

MAR 2013 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

Slave to the Grind
hen Chris Oldwood sent me the article about his Toolbox, printed in this
edition of C Vu, it brought to mind a few things. If any
of you have seen Pete Goodliffe give a presentation,

you’ll know he’s a big fan of tools and automating the
donkey-work of day-to-day development: things like
running tests, building the code, generating test data. The list
is a very long one. In fact, there’s a confluence of similar ideas
throughout this edition with Joana Simoes writing about
creating help files, and Richard Polton testing various versions
of an algorithm, along with Chris’ introduction to the tools he
uses in support of the activity of creating software. Tools are a
vital part of what we, as software developers, do all the time.
Compilers, interpreters, linkers, loaders, editors, IDEs, version
control systems are all tools for automating repetetive, monotonous
and error-prone activities.

Pete’s refrain, and a concept picked up by Chris here, is that if
you find yourself doing the same thing more than a couple of
times, automate it. If necessary, by writing your own tool. It
might be a simple script or batch file, or a full-blown
application, as necessary for the task. If there’s already a tool
available for what you need, all the better. If it’s Open Source and
you can get involved in its development, better still.

Sometimes the use of tools can be a hindrance, though, and this was the ‘other’ thing
of which I was reminded. Modern IDEs such as Eclipse and Visual Studio provide –
at least the plug-in facility for – many productivity tools. The ability for an editor to
prompt you with the names of member functions of an object, or local variables isn’t
really new, but it did prompt an erstwhile colleague of mine to coin a new meaning
for TDD: Tools Driven Development. In Visual Studio especially, another co-worker
described C# programming as ‘dot programming’, referring to Intellisense™ popping
up a list of members in response to typing . after a variable name.

It’s important for lots of reasons that we own the tools, rather than the other way
around. Which is why I still like programming in a ‘simple’ text editor, and building
my code from a command line. It at least gives me the illusion that I am still master of
the toolchain, rather than slave to it.

W
Volume 25 Issue 1
March 2013

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Pete Goodliffe, Paul Grenyer,
Derek Jones, Chris Oldwood,
Roger Orr, Richard Polton,
Mark Radford, Joana Simoes

ACCU Chair
Alan Griffiths
chair@accu.org

ACCU Secretary
Giovanni Asproni
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

2 | | MAR 2013

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
18 Code Critique Competition

Competition 80 and the
answers to 79.

25 Standards Report
Mark Radford reports the
latest from C++
Standardisation.

26 Regional Meetings
Paul Grenyer reviews the
inaugral East Anglia
MongoDB User Group
meeting.

REGULARS
26 Bookcase

The latest roundup of
book reviews.

27 ACCU Members Zone
Membership news.

SUBMISSION DATES
C Vu 25.2: 1st April 2013
C Vu 25.3: 1st June 2013

Overload 115:1st May 2013
Overload 116:1st July 2013

FEATURES
3 Help!

Joana Simoes demonstrates some features fo the Qt
framwork for help files.

6 The Downs and Ups of Being an ACCU Member
Chris Oldwood reflects on what the ACCU’s ever done for
him.

8 The Art of Software Development
Pete Goodliffe illustrates development practices.

10 In The Tool Box – Introduction
Chris Oldwood introduces a column about his weapons of
choice.

11 Impact of Semantic Association on Information Recall
Performance
Derek Jones concludes his analysis from the latest ACCU
Conference experiment.

15 Comparing Algorithms
Richard Polton takes different approaches to a well-known
problem.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Help!
Joana Simoes demonstrates some features of

the Qt framework for help files.

ocumentation is probably, invariably, the ‘weakest link’ in the
software production chain. Last minute releases do not leave a lot of
time for documenting the code, and excuses such as ‘the code is self-

explanatory’ are more than common. Except that it
is not. Probably you will not understand why you
were using that typedef with a multimap inside
a multimap two months later; and so nobody will.

But I’ll probably leave this topic for another article
(which is really worth it!) and just assume for now,
that your code is thoroughly commented all the
way, and that you even adopted an automated
documentation generator (like Doxygen [1]) and
formatted your comments accordingly. So my
article is not going to be about you, or the other
programmers using your application, but about the
users. Yes, that’s right, that class of living beings
that potentially possess no technical knowledge,
and can be the ‘source’ of all sorts of problems.
Unfortunately, these may be the ultimate target of
your program, and they don’t care so much about
the ‘beauty’ of templates, one-line conditional
return expressions, or initialisations on the
constructor, as they care about being able to
understand and actually use the program. And this
is why they need ‘help’.

Background
For a long time, help was not really part of any API,
and when implemented it was in some sort of
proprietary format, done from scratch in the
application (Basic, Java, Fortran and other
structured languages). With the advent of object
oriented languages, a format for help arose in
Windows, and it was supported until Windows
Vista: WinHelp format [2]. After that, fortunately
Microsoft started pushing towards an HTML-based
help, which is much more standard since it can be
implemented across platforms; this is the only help
format supported in the latest versions of Visual
Studio. Normally help is not implemented by the
same programmers that wrote the code, but by a
different set of people, which probably explains the
existence of a lot of third-party tools for writing
help files (helpStudio Lite [3] is an example).

As a C++ programmer, producing cross-platform
applications, I am an enthusiastic adopter of the QT
libraries [4]. Qt, also pronounced ‘Cute’ provides
an extensive framework for diverse things
including (but not limited to): UI, multi-threading,
STL, XML, and Help. Finding the Qt Help
Framework [5] was a good surprise, due to its capabilities, neat
integration, ease of use, and mostly for its ability to involve non C++
programmers in the process of creation of Help. I was personally involved
in the process of creating a Help for an application with a non-programmer
person, and apart from some small misunderstandings, I can say that the

whole process was quite smooth. Thus I decided to share this tool with the
rest of the ACCU users.

Anatomy of the Cute ‘Help’
We can view a help project as a help manual, and
a help collection as a set of manuals that may have
cross references between them (for instance an
application suite). All these project files are
registered using Qt tools, and ultimately they
generate a compressed file, which is read by Qt
Assistant.

The ‘Help project’ basically consists of one or more
HTML files describing many aspects of the
application, and a project file that organises them
(.qhp). The project file has information on ‘how-
to’ use these files, organising the table of contents,
the filter and the keywords. This is basically an
XML file, such as the one in Listing 1.

In this file, you may notice important content
definitions such as: ‘filters’, ‘table of contents’ and
‘keywords’.

D

JOANA SIMOES
Joana is an AGILE software developer for the Food
and Agriculture Organisation (UN), who dreams of
becoming a comic artist one day. Contact her by email
at doublebyte@gmail.com, or in person in Park Guell
(Barcelona) at lunchtime

<?xml version="1.0" encoding="UTF-8"?>
<QtHelpProject version="1.0">
<namespace>mycompany.com.myapplication.1_0<namespace>
<virtualFolder>doc</virtualFolder>
<customFilter name="My Application 1.0">
 <filterAttribute>myapp</filterAttribute>
 <filterAttribute>1.0</filterAttribute>
</customFilter>
<filterSection>
 <filterAttribute>myapp</filterAttribute>
 <filterAttribute>1.0</filterAttribute>
 <toc>
 <section title="My Application Manual" ref="index.html">
 <section title="Chapter 1" ref="doc.html#chapter1"/>
 <section title="Chapter 2" ref="doc.html#chapter2"/>
 <section title="Chapter 3" ref="doc.html#chapter3"/> </section>
 </toc>
 <keywords>
 <keyword name="foo" id="MyApplication::foo" ref="doc.html#foo"/>
 <keyword name="bar" ref="doc.html#bar"/>
 <keyword id="MyApplication::foobar" ref="doc.html#foobar"/>
 </keywords>
 <files>
 <file>classic.css</file>
 <file>*.html</file>
 </files>
</filterSection>
</QtHelpProject>

Listing 1
MAR 2013 | | 3{cvu}

<toc>
<section title="Myprog Manual" ref="index.htm">
 <section title="Chapter 1: Introduction" ref="test.htm#chapter1">
 <section title="Nature of the Information Supported by Myprog" ref="test.htm#nature_information"/>
 <section title="The Sampling Process" ref="test.htm#sampling_process"/>
 <section title="Rational of Data Hierarchy" ref="test.htm#rational"/>
 </section>
 <section title="Chapter 2: Store Aliens Data" ref="test.htm#chapter2">
 <section title="Creating the Sampling frame" ref="test.htm#create_sampling_frame">
 <section title="Create a new frame from scratch" ref="test.htm#frame_from_scratch">
 <section title="Create a new frame by choosing an existing one" ref="test.htm#frame_from_existing"/>
 </section>
 <section title="Characterise Sampling Technique" ref="test.htm#sampling_technique"/>
 </section>
 </section>
 <section title="Define Minor Strata" ref="test.htm#minor_strata"/>
</section>
</toc>

Listing 4

As both XML and HTML are well-known and text-based formats, we can
create these files using any tool we like, ranging from text editors (Kate,
Vi, Emacs) to XML or HTML editors, in case you are more ‘visual’
(normally non-programmers, such as the people who write manuals, are!).

Because we store help as compressed files, rather than raw files, the next
step is to transform the qhp file into its compressed format (qch).
Fortunately, the Qt suite comes with a CLI for that: the qhelpgenerator.
This is an example of the syntax:

 qhelpgenerator doc.qhp -o doc.qch

A ‘Help collection’ is composed of a set of help projects and a collection
file (.qhcp). The top-level project that pulls together one, or many, help
projects is called a Help collection; the collection is organised by a
collection file (.qhcp), which is again, another XML file. In the current
example, we have one help collection with our single project (see
Listing 2).

And to generate the compressed collection file (qhc), we use another CLI:
the qcollectiongenerator. This is an example of the syntax:

 qcollectiongenerator mycollection.qhcp
 -o mycollection.qhc

The Help collection file is the output that is going to be called by the
application. If we want to generate it in one-pass (skipping the
qhelpgenerator step), we just have to modify the collection file slightly,
like Listing 3.

Writing the manuals
The Help manual can be written in one or many html pages. There is no
need to create a table of contents (toc), since the help will generate one on
the navigation tree, on the left panel of Qt Assistant. However, its a good
practise to have a face page, with a presentation of the manual and a table
of contents. In this sample project, we have two files: index.htm, the face
page that is displayed in the opening of the help and test.htm, with the
actual help contents. To be able to refer to sections of the html file in the
toc of the project file, and to be able to recall keywords, we need to create
"anchors" to certain parts of the document. We can do that by enclosing
some words with the <a> tag. For instance: if we want to create an anchor
for the keyword "logbooks" in the file test.htm, we would write:

 logbooks

and later recall this location with the url:

 test.htm#logbooks

Writing the project file
In the project file we define the following attributes of the help project:

 Namespace: a unique identifier for the documentation set.

 Virtual folder: root directory of all files referenced in a compressed
help file. In this way we can have relative paths shared between help
collections.

 Custom filters: a list of attributes that allow us to display
documentation only for them.

 filters: this section assigns contents to the defined custom filters.

Inside the ‘filter’ section we have the most important part of the help file:
the toc, the keywords and files. The toc defines the table of contents of the
help that is going to be displayed on the left panel of the QT assistant. In
terms of syntax, we have a nested list of titles that allows us to define the
hierarchical structure of the manual. For instance in the section of the
project file shown in Listing 4, we recreate a structure like similar to
Figure 1.

<?xml version="1.0" encoding="UTF-8"?>
<QHelpCollectionProject version="1.0">
<docFiles>
 <register>
 <file>doc.qch</file>
 </register>
</docFiles>
</QHelpCollectionProject>

Li
st

in
g

2

...
<docFiles>
 <generate>
 <file>
 <input>doc.qhp</input>
 <output>doc.qch</output>
 </file>
 </generate>
 <register>
 <file>doc.qch</file>
 </register>
</docFiles>
...

Li
st

in
g

3

* Introduction
** Nature of the Information Supported by Myprog
** The Sampling Process
** Rational of Data Hierarchy
* Store Aliens Data
** Creating the Sampling frame
*** Create a new frame from scratch
**** Create a new frame by choosing an existing one
*** Characterize Sampling Technique
* Define Minor Strata

Figure 1
4 | | MAR 2013{cvu}

Note that the name of the section is associated with a piece of an html
document, by referring to an anchor that we defined in the html file. For
instance in this example:

 <section title="Chapter 2: Store Aliens Data"
 ref="test.htm#chapter2">

We associate the section ‘Chapter 2: Store Aliens data’ to the anchor
‘chapter2’ that was defined in test.htm.

The section ‘keywords’ is where we define the keywords that we can use
to search for contents in the help index. For instance in the following line
we associate the keyword ‘logbooks’ with a section of the file test.htm
where we defined an anchor. The id, is an identifier that lets us refer this
in the code (for instance creating a context sensitive help).

 <keyword name="logbooks" id="Myprog::logbooks"
 ref="test.htm#logbooks"/>

Finally, in the ‘files’ section we register all the files that we want to include
in the help project (in this case only two html files).

Viewing the Help
During the production stage, the Help team may not have access to a
running application to view the Help. That is not a problem, since we can
view the help files using the standalone Help viewer from Qt: the Qt
Assistant. Assuming you do not have it already, you just have to install
the Qt Sdk from Digia and call the Qt Assistant (on Windows go to the
Start menu, and choose QTSDKx > Tools > QtAssistant). To register the
manual go to Edit > Preferences > Documentation and add the path to the
qhc file. If everything goes well, the index file and the table of contents
should be displayed on the left panel; the contents will be displayed on the
right panel. [6]

Figure 2 is a screenshot of the application Help, running on Qt Assistant.

Some (very important) things to keep in mind when
writing the help
This section highlights some ‘mistakes’ that the help team I was working
with faced. I learned that even some things that seem obvious to
programmers, may not be obvious at all to people who are not used to
dealing with technical constraints (e.g.: syntax); this is not a problem, as
long as we are aware of them and describe everything properly.

Startup page

It is advisable to have a startup page, to work as a ‘face’ of the help
collection. In our example, this page (index.htm) is located in this url:

 qthelp:myprog.app.1_1b/doc/index.htm

In this file, we display a small introduction and the toc. On the table of
contents of the project file, the section that contains the face page, should
be the outer section: i.e., the one that contains all the other ones!

 <section title="Myprog 1.1b Manual"
 ref="index.htm">

 </section>

Consistency of titles across project

The titles of the different sections should be consistent across the project.
Make sure to double check the titles on:

 table of contents (in our example in index.htm)

 throughout the html document

 in the definition of the index of the qhp file.

In this example I opted to remove the word ‘Chapter’ from everywhere,
except the structure on the qhp file. When using chapter numbers, choose
a numbering system and remember to keep using it consistently, i.e.,
romans, literals, etc.

Consistency of structure across project

The same thing applies to the structure of the help: make sure to keep the
same nested structure across table of contents, help html file and help
definition file.

Creating the name tags

The name tags should enclose the section, since they contain the contents
that we want to reference. For instance this is correct:

 Create a new frame by copy a pre-existent one

and this is not correct! (although it works, we are referencing empty
content before the section title)

 Create a new frame by copy a pre-existent one

It is advisable to use human-friendly tags, to easily assimilate the
references through code and avoid mistakes. For instance to reference
‘Create a new frame by copy a pre-existent one’, we may use the
name="pre-existent" instead of name="mozTocId527307"!

Keywords

The Keywords section in the qhp file is very important, as it allows us to
use the search function on the index, and also to create a context sensitive
help in the UI. Please allow some time to define a few important keywords
in the content.

Paths on the qhp file (IMPORTANT!)

The paths on the qhp file are the references that allow the user to navigate
through the help contents; therefore it is very important for the help project
that they are correct! On the path:

 "user_guide_30_12_2011.html#logbooks"

We have two parts.

 "user_guide_30_12_2011.html"

is the name of the html file: make sure this file exists and the name is
spelled correctly (including the extension)!

 "logbooks"

is the part after the # and it references a tag, which means somewhere in
the html file we must have something like this:

 logbooks

You need to ensure this exists. Take some time to make sure each one of
the entries in the <toc> section of the qhp file is valid!

 <section title="Introduction"
 ref="user_guide_30_12_2011.html#mozTocId386761"/>
 <section title="Chapter 1: Overview of Myprog 1.1"
 ref="user_guide_30_12_2011.html#mozTocId42934">
....

Fi
gu

re
 2
MAR 2013 | | 5{cvu}

Help! (continued)

The same applies to the <keywords> section of this file: make sure all
the keyword references exist and are valid; the same applies to the TOC
on file index.html.

Registering html files

At the end of the qhp file, make sure all the html files contained in this
project are correctly listed, in order to be registered by the compiler. In this
project:

 <files>
 <file>index.htm</file>
 <file>user_guide_30_12_2011.html</file>
 </files>

All the files used in the help project must be included in the <file> tag:
this includes all the image files (jpg, png, etc)!

Conclusions
Overall I think the Qt Help framework presents an easy solution that makes
the creation of help a less tedious task. The separation between the help
and the application makes it possible:

 to develop and test the help, without having the source code of the
application.

 to implement the help without having any knowledge of
programming (although a basic knowledge of markups, such as
XML and HTML would be nice!).

However, we do not want the help to be completely separated from the
application. In fact, there is a part of the help that is linked closely to the
application: what we call context sensitive help. This part requires
implementing calls to the help engine on the code, and I thought I would
leave it to another article.

Finally, as a ‘goodie’ for using Qt, the help is also completely portable
across platforms.

See you soon

See you soon with more articles about the Qt framework. You can email
me to suggest specific parts of Qt you would like to see covered, or to beg
me to stop writing more articles!

References and notes
[1] Doxygen. Doxygen, http://www.stack.nl/dimitri/doxygen/
[2] wikipedia. winhelp, https://en.wikipedia.org/wiki/WinHelp
[3] Innovasys. HelpStudio Lite, http://www.innovasys.com/products/

hslite/overview.aspx?cpid=vssdk
[4] Digia. Qt, http://qt.digia.com/
[5] Digia. Qt Help, http://doc.qt.digia.com/4.6-snapshot/qthelp-

framework.html
[6] Note that when generating a new help file (qch), this file must not be

opened on the Assistant, otherwise you will get a permission error!
To avoid this, close the assistant whenever you re-generate the help.
When you open it again, you don’t need to remove and add the qch
again, since it will automatically update the contents to their latest
version.
The Downs and Ups of Being an ACCU
Member

Chris Oldwood reflects on what the ACCU’s ever done for him.

 joined the ACCU about 6 years ago. At the time I was working at one
of the large investment banks and was mourning the recent loss of the
C/C++ Users Journal on the company’s chat system. I much prefer

paper based journals and, what with the demise of C++ Report and
Windows Developer Journal in previous years too, my rucksack was
getting lighter on my daily commute. Naturally the channel I posted on was
about C/C++ and it was suggested that I take a look
at the ACCU. Little did I know there was also a
dedicated ACCU channel on that chat system too…

If someone had asked me in an interview, before
joining the ACCU, how I rated myself as a
programmer, out of ten, I’d probably have gone for
a 7. I got a good start to my professional career
working with smart people and in a culture where continuous learning was
promoted. Various journals were circulated, as were books like Code
Complete and Writing Solid Code. After leaving the company to go
freelance I quickly realised I missed the journals and books and so took
out my own subscriptions and started to build up my own library.

By the time I had joined the ACCU I felt pretty confident that I knew what
I was doing. I had worked with plenty of people and at a few different
organisations so felt I could gauge roughly where I sat on this hypothetical
‘programmer scale’. My focus had always been on learning the technology
as that what was interested me most – my bookshelf was mostly filled with
the collective works of Jeffrey Richter. Although I had been ‘doing OO

and C++’ for the last 10 years I actually didn’t own any of the fundamental
C++ texts, such as Stroustrup or Josuttis, instead favouring the Essential
and Exceptional book series as a paper form of Lint.

And then I started going to the monthly ACCU London meetings and
tagging along to the lunches. There I got to put faces to some of the names
in the chat window and meet some of the other members that had graced

the pages of the journals I had started reading. Up
to that point most of the articles and books I had
read were written by US based authors, but now I
was starting to come face-to-face with these
people. That was scary, and yet obviously cool at
the same time. What started to become apparent
was that maybe I didn’t know quite as much as

perhaps I thought I did. One particular conversation stands out as a
watershed moment.

I had just been to see Paul Grenyer do his ‘Boiler Plating Database
Resource Cleanup’ talk for ACCU London. As was the natural order of

I

maybe I didn’t know
quite as much as

perhaps I thought I did

CHRIS OLDWOOD
Chris started as a bedroom coder in the 80s, writing
assember on 8-bit micros. Now it’s C++ and C# on
WIndows. He is the commentator for the
Godmanchester Gala Day Duck Race and can be
reached at gort@cix.co.uk or @chrisoldwood
6 | | MAR 2013{cvu}

http://www.stack.nl/dimitri/doxygen/
https://en.wikipedia.org/wiki/WinHelp
http://www.innovasys.com/products/hslite/overview.aspx?cpid=vssdk
http://www.innovasys.com/products/hslite/overview.aspx?cpid=vssdk
http://qt.digia.com/
http://doc.qt.digia.com/4.6-snapshot/qthelp-framework.html
http://doc.qt.digia.com/4.6-snapshot/qthelp-framework.html

things, we went to the pub afterwards to chat about the talk and other stuff.
I had just read Michael Feathers’ excellent book Working Effectively with
Legacy Code and so was keen to canvas opinion. I started talking to Steve
Love (who had then just taken over as editor of C Vu) and it suddenly

became apparent that although I understood the mechanics of
programming and the technology what I was failing to appreciate was the
philosophy of it. In essence I was taking what I was reading far too literally
and failing to take the time to understand many of the underlying
principles. In retrospect I suspect that this is largely the result of being a
self-taught programmer that was arrogant enough to ‘know it all’ by the
time they reached University. You don’t need a type-system when you’re
programming in Assembler, and anything other than Assembler is
‘obviously’ going to be too slow…

And then I went to my first ACCU Conference in 2008. Before going I
had definitely dropped a notch or two on the scale, but what the conference
did was to magnify the effects of those branch meetings and lunches ten
fold. The team I was currently working in were certainly as capable a bunch
of programmers as any, but they weren’t all the passionate kind. Suddenly
I found myself surrounded by like-minded individuals and quite a few
authors of the books on my desk. Now we’re talking scary, but oh-so
awesome too. Is it any wonder I didn’t go to bed for the next 4 nights for
fear of missing out on another mind-blowing revelation?

By the end of my first conference, I was definitely down to a 3 or even 2.
No, what I realised is that The Programmer Scale is not linear – it’s
exponential! There is just so much more stuff to learn. I really hope that
nobody actually asks me to rate myself in an interview because I’m not
sure 2 is the answer they’re looking for and they probably don’t know what
the far end of the scale looks like either.

What anyone who’s ever read one of my reviews of the ACCU conference
will have hopefully picked up on, is that everyone there is so approachable
and eager to share. Yes, we all have to earn a crust, but it doesn’t feel like
you’re in competition with anyone else, instead it feels like everyone there
wants to advance The Cause together, where that cause is to be the best
programmer we can.

In the intervening years I have got over my fear of asking what I previously
would have thought of as a stupid question, and in fact have learnt to
embrace my naivety. Yes, there is a lot of new cool technology to learn,
but there are also the basics that we use every day and yet might not fully
appreciate. Hearing some ‘respected’ individuals arguing at 4 o’clock in
the morning about the definition of ‘equality’ goes a long way to boosting

one’s confidence so that you don’t feel like you’re the only one who thinks
the topic is a little bit trickier than the books make out.

Ah, yes, confidence. Some people seem to have it in spades, almost to the
point where a little humility wouldnt go amiss now and then. At the other
end of the spectrum are those of us that need constant validation and
reassurance that we’re heading in the right direction, or that we have a
worthy contribution to make. The agile practitioners tell us that face-to-
face communication is worth so much more than a requirements document,
and so it is with learning. Reading books might help you learn mechanics,
but I’ve found the essence only really sinks in when discussing those
concepts with others.

As I write this my first proper article is about to be published in Overload.
I started it well over 3 years ago, and even though I was pretty confident
of the subject matter, I still felt uneasy about putting it forward. Instead I
decided to take smaller steps, firstly by starting a blog and then by
succumbing to ‘light pressure’ from the C Vu editor and doing the write-
ups for the ACCU London meets and annual conference. At the conference
a couple of years ago I dipped my toe in the water and did a 5 min lightning
talk which seemed to go down well. The following year I found myself
hosting an ACCU London meet for 60 mins, and then doing a 90 min

session at the conference a few months later. This year I’m presenting
again and have started moving ideas from the ‘possible blog post list’ to
the ‘potential ACCU article list’.

After being a professional programmer for almost 20 years you’d have
thought things would have settled down by now. And yet I’ve probably
learnt more about programming in the last 10 years than during the first
10. I’ve certainly learnt more about myself, and look forward to learning
even more about both.

I’m in no doubt that joining the ACCU has had a profound effect on both
my career and my personality. That has only been possible because certain
people put their time and effort into ensuring that the organisation
continues to function and hopefully flourish. Sadly I only get to thank some
of those in person once a year at the conference. Luckily though a few
others I get to meet a little more regularly and two of those in particular
have been instrumental in providing the reassurance I needed to get off my
backside and start to explore my own potential. Perhaps it’s because they
are the editors of the two ACCU publications that it gives them a licence
to cajole, coax and entice us into making a contribution. But you know
what, that’s just what some of us need and for that, Fran & Steve, I thank
you.

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

what the conference did was to
magnify the effects of those branch
meetings and lunches ten fold

I’m in no doubt that joining the ACCU
has had a profound effect on both

my career and my personality
MAR 2013 | | 7{cvu}

Becoming a Better Programmer # 79
The Art of Software Development
Pete Goodliffe illustrates development practices.

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net or @petegoodliffe
8 | | MAR 2013{cvu}

MAR 2013 | | 9{cvu}

10 | | MAR 2013{cvu}

In the Tool Box – Introduction
Chris Oldwood introduces a column

about his weapons of choice.

or many programmers their bread and butter involves slaving over
code written in a general purpose language, such as C++, C# or Java.
These all require a text editor for modifying the program source code

and a compiler for turning that into something the machine can actually
use. Those working in the realm of the dynamic languages have a similar
toolset, albeit with an interpreter or JIT compiler to turn their masterpiece
into boring old machine code.

And for some this is where it ends too. The
testing, deployment, documentation and
project management fairies all take over now
to finish off those other menial tasks. After all,
the hard work’s been done, right?

As the software systems we are trying to create
get more and more complex, so does the
number and type of tools we need to use to get
the job done. In some big corporations there
are teams dedicated to testing and deployment,
but that still leaves an awful lot that we need
to cover ourselves. In the smaller shops you’ve
got all that along with painting your office once in a while too.

We should always strive to use ‘the right tool for the job’, but that doesn’t
mean that we have to buy an all-singing, all-dancing bug tracking system
if our development practices ensure that our bug count remains low – a
spreadsheet may well be ‘the right tool’. At least, it might for now. Later,
if the spreadsheet becomes unwieldy (hopefully due to a high demand for
more useful features, not bugs) we can investigate alternatives then.

The problems we need to solve outside of our core code-writing activity
are often varied. After the text editor (nay, IDE) and compiler (which is
often chosen for us) the Version Control System probably comes next in
the list as we need to manage our code-lines as we checkout, commit,
branch, merge and spelunk on a regular basis. From there it’s a short hop
to the Continuous Integration server that automates a set of build scripts
and ad-hoc tools that even Heath Robinson would be proud of. Deployment
is probably a similar affair. Even if ‘all’ you turn out is an .MSI something
has to produce that, and you’ll need to track your builds and symbols
somewhere just in case a bug shows up in the field.

Oh, yes, and there is testing too. Unit testing forms the basis of many
teams’ testing strategy, with integration and system scale testing thrown
in for good measure. Once you reach the outer layers of the system there
are a plethora of tools to help with those really gnarly problems, like testing
UI’s and web services. Although you will probably strive to create
automated tests where possible, there is still a place for manual testing and
that must involve some sort of tooling too, even though you might not think
of it that way.

If your product is a system composed of many moving parts, such as for
batch processing or a service, you’ve also got the support and monitoring
sides to consider. The distinction between an ‘operator’ and ‘developer’
are so blurred now that you might have to do a spot of log trawling and

live debugging followed by the creation of a patch that needs to be rolled
out post-haste. Getting from ‘problem discovered’ to ‘fix deployed’ could
well see the use of a tool chest that would make an electrician feel under-
equipped. If it’s really serious there might be some major ‘glue’ required
to hold the system together until the correct action can be implemented,
tested and rolled-out.

And that’s what this column wants to be about
– how people solve the problems that allow us
to do the other thing we actually think we’re
being paid to do. Any discussion of text editors
is clearly out of scope on the basis that it’s only
mildly less contentious than discussing tabs
and spaces. Similarly it’s not an excuse to rope
in 3rd parties to write some ‘Advertorials’
either. It’s a chance for jobbing programmers
to open up their own tool boxes and let the C
Vu readership know what kinds of cool stuff
they have in there and how they use it.

The good thing about metaphorical tool boxes
is that they are TARDIS like in nature and so can contain everything from
the svelte and simple TR through to the powerful and mind-bending GIT.
Yes, we can all read the manual on how TR and GIT might be used, but
what’s more important is how do you use it? Why do you use it? What are
some of the trade-offs that caused you to choose, say, the monkey wrench
over the spanner? The aim is to try and convert some of that Unconscious
Incompetence into Conscious Incompetence [1], or better yet into
Conscious Competence by exposing new tools, or just reminding some of
us about the old ones that are collecting dust because we’ve forgotten about
them. Better yet how have you managed to make up for the shortfall in one
tool’s feature set by using another?

Clearly the classic UNIX commands such as SED and AWK provide a
huge source of inspiration, but I’m also hoping we can look further afield
to the less obvious. For instance, have you ever treated .csv files and Excel
spreadsheets as database tables to aid in testing? Or, how do you generate
a unique build number? What about the kinds of information you put on
a dashboard for your support team?

Sadly the one-way communication of these pages will likely only whet
your appetite and so you’ll need somewhere else to go to delve into the
finer points of how, what, why, when and where. For that there is always
‘accu-general’ – the virtual coffee shop come mailing list that never
actually serves coffee, but is frequented by craftsmen of the programming
trade who are always all too eager to share their opinions.

So, pop open that tool box have a rummage around and see what interesting
stuff you can find.

References
[1] http://chrisoldwood.blogspot.co.uk/2010/04/turning-unconscious-

incompetence-to.html

F

If you read something in C Vu that you
particularly enjoyed, you disagreed with or
that has just made you think, why not put pen
to paper (or finger to keyboard) and tell us
about it?

Getting from ‘problem
discovered’ to ‘fix

deployed’ could well see
the use of a tool chest that
would make an electrician

feel under-equipped

CHRIS OLDWOOD
Chris started as a bedroom coder in the 80s, writing
assember on 8-bit micros. Now it’s C++ and C# on
WIndows. He is the commentator for the
Godmanchester Gala Day Duck Race and can be
reached at gort@cix.co.uk or @chrisoldwood

In the Tool Box # 1

http://chrisoldwood.blogspot.co.uk/2010/04/turning-unconscious-incompetence-to.html
http://chrisoldwood.blogspot.co.uk/2010/04/turning-unconscious-incompetence-to.html

Impact of Semantic Association on
Information Recall Performance

Derek Jones concludes his analysis from the latest
ACCU Conference experiment.

his is the second of a two part article describing an experiment carried
out during the 2012 ACCU conference; the first part was published
in the last issue of C Vu.[8] This second part discusses the results from

the linear relationship question that subjects answered. The experiment is
derived from and takes account of results from previous ACCU conference
experiments; in particular it closely replicates one performed in the 2004
ACCU experiment.[5]

To recap the description of the experiment given in the first article: subjects
first saw two, unnested, if statements and were asked to remember the
names of the variables and operators appearing in the control expressions.
This information had to be recalled after they had analysed a nested if-
statement having the following form (the results of the remember/recall
question were covered in part 1):

 if ((e > a) && (u < a))
 if (u > e)

 else

Subjects were asked to indicate which arm of the nested if-statement they
thought would be executed, should the conditional expression in the first
if-statement be true; some questions did not have a unique answer, i.e.,
the first conditional expression did not sufficiently constrain the values of
the two variables in the second conditional expression that it was possible
to unconditionally deduce whether the expression was true/false.

The analysis of subject responses to these questions is the subject of this
article.

The relative order of the three variables was randomly chosen for each
problem presented (the same identifiers a, e and u, were always used).

The hypothesis
Studies that have investigated some of the kinds of relational reasoning that
people encounter in everyday life have found patterns in subjects’
performance, e.g., the accuracy of answers has depended on how the
original relationships were specified (see below). The hypothesis tested by
this part of the ACCU 2012 experiment is that the accuracy of subjects’
(i.e., developers) answers is consistent with the two patterns outlined by
De Soto, London, and Handel [2] described below (also see Table 1).

Relational reasoning
The psychology of deduction uses the terms linear syllogisms or linear
reasoning to describe deduction between statements involving relational
operators. The term usually used to describe a (sub)expression containing
a relational operator, in programming language specifications, is a
relational expression.

Linear syllogisms are part of mathematical logic and the skills associated
with making deductions based on relational information are usually
assumed to be one of the higher cognitive abilities that humans possess.
However, studies have found that a number of animals have the ability to
adapt their behavior to a given situation based on relational knowledge
they have previously acquired. For instance, aggressive behavior between
two animals is sometimes used to determine which one is dominant,
relative to the other; aggression can lead to fighting and injury and is best

avoided if possible. The ability to make use of relative dominance
information (perhaps obtained when watching the interaction between
other members of a social group) may reduce the need for aggressive
behavior during an encounter between two members of the same group
who have not yet established their relative dominance through a face to
face encounter (i.e., the member most likely to lose is able to deduce this
outcome and behave in a subservient fashion).

A study of Pinyon Jays (a social species of birds) and Scrub Jays (a non-
social species) by Pazymino[11] found that individual birds from the social
species appeared to make use of relational information to work out their
relative dominance while birds from the non-social species did not.

Relational reasoning in humans

If some animal brains don’t possess what are considered higher level
cognitive reasoning abilities and yet possess a cognitive mechanism
capable of combining and making use of relational information, it is
possible that humans also possess a similar mechanism (this is not to say
that they don’t have any other high level cognitive systems capable of
performing the same task). A possible consequence of having such a
special purpose, lower level, reasoning mechanism is that it may not handle
all relational expressions in the same way (i.e., it is likely to be optimized
for handling those situations that commonly occur in its owner’s everyday
life). Some of the studies of human linear reasoning have found that
subjects are slower and make more errors when the operands in a sequence
of relational expressions occur in certain orders.

A study by De Soto [2] used a task based on what is known as social
reasoning (using the relations better and worse). Subjects were shown two
premises, involving the names of three people, and a possible conclusion
(e.g., Is Mantle worse than Moskowitz?) and given 10 seconds to answer
“yes”, “no”, or “don’t know”.

Based on the results (see Table 1) the researchers made two observations,
which they called paralogical principles (cases 5 and 6 possess both, while
cases 7 and 8 possess neither):

1. People process orderings more accurately in one direction compared
to others. Subjects gave more correct answers when the ordering
direction was better-to-worse (case 1) than mixed direction (case 2,
3), and were least correct in the direction worse-to-better (case 4).
This suggests that use of the word better should be preferred over
worse (the British National Corpus [9] lists better as appearing 143
times per million words, while worse appears under 10 times per
million words and it is not listed in the top 124,000 most used
words).

2. People end-anchor orderings; that is, they focus on the two extremes
of the ordering. In this study people gave more correct answers
when the premises stated an end term (better or worse) followed by
the middle term, than a middle term followed by an end term.

T

DEREK JONES
Derek used to write compilers that translated what people wrote. These
days he analyses code to try to work out what they intended to write. Derek
can be contacted at derek@knosof.co.uk
MAR 2013 | | 11{cvu}

A related experiment in the same study used the relations to-the-left and
to-the-right, and above and below. The above/below results were very
similar to those for better/worse. The left-right results showed that subjects
performed better with a left-to-right ordering than a right-to-left ordering.

The strategy used to solve a given problem has been found to vary between
people. A study by Sternberg and Weil [15] found a significant interaction
between a subject’s aptitude (as measured by verbal and spatial ability
tests) and the strategy they used to solve linear reasoning problems.
However, a person having high spatial ability, for instance, does not
necessarily use a spatial strategy. A study by Roberts, Gilmore, and Wood
[14] asked subjects to solve what appeared to be a spatial problem
(requiring the use of a very inefficient spatial strategy to solve). Subjects
with high spatial ability used non-spatial strategies, while those with low
spatial ability used a spatial strategy. The conclusion made was that those
with high spatial ability were able to see that the spatial strategy was
inefficient and to select an alternative strategy, while those with less spatial
ability were unable to perform this evaluation.

If the evaluation of relational expressions in source code is performed
using a cognitive mechanism that has been optimized for certain kinds of
frequently occurring, everyday, activities then it is possible that developer
performance will be good for relational expressions that match the form
of these everyday activities and not so good on relational expressions that
don’t match. The if-statement conditional expressions used in this study
permuted over all possible combinations of operator/operand ordering.

The list of questions for each subject was generated by randomising the
eight possible operator/operand orderings, creating questions using this
ordering, randomizing the orderings again and repeating until all of the
required questions had been generated. This process was repeated when
generating the problem sheets for each subject.

Threats to validity
As well as the possible threats to validity listed in part 1, the following are
specific to the subject of part 2.

Although subjects were told: “Treat the paper as if it were a screen, i.e., it
cannot be written on.”, there was nothing to prevent them using the paper
on which the questions were written as a temporary work area. Several
subjects did write notes on the paper next to a few if-statement problems.

For those questions whose answer was that either arm might be executed
some subjects wrote a question mark (i.e., ?) as their answer and some left
the answer blank. Both forms of answer were treated as specifying that
either arm of the nested if-statement could be executed. It is not possible
to check whether this assumption was the intended answer.

Measurements of C source [6] show that the binary less-than operator (i.e.,
<) occurs twice as frequently as the greater-than operator (i.e., >),
compared to the better/worse English words used by De Soto et al which
has a frequency ratio of 14. It is possible that the much lower frequency

ratio for the relational operators will cause the performance for both of
them to be very similar.

Subjects can approach the demands of answering the problems this study
in a number of ways, including the following:

 seeing it as a challenge to accurately remember/recall the
conditional expression information and be willing to trade-off
performance on the relational operand question;

 recognizing that would refer back is always an option, but that it is
more important to correctly answer the relational operand question;

 making no conscious decision about how to approach the answering
of problems.

Results
A total of 432 nested if-statement problems were answered by 22
subjects, of which 47 (10.9%, in 2004 the percentage was 4.7%) were
incorrect. The mean number of answers per subject was 19.6 (sd 7.7),
slightly lower than the 2004 mean of 21.

Subjects had a mean of 15.1 years (sd 10.2) experience writing software
professionally.

The number of incorrect answers is very weakly correlated with the
number of problems answered (Pearson correlation coefficient 0.24, 95%
confidence interval -0.20 to 0.60). While performance on reasoning tasks
has been found to decrease with age [3], subject software development
experience (which is likely to be highly correlated with age) is not
correlated with percentage of incorrect answers (Pearson correlation
coefficient 0.02, 95% confidence interval -0.42 to 0.45) and only very
weakly to the number of answers given (0.29, 95% confidence interval
-0.16 to 0.64)

The error rates reported by other studies (where subjects read a problem
typed on a card) were: De Soto et al [2] 39.2–61.7% (subjects were required
to answer within 10 seconds rather than in their own time), Clark [1] 6%,
Potts [12] 5%, Mayer [10] 4–36%, Quinton et al [13] not given, Sternberg
et al [15] 1.7–3.5%. A study where subjects heard a tape recoding of the
problem [4] reported an error rate of 8–19%.

In the following discussion H denotes high, M denotes middle, and L
denotes low. So H > M denotes “high greater than middle” and M > L
“middle greater than low”. unk is used to denote the case where the
conditional expression does not uniquely specify the relationship between
all three variables.

All of the data and R code used in the analysis is available on the
experiments web page. [7]

Reasoning performance

Table 2 lists the number of correct and incorrect answers for various
combinations of relational operators in the outer if-statement, ordered by
percentage of incorrect answers (the percentages from the 2004 ACCU
experiment are in the last column).

Eight sets of premises describing the same relative ordering between
A, B, and C in different ways (people’s names were used in the study),
followed by the percentage of subjects giving the correct answer.
Adapted from De Soto, London, and Handel.[2]

Premises
Percentage

Correct
Responses

Premises
Percentage

Correct
Responses

1 A is better than B 5 A is better than B

B is better than C 60.5 C is worse than B 61.8

2 B is better than C 6 C is worse than B

A is better than B 52.8 A is better than B 57.0

3 B is worse than A 7 B is worse than A

C is worse than B 50.0 B is better than C 41.5

4 C is worse than B 8 B is better than C

B is worse than A 42.5 B is worse than A 38.3

For all subjects, the total number of correct/incorrect answers and the
percentage of incorrect answers for the combination of relational
expressions appearing in the first two columns. The last column is the
percentage incorrect in the 2004 ACCU experiment.

Left condition Right condition Correct Incorrect Percent 2004 %

M < H L < M 51 3 5.6 5.9

L < M M < H 33 2 5.7 3.8

H > M L < M 40 3 7.0 5.5

M > L M < H 40 4 9.1 5.6

M < H M > L 39 4 9.3 4.4

L < M H > M 34 4 10.5 2.8

M > L H > M 42 5 10.6 6.6

H > M M > L 37 6 14.0 1.7

unk unk 69 16 18.8 NA

Table 2
Ta

bl
e

1

12 | | MAR 2013{cvu}

If subject behavior in 2012, for this question, was consistent with that in
2004 the relative order of percentage incorrect answers for the two years
would be strongly correlated, however a Kendal rank correlation test
shows a weak negative correlation (i.e., -0.29).

The following compares the results against those predicted by the
hypothesis proposed in the introduction:

1. Use of the more common operator reduces incorrect answers:
looking at the operands appearing in questions having the lowest
and highest percentage of incorrect answers we see that these
closely match the predictions made by the hypothesis (see the first
two columns of Table 3), what is the probability of this occurring
through a random process?

There are 8! ways of arranging the 8 available combinations (the unk
case is ignored here); there are two ways in which the two less-than
operators can occur first, one way a greater-than can occur last and
5! different ways of ordering the other possibilities, giving a
probability of

for this combination occurring at random (well below a p-value of
0.05).

While the 2012 behavior matches this hypothesis the results from
the 2004 experiment do not; in fact for 2004 the lowest incorrect
percentage combination and second highest percentage are
swapped, almost the opposite of the proposed hypothesis.

2. End-anchoring: The operand ordering that is the complete opposite
of this end-anchoring pattern has the lowest percentage of incorrect
answers, orderings that follows this pattern have the second lowest
percentage and highest percentage of incorrect answers. The Middle
value appears as the first operand twice (for both left and right
relational expressions) in the lowest incorrect percentage and the
high incorrect percentage; there is no evidence of any end-
anchoring.

Figure 1 shows the percentage of incorrect answers given by each subject,
ordered by increasing percentage. Just under half of the subjects do not
give any incorrect answers; perhaps the analysis will reach a different
conclusion if subjects who give very few incorrect answers are excluded.
Table 3 only includes results from subjects whose answers were at least
6% incorrect. There is only one change in the relative ordering, M>L H>M
moves up to 4th from 7th.

In those cases where the conditional expression in the outer if-statement
did not contain enough information to uniquely specify which arm of the
nested if-statement would execute, the first arm was incorrectly given in
10 answers and the second arm in 6 answers. If we assume there is an equal
probability of either arm being incorrectly specified, then there is a 12%
chance of 10 out of 16 incorrect answers specifying one particular arm.

There were 9 answers specifying that either arm was possible but in fact
the correct answer to the question was one particular arm (5 for one arm,
4 for the other).

Interaction between remember/recall and reasoning questions

Having to answer the first part of the problem (i.e., remembering
information about the variables in the control expression of two if-
statements) ties up cognitive resources (e.g., short term memory decays
over time and unless regularly refreshed it is soon lost), leaving less
resources to process the nested if-statement problem.

Figure 2 shows that the percentage of incorrect answers in the relational
question is not correlated with percentage of correct answers in the operand
remember/recall question.

However, there is quite a good correlation between incorrect answers and
percentage of swapped operand answers to the remember/recall question
(Pearson correlation coefficient 0.66, with a 95% confidence interval of
0.34 to 0.85, p-value = 0.00074); the correlation with percentage of
incorrect operand answers is not quite so good (0.55, with a 95%
confidence interval of 0.17 to 0.79, p-value = 0.0076).

Discussion
A surprisingly high percentage (45%) of subjects gave no incorrect
answers. This observation was not noted in 2004 because the low number
of incorrect answers given by subjects meant that zero incorrect was not
surprising (the 2004 figure was 44% subjects giving no incorrect answer).A subset of Table 2 created by only including results from those

subjects whose percentage of incorrect answers was greater than
6%.

Left condition Right condition Correct Incorrect Percent

M < H L < M 22 3 12.0

L < M M < H 10 2 16.7

H > M L < M 15 3 16.7

M > L H > M 19 4 17.4

M > L M < H 17 4 19.0

L < M H > M 12 3 20.0

M < H M > L 13 4 23.5

H > M M > L 14 6 30.0

unk unk 32 16 33.3

2!5!
0.006

8!

● ● ● ● ● ● ● ● ● ●

●

●

●
●

● ●

● ●
●

●

●

●

5 10 15 20

0.0

0.1

0.2

0.3

0.4

Subjects

Pe
rc

en
ta

ge
 in

co
rr

ec
t

Subjects listed in order of increasing percentage
of incorrect answers.

● ● ●

●

●
●

●
●

●
●

● ●

●
● ● ● ● ●

●

●
●

●

5 10 15 20

0

10

20

30

40

50

60

70

Subject

Pe
rc

en
t

5 10 15 20

0

10

20

30

40

50

60

70

5 10 15 20

0

10

20

30

40

50

60

70

5 10 15 20

0

10

20

30

40

50

60

70

●

correct
nested incorrect
would refer back
swapped
recall incorrect

5 10 15 20

0

10

20

30

40

50

60

70

The percentage of operand recall correct, relational incorrect, would
refer back, swapped and operand recall incorrect answers for each
subject. Subjects are ordered by percentage of operand recall
correct answers given (scale clipped to expand relational view).

Figure 1
Figure 2

Ta
bl

e
3

MAR 2013 | | 13{cvu}

Looking at Figure 2 many of the subjects who had a very low percentage
of incorrect answers also had a very low percentage of incorrect remember/
recall answers. There appears to be a group of subjects whose performance
on the two questions in this experiment was much better than the other
subjects.

There is a good correlation between incorrect answers to the nested if-
statement question and percentage of swapped operand answers in the
remember/recall question. Both of these findings are consistent with
subjects’ having problems processing the relative ordering of identifiers
seen in code.

There are two notable differences in subject performance between 2004
and 2012:

 the percentage of incorrect answers is more than twice as high in
2012; the figure is reduced from 10.9% to 7.2% if unk answers are
excluded;

 there is no correlation between the form of conditional expression
and the relative incorrect answer rate in the results from the two
years.

and two differences in the questions answered:

 the remember/recall question involved assignment statements in
2004 and the operands of if-statement conditional expressions in
2012;

 in 2004 the nested if-statement relational expression question
always had an answer that was one of the two arms, while in 2012
the question could have the answer that either arm might be
executed.

Were the differences in the questions used the main contributing factor in
the differences in subject responses seen in the two years?

More experiments are needed to find out why nearly half of the subjects
gave no incorrect answers (or alternatively why just over half gave
incorrect answers) and to find out what caused subject performance to vary
on almost the same question (in 2004 and 2012).

Conclusion
There were two groups of subjects who exhibited their own consistent
behavior in answering the two questions in this experiment:

 Approximately 40% of subjects gave a very low percentage of
incorrect answers to both questions (i.e., zero or one incorrect
answer);

 approximately 25% of subjects showed some tendency to mix up the
order of operands appearing in both questions.

Further reading
For a readable introduction to human reasoning see Reasoning and
Thinking by Ken Manktelow. The Cognitive Animal edited by M. Bekoff,
C. Allen, and G. M. Burghardt contains 57 short, wide ranging, essays (of
varying quality) on animal cognition.

Acknowledgments
The author wishes to thank everybody who volunteered their time to take
part in the experiment and the ACCU for making a conference slot
available in which to run it.

References
[1] H. H. Clark. Linguistic processes in deductive reasoning.

Psychological Review, 76(4):387–404, 1969.
[2] C. B. De Soto, M. London, and S. Handel. Social reasoning and

spatial paralogic. Journal of Personality and Social Psychology,
2(4):513–521, 1965.

[3] A. S. Gilinsky and B. B. Judd. Working memory and bias in
reasoning across the life span. Psychology and Ageing, 9(3):356–
371, 1994.

[4] J. Huttenlocher. Constructing spatial images: A strategy in
reasoning. Psychological Review, 75(6):550–560, 1968.

[5] D. M. Jones. Experimental data and scripts for short sequence of
assignment statements study. http://www.knosof.co.uk/cbook/
accu04.html, 2004.

[6] D. M. Jones. The new C Standard: An economic and cultural
commentary. Knowledge Software, Ltd, 2005.

[7] D. M. Jones. Experimental data and scripts for impact of semantic
association on information recall performance.
http://www.knosof.co.uk/dev_experiment/accu12.html, 2012.

[8] D. M. Jones. Impact of semantic association on information recall
performance. C Vu, 24(6):3–8, Jan. 2013.

[9] G. Leech, P. Rayson, and A. Wilson. Word Frequencies in Written
and Spoken English. Pearson Education, 2001.

[10] R. E. Mayer. Qualitatively different encoding strategies for linear
reasoning premises: Evidence for single association and distance
theories. Journal of Experimental Psychology: Human Learning and
Memory, 5(1):1–10, 1979.

[11] G. Paz-y-Miño C, A. B. Bond, A. C. Kamil, and R. P. Balda. Pinyon
jays use transitive inference to predict social dominance. Nature,
430:778–781, Aug. 2004.

[12] G. R. Potts. Storing and retrieving information about ordering
relationships. Journal of Experimental Psychology, 103(3):431–439,
1974.

[13] G. Quinton and B. J. Fellows. ‘Perceptual‘ strategies in the solving
of three-term series problems. British Journal of Psychology, 66:69–
78, 1975.

[14] M. J. Roberts, D. J. Gilmore, and D. J. Wood. Individual differences
and strategy selection in reasoning. British Journal of Psychology,
88:473–492, 1997.

[15] R. J. Sternberg and E. M. Weil. An aptitude strategy interaction in
linear syllogistic reasoning. Journal of Educational Psychology,
72(2):226–239, 1980.
14 | | MAR 2013{cvu}

http://www.knosof.co.uk/cbook/accu04.html
http://www.knosof.co.uk/cbook/accu04.html
http://www.knosof.co.uk/dev_experiment/accu12.html

Comparing Algorithms
Richard Polton takes different approaches

to a well-known problem.

his article is going to demonstrate a number of different approaches
to solving Problem #1 from the Project Euler problem set. The
construction of each of these approaches will be discussed and, as a

side-effect, the performance of each of these implementations of Problem
#1 will be observed. Some possible reasons for the difference in
performance between each of the implementations will be presented and
discussed.

Spoiler Alert! This code contained within this article will enable you to
calculate the solution to a problem from Project Euler. Specifically we
have tackled problem #1 (http://projecteuler.net/problem=1) here. If you
have not already solved this problem and you wish to do so, go and do it
now then come back here before continuing reading this article. Thanks.

Problem statement
Problem #1 is very simple, as you might expect given its position in the
list of the Project Euler problems. It is stated as follows:

 If we list all the natural numbers below 10 that are multiples of 3 or
5, we get 3, 5, 6 and 9. The sum of these multiples is 23.

 Find the sum of all the multiples of 3 or 5 below 1000.

See, simple! As it is so simple it means that we can explore some
programming techniques without losing ourselves in the complexity of the
problem statement (only in the solution implementation).

Method
The first thing, fairly obviously, is to determine the actual answer to the
posed problem. We’re not going to give that away directly but rest assured
that the following really does solve the problem correctly.

Given the problem description, it will be clear that the calculation will not
be time-consuming and will almost certainly be completed in a very small
amount of time. In order to generate useful results we decide to observe
the length of time taken to perform the calculation 25000 times in
succession. This test will then be performed multiply (say, 15 times) and
the average length of time will be determined. We do this for each of the
supplied implementations.

To most people who have grown up on a steady diet of C-related languages,
imperative programming comes naturally and so that is probably the route
that most would take to solve this problem. We will present a number of
imperative solutions as well as some functional solutions.

The code examples which are presented in this article have been written
using F#, a functional [2] programming language in the .NET ecosystem.
Recognising that not all readers will have written F# themselves, a quick
overview of a couple of language features follows. Firstly, data are
immutable unless specifically indicated otherwise. Therefore, if we wish
to generate a sum of elements by adding subsequent values to a ‘running’
total then we need a mutable field, indicated by the mutable keyword.
Mutable fields in F# have special syntax for updating their values, namely
the <- operator. Secondly, almost everything in F# is a function which
returns a value (the exception in the example code being the for
statement).

Therefore, if is a function which must return a value from each of its
branches. This means that it is necessary to return a value from both the
then and the else branch, whereas were we writing using an imperative
programming language we would almost certainly have ignored the else
branch because it would be considered a no-op.

We offer fifteen different implementations of the problem. The first four
present variations on an iterative imperative loop, the next six present
implementations using higher-order functions, the next pair present
recursive solutions and the final three present alternative implementations
of an optimised algorithm.

Let’s look at them in sequence. Listings 1 and 2 all present slight variations
on the iterative theme. Listing 1 is a natural encoding of the problem in its
simplest form which is then wrapped in a loop so that our framework can
repeatedly perform the calculation. That is, we create a mutable
placeholder for the sum and then we loop over the range under
consideration analysing integer each in turn. If the integer satisfies our
predicate it is added to the sum.

Listing 2 is a reverse iteration. That is, although the same calculation is
performed as in Listing 1, it is done in the reverse order. Therefore, this
function starts from the upper limit and adds progressively smaller
numbers to the ‘running’ total.

Alternate implementations of Listings 1 and 2 (available on blogspot [1])
extract the mutable placeholder initialisation from inside the loop that
repeats the tests. This was done to demonstrate any possible performance
cost from recreating the mutable field each time.

Listings 3 to 8 all make use of the higher-order functions. Listing 3 and
Listing 4 use the List higher-order functions while Listing 5 uses the Seq
higher-order functions. This builds the list, ‘pipes’ it into a filter where the
list is reduced and then folds the remaining integers into a sum.

Listing 6, Listing 7 and Listing 8 reproduce Listing 3, Listing 4 and Listing
5 respectively but by iterating in the reverse direction, ie downwards from
the upper limit. Listing 4 and Listing 7 both construct the range of integers
outside of the loop. These are the equivalent of the alternate
implementations of Listings 1 and 2 previously mentioned, and exist for
the same purpose. Note that it does not make sense to construct the seq{}
outside of the solution loop because seq{} is a lazily-evaluated range.

T

RICHARD POLTON
Richard has enjoyed functional programming ever
since discovering SICP and feels heartened that
programming languages are evolving back to LISP.
He likes ‘making it better’ and enjoys riding his bike
when he can’t. He can be contacted at
richard.polton@shaftesbury.me

let mutable sum = 0
for i = 1 to upperLimit-1 do
 sum <-
 if (i%3 = 0 || i%5 = 0)
 then sum + i
 else sum

Listing 1

let mutable sum = 0
for i = upperLimit-1 downto 1 do
 sum <-
 if (i%3 = 0 || i%5 = 0)
 then sum + i
 else sum

Listing 2
MAR 2013 | | 15{cvu}

Therefore, each individual element in the sequence is generated as it is
used.

At last we have two recursive solutions. Listng 9 is a simple recursive
implementation. The termination condition is triggered when the counter
reaches the upper limit of the range and the base-case of the recursive
function is the binary decision, as it was before in the iterative
implementation, between those integers which are multiples of 3 or 5 and
those which are not. Note that this function is not tail-recursive and so
makes relatively heavy use of the stack as each recursive call creates a stack
frame.

The second recursive solution in Listing 10 uses the ACCUMULATOR

pattern. This has the effect of reversing the order in which the elements
are summed. This function is tail-recursive and therefore all the stack
frames between the initial recursive function call and the last can be elided
by the OS / VM / compiler which we would expect to result in a quicker
and less memory-intensive implementation.

Finally, we present an optimised algorithm implemented in three ways:
iteration, recursion and recursion using an accumulator. This algorithm
benefits from the observation that it is not necessary to consider every
possible candidate integer, only those which are multiples of three or five.
This has the effect of reducing the number of divisions necessary as we
only need to check that a multiple of three is not also a multiple of five to
prevent double-counting. Listing 11 is an iterative implementation while
Listing 12 and Listing 13 are the recursive and recursive with accumulator
implementations respectively. The ‘trick’, if you will, in the recursive
implementations is to realise that both counters need to be increased in
each function call but not every value will be required. This issue still
occurs in the iterative solution but can be performed in a separate step.

Each of the implementation snippets above is wrapped in an appropriately-
named function, as in Listing 14 (which is the function wrapping the code
from Listing 1). Given definitions of maxLoops (the number of times we
wish to repeat the calculation in a single timed run), upperLimit (one

let sum =
 [1..upperLimit-1]
 |> List.filter (fun i -> i%3=0 || i%5=0)
 |> List.fold (fun state i -> i+state) 0Li

st
in

g
3

let sum =
 input
 |> List.filter (fun i -> i%3=0 || i%5=0)
 |> List.fold (fun state i -> i+state) 0Li

st
in

g
4

let sum =
 seq {1 .. upperLimit-1}
 |> Seq.filter (fun i -> i%3=0 || i%5=0)
 |> Seq.fold (fun state i -> i+state) 0Li

st
in

g
5

let sum =
 [upperLimit-1 .. -1 .. 1]
 |> List.filter (fun i -> i%3=0 || i%5=0)
 |> List.fold (fun state i -> i+state) 0Li

st
in

g
6

let sum =
 input
 |> List.filter (fun i -> i%3=0 || i%5=0)
 |> List.fold (fun state i -> i+state) 0Li

st
in

g
7

let sum =
 seq {upperLimit-1 .. -1 .. 1}
 |> Seq.filter (fun i -> i%3=0 || i%5=0)
 |> Seq.fold (fun state i -> i+state) 0Li

st
in

g
8

let rec Impl3p counter acc =
 if counter=upperLimit
 then acc
 else
 if counter%3=0 || counter%5=0
 then Impl3p (counter+1) (acc+counter)
 else Impl3p (counter+1) acc
let sum = Impl3p 1 0

Listing 9

let rec Impl3p counter =
 if counter=upperLimit
 then 0
 else
 if counter%3=0 || counter%5=0
 then counter + Impl3p (counter+1)
 else Impl3p (counter+1)
let sum = Impl3p 1

Listing 10

let mutable sum = 0
let mutable loopDiv3,loopDiv5 = 0,0

// loopDiv3 increases slower than loopDiv5
while loopDiv3<upperLimit do
 loopDiv3 <- loopDiv3 + 3
 loopDiv5 <- loopDiv5 + 5

 // if we haven't already added it in loopDiv5
 sum <-
 sum + (if loopDiv3 < upperLimit
 then (if loopDiv3 % 5 <> 0
 then loopDiv3
 else 0)
 else 0)
 sum <-
 sum + (if loopDiv5 < upperLimit
 then loopDiv5
 else 0)

Listing 11

let rec Impl4p counterDiv3 counterDiv5 =
 if counterDiv3>=upperLimit
 then 0
 else (if counterDiv3 % 5 <> 0
 then counterDiv3
 else 0) +
 (if counterDiv5 < upperLimit
 then counterDiv5
 else 0)
 + Impl4p (counterDiv3+3) (counterDiv5+5)

let sum = Impl4p 0 0

Listing 12

let rec Impl4p counterDiv3 counterDiv5 acc =
 if counterDiv3>=upperLimit
 then acc
 else Impl4p (counterDiv3+3) (counterDiv5+5) (
 (if counterDiv3 % 5 <> 0
 then counterDiv3
 else 0) +
 (if counterDiv5 < upperLimit
 then counterDiv5
 else 0) + acc)

let sum = Impl4p 0 0 0

Listing 13
16 | | MAR 2013{cvu}

greater than the maximum value in the range of integers under
consideration) and st (a .NET StopWatch object).

Each of the implementation snippets above is wrapped ina n appropriately
named function, which returns the elapsed time and the English name of
the function, as in Listing 14.

In order to run these independent pieces of code automatically, a small
harness function was created. It takes the function to run as its parameter,
whichImpl, and it runs the name of the implementation and the average
execution duration. res is, therefore, the 2-tuple containing the elapsed
time in milliseconds and the name of the specific method being tested.
name contains the English name from res and elapsed contains the list
of elapsed times from res. The function then iterates through the list of
elapsed times printing them to the console in turn (using a procedure,
ewww!). Finally we calculate the mean elapsed time by folding elapsed
and dividing it by the number of elements and return name and the average,
as shown in Listing 15.

Results
The results measured in milliseconds when run using F# Interactive on my
testing PC are given in Figure 1.

Conclusion
We have shown a number of algorithmic approaches to solving this simple
problem and have quantified them each in terms of average speed of
execution. While we cannot draw any hard conclusions from the observed
times, and if we ignore the optimised algorithms, we can see that reverse
iteration and recursion with an accumulator were approximately
equivalent and were the quickest on the test PC (using F# Interactive) and
that using the Seq higher-order functions were an order of magnitude
slower.

From the observations of the various implementations using higher-order
functions it seems reasonable to infer that it is the construction of the

integer range which leads to this massive increase in elapsed time. This
merits further investigation in an explicit Release build.

For the full, runnable code please head over to blogspot [1] and scrape the
F#. Note that F# uses indentation to delimit nested code, eg loop bodies,
and so you will almost certainly need to re-ident. Sorry about that.

Notes and references
[1] This is the blogspot post:

http://randomgemsandmiraculousdiscoveries.blogspot.co.uk/2013/
01/which-is-quicker-iteration-or-recursion.html

[2] Not strictly true. F# also supports imperative programming
constructs, such as 'for', higher-order iteration functions like List.iter
and mutable data, each of which are demonstrated herein. F#
additionally supports OO constructs such as classes and interfaces,
although we show no examples of these in this article.

Further reading
These links might be of interest.

 The first is from ‘How to Design Programs’ and is the section
relating to the creation of recursive functions using the
ACCUMULATOR pattern:
http://htdp.org/2003-09-26/Book/curriculum-Z-H-39.html

 The second is a discussion on Stack Overflow relating to the
performance differences observed and expected between simple
recursion and accumulator-based recursion in the Racket Scheme
dialect:
http://stackoverflow.com/questions/4733456/performance-of-
recursion-vs-accumulator-style

 The final link is to a Wikipedia article discussing Tail Calls in
general (and tail-recursion as part of that):
http://en.wikipedia.org/wiki/Tail_call

let Impl1a = fun () ->
 let whichImpl = "Iteration"
 st.Restart()
 for loop = 1 to maxLoops do
 let mutable sum = 0
 for i = 1 to upperLimit-1 do
 sum <-
 if (i%3 = 0 || i%5 = 0)
 then sum + i
 else sum
 st.Stop()
 st.ElapsedMilliseconds, whichImpl

Li
st

in
g

14 let run (whichImpl : unit -> int64 * string) =
let res =
 [for count = 1 to howMany do
 yield whichImpl()]
 let name = res |> List.head |> second
 let elapsed = res |> List.map first
 elapsed |> List.iter (fun elem ->
 printfn "%s : %i iterations took %i ms"
 name maxLoops elem)
 let avg = float (elapsed
 |> List.fold (fun state i -> state+i) 0L)
 / float (List.length elapsed)
 name, avg

Listing 15

 [("Iteration", 252.8);
 ("Iteration with mutable creation outside loop", 255.0666667);
 ("Reverse iteration", 225.0);
 ("Reverse iteration with mutable creation outside loop", 236.1333333);
 ("Iteration using List higher-order fns", 3509.933333);
 ("Iteration using List higher-order fns with pre-compiled integer range", 386.6);
 ("Iteration using Seq higher-order fns", 4848.933333);
 ("Reverse Iteration using List higher-order fns", 3679.466667);
 ("Reverse Iteration using List higher-order fns with pre-compiled integer range", 396.7333333);
 ("Reverse Iteration using Seq higher-order fns", 4883.266667);
 ("Recursion", 242.4);
 ("Recursion with Accumulator", 231.9333333);
 ("Iteration incrementing a pair of counters", 48.6);
 ("Recursion using a pair of counters", 90.4);
 ("Recursion with Accumulator using a pair of counters", 53.26666667)]

Fi
gu

re
 1
MAR 2013 | | 17{cvu}

http://stackoverflow.com/questions/4733456/performance-of-recursion-vs-accumulator-style
http://htdp.org/2003-09-26/Book/curriculum-Z-H-39.html
http://randomgemsandmiraculousdiscoveries.blogspot.co.uk/2013/01/which-is-quicker-iteration-or-recursion.html
http://en.wikipedia.org/wiki/Tail_call

Code Critique Competition 80
Set and collated by Roger Orr. A book

prize is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
Thanks to Francis Glassborow for sending me this critique. If you see code
that could be in a code critique, please send it in!

I keep getting a compiler warning when I compile the code with gcc. Please
help me get rid of it!

 gcc cc79.c -o cc79
 cc79.c: In function 'addFirst':
 cc79.c:36:17: warning: assignment from
 incompatible pointer type [enabled by default]
 cc79.c: In function 'printList':
 cc79.c:46:9: warning: assignment from
 incompatible pointer type [enabled by default].

I’ve tried with Microsoft VC and that gives me an even more confusing error:

 cc79.c(36) : warning C4133: '=' : incompatible
 types - from 'LLNODE *' to 'LLNODE *'"

The code is in Listing 1.

Critiques

Henrik Austad <henrik@austad.us>

Looking at the error message:

assignment from incompatible pointer type [enabled
by default]

gives the first hint: gcc doesn’t really know what this is, in other words,
struct LLNODE is not something gcc ‘knows’ about.

 typedef struct { // Define a linked list node
 char *name;
 struct LLNODE *next;
 }LLNODE;

Not going into the issue of (mis)using typedef for hiding values, the
struct is anonymous which makes it hard to reference from inside the
struct itself. By changing to

 typedef struct llnode {
 char *name;
 struct llnode *next;
 ...
 } LLNODE;

then the warning goes away and gcc is able to determine the type of *next.

/me sits back and wait for the inevitable flame of “don’t you know
compilers? This particular instance is called <something I should’ve
remembered>” :)

Amar Sanakal <amar@sanakal.com>

The errors talk about incompatible pointer types and we see that both the
LHS & RHS are of type LLNODE. Now this should make us suspect how
LLNODE is defined.

We see that it is defined as:

 typedef struct { // Define a linked list node
 char *name;
 struct LLNODE *next;
 } LLNODE;

At first glance everything looks okay, until we take a closer look at how
next is defined. We have 2 problems with the struct definition:

1. The struct itself does not have a name. This by itself is not a
problem.

/* This program builds a basic linked list. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef struct { // Define a linked list node
 char *name;
 struct LLNODE *next;
}LLNODE;

void addFirst(char *data); //Declare function
 //prototypes
void printList(void);

LLNODE *head = NULL; //Define global pointer
 //variable head

int main(int argc, char *argv[])
{
 addFirst("Peter");
 addFirst("Paul");
 addFirst("Mary");
 printList();
 return EXIT_SUCCESS;
}
void addFirst(char *data)
{
 LLNODE *newNode;
 newNode = malloc(sizeof(LLNODE));
 newNode->name = data;
 newNode->next = head; //errors here
 head = newNode;
}
void printList(void)
{
 LLNODE *itr = head;
 while(itr != NULL)
 {
 printf("%s\n", itr->name);
 itr = itr->next; //And errors here.
 }
}

Listing 1

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk
18 | | MAR 2013{cvu}

2. Which leads us to the next problem in defining next, where it
would be ideal to just say LLNODE *next; but we can’t say that as
the typedef is not yet available at that point.

There are two ways of fixing this. One is to separate out the struct
definition and the typedef as follows:

 struct llnode { // Define a linked list node
 char *name;
 struct llnode *next;
 };
 typedef struct llnode LLNODE;

The other way, if you prefer to still keep them together, give the struct
a name and use that to define the next member as follows:

 typedef struct llnode {
 char *name;
 struct llnode *next;
 } LLNODE;

Using either of these approaches resolves the issue. Attached [Ed: but not
included in this critique] is the updated source that has both the above
resolutions conditionally compiled using a preprocessor directive. If you
compile it using the command:

 gcc -Wall -o cc79 -save-temps -DSTRUCT cc79.c

you can see the 1st approach used in the generated cc79.i file. Similarly,
compiling using the command:

 gcc -Wall -o cc79 -save-temps cc79.c

you can see that the second approach has been used in the cc79.i file.

Some additional notes about the compilation:

 it is always a good practice to use -Wall option to capture all kinds
of warnings.

 we used the -save-temps option to save all temporary files
created during compilation, in particular the .i file which contains
the output after preprocessing has completed which we wanted to
check.

 we use (or not) the -DSTRUCT option to make the preprocessor
choose the different paths of the #ifdef directive.

PS. I have tested/checked this only on gcc, but I suspect that MSVC should
behave similarly.

Jon Kalb <jon@kalbweb.com>

The warning that we are being given about ‘incompatible pointer type’ is
a clue that the next data member isn’t being defined as we expect. The
member is defined as a pointer to struct LLNODE, but there is no such
beast. There is an anonymous struct that has been typedef’d to
LLNODE, but there is no struct LLNODE.

These leads to the question, if next is a pointer to something that isn’t
defined, why does the compiler not report an error on the line: struct
LLNODE *next;? Since the definition of next is as a pointer, the
compiler doesn’t need to know any details about struct LLNODE so it
treats this as if it were a forward declaration and accepts struct LLNODE
* as a valid type, expecting struct LLNODE to be defined later (before
details of its definition are needed).

The fact that this is self-referential is not the issue. You could also include
a data member foo defined thusly:

 typedef struct {
 char *name;
 struct LLNODE *next;
 struct BAR *foo;
 } LLNODE;

This is also a legal definition of LLNODE and the compiler will not emit
an error (nor likely a warning) until we try to use foo without first defining
struct BAR. This definition of struct BAR must be a definition of a
struct named BAR, not a typedef named BAR. This is not sufficient:

 typedef struct {
 int bar;
 } BAR;

It must be of this form:

 struct BAR{
 int bar;
 };

or:

 typedef struct BAR{
 int bar;
 } BAR;

Otherwise struct BAR is undefined and using foo will result in a
warning or error, depending how it is being used.

This code also has issue in failure cases. If malloc() returns NULL, which
it might, the dereferences of newNode on lines 35 and 36 will not end well.
The definition of printList() passes itr->name to printf()
without verifying that it is non-nil. This would succeed by printing
"(null)" on many, but not all implementations. With the usage of
addFirst() as written here, this isn’t an issue, but if addFirst() were
called with NULL, a subsequent call to printList may not end well. A
rewrite of addFirst() could address both of these issues.

 // Returns NULL on node allocation failure.
 LLNODE *addFirst(char *data)
 {
 LLNODE *newNode;
 newNode = malloc(sizeof(LLNODE));
 if (newNode) {
 // Use an empty string when passed NULL.
 static char empty = 0;
 newNode->name = data? data: ∅
 newNode->next = head;
 head = newNode;
 }
 // so callers can detect failure.
 return newNode;
 }

Balog Pál <pasa@lib.hu>

Let’s start with the immediate problem. We get a warning when using
member next. We defined it as struct LLNODE *. So to use it with a
matching type, we need a struct LLNODE around. But the code has no
such thing.

We did define a type with name LLNODE, that is an alias to a struct. The
submitter probably thought that that is struct LLNODE, but without a
name it is just that: a struct <unnamed>. And pointers of two unrelated
structs are indeed incompatible as pointed out in the warning.

A follow-up question could be that why then no complaints about using
the undefined struct? It’s because we used it only where an incomplete
type is good enough. The code only uses it to define next. But that pointer
is never dereferenced in the code. If we tried say itr->next->next, that
would not compile.

Another follow-up question could ask why no clash on name LLNODE if
we succeeded in making it have multiple meanings. Well, that goes back
to early C design, where the names of structure tags go in a separate name
table, and must be referred with the struct prefix, rather than in the
‘global’ name table. As a matter of fact that is the usual motivation to use
typedefs for structs. typedef puts its name in the regular table, so
no prefixing is needed. And referring to the original struct is rarely
needed, so it can be left unnamed. The case in our example where we need
a pointer to this struct as a member is rare.

So how to fix the warning? The simplest way with the existing code is just
to make next void*. We’ll have all the same conversions, but C rules
for void* allow it in both directions without a notice. Certainly just like
the warning goes away on benign cases it will go away on bad cases too
in the future, say if we mistakenly assign to ->next instead of ->name.
MAR 2013 | | 19{cvu}

The solution that fixes the case preserving most type safety is to give the
struct a name and use that. Here we have multiple options. One is to
name the struct tagLLNODE and use that defining next, leaving
everything else. We can remove the typedef, just stating struct
LLNODE, and use struct prefix on every use. Or we can combine those
using the name LLNODE for the struct and leave the typedef with the
same name. In practice the middle option is rarely used, and choice
between the other two is made by the local style guide that is made up on
coin flip or religion.

Now to the general issues. My first and most important advice is to not do
it at all. Start with switching to C++, and use list, vector or other fine
collections in the standard lib. There’s pretty little excuse to write stuff in
C in 2013, like ‘no C++ compiler for the desired target’, but the preamble
stated access to both gcc and MSVC. Even if you’re positive to stay with
C, get a framework or a library with these most basic constructs. Linked
list support is so fundamental it is in each one of them. And for learning
purposes it’s better to read the established good material, starting with the
usage description before the code. I mean it.

Let’s look at the code. The node structure usually has the next pointer at
the front, and the content after it. For this little sample it’s indifferent, but
in life we can have many lists and more content in this node, uniform look
would make us shuffle it later. Why not start right that? The content now
is a char*, that may or may not be good, but to tell we should know the
intent of this list.

Then we have prototypes with odd comment. Side comments shall apply
to exactly one item, the one it stands beside. And shall provide information.
That we see a prototype or a variable does not qualify. Though if we move
it in the front of the previous line, it could make a banner comment, creating
a ‘section’ in code, which is quite usual. We can see a correct prototype
of the second function with (void) rather than just (), maybe due to the
gcc warning. ;-) And addFirst takes a char* argument: that is a yellow
flag. Oddly the functions do not have an argument for the list to act on.
Also normally I’d expect a printList function be told where to print,
but it may just be part of testing.

Then we see a global variable that is a red flag in its own right. It might
be okay if just used for a test case, but we start to suspect that the function
will work on this thing as a list, that would be kind of a showstopper on
my review.

In main addFirst is called with string literals. It does compile – even in
C++ – but is generally a bad idea. Though kept for backward compatibility
in the language we should never use that conversion and bind string literals
only to const char*. As char* would make it too easy to modify the
content which leads to undefined behavior.

In function addFirst (that I’d rather call addFront) we see that a new
node is allocated from the heap, and put correctly in the chain. A local
variable is created at front of block and assigned later, that is not very good,
even in C that picked up the define-with-initialization-anywhere syntax
with C99. But at the very front of block even the oldest C compiler allows
to make the variable and initialize it immediately. Even better, as we have
no intent to change the value, newNode shall be const.

When we see malloc(), we shall see two other things. One, is a matching
free() somewhere. The other is the check of the return value, as failure
to allocate the requested memory is reported by returning NULL. And if
that happens the next statement dereferences it for undefined behavior. So
it shall be checked, and something done about it. Not easy to tell what. And
indeed it’s PITA to make every malloc call surrounded with checks,
traps, deallocation, etc. But that is C, and if one did not heed my advice to
drop it, one must bite the bullet. The lack of free() call anywhere means
that we leak the memory. Fortunately it’s not that hard to handle, just
provide a freeList function that iterates the list and process all nodes.

printList looks correct though it were better written using the for()
instead of while. After all we have both the init and the iteration part.

Besides the coding details we have a general design issue. The current one
takes a pointer to the content data and places it directly in the list. That
fact must be documented for the function, as it puts the obligation on the

caller to keep the pointer valid. It’s all too easy to pass a pointer to a local
variable, that gets out of scope and out of life while still pointed to in the
list. For this reason collections often make a copy of the data making it
stable; going this route our inserter function would take const char *,
and call strdup. This mitigates concerns about string literals and allows
safe modification of the content in the list through char *. Releasing the
memory is not significant hassle, as it’s just an extra line beside the one
releasing the node.

But if the intent was just to collect literals, avoiding the copy is fair game,
just add the const and proper documentation.

I already mentioned that the functions handling the list should take the list
head as parameter and act on that rather than on a global. IMO
implementing lists in general makes little sense instead of using stock ones,
but implementing a list handler that can be used on just a single object is
questionable.

Pete Disdale <pete@papadelta.co.uk>

The ‘presenting problem’ is straightforward to fix, and caused by a
confusion between structs and typedefs. In the original definition

 typedef struct {
 char *name;
 struct LLNODE *next;
 } LLNODE;

what is LLNODE? Is it a struct or a typedef? It is plainly a typedef,
so the expression struct LLNODE is wrong; the next member must
reference a struct but a self-referential anonymous struct such as this
one cannot be referenced as it is, well, anonymous. Splitting the definition
up, the above is semantically equivalent to

 struct somename {
 char *name;
 struct somename *next;
 };
 typedef struct somename LLNODE;

So a self-referential struct must have a name or tag, and simply changing
the original definition to

 typedef struct _llnode {
 char *name;
 struct _llnode *next;
 } LLNODE;

makes the compilation error go away and the resulting executable
runnable; at least it does on the oldish (3.4.5) version of gcc I have to hand
here. But of course, there are more dragons lurking and ready to unleash
their wrath :-) Some are basic problems, some trivial, and some that would
spoil one’s day if addfirst() were unleashed as part of a larger system.

1. General pedantry

The code as written adds new list entries to the head of the list. One assumes
that this is intentional, but does result in

 addfirst("Peter");
 addfirst("Paul");
 addfirst("Mary");
 printlist();

printing out the list in the reverse order to which the entries were added.
This is probably more of an issue for the way my aged brain has been wired
in that ‘Mary, Paul and Peter’ somehow doesn’t gel...but changing the
name of addfirst() to addhead() or addstack() might be a bit
more descriptive of the FILO nature of the function.

2. Check those return values!

malloc() can fail, so its return code must be checked before assigning
to the NULL that might be returned. addfirst() should contain at the
very least

 void addfirst (char *data)
 {
 LLNODE *newnode = malloc (sizeof(LLNODE));
 if (newnode == NULL)
20 | | MAR 2013{cvu}

 {
 fprintf (stderr, "malloc: out of memory\n");
 return;
 }
 // ... safe to assign to 'newnode'

And of course, for every malloc() there must be a corresponding call to
free()! So after the call to printlist() in main(), there should be
a similar one to freelist():

 void freelist()
 {
 LLNODE *itr = head;
 while (itr != NULL)
 {
 LLNODE *thisnode = itr;
 itr = itr->next;
 free (thisnode);
 }
 }

The only point worth mentioning here is the sequencing: the next node to
be freed must be remembered before the current one is freed. I.e. if the code
were written as

 while (itr != NULL)
 {
 free(itr);
 itr = itr->next;
 }

it is just possible that the value in itr is no longer valid after calling
free() and hence itr->next could contain garbage. Perhaps unlikely
but nonetheless possible if the library implementation of free() calls
some internal compaction or defragmentation routines.

This issue could be avoided by using a recursive algorithm such as

 void freelist(LLNODE *lnptr) /* UNTESTED! */
 {
 if (lnptr != NULL)
 {
 freelist (lnptr->next);
 free (lnptr);
 }
 }

but this obviously requires a parameterized freelist() [see the revised
code below which has this] and whilst the code is more compact it will
require a large stack for a large data set!

3. Pointers and pointers-to-data

Now to the interesting bit :) The code as presented makes discrete,
successive calls to addlist() with [static] string literals, so the
assignment

 newnode->name = data;

just ‘works’. In Real Life however, it is far more likely that the list will be
populated either from user input or reading a file, in both cases using a
common buffer to initially accept the data. So for example main() might
look more like

 char buffer[BUFSIZ];
 FILE *fp;
 while (fgets(buffer, sizeof(buffer), fp)
 != NULL)
 addfirst(buffer);

The problem is obvious: each time that addfirst() is called the name
member is set to the address of buffer, so printlist() will simply
display whatever data buffer currently points to; at best the last data read
in however many times and at worst garbage if buffer has been freed or
reused in between times. addlist() should therefore store a copy of the
data, for example

 newnode->name = strdup(data);

And, needless to say newnode->name needs to be checked for NULL and
appropriate action taken as above!

4. Scoping

Variables (and functions come to that) should be no more visible than
absolutely necessary in any language that supports scoping, and global
variables in C should be avoided whenever possible. In a tiny program like
this one it isn’t a huge deal, but tiny programs have a habit of growing as
they are developed or incorporated into other programs, and global
variables make the code ever harder to maintain and sooner or later come
back to bite :)

In this exercise, there is no need whatsoever for head to be global; only
main() needs to know about it (OK, that is a sort of global in this case,
but main() would likely be called create_list() or some such if the
code were incorporated into a larger body of code). Any dependant code
simply needs to be passed a reference to it as and when needed, and to pass
it back if modified.

So, putting all the above into practice, here is a new version of the original
listing.

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 typedef struct _llnode
 {
 char *name;
 struct _llnode *next;
 }
 LLNODE;
 /* Function prototypes */
 LLNODE *addfirst(LLNODE *head,
 const char *data);
 void printlist(LLNODE *head);
 void freelist(LLNODE *head);
 char *dummy_fgets(char *buf,
 size_t bufsize);
 // argc, argv are unused but left in for now
 int main (int argc, char *argv[])
 {
 LLNODE *head = NULL;
 char buffer[32];
 // pretend we're reading input from a file
 while (dummy_fgets (buffer, sizeof(buffer))
 != NULL)
 head = addfirst(head, buffer);
 printlist (head);
 freelist (head);
 return 0;
 }
 /*
 * addfirst()
 * Add 'data' to the head of the list,
 * returning an updated pointer to its head.
 * If the malloc() fails, just return the
 * pointer to the existing head of list.
 */
 LLNODE *addfirst (LLNODE *head,
 const char *data)
 {
 static char malloc_err[] =
 "malloc: out of memory\n";
 /* Note that malloc() is cast to a pointer
 to LLNODE */
 LLNODE *newnode =
 (LLNODE *) malloc (sizeof(LLNODE));
 if (newnode == NULL)
 {
 fprintf (stderr, malloc_err);
 return head;
 }
 if ((newnode->name = strdup (data)) == NULL)
 { /* free the just allocated 'newnode'! */
 free (newnode);
MAR 2013 | | 21{cvu}

 fprintf (stderr, malloc_err);
 return head;
 }
 newnode->next = head;
 return newnode;
 }
 /*
 * Print out the list starting at 'lnptr'.
 */
 void printlist (LLNODE *lnptr)
 {
 while (lnptr != NULL)
 {
 printf ("%s\n", lnptr->name);
 lnptr = lnptr->next;
 }
 }
 /*
 * Free the list starting at 'lnptr'.
 */
 void freelist (LLNODE *lnptr)
 {
 while (lnptr != NULL)
 {
 LLNODE *thisnode = lnptr;
 lnptr = lnptr->next;
 free (thisnode->name);
 free (thisnode);
 }
 }
 /*
 * dummy_fgets()
 * A quick and dirty function to emulate
 * reading the input data from a file as if
 * using fgets().
 * Returns the next item in the 'names' array
 * or NULL on reaching "EOF".
 */
 char *dummy_fgets(char *buf, size_t bufsize)
 {
 static const char *names[] =
 { "Peter", "Paul", "Mary" };
 static int i = 0;
 if (i < sizeof(names) /sizeof(*names))
 { // use strncpy to prevent buffer overrun
 strncpy(buf, names[i++], bufsize - 1);
 buf[bufsize - 1] = '\0';
 return buf;
 }
 return NULL;
 }

5. And finally...

There is a little ‘trick’ I came across a few years back that simplifies the
malloc() for such simple list nodes and which also produces slightly
more efficient memory allocation. It might be already widely known but
I’ll include it anyway; change the LLNODE definition to

 typedef struct _llnode {
 struct _llnode *next;
 char name[1]; /* This MUST be the final
 struct member! */
 } LLNODE;

and the addfirst() function to

 LLNODE *addfirst (LLNODE *head,
 const char *data)
 {
 LLNODE *newnode = (LLNODE *)
 malloc (sizeof(LLNODE) + strlen(data));
 if (newnode == NULL)
 {

 fprintf (stderr,
 "malloc: out of memory\n");
 return head;
 }
 strcpy (newnode->name, data);
 newnode->next = head;
 return newnode;
 }

This results in a single call to malloc() for a buffer large enough to hold
the struct and the data (the data[1] ensures that there is room for the
null-terminator) and simplies error handling. The only thing to watch out
for is that the data member must be the last struct member, for reasons
which I hope are obvious :)

Martin Moene <m.j.moene@eld.physics.LeidenUniv.nl>

In programming, any problem can be solved by introducing another level
of indirection [1]. I applied the essence of the code critique format to use
someone else’s head another time and fed the C-source to the clang++
compiler for advice [2, 3].

Compiling a C program as a C++ program may work out as C and C++
share a common subset: A valid C program may also be a valid C++
program [5]. Therefore an error in a C source may also be sensibly
diagnosed by a C++ compiler – may.

Missing struct tag The compiler gives us a useful hint where to look for
the error, err warning in C: the struct tag LLNODE referred to in line 12 is
missing from typedef struct on line 9. Note that it is the lucky
consequence of an interestingly subtle difference between how C and C++
handle the struct tag that is helping us: In C++, struct declarations
act like they are implicitly typedefed, as long as the name is not hidden
by another declaration with the same name [6]. Due to the struct tag
missing from line 9, the tag seems to refer to an unrelated type defined
elsewhere. Had the struct tag name been different from the typedefed
LLNODE, the error would have surfaced much later, namely where the C
warnings were at lines 36 and 46.

To satisfy both C and C++ we can write:

 typedef struct LLNODE
 {
 char *name;
 struct LLNODE *next;
 }
 LLNODE;

With this change, the program compiles as a C program without warnings.
In C++ the typedefed LLNODE hides struct LLNODE’s name. Further,
to compile as C++, line 34 requires a C-cast (LLNODE*), or a
static_cast<>().

Another solution to get rid of the warnings is to suppress them via for
example option -w and compile with: gcc -w cc79.c -o cc79 (!)

Gripes The most notable issues are the use of global data such as LLNODE
*head and the absence of error handling. The two functions that operate
on the list hide that fact from their prototype. Provide the list as a parameter
to these functions to improve locality and testability. In a similar vein,
provide the stream to print to as a parameter to printList(). Memory
allocation and stream output can and should must be tested for errors.
Concluding positively: parameterise from above [7] and handle errors.

Design Qua design I’m missing a list abstraction that separates the creation
of nodes from managing them.

Other remarks Reading the code we see that the strings that are added to
the list are not copied, but only referenced by pointer. In the way the list
22 | | MAR 2013{cvu}

is used here, that’s not a problem, because the strings are in scope as long
as they are used. Moreover they are literal strings and have the lifetime of
the program [8]. Maybe the intention was to use strdup(), but failing
that we may as well omit inclusion of <string.h> (Found with Visual
Lint).

With a high warning level such as -Wall -Wextra [-Weffc++] the
compiler helps us to discover further weaknesses.

There are several locations where const can be used to help prevent
programming errors. Visual Lint explicitly states it and g++ and clang++
give an indication for this via the warning: deprecated conversion from
string constant to char* at the call sites of addFirst(). To add const,
change the code to char const *name; on line 11 and void
addFirst(char const * const data) on lines 15 and 31. Make
similar changes on lines 12, 19 and 42 to (struct) LLNODE const *.

Parameters argc and argv of main are not used and changing the
declaration of main to int main(void); prevents unused parameter
warnings. In a program this small we could as well use short names such
as add() and print() as it’s all about the list.

‘List’-ing I had a go at a conventional linked list in C, then quickly
switched to a more functional approach and came up with something that
looks like [9]:

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #ifndef __cplusplus
 # include <stdbool.h>
 #endif
 typedef char const * Text;
 typedef struct Node
 {
 bool valid;
 Text text;
 struct Node const * next;
 }
 Node;
 // ...
 int main(void)
 {
 return apply(print,
 cons("Peter",
 cons("Paul",
 cons("Mary", list())))
).valid
 ? EXIT_SUCCESS : EXIT_FAILURE;
 }

The code uses in-channel, out-of-band error signalling. Further it assumes
sufficient memory or the assistance of a garbage collector.

References
[1] Wikiquote. http://en.wikiquote.org/wiki/Computer_science
[2] A tool contains canned knowledge, presumably coming from (other)

people’s heads.
[3] Clang: Expressive diagnostics, GCC compatibility,

http://clang.llvm.org/; See also [4]
[4] Comparison of Diagnostics between GCC 4.8 and Clang,

http://gcc.gnu.org/wiki/ClangDiagnosticsComparison
[5] Bjarne Stroustrup’s FAQ. Is C a subset of C++?,

http://www.stroustrup.com/bs_faq.html#C-is-subset
[6] StackOverflow. Difference between ‘struct’ and ‘typedef struct’ in

C++? http://stackoverflow.com/questions/612328/difference-
between-struct-and-typedef-struct-in-c

[7] Kevlin Henney. The PfA papers. ACCU Overload 80, 81, 82, 83.
2007, 2008. http://accu.org/index.php/journals/1470

[8] StackOverflow. ‘life-time’ of string literal in C.
http://stackoverflow.com/questions/9970295/life-time-of-string-
literal-in-c

[9] Rough-edged code can be obtained from:
http://www.eld.leidenuniv.nl/~moene/Home/papers/accu/cvu251-
cc79/accu-cvu251-cc79-moene.tar.gz

Pawel Zakrzewski <pawel@zakrzewski.cc>

There are several issues with the presented code. The main one is caused
by the author using an unnamed struct and inadvertently forward-
declaring a completely unrelated struct LLNODE on line 8. That is why
the compiler warns about the assignment operations between pointer to an
unnamed struct and pointer to incomplete struct LLNODE. On the
bright side, this operation is perfectly well defined by the standard, because
the pointer is always converted back to the LLNODE typedef type.

As unnamed structs are impossible to forward-declare, the fix requires
either giving the struct a name or changing the type of next pointer to
void*. I decided to use the former, because it is more descriptive and gives
the compiler more information to help the programmer in the future.

Another thing that is wrong with the code is complete disregard for freeing
allocated memory. While it won’t be a problem in a program that simple,
it’s a bad habit to have. I added function deleteList to fix that.

The next issue with the proposed solution is usage of global variables. It’s
done on two levels: not only the head node is a global variable, but also
both functions operating on the linked list are using that global variable.
The head node being a global isn’t necessarily wrong, but it could be a sign
of poor design. Basing the functions on said variable, however, prevents
them from ever being used in different context and doesn’t allow to operate
on multiple instances of list. I decided to pass appropriate pointers to all
functions operating on LLNODE lists and to move the head node to scope
of main function; if it ever needs to be global it will be trivial to move it
out.

The last thing that doesn’t sit well with me is the type of string pointer used.
There are two possible design choices here, neither is suggested by the
code. The list could own the strings – hence the string name being defined
as pointer to non-const char, or it could just store pointers to strings
without owning them, as it originally did, but it would stand to reason to
define name as pointer to const char then. I decided to go with non-
owning pointers, frankly, because it means less changes and it fits
proposed usage. I changed all functions to expect const char* instead
of char* to help the compiler prevent the user from causing undefined
behaviour by writing to a string literal.

Overall this code made me feel awkward. Although I didn’t spot any
undefined behaviour, it does seem to dare the user to use it incorrectly and
cause it.

[Ed: full solution code was supplied but is omitted to save space]

Commentary
I think between them the critiques cover just about all the issues with the
code. This difference between a struct and a typedef is a common
source of confusion, particularly in C, and I do wonder whether the
compiler messages could be improved…. As a couple of people pointed
out C and C++ have slightly different rules with name lookup of structs
and typedefs. For once I find the rules mean C++ code in this area is
almost always simpler and clearer than the equivalent C code.

I was a little disappointed that no-one pushed back about what the success
criteria was for the main program – presumably this was some sort of test
for the linked list but it always returns EXIT_SUCCESS – does this mean
any output is valid? Pete did realise the output would have the names in
reverse order (‘Peter, Paul and Mary’ was a pop group from the 60s) but
without some check in the code it is not obvious whether the writer of the
program expected that or not. Asking what are the success criteria of tests
is a good habit to develop even for such simple programs.

The Winner of CC 79

All entrants correctly identified and solved the original problem and many
picked up other issues of leaking memory, use of global variables, etc. I
MAR 2013 | | 23{cvu}

http://en.wikiquote.org/wiki/Computer_science
http://clang.llvm.org/
http://gcc.gnu.org/wiki/ClangDiagnosticsComparison
http://www.stroustrup.com/bs_faq.html#C-is-subset
http://stackoverflow.com/questions/612328/difference-between-struct-and-typedef-struct-in-c
http://stackoverflow.com/questions/612328/difference-between-struct-and-typedef-struct-in-c
http://accu.org/index.php/journals/1470
http://stackoverflow.com/questions/9970295/life-time-of-string-literal-in-c
http://www.eld.leidenuniv.nl/~moene/Home/papers/accu/cvu251-cc79/accu-cvu251-cc79-moene.tar.gz

was quite surprised to find that Martin’s list-like solution would compile
as both C and C++ but wasn’t sure I would really want to put this in the
hands of a relatively novice C programmer…

Pal, Pete and Pawel all mentioned deleting the list: this is actually
surprisingly tricky to get right because of the need to free the node after
capturing the next pointer (so I think Pal should have provided a solution.)
Pete’s first solution, using the global head, doesn’t reset it to NULL which
could result in a dangling pointer.

I was very impressed with the conciseness of Pawel’s critique which
covered almost every issue in a short space; but eventually decided that
Martin’s critique was the one best deserving of the prize. I thought his
repeated mention of using static analysis tools such as Lint would be useful
to equip our novice to find some of the issues with their code on their own.

Code Critique 80
(Submissions to scc@accu.org by Apr 1st)

I have been starting to use IPv6 and have tried to write a routine to print
abbreviated IPv6 addresses following the proposed rules in RFC 5952. It’s
quite hard – especially the rules for removing consecutive zeroes. Can you
check it is right and is there a more elegant way to do it?

Here is a summary of the rules:

Rule 1. Suppress leading zeros in each 16bit number

Rule 2. Use the symbol "::" to replace consecutive zeroes. For example,
2001:db8:0:0:0:0:2:1 must be shortened to 2001:db8::2:1. If there
is more than one sequence of zeroes shorten the longest sequence
– if there are two such longest sequences shorten the first of them.

Rule 3. Use lower case hex digits.

The code is in Listing 2.

Readers struggling with IPv6 may seek consolation from Verity Stob:
http://www.theregister.co.uk/2012/08/21/verity_stob_ipv6/

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

 // might be spare colons either side of
 // the compressed set
 while (compress(buffer, ":::"))
 ;
 os << buffer;

Listing 2 (
24 | | MAR 2013{cvu}

/* cc80.h */
#include <iosfwd>
void printIPv6(std::ostream & os,
 unsigned short const addr[8]);
/* cc80.cpp */
#include "cc80.h"
#include <iostream>
#include <sstream>

namespace
{
 // compress first sequence matching 'zeros'
 // return true if found
 bool compress(std::string & buffer,
 char const *zeros)
 {
 std::string::size_type len =
 strlen(zeros);
 std::string::size_type pos =
 buffer.find(zeros);
 if (pos != std::string::npos)
 {
 buffer.replace(pos, len, "::");
 return true;
 }
 return false;
 }
}
void printIPv6(std::ostream & os,
 unsigned short const addr[8])
{
 std::stringstream ss;
 ss << std::hex << std::nouppercase;
 for (int idx = 0; idx != 8; idx++)
 {
 if(idx) ss << ':';
 ss << addr[idx];
 }
 std::string buffer(ss.str());
 compress(buffer, "0:0:0:0:0:0:0:0") ||
 compress(buffer, "0:0:0:0:0:0:0") ||
 compress(buffer, "0:0:0:0:0:0") ||
 compress(buffer, "0:0:0:0:0") ||
 compress(buffer, "0:0:0:0") ||
 compress(buffer, "0:0:0") ||
 compress(buffer, "0:0");

}

/* testcc80.cpp */
#include <iostream>
#include <sstream>
#include "cc80.h"
struct testcase
{
 unsigned short address[8];
 char const *expected;
} testcases[] =
{
 { {0,0,0,0,0,0,0,0},
 "::" },
 { {0,0,0,0,0,0,0,1},
 "::1" },
 { {0x2001,0xdb8,0,0,0,0xff00,0x42,0x8329},
 "2001:db8::ff00:42:8329" },
};

#define MAX_CASES sizeof(testcases) /
sizeof(testcases[0])

int test(testcase const & testcase)
{
 std::stringstream ss;
 printIPv6(ss, testcase.address);
 if (ss.str() == testcase.expected)
 {
 return 0;
 }
 std::cout << "Fail: expected: "
 << testcase.expected
 << ", actual: " << ss.str() << std::endl;
 return 1;
}

int main()
{
 int failures(0);
 for (int idx = 0; idx != MAX_CASES; ++idx)
 {
 failures += test(testcases[idx]);
 }
 return failures;
}

Li
st

in
g

2 cont’d)

http://www.theregister.co.uk/2012/08/21/verity_stob_ipv6/

MAR 2013 | | 25{cvu}

Standards Report
Mark Radford looks at some features of the next C++ Standard.

ello and welcome to another standards report. I was going to begin
by welcoming you to the first one of 2013, then I realised that was
the January report. But of course, the January report was written

earlier in 2012, just. This is the first one I’ve actually written this year.

I’ve now been writing these reports for six months and, when I started
writing them, the forthcoming UK ISO C++ meeting (to be held in Bristol)
seemed a long way off. Now the meeting is just a little more than two
months away. In July last year we were short of £8,000 worth of
sponsorship needed to make the event happen. Since then things have
changed somewhat: specifically, the committee voted to extend the
meetings to six days (they used to be five days). Naturally this has affected
the costs. Happily, Google have now agreed to sponsor the event, but more
sponsors are still being sought. If you can help, please get in touch with
Roger Orr who is the organiser (or get in touch with me, and I’ll put you
in touch with Roger).

Many thanks to Chris Oldwood for giving me some feedback on these
reports. Chris said he’d like to see more about what drives the standards
committee’s decisions, and that gave me an idea regarding what I’m going
to talk about this time. Two factors that currently influence C++
development heavily are the need to add useful high level components to
the library, and making the language easier to use by removing various
‘irritations’ that regularly need to be programmed around. Unfortunately
I couldn’t attend the recent BSI C++ Panel meeting, but I’ve been reading
through the minutes and I see that proposals that were reviewed at the
meeting are examples of both of these influences.

Traditionally, C++ has been a language of ‘nuts, bolts and washers’: that
is, it has given users the low level tools with which to build the components
they need. However, other languages (Java and C#, for example) are
providing large libraries of ready made high level components ‘out of the
box’ and ready to be used. This is where C++ has now been behind for
some years, and the emphasis on addressing this is a big influence on the
standard library development for C++17. For this reason, readers who take
a look at the standards committee papers (http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/)
will have noticed many higher level proposals
appearing. A very simple example is a split()
library function. Why has C++ never had this
function? It is simple to split a string on a delimiter
in a few lines of code using a loop and the
getline() function, but why do we need to keep
writing a few lines of code to perform such a simple
operation? Most other languages (in the same space) have always had the
split() function! At least we now have a proposal for one (N3510).
However, the road to standardisation is littered with potholes that even the
(apparently) simplest proposal can trip over (which is why these proposals
are discussed by many people)! For example, consider a couple of points
raised in the BSI Panel meeting: (i) the split() proposal relies on the
ranges proposal (N3513), so discussions on ranges need to be fairly
advanced first, and (ii) how will split() cope with quoted strings (given
that splitting CSV data is one of the most common uses for this function)?

Another factor influencing the language’s evolution is ease of use: there
are several examples of ‘irritations’ that have to be programmed around.
Another way of looking at this is: there are several examples, in C++,
where the programmer must program with (what you might call) a lack of
elegance. Programming languages that support elegant coding styles lead
to code that is more easily understood and, therefore, less error prone. It
follows that the role of support for elegance should not be underestimated.
Two such proposals that were discussed (and that received support) at the

BSI Panel meeting are: Operator Bool for Ranges (N3509), and Compile
Time Integer Sequences (N3493). Obviously, if you want to go into the
details of these proposals, you can read the papers.I’ll just give a flavour
of what they’re about.

Consider code like this:

 if (DerivedType* derived =
 dynamic_cast<DerivedType*>(base))
 {
 ... etc ...
 }

This works because of the implicit test for the pointer being null. Compare
with this:

 std::string s = f();
 if (!s.empty())
 {
 ... etc ...
 }

This is what Operator Bool for Ranges addresses, by advocating the
addition of an explicit operator bool() to all strings, containers and
ranges. This would allow coders to write code like this:

 if (std::string s = f())
 use(s);

And like this:

 while (std::string s = f())
 use(s);

Personally I think code like this looks simple and pleasantly intuitive, and
it gives code the kind of elegance I was referring to.

The advent of variadic templates meant that tuples
could be added to the standard library in C++11.
Now, we are seeing proposals that build on them.
One example is Mike Spertus’ proposal (N3404) that
I talked about in my last report (CVu 24.6). Another
is Jonathan Wakely’s Compile-Time Integer
Sequences (N3493). In Python, as Jonathan
observes, tuple expansion can be done automatically:
func(*t). Note that in Python tuples are first class
language features. In C++, with tuples in the library,

it’s not so easy. For example in:

 template<class... T> void foo(std::tuple<T...> t);

performing an operation on each element of t would require extra code
because t is not a parameter pack. Jonathan goes on to propose library
solutions that support a function object being applied to the elements of a
tuple.

That wraps up this standards report. Next time I’m hoping to cover the
forthcoming April ISO C++ meeting taking place in Bristol. I say ‘hoping’
because, unfortunately, these meetings and CVu submission deadlines are
slightly out of phase, so we’ll have to see.

H

MARK RADFORD
Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark@twonine.co.uk

Another factor
influencing the

language’s evolution
is ease of use

26 | | MAR 2013{cvu}

The Well-Grounded
Java Developer
By Benjamin J. Evans and
Martijn Verburg, published
by Manning, ISBN 978-
1617290060

Reviewed by Neil Youngman

The Well-Grounded Java
Developer is not simply a book about Java. It’s
aim is to improve your Java development by not
only introducing you to the latest features of
Java, but also a range of development techniques
and other languages that use the Java Virtual
Machine.

Part 1 of The Well-Grounded Java Developer
(Chapters 1 and 2) introduces the new features
in Java 7.

Chapter One introduces the set of small changes
that originated in project Coin. Although these
are small changes, they include some features
that will bring significant benefits in simplifying
code, such as allowing Strings in switch
statements and ‘try with resources’. Chapter
One also defines the distinction between the
Java language and Java platform and
summarises the issues that have to be considered
when the language or platform change. One
notable omission is that it does not state whether

the libraries are considered to be part of the
language or the platform. This chapter is written
in a clear and easy to follow style.

Chapter 2 covers the new file and Network I/O
facilities introduced in Java 7. This chapter tries
to cram a lot of material into a small chapter,
which results in a lot of examples with sketchy
explanations. This chapter is best read with a
Java 7 reference available to fill in the gaps.
While I would have appreciated more detail, this
is an introduction, not a reference and there is
enough information to give a clear picture of the
new APIs.

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU
website, which contains a list of all of the books currently available. If there is something that you
want to review, but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can
have it. I will instruct you from there. Remember though, if the book review is such a stinker as
to be awarded the most un-glamorous ‘not recommended’ rating, you are entitled to another book
completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with
books.

Jez Higgins (jez@jezuk.co.uk)

East Anglia MongoDB User Group
Paul Grenyer reviews the inaugral local meeting.

hen I saw the advert on the 10gen [1] site for sponsored regional
meetup groups and decided to start one I thought I’d be lucky to
get 10 people join the group and half that number to the meetups.

Yet again, I was wrong! Despite being an advocate of the technical
community in Norwich, it still takes me by surprise just how vibrant it is.
As I write this the membership of the East Anglia MongoDB User Group
[2] stands at 46 and we had between 25 and 30 people come to the first
meeting on Wednesday. We even had some of the regular SyncNorwich
[3] crowd from Ipswich!

I wanted to start with the big guns, so tonight we had Ross Lawley [4] from
MongoDB [5] creators 10gen come and give us an overview [6] of
MongoDB and its features and configuration. Although the presentation
was very high level, it gave just the right level of detail. At about 35
minutes it was just the right length and led to my second pleasent surprise!
There was at least 20 minutes of questions from the group following the

presentation. I was really pleased to get this level of interest from the group
and even more pleased that everyone was able to get an indepth answer
from Ross.

The Reindeer [7] was a great venue too. Several people arrived early to
eat and stayed behind afterwards. The small room they have at the back of
the pub was just the right size for 30 people theatre style. Although it would
be a struggle if we got any bigger.

Next time we have Trisha Gee [8], also from 10gen speaking to us on
Wednesday 10th April. Signup at http://www.meetup.com/EastAnglia-
MongoDB/events/95196662/.

References
[1] http://www.10gen.com/
[2] http://www.meetup.com/EastAnglia-MongoDB/
[3] http://www.syncnorwich.com/
[4] http://uk.linkedin.com/in/rosslawley
[5] http://www.mongodb.org/
[6] http://paulgrenyer.blogspot.co.uk/2013/01/east-anglia-mongodb-

user-group-first.html#
[7] http://www.thereindeerpub.co.uk/
[8[http://uk.linkedin.com/in/trishagee

W

PAUL GRENYER
Paul Grenyer is a husband, father, software consultant,
author, testing and agile evangelist. He can be contacted
at paul.grenyer@gmail.com

http://www.meetup.com/EastAnglia-MongoDB/events/95196662/
http://www.meetup.com/EastAnglia-MongoDB/events/95196662/
http://www.10gen.com/
http://www.meetup.com/EastAnglia-MongoDB/
http://www.syncnorwich.com/
http://uk.linkedin.com/in/rosslawley
http://www.mongodb.org/
http://paulgrenyer.blogspot.co.uk/2013/01/east-anglia-mongodb-user-group-first.html#
http://paulgrenyer.blogspot.co.uk/2013/01/east-anglia-mongodb-user-group-first.html#
http://www.thereindeerpub.co.uk/
http://uk.linkedin.com/in/trishagee

accu ACCU Information
Membership news and committee reports
View from the Chair
Alan Griffiths
chair@accu.org

One of the challenges of writing this
column is that it appears in print over a month
from the time that I write it. That means that
things can change. As I write a discussion is
starting regarding a draft for a revised
constitution; as you read this there will be a
motion to be considered and voted on that
proposes changing the constitution. There may

even be several motions addressing different
aspects of the change. This will be the first time
that members who don’t attend the AGM have
a chance to vote – don’t waste the opportunity
to have your say.

From comments I’ve seen elsewhere or received
in private communication it seems that many
members do not realise how committee
meetings are currently held. Changes have been
happening over the last couple of years and
increasingly committee members have attended
meetings remotely.

Strange though it may seem, a bunch of techies
like us do not have a long list of technologies that
work for remotely attending committee
meetings. There are a few commercial ones that
one or more committee members have seen
work in a controlled environment, but for the ad-
hoc variety of kit used by committee members
the most successful technology is Google
hangouts. While this does require attendees to
have a Google Plus account (which I can
imagine some don’t want) it works and the price
(free) is no barrier to participation.
MAR 2013 | | 27{cvu}

Part 2 covers vital techniques that a ‘well-
grounded’ developer needs to understand, from
dependency injection to performance tuning, via
concurrent programming and class loading.

Chapter 3 covers dependency injection. While
the basic concept is clearly explained, I found
the detail lacked sufficient context to understand
how it all fits together. Sub-sections on
qualifiers used by the injector and those used by
the target do not state where each qualifier is
used and some listings contained parts from both
sides. While it is possible to work this out, it
makes for a harder read than necessary and made
me feel uncertain. Ultimately I had to go and
read the web introduction to Guice before I
really felt I understood the bulk of the material
in this chapter.

Chapter 4 covers concurrency in Java. This
starts with a brief primer on concurrent
programming, then takes you through the older
concurrency classes and introduces the newer
structures that provide simplified support.

Chapter 5 covers topics related to the JVM, such
as class loading, byte code and some new
features of the Java language and the JVM.
Although I have been using Java for some time,
this is an area that has been a bit of a black box
for me and this chapter was very useful in
improving my understanding of the JVM.

Chapter 6 is about performance tuning. This is
always a difficult topic and this chapter provides
a useful mix of pragmatic advice and technical
detail. I have not had a need to tune my Java
apps, but when I do, I am sure this chapter will
provide a good starting point.

Part 3 is about polyglot programming. As well
as Java there a large number of other languages
implemented on the JVM. Chapter 7 talks about
the limitations of Java and its relative suitability
for various kinds of project. Chapters 8, 9 and 10
introduce three of the major alternatives:
Groovy, Scala and Clojure. Groovy is the most
similar to Java, Scala provides a more functional
programming style than Java and Clojure is a
lisp variant on the JVM. All these languages are
also interoperable with Java. They can call Java
code and be called from Java where needed.

Polyglot programming is mixing and matching
the various languages available on the Java
Virtual Machine to improve productivity by
applying their different strengths appropriately.

Part 4 is mainly about applying development
best practice to polyglot programming projects.
This covers test driven development (ch 11),
build and integration (ch 12) and web
frameworks (ch13). As you would expect, it
covers tools in more than one language and
discusses their integration with Java.

Finally, chapter 14 looks to the future with an
exploration of the changes expected in Java 8,
many of which will assist in supporting
languages other than Java, both by adding
support for new features in the JVM and by
technical improvements in memory allocation
and concurrency support.

Overall this book covers a wide sweep of
technologies and techniques in the Java
ecosystem. Given the breadth of its scope it can
not be an in-depth guide to any of them, but it is
very informative and well written. This book
will open many people’s eyes to a range of new
and valuable ideas. I recommend it to any Java
developers who wish to widen their horizons.

Windows System
Programming 4th
Edition
By Johnson M. Hart, published
by Addison-Wesley, ISBN 978-
0321657749

Reviewed by Stefa Turalski

It is a bit peculiar to pick-up
the 4th edition of Johnson
M. Hart’s Windows System Programming –
especially now, 3 years after it was published in
February 2010 – a book introducing
improvements in Windows 7 and Windows
Server 2008 with (a bit too) elaborate C code
samples whilst there is shiny new Windows 8
and Windows RT with which Microsoft steps
away from desktop into tablet market.

To be honest, I don’t recommend this book if
you aren’t a developer deeply interested in inner

workings of the Windows platform, who
somehow hasn’t read one of previous editions
and isn’t busy moonlighting on an iOS or
Android pet projects. Thus, if Windows is your
chosen (or forced) platform, it’s the book for you
(at least until an updated edition arrives).

With the growing popularity of web
frameworks, software hosted in the cloud or
mobile system keeping us away from hardware
and internals of the OS, it seems that there is
little to worry about. However, even though we
rarely write low level system code these days,
it’s still relevant to know how things work under
the bonnet. Even if hidden below various layers.
these basic components provided by the OS are
the building blocks of every system. Windows
System Programming starts coverage of these
building blocks with details of Windows File
System, Unicode, character processing, system
registry, and moves on to exception handling,
memory management, memory mapped files,
process management, threads and
synchronisation primitives (covering advanced
concepts like NT6 condition variables), to cover
the IPC, sockets programming, skimming over
DLL entry points and thread-safety, Windows
Services, asynchronous I/O and finishes with
security discussions, topped off with couple of
substantial appendixes. The author didn’t skip a
subject worth mentioning!

In fact the book belongs to an endangered
species – a very well structured, solid and
thought-through textbook, which, surprise,
leaves the reader with additional exercises at the
end of every chapter. Be assured that you will
find concise discussion followed by almost self-
explanatory code samples covering most of the
subjects touched.

To the advantage of Windows System
Programming, and in distinction to another
great book on the subject, Richter’s Windows via
C/C++ (also recently updated), most of the OS
concepts are discussed with a note on how things
are done in UNIX world.

I think you get the point, it’s just one of these
must-read book for a Windows developer.

Bookcase (continued)

accuACCU Information
Membership news and committee reports
REVIEWS

At the last committee meeting I was asked to
mention here an issue we discussed regarding
the ‘hardship fund’. This was originally created
to support the memberships of individuals who
could not finance themselves (one scenario I
remember was people living in countries where
it was impractical to pay in sterling). However,
there have been decreasing calls on this fund
over the years and while it is still possible to
donate, nothing has been paid out for quite some
time. The committee needs guidance on how to
proceed: Should we continue accepting
contributions to the fund? And what do we do
with the money already donated?

We do sometimes offer concessionary
memberships to members in f inancia l
difficulties. So one option for using the hardship
fund could be to ‘make up’ the difference
(effectively transferring the money to our
general budget). It would also be possible to
spend the money in new ways (supporting
attendance at the Conference for example).
Perhaps you can suggest something better?

As I’ve already indicated,, when you read this
you will be a month closer to the AGM than I am
while writing it. And so this will be the last
‘From The Chair’ you read before the AGM (but
not the last I write).

Over the past year I’ve tried to organise the
committee so that things can be done, but this
still requires people to step up and do them.
Nowhere is this more clear than with the ACCU
website. The committee stands ready to support
making progress in updating it but no-one is
currently making any progress on the larger
parts of the problem. It is a big problem and
without someone willing to manage the work I
don’t think we can solve it.

Together with the rest of the committee I’ve
worked to make the running of the organisation
more transparent and accessible to ordinary
members. This means that minutes are made
available on the accu-members mailing list and
that attendance at committee meetings for non
committee members has been made easier.

Maybe you have some ideas of things the ACCU
should be doing? If so stand up and try to make
them happen by putting your name forward for
committee.

One committee post that will need a volunteer
for the coming year is that of Membership
Secretary as Mick Books intends to stand down.
Mick has been doing an excellent job – but feels
it is time to pass on the job. He is willing to
remain on the commit tee to ass is t h is
replacement over the coming year and has
provided the following responsibilities of the
membership secretary:

 Consult website once per month to
estimate number of journals required at
next printing, and notify the production
editor.

 Consult website once per month to
retrieve mailing info for the journal, and
forward to the distributor.

 Receive excess journals each month, and
store up to a year’s worth.

 Consult bank statement once per month
and enter standing order payments into the
website admin interface.

 Chase any standing order underpayments.
 Send journals out to members who have

missed an issue.
 Send journals out to prospective

members, groups or conferences that
request them.

 Keep an eye on the stream of automated
renewal and joining payments.

 Answer enquiries to
accumembership@accu.org, typically:
 prepare invoices and receipts
 resolve payment troubles
 handle address changes
 advise on the benefits of membership

 Keep some stats on the size and makeup
of the membership, reporting back to the
association.

 Prepare reports for the treasurer on the
donations that members make when they
join or renew.

The AGM and the Proposed
New Constitution
Giovanni Asproni
secretary@accu.org

As many of you already know, the time for the
next AGM is approaching fast. It will be held on
the 13th of April 2013 at the Marriott Hotel City
Centre in Bristol, UK. The main deadlines are
the following:

 Notice of the Annual General Meeting
shall be communicated to the Membership
at least 42 days before the Meeting

 Notices of Motion, duly proposed and
seconded, must be lodged with the
Secretary at least 14 days prior to the
General Meeting (however, attendees can
propose motions also during the meeting)

 Nominations for Officers and Committee
members, duly proposed, seconded and
accepted, shall be lodged with the
Secretary at least 14 days prior to the
General Meeting (however, nominations
can also be made during the AGM)

 Amendments and additions to the ACCU
constitution will be notified to the
secretary no later than 42 days before the
General Meeting for which they are
proposed

 Amendments and additions will be
notified to members by the secretary no
later than 28 days before the General
Meeting for which they are proposed

 No changes to constitutional amendments
and additions will be allowed after the
notice to members has been issued

 The 42 days deadline is the 2nd of March
and the 28 days deadline is the 16th of
March.

The members will be sent the notification for the
general meeting by email using the information
in the members database, so please make sure
your contact details are up to date. We will send
it also to the accu-members mailing list.

That said, the most important motion will be the
one about the constitutional changes to allow
members that cannot attend the AGM (or
another general meeting) in person to express
their vote for the officers elections and for the
motions that have been proposed.

That goal is quite simple, but it requires many
deep changes to the current constitution, and
also to the way the elections and AGM are run.
At the time of writing, there is a conversation on
accu-members on how to make the proposed
draft better, and I encourage every member to
take part to the discussion.

There are also some other constitutional motions
for different purposes. You can find them all in
this page http://accu.org/index.php/members/
constitutional_motions in the members section
area of the ACCU site (you need to be logged in
to see it).

Please remember that for the constitutional
motions, if you cannot attend the AGM, you can
also vote by proxy, either by nominating another
member to cast a vote in your behalf–you will
need to send me an email at secretary@accu.org
with the name and membership number of your
representative–or by emailing me your vote at
secretary@accu.org. Either way, you need to
notify me before the AGM starts.

Finally, I encourage everybody to think about
the committee and the work done by its
members. This is your chance to decide to
nominate again the ones you think did a good
job, or to nominate new ones if you like. You can
do that either during the AGM, or by sending me
your nominations at secretary@accu.org.

I hope to see you in Bristol.
28 | | MAR 2013{cvu}

	CVu25-1_Final.pdf
	Slave to the Grind
	Help!
	The Downs and Ups of Being an ACCU Member
	The Art of Software Development
	In the Tool Box – Introduction
	Impact of Semantic Association on Information Recall Performance
	Comparing Algorithms
	Code Critique Competition 80
	Standards Report
	Bookcase
	East Anglia MongoDB User Group
	View from the Chair
	The AGM and the Proposed New Constitution

