

MAY 2013 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

The New Informs The Old
few weeks ago, I finally finished reading the Freeman and Price book Growing
object oriented software, guided by tests. I bought it a
couple of years ago, and (for shame!) have only just got

round to reading it. For even more shame, I decided once
I’d finished it to read a book that’s been left practically
untouched for far longer, Kent Beck’s Test-driven
development. The reason I’d not got round to reading that one
is that there’s so much commentary and discussion about TDD
– within ACCU, and on countless forums – I felt I’d already
read it, in a way.

What was most interesting for me was the reading of these two
books back to back, and in reverse order, so to speak. Going back a
decade or so with Kent’s book gave me new insights on the more
modern practice, which also fed new comprehension of
Growing..... The basic premise seems to be very similar, with
the keeping of a to-do list, writing code test first, getting fast
feedback, keeping the code ‘clean’. The New has differences to
the Old, for example, getting a ‘walking skeleton’ in place, with
acceptance tests, which drives a slightly different approach to
development.

Indeed, this difference of approach seems to have spawned an
entire debate: that of ‘Classic’ (or ‘Detroit’) versus ‘London-style’ TDD. This seems
to me to be similar to the differences between ‘Mockists’ and ‘Classicists’ as
described by Martin Fowler in his article ‘Mocks aren’t stubs’, but goes further than
that. The idea of aiming first for a full end-to-end test (with the help of Mock
Objects) drives design differently to beginning with the simplest piece of
functionality that represents measurable progress, as in ‘classic’ TDD. I’ve heard this
described as ‘outside-in’ design versus ‘inside-out’.

I’m pretty sure I don’t yet understand either approach well enough to comment on the
better-ness of either one. However, one of those insights I mentioned that came from
reading both books, was that the more modern approach looks to me like a natural
progression of the classic approach, and that the use of Mock Objects to explore the
relationships between collaborating objects is complementary to testing publicly
visible state. Of one thing I am certain: whether you write tests in ‘classic’ or
‘London’ style is less important than your tests being clear and useful – and that
you’ve written some!

A
Volume 25 Issue 2
May 2013

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Pete Goodliffe, Martin Janzen,
Paul F. Johnson, Filip van
Laenen, Chris Oldwood, Roger
Orr, Richard Polton, Mark
Radford

ACCU Chair
Alan Griffiths
chair@accu.org

ACCU Secretary
Giovanni Asproni
secretary@accu.org

ACCU Membership
Craig Henderson
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Print and Distribution
Parchment (Oxford) Ltd

Design
Pete Goodliffe

2 | | MAY 2013

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
18 Standards Report

Mark Radford looks at
some features of the next
C++ Standard.

19 Code Critique Competition
Competition 81 and the
answers to 80.

24 Letter to the Editor
Martin Janzen reflects on
Richard Polton’s article.

REGULARS
22 Bookcase

The latest roundup of
book reviews.

24 ACCU Members Zone
Membership news.

SUBMISSION DATES
C Vu 25.3: 1st June 2013
C Vu 25.4: 1st August 2013

Overload 116:1st July 2013
Overload 117: 1st September 2013

FEATURES
3 Bug Hunting

Pete Goodliffe implores us to debug effectively.

6 Tar-Based Back-ups
Filip van Laenen rolls his own with some simple tools.

8 ACCU Conference 2013
Chris Oldwood shares his experiences from this year’s
conference.

10 Writing a Cross Platform Mobile App in C#
Paul F. Johnson uses Mono to attain portability.

12 Let’s Talk About Trees
Richard Polton puts n-ary trees to use parsing XML.

16 Team Chat
Chris Oldwood considers the benefits of social media in
the workplace.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Becoming a Better Programmer # 80
Bug Hunting
Pete Goodliffe implores us to debug effectively.

If debugging is the process of removing software bugs, then
programming must be the process of putting them in.

~ Edsger Dijkstra

t’s open season. A year-round season. There are no permits required,
no restrictions levied. Grab yourself a shotgun and head out into the
open software fields to root out those pesky varmints, the elusive bugs,

and squash them, dead.

Well, it’s not really as saccharin that. But sometimes you end up working
on code in which you swear the bugs are multiplying and ganging up on
you. A shotgun is the only response.

The story is an old one, and it goes like this: Programmers write code.
Programmers aren’t perfect. The programmer’s code isn’t perfect. It
therefore doesn’t work perfectly first time. So we have bugs.

If we bred better programmers we’d clearly breed better bugs.

Some bugs are simple mistakes that are obvious to spot and easy to fix.
When we encounter these, we are lucky.

The majority of bugs, the ones we invest hours of effort tracking down,
losing our follicles and/or hair pigment in the search, are the nasty, subtle
issues. These are the odd surprising interactions, or unexpected
consequences of the actions we instigate. The seemingly non-deterministic
behaviour of software that looks so very simple. It can only have been
infected by gremlins.

This isn’t a problem limited to newbie programmers who don’t know any
better. Experts are just as prone. The pioneers of our craft suffered; the
eminent computer scientist Maurice Wilkes wrote in [1]:

I well remember [...] on one of my journeys between the EDSAC room and
the punching equipment that ‘hesitating at the angles of stairs’ the realisation
came over me with full force that a good part of the remainder of my life was
going to be spent in finding errors in my own programs.

So face it. You’ll be doing a lot of debugging. You’d better get used to it.
And you better get good at it. (At least you can console yourself that you’ll
have plenty of chance to practice.)

An economic concern
How much time do you think is spent debugging? Add up the effort of all
of the programmers in every country around the world. Go on, guess.

Greg Law (who provided me with the initial impetus to write this – as well
as collating an amount of excellent material that I have wilfully stolen)
points out that a staggering $312bn per year is spent on the wage bills for
programmers debugging their software. To put that in perspective, that’s
two times all Euro-zone bailouts since 2008! This huge, but realistic, figure
comes from research carried out by Cambridge University’s Judge
Business School [2].

You have a responsibility to fix bugs faster: to save the global economy.
The state of the world is in your hands.

It’s not just the wage bill, though. Consider all the other implications of
buggy software: shipping delays, cancelled projects, the reputation
damage from unreliable software, and the cost of bugs fixed in shipping
software.

An ounce of prevention
It would be remiss of any article on debugging to not stress how much
better it is to actively prevent bugs manifesting in the first place, rather than
attempt a post-bug cure. An ounce of prevention is worth a pound of cure.
If the cost of debugging is astronomical, we should primarily aim to
mitigate this by not creating bugs in the first place.

This, in a classic editorial sleight-of-hand, is material for a different article,
and so we won’t investigate the theme exhaustively here.

Suffice to say, we should always employ sound engineering techniques
that minimise the likelihood of unpleasant surprises. Thoughtful design,
code review, pair programming, and a considered test strategy (including
TDD practices and fully automated unit test suites) are all of the utmost
importance. Techniques like assertions, defensive programming and code
coverage tools will all help minimise the likelihood of errors sneaking past.

We all know these mantras. Don’t we? But how diligent are we in
employing such tactics?

Avoid injecting bugs into your code by employing sound
engineering practices. Don’t expect quickly-hacked out code to
be of high quality.

The best bug-avoidance advice is to not write incredibly ‘clever’ (which
often equates to complex) code. Brian Kernighan states:

Debugging is twice as hard as writing the code in the first place. Therefore,
if you write the code as cleverly as possible, you are, by definition, not smart
enough to debug it.

Martin Fowler reminds us:

Any fool can write code that a computer can understand. Good programmers
write code that humans can understand.

Bug hunting
Beware of bugs in the above code;

I have only proved it correct, not tried it.
~ Donald Knuth

Being realistic, no matter how sound your code-writing regimen, some of
those pernicious bugs will always manage to squeeze through the defences
and require you to don the coder’s hunting cap and an anti-bug shotgun.
How should we go about finding and eliminating them? This can be a
Herculean task, akin to finding a needle in a haystack. Or, more accurately,
a needle in a needle stack.

Finding and fixing a bug is like solving a logic puzzle. Generally the
problem isn’t too hard when approached methodically; the majority of
bugs are easily found and fixed in minutes. There are two ‘vectors’ that
make a bug hard to fix: how reproducible it is, and how long it is between
the cause of the bug itself (the ‘software fault’) and you noticing. When a

 I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net or @petegoodliffe

no matter how sound your code-
writing regimen, some of those
pernicious bugs will always manage
to squeeze through the defences
MAY 2013 | | 3{cvu}

bug scores high on both, it’s almost impossible to track down without sharp
tools and a keen intellect.

If you plot frequency versus time-to-fix you get a curve asymptotically
approaching infinite time to fix. In other words, the hard bugs are few in
number, but that’s where we will spend most of our time.

There are a number of practical techniques and strategies we can employ
to solve the puzzle and locate the fault.

The first, and most important thing, is to investigate and characterise the
bug. Give yourself the best raw material to work with:

 Reduce it to the simplest set of reproduction steps possible. Sift out
all the extraneous fluff that isn’t contributing to the problem, and
only serves to distract.

 Ensure that you are focusing on a single problem. It can be very easy
to get into a tangle when you don’t realise you’re conflating two
separate – but related – faults into one.

 Determine how repeatable the problem is. How frequently do your
repro steps demonstrate the problem? Is it reliant on a simple series
of actions? Does it depend on software configuration, or the type of
machine you’re running on? Do peripheral devices attached make
any difference? These are all crucial data points in the investigation
work that is to come.

In reality, when you’ve constructed a single set of reproduction steps, you
really have won most of the battle.

Here are some useful debugging strategies:

Lay traps

You have errant behaviour. You know a point when the system seems
correct (maybe it’s at start-up, but hopefully a lot later through the repro
steps), and you can get it to a point where its state is invalid. Find places
in the code path between these two points, and set traps to catch the fault.

Add assertions or tests to verify the system invariants that must hold. Add
diagnostic print-outs to see the state of the code so you can work out what’s
going on.

As you do this, you’ll gain a greater understanding of the code, reasoning
more about the structure of the code, and will likely add many more
assertions to the mix to prove your assumptions hold. Some of these will
be genuine assertions about invariant conditions in the code, others will
be assertions relevant to this particular run. Both are valid tools to help you
pinpoint the bug. Eventually a trap will snap, and you’ll have the bug
cornered.

Assertions and logging (even the humble printf) are potent
debugging tools. Use them often.

Many of these diagnostic logs and assertions may be valid to leave in the
code after you’ve found and fixed the problem.

Learn to binary chop

Aim for a binary-chop strategy, to focus in on bugs as quickly as possible.
Rather than single-stepping through code paths, work out the start of a
chain of events, and the end. Then partition the problem space into two,
and work out if the middle point is good or bad. Based on this information,
you’ve narrowed the problem space to something half the size. Repeat this
a few times, and you’ll soon have homed-in on the problem.

Employ this technique with trap-laying. Or with the other techniques
below.

Employ software archaeology

Software archaeology describes the art of mining through the historical
records in your version control system. This can provide an excellent route
into the problem; it’s often a simple way to hunt a bug.

Determine a point in the near past of the codebase when this bug didn’t
exist. Armed with your reproducible test case, step forwards in time to

determine which code changeset caused the breakage. Again, a binary
chop strategy is the best bet here.

Once you find the breaking code change, the cause of the fault is usually
obvious, and the fix self-evident. (This is another compelling reason to
make series of small, frequent, atomic check-ins, rather than massive
commits covering a range of things at once.)

Do not despise tests

Invest time as you develop your software to write a suite of unit tests. This
will not only help shape how you develop and verify the code you’ve
initially written. It acts as a great early warning device for changes you
make later; it acts like the miner’s canary – the test fails long before the
problem becomes complex to find and expensive to fix.

These tests can also act as great points from which to begin debugging
sessions. A simple, reproducible unit test case is a far simpler scaffold to
debug than a fully running program that has to spin up and have a series
of manual actions run to reproduce the fault. For this reason, it’s advisable
to write a unit test to demonstrate a bug, rather than start to hunt it from a
running ‘full system’.

Once you have a suite of tests, consider employing a code coverage tool
to inspect how much of your code is actually covered by the tests. You may
be surprised. A simple rule of thumb is: if your test suite does not exercise
it, then you can’t believe it works. Even if it looks like it’s OK now, without
a test harness then it’ll be very likely to get broken later.

Untested code is a breeding ground for bugs. Tests are your
bleach.

When you finally determine the cause of a bug, consider writing a simple
test that clearly illustrates the problem, and add it to the test suite before
you really fix the code. This takes some genuine discipline, as once you
find the code culprit, you’ll naturally want to fix it ASAP and publish the
fix. Instead, first write a test harness to demonstrate the problem, and use
this harness to prove that you’ve fixed it. The test will serve to prevent the
bug coming back in the future.

Invest in sharp tools

The are many tools that are worth getting accustomed to, including
memory checkers like electric fence, and swiss-army knife tools like
Valgrind. These are worth learning now rather than reaching for them at
the last minute. If you know how to use a tool before you have a problem
that demands it, you’ll be far more effective.

Learning a range of tools will prevent you from cracking a nut with a
pneumatic drill.

Of course, the tool of debugging champions is the debugger. This is the
king of tools that allows you to break into the execution of a running
program, step forwards by a single instruction, or step in – and out of –
functions. Some advanced debuggers even allow you to step backwards.
(Now, that’s real voodoo.)

In some circles there is a real disdain for the debugger. Real programmers
don’t need a debugger. To some extent this is true; being overly reliant on
such a tool is a bad thing. Single-stepping through code mindlessly can
trick you into focusing on the micro, rather than thinking about the overall
shape of the code.

But it’s not a sign of weakness. Sometimes it’s just far easier and quicker
to pull out the big guns. Don’t be afraid to use the right tool for the job.

Learn how to use your debugger well. Then use it at the right
times.

Remove code to exclude it from cause analysis

When you can reproduce a fault, consider removing everything that
doesn’t appear to contribute to the problem to help focus in on the
offending lines of code. Disable other threads that shouldn’t be involved.
4 | | MAY 2013{cvu}

Remove subsections of code that do not look like they’re related. It’s
common to discover objects indirectly attached to the ‘problem area’, for
example via a message bus or a notifier-listener mechanism. Physically
disconnect this coupling (even if you’re convinced it’s benign). If you still
reproduce the fault, you have proven your hunch about isolation, and have
reduced the problem space.

Then consider removing or skipping over sections of code leading up to
the error (as much as makes practical sense). Delete, or comment out
blocks that don’t appear to be involved.

Cleanliness prevents infection

Don’t allow bugs to stay in your software for
longer than necessary. Don’t let them linger.
Don’t dismiss problems as known issues. This
is a dangerous practice. It can lead to broken
window syndrome [3]; making it gradually
feel the norm and acceptable to have buggy
behaviour. This lingering bad behaviour can
mask the causes of other bugs you’re hunting.

One project I worked on was demoralisingly bad in this respect. When
given a bug report to fix, before managing to reproduce the initial bug
you’d encounter ten different issues on the way that all also needed to be
fixed, and may (or may not) have contributed to the bug on question.

Oblique strategies

Sometimes you can bash your head against a gnarly problem for hours and
get nowhere. It’s important to learn when you should simply stop and walk
away. A break can give you fresh perspective.

This can help you to think more carefully. Rather than running headlong
back into the code, take a break to consider the problem description and
code structure. Go for a walk and step away from the keyboard. (How many
times have you had those ‘eureka’ moments in the shower? Or in the
toilet?! It happens to me all the time.)

Describe the problem to someone else. Often when describing any problem
(including a bug hunt) to another person, you instantly explain it to yourself
and solve it. Failing another actual, live, person, you can follow the rubber
duck strategy described by the Pragmatic Programmers [4]. Talk to an
inanimate object on your desk to explain the problem to yourself. It’s only
a problem if the rubber duck starts to talk back.

Don't rush away

Once you find and fix a bug, don’t rush mindlessly on. Stop for a moment
and consider if there are other related problems lurking in that section of
code. Perhaps the problem you’ve fixed is a pattern that repeats in other
sections of the code. Is there further work that you could do to shore up
the system with the knowledge you just gained?

Non-reproducible bugs
Having attempted to form a set of reproduction steps, sometimes you
discover that you can’t. It’s just not possible. From time to time we uncover
nasty, intermittent bugs. The ones that seem to be caused by cosmic rays
rather than any direct user interaction. These are the gnarly bugs that take
ages to track down, often because we never get a chance to see them on a
development machine, or when running in a debugger.

How do we go about finding these?

 Keep records of the factors that contribute to the fault. Over time
you many spot a pattern that will help you identify the common
causes.

 As you get more information start to draw conclusions. Perhaps
identify more data points to keep in the record.

 Consider adding more logging and assertions in beta/release builds
to help gather information from the field.

 If it’s a really pressing problem, set up a test farm to run long
running-soak tests. If you can automate driving the system in a
representative manner then you can accelerate the hunting season.

There are a few things that are known to contribute to such unreliable bugs.
You may find they provide hints as to where to start investigating:

 Threaded code; as threads entwine and interact in non-deterministic
and hard-to-reproduce ways, they often contribute to freaky
intermittent failures. Often this behaviour is very different when you
pause the code in a debugger, so is hard to observe forensically.

 Network interaction, which is by
definition laggy and may drop or stall at
any point in time. Code that presumes
access to local storage works (because,
most often, it does) will not scale to
storage over a network.

 The variable speed of storage (spinny
disks, database operations, or network
transactions) may change the behaviour
of your program, especially if you are

balanced precariously on the edge of timeout thresholds.

 Memory corruption, where your aberrant code overwrites the stack
or heap, can lead to a myriad of unreproducible strangenesses that
are very hard to detect. Software archaeology is often the easiest
route to diagnose these errors.

Conclusion
Debugging isn’t easy. But it’s our own fault. We wrote the bugs.

Effective debugging is an essential skill for any programmer.

Acknowledgments
The inspiration for this article came from a conversation I had with Greg
Law about his excellent ACCU 2013 conference presentation on
debugging. Greg’s company, Undo Software, creates a most impressive
‘backwards debugger’ that you may want to look at. Check it out at undo-
software.com.

References
[1] Maurice Wilkes, Memoirs of a Computer Pioneer. The MIT Press.

1985. ISBN 0-262-23122-0
[2] Cambridge Research puts the global cost of debugging at $312billion

annually. reference. http://undo-software.com/content/press-release-
7

[3] Broken Windows Theory http://en.wikipedia.org/wiki/
Broken_windows_theory

[4] Andrew Hunt and David Thomas, The Pragmatic Programmer.
Addison Wesley. ISBN 0-201-61622-X.

Questions
1. Assess how much of your time you think you spend debugging.

Consider every activity that isn’t writing a fresh line of code in a
system.

2. Do you spend more time debugging new lines of code you have
written, or on adjustments to existing code?

3. Does the existence of a suite of unit tests for existent code change
the amount of time you spend debugging, or the way you debug?

4. Is it realistic to aim for bug-free software? Is this achievable? When
is it appropriate to genuinely aim for bug-free software? What
determines the optimal amount of ‘bugginess’ in a product?

Stop for a moment and
consider if there are other

related problems lurking in
that section of code
MAY 2013 | | 5{cvu}

Tar-Based Back-ups
Filip van Laenen rolls his own with some simple tools.

few months ago, I found out that I had to change the back-up strategy
on my personal laptop. Until then I had used Areca [1], which in
itself worked fine, but I was looking for something that could be

scripted and used from the command line, in addition to be easier to install
and maintain. As often is the case in the Linux world, it turned out that
you can easily script a solution together on your own using some basic
building blocks. For this particular task, the building blocks are Bash [2],
tar, rm and split, together with sha256sum and cmp to build a conditional
copying function.

Why use a script?
What was my problem with Areca? First of all, from time to time, Areca
had to be updated. In the Linux world, this is usually a good thing, but not
if the new version is incompatible with the old archives. This can also cause
problems when restoring archives, e.g. from one computer to another, or
after a complete reinstallation of the operating system. Furthermore, since
Areca uses a graphical user interface, scripting and running the back-up
process from the command line (or crontab) wasn’t possible.

Notice that these problems were generic, and not particular to Areca.
Before deciding to script a solution together, I looked for an alternative
solution that was scriptable and easy to install, but without success. That
is, except for the suggestions to build my own solution using tar.

Getting started
Listing 1 shows the start of my tar-based back-up script. It starts with a
shebang interpreter directive to the Bash shell. Then it checks the number
of arguments that were provided to the script – it should be exactly one,
otherwise the script exits here. Next it sets up four environment variables:
a base directory in BASEDIR, the back-up directory where all archives will
be stored in BACKUPDIR, the number of the current month (two digits) in
MONTH, and the first argument passed to the script in LEVEL. The LEVEL
variable represents the back-up level, i.e. 1 if only the most important
directories should be archived, 2 if some less important directories should
be archived too, etc…

Backing up a Directory
Next we define a two parameter function that backs up a particular
directory to a file. Listing 2 shows how this function looks, together with
some examples of how it can be used. First it logs to the console that it’s
going to back up. Next it uses tar to do the actual archiving. Notice that
the output of tar is redirected to a log file. That way we keep the console
output tidy, and at the same time can browse through the log file if
something went wrong. That’s also why we included v (verbosely list files
processed) in the option list for tar, together with c (create a new archive),
p (preserve file permissions), z (zip) and f (use archive file). Finally the
function creates a SHA-256 [3] digest from the result. This digest can be
used to decide whether two archive files are identical or not without having
to compare large, multi-GB files.

The variable MONTH is used to create rolling archives. In Listing 2, the
directories bin and dev will always be backed up to the same archive file,

but for the Documents and Thunderbird directory, a new one will
be created every month. Of course, if the script is run a second time during
the same month, the archive file for the Documents and Thunderbird
directory will be overwritten. Also, the same will happen when the script
is run a year later: the one year old archive file will then be overwritten
with a fresh back-up. If you want some other behaviour, like e.g. a new
archive every week or every day, you simply have to define your own
variable and use date to set it. Tailor to your needs in your own back-up
script!

Listing 3 shows how LEVEL can be used to differentiate between important
and often-changing directories on the one hand, and more stable directories
you do not want to archive every time you run your script on the other hand.
Currently my back-up script has three levels, but I’m considering splitting
off the small archives from level 1 in a separate level, so I could add a line
to crontab to take a quick back-up of some important directories once every
day.

Splitting large files
Next, I’d like to split large files into chunks that are easier to handle when
transferring them to external media. This makes it easier to move archives
between computers or to external media. Listing 4 shows a function that
splits a large file into pieces of 4 GB (hence the magic number
4,294,967,296 = 4 × 230), together with a loop that finds all files that
should be split.

Let’s start with a look at the function that splits the files. It receives one
parameter, the path to the file. The first thing the function does is to extract

 A

FILIP VAN LAENEN
Filip van Laenen is a chief technologist at the Norwegian
software company Computas. He has a special interest in
software engineering, security, Java and Ruby, and likes
to do some hacking on his Ubuntu laptop in his spare time.
He can be contacted at f.a.vanlaenen@ieee.org

function back_up_to_file {
 echo "Backing up $1 to $2."
 tar -cvpzf ${BACKUPDIR}/$2.tar.gz\
 ${BASEDIR}/$1 &> ${BACKUPDIR}/$2.log
 sha256sum -b ${BACKUPDIR}/$2.tar.gz\
 > ${BACKUPDIR}/$2.sha256
}

back_up_to_file bin bin
back_up_to_file dev dev
back_up_to_file Documents Documents-${MONTH}
back_up_to_file .thunderbird/12345678.default\
 Thunderbird-${MONTH}

Listing 2

#!/bin/bash
Creates a local back-up. The resulting files
can be dumped to a media device.

if [[$# -ne 1]]; then
 echo "Usage:"
 echo " `basename $0` <LEVEL>"
 echo "where LEVEL is the back-up level."
 exit
fi

BASEDIR=/home/filip
BACKUPDIR=${BASEDIR}/backup

MONTH=`date +%m`

LEVEL=$1

Listing 1
6 | | MAY 2013 {cvu}

the file name from the path, so that we can log to the console in a nice way
which file we’re going to split. Next it removes any chunks it finds from
the previous run, using option f to suppress any error messages in case
there aren’t any chunks present. Then it does the splitting into chunks of
4 GB, using option d to create numeric suffixes instead of alphabetic. This
means that if the function would split a file called dev.tar.gz, the
names of the resulting chunks would be dev.tar.gz.00 ,
dev.tar.gz.01, etc… Finally, when the function is done, it removes
the original file, because we don’t need to have it around any more.

The function is called inside a loop, which goes through all files having
the .tar.gz extension. For each file it uses stat to calculate the total size
(-c%s), and then compares it to 4 GB. If the file is larger, our function to
split the file is called.

Done
Finally, at the end of the script, we write to the console that we’re done
(echo "Done."). I like to do that to indicate explicitly that everything
went well, especially since this script can take a while.

Storing the back-ups
There’s a little detail in Listing 1 that we haven’t dealt with yet: where do
we store the back-ups? The script as it stands can be used to create local
back-ups, i.e. putting the back-up files on the same disk as the original data,
on the one hand, or write the back-ups directly to an external disk on the
other hand. Since I have enough space on my hard disk, I like to create the

back-up files locally first, and then plug in the external disk to transfer the
files. That’s also why I create SHA-256 digests, so I can detect when a
back-up file hasn’t changed and doesn’t need to be transferred to the
external disk.

Listing 5 shows how the back-up files we just created can be copied
conditionally to an external drive. It loops through all the SHA-256 digests
in the directory with the back-up files, and compares them to the SHA-256
digests in the target directory using cmp (silently, though the option s). If
both files exist, and their content is the same, cmp will return 0. In that case,
we don’t need to copy files to the target directory, and can continue with
the next SHA-256 digest. Otherwise we call the function that copies the
set of files associated to the SHA-256 digest.

The function to do that takes one parameter: the basename of the SHA-
256 digest file, but without the extension. The set of files we then want to
copy consists of either the back-up file as a whole, or the different chunks
resulting from the split function, in addition to the log file and of course
the SHA-256 digest. We therefore have to start by removing the old back-
up file or the chunks from the split function. Next, we copy the back-up
file or the chunks in a small loop that lets us log to the console what we’re
doing. Finally, we also copy the log file and the file with the SHA-256
digest. Notice that copying the SHA-256 digest file is the last thing we do:
if the script is interrupted, we want to be sure that the next run will try and
copy this file set again.

The code in Listing 5 forms the body of its own script, separate from the
code in the other listings. In fact, the script contains only three more things:
the definition of BACKUPDIR and TARGETDIR, and writing to the console
that we’re done. It assumes that we want to keep a copy of the back-up
files on our hard disk, hence the use of cp to transfer the files to the target
directory. If you’d rather move the back-up files to the target directory, you
should not only use mv instead of cp to transfer the files, but also remember
to remove the set of files from the back-up directory in case of identical
SHA-256 digests.

References
[1] See http://www.areca-backup.org/
[2] See http://www.gnu.org/software/bash/
[3] See http://en.wikipedia.org/wiki/SHA-2

Backup of directories subject to changes
if [${LEVEL} -ge 1]; then
 back_up_to_file bin bin-${MONTH}
 back_up_to_file Documents Documents-${MONTH}
 back_up_to_file .thunderbird/12345678.default\
 Thunderbird-${MONTH}
 back_up_to_file dev dev-${MONTH}
 …
fi

Backup of relatively stable directories
if [${LEVEL} -ge 2]; then
 back_up_to_file Drawings Drawings
 back_up_to_file Photos/2010 Photos-2010
 back_up_to_file Movies/2013 Movies-2010
 back_up_to_file .fonts fonts
 …
fi

Backup of stable directories
if [${LEVEL} -ge 3]; then
 back_up_to_file Music Music
 …
fi

Li
st

in
g

3

function split_large_file {
 FILENAME=$(basename $1)
 echo "Going to split ${FILENAME}."
 rm -f $1.0*
 split -d -b 4294967296 $1 $1.
 rm $1
}

for f in ${BACKUPDIR}/*.tar.gz
do
 FILESIZE=$(stat -c%s $f)
 if (($FILESIZE > 4294967296)); then
 split_large_file $f
 fi
done

function copy_files {
 rm -f "${TARGETDIR}/$1.tar.gz"*
 for f in ${BACKUPDIR}/$1.tar.gz*
 do
 FILENAME=$(basename $f)
 echo "Copying ${FILENAME}."
 cp $f "${TARGETDIR}"
 done
 cp ${BACKUPDIR}/$1.log "${TARGETDIR}"
 cp ${BACKUPDIR}/$1.sha256 "${TARGETDIR}"
}

for f in ${BACKUPDIR}/*.sha256
do
 FILENAME=$(basename $f)
 BASEFILENAME=\
 `echo ${FILENAME} | sed -e 's/.sha256$//'`
 cmp -s ${BACKUPDIR}/${FILENAME}\
 "${TARGETDIR}/${FILENAME}" > /dev/null
 if [$? -eq 0]; then
 echo "Skipping ${BASEFILENAME}."
 else
 copy_files ${BASEFILENAME}
 fi
done

Listing 5
Li

st
in

g
4

MAY 2013 | | 7{cvu}

http://www.areca-backup.org/
http://www.gnu.org/software/bash/
http://en.wikipedia.org/wiki/SHA-2

ACCU Conference 2013
Chris Oldwood shares his experiences from

this year’s conference.

t’s April once again and that can only mean one
thing – apart from the school holidays and Easter
eggs – it’s the ACCU Conference. This year saw

one of the biggest changes to the conference – a new
venue. And not just a new hotel but in a new city too!
For the last 5 years I’ve only ever been to the same
hotel in Oxford and so with much trepidation I headed
down to Bristol. One of my biggest ‘worries’ was what was going to
replace all those long standing traditions, like ‘Chutneys Tuesday’? But
hey, we’re all agile these days so we should embrace change, right?

Wednesday
Once again I didn’t get to partake in one of the tutorial days on the Tuesday
which was a shame as they looked excellent as usual. Instead I made my
way down on the Wednesday and arrived in the early afternoon. That
meant I missed lunch, but also more importantly the keynote from Eben
Upton about the Raspberry Pi and a talk from Jonathan Wakely about
SFINAE. The comments coming through on Twitter about these, and the
other parallel talks, generated much gnashing of teeth as I cursed my late
arrival.

Not wanting to take things lightly I dived head-first into Johan Herland’s
session about Git. I’ve done a little messing around with Git and have read
the older 1st edition O’Reilly book but I wasn’t sure whether I’d really
understood it. Luckily Johan walked us slowly through how Git works in
theory, and then in practice. I’m glad I saw this as it seems I was on the
right track but he explained some things much better than the book. I also

got to quiz him in the bar later
about how some Subversion
concepts might translate to Git, or
not as i t seems, which was
priceless.

Next up, was Pete Goodliffe doing the live version of his C Vu column on
Becoming a Better Programmer. This was split into two parts with the first
being Pete discussing what we even mean by ‘better’. He provided some
of his thoughts and there were the usual array of highly entertaining slides
to back them up – you are always guaranteed a good show.
The second part was provided by various speakers (chosen by
Pete) who got to spend 5 or so minutes discussing a topic that
t hey be l i eve makes them a be t t e r p rogrammer .
Unsurprisingly these varied greatly from the practical, such
as Automation (Steve Love), to the more philosophical – The
Music of Programming (Didier Verna). The audience got to
have a quick vote on what they felt was the most useful and Seb Rose’s
Deliberate Practice got the nod.

Once the main sessions have finished for the day the floor is opened up to
everyone in the guise of Lightning Talks. These are short 5 minute affairs
where anyone can let off steam, share a tip or plug something (non-
commercial). Even though it was only the first evening there was a full
program with talks about such topics as Design Sins

(Pete Goodliffe), C++ Active Objects (Calum Grant), BDD with Boost
Test (Guy Bolton King), Communities (Didier Verna) and an attempt at
Just a Minute from Burkhard Kloss. With 12 talks in total it was a good
start.

A l t h o ug h n o t
directly part of the
ACCU conference,
the Bristol & Bath
Scrum Group held an evening event afterwards where James Grenning
talked about TDD. Although it had been a long day already I couldn’t resist
squeezing one more talk in, especially from someone like this. Being
aimed at a wider audience than just developers meant there were an
interesting assortment of questions afterwards which was useful. One in
particular was the common question of writing the test first versus
immediately after which always causes a interesting debate.

Thursday
A full English breakfast and plenty of coffee set me up for the day and I
was greeted with my first 2013 keynote, courtesy of Brian Marick. He
started with an interesting tangent about crickets and how they tune in to
a mate and eventually got onto the topic of how to cope with the inevitable
natural decay older programmers will suffer from. The thing that has stuck
with me most is the advice of converting ‘goal attainment’ to ‘maintaining
invariants’. This he explained by
showing how a baseball fielder
might try to catch a ball by
moving himself so he sees a
linear trajectory rather than
trying to anticipate a parabolic path. This was one of the most enjoyable
keynotes I’ve seen.

I didn’t have much choice in what I went to after Brian as it was my turn
to step up to the plate. This was my third year of speaking and I’d like to
say I might finally be getting the hang of it. At least, I don’t think anyone
fell asleep.

Unbeknownst to me until I checked my Twitter feed afterwards but there
was a small bug in the code on one of my slides. This made
my next choice easy – The Art of Reviewing Code with
Arjan van Leeuwen. There was plenty of sound advice here,
particularly around the area of getting started in code
reviews where it’s important to make both parties
comfortable to avoid a sense of personal attack. As Arjan

pointed out, time is often the perceived barrier to doing reviews, but it’s
reminded me how valuable it can be.

That was only a short session and the other 45 minutes I spent with Ewan
Milne as he discussed Agile Contracts. Although I don’t get involved
(yet?) in that side of the process I still find it useful to comprehend the other
parts of an agile approach. Understanding how the different forms of
contract attempt to transfer the risk from one side to the other was
enlightening – especially when you consider the role lawyers try to play
in the process. Ewan normally has his hands full with organising the
lightning talks so it was good to see
him speak for longer than 30
seconds.

My final session for the day was to

 I

CHRIS OLDWOOD
Chris started as a bedroom coder in the 80s, writing
assember on 8-bit micros. Now it’s C++ and C# on
WIndows. He is the commentator for the
Godmanchester Gala Day Duck Race and can be
reached at gort@cix.co.uk or @chrisoldwood
8 | | MAY 2013{cvu}

be spent with Michel Grootjans. With a title
of Ruby and Rails for n00bs I felt that suited
my knowledge of Ruby right down to the
ground and hoped I would get to see what
some of the fuss is about. It actually turned
out to be way more useful than I expected

because Michel developed a simple web app using a full-on TDD approach
too. Not only did I get a small taste for what Ruby and Rails is about but
I also saw someone develop a different sort of application using different
tools in a more enterprise-y way.

Once more, after the main sessions had completed, most of us convened
to the main hall to listen to another round of lightning talks. This time there
was a total of 13 topics with an even wider range than the day before.
Notably for me, given my attendance at an earlier session on Git, was a
rant from Charles Bailey about Git being evil. There were also complaints
about poor variable naming (Simon Sebright) and why anyone would use
C++ when D exists (Russel Winder, naturally). On the more useful front
we saw Dmitry Kandalov implement an Eclipse plug-in in 5 minutes and
a C++ technique that seems close to C#’s async/await mechanism (Stig
Sandnes). The abusive C++ award though goes to Phil Nash with his <-
operator for implementing extension methods. Oh, and Anders Schau
Knatten used ‘Science’ to help us decide that C# is in fact the best
programming language.

Friday
What better start to the day than a
keynote from the very person we
have to thank for C++ – Bjarne

Stroustrup. It’s been some years since he graced the ACCU conference
with his presence and so like many I was looking forward to what he had
to say about the modern state of C++. His presentation was generally about
the new features we now have in C++ 11 as he had a separate session
planned for C++ 14. However there was as much about how the
established practices (e.g. RAII) are still the dominant force and
critical to its effectiveness. Naturally there were plenty of
questions and he pulled no punches when airing his opinion on
the relationship between C and C++.

With my C++ side ignited I felt it was only right that I attend
Nico Josuttis’ talk about move semantics and how that plays
with the exception safety guarantee of a function like
push_back(). He entered the murkier depths of C++ to show
how complex this issue is for those who produce C++ libraries. When
someone like Nico says C++ is getting ‘a little scary’ you know you need
to pay attention. My ‘moment of the conference’ happened here when, in
response to a question for Nico about the std::pair class, Jonathan
Wakely instantly rattled off the C++ standard section number to help him
find the right page…

We all love writing fresh, new code, but many of us spend our lives
wallowing in the source code left to us by others. Cleaning Code by Mike
Long was a session that showed you why refactoring is important and what
some of the tools and techniques you can use to help in the fight against
entropy. This was a very well attended talk and rightly so with a good mix
of the theoretical and practical. One tool in particular for finding duplicate
code certainly looked sexy and will definitely be getting a spin.

After another round of coffee I decided to close the day off by listening to
the C Vu editor (Steve Love) explain why C# is such a Doddle to learn and
use. Yes, his tongue very firmly placed in his cheek. As someone who uses
C# for a living it’s easy to forget certain things that you take for granted
with something like C++, such as the complexity guarantees of the core
containers. Generics also came in for a bit of a bashing as a watered down

version of templates. Anyone who thinks the
world of C# is dragon free would have done
well to attend.

The final set of lightning talks took their cue
from the volcano fiasco a few years ago.

Back then, due to speaker problems caused by a lack of air transport, a set
of 15 minute lightning keynotes were put together instead and that’s the
length these ones adopted. Seb Rose opened the proceedings with a
response to an earlier lightning talk about whether the term ‘passionate’
is a useful one for describing the kind of people we want to work with,
given its dictionary definition. Much nodding of heads suggested he was
probably right. He was followed by me trying to show how many of the
old texts, such as the papers by David Parnas, are still largely relevant
today. And, more importantly they’re often cheap. Tom Gilb was next up

to answer a question I had posed in
my t a l k ab ou t qua n t i f y i ng
robustness. Let’s face it, we knew
he would. Finally Didier Verna

got to extend his earlier slot on The Pete Goodliffe Show to go into more
detail about the similarities he sees between music and programming. I’ve
never really given Jazz a second thought before, and even though we only
got a 30 second burst of his own composition my interest is definitely
piqued.

The Friday evening always plays host to The Conference Dinner, which
is a sort of banquet where we get to spend a little more time mingling with
the various speakers and attendees. This is a perfect opportunity to corner
a speaker and ask some questions you didn’t get a chance to earlier. Jon
made sure the tables regularly got mixed up to keep the flow of people
moving between courses which helps you mix with people you might not
normally know. After the dinner there was the Bloomberg Lounge to keep
us entertained through the night, if you fancied staying up until silly
o’clock.

Saturday
There was another change to the session structure this year as the Saturday
keynote was moved to the end of the day; instead the normal sessions
started earlier. Sadly I overdid the conference dinner again and so an early

start was never really on the cards.

How to Program Your Way Out of a Paper Bag seemed like the
ideal eventual start to the day. Frances Buontempo had sold the
idea well – is it possible to actually write a program to get out of
a paper bag? Obviously there was a certain amount of artistic
licence, but ultimately she did it, and along the way we got to
find out a whole lot about machine learning. I was a little worried
there might be a bit too much maths at that time of day but it was
well within even my meagre reach.

My final session of the conference was to be with Hubert Matthews – A
History of a Cache. This was a case study of some work he been involved
in. The session had a wonderful narrative as he started by explaining how
the system was originally designed, and then went on to drop the bomb on
how he needed to find a huge performance boost with the usual array of
‘impossible’ constraints. Each suggested improvement brought about a
small win, but not enough by itself and that’s what made it entertaining.
It also goes to show what can be achieved sometimes without going
through a rewrite.

Epilogue
I keep expecting the magic of this conference to wear off, but so far it seems
to be holding fast. I have looked around at some of the other conferences
but I’m just not as impressed by the content or the
price for that matter. I thought the new venue
worked well and even though it was a little further
to travel it wasn’t exactly onerous. More of the
talks were filmed this year and so hopefully I
should be able to catch up on some of those I
missed. With 5 concurrent sessions running in
each time slot you’re never going to get to see
everything you want to, but that’s just another reason to keep coming back
year-after-year – to try and catch up on everything you’ve missed in
previous years. Of course in the meantime the world has moved on and
there’s another load of new stuff to see and learn!
MAY 2013 | | 9{cvu}

Writing a Cross Platform Mobile App in C#
Paul F. Johnson uses Mono to attain portability.

A brief piece of history
any years back, Ximian (a small bunch of very nice people) decided
to write an open source version of the .NET language based on the
ECMA documentation. Initially for Linux, it soon spread to Mac,

BSD and many other platforms (including Windows). This was good and
fine. Novell then bought Ximian and signed what was considered (in the
non-SuSE part of the open source community at least) as a deal with the
devil – the devil being Microsoft.

Time moved on. Novell was bought out and so Xamarin was formed, their
task, to carry on developing the open source Mono framework which was
fast growing to be a recognised force for good.

While all of this was going on, Google moved into the mobile phone
business with Android and Apple released their iPhone. Android (as you
may know) has a Linux kernel at its heart and apps are coded in Java.
iPhones use Objective-C for the language of choice. Google controlled its
app store and Apple, in true Apple fashion, pretty much dictated under the
guise of ‘quality’ what could and could not be distributed through them.

This is fine and dandy with one problem – as with the old 8-bit systems of
old, if you wanted your app to run on both iPhone and Android, you had
to do a lot of work to port the code over, that or employ that rare breed
developers that can work in both Objective C and Java.

It doesn’t take a genius to realise that if a company can come up with a
method to write once, deploy many as was the case with .NET, then they
would win the day and praises be sung. Step forth Xamarin. Using the
mono framework, they released .NET for both iPhone and Android. While
the UI aspect is not the same, a large amount of core functionality could
be moved between the platforms with minimal work (it is after all just using
the .NET framework that we all love and use) reducing both development
time and final cost. For the iPhone, as the code generated reverts back to
ObjC and is linked against Apple’s SDK, apps created with Monotouch
(the iOS version) are available in the iOS store.

What this small series is going to show is how simple it is to achieve both
an iPhone and Android version of the same app with essentially the same
code. I will be porting some code I wrote [1] quite a few years back to run
on both platforms. It isn’t going to do anything amazing, but will allow
you to download, read and reply to your gmail.

Xamarin have released versions of monotouch and monodroid that will run
on the emulator (Android) or simulator (iOS) [2] so you can see and test
the final product. The source code for these articles is held online [3].

My recommendation is that you install Xamarin Studio to code with. While
there are plugins for VisualStudio 2010 and 2012, my experience with
them has not been great, whereas Xamarin Studio is rock solid.

Let’s get on with it then
The basis of this app is communicating with the Google servers to allow
a user to read and reply to their emails. To do this, we need a basic SMTP
and POP3 system. SMTP is supported natively, POP3 isn’t, but it’s not
difficult to code a small POP3 library that allows access to the facilities.

A word of warning
When writing code that will work between both iOS and Android, it is not
only the UI that needs to be considered. Monotouch for .NET developers
is a much simpler system to use. Instantating new classes which generate
new views is very similar to how it is done in a standard Winforms
application

 NewView nv = new NewView(params);

will create a new instance of NewView with whatever parameters are
needed to be passed in – it is essentially the same as in a winforms
application.

Android development is not like this. For Android, the safest way to think
about how an app is structured is that there are a lot of small apps (called
Activities) that you need to get to work together. While you can certainly
pass certain objects between activities (the likes of string, int, bool
etc), passing the likes of classes or bitmaps is not going to happen.

To start a new activity

 Intent i = new Intent(this, typeof(class));
 StartActivity(i);

where class is the name of the activity class being started.

Passing simple objects can be done with

 string hello = “Hello”;
 …
 i.PutExtra(“name”, hello);

and read back in the receiving class using

 string message =
 base.Intent.GetStringExtra("content");

Alright, it’s not rocket science, but it leads to two problems; portability (it’s
not available in iOS) and propagation (the next activity will also have to
have the same PutExtra/GetExtra code to receive the data).

This difficulty can be overcome by using either a standard interface block
or better than that, a public static class. The big advantage of having the
static class is that generics, arrays, bitmaps and anything else that can be
bundled into a static class can be used. It is also completely portable
between the platforms – as long as nothing platform specific is included
in there of course!

Of course, there is nothing to stop instantiation between classes on Android
in the more usual .NET form, but it will not fire up the activity, so no view
is shown unless a bit of extra legwork is done. I will be avoiding that route
for this series!

UI design
This app will not win any design awards, but then it’s not meant to. It is
simple and functional. The UI is greatly different between iOS and
Android. To that end, I will concentrate on that aspect for the remainder
of this article.

Android

The way to think about how to design for Android is to think in either
vertical or horizontal boxes. Take the following

 M

PAUL F. JOHNSON
Paul used to teach and was one time editor of a little
known magazine called C Vu. He now writes code
professionally for a living – primarily for Android and
iOS, but only ever in .NET thanks to Xamarin.Android
and Xamarin.iOS.
10 | | MAY 2013{cvu}

While it would seem a simple enough design, it has to be considered along
the lines of boxes within boxes viz

We have a horizontal outer, next layer are two horizontals. The one on the
right now has 4 verticals with the bottom one having two horizontals in.
Planning can be a bit tricky on deciding which way the layout has to be,
but it’s not that bad. By default, a new layout contains a vertical
LinearLayout.

Within each layout, you can pretty much put any type of view (most of the
widget classes are derived from the View class, so you have a TextView,
EditView, ImageView and so on). Android here becomes very similar
to .NET in that the views are similar to the standard .NET views (for
example TextView = Label, EditView = TextBox, ImageView =
PictureBox), but like the .NET widgets, these views can be ‘themed’
using XML.

A view can be used by any number of activities on Android. Monodroid
(thankfully) comes with a UI designer as part of the Monodevelop or VS
plug in.

 SetContentLayout(Resource.Layout.foo);

And that’s it to get the UI to display.

Attaching events to widgets is simple as well. My UI has a TextView
called textView.

 TextView text =
 FindViewById<TextView>(Resource.Id.textView);

To attach a click event can be done in a number of ways

1. text.Click += delegate {…;};

2. text.Click += (object s, EventArgs e) => {
 someMethod(s,e); }

3. text.Click += delegate(object s, EventArgs e)
{…;};

4. text.Click += HandleClick;

Each has a different purpose

1. Used for performing a particular task where the event parameters
can be completely ignored (for example, performing a calculation or
calling another method with any number of parameters, the return
value of which is used in some way)

2. Used as a both a standard event and also it allows for methods to be
overloaded (so pass s, e and say an int, string and bool as well)

3. Similar to (1), except now the event parameters are being passed in
and can therefore be accessed and worked with.

4. HandleClick does what it says on the tin. This is call to the
method HandleClick. The object and eventargs are passed into
the call. This is handled outside of the OnCreate method.

iOS

As you may expect from Apple, everything on their devices is a rich
experience and for that to happen, the developer has to be free to allow
their mind to roam, not be constrained by box limitations and generally
whatever they want to go, can go.

All iOS UI development had to be done on a Mac. This may change in the
future, but for now, it’s safe to say that all design will be done using XCode.
XCode is free to download from Apple. The most recent version of
Xamarin.iOS will allow you to code for Apple devices on a PC, as long
as there is a networked Mac for XCode to be accessed on.

With XCode, you can put things wherever you like and don’t have the same
rigid design constraints as you do for Android or Windows Phone.

Unlike Android though, the communication between the iOS UI and
application is a bit more complex. With iOS, you have two types of
interface, an outlet and an action. Don’t let the names fool you; an outlet
is the one that reacts when you click on it, the action is the receiver.

A widget can be both an action and outlet. Take the following code

 btnClickMe.TouchDown += delegate {
 btnClickMe.SetTitle ("Clicked",
 UIControlState.Highlighted);
 };

Here, btnClickMe is both the outlet (TouchDown event) and the action
(SetTitle). When creating the UI though, it is usually sufficient to say
if an object is an outlet or an action.

iOS calls the view into existence when the class it belongs to is called into
existence. However, there are some considerations to add along to that.

 public override void ViewDidLoad()

This method is called immediately after the class has been instantated. At
this point, you can either add in what you want the outlets to do, or call
another method to do that for you (which can be preferable sometimes).
This is similar to the Android OnCreate method.

 public override void ViewDidUnload()

called when the class is finished with. This removes the view, so freeing
up the memory it previously occupied.

Unlike Android, the types of (say) Click are different. Typically in
Android, you have Click. In iOS, there are 9 different Touch events
covering cancel, drag, clicks inside of an object and even a plain normal
click (TouchDown). It could be considered overkill, or it could be
considered as giving the developer far greater control over every aspect of
the development cycle. Either way, there are a lot of them.

Memory management
This is not an issue for iOS. The ViewDidUnload() method removes
the view, frees the memory and makes life easy.

Not so on Android.

The reason for this is easy enough. Monodroid is C# on top of Java. Think
of it more as a glue layer than anything. When an object is created in C#,
the C# GC disposes of the object when it’s done with. The problem is this.
When dealing with the UI, the glue creates a Java object for (say) the
TextView widget and everything to do with that widget is handled
through the glue layer. At the end of it’s life, the C# GC will clear away
only the reference it has used. It does not dispose of the underpinning
object from the Java layer – the Java object sits there, hogging memory
until the app falls over dead.

For Android, there are two simple methods to ensure you don’t run out of
memory

1. Whenever you can, if a process is memory intensive (typically
anything to do with graphics), employ something like using
(Bitmap bmp = CreateBitmapFromFile(filename)) { }.
Once out of scope, the memory is freed up.

2. At the end of the activity, explicitly dispose of the objects by calling
the GC.

 protected override void OnDestroy()
 {
 base.OnDestroy();
 GC.Collect();
 }

will do this for you.

That’s enough for this time. Next time I’ll start to look at code and how it
differs between the platforms to do the same task.

References
[1] http://www.all-the-johnsons.co.uk/csharp/email.html
[2] http://xamarin.com/trial
[3] http://www.all-the-johnsons.co.uk/accu/mobile/article1.zip
MAY 2013 | | 11{cvu}

http://www.all-the-johnsons.co.uk/csharp/email.html
http://xamarin.com/trial
http://www.all-the-johnsons.co.uk/accu/mobile/article1.zip

Let’s Talk About Trees
Richard Polton puts n-ary trees to use parsing XML.

his article will show how to define a tree data structure in both C#
and F# and then will proceed to create a tree and load the contents of
an XML file containing SPAN data into it. Let’s start with a quick

recap over tree structures.

The classic binary tree, which contains a value at each node, might be
represented in C# as shown in Listing 1.

As can be seen, the data structure is defined recursively. That is, it is
defined in terms of itself. Therefore, any node contains zero, one (because
the code has allowed null in the setter) or two subtrees in addition to a value
of type T. Such a tree might be initialised using

 var t = BinaryTree.Node(5,
 BinaryTree.Node(8, BinaryTree.Leaf(9),
 BinaryTree.Leaf(7)),
 .Node(2, BinaryTree.Leaf(1),
 BinaryTree.Leaf(3)));

In F# we might define the tree structure as

 type tree =
 | Node of 'T * tree * tree
 | Leaf of 'T

which also makes it clearer that any single (sub-)tree is either a branch
point, containing both a value and left and right branches, or a leaf,
containing only a value. We might then create an object of this type using

 let t = Node (5,
 Node (8, Leaf 9, Leaf 7),
 Node (2, Leaf 1, Leaf 3))

See [1] and [2] for further information on the definition and traversal of
binary tree structures.

Let us now generalise this to an n-ary tree. In C# we might write this as
Listing 2, which is roughly the C# equivalent of the F# tree definition given
by the discriminated union (see [3] for a discussion of Algebraic Data
Types)

 type tree =
 | Node of 'T * tree list

Let us now pause awhile and divert our attention to the reason why this
subject presented itself in the first place. XML.

XML – it’s supposed to be the Holy Grail of data formats, easily consumed
by both the computer and the lucky human reader. I recently had the
distinct pleasure of working with some SPAN XML files [4] published by
the Australian Stock Exchange. These files are freely available for
download and a snippet from one of these files is reproduced here.

This snippet (Listing 3), l ightly edited, was extracted from
ASXCLEndOfDayRiskParameterFile130305.spn

As might be expected, the XML represents a hierarchical data set. The
highest-level element in the snippet, clearingOrg, contains both simple

T

RICHARD POLTON
Richard has enjoyed functional programming ever
since discovering SICP and feels heartened that
programming languages are evolving back to
LISP. He likes ‘making it better’ and enjoys riding
his bike when he can’t. He can be contacted at
richard.polton@shaftesbury.me

<clearingOrg>
 <ec>ASXCLF</ec>
 <name>ASX Clear Futures</name>
 <curConv>
 <fromCur>AUD</fromCur>
 <toCur>USD</toCur>
 <factor>0.000000</factor>
 </curConv>
 <pbRateDef>
 <r>1</r>
 <isCust>1</isCust>
 <acctType>H</acctType>
 </pbRateDef>
 <pbRateDef>
 <r>4</r>
 <isCust>1</isCust>
 <acctType>H</acctType>
 </pbRateDef>
</clearingOrg>

Listing 3

public class BinaryTree<T>
{
 public T Value { get; private set; }
 public BinaryTree<T> Left { get; private set; }
 public BinaryTree<T> Right { get; private set; }

 public BinaryTree(T value, BinaryTree<T> left,
 BinaryTree<T> right)
 {
 Left = left;
 Right = right;
 Value = value;
 }
}
public static class BinaryTree
{
 public static BinaryTree<T> Node<T>(T value,
 BinaryTree<T> left, BinaryTree<T> right)
 {
 return new BinaryTree<T>(value, left, right);
 }

 public static BinaryTree<T> Leaf<T>(T value)
 {
 return new BinaryTree<T>(value, null, null);
 }
}

Li
st

in
g

1

public class NaryTree<T>
{
 public Tuple<T,List<NaryTree<T>>> Node
 { get; private set; }
 public List<NaryTree<T>> SubTrees
 { get { return Node.Item2; } }

 public NaryTree(T value,
 List<NaryTree<T>> subTrees)
 {
 Node = Tuple.Create(value, subTrees);
 }
}

Listing 2
12 | | MAY 2013{cvu}

and complex data elements, eg name and pbRateDef respectively.
(Before you ask, no, I didn’t change the names of the elements. They really
are called ec and r!)

We want to load the XML and parse it into a data structure using F#. We
want to do this so that we can subsequently query the data set automatically
instead of having to rely on eyeballs and Notepad. I say Notepad because,
although the data sets are not especially large, they do appear to be large
enough to cause both Internet Exploder’s and Visual Studio’s XML
renderers to fail, which leaves the ever-faithful Notepad as our key
inspection vehicle.

The first attempt at parsing this XML made use of discriminated unions
like the below:

 type SpanXMLClearingOrg =
 | Ec of string
 | Name of string
 | CurConv of SpanXMLCurConv list
 | PbRateDef of SpanXMLPbRateDef list

given pr ior s imilar def ini t ions for SpanXMLCurConv and
SpanXMLPbRateDef. This layout maps trivially to the XML
representation and so building a parser for this is very easy.

Whilst it may be possible to parse this XML using LINQ to XML using a
dictionary as demonstrated in [5], in this version of the parser, the XML
is read using recursive functions such as seen in Listing 4.

As can be seen, the function makes use of an accumulator (see article in
previous CVu for a quick intro or htdp.org [6]) to store the state of the
parsed structure up until the current point. In the example code the state is
called acc and is a list of SpanXMLClearingOrg. Other than that the
parser simply repeats the above form for each data structure that is to be
read from the XML. That is, compare the name of the current element with
one of a set of possible names and take the appropriate action, which is
one of converting the element value to a specific data type, eg int, or
reading an embedded data structure, eg PbRateDef. The result is then
prepended to the accumulated list of data structures loaded thus far and
then the function is called again. If the name of the current element does
not match any of the possible names then the function exits returning the
accumulated list to the caller. Thus the tree is built up as the XML is
consumed.

In the end we had a tree of data but unfortunately it turned out to be very
difficult to query. So much so, in fact, that an alternative representation
was sought.

Instead of the ‘natural’ mapping from XML to structures as shown above,
we chose to use a traditional functional tree data structure.

In the literature, for example [7], functional tree structures are presented
for binary trees. They look like this:

 type tree =
 | Leaf of string
 | Node of tree * tree

In other words, every node in the tree contains
either two further trees or a value, in this case a
string. Note that the data structure is defined
recursively.

Our tree, however, is slightly different. It is not a
binary tree but is an n-ary tree (where n depends
on the actual location in the tree). Also each node
has one or more values. Additionally, each of the
different levels of the tree, at least in the XML, can
only be created from a well-defined subset of data
types. We can tackle the fact that a node has a
value as well as a subtree by defining our tree
structure as

 type tree =
 | Leaf of string
 | Node of string * tree * tree

This is a bit unsatisfactory, though, primarily
because of the unnecessary distinction between Leaf and Node as all the
nodes in our tree contain data. However, we can modify the definition to
accomodate this and extend to multiple sub-trees using

 type tree<'T> =
 | Node of 'T * tree<'T> list

Et voilà! Well, almost. We now have a recursive tree structure whose every
node can contain a datum as well as zero (because the list can be empty)
or more sub-trees. The next challenge is how to render our data structures
such that they will fit in this new tree.

We can solve this trivially by defining an algebraic data type to be the union
of all the possible types of data that can be stored at a node. In order to
retain the structure of the original XML, we choose to create records
(which are like ‘C’ structures) that hold the data values and then the union
refers to all the record types. So, for example, we can define the record

 type SpanXMLCurConv =
 {
 FromCur : string
 ToCur : string;
 Factor : float;
 }

to represent the currency conversion data element curConv. This XML
element does not contain any complex XML elements itself but its parent,
the XML element clearingOrg, clearly does. We choose to represent
clearingOrg as the record

 type SpanXMLClearingOrg =
 {
 Ec : string;
 Name : string;
 }

Note that the nested complex XML elements are not stored within the
record in this implementation (unlike in the first implementation of the
parser). This is because we will be storing the nested complex elements in
the list of sub-trees. However, we still need to define a union so that it is
possible to store one of a number of distinct data types in the data value
of the node. So we write

 type nodeType =
 |
 | SpanXMLCurConv of SpanXMLCurConv
 | ...
 | SpanXMLClearingOrg of SpanXMLClearingOrg
 | ...

where the first of the two names in the union is the name of the
discriminator and the second is the name of the type that is stored therein.
Now we can rewrite our tree type definition as

 type tree =
 | Node of nodeType * tree list

let rec readClearingOrg (reader:System.Xml.XmlReader) acc =
 match reader.Name with
 | "ec" -> SpanXMLClearingOrg.Ec
 (reader.ReadElementContentAsString()) :: acc
 |> readClearingOrg reader
 | "name" -> SpanXMLClearingOrg.Name
 (reader.ReadElementContentAsString()) :: acc
 |> readClearingOrg reader
 | "curConv" -> (SpanXMLClearingOrg.CurConv
 (readCurConv (reader.ReadStartElement() ;
 reader) [])) :: acc
 |> readClearingOrg (reader.ReadEndElement() ; reader)
 | "pbRateDef" -> (SpanXMLClearingOrg.PbRateDef
 (readPbRateDef (reader.ReadStartElement() ; reader) [])) :: acc
 |> readClearingOrg (reader.ReadEndElement() ; reader)
 | _ -> acc

Li
st

in
g

4

MAY 2013 | | 13{cvu}

The advantage of a data structure of this form is the ease by which it can
be traversed and, therefore, queried. Given the above definition, we can
write queries to extract all curConv elements very simply (Listing 5).

If we want to find a specific conversion, say from GBP for example, then
we could modify our function to take an extra parameter and to use this as
a guard in the ‘match’ (Listing 6).

It couldn’t be easier. This works because of the power of the F# pattern
matching. This is analogous to the switch statement in C-style languages
except that the pattern that is being matched is not constrained to compile-
time constants. Type matching, as here, is commonplace, as are more
sophisticated matches on the return values of functions. Look at
Functional.Switch for an example of a similar construct in C# (both
prior editions of CVu and functional-utils-csharp [8] on Google Code).

So it looks like the pain of transforming the XML into our new tree
structure is going to pay dividends (boom! boom!). All that is missing now
is that transformation. The ‘read’ functions all have the same format. On

account of there being so many record
types having such similar structure, we
created a code generator to simplify the
work. This code generator produces the
basic reader function which we then
manually modify to account for the
nested structures. (This was a trade-off;
time to code vs time to edit by hand, and

the latter won the day.) For the terminally curious, the code
generator lives in the span-for-margin project [9].

Notice that, although findAllCurConv is a very simple query
function, it has a shortcoming in that it only returns those nodes
which satisfy the criterion supplied and does not provide the
route taken through the tree in order to reach them. We want to
modify the function so that a path to each successful node is also
returned.

First, then, we need to change the internal find function to return
a 2-tuple, having the matching node and the path to the matching
node as its components. This 2-tuple becomes our accumulator.
Therefore, on a successful match we return

 (node, (uNode :: path |> List.rev)) ::
acc

where node is the Node which has been matched, uNode is
the SpanXML record, path is a list of SpanXML records
traversed to reach this point and acc is the accumulator. Note
that we have to reverse the path list once we have a match
because functional lists prepend new items to the head rather
than append to the tail.

If the function fails to find a matching node, i.e. we have an
unsuccessful termination condition, then at the bottom of a
given branch we just return the current state of the
accumulator.

In the ‘inbetween’ state where we have a node which does not
match but is not a leaf node, i.e. it has a non-empty
list of sub-trees, we need to prepend this node to the
path and then call the recursive find function again
for each of the subtrees under this node.

And so we can write Listing 7: collect is the F#
analogue of SelectMany, or more precisely,
SelectMany is based upon the algori thm
encapsulated by collect. That is, given a function
which accepts a single element and which returns a
list, evaluate this function for every element in the
container and flatten the results into a single list.

Now suppose we want to find the Div nodes in the
tree which satisfy some predicate. We could write
very similar code to findCurConvWithPath,
changing only the nodeType name in the match

(Listing 8) using, for example:

 let divDateChk fromCur (curConv:SpanXMLCurConv) =
 curConv.FromCur = fromCur
 findDivs (divDateChk "1-Apr-2013") theTree

Clearly, the findNodeTypeWithPath pattern will be repeated for all
node types to be queried in the tree. Instead of copying the entire function
perhaps there is some way we can generalise the findN function.

Active patterns [7] are the obvious choice here. This would leave us with

 let findNodeWithPath actPattern f tree =
 let rec findNode tree acc path =
 match tree with
 | actPattern

but the problem with this is that it does not appear to be possible to pass
an Active Pattern as a parameter to a function. If any of you know how to
do this, my email address is in the byline. Otherwise, huh! So much for all
functions being first-class objects in F#. Therefore, we would like to be

let findAllCurConv theTree =
 let rec findAllCurConv' theTree acc =
 match theTree with
 | Node (SpanXMLCurConv (_), _) as node -> node :: acc
 | Node (_, subTrees) -> subTrees |>
 List.collect
 (fun node -> findAllCurConv' node acc findAllCurConv' theTree []

Li
st

in
g

5

let findCurConvFrom fromCur theTree =
 let rec findCurConvFrom' theTree acc =
 match theTree with
 | Node (SpanXMLCurConv (curConv), _) as node
 when curConv.FromCur = fromCur ->
 node :: acc
 | Node (_, subTrees) -> subTrees |>
 List.collect (fun node -> findCurConvFrom' node acc)
 findCurConvFrom' theTree []

let allConversionsFromGBP = findCurConvFrom "GBP" theTree

Li
st

in
g

6

let findCurConvWithPath fromCur tree =
 let rec findCurConv tree acc path =
 match tree with
 | Node (SpanXMLCurConv (cc) as uNode, _) as node
 when curConv.FromCur = fromCur ->
 (node, (uNode :: path |> List.rev)) :: acc
 | Node (_, []) -> acc
 | Node (uNode, trees) ->
 trees |>
 List.collect (fun node -> findCurConv node acc
 (uNode :: path))
 findCurConv tree [] []

Li
st

in
g

7

let findDivsWithPath pred tree =
 let rec findDivs tree acc path =
 match tree with
 | Node (SpanXMLDiv (div) as uNode, _) as node
 when pred div ->
 (node, (uNode :: path |> List.rev)) :: acc
 | Node (_, []) -> acc
 | Node (uNode, trees) ->
 trees |>
 List.collect (fun node -> findDivs node acc (uNode :: path))
 findDivs tree [] []

 let findDivs f tree = findDivsWithPath f tree |> List.map first

Li
st

in
g

8

14 | | MAY 2013{cvu}

able to define a general Active Pattern which
accepts a parameter. This parameter would then
be the type name that we wish to check.

 let (|Check|) theType input =
 ...

However, this quickly becomes unwieldy leading
to a worse mess of code than we had in the original
problem and so we must seek an alternative
approach. Given that we are not going to be able
to use an Active Pattern, let us pass instead a
predicate-like function that returns an option
(again, see previous CVu and Google Code [8]).
Even though adopting this approach means that we will have to perform
an additional pattern match step outside of our generic function, it should
be an improvement. See Listing 9.

In this function, pattern is a function with signature (tree ->
(nodeType * 'a) option). For example, the following function
divNode could be used as the pattern.

 let divNode input =
 match input with
 | Node (SpanXMLDiv (record) as uNode, _) as
 node -> Some(uNode,node)
 | _ -> None

However, this doesn’t allow us to filter the Div nodes of interest as we
can do so in findDivsWithPath. If we modify the function to accept
an additional parameter then we can pass a curried function into the find
function. So we write

 let divNode f input =
 match input with
 | Node (SpanXMLDiv (record) as uNode, _)
 as node when f record -> Some(uNode,node)
 | _ -> None

where divNode has been redefined to accept a predicate f. Now we can
write

 let divs = findNodeWithPath (divNode fn) tree

for some given value of fn to populate divs with all the Div nodes in
tree that satisfy fn. An example of fn is

 let fn (div:SpanXMLDiv) = div.SetlDate > 20100301

With this solution it is still necessary to copy and edit the XNode function
for each of the types in the tree but this is a simpler piece of code which
does nothing more than return a success value or None, a reasonable
compromise.

Finally we present the boiler-plate code to
populate one of the SpanXMLxxx records,
specifically the SpanXMLClearingOrg. The
steps are simple. We initialise a dictionary which
records the state (incomplete, for the most part) of
the current record being created. Therefore, this
dictionary contains an entry for each of the fields
in the record, i.e. each of the simple XML
elements contained within the clearingOrg
XML element. Next we define a function, read,
which transforms the element into a field in the
record. The simple elements are read in directly
through an appropriate conversion. Again, this
could probably be performed using LINQ-to-
XML in the manner demonstrated in [5],
especially as we are using a dictionary to store the
state, but we will persist with the recursive
solution for now.

The complex elements are read in using their own
equivalent read function and prepended to the
state. Note that there are, in principle, two
separate vehicles for retaining the state

information; the dictionary already discussed for the simple types and a
list for each of the complex types. Having read the clearingOrg element
and its constituent parts we then construct the SpanXMLClearingOrg
record setting the fields accordingly and concatenating all the lists of
complex XML elements together into a single list, the list of subtrees.

Given equivalent definitions of readCurConv and readPbRateDef we
can write Listing 10.

And there we have it. A lightning-fast discussion of n-ary trees followed
by a somewhat more long-winded, yet still abbreviated, example of one
in action in the Real World [10].

It’s not all work, work, work [11] though. Trees have other uses. For
example, one could have written Colossal Cave [12] using a tree structure.
Suppose we wanted to recreate something like the ‘maze of twisty little
passages, all alike’ or, indeed, the ‘maze of twisty little passages, all
different’.

First we need to design the tree structure. We might choose the mutually-
recursive

 type tree =
 | Corridor of int * int * room list
 | DeadEnd
 | Exit
 and room =
 | Room of int * tree list

The integers would be references into simple arrays of adjectives, so that
the description of the nodes in the tree can be varied.

This tree does not directly support cyclic data. To do that with the above
structure it would be necessary to use generator functions and slightly
redefine the Corridor and Room to refer to delayed objects. In such a
way, a previous state could be substituted for a new node in the tree.

let findNodeWithPath pattern tree =
 let rec findNode tree acc path =
 match pattern tree with
 | Some(uNode,node) -> (node, (uNode :: path |> List.rev)) :: acc
 | _ ->
 match tree with
 | Node (_, []) -> acc
 | Node (uNode, trees) ->
 trees |>
 List.collect (fun node -> findNode node acc (uNode :: path))
 findNode tree [] []

Listing 9

let readClearingOrg (reader:System.Xml.XmlReader)
 let dict = ["ec","":>obj; "name","":>obj;] |> toDict
 let rec read curConv pbRateDef =
 match reader.Name with
 | "ec" as name ->
 dict.[name] <- readAsString reader ; read curConv pbRateDef
 | "name" as name ->
 dict.[name] <- readAsString reader ; read curConv pbRateDef
 | "curConv" as name ->
 read (Node (readCurConv reader) :: curConv) pbRateDef
 | "pbRateDef" as name ->
 read curConv (Node (readPbRateDef reader) :: pbRateDef)
 | _ -> curConv, pbRateDef

 reader.ReadStartElement()
 let curConv, pbRateDef = read [] []
 reader.ReadEndElement()
 SpanXMLClearingOrg(
 {
 Ec = dict.["ec"] :?> string
 Name = dict.["name"] :?> string
 }), (curConv @ pbRateDef)

Listing 10
MAY 2013 | | 15{cvu}

In the Tool Box # 2
Team Chat
Chris Oldwood considers the benefits of social media

in the workplace.

s I write this MSN Messenger is taking its last few breaths before
Microsoft confine it to history. Now that they own Skype they have
two competing products and I guess one has to go. I’m sad to see it

be retired because it was the first instant messaging
product I used to communicate with work colleagues
whilst I was both in and out of the office.

At my first programming job back in the early 90s the
company used Pegasus Mail for email as they were
running Novell NetWare. They also used TelePathy (a
DOS based OLR) to host some in-house forums and
act as a bridge to the online worlds of CompuServe,
CIX, etc. Back then I hardly knew anyone with an
email address and it was a small company so I barely
got any traffic. The conferencing system (more
affectionately known as TP) on the other hand was a great way to ‘chat’
with my work colleagues in a more asynchronous fashion. Although some
of the conversations were social in nature, having access to the technical
online forums was an essential developer aid. Even the business (a small
software house) used it occasionally, such as to ‘connect’ the marketing
and development teams. Whereas email was used in a closed, point-to-
point manner, the more open chat system allowed for the serendipitous
water-cooler moments through the process of eavesdropping.

As the Internet took off the landscape changed dramatically with the
classic dial-up conferencing systems and bulletin boards (BBS’s) trying
to survive the barrage of web based forums and ubiquitous access to the
Usenet. Although I did a couple of contracts at large corporations I still
had little use for office email and that continued when I joined a small
finance company around the turn of the millennium.

It was nice being back in a small company – working with other fathers
who also had a desire to actually spend time with their families – because

it meant we could set up remote working. The remote access was VPN
based (rather than remote desktop) which meant that we would have to
configure Outlook locally to talk to the Exchange server in the office. This

was somewhat harder back then and it was just another
memory hog to have cluttering up your task bar. A few
of us had been playing with this new MSN Messenger
thing, which, because we were signed up personally
meant that whether we were at home or in the office
we easily talk to each other. Given our desire to
distribute our working hours in a more family friendly
manner that meant we often found ourselves working
(remotely) alongside a team-mate in the evening.

Instant messaging soon became an integral part of how
the team communicated. With the likelihood that at

least one of us was working from home we could still discuss most
problems when needed. Of course there was always the option to pick up
the old fashioned telephone if the limited bandwidth became an issue or
the emoticon count reached epidemic proportions. Even 3- and 4-way
conversations seemed to work quite painlessly. However shared desktops
and whiteboards felt more like pulling teeth, even over a massive 128 Kbps
broadband connection.

Eventually I had to move and I ended up back at one of those big
corporations – one that was the complete opposite of my predecessor. Here

A
we often found

ourselves working
(remotely)

alongside a team-
mate in the evening

CHRIS OLDWOOD
Chris started as a bedroom coder in the 80s, writing
assember on 8-bit micros. Now it’s C++ and C# on
WIndows. He is the commentator for the
Godmanchester Gala Day Duck Race and can be
reached at gort@cix.co.uk or @chrisoldwood
Let’s Talk About Trees (continued)
This, however, we leave as an exercise for the reader, particularly the
reader who feels that they ought to contribute an article to CVu but just
can’t think of a topic.

References
[1] Tree structures http://en.wikipedia.org/wiki/Tree_(data_structure)
[2] Traversing trees http://en.wikipedia.org/wiki/Tree_traversal
[3] Algebraic Data Type http://en.wikipedia.org/wiki/

Algebraic_data_type
[4] ASX Risk Parameter file http://www.asx.com.au/sfe/span.htm
[5] Linq-to-XML example http://stackoverflow.com/questions/

9719526/seq-todictionary
[6] Recursive functions using the Accumulator pattern http://htdp.org/

2003-09-26/Book/curriculum-Z-H-39.html
[7] Expert F# v2.0, Don Syme
[8] Functional C# http://code.google.com/p/functional-utils-csharp
[9] Span parser on Google Code http://code.google.com/p/span-for-

margin/
[10] http://www.youtube.com/watch?v=tjHOk77d4po

[11] http://idioms.thefreedictionary.com/
All+work+and+no+play+makes+Jack+a+dull+boy

[12] Colossal Cave walkthrough http://www.ir.bbn.com/~bschwart/
adventure.html
16 | | MAY 2013{cvu}

http://en.wikipedia.org/wiki/Tree_(data_structure)
http://en.wikipedia.org/wiki/Tree_traversal
http://en.wikipedia.org/wiki/Algebraic_data_type
http://en.wikipedia.org/wiki/Algebraic_data_type
http://www.asx.com.au/sfe/span.htm
http://stackoverflow.com/questions/9719526/seq-todictionary
http://stackoverflow.com/questions/9719526/seq-todictionary
http://htdp.org/2003-09-26/Book/curriculum-Z-H-39.html
http://htdp.org/2003-09-26/Book/curriculum-Z-H-39.html
http://code.google.com/p/functional-utils-csharp
http://code.google.com/p/span-for-margin/
http://code.google.com/p/span-for-margin/
http://www.youtube.com/watch?v=tjHOk77d4po
http://idioms.thefreedictionary.com/
http://www.ir.bbn.com/~bschwart/adventure.html
http://www.ir.bbn.com/~bschwart/adventure.html

everything was blocked, you couldn’t (or shouldn’t) install anything
without approval and instant messaging was blocked by the company
firewall. In this organisation email ruled. This was not really surprising
because The Business, development teams, infrastructure teams, etc. were
all physically separated. Consequently emails would grow and grow like
a snowball as they acquired more recipients, questions
and replies until eventually they would finally die
(probably under their own weight) and just clog up the
backup tapes. The company’s technical forums were
also run using email distribution lists. Anyone brave
enough to post a question had to consider the value of
potentially getting an answer versus spending the next
20 minutes dealing with the deluge of Out of Office
replies from the absent forum participants. They even
had a special ‘Reply All’ plug-in that would pop up a
message box to check if you were really, really, really
sure that every recipient you were intending to spam actually needed to
see your finest display of English prose and vast knowledge of the subject
matter.

Little known to most employees the company actually ran an internal IRC
style chat service. Presumably, in an attempt to reduce the pummelling the
Exchange Server was taking, they forced their developers to ‘discover’ it
by making the chat client start up every time they logged in. They also
disbanded the email distribution lists and set up IRC channels instead.
Even the ACCU had its own channel!

It may sound like a draconian tactic, but it worked, and I for one am really
glad they did. Suddenly the heydays of the conferencing system I had used
back in the beginning were available once more. Although there was a
‘miscellaneous’ topic where a little social chit-chat went on I’d say that
by-and-large the vast majority of the public traffic was work related. Both
junior and senior developers could easily get help from other employees
on a range of technical subjects covering tools and languages. Naturally,
given the tighter feedback loop, the conversations easily escalated to the
level of ‘what problem are you trying to solve exactly?’ which is often
where the real answer lies.

One particular channel was set up to try and enable more cross pollination
of internal libraries and tools. In an organisation of their size I would dread
to think how many logging libraries and thread pools had been
implemented by different teams over the years. Our system also had its
own dedicated channel too which made communicating with our off-shore
teams less reliant on email. Given the number of development branches
and test environments in use this was a blessing that kept the inbox level
sane. The service recorded all conversations, which I’m sure to some
degree kept the chatter honest, but more importantly transcripts were
available via a search engine which made FAQs easier to handle.

When it came time to move contracts once more I was sorely disappointed
to find myself back where I was originally with the last company. Actually
it was worse because there were no internal discussion lists either that I
could find. Determined not to let my inbox get spammed with pointless

chatter I set up a simple IRC server for our team to use. My desire was to
sell its benefits to other teams and perhaps even get some communities
going, even if we had to continue hosting the server ourselves. Internally
the company had Office Communicator (OC), which in the intervening
years had acquired the same chat product my previous client used, but

sadly this extra add-on was never rolled out and so we
remained with our simple IRC setup. Contact with
some of the support teams was occasionally via OC but
email still remained dominant.

For me IRC style communication has been perfect for
the more mundane stuff. For example things like
owning up to a build break, messing with a test
environment, forwarding links to interesting blog
posts or just polling to see if anyone is up for coffee.
Using a persistent chat service (or enabling client side
logging) also allows it be used as a record of events

which can be particularly useful when diagnosing a production problem.

I suspect that from a company’s perspective they are worried that such as
service will be abused and used for ‘social networking’ instead, which is
probably why they blocks sites like Twitter and Facebook. However, if
teams are left to their own devices they will fill the void anyway and so a
company is better off providing their own service which everyone expects
will be monitored and so will probably self-regulate. But the biggest
benefit must surely come from the sharing of knowledge in both the
technical and problem domains. As the old saying goes, “A rising tide lifts
all boats.”

we often found
ourselves working

(remotely)
alongside a team-

mate in the evening
MAY 2013 | | 17{cvu}

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

18 | | MAR 2013{cvu}

Standards Report
Mark Radford looks at some features of the next C++ Standard.

n my last few standards reports I’ve been going on about the
forthcoming ISO C++ standards meeting in Bristol. Well, it is
forthcoming no longer and is currently (at the time of writing) taking

place. The delegates number about 100 (which is very much on the high
side, although not all of them are there every day) and, whereas meetings
have traditionally lasted five days, they are now extended with Bristol
being the first six day meeting. The pre-meeting mailing contained 96
papers (compare with 41 and 71 papers in the pre-meeting mailings for the
early and late 2012 meetings, respectively). Given that the meeting is in
the UK for the first time in six years I was disappointed that, because of
work commitments, I was unable to attend. However I managed to visit
on Wednesday evening, which was a good time to be there owing to the
Concepts Lite presentation which I will talk about below.

In November 2012’s CVu I gave a summary of the structure of the
committee: at the time there were three working groups and six study
groups. Since then activity has increased so that there are now four working
groups and eleven (!) study groups. In addition to the traditional Core,
Library and Evolution groups, there is now a separate Library Evolution
working group. The list of study groups now consists of: Concurrency and
Parallelism (SG1), Modules (SG2), File System (SG3), Networking
(SG4), Transactional Memory (SG5), Numerics (SG6), Reflection (SG7),
Concepts (SG8), Ranges (SG9), Feature Test (SG10), Database Access
(SG11). Note that not all study groups meet daily during the week of the
meeting. For example, the Database group (tasked with ‘creating a
document that specifies a C++ library for accessing databases’) only had
its first meeting on Thursday morning.

Before going any further I’d like to talk briefly about one of the
deliverables a standards committee can produce: that is, a technical
specification, or TS for short. Readers may have come across a technical
report (TR) before, such as TR1 which proposed various extensions to the
library for C++0x. A TR is informational whereas, by contrast, a TS is
normative. More information about this can be found on ISO’s web site [1].

Readers will no doubt be aware of the Concepts proposal and its troubled
journey through the process leading to the C++11 standard, only to be
pulled at the eleventh hour. The story of Concepts, in my opinion, should
serve as a cautionary warning: the original proposal inspired more ideas
and the whole thing grew and grew in complexity. In the end, its removal
from the C++11 (C++0x at the time) standard was a pragmatic necessity
in order to ship the new standard that had become long overdue.

Now, Concepts are back on the agenda for the future of C++, reinvented
in the form of Concepts Lite. The current main source of information on
Concepts Lite is the paper ‘Concepts Lite: Constraining Templates with
Predicates’ by Andrew Sutton, Bjarne Stroustrup, Gabriel Dos Reis
(N3580). There is also a web site [2]. Given the history of this feature
(alluded to above), I had concerns about its reintroduction. Therefore, I was
glad I had the chance to go to the Wednesday evening presentation given
by Andrew Sutton. This was the same presentation he gave at the ACCU
conference and it can downloaded [3]. I found myself liking Concepts Lite.
My original understanding was (and I can’t remember where it came from)
that the aim was for the feature to be in C++14. However, this matter came
up at the presentation and Andrew Sutton said this wasn’t going to happen,
rather there would be a TS instead. Currently there are no library proposals,

but the TS will probably include some library features (or there may even
be a separate TS for a constrained library). This proposal has generated a
lot of interest among the committee, and I expect it will so do so among
the C++ community in general. Therefore, I will spend the rest of this
report on it, and go into some more detail.

Concepts Lite
Concepts Lite offer an effective approach to constraining template
arguments without the complexity of the original Concepts. They do,
however, leave open a migration path to full Concepts. Currently though,
they are much simpler than Concepts were. In particular, there is no
attempt to check the definition of the template: the constraints are checked
only at the point of use. This is a big difference when compared to the
Concepts originally proposed: Concepts Lite are intended to check the use
– and not the definition – of templates. Other good points include: observed
compile-time gains of between 15% and 25% (according to Andrew
Sutton), templates can be overloaded on their constraints, and the
constraint check is syntactic only. That last point is another source of
simplification. Consider an Equality_Comparable constraint: this
would enable the compiler to check that a template argument type is
comparable using operator==, but there is no mechanism for attempting
to evaluate whether or not the operator== has the correct semantics.
Regarding overloading, function templates would be selected on the basis
that the more constrained template is the better match.

The icing on the cake is that much of Concepts Lite has been implemented
on a branch of GCC 4.8 in an experimental prototype [3].

That wraps up another standards report. As usual, N3580 and all the other
submitted papers can be found on the website [4]. Finally, I would like to
thank Steve Love for his flexibility with deadlines.

References
[1] http://www.iso.org/iso/home/standards_development/deliverables-

all.htm?type=ts
[2] http://concepts.axiomatics.org/~ans
[3] http://concepts.axiomatics.org/~ans/accu13.pdf
[4] http://www.open-std.org/jtc1/sc22/wg21/docs/papers

I

MARK RADFORD
Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark@twonine.co.uk

http://www.iso.org/iso/home/standards_development/deliverables-all.htm?type=ts
http://www.iso.org/iso/home/standards_development/deliverables-all.htm?type=ts
http://concepts.axiomatics.org/~ans
http://concepts.axiomatics.org/~ans/accu13.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers

Code Critique Competition 81
Set and collated by Roger Orr. A book prize is

awarded for the best entry

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last Issue's Code
I have been starting to use IPv6 and have tried to write a routine to print
abbreviated IPv6 addresses following the proposed rules in RFC 5952. It’s
quite hard – especially the rules for removing consecutive zeroes. Can you
check it is right and is there a more elegant way to do it?

Here is a summary of the rules:

Rule 1. Suppress leading zeros in each 16bit number

Rule 2. Use the symbol "::" to replace consecutive zeroes. For example,
2001:db8:0:0:0:0:2:1 must be shortened to 2001:db8::2:1. If there
is more than one sequence of zeroes shorten the longest sequence
– if there are two such longest sequences shorten the first of them.

Rule 3. Use lower case hex digits.

The code is in Listing 1.

/* cc80.h */
#include <iosfwd>
void printIPv6(std::ostream & os,
 unsigned short const addr[8]);
/* cc80.cpp */
#include "cc80.h"
#include <iostream>
#include <sstream>

namespace
{
 // compress first sequence matching 'zeros'
 // return true if found
 bool compress(std::string & buffer,
 char const *zeros)
 {
 std::string::size_type len =
 strlen(zeros);
 std::string::size_type pos =
 buffer.find(zeros);
 if (pos != std::string::npos)
 {
 buffer.replace(pos, len, "::");
 return true;
 }
 return false;
 }
}
void printIPv6(std::ostream & os,
 unsigned short const addr[8])
{
 std::stringstream ss;
 ss << std::hex << std::nouppercase;
 for (int idx = 0; idx != 8; idx++)
 {
 if(idx) ss << ':';
 ss << addr[idx];
 }

 // might be spare colons either side of
 // the compressed set
 while (compress(buffer, ":::"))
 ;
 os << buffer;
}

/* testcc80.cpp */
#include <iostream>
#include <sstream>
#include "cc80.h"
struct testcase
{
 unsigned short address[8];
 char const *expected;
} testcases[] =
{
 { {0,0,0,0,0,0,0,0},
 "::" },
 { {0,0,0,0,0,0,0,1},
 "::1" },
 { {0x2001,0xdb8,0,0,0,0xff00,0x42,0x8329},
 "2001:db8::ff00:42:8329" },
};

#define MAX_CASES sizeof(testcases) /
sizeof(testcases[0])

int test(testcase const & testcase)
{
 std::stringstream ss;
 printIPv6(ss, testcase.address);
 if (ss.str() == testcase.expected)
 {
 return 0;
 }
 std::cout << "Fail: expected: "
 << testcase.expected
 << ", actual: " << ss.str() << std::endl;
 return 1;
}

int main()
{
 int failures(0);
 for (int idx = 0; idx != MAX_CASES; ++idx)
 {
 failures += test(testcases[idx]);
 }
 return failures;
}

Li
st

in
g

1
Listing 1 (cont’d)

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk
MAY 2013 | | 19{cvu}

Critiques
I obviously failed to produce an interesting enough example this time as
nobody wrote a critique. That may of course be because few readers are
interested in IPV6: I believe the readership of this magazine mostly comes
from countries where the shortage of IPV4 addresses is not yet a serious
problem. Take-up of IPV6 is most prevalent in countries where the use of
the Internet is developing rapidly, such as India and China. Either that, or
nobody thought there were any problems with the code.

Commentary
The first trouble with the code above is the use of an array of 8 short
integers to represent an IPV6 address. There may be problems with
network byte ordering if the IP addresses used as examples are passed
unchanged to a network call. It would be a lot better to use the standard
data structures for IP addresses such as in this case in6_addr.

It is surprisingly hard to print out (or read in) IPV6 addresses by hand.
Fortunately there are very few cases when this is advisable – using a
standard facility is very strongly recommended.

We do not at present have such a facility in C++ although the networking
study group is discussing proposals for a network address class or classes;
if a consensus is reached and adopted we might have a standard C++ way
to do this before too long. In the meantime you could use boost
(boost::asio::ip::address): see the to_string method of that
class.

The function inet_ntop is one standard way to do this in C.

 char dst[INET6_ADDRSTRLEN];
 if (!inet_ntop(AF_INET6, addr,
 dst, sizeof(dst)))
 {
 // handle error...
 }

I would probably try to avoid critiquing the user’s code as provided and
focus their attention on using a standard facility.

However, once this has been accomplished, I might return to their code
and point out that searching the string for "0:…" incorrectly matches the
initial zero against any hex number with a trailing zero digit. The test cases
provided by the user failed to cover this case.

Such failings in test coverage are quite common. For example, a bug was
discovered with the streaming of doubles in Visual Studio 2012 (http://
connect.microsoft.com/VisualStudio/feedback/details/778982). I am sure
Microsoft have test coverage of this operation; but obviously their test data
set lacked adequate coverage.

The trouble with doing the abbreviation of the longest run of zeros with
the textual representation is that there are boundary conditions at both the
beginning and end of the string. I think the easiest algorithm is to pass
through the binary representation to find the start address and length of the
longest run and then use this information when converting the
representation to characters.

The algorithm though misses another special case – that of IPV4 mapped
and compatible addresses. These have an alternative convention for
display which emphases the IPV4 ‘nature’ of the address. So, for example,
the IPV6 address 0:0:0:0:0:ffff:c00:280 would be displayed as
::ffff:192.0.2.128 on many platforms.

This is would hopefully provide another reason to reinforce why using the
standard function is normally preferable to writing your own.

Finally I notice that the code to join the eight short integers together with
a colon delimiter is addressed by the recent C++ proposal N3594
(‘std::join(): An algorithm for joining a range of elements’).

Code Critique 81
(Submissions to scc@accu.org by Jun 1st)

I am new to C++ and trying to write some objects to disk and read them back
in. How can I get the pointer to the objects that are read back in?

Where would you start with trying to help this newcomer?

The code is in Listings 2, 3, 4 and 5 (note: it uses a few C++11 features so
will need modifying to run on a non-conformant compiler):

/*
 * Bike.cpp
 */

#include "Bike.h"

//Bike::Bike() {} // TODO Auto-generated stub

Bike::~Bike() {} // TODO Auto-generated stub

std::ostream& operator << (std::ostream& os,
 Bike &m){
 os << std::left << std::setw(10)
 << m.getAddress() << "\t"
 << m.getName() << "\t"
 << m.getPrice() << "\t" << m.getMake();
 return os;
}

Listing 2

/*
 * Bike.h
 */

#ifndef BIKE_H_
#define BIKE_H_

#include <iostream>
#include <string>
#include <vector>
#include <iterator>
#include <algorithm>
#include <iomanip>
#include <ios>

class Bike {
 Bike* address; // Pointer to Bike object
 std::string name;
 double price;
 std::string make;

public:
 //Bike(); // eliminate to avoid ambiguity
 Bike(Bike* a, const std::string& n =
 "unknown", double p=0.01,
 const std::string& m="garage") :
 address(a), name(n), price(p), make(m){}
 virtual ~Bike();

 inline std::string getName(){return name;}
 inline double getPrice(){return price;}
 inline std::string getMake(){return make;}
 inline Bike* getAddress(){return address;}

 static void writeToDisk(
 std::vector<Bike> &v);
 static void readFromDisk(std::string);
 static void splitSubstring(std::string);
 static void restoreObject(
 std::vector<std::string> &);
};

std::ostream& operator << (std::ostream& os,
 Bike &b);

#endif /* BIKE */

Listing 2
20 | | MAY 2013{cvu}

http://connect.microsoft.com/VisualStudio/feedback/details/778982
http://connect.microsoft.com/VisualStudio/feedback/details/778982

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue's deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly
helps overseas members who typically get the
magazine much later than members in the UK and
Europe.

/*
 * file_io.cpp
 */
#include "Bike.h"
#include <fstream>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <vector>
#include <cstring>
#include <sstream>
#include <algorithm>

// Write objects to disk

void Bike::writeToDisk(std::vector<Bike> &v){
std::ofstream out_2("bike_2.dat");
for (auto b:v){
 out_2 << b.getAddress() << ':'
 << b.getName()
 << ':'<< b.getPrice() << ':'
 << b.getMake() << std::endl;
 }
out_2.close();
}
//--
//Read from disk into vector and make objects
void Bike::readFromDisk(
 std::string bdat) // "bike_2.dat"
{
 std::cout << "\nStart reading: \n";
std::vector<char> v2;
std::ifstream in(bdat);
 copy(std::istreambuf_iterator<char>(in),
 std::istreambuf_iterator<char>(),
 std::back_inserter(v2));
in.close();

for(auto a:v2){
 std::cout << a; // Debug output
 }
std::string s2(&(v2[0])); // Vector in String
std::cout << "\nExtract members:\n";
while (!s2.empty()){
 // objects separated by \n
 size_t posObj = s2.find_first_of('\n');
 std::string substr = s2.substr(0,posObj);
 s2=s2.substr(posObj+1);
 splitSubstring(substr);
 }
}
void Bike::splitSubstring (std::string t){
 // Save the address and the members in v3
std::vector<std::string> v3{(4)};
size_t posM; // [in substring]
int i;
for (i=0; i<4; i++){
 posM = t.find_first_of(':');
 v3[i] = t.substr(0,posM);
 if (posM==std::string::npos) break;
 t=t.substr(posM+1);
 }
for(auto member:v3){
 std::cout << std::setw(10) << std::left
 << member << " \t";}
 restoreObject(v3);
 std::cout << std::endl;
 v3.clear();
}

Li
st

in
g

4 void Bike::restoreObject(std::vector<std::string>
&v3){
 Bike* target; // I want the object here ...
 double p;
 std::stringstream ss(v3[2]);
 ss >> p;
 Bike dummy{&(dummy),v3[1], p, v3[3]};
 target = &(dummy);
 std::cout << "\nRestore: " << *target
 << std::endl;
 }

Listing 4 (cont’d)

/*
 * main_program.cpp
 */

#include "Bike.h"
#include <fstream>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <vector>
#include <cstring>
#include <sstream>
#include <algorithm>

int main(){
 std::cout << "start\n";
 std::vector<Bike> v;
 Bike thruxton{&(thruxton), "Thruxton",
 100.00 , "Triumph"};
 Bike sanya{&(sanya)};
 Bike camino{&(camino), "Camino ",
 150.00, "Honda"};
 Bike vespa{&(vespa), "Vespa ",
 295.00, "Piaggio"};

 v.push_back(thruxton);
 v.push_back(sanya);
 v.push_back(camino);
 v.push_back(vespa);

 for(Bike b:v) std::cout << b << std::endl;
 // using overloaded << operator

 Bike::writeToDisk(v);
 // restore objects
 Bike::readFromDisk("bike_2.dat");
 // where are the restored objects??
 return 0;
}

Listing 5
MAY 2013 | | 21{cvu}

http://www.accu.org/journals/

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamorous ‘not recommended’ rating, you are entitled to another book completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with books.
Jez Higgins (publicity@accu.org)
Patterns
Refactoring to Patterns
By Joshua Kerievsky, published by
Addison Wesley ISBN: 978-
032121335

Reviewed by Alan Lenton

For some reason this book
escaped my notice until
recently, which is a pity, because it’s a
very useful book indeed. Quite a lot of
programmers, even those using agile
methods, seem to think that patterns are
merely something that you spot at the design
stage. This is not the case, though it’s useful if
you do spot a pattern early on. Programs evolve,
and as they do, patterns become more obvious,
and indeed may not have been appropriate at
earlier stages of the evolution.

The book, as its title implies, deals with evolving
programs, and does it very well. The bulk of the
book takes a relatively small number of patterns
and, using real world examples, gives a step by
step analysis, with Java code, of how to refactor
into the pattern. As long as readers do treat these
as examples, rather than something set in stone,
they will learn a lot about the arts of identifying
patterns and the nitty gritty of refactoring.

I also liked the pragmatism of the author. Unlike
some pattern freaks, he freely admits that there
are times when using a specific pattern is
overkill, especially where the problem is simple.
Most people, myself included, when the idea of
patterns are first grasped, tend to see patterns in
everything and immediately implement them.
This is frequently inappropriate, and rather than
making the program structure clearer, muddies
the waters. There are a number of warnings in
the book against this approach.

I was very impressed by this book. In fact it is
one of a small number of books that has made it
to my work desk, where it fits, both intellectually
and literally, in between the Gang of Four’s
Design Patterns, and Martin Fowler’s
Refactoring!

Highly recommended.

Elemental Design
Patterns
By Jason McC. Smith, published by
Addison-Wesley ISBN: 978-
0321711922

Reviewed by Alan Lenton

This is an interesting book, well
researched and well written. Its basic thesis is
that the better known design patters, such as
those explored by the ‘Gang of Four’, can be
decomposed into more elementary patterns, and
so on, until we have a number of elemental
patterns which cannot be broken down any
further.

As part of this process, the author introduces a
new type of diagram which he calls ‘PIN’ –
Pattern Instance Notation. Since PIN is used
extensively in the book to represent patterns it is
essential to understand PIN fully.
Unfortunately, there don’t seem to be any tools
that allow you to draw the PIN symbols, so it’s
difficult to learn it by using the system. This is
something of a weakness in the book.

That problem aside, the book is an interesting
exposition of the fundamentals of patterns.
However, the patterns Smith introduces are so
very basic – Create Object, Recursion, and
Inheritance, for instance – that I doubt that most
application programmers will find its
elementary pattern catalog particularly useful on
a day to day basis. However, anyone involved in
designing and programming refactoring
browsers or the refactoring elements of an IDE
will find the contents of the book very useful.

As a tool for automatically identifying incipient
patterns in existing code I haven’t seen anything
that comes near it. Indeed, this was the genesis
of the book – a project to automate the
identification of certain patterns. Object
oriented language designers may also find it
useful for figuring out what they might need to
build into their languages. The academic nature
of the book is emphasized by substantial section
on the formal logic involved using p-Calculus,
on which I don’t feel qualified to comment.

Overall, I’d say that this may well be a useful
book if you want to study patterns in more depth,
or you are interested in automatic pattern

recognition. As an ordinary programmer,
though, you won’t find a great deal that's of
instant use, since the patterns described are of a
sufficiently low level that they are built into the
language and idiom of most object orientated
languages.

Android
Android Programming
Unleashed
By B.M. Harwan, published by
Sams

Reviewed by Paul F. Johnson

Not recommended – not even
slightly recommended unless
you like levelling up beds and even
then, I can think of better books.

This is my first review in what seems
an eternity and unfortunately, it's not a good one.

The Android market it getting bigger by the
minute and with that, more and more books are
coming out professing to show you how, in 200
pages, you can go from a user to someone who
can create an app that redefines the landscape for
apps out there. This is no exception.

It starts by wasting the first chapter telling you
how to install the Android SDK. Why? The
installer pretty much does everything for you
now. Sure you may need to know how to set up
the emulators and you may wish to not just
accept the defaults, but why waste a chapter on
it? That said, I have the same issue with most
books of this ilk; “let’s use a chapter to show
some screen dumps of how to install Visual
Studio”. Just annoying.

Okay, that bit over. What’s left? Code errors
everywhere, poor explanations of how things
work and why they’re done like that and did I
mention stuff that plain doesn’t compile? No?
There is quite a bit of it.

Ok, let’s look at a particular example on page
188. A nice simple media player.

public class PlayAudioAppActivity
extends Activity {
@override
22 | | MAY 2013{cvu}

public void onCreate(Bundle
savedInstanceState) {
super.onCreate(savedInstance);
setContentView(R.layout.activity_
play_audio_app);
Button playButton =
(Button)findViewById(R.id.playbtn
);
playButton.setOnClickListener(new
Button.onClickListener() {
public void onClick(View v) {
MediaPlayer mp =
MediaPlayer.create(PlayAudioAppAc
tivity.this, R.raw.song1);
mp.Start();
}
});

Looks ok, except for the 2 lines that do anything
– (MediaPlayer mp = ... and mp.Start())

What’s it doing? That’s right, it creates an
instance using the Activity context and then uses
a file in the raw directory. What raw directory?
Unless the author created one, there isn’t one. It
then starts the media player. No sort of trapping
or defensive coding, just hey, it works or I’ll
leave you to puzzle out why it didn’t – and given
quite a lot of the code is written in the same way,
the poor ol’ user is left scratching their head and
wondering why SAMs didn’t include a source
code CD or not limit getting the code for 30 days
past purchase of the book.

Now, let’s add some insult to injury. The book
claims to cover up to 4.1.2, so let’s look at
something that varies massively over the
versions – animation. Prior to version 3,
animation was pretty awful. It worked, but
wasn’t really that good.

Google rewrote huge chunks for version 3 and
animation was there and happy. What does this
book say about the differences? Nothing. It
sticks to what is there prior to version 3. The only
saving grace is the section on using animation
using XML.

Android comes with SQLite databases as
standard. Why then does the author go about
creating a custom database using ArrayLists?

I could really rip into this book and I mean
seriously rip into it, but at the end of the day life
is too short to waste my time trying to find code
in there that works as it should.

Given the author is also a time-served lecturer
with an ‘easy to understand’ style, I’m amazed
this managed to get past the technical editor’s
eye – unless said technical editor is one of his
students...

Beginning Android 4
Application
Development
By Wei-Meng Lee, published by
Wrox, ISBN 978-1-118-19954-1

Reviewed by Paul F. Johnson

Recommended with reservations.

There are plenty of awful Android books out
there (see my other review for one such

example). Lots of errors in the code, broken
examples, wasted paper, illogical layouts and
well, pretty much a waste of a tree. This is NOT
one of those books.

This is a rather good book. Not amazing, but still
far better than a lot of things out there. From the
word go, there are screen shots a-plenty, lots of
code examples with the emphasis definitely on
trying things out for yourself. But therein lies the
problem with the book. It is all well and good
having example code, but not when you have to
disappear onto a website and dig around for it (it
is why this review is on Recommended and not
Highly Recommended).

A major omission is the lack of anything on
graphics handling. While it does show you how
to display graphics, there is nothing on drawing
or use of the camera. An omission which while
understandable, does detract from this book
quite a lot. Drawing leads into long and short
presses, drags, canvases and other fun bits and
pieces. Perhaps for the next edition this could be
included? Here’s hoping!

The author of this work does know what he is on
about with a clear way to his writing style.

I will happily admit that I don’t do Java. I’ve
never understood it and really, it doesn’t make
too much sense to me. I do, however, program
for Android using Xamarin.Android (or
Monodroid as it was). There is only one or two
books out there that are dedicated to using .NET
on Android. The beauty of this book though is
that it explains how the system works and how
events are used and as long as you know the
equivalent in .NET world, this book provides
you with a great resource that is currently
missing.

The book covers just about all of the main parts
of Android development (including data
persistence, maps, messaging and networking)
up to Ice Cream Sandwich. Jellybean doesn’t
appear to be in the book.

All in all, this is one of the better books out there
for Android development. It’s good, but has its
failings.

Miscellaneous
API Design for C++
By Martin Reddy, published by
Morgan Kaufmann ISBN: 978-
0123850034

Reviewed by Alan Lenton

Martin Reddy has written a
very useful book on the art
and science of Application Programming
Interfaces (APIs), and along the way has
produced a book chock full of useful hints and
help for more junior programmers. It is not a
book for someone wanting to learn to program
in C++, but if you have been programming in
C++ for a year or so, then you will find this book
will help you move toward towards program
design instead of just ‘coding’.

Obviously, the book concentrates on API
design, but along the way it covers selected
patterns, API styles, performance, testing and
documentation. As a bonus it also covers
scripting and extensibility, and I found the
section on plugins particularly useful. An
appendix covers the varied technical issues
involved in building both static and dynamic
libraries on Windows Mac and Linux.

The only minor disagreement I would have with
the author is with the extent to which he goes to
move internal details out of header files in the
name of preventing the API users from doing
anything that might allow them to access those
features. From my point of view, using the API
is a type of contract between the API writer and
the API user. If the user is foolish enough to
break that contract then he or she has to take the
consequences in terms of broken code when a
new version of the library comes out. In any case
this sort of behaviour should be picked up by
code review in any halfway decent software
studio.

That is, however, a minor niggle, and this book
represents a rich seam for programmers to mine
for good programming practices – even if you
aren’t writing API, your use of them will
improve dramatically!

The Essential Guide To
HTML5: Using Games To
Learn HTML5 And
JavaScript (Paperback)
By Jeanine Meyer, published by
FRIENDS OF ED ISBN: 978-
1430233831

Reviewed by Alan Lenton

I really can’t recommend buying this
book. It seems to have been written
mainly for people with a very short attention
span, and therefore skips on explaining why you
do things in a specific way. The chosen way of
displaying programs listings, while it might
have be useful for annotating each line, makes
it impossible to look at the program flow, or
consider the over all design. The one correct idea
– that of incremental program development –
becomes merely a vehicle for large spaced out
repetitive chunks of code which probably extend
the size of the book by as much as 20%.

The code itself, is, how shall I put it, somewhat
less than optimal, and not conducive to creating
good coding habits by those learning from the
book. For instance, in the dice game example,
the code for drawing a dot on the dice is repeated
in a ‘cut and paste’ style every time a dot is
drawn, instead of being gathered into a function
and called each time it is needed.

I shudder to think about what sort of web site
someone who learned from this book would put
together. Fortunately, perhaps, they are not
likely to learn enough from the book to make a
web site work.

A triumph of enthusiasm over pedagogy.
Definitely not recommended!
MAY 2013 | | 23{cvu}

24 | | MAY 2013

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View from the Chair
Alan Griffiths
chair@accu.org

I’ve been given special dispensation
by the C Vu editor to submit this report ‘late’
(that is, after the conference and AGM). I know
I enjoyed the conference and believe that most of
those who could attend did so too. This was the
first year away from Oxford, from what I saw it
was a mostly successful move. There were a few
‘opportunities for improvement’ but I’m sure
that the conference committee will be
considering carefully what lessons can be
applied for next year.

As this is written after the AGM it is possible to
report on proceedings there. We had a number of
votes and proxies registered on the motions for
constitutional change before the meeting, but
both these and the votes at the meeting were
overwhelmingly in favour of the proposed
changes.

There were two constitutional motions passed:
one proposed by Roger Orr and Ewan Milne to
rationalise the committee posts required by the
constitution; and, a much larger one proposed by
Giovanni Asproni and Mick Brooks to support
voting by members that cannot attend the AGM.

Last year’s AGM made changes to the
constitution that required constitutional motions
be notified in advance and that preregistered and
proxy votes on these motions be accepted. There
was also a call for the committee to be more
transparent about the way the organisation runs.

In line with this we’ve used the members
mailing list to prepare the proposed changes to
the constitution. Drafts of these motions were
posted to the list and updated in response to
comments: this meant that issues could be
addressed in advance of the AGM and the final
wording we had was passed quickly.

The committee has been taking other steps over
the year to make the operation of the
organisation more transparent. As part of this
minutes of the committee meetings are now
published on the accu-members mailing list
once they are approved. Also, while committee
meetings have always been open to members
(subject to prior arrangement with the secretary)
they can now be attended remotely.

At this year’s AGM there was also a call from
the floor to ensure that committee members from
overseas could attend committee meetings. This
didn’t move to a vote as the same technology
that allows members to attend remotely is
already in use by committee members.

One notable failure by the committee was that
we didn’t have the accounts ready for the AGM.
This has happened before, but was unexpected:
the treasurer got the figures to the accountant in
what we believed was good time and we only
realised that the accounts going to be late when
they didn’t appear as expected. In the end, the
accounts were actually available for the AGM,
but no-one present (neither committee members,
nor the honorary auditors) had had a chance to
review them. We will be investigating further at
the next committee meeting.

As anticipated by my last report we’ve had a
couple of people stand down from the committee
– Mick Brooks has been replaced as
Membership Secretary by Craig Henderson.
Tom Sedge and Stewart Brodie have also
stepped down.

My last report also mentioned the ‘hardship
fund’. This was originally created to support the
memberships of individuals who could not
finance themselves. However, there have been
decreasing calls on this fund over the years and
while it is still possible to donate, nothing has
been paid out for quite some time. The
committee needs guidance on how to proceed:
Should we continue accepting contributions to
the fund? And what do we do with the money
already donated?

We do sometimes offer concessionary
memberships to members in financial
difficulties. So one option for using the hardship
fund could be to ‘make up’ the difference
(effectively transferring the money to our
general budget). It would also be possible to
spend the money in new ways (supporting
attendance at the Conference for example). If
you can suggest something else then the
committee would be pleased to consider it.

We still have no volunteer to moderate the accu-
contacts mailing list. This isn’t an onerous task
(there are a few emails each week to classify as
‘OK’, ‘Spam’ or ‘needs fixing’) but we don’t
currently have a replacement for this role. Is this
something you could do for the ACCU?

Please contact me at chair@accu.org about any
of the items above.

Letter to the Editor
Dear Editor,

Not having used F# before, it was interesting to read Richard Polton's
article, ‘Comparing Algorithms’, in the March 2013 C Vu, in which he
compares a variety of iterative and recursive solutions to the first Project
Euler problem (sum the multiples of 3 or 5 below 1000).

As a didactic exercise, this is all well and good. The problem itself, though,
strikes me as being very similar to the one in the famous story about Carl
Friedrich Gauss; and indeed it turns out that the sum of all multiples of i
less than or equal to n can be found (in plain old C) without any loop at all:

 int sum(int i, int n) {
 return i * (n/i * (n/i + 1))/2; }

We can use this to find the sums of the multiples of 3 and of 5, then remove
the ones we’ve double-counted:

 int euler1(int i1, int i2, int n) {
 return sum(i1, n-1) + sum(i2, n-1)
 - sum(i1*i2, n-1); }

In C++, if the arguments are constants we can convert function arguments
to template parameters, reducing our runtime cost all the way to zero by
doing the work at compile time; and in C++11 we should be able to

accomplish the same thing simply by sticking
constexpr in front of both functions.

I think the lesson is that, while iteration,
recursion, functional programming, templates, C++11, and all our other
flashy tools and techniques each have their place, in our eagerness to try
out our new capabilities we mustn’t lose sight of the problem we originally
set out to solve.

Sincerely,

Martin Janzen
(martin.janzen@gmail.com)

If you read something in C Vu that you
particularly enjoyed, you disagreed with
or that has just made you think, why not
put pen to paper (or finger to keyboard)
and tell us about it?

	CVu25-2_final.pdf
	The New Informs The Old
	Bug Hunting
	Tar-Based Back-ups
	ACCU Conference 2013
	Writing a Cross Platform Mobile App in C#
	Let’s Talk About Trees
	Team Chat
	Standards Report
	Code Critique Competition 81
	Bookcase
	Letter to the Editor
	View from the Chair

	CVu25-2_final.pdf
	The New Informs The Old
	Bug Hunting
	Tar-Based Back-ups
	ACCU Conference 2013
	Writing a Cross Platform Mobile App in C#
	Let’s Talk About Trees
	Team Chat
	Standards Report
	Code Critique Competition 81
	Bookcase
	Letter to the Editor
	View from the Chair

