants to be really
explicit about removing the default constructor, they can do so in two
ways: compatible with C++98 – declaring a private default constructor
without defining it, and, since C++11, declaring Bike() = delete.
Since C++11 is already used, I would use the latter option, because its
intent is clear to anyone speaking English, while the former solution
requires the reader to know that particular C++ idiom.

The author seems to have copied some code they saw elsewhere without
understanding reasons for using various constructs. A public virtual
destructor, usually in conjunction with the base being abstract, should only
be used when there is dynamic polymorphism involved. Otherwise, the
additional flexibility is not used, but the performance cost doesn't go away.
In this case, it is not necessary.

The next thing to change are getters. I already suggested removing
getAddress, along with the address variable, but the others aren’t
exactly good either. First of all, they shouldn’t require a non-const Bike
instance, as they don’t do anything but read – they should be const.
Secondly, returning std::string – and, in fact, most non built-in types
– by copy is wasteful, const reference should be applied. The rule of
thumb when one doesn’t want to modify the original value is: if the type
is not a keyword or a typedef of a keyword, return it by const reference.

The same thing goes for function parameters that are supposed to be read
only, although, since C++11, it may be a little more complicated. For
example, Bike::writeToDisk (assuming it isn’t scrapped) should take
std::vector<Bike> const& parameter. But, if at any point it copied
from such variable while abandoning the parameter (as often happens in
class constructors, for example), const reference may incur an

unnecessary copy, as it indeed does in Bike’s constructor, that, funnily
enough, takes const references to strings.

Let’s consider what happens to parameter n of class Bike constructor,
w he n ca l l ed l i k e i t ’ s c a l l e d i n main_program.cpp :
Bike(&(thruxton), "Thruxton", 100.00, "Triumph"). First,
a std::string instance is initialized with "Thruxton", then it is
passed by const reference to the constructor, and then the const
reference is passed to Bike::name’s (which is a std::string)
constructor, but since it sees a const reference it has to make a copy,
instead of a move.

C++11 introduced rvalue references, which are guaranteed to be
possible to be moved from, but to avoid copying when not necessary, the
function needs to be overloaded for every parameter that may be taken by
rvalue reference. Unfortunately, the number of overloads rises
exponentially with number of parameters being overloaded on. It is
possible to use perfect forwarding with std::forward, but that has the
unfortunate effect of moving implementation to the header file.

The solution is to take such argument by copy. This may come as a shock
to some people, but let’s consider Bike’s constructor again, assuming that
it takes n by copy and then initializes name with std::move(n). If called
exactly like above, n is initialized with "Thruxton", then it is moved into
Bike::name with no unnecessary copies. On the other hand, if the
constructor was called like this:

 std::string thruxton_name{"Thruxton"};
 Bike thruxton{&(thruxton), thruxton_name,
 100.00, "Triumph"};

thruxton_name would be copied to parameter n, which would then be
moved to Bike::name. That’s exactly one move more expensive (and
moves are very cheap) than the constructor taking const reference to
string, but at the same time much more flexible.

Ranged for loop (introduced in C++11) is used throughout the code. In all
instances, the loop variable is taken by copy. It probably may be excused*
for the debug output in Bike::readFromDisk, but in other cases,
const reference should be taken, for example

 for(Bike const& b: v)

or

 for(auto const& member : v3)

* In that case, taking char by copy is okay, but the whole loop isn’t
necessary, because it produces v2.size() of operator<< calls, when
a simple std::cout.write(&v2[0],v2.size()) would suffice. If
s2 was used as suggested above, this would be as simple as calling
std::cout << s2;

In the main() function, if the Bike::address variable was removed
as sugges t ed above , ve c to r v co u l d be po p u l a t e d u s in g
std::vector<Bike>::emplace_back() initialized with an
initializer list. In this case, the change wouldn’t be noticeable, but it’s a
good habit to avoid premature pessimizations.

Although it won’t matter in such a small program, putting unnecessary
includes is a bad practice, especially in other header files. It slows down
the compilation and, should any of included files change, the including file
is also treated as changed, which forces recompilation. For example,
Bike.h doesn’t seem to need anything but <string>, <iosfwd> and
<vector>.

Stray thoughts:

 Most projects use their own namespaces to avoid name collisions. It
may be more important in libraries, though.

 Most projects I've encountered prepend or append "_", "m_" or
"p_" to class instance variable names in order to make it clear what
they are. It is far from mandatory, but still worth consideration.

 Consider using integral variables for storing price. They differ much
less between platforms and are not susceptible to imperfect
rounding.
JUL 2013 | | 19{cvu}

Balog Pál <pasa@lib.hu>

We’re facing a lot of really awful code, where to start indeed. In real life
if review discovers showstopper problems, it stops aiming for
completeness – just the next pass is scheduled after the author addresses
the first bunch. And the code is cleaned/refined in iterations.

The first thing that jumps out is a Bike pointer in the Bike object. Pointer
to the same types are pretty rare, mostly appear in C code where payload
is mixed with container handling and the pointers serve to build a list or a
tree. As bike suggests no reason, let’s look what address is used for. Just
taking a small detour to comments. As we have one here at the perfect spot.
With the perfect content too – for an anti-comment that is.

I call anti-comment the thing that states the obvious. Tells me what I see
from the code. Without providing any information. Sure, address is a
pointer to a Bike object. I know that from the type. What I want to know,
is what kind of bike it is intended to point, why, when, can it be NULL, do
I have to allocate it, do I have to free it, how lifetime of the pointed object
relates to my instance, and stuff like that. When I see a pointer in a code,
be it member of a structure or parameter of a function all those questions
are formed. And most code is just silent, the author did not think to drop
a comment answering them. An anti-comment adds insult to the injury.

Back to chasing address: it is set from parameter passed in ctor, stored
and only accessed in getAddress(). The class does not use it.
getAddress() is used in op<< and writeToDisk just dumping the
content. Constructor of Bike is found in restoreObject and main. In
all cases the address of the currently created instance is passed.

This is kinda relief in one way: to fix the code we send the whole thing to
/dev/null and drink a pint on good riddance. The more difficult task
is to explain the client the problem without being able to ask him first how
he got the idea in the first place.

In C++ when we create objects the system manages the address. We do
not mess with the Zohan. Neither do we need to; in member function if
we’re interested in our address it sits conveniently in the this pointer and
outside we can use the & operator. Once the object is created, not before
or the middle of it.

In member functions usage of this is implicit: when we refer to the name
of a member, it’s like we’ve written this->name. Yes, I deliberately kept
placement new secret, and allowed uses of this on half-constructed
object, that is advanced subject half year ahead.

With the pointer issue gone restoreObject can simply assign the input
strings to name and make and stream directly to price. Or construct a
local Bike object just as in original attempt from the three parts and assign
it to *this after some validation. Related important topics here are ‘All
input is evil’ and ‘strong exception guarantee’. But I leave those for the
second review, at which point the class may have gained some actual rules
and invariant, and the application some error handling policy. Currently
Bike is just a dump of data and requirements are not stated. Simple
assignment fits the basic guarantee and the client is not present to answer
‘what behavior you expect if the middle member does not look like a
double’. Oh yeah, to work we remember to remove static in declaration.

We resume at class Bike in the header that now starts with name. Using
string and double looks fair, I’m not really happy with make that gets
initialized with some kind of brand, but I’m not versed in biking, it may
be the proper lingo. The members are private that is good.

We arrive at the ctor. The commented ctor can now be removed as the
other is good for the default case. We just insert the explicit keyword.
Ctor uses init list and nothing in body – perfect. Without the client I just
assume the defaults make sense in use and content.

Without explicit any string sitting around would be happy to convert
to Bike, that doesn’t look sensible, just serves as a time-bomb.

We see a virtual dtor that does nothing – so we send it after address to
oblivion.

We use virtual dtor in classes meant as base class. A usable base class likely
have virtual functions, and ultimately documentation on usage and
hierarchy rules. We might re-insert this dtor later on when time is ripe.

Next come accessors for all members, not very nice but without setters not
very harmful either. We cut inline at front and add const after ()
before moving on.

The only sensible use of inline keyword is for functions defined in a
header at namespace level, to prevent the compiler creating multiple
bodies. A function defined in class is implicitly inline so stating it is just
noise.

const should have been the default but is not for compatibility reason.
So remember to add it everywhere. Especially at end of member functions
unless they are meant to change the state of the object.

Then come some strange public static functions. They all seem to serve
serialization. Which is a topic that could easily make up a whole book. And
best be left to existing framework like Boost::serialization. Sure we could
implement the I/O of three puny members here, but in an application we
normally face many objects with similar requirement and that asks for
some general structure or framework.

I don’t aim for a complete solution here just show guidelines to cut the
knot. For sensible work each class only supplies one pair of functions that
save and load one instance taking an abstract archive stream as parameter.
The stream knows whether it’s connected to disk file or console or TCP/
IP or whatever. Dealing with collections, rather than individual objects is
also handled outside. So WriteToDisk is ill-conceived. Instead we need
a non-static member like void Save(OARCHIVE&) const; Without
a framework we can start using the current implementation, make
OARCHIVE std::ostream& out, and use the central piece of the
(existing) implementation. Certainly that function moves to bike.cpp.
The outer sect ion can become a s imple funct ion moved to
main_program for now. As it is arbitrary test-like code anyway using
wired filename is not a problem, and error handling will be added later.
The for loop calls just Save(), or we can conveniently replace it with
for_each now.

The other function we need is the counterpart, that looks like void Load(
IARCHIVE&); yeah, with const intentionally missing – also
implemented in bike.cpp, and can be done by recombining the code in
the three other functions. Or scrapping the content for good and just do the
same as Save in the opposite direction. The base requirement is that the
pair is in sync: Load must extract from the stream whatever Save placed
there for the object. And restore to the same state. Store format can be
chosen for convenience of implementation, say writing length info on save
so load need not hunt for delimiters. It’s usual to expect the stream be at
correct point and having properly formatted content, and throw exceptions
on any discrepancy. I leave the implementation as exercise until the next
review. The outer code opening the file and messing with vector again
moves to main file and we scrap file_io for good.

We’re left with << operator that misses a const in the signature as it has
no business messing up the instance. It’s implemented using the public
getters that is good. I would not object if it was friend and used the members
directly as long as it has read-only privileges. If getters appear to be there
only for this reason it is good idea to rearrange that way and cut them.

The code in main now can be simpler, just using push_back on the fly,
or even just an init list for the whole vector. More anti-comments can be
cut and the question at the end must be answerable by anyone with Little
Prince’s mind able to look through the box. If there’s still remaining
confusion I can hint the load implementation that in the loop we have Bike
instance we call .Load for and use push_back for the vector that is likely
a parameter or return value. Or if collection I/O code wrote out .size(),
load starts resizing the vector and can .Load to v[i] conveniently. And
the vector itself is either param passed in by ref or is returned.

Some relatively minor issues:

 stuff outside include guards of a header

 excess includes in .h

 some genuinely hostile formatting of source.
20 | | JUL 2013{cvu}

Commentary
It is often hard to know where to start when reviewing the code of someone
new to a given language: which is the most useful correction to make first?
It is in cases like this that having more regular involvement with the
developing program can be useful – being presented with a completed
project means changes are likely be harder to make.

I think one of the key mistakes in this critique is the presence of the member
data Bike* address; I think this reveals a lack of understanding of the
idea of an ‘object’ in C++. If the programmer can be shown how to replace
the use of address with this or the & operator as appropriate it may help
them to understand something of the mechanism of object oriented
programming.

The second place I would like to focus on is the streaming in of a new
object: again, the root problem seems to be in understanding what is needed
to create a new object. While a framework such as Boost.Serialization is
a good solution in general I’m not sure whether it makes it more or less
easy for the programmer in this example to understand what is involved
with creating a new object.

It is also good practice to be careful with routine managing I/O that errors
are handled properly. There are several possible classes of problems
ranging from failure to read data from the file to attempts to handle input
data of the wrong format – for example saved by a different version of the
same program. In this day and age you must also think about the potential
for exploits caused by reading deliberately invalid data.

The Winner of CC 81
Both critiques picked up many of the faults in the original code and both
suggested a hierarchy of problems to be addressed. I think both did a good
job of pointing the programmer in the right direction, given the sorts of
problems that the code demonstrates. However, Paweł additionally picked
up the lack of error handling as a fault deserving correction. I think that
this is very important – the lack of good error handling is a congenital
problem in our industry and I think it is good to address that early on. So
I have awarded the prize for this critique to him.

Code Critique 81

(Submissions to scc@accu.org by Aug 1st)

This is a slightly different critique from the usual. The following code was
presented to a number of people at the recent ISO C++ standards
meeting and we were asked to work out what it would print. Please do
so yourself – and then compile and run it. The critique part is to reflect
on what happens, why it happens, and how to deal with it.”

(My thanks to Alan Talbot for this interesting example.)

The code is in Listing 5.

You can also get the current problem from the accu-
general mail list (next entry is posted around the last
issue's deadline) or from the ACCU website (http://
www.accu.org/journals/). This particularly helps
overseas members who typically get the magazine
much later than members in the UK and Europe.

#include <iostream>

int x;

struct i
{
 i() { x = 0; }
 i(int i) { x = i; }
};

class l
{
public:
 l(int i) : x(i) {}
 void load() {
 i(x);
 }
private:
 int x;
};

int main()
{
 l l(42);
 l.load();
 std::cout << x << std::endl;
}

Listing 5

Effective C++11 programming
with Scott Meyers

Software developers familiar with the fundamentals of
C++11 are ready to advance from simply knowing C++11
to having a full understanding of how to effectively apply
it. This 2 day course, based on Scott Meyers´s
forthcoming Effective C++11, highlights the insights and
best practices of the most accomplished C++11
programmers. If you’re ready to advance your knowledge
and strengthen your confidence using C++ 11 then visit
the DeveloperFocus website for more information and
booking.

DeveloperFocus aim to be one of the world’s leading
providers of high-end training for developers and leaders.
We strive to offer the developer community the best
training as well as the hottest names and trends. Our
philosophy is to provide ‘practical, applicable knowledge’
by providing the highest quality training with the best
instructors and excellent customer service.

www.developerfocus.com
info@developerfocus.com
0843 523 5765
JUL 2013 | | 21{cvu}

http://www.accu.org/journals/
http://www.accu.org/journals/

22 | | JUL 2013{cvu}

Standards Report
Mark Radford examines a knotty issue of lifetime

facing the C++ standards committee.

fter such eager anticipation, the Bristol ISO C++ meeting seems a
long time ago now. The dust has now settled, and the post Bristol
mailing has been published. You can find all the papers here: http:/

/www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/#mailing2013-05.

If you look down the list of papers you might notice that four of them have
the word ‘async’ in their titles. Also, in addition to those four, the word
‘future’ appears in the title of one more paper, and there is a further paper
on shared locking. There may be more, but these six papers are the ones
I’ve noticed looking down the list. Therefore, it doesn’t take a genius to
work out that concurrency is still a hot topic of discussion in the C++
standardisation process!

One specific subject of some controversy, is whether std::future
should be changed so that its destructor never blocks. The way it is
currently specified, a future’s destructor never blocks except when it is
returned from std::async . When a future is returned from
std::async, unless its wait() or get() member functions have
already been called, its destructor will block until the thread behind the
asynchronous operation has joined. In N3630, Herb Sutter et al present
arguments that a future’s destructor should never block. In N3679, Hans
Boehm takes the opposite side of the debate, arguing that a future’s
destructor must wait for the thread to join. The problem is that with a
future’s destructor blocking, surprising behaviour can result. The other
problem is that, if the future’s destructor doesn’t block, it can be very
easy to let undefined behaviour slip into the code.

To illustrate how the behaviour can be surprising, I’ll give a simple
example from N3630:

 {
 async(launch::async, []{ f(); });
 async(launch::async, []{ g(); });
 }

In this example, both calls to async() execute sequentially i.e. there is
no concurrency at all. This is because the future objects returned from
async() are temporaries, and therefore go out of scope at the end of the
statement. Therefore, at the end of each statement the future’s destructor
is executed and blocks until the underlying thread joins.

Another problem is illustrated by another example from N3630:

 void func() {
 future<int> f = start_some_work();
 /*... more code that doesn’t f.get() or
 f.wait(), and performs no other
 synchronization ... */
 }

The question is: does f block when it goes out of scope? The problem here
is that the user would (effectively) have to know if the implementation of
start_some_work() calls async(), or uses some other mechanism to
achieve concurrency (for example, it could just launch a thread using
std::thread). In passing, note also that there is a further encapsulation
issue here: say start_some_work() uses async(), but then is later
changed to use another concurrency mechanism, there would be a silent

change to the behaviour of the client code! More to the point, the options
for changing the implementation are seriously limited.

One of the main arguments for future behaving the way it currently does
is the possibility of the asynchronous operation using out of scope
variables or dangling references. This is the simplest example (based on
one given in N3630):

 {
 int i=0;
 std::future<int> f = async([&]{
 i=42; return i;});
 }

If f’s destructor didn’t wait for the underlying thread to join, the variable
i might not still be in scope by the time i=42 executes. This seems like
a compelling argument for the status quo, except that (as Herb et al point
out) the problem exists anyway:

 std::future<int> f;
 {
 int i=0;
 f = async([&]{ i=42; return i;});
 }

Or even:

 {
 int i=0;
 std::shared_future<int> f = async([&]{
 i=42; return i;});
 }

Because std::shared_future’s destructor doesn’t block.

In light of the above two examples, the argument for changing the
behaviour of future’s destructor does seem quite compelling. However,
it does constitute a silent run time change to the behaviour of existing code
which (arguably) makes the solution worse than the problem. Note that
changing the return type of std::async in the hope that recompiling will
catch the problem doesn’t work: much C++11 code is likely to use auto
to declare the returned future (so the code would recompile and the
problem would still be at run time). Herb Sutter has also submitted a
proposal (N3637) to resolve the problems: N3637 proposes that future’s
destructor (as well as shared_future’s destructor) should not block,
and that waiting_future and shared_waiting_future (which
would block in their destructors) should be added to the standard library.
However this still does not solve the problem of causing existing code to
break silently at run time.

N3637 was rejected at Bristol to allow time for further reflection.

A

MARK RADFORD
Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark@twonine.co.uk

ACCU Conference 2013
Anna-Jayne Metcalfe shares her conference experience.

The annual ACCU Conference is an important event in the organisation’s
calendar for several reasons. It provides an opportunity for technically
minded people to get together to discuss what's interesting in the world of
software development, and to learn what other people are interested in. It’s
a place where vendors can publicise and demonstrate their products to an
audience of like-minded and knowledgeable potential customers. It provides
a platform for people to present ideas and techniques, an important part of
which is the opportunity for people who have never presented before to take
part, and learn from others who are adept at it. Above all, it’s a social event
where people who normally communicate by electronic means can meet
face-to-face, and discuss issues with recognised experts in many fields
associated with software and programming.

ACCU 2013 was an event where you could talk C++ with Bjarne Stroustrup
(and many others), software testing with Steve Freeman and Brian Marick,
SOA, Java and C++ with Nicolai Josuttis, managing software projects and
quality with Tom Gilb, and what you plan to do with that Raspberry Pi with
Eben Upton. I wonder who you’ll be able to meet next year?

his year’s ACCU
Conference was held
at the Marriott Hotel

Bristol on 9th–13th April.
That in itself was rather
noteworthy, as for as long
as we have been going to
this conference (since
2007, amazingly), it has
been held in Oxford, so
Bristol was new territory
for us.

Beth and I arrived at the
conference venue on
Monday afternoon, and
started set t ing up on
Tuesday. The venue is a
good one (and mos t
importantly: one which
gives the conference
space to grow again!), but
obviously after so many
years at the previous
venue in Oxford, there
were lots of little things to
relearn and adapt to.

Almost all of the usual faces were there, so it was good to see everyone
again and catch up with
what they’ve been up to
over the last few months.

One minor change for me
is that I’ve finally gone
tablet and was taking
no te s t h i s yea r i n
Evernote on a Nexus 7
3G rather than a netbook.
The netbook is easier to
t yp e on , b u t b e i n g
essentially a big phone
the Nexus proved to be
much more spontaneous

in nature (though the lack
of undo/redo and not
being able to plug in a
USB ke y wi t ho u t
adaptors and rooting the
device proved to be a bit
of a pain). But you can’t
have everything, right?

Our stand (bottom left)
was at the far end of the
long ha l lway in the
second photo above,
oppos i t e one o f the
entrances to the main
conference room.

Like all of the sponsors
we had a tea/coffee point
(w i th exp re s so
machine!!!) next to us,
and during the breaks
food was served directly
from tables di rect ly
opposite all along the
ha l lwa y (so i f one
catering point was too
busy, you could just find
another one without any
trouble).

In practice, the layout worked pretty well (catering in particular was less
of a bottleneck than at the previous venue), although the hallway did get
a little crowded at times.

Eben Upton of the Raspberry Pi foundation kicked things off in fine style
on Wednesday morning with an entertaining keynote during which he
described the concepts behind the Raspberry Pi, and some of the more
surprising things people are doing with it.

Shared family computers are not compatible with kids learning to program
– installing Python would disturb the viruses

~ Eben Upton

Although we saw him
give a similar talk at least
year’s Agile on the Beach
[1] , i t wa s a ve ry
en l i gh t en ing and
entertaining keynote.

On Wednesday afternoon
I was among those who

T

ANNA-JAYNE METCALFE
Anna is a C++ developer who opted out of
commuting by starting a software company. She’s
worked on projects ranging from software quality
tools to automated test, subsea navigation, digital
broadcasting and chemical detection systems.
She may be contacted at anna@riverblade.co.uk.

The main hallway at ACCU 2013

The ACCU 2013 foyer and registration desk

If knowledge reuse is your thing, John
Jagger’s Bletchley Park fundraising

bookstand was the place to be
(Upper photo courtesy of Kate Gregory)

Eben Upton’s Raspberry Pi keynote

The Riverblade stand at ACCU 2013 just
after we’d finished setting up
JUL 2013 | | 23{cvu}

did a 5 minute stand-up
during Pete Goodliffe’s
‘Becomi ng a Be t t e r
Programmer’ session.

My t a lk was on t he
subject of continuous
refactoring, and titled ‘If
it ain’t broke, Do fix it’
(I’ll write this talk up as a
blog post sometime). As
luck would have it, I was
up last and by the time my
turn came I was really

nervous and my delivery
was all over the place.

I honestly thought I’d
completely fluffed it – so
w h e n d ur i n g h i s
‘ C hea t i n g De c l i ne :
Acting now to let you
program well for a really
long time’ keynote the
following morning Brian
Marick said that of all of
the presenters in that
session I was the one who
nailed it for him – and
them called me up front
to present me with a book
(Beyond the Brain: How
Body and Environment
S h ap e A n i m al a nd
Human Minds [2]) – you
could have knocked me
ove r w i th a f ea the r
(fortunately nobody did,
and I made it back to my
seat without incident).

The big draw this year
was of course Bjarne
Strousrup’s keynote
‘C++ 11 The Future is
Here’, and his follow up
session on the roadmap
for future versions of the
standard – notably C++
14 and C++ 17.

Bjarne actually stopped
by our stand at one point,

but rather than talking
about our stuff to any
great extent we spent
most of our conversation
talking about arcade
games (we have a Space
Invaders keyboard on
one of the machines on
our stand).

S t i l l , t o h av e th e
opportunity to chat with
the author of the C++
programming language
ab ou t yo u r s t u f f –

however briefly – is pretty damn cool no matter how you look at it!

Thursday afternoon was
Olve Maudal’s famous
(and appropriately titled)
C++ 11 Pub Quiz –
which of course took
place in the bar. The fact
that we were all offered a
free pint (sadly, bottled
as the bar did not have
any real ale) made the
atmosphere as relaxed
and fun as I’m sure you
can imagine.

Although some of the
questions were obscure
(to say the least) the
answers were at least
sub j e c t t o a we l l
lubricated peer review!

While on the subject of
liquid non-caffeinated
refreshments, mention
must be made of the
astonishing Bloomberg
Lounge which featured

at this year’s conference.
For some reason (beer,
perhaps?) I didn’t take
any pictures in there, but
if you imagine a fairly
bright but relaxed area
with bar, retro gaming
machines and a pool
table you aren’t far off
the mark.

B l o om be rg w e re
obviously showcasing

their trading displays,
which as a user interface
developer I found quite
interesting in themselves.
A s t o n i s h i ng l y ,
B l oo mb er g a l so
sponsored a free bar for
much of the week – a
gesture many delegates
took good advantage of as
I am su re y ou c an
imagine!

The lightning talks this
year were a blast, but for
my money the highlight
was a talk by Michel
Grootjans on the ‘Ook’
programming language:

Seriously, some of the
stuff you encounter at tech
con fe r ences i s j u s t
comedy gold.

On Thursday evening the
conference hosted Bristol
Girl Geeks, at which Astrid Byro, Francis Buontempo, Kate Gregory and
I all gave short talks. Mine was titled ‘All alone in a sea of hairdressers’,

Pete Goodliffe’s
‘Becoming a Better Programmer’
session on Wednesday afternoon

Bjarne Stroustrup presenting
’C++11: The Future is Here’ at ACCU 2013

(Photo courtesy of Dmitry Kandalov)

ACCU 2013 LIghtning Talks

Olve Maudal’s ’C++11 Pub Quiz’
at ACCU 2013

As ever, Blackwells were offering tempting
discounts for ACCU 2013 delegates

Michel Grootjans presents
’Ook: A programming language designed for

orang-utans’ at ACCU 2013
24 | | JUL 2013{cvu}

Inspiration [P]article
Frances Buontempo shares a story about how engaging with

someone can be fun and rewarding.

aving recently been interviewed by Gail Ollis for her PhD [1], I was
left thinking about how easy it is to be negative when thinking about
programming and, feeling we should make an effort to be positive

just occasionally, realised it had been a long time since CVu had had an
inspiration particle.

Recently some work experience pupils were sent round to meet us and
other teams. I observed them coming towards us and what happened with
the other teams. People were tending to just talk at them, explaining what
they did day to day. I don’t know about you, but having people talk at you
for hours can make it hard to pay attention. It’s often more interesting to
actively engage with things. Having had a brief look at Jon Jagger’s cyber-
dojo [2] at an ACCU London meeting, this put an idea in my head.

When two of the pupils got sent to me, I asked if they had programmed
before, and they said, “No”. They admitted they had used some application
which they could give instructions to, to get a taste of programming but
that was it. We therefore spent about an hour coding ‘FizzBuzz’ in python
using the cyber-dojo. It was marvelous just being able to try it out, without

having to set anything up, and they could go home and have another go
easily if they wanted. It was so exciting watching them go from afraid to
braver, and more willing to try things. You could see a smile forming as
they both had a go at typing and seeing what happened as they changed
the code. Next time I get sent work experience pupils, I will definitely use
the cyber-dojo again, and hope it might inspire a young person to learn how
to program.

References
[1] https://dl.dropboxusercontent.com/u/77626588/

infoForResearchParticipantsA4.pdf
[2] http://cyber-dojo.com/

H

ACCU Conference 2013 (continued)

Have you experienced something which has changed
your perspective, had a positive effect on you, or just given
you a buzz? Let us know at cvu@accu.org.

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines. We need
articles at all levels of software development experience; you don’t have to write about rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
Riverblade, and some of
the lessons we’ve learnt
along the way.

The title of the talk is a
reference to the fact that
when we first started in
2004, we seemed to be
the only tech startup on
the networking circuit in
Bournemouth (but there
were however a lot of
hairdressers and garden
designers...).

We thoroughly enjoyed
the conference, so if

you’ve not been to an ACCU Conference before we can certainly
recommend it! Copies of the slides for most of the sessions which took
place during the week are available via the ACCU website.

Finally, if you want to get a good feel for the atmosphere at the conference,
you can do a lot worse than to check out the photos, videos, tweets and
slides on the ACCU 2013 Eventifier page.

References
[1] http://agileonthebeach.com/
[2] Barrett, Louise (2011) Beyond the brain: how body and environment

shape animal and human minds Princeton University Press.

Acknowledgements and copyright
Unless otherwise specified, all photos are copyright Anna-Jayne
Metcalfe and are reproduced with her permission.

Jon Jagger and Kevlin Henney
closing ACCU 2013

Sometimes it’s a hardware problem!
(Photo courtesy of Stephan Eggermont)
JUL 2013 | | 25{cvu}

http://agileonthebeach.com/
https://dl.dropboxusercontent.com/u/77626588/infoForResearchParticipantsA4.pdf
https://dl.dropboxusercontent.com/u/77626588/infoForResearchParticipantsA4.pdf
http://cyber-dojo.com/

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamorous ‘not recommended’ rating, you are entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with books.
Jez Higgins (jez@jezuk.co.uk)
How to read a book : The
classic guide to
intelligent reading
By Mortimer J. Adler & Charles Van
Doren. ISBN-13: 978-0-671-21209-4

Reviewed by Ian Bruntlett

First an acknowledgement, On 1st April, on the
accu-general mailing list, Huw Lloyd
recommended this book. I ordered it and
commenced devouring it armed with note paper,
a pencil and a highlighter pen. This book is in
four parts and I will deal with them in turn.

Part 1, ‘The dimensions of reading’ discusses
the basics of reading – why do we do it? And
‘How do we do it?’. There are different stages
of reading, the first being Elemental Reading.
The second, (the two types of) Inspectional
Reading. The first type is systematic reading, the
second type is superficial reading. The general
idea is that we read different genres of books
differently and the level of concentration and
study suitable for one work will be inappropriate
for another. The final chapter, ‘How to be a
demanding reader’ introduces the Essence of
Active Reading as four basic questions that a
reader should ask (in differing forms) about a
book being read. They are: 1) What is the book
about as a whole? 2) What is being said in detail,
and how? 3) Is the book true in whole or part?
And 4) What of it? (is the book significant?).

Part 2 is ‘The third level of reading: Analytical
reading’. The first rule is that you must know
what kind of book you are reading and to adapt
your reading style accordingly. The second rule
is that you must be able to summarise the book
in a couple of sentences. Rule three is more
demanding of the reader and the book – identify
the major parts of the book, how they interact
with one another and how they, together, create
a greater whole. Rule 6 is introduced here –
‘Mark the most important sentences in a book
and discover the propositions they contain’. It
mentions Intrinsic Reading (reading a book
quite apart from other books) and Extrinsic
Reading (reading a book as part of a collection
of related books).

Part 3, ‘Approaches to Different Kinds of
Reading Matter’ was extremely rewarding to

read. To summarise, it covers, practical books,
imaginative literature, stories, plays and poems,
History, Science and Mathematics, Philosophy
and Social Science.

Part 4 is ‘The ultimate goals of reading’. This
seems a strange title to me. However, the
contents are still interesting. It introduces the 4th
level of Reading – Syntopical reading which is
an approach to take when reading different
books on the same topic.

Appendix A provides the reader with a
recommended reading list. Appendix B
Exercises and tests can be used by the reader to
see if they have grasped the concepts in this
book.

If this review hasn’t answered the question
‘Shall I read this book?’, look up ‘How to read
a book’ on Wikipedia.

The bulk of the book (excluding appendices and
index) consumes 346 pages. If you have time to
read it and you intend to read broadly and not
just within your own field, I recommend this
book.

Implementing Domain-
Driven Design
By Vaughn Vernon, published by
Addison-Wesley.

Reviewed by Ian Bruntlett,

Highly recommended.

This book builds on the prior work,
Domain-Driven Design : Tackling the
Complexity in the Heart of Software
(Eric Evans,2004). Eric Evans
introduced the idea of ‘Ubiquitous Language’.
The ‘Ubiquitous Language’ is something that
different stakeholders in a development project
can communally agree on.

This book’s examples are samples written in
Java or C#. There is plenty of discussion about
design or implementation techniques, especially
leaning upon the samples based on a Java based
multi-threading, multi-user, networked system.
It discusses different strategies, including their
relative strengths and weaknesses.

When discussing the DDD, the role of a
Ubiquitous Language is introduced. A business

is defined by its purpose – this becomes its core
domain. Lesser domains are 1) supporting sub-
domains (business specific things) and 2)
generic sub-domains (things that can be bought
in or provided by other development teams. It
discusses different architectures – I must
confess I hadn’t heard of the Hexagon
architecture (aka Ports and Adapters) and really
like it.

From a personal point of view, I particularly
really like these concepts introduced by this
book. A lot of the book makes sense from some
C++ Builder/SQL systems I once developed. I
particularly like the way the book’s concepts can
help you avoid building systems that are a big
ball of mud or a data silo.

This is an excellent book if you need its advice.
It could do with a glossary though – I improvised
by referencing Wikipedia for unfamiliar terms.
It does have a useful bibliography with
references to many papers on the Internet.

Professional iPhone
programming with
MonoTouch and .NET/
C#
By McClure, Bowling, Dunn,
Hardy and Blyth Wrox - ISBN 978-
0-470-63782-1

Reviewed by Paul Johnson

Highly recommended

I will start this review by coming clean.
I hate Obj-C. Always have. I remember trying it
years ago and thinking that it was just an unholy
mess that deserves to be consigned to history as
a bad mistake. For some reason, Apple decided
to use it for iPhone/iPad development and, well
you know what happened next.

Thankfully, with the advent of Xamarin.iOS
(the new name for monotouch) apps can be
written quickly and easily in .NET. The
compiler then does some clever stuff and the
resulting code is allowed to be distributed on the
Apple store. All I can say is thank goodness!

More over, thank goodness for this book! As
with the Android with Mono for Android book,
there are precious few books for .NET developer
26 | | JUL 2013{cvu}

writing code on Apple devices. Thankfully, this
book does a damned good job at filling that void.

Writing for Apple devices is a much tougher act
than writing for Android and the first couple of
chapters cover how to create the UI using Xcode
and how to connect the buttons up to the viewer
so that code can be written. As with the Android
book, the authors go to great lengths to simplify
this process and to keep everything as clear as
possible.

Everything up to chapter 5 is to do with the user
interface. You may think 4 chapters is a fair bit
for UI, but given that Apple places such a high
value on the user experience, this can be
considered slightly short.

The next part of the book is more the real nuts
and bolts of iPhone programming – data, more
on the UI, maps and all of the funky parts you
expect on the phone including (importantly)
how to communicate with the outside world,
video, sound and talking to other applications.

Unlike the Android book, there is a chapter
given over to knowing just enough Obj-C to get
away with things. Why is this? Well, despite
Xamarin.iOS doing a brilliant job, the likes of
NSObject, NSString et al are still there and it is
useful for bringing over code in ObjC to C#
where the book has not mentioned something
(come on, it’s a book and has a finite number of
pages and despite their best efforts, not every
problem that can be encountered has been
covered!)

Quite simply put, for those writing code on
Apple devices using Xamarin.iOS, this is a
must.

Professional Android
Programming with
Mono for Android and
.NET/C#
By McClure, Blevins, Croft, Dick
and Hardy Wrox - ISBN 978-
1118102275

Reviewed by Paul Johnson

Highly recommended

Xamarin.Android (as it is now known)
suffers from one simple thing – a lack of any sort
of reference material. There are scant few books
covering .NET programming on Android
devices and programming with .NET on
Android is not the same as programming for
Android in Java. For a start, it’s easier!

If you know .NET already, why go through the
curve of learning Java?

What this book provides the user with are simple
to follow examples of not how to code in C#
(that is wisely left to other books), but how to
code for Android using C# and to be able to
access video, sound, maps and pretty much any
other aspect of using an Android device. It is an
invaluable addition to any book shelf.
Everything in the book is clear and well
explained and what is even more important, I
was unable to find any of the examples that

didn't just work straight off or leave me in any
confusion on how to code for Android using C#.

The book though does have two omissions, one
of which is perhaps excusable as it can be argued
as being outside of the scope of the book and that
is helpful advice in porting native Java source to
C#. Bringing code from the plentiful Java
examples to C# is of immense use. The other
omission is memory management.

Xamarin.Android suffers from a memory
problem. Say you create a List<T> in .NET for
the Android device. When the activity goes out
of scope, the GC does its job and cleans the
List<T> up – or so you think. The GC cleans
the .NET pointer to the underpinning Java
List<T>, but not the underpinning Java List.
That has to be explicitly removed. Another
memory issue is in handling bitmaps and bitmap
manipulation. These can be massive memory
hogs and in some cases, cause the app to crash
horribly.

Despite these, this book is just what the doctor
asked for. A simple to follow and clearly written
text that shortens the learning curve.

I hope there is a second edition which corrects
these omissions and adds in animation as well as
bringing it up to date with Android 4.2 being
covered.

Nginx HTTP Server
By Clement Nedelcu, published
by Packt Publishing ISBN: 978-
1849510868

Reviewed by Alan Lenton

Nginx (pronounced as
‘Engine X’) is a lean, mean
and fast web server. It’s open source, and
designed to serve pages fast. We use it as work,
and, while it is not as well known as Apache, and
maybe not as comprehensive, you don’t need a
Ph.D. in chaos theory to understand and write its
configuration files!

This book is an excellent, and thorough,
introduction to how to set up and use the server.
Nginx is a modular server and the core modules,
together with the rewrite module, the server-side
include module, and the SSL module are
covered in sufficient depth that anyone with a
reasonable level of sysadmin knowledge would
be able to set up the modules properly and
safely. Other ‘standard’ modules are covered
briefly, but third party modules are not covered
at all. At first I thought that was an unfortunate
omission, but on reflection, given the speed with
which third party modules are developing and
changing, that was probably a wise decision.

Once the author has covered all the basics there
are a number of interesting and useful chapters
covering other related topics. One of them
covers using Fast-CGI both with Python and
PHP. This is excellent, and includes a basic
explanation of what CGI is and how to interface
and use Nginx with the PHP-FPM and python
based Django frameworks. Another chapter
teaches you how to use Nginx as a reverse proxy
along with Apache, and a third chapter covers
the tricky business of moving your web site from
Apache to Nginx.

The only weird thing about this book is the first
chapter, which appears to be a potted newbie’s
guide to Linux system administration. I’ve no
idea why it’s there, perhaps the author’s contract
with the publisher specified that the book had to
be over 300 pages long? Most people trying to
set up a web server will probably know at least
some system administration. If that’s the case,
my advice is to start at chapter two.

I was impressed by this book (actually I was also
very impressed with Nginx) and I would
definitely recommend it to anyone coming to
Nginx for the first time.
JUL 2013 | | 27{cvu}

28 | | JUL 2013

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Alan Griffiths
chair@accu.org

Since my last report the main
development has been that the Membership
Secretary elected by the AGM (Craig
Henderson) unexpectedly resigned. The
committee has co-opted last year's Membership
Secretary (Mick Brooks) to replace him until a
more permanent solution is found. We can all
thank Mick for stepping into the job he so
recently vacated – but we do need a volunteer to
take over the post as Mick will not be continuing
next year.

The following are the responsibilities of the
membership secretary:

 Consult website once per month to
estimate number of journals required at
next printing, and notify the production
editor.

 Consult website once per month to
retrieve mailing info for the journal, and
forward to the distributor.

 Receive excess journals each month, and
store up to a year's worth.

 Consult bank statement once per month
and enter standing order payments into the
website admin interface.

 Chase any standing order underpayments.
 Send journals out to members who have

missed an issue.
 Send journals out to prospective

members, groups or conferences that
request them.

 Keep an eye on the stream of automated
renewal and joining payments.

 Answer enquiries to
accumembership@accu.org, typically:
 prepare invoices and receipts
 resolve payment troubles

 handle address changes
 advise on the benefits of membership

Keep some stats on the size and makeup of the
membership, reporting back to the association.

Prepare reports for the treasurer on the donations
that members make when they join or renew.

If anyone is interested in the role, please contact
me (or Mick) – the committee would like to co-
opt any potential candidates so that they can
understudy Mick during the remainder of the
year (while he is available to help) and will have
a feel for the job before the AGM.

Distributed committee meetings are becoming
increasingly routine: Of the nine members
attending the last meeting there were three
countries represented, and there were only three
physically present. In the past the need to attend
committee meetings in the UK has been a barrier
to members from other countries participating.

We've not yet resolved the problems with the
failure to have accounts ready for the AGM. As
The Treasurer was unable to attend the last
committee meeting we deferred discussion to
the next one.

Other aspects of the ACCU are going smoothly,
the journals have a new distributor. The mailing
lists are busy and the website is being updated to
show what is happening in the organisation.

We still have no volunteer to moderate the accu-
contacts mailing list. This isn't an onerous task
(there are a few emails each week to classify as
“OK”, “Spam” or “needs fixing”) but we don't
currently have a replacement for this role. Is this
something you could do for the ACCU?

	CVu25-3.pdf
	A beginner again
	Passionate About Programming or Passionate About Life?
	On Software Design, Space, and Visuality
	All the World’s a Stage...
	How I Wrote My First Technical Presentation
	Wrapper Scripts
	The Ghost of a Codebase Past
	Code Critique Competition 82
	Standards Report
	Inspiration [P]article
	ACCU Conference 2013
	Bookcase
	View from the Chair

