

JAN 2013 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

For The Sake Of It
t’s a common enough thing to hear: “Change for the sake of
change is counter-productive”, or variations on the
theme, like “If it ain’t broke, don’t fix it”, and even

“This is the way we’ve always done it".

It’s certainly true that change can be a disruptive force,
even a negative one. Deciding to implement your own tool
instead of using an off-the-shelf and fully tested one might
allow you better control over memory use or threading, but
it might also introduce whole armies of bugs. Alternatively,
adopting some shiny new technology or library into your
codebase might save you hours of implementing your own, but
might cost days or weeks in managing the additional
unnecessary complexity. Making either kind of change without
due consideration for the consequences will bring curses and
derision from everyone.

Sometimes however, disruption can be a positive thing. Just
mixing things up a bit can force people to think in new
ways, and can present new perspectives on current problems.
Being a force for good change requires vision and courage,
even if the need for that change isn’t always immediately
evident. Someone, somewhere, once had the leap of imagination that led from
rolling logs to axles. It wasn’t that rolling logs were broken (alright, I bet they
were from time to time...), rather that there was an alternative that just might be
better, given a bit of a chance. The fact that the rolling-stuff-on-logs has been all
but entirely replaced by wheels on axles is testament to the fact that the former
was, in fact, broken.

Some ideas for change are entirely fashion – or cult – led, like the idea of
mimicking the King’s wearing of wigs: pointless but mostly harmless (wig
makers probably enjoyed the idea very much!). Distinguishing among the
genuinely visionary change, the latest fad, and the truly crackpot, can be tough,
but that should not mean that we close our minds to all change, otherwise we’ll
never invent the new wheel.

I
Volume 24 Issue 6
January 2013

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Frances Buontempo,
Pete Goodliffe, Paul Grenyer,
Derek Jones, Chris Oldwood,
Roger Orr, Richard Polton,
Mark Radford, Ed Sykes

ACCU Chair
Alan Griffiths
chair@accu.org

ACCU Secretary
Giovanni Asproni
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

2 | | JAN 2013

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
18 Code Critique Competition

Competition 79 and the
answers to 78.

23 Regional Meetings
Chris Oldwood rounds up
a whole series of talks
from ACCU London, and
Paul Grenyer gives us
SyncNorwich.

25 Standards Report
Mark Radford reports the
latest from C++
Standardisation.

25 Two Pence Worth
An opportunity to share
your pearls of wisdom.

26 Desert Island Books
Ed Sykes finds things to
read on a Desert Island.

REGULARS
27 Bookcase

The latest roundup of
book reviews.

28 ACCU Members Zone
Membership news.

SUBMISSION DATES
C Vu 25.1: 1st February 2013
C Vu 25.2: 1st April 2013

Overload 114:1st March 2013
Overload 115:1st May 2013

FEATURES
3 Impact of Semantic Association on Information Recall

Performance (Part 1)
Derek Jones presents the analysis from his ACCU
Conference experiment.

9 Navigating a Route
Pete Goodliffe helps us to work on a new codebase.

11 Hello World in JavaScript
Frances Buontempo demonstrates how to unit-test a
simple JavaScript program.

12 The Composition Pattern and the Monad
Richard Polton explains how Monads can reduce
complexity.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Impact of Semantic Association on
Information Recall Performance (Part 1)

Derek Jones presents the analysis from his
ACCU Conference experiment.

omprehending source code involves reading it to obtain information
which may only need to be remembered for a short period of time or
may need to be remembered over a longer period.

One of the first major discoveries in experimental psychology was of a
feature of human memory that has become commonly known as short term
memory. People are able to temporarily retain a small amount of
information in memory whose accuracy quickly degrades unless an effort
is made to ‘refresh’ it, and the information is easily overwritten by new
information.

This article reports on an experiment carried out during the 2012 ACCU
conference that investigated the impact of a limited capacity short-term
memory on subjects’ performance in commonly occurring tasks that occur
when comprehending short sequences of code. The tasks involved
subjects’ ability to recall some of the variable names appearing in the
conditional expression of two if-statements and to correctly deduce
which arm of an if-statement is executed.

The experiment is derived from and takes account of results from previous
ACCU conference exper iments . In
particular the 2004 experiment [1], which
also asked subjects to select which arm of an
if-statement they thought would be
executed, and the 2007 experiment [2],
which found that developers appeared to
make use of identifier names to make
operator precedence decisions. It is hoped
that this study will provide information on
the effect that identifier names have on developer performance during
program comprehension.

Few developers appreciate how short the short in short term memory
actually is; its capacity has been found to correspond to approximately two
seconds worth of sound, with some people having less capacity and some
more. This is sufficient to hold information on a few statements at most.
The analysis of the results from this study will hopefully highlight to
developers the consequences of short term memory limitations on their
code comprehension performance.

This article is split into two parts, the first (this one) provides general
background on the study and discusses the results of the if-statement
memory/recall problem, while part two discusses selecting executed arm
of if-statement problem.

The hypotheses
Measurements of source code [2] have found that some English words
usually appear in variables that are the operands of bitwise or logical
operators (e.g., flag) while some English words usually appear in variables
that are the operands of arithmetic operators (e.g., count). The 2007 ACCU
experiment found that developers appeared to make use of the occurrence
of these words when asked to make binary operator precedence decisions.

The hypotheses tested by this experiment are that:

1. developers are less likely to confuse identifiers appearing as
operands in an expression if the operand names are consistent with
common usage for the corresponding binary operator,

2. developers are less likely to be able to correctly recall the identifiers
appearing as operands in an expression (e.g., not remember their
name or use a different name) when one or more identifiers are not
consistent with common usage for the corresponding binary
operator.

It is difficult to evaluate whether nonconsistent operand names will be less
likely to be recalled because they fail to match a known pattern or be more
likely to be recalled because they stand out as being different than expected
(which may result in a reduction in resources used to remember consistent
names leading to a greater chance of confusion among consistent names).

Characteristics of human memory
Models of human memory often divide it into two basic systems, short term
memory (the term working memory is technically more correct, while short
term memory can be applied to any one of several memory subsystems and
long term memory). This two subsystem model is something of an
idealization in that there is not a sharp boundary between short and long

term memory; there is a gradual transition
between them.

The short term memory subsystems are a
gateway through which all input memory
data input must pass. They have a very
l imi ted capac i ty and because new
information is constantly streaming through
them, a particular piece of information rarely
remains in it for very long. Information in

short term memory is either quickly lost or stored in another, longer term,
memory subsystem.

Declarative memory is a long-term memory that has a huge capacity (its
bounds are not yet known) and holds information on facts and events. Two
components of declarative memory of interest to the discussion here are
episodic and semantic memory. Episodic memory [3] is a past-oriented
memory system concerned with remembering, while semantic memory is
a present-oriented memory system concerned with knowing.

While some of the characteristics of human memory (e.g., forgetting) are
often criticized, they do provide useful functionality. People who can
readily remember and later accurately recall information report that their
conscious thoughts are repeatedly interrupted by unforgotten information
[4]. It would make sense for human memory to be optimized for the
information recall demands that most commonly occur in everyday life and
various studies [5] appear to confirm this evolutionary priority; there
seems to be an exponential decay in the likelihood that information will
be needed again after it is first encountered and this is the rate at which
information is lost from memory. Thus the likely need for information and
the rate at which it is forgotten decrease in the same way.

Studies have found that practising the remembering and recalling of
information does not lead to a general improved performance on

C

DEREK JONES
Derek used to write compilers that translated what people wrote. These
days he analyses code to try to work out what they intended to write. Derek
can be contacted at derek@knosof.co.uk

Information in short term
memory is either quickly lost
or stored in another, longer

term, memory subsystem
JAN 2013 | | 3{cvu}

This is not a race and there are no prizes for providing answers to all
questions. Please work at a rate you might go at while reading source
code.

The task consists of remembering the names of four different variables,
plus two binary operators, and later recalling and writing them down.
The variable names and operators are contained in two if-statements
appearing on one side of a sheet of paper and your response needs to
be given on the other side of the same sheet of paper.

1. Read the conditional expression contained in each if-statement
as you would when carefully reading code in a function definition
at work.

2. Turn the sheet of paper over. Please do NOT look at the if-
statements you have just seen again, i.e., once a page has been
turned it stays turned.

3. For the nested if-statement appearing at the top of the new page,
please place a cross in those arms of the inner if-statement that
you think could be executed. This could be only one arm or could
be both arms of the if-statement.

4. You are now asked to recall some of the variables and operators
seen on the previous page.

 if you can remember the name of any variable write it in the
corresponding underlined portion of the conditional
expression.

 if for one or more variable names or operators, you feel that in
a real life code reading situation you would refer back to the
previously seen if-statement, write ‘refer back’ for the
corresponding variable name or operator.

If you do complete all the questions do NOT go back and correct any of
your previous answers.

Instructions

remember/recall tasks (i.e., in the sense that exercise can lead to muscle
growth, leading to increased strength). However, extended practice does
provide people with the opportunity to try out different information
memorization strategies and there are cases where people have discovered
strategies (e.g., using mnemonics having associations with a person’s
existing network of memories) that lead to significant performance
improvements for particular kinds of information.

Experimental setup
The experiment was run by your author during a 40-minute lunch time
session at the 2012 ACCU conference (www.accu.org) held in Oxford,
UK. Approximately 370 people attended the conference, 22 (5.9%) of
whom took part in the experiment. Subjects were given a brief introduction
to the experiment, during which they filled in background information
about themselves, and then spent 20 minutes answering problems. All
subjects volunteered their time and were anonymous.

The problem to be solved

Each problem seen by subjects was intended to involve memory processes
that operate over a time frame of approximately 30 seconds. It was
expected that the characteristics of short term memory would have a
significant impact on subjects performance within this time frame.

To obtain statistically reliable results a large number of answers to related
problems are needed. Therefore it is necessary to create lots of variations
to the same underlying problem, also problems should not be too easy or
too difficult (if all subjects answered all question correctly, or all
incorrectly, no useful information would be obtained). The intent is that
the study thus has some claim to being ecologically valid (i.e., the
behaviour in the experimental situation is characteristic of a real life
environment).

Figure 1 is an example of one of the problems seen by subjects. One side
of a sheet of paper contained three assignment statements while the second
side of the same sheet contained the if statements and a table to hold the
recalled information. A series of X’s were written on the second side to
ensure that subjects could not see through to identifiers and values
appearing on the other side of the sheet. Each subject received a stapled
set of sheets containing the instructions and 38 problems (one per sheet of
paper).

In practice software developers do not make a remember/not remember
decision, there is always the opportunity to refer back to previously read
information. The selection remember/would refer back more accurately
reflects the decision made by developers.

The instructions given to subjects followed that commonly used in
memory related experiments. Subjects see the material to be remembered,
then perform an unrelated task (chosen to last long enough for the contents
of short term memory to have degraded), and then have to recall the
previously seen information. The sequence ‘rememberunrelated
taskrecall’ has an obvious parallel in source code comprehension; i.e.,
‘sequence of assignmentsconditional testuse of identifiers previously
assigned to’. The written instructions given to subjects are shown opposite.

Generating the problem

Each problem contained two parts, the ‘to be remembered information’
question and the ‘which arm will be executed’ question. The generation
of the ‘to be remembered information’ is covered here and generation of
the other question is covered in the second part of the article.

The ‘to be remembered information’ was contained within an if-
statement having the following form:

 if ((cars + lorries) == amount)
 x = 1;

with the expression to the left of the equality operation (either a == or !=)
always containing a single binary operator and its two operands, and the
expression to the right always containing a single identifier.

The binary operator was either arithmetic (one of - or *) or bitwise (one
of | or &).

Each operand is an identifier consisting of a word consistent with or not-
consistent with the operator, where consistency is defined as appearing in
an identifier that commonly appeared as an operand of one kind of operator
and rarely appearing as the operand of the other kind of operator.

In the following discussion C denotes an operand whose name is consistent
with the associated operator and N an operand whose name is not
consistent; a is an arithmetic operator and b is a bitwise operator. So CaC
is an expression containing an arithmetic operator and two consistently
named operands and is a pair of expressions.

The ‘to be remembered information’ consisted of a pair of expressions,
each containing two identifiers and an operator. It was thought likely that

CaC

NbC

---------first side of sheet starts here----------

if ((cars + lorries) == amount)
 x = 1;
if ((settings | register) == final)
 x = 0;

---------second side of sheet starts here---------

if ((e > a) && (u < a))
 if (u > e)

 else

if ((____________ ___ ____________) == amount)
 x = 1;
if ((____________ ___ ____________) == final)
 x = 0;

Fi
gu

re
 1
4 | | JAN 2013{cvu}

Ta
bl

e
1

JAN 2013 | | 5{cvu}

subjects would sometimes give answers where the order of operands
within an expression would be swapped and that swapping might also
occur for operands between expressions within a pair. The generation of
the expression pairs was balanced so that any operand swapping could be
analysed.

If recall performance is better when operand names are consistent and
worse when operand names are not consistent (compared to neutral
operand names), then between expression operand swapping is less likely
to occur in the pair than in the pair ; the pair would be expected
to be the most likely to produce answers containing a swap between
expressions.

The following are the operand combination patterns generated for this
experiment:

 The four possible operand/operator combinations where all of the
operand names are consistent with their corresponding operator, i.e.,

, , and

 the 16 possible operand/operator combinations where one of the
operand names is not consistent with their corresponding operator,
i.e., , , and , and so on for the three other possible
operator combinations,

 24 of the possible operand/operator combinations where two of the
operand names are not consistent with their corresponding operator.
The 24 combinations contained three sets, eight where the two
nonconsistent operand names were horizontally aligned (i.e., both
appeared in the same expression, e.g.,), eight where the two
nonconsistent names were vertically aligned (i.e., one in each
expression and both in the same operand position, e.g.,) and
eight where the two nonconsistent names were diagonally aligned
(i.e., one in each expression and their appeared in different operand
positions, e.g.,).

It was decided to concentrate the analysis on the above 48 combinations
and not to investigate operand/operator combinations where three of the
operand names are not consistent with their corresponding operator.

Measurements of source code from a previous experiment [2] were used
to obtain three lists of English words, one containing words that primarily
occurred in variables appearing as the operands of bitwise or logical
operators, one containing words primarily occurred in variables appearing
as the operands of arithmetic operands and the third containing words or
letter sequences commonly occurring with all kinds of operators. The
literals 0x17 and 25 were included so that the generated expressions were
more representative of real code (which includes lots of literals). See
Table 1.

The problems and associated page layout were automatically generated
using a shell script and various awk programs to generate troff, which in
turn generated postscript and this was printed to paper.

The operand combination pattern was randomly selected (the ratio 30%
all operands consistent, 40% one operand not consistent, 30% two
operands not consistent was used) and identifiers/constant from the
required set were randomly chosen, once used the identifier/constant was
not used again until all other identifiers in that set had been used. The order
of the two statements (for each problem) was also randomized. The source
code is available on the experiments web page [6].

Threats to validity
Experience shows that software developers are continually on the look out
for ways to reduce the effort needed to solve the problems they are faced
with. Because each of the problems seen by subjects in this study has the
same structure it is possible that subjects will detect what they believe to
be a pattern in the problems and then attempt to use this perceived
information to improve their performance.

The context in which an expression occurs in real life code reading
situations may provide additional semantic assistance in recalling
identifier names and this assistance is not present in this experimental
setting. One subject wrote about the lack of application domain context on
the Comments page.

Several subjects commented that they started out with no memorization
strategies and then adopted one after answering several questions. It is
possible that this change of strategy may have had an effect on the
distribution of the kinds of answers they gave.

While the kind of problems used commonly occur during program
comprehension, the mode of working (i.e., paper and pencil) does not.
Source code is invariably read within an editor and viewing is controlled
via a keyboard or mouse. Referring back to previously seen information
(e.g., expressions in statements) requires pressing keys (or using a mouse).
Having located the sought information more hand movements (i.e., key
pressing or mouse movements) are needed to return to the original context.
In this study subjects only needed to leave the answer blank, or write ‘?’or
‘refer back’ to indicate that they would refer back to locate the information.
The cognitive effort needed for these actions is likely to be less than would
be needed to actually refer back. Studies have found [7] that subjects make
cost/benefit decisions when deciding whether to use the existing contents
of memory (which may be unreliable) or to invest effort in relocating
information in the physical world. It is possible that in some cases subjects
ticked the would refer back option when in a real life situation they would
have used the contents of their memory rather than expending the effort
to actually refer back.

Subjects were asked to specify would refer back as the answer if they felt
that in a real life code reading situation they would refer back to the
previously seen if-statement. Some subjects wrote “?” for the operator or
operand name, while others wrote nothing. All three cases, “refer back”,
“?” and blank were treated as being equivalent.

Two of the words used (i.e., bits and options) were the plural form of
the word. In a few cases answers failed to include the final letter ‘s’ and
sometimes the word flag with a final letter ‘s’ was given as an answer.
An end of word ‘s’ was added/removed from an answer if this resulted in
it becoming a correct answer (around 10 instances). In some cases it was
not clear from the written answer what the final letters of some words were
and they were assumed to be those needed to complete the corresponding
word appearing in the question.

One subject wrote in the comments that they were not a native English
speaker another that they were dyslexic.

One subject wrote in the comments that they answered the recall problem
before answering the nested if statement problem. This subject had the
4th highest percentage of correct answers (see subject 19 in Figure 1;
subject 1 in the raw data).

The identifier names commonly occurring in the operands of the
corresponding binary operator; anonymous names commonly occurring in
operands to all binary operators.

Bitwise Arithmetic Anonymous

flag offset value

state rate field

bits size temp

options length i

status count data

mask maximum current

active minimum id

done width buf

started index

shift height

success

reset

0x17 25

CaC

CbC
CaC

CaC

CaN

CbN

CaC

CbC

CaC

CaC

CbC

CbC

CbC

CaC

NaC

CbC

CaN

CbC

CaC

NbC

CaC

CbN

NaN

CbC

NaC

NbC

NaC

CbN

Results
It was hoped that at least 30 people (on the day 22) would volunteer to take
part in the experiment and it was estimated that each subject would be able
to answer 25 problems (on the day 19.6, sd 8.1) in 20-30 minutes (on the
day 20 minutes). Based on these estimates the experiment would produce
750 (on the day 430) pairs of if statements were remembered/recalled.

The raw results for each subject and the scripts used to process them are
available on the experiment’s web page [6].

Expected direction of behaviours

 When all operand names are consistent with its operator subjects
will be less likely to make between expression mistakes for
compared to because any swapped operands would not be
consistent with their operators; in the second form any swapping of
operands is consistent with the operators,

 fewer correct answers when an if statement pair contains one or
more operand names that are not consistent with their operator,

There is no expectation of behaviour bias for answers involving operator
recall.

Actual results

Most of the results presented here take the form of 2-dimensional
contingency tables (see Table 2). Given the hypothesis that the rows of the
table are drawn from the same distribution (i.e., the same underlying
process) a Pearson chi-squared test can be used to calculate the p-value for
this hypothesis. A very low p-value (e.g., 0.01 or 1 in 100) is taken to imply
that the rows are drawn from different distributions (i.e., there is a
difference in the processes involved).

A low p-value tells us that randomly generated rows are unlikely to be this
different unless they are generated by different processes.

How big an effect is the difference between rows? Cramer’s V is used as
a measure of effect size, its value varies between 0 (no effect) to 1
(complete effect).

An awk script was used to convert the answers to a comma separated list
which was then processed using the R statistical package. The R function
assocstats from the package vcd was used to obtain the values for the
Pearson chi-squared test and Cramer’s V.

Incorrect answers for the operand name are broken down into those that
are wrong and those that are the name of a different operand appearing in
the question (i.e., one of three possible other names). Writing an expression
containing an operand name that is wrong might result in a compile time
error while writing code an expression with operand names swapped is
much less likely to generate a diagnostic from the compiler.

Table 2 summarizes the operand answers. The rows are the operand
numbers (first operand of first expression is number 1, second operand is
2, first operand of second expression is number 3 and its second operand
is 4). The first column is the total number of wrong answers for each
operand position The next four columns give the total number of answers
appearing in different operand positions, for instance if the first operand
in the first expression is flag and the answer gives this name as the second
operand of the first expression then column 2/row 1 is incremented by one.
The last column is the total number of would refer back answers for that
operand.

All operand names consistent Table 3 contains the total number of answers
in various categories for questions where all operands have names that are
consistent with their corresponding operator; if an operand name
appearing in the question appeared in the answer in an incorrect position
it was counted as a swapped operand (column 4 in the table).

To test hypothesis 1 the and totals are added together and also the
totals from and are added, giving two rows. A Pearson chi-squared
test on these two rows produces p-value=0.016, i.e., the rows are likely to
be drawn from different distributions (1 in 62 chance of this result
occurring if they are drawn from the same distribution).

Hypothesis 1 predicts that the row totals are drawn from different
distributions, but predicts a direction of difference that is the opposite of
that seen in the answers; in practice there were more would refer back
answers when the operators are different (the hypothesis predicts less).

The value of Cramer's V is 0.138, a very small effect (while would refer
back answers almost doubled the overall contribution of that particular
kind of answer is much smaller than Correct answers).

Operand names not consistent Table 4 contains the total number of answers
of various kinds for questions where all operand names are consistent, one
operand has a name that is not consistent with its corresponding operator
and two operands have names that are not consistent. The row percentages
are remarkable similar and a Pearson chi-squared test gives p-values that
reflect this fact; the consistency of operand/operator naming does not have
any impact on subject recall performance (i.e., no support for
hypothesis 2).

Impact of operand position

What impact does the relative position of the operand have on recall
performance (i.e., first or second in the expression, or appearing in the first
or second expression)?

Number of operand answers that are wrong, in various operand positions
or subject would refer back.

Wrong 1 2 3 4 Would refer back

1st operand 9 372 7 7 0 36

2nd operand 16 7 350 1 8 49

3rd operand 18 7 1 320 15 70

4th operand 5 1 7 10 331 77

CaC

CbCCaC

CaC

Total, for all subjects (percentage for each row in brackets), of wrong,
correct, would refer back and swapped operand answers for the four
combinations of operator ordering where all operand names are consistent
with their corresponding operator.

Operator
pairs

Wrong
(%)

Correct
(%)

Would refer
back (%)

Swapped
(%)

4 (3) 99 (82) 13 (10) 4 (3)

5 (6) 103 (83) 10 (8) 6 (4)

2 (1) 113 (76) 29 (19) 4 (2)

3 (2) 115 (77) 25 (16) 5 (3)

Total, for all subjects, of wrong, correct, would refer back and swapped
answers for the 8 cases where all operand names are consistent, the 16
cases where one operand has a name that is not consistent with its
corresponding operator and 24 of the cases where two operands have
names that are not consistent.

Operand kind Wrong (%)
Correct

(%)
Would refer

back (%)
Swapped

(%)

All consistent 14 (2) 430 (79) 77 (14) 19 (3)

One not consistent 16 (2) 552 (79) 87 (12) 37 (5)

Two not consistent 20 (4) 387 (79) 70 (14) 11 (2)

Total, for all subjects, of wrong, correct, would refer back and swapped
answers all questions, first row the first operand of an expression and
second row the second operand of an expression.

Operand kind Wrong (%) Correct (%)
Would refer

back (%)
Swapped (%)

1st operand 27 (3) 692 (80) 106 (12) 37 (4)

2nd operand 21 (2) 681 (79) 126 (14) 34 (3)

a

a

b

b

b

a

a

b

CaC

CaC

CbC

CbC
CaC

CbC

CbC

CaC

Ta
bl

e
2

Table 3
Table 4

Table 5
6 | | JAN 2013{cvu}

Ta
bl

e
6

Ta
bl

e
7

Ta
bl

e
8

{cvu}

Table 5 breaks down the total answer count by operand position, either to
the left of the operator (first row) or the right (second row). A Pearson chi-
squared test gives p-value=0.44, which strongly suggests that the row
values are drawn from the same distribution (i.e., any difference in totals
is likely to be the result of random variation).

Table 6 breaks down the total answer count by expression position, either
to the first expression (first row) or the second expression (second row).
A Pearson chi-squared test gives p-value=6.4e-05, which very strongly
suggests that the row values are drawn from different distribution.

The value of Cramer’s V is 0.113, a small effect (for the same reasons given
above).

Does operator recall performance also vary between expressions?

Table 7 summarizes the operator answers. A Pearson chi-squared test gives
p-value=0.024 (1 in 42 chance of being drawn from the same distribution).
There is a greater chance of a would refer back answer being given for an
operator in the second expression, compared to the first.

Individual subject performance

Table 8 lists the mean and standard deviation of subject operand recall
performance.

Figure 2 is a plot of the total number of operand answers for each subject
as a percentage of all answers they gave, the subjects are ordered in
increasing percentage of correct answers. There appears to be a negative
correlation between percentage of correct answers and would refer back
answers, the Pearson correlation coefficient is -0.96 (95% confidence
interval: -0.98 -0.91, p-value=8.6e-13). The only other strong correlation
is between percentage of correct answers and swapped operand names,
-0.76 (95% confidence interval: -0.89 -0.50, p-value = 4.1e-05).

As in previous memory experiments [8] there were a few subjects who give
a very high percentage of would refer back answers.

After correct answers would refer back is almost always the next most
common answer, followed by operand names being swapped with another
operand and then wrong answers.

The wide variation in individual subject performance suggests that the
experimental design aim of creating a problem whose solution stretched
the limits of subjects' short term memory capacity was achieved. Had the
problems required more or less short term memory capacity then it is likely
that the variations in subjects performance would have been smaller (i.e.,

subjects would have been likely to have given fewer or a greater number
of wrong or would refer back answers).

Discussion
The number of questions answered by subjects (19.6) is similar to the
number of questions answered in 2004 (22.7) when the same nested
conditional if statement was used between the remember/recall problem.

The largest effect found is that subjects’ correct recall performance is
lower on the second expression, compared to the first.

Experiments have shown that when subjects are asked to remember a list
of words there is a primacy effect (i.e., they have better recall performance
for items at the start of a list) and a recency effect (i.e., they have better
recall performance for items at the end of a list) [9].

Is there a serial order in the if statement problem? With only two operands
and two expressions every operand could be said to be either at the start
or end of a list. Also the order in which subjects read and possible reread
the information to be remembered is not known.

The order in which subjects wrote their answers is likely to be first
expression followed by second expression. Perhaps the time taken writing
the answer to the first expression caused information on the second
expression to be lost from memory. Depending on the real life activity
being performed this delay may or may not occur (i.e., a delay occurs when
writing code but little delay need occur when a developer is processing
code in their head)

In some contexts swapping an operand name is a mistake that could result
in a fault being introduced into the code (e.g., if the operator involved was
subtract or divide) and in other contexts swapping the operands of an
operator is unlikely to result in a fault (e.g., the addition operator).

Conclusion
Subject operand recall performance, for a binary operator and the names
of its two operands appearing in the control expressions of two consecutive
if statements, was found to depend on:

 Whether the subexpression containing the operands appears in the
first or second if statement (more would refer back answers are
given for the second; not proposed as a hypotheses),

 whether the two if statement subexpressions, when they both have
all operand names consistent with their respective operator, contains

Total, for all subjects, of wrong, correct, would refer back and swapped
answers all questions, first row the first expression and second row the
second expression.

Operand kind Wrong (%) Correct (%)
Would refer

back (%)
Swapped (%)

1st expression 25 (2) 722 (83) 85 (9) 30 (3)

2nd expression 23 (2) 651 (75) 147 (17) 41 (4)

Total, for all subjects, of wrong, correct, would refer back and swapped
operator answers for the first and second expression.

Wrong (%) Correct (%)
Would refer

back (%)
Swapped (%)

1st operator 9 (2) 378 (87) 32 (7) 12 (2)

2nd operator 16 (3) 347 (80) 55 (12) 13 (3)

Mean and standard deviation of the various kinds of subject answers
(normalised as a percentage), i.e., mean and sd of values in Figure 2, plus
the mean number of questions answered by subjects.

Wrong Correct
Would refer

back
Swapped

Questions
answered

mean 3.3% 75.8% 16.3% 4.5% 19.6

sd 3.1 19.4 15.3 4.0 8.1

● ● ●

●

●
●

● ● ● ●

● ●

● ● ● ● ● ●
●

● ● ●

5 10 15 20

0

20

40

60

80

100

Subject

Pe
rc

en
t

5 10 15 20

0

20

40

60

80

100

5 10 15 20

0

20

40

60

80

100

5 10 15 20

0

20

40

60

80

100

●

correct
refer back
swapped
wrong

The percentage of correct (square box), would refer back (diamond),
swapped (triangle) and incorrect operand answers (bullet) for each
subject. Subjects are ordered by percentage of correct answers given. Figure 2
JAN 2013 | | 7

the same or different operators (more would refer back answers are
given when the operators are different; the opposite behavior
predicted by hypothesis 1).

No statistically significant difference in operand recall performance was
found between all operand names being consistently named, one operand
not consistently named or two operands not consistently named (no
evidence for hypothesis 2).

Further reading
For a readable introduction to human memory see Essentials of Human
Memory by Alan D. Baddeley. A more advanced introduction is given in
Learning and Memory by John R. Anderson. An excellent introduction to
many of the cognitive issues that software developers encounter is given
in Thinking, Problem Solving, Cognition by Richard E. Mayer.

Acknowledgments
The author wishes to thank everybody who volunteered their time to take
part in the experiment, the ACCU for making a conference slot available
in which to run it and Roger Orr for encouraging conference attendees to
take part.

Also, advantage was taken of the if statements used in the experiment to
try and duplicate the pattern of subject performance seen in some studies
of human reasoning. The results seen in some of these studies suggest that

the ordering of operands in a pair of relational expressions has an impact
on people’s performance in evaluating it.

References
[1] D. M. Jones, 2004, ‘Experimental data and scripts for short sequence

of assignment statements study.’ http://www.knosof.co.uk/cbook/
accu04.html

[2] D. M. Jones, 2008, ‘Operand names influence operator precedence
decisions’ C Vu, 20-1 pp 5–11, Feb. 2008.

[3] A. Baddeley, M. Conway, and J. Aggleton, 2002, Episodic Memory:
New Directions in Research, Oxford University Press.

[4] A. R. Luria, 1986, The mind of a mnemonist, Harvard University
Press.

[5] J. R. Anderson and R. Milson, 1989, ‘Human memory: An adaptive
perspective’, Psychological Review, 96(4) pp 703–719.

[6] D. M. Jones, 2012, ‘Experimental data and scripts for impact of
semantic association on information recall performance’,
http://www.knosof.co.uk/dev-experiment/accu12.html

[7] W. T. Fu and W. D. Gray, 2000, ‘Memory versus perceptual-motor
tradeoffs in a blocks world task’ in Proceedings of the Twenty-
second Annual Conference of the Cognitive Science Society, pp 154–
159, Hillsdale, NJ. Erlbaum.

[8] D. M. Jones, 2012, ‘Effects of risk attitude on recall of assignment
statements’, C Vu 23-6 pp19--22, Jan 2012.

[9] R. N. A. Henson, 1996, ‘Short-term Memory for Serial Order’, PhD
thesis, University of Cambridge, Nov 1996.

Software
Engineering
(part-time)

MSc in
8 | | JAN 2013{cvu}

http://www.knosof.co.uk/cbook/accu04.html
http://www.knosof.co.uk/cbook/accu04.html
http://www.knosof.co.uk/dev-experiment/accu12.html

Becoming a Better Programmer # 78
Navigating a Route
Pete Goodliffe helps us to work on a new codebase.

The Investigation of difficult Things by the Method of Analysis,
ought ever to precede the Method of Composition.

~ Sir Isaac Newton

new recruit joined my development team this month. Our project,
whilst not vast, is relatively large and contains a number of different
areas. How could he plot a route into the code? From a standing start,

how could he rapidly become productive?

It’s a common situation; one which we all face from time to time. If you
don’t, then you need to see more code and move onto new projects more
often! It’s important not to get stale from working on one codebase with
one team forever.

Coming into any large existing code base is hard.
You have to rapidly:

 Discover where to start looking into the code

 Work out what the code does, and how it
achieves it

 Gauge the quality of the code

 Work out how to navigate around the system

 Understand the coding idioms, so your
changes will fit in well

 Know where to look for the likely home of
any functionality (and consequent bugs in
that code)

You need to learn this quickly, as you don’t want
your first changes to be too embarrassing (in the
best case), accidentally duplicate existing work, or
break something elsewhere (in the worst case)!

In this article, we’ll work out some practical ways
to do this.

A little help from my friends
My new colleague had a wonderful head start in this learning process. He
joined an office with people who already knew the code, who could answer
innumerable small questions about it, and point out where existing
functionality could be found. This kind of help is invaluable.

If you are able to work alongside someone already versed in the code then
do so. Don’t be afraid to ask questions. And if you can, take opportunities
to pair program and/or get your changes reviewed.

Your best route into code is to be led by someone who already
knows the terrain. Don’t be afraid to ask for help!

If you can’t mither people nearby, don’t fear; there may still be helpful
people further afield. Look for online forums or mailing lists that contain
helpful information and helpful people. There is often a healthy
community that grows around popular open source projects.

The trick when asking for help is to always be polite, and to be grateful.
Ask sensible, appropriate questions. “Can you do my homework for me?”
is never going to get a good response. Always be prepared to help others
out with information in return.

Of course, it’s common sense, but do make sure that you’ve Googled for
an answer to your question first. It’s simply politeness to not ask silly
questions that you could easily have found answers to yourself. You won’t

endear yourself to anyone if you continually ask basic questions and waste
people’s precious time. Like the boy who cried wolf and failed to get help
when he really needed it, a series of mind-numbingly dumb questions will
make you less likely to receive the complex help when you need it.

Look for clues
If you are rooting around in the murky depths of a software system without
a personal guide to hand, then you need to look for the clues that will guide
you around the code.

Some good indicators are:

 How easy is it to obtain the source and build
it? This is a good indicator about the health
and maturity of a project. Does it require
installation of new tools? (How up-to-date
are those tools?) Does one simple, single step
build the entire system, or does it require
many individual build steps? Does the build
process require manual intervention? Can
you work on a small part of the code, and
only build that section, or must you rebuild
the whole project repeatedly to work on a
small component?

 How easy is it to build the code from scratch?
Is there adequate and simple documentation
in the code itself? Does the code build
straight out of source control, or do you first
have to manually perform many small
configuration tweaks before it will build?

How is a release build made? Is it the same
process as the development builds, or do you
have to follow some very different set of
steps? When the build runs, is it quiet, or are
there many, many warnings?

 Look for tests. Are there any? How much of the codebase is under
test? Do the tests run automatically, or do they require an additional
build step? How often are the tests run? How much coverage do they
provide? Do they appear appropriate and well constructed, or just a
few simple stubs that appease the project mandate for tests? There is
an almost universal link here: code with a good suite of tests is
usually also well-factored, well-thought-out, and well-designed.
These tests act as a great route into the code under test, helping you
understand the code's interface and usage patterns. It’s also a great
place from which to start working on a bugfix (you can start by
adding a simple, failing, unit test – then fix that test, without
breaking the others).

 Look at the directory structure. Does it match the code shape? Does
it clearly reveal the areas, subsystems or layers of the code? Is it
neat? Are third-party libraries neatly separated from the project
code, or is it all messily intermingled?

 Look for the project documentation. Is there any? Is it well written?
Is it up to date? Perhaps the documentation is written in the code

 A

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net or @petegoodliffe
JAN 2013 | | 9{cvu}

itself using NDoc, Javadoc, Doxygen, or a similar system. How
comprehensive and up-to-date does this documentation appear?

 Run tools over the code to determine the shape. There are some great
source navigation tools available, and Doxygen can also produce
very usable class diagrams and control flow diagrams.

 Are there any original project requirements documents or functional
specifications? (In my experience, these often tend to bear little
relation to the final product, but they are interesting historical
documents nonetheless!) Is there a project wiki where common
concepts are collected?

 Does the code use any specific major frameworks and libraries? You
can’t learn every aspect of all of them initially, especially since
some libraries are huge (Boost, I’m looking at you). But it pays to
get a feel for what facilities are provided for you, and where you can
look for them.

 Browse through the code to get a feel for the low-level quality. Take
a view on the level and quality of code comments. Is there much
dead code – redundant code commented out but left to rot? Is the
coding style consistent throughout? It’s hard to draw a conclusive
opinion from a brief investigation like this, but you can quickly get
a reasonable feel for a codebase from such an investigation.

 By now you should be able to get a reasonable feel for the shape and
the modularisation of the system. Can you identify the main layers?
Are the layers cleanly separated, or are they all rather interwoven?
Is there a database layer? How sensible does it look; can you see the
schema? Is it sane? How does the app talk to the outside world?
What is the GUI technology? The file I/O tech? The networking
tech?

Learn by doing
A woman needs a man like a fish needs a bicycle. Programmers need
bicycles far more. They make excellent metaphors!

You can read as many books as you like about the theory of riding a bicycle.
You can study bicycles, take them apart, reassemble them, investigate the
physics and engineering behind them. But you may as well be learning to
ride a fish. Until you get on a bicycle, put your feet on the pedals and try
to ride it for real, you’ll never advance. You’ll learn more by falling off a
few times than from days of reading about how to balance.

It’s the same with code. Reading will only get you so far. You can only
really learn a codebase by getting on it, by trying to ride it, by making
mistakes. By rolling your sleeves up and getting stuck in. Don’t let
inactivity prevent you from moving on. Don’t erect an intellectual barrier
to prevent you from working on the code.

I’ve seen plenty of great programmers initially paralysed through their own
lack of confidence in their understanding.

Stuff that. Jump in. Boldly. Modify the code.

The best way to learn code is to modify it. Learn from your
mistakes.

So what should you do? Look for places where you can immediately make
a benefit, but that will minimise the chances you’ll break something (or
write embarrassing code).

Aim for anything that will take you round the system.

 Try some smaller things, like tracking down a ‘simple’ bug, one that
seems to have a very direct correlation to an event you can start
hunting from (a GUI activity, for example). Start with a small,
repeatable, low risk fault report, rather than a meaty intermittent
nightmare.

 Run the codebase through some code validators (like Lint, Fortify,
Cppcheck, FxCop, ReSharper or the like). Look to see if compiler
warnings have been disabled; re-enable them, and fix the messages.
This will teach you the code structure and give you a clue about the

code quality. Fixing this kind of thing is often not too complex, but
very worthwhile; a great introduction. It often gets you round most
of the code quickly. Non-functional code changes around the system
lead you to learn about how things fit together and what lives where.
It will also give you a great feel for the diligence of the existing
developers, and for which parts of the code are the most worrisome,
and will require extra care when you handle them.

 Inspect the build system. Can you fix any build issues with it?

 Study a small piece of code. Critique it. Determine if there are weak
spots. Refactor it. Mercilessly. Name variables correctly. Turn
sprawling code sections into smaller well-named functions. A few
such exercises will give you a good feel for how malleable the code
is and how yielding to fixes and modifications. (I’ve seen codebases
that really fought back against refactoring.)

 Look at the tests. Work out how to add a new unit test, a new test file
to the suite. How do they get run?

 Do some spit-and-polish on the interface. Make some simple UI
improvements that don’t affect core functionality, but do make the
app more pleasant to use.

 Gauge the quality of the source file organisation in the directory
hierarchy. Does it match the layout in the project files? Move the
files into a better place.

 Does the code have any kind of top-level README documentation
files that explain how to start working on it? If not, create one and
include the things that you have learned so far. Ask one of the more
experienced programmers to review it – this will show how correct
your knowledge is, and also help future newbies.

 As you are gaining understanding of the system, maintain a layer
diagram of the main sections of code. Keep it up to date as you learn
more. Do you discover that the system is well-layered, with clear
interfaces between each layer and no unnecessary coupling? Or do
you find the sections of code are needlessly interconnected? Look
for ways of introducing interfaces to bring about separation without
changing the existing functionality.

 Perform software archaeology on code that looks questionable. Drill
back through source control logs and ‘svn blame’ (or the equivalent)
to see who was responsible for some of the messes. Try to get a feel
for the number of people who worked on the code in the past. How
many of them are still on the team?

Conclusion
Scientific investigations are a sort of warfare carried on in the closet or

on the couch against all one’s contemporaries and predecessors

Thomas Young

The more you work on new codebases, the more you are able to pick up
new code effectively, just as the more you exercise, the less pain you feel
and the greater the benefit you receive.

Questions
1. Do you often enter new codebases? Do you find it easy to work your

way around unfamiliar code? What are the common tools you use to
investigate a project? What tools can you add to this arsenal?

2. Describe some strategies for adding new code to a system you don’t
understand fully yet. How can you put a firewall around the existing
code to protect it (and you)?

3. How can you make code easier for a new recruit to understand?
What should you do now to improve the state of your current
project?

4. Does the likely time you will spend working on the code in the
future affect the effort and manner in which you learn existing code?
Are you more likely to make a ‘quick and dirty’ fix to code that you
will no longer have to maintain, even though others will have to later
on? Is this appropriate?
10 | | JAN 2013{cvu}

Hello World in JavaScript
Frances Buontempo demonstrates how to unit-test

a simple JavaScript program.

ete Sommerlad [1] mentioned a typical C++ "Hello world"
program at the ACCU 2012 conference. Aside from being rude about
the comments that automatically generated versions tend to end up

with, I was struck by his point that usually the salutation is bolted straight
into the main function, rendering it un-testable, other than by eyeballing
the output. Many times, we start with a ‘hello world’ application when we
learn a new language. Many times, we bolt the message straight into main,
rendering it un-testable. This means people tend to resort to debugging by
printf, or trying to use a debugger to see what’s going on as they feel
their way round a new language. In fact, printing "Hello world" in
main is the de facto standard way to debug by printf. It has been around
for years and is here to stay for a long time, if we don’t shake things up a bit.

I’d like to buck this trend by presenting "Hello world" for JavaScript using
test driven development. We shall start with a test that fails, then get it to
pass, and might consider refactoring with the safety of the test. This way
I have learnt how to write tests while I learn JavaScript, which I hope will
make me more efficient, avoiding my frequent trick of trying to figure out
what’s going on with the moral equivalent of printf statements until I
can’t take it any more and do it properly.

So, where to start? With a unit testing framework, obviously. There seem
to be a few for JavaScript, but I’ll demonstrate jasmine [2].

We put our source somewhere, and our ‘spec’ somewhere. The spec
describes the tests. We can pull this all together with one html file, which
runs all the specs. Jasmine comes with a sample, including a
SpecRunner.html, which we can copy and point at our "Hello world"
code. I will follow the jasmine structure of having a source directory, src,
and sibling spec directory.

Let’s start with a failing test, given in Listing 1.

The function describe introduces a test suite, which takes free text as a
name and a function implementing what must be tested. Inside the test
suite, the spec is given via the it function, using expect. Again, this takes
free text, making it easy to give clear descriptions of the expectation and
good error messages if a test fails. By starting with a failing test, we can
see how good the error message will be when a test fails. The
SpecRunner.html, based on the one that comes with jasmine, wires
the code and specs together, and points to the jasmine library. Notice that
the comment is backwards; since it’s open source, I could change it, but
for now let’s ignore the comments.

 <!-- include source files here... -->
 <script type="text/javascript"
 src="spec/HelloSpec.js"></script>

 <!-- include spec files here... -->

 <script type="text/javascript"

 src="src/Hello.js"></script>

The spec calls our code under test, src/Hello.js, shown in Listing 2.
The code deliberately returns the wrong string, so we can start with a
failing test. We get the output in Figure 1.

We now have a test, which fails. Step one complete.

We can now change the JavaScript code to say "Hello world" instead
and we have a passing test (see Listing 3).

We now have a test which passes. Step two
complete.

The next step could be refactoring, for example I
could simplify the code to stop using the
prototype, but I’ll leave it here for now to catch up on the mentored
developers’ JavaScript project. Before I do, notice we have a hello world
function, and a test for it, but don’t actually have a hello world app yet.
However, I have a test spec that shows how to use my Hello function, so
it’s simple to write the main application.

We have seen how to write a "Hello world" application in JavaScript, using
the unit testing framework Jasmine. Making sure we started with a failing
test allowed us to verify a useful error message was produced on failure.
Once the "Hello world" function was written, and the test passed, it was
easy to write the actual "Hello world" application. This may seem over the
top, but it is important to start as you mean to go on. This test setup provides
a place for future JavaScript noodles, without resorting to debugging or
inspecting print statements. There are several JavaScript testing

 P

FRANCES BUONTEMPO
Frances has a PhD technically in Chemical Engineering,
but mainly programming and learning about AI and data
mining. She has been programming professionally for
over 12 years. She can be contacted at
frances.buontempo@gmail.com.

describe("Hello world", function() {
 var greet;

 beforeEach(function() {
 greet = new Hello();
 });

 it("should say Hello world", function() {
 expect(greet.greet()).toEqual("Hello world");
 });

});

Li
st

in
g

1

function Hello() {
}
Hello.prototype.greet = function() {
 return "Hello";
}

Listing 2
Figure 1

function Hello() {
}
Hello.prototype.greet = function() {
 return "Hello world";
}

Listing 3
JAN 2013 | | 11{cvu}

Hello World in JavaScript (continued)

frameworks, but Jasmine was easy to get up and running and the ability to
name your test suites in words rather than using underscores or camel case
is beautiful. I hope this article reminds me, and others, to always write tests
first.

References
[1] http://wiki.hsr.ch/PeterSommerlad/files/2012ACCU-1.pdf
[2] http://pivotal.github.com/jasmine/

<!DOCTYPE HTML PUBLIC
 "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <title>Hello world</title>

 <script type="text/javascript"
 src="src/Hello.js"></script>

 <script type="text/javascript">
 var greet = new Hello();
 document.write(greet.greet());
 </script>
</head>

<body>
</body>
</html>

Li
st

in
g

3

If you read something in C Vu that you particularly
enjoyed, you disagreed with or that has just made
you think, why not put pen to paper (or finger to
keyboard) and tell us about it?
The Composition Pattern and the Monad
Richard Polton explains how Monads can reduce complexity.

n this instalment of our pattern application series we are going to revisit
the COMPOSITION PATTERN and explore how it leads us to the MONAD

PATTERN. Recall that COMPOSITION allows us to reduce repetition by
constructing new functions from existing functions, instead of simply
copying the common code into the body of the new function as might
otherwise be the case. The MONAD PATTERN will allow us to extend what
we have already learnt about COMPOSITION and, as we shall see below, to
add, at the very least, decisions between the components of the
composition as well as possible shared state information. The ultimate goal
will be, as before, to remove or reduce repetition in our code by defining
new reusable units.

For our worked example, suppose that we are presented with the following
not particularly nice but not especially unusual piece of imperative code.
For all the hyperbole, this particular example is not too bad having as it
does only the one return value, albeit tucked away in the middle of the
function, but it does help to demonstrate the essence of what we are about
to explore. So, without further ado, consider Listing 1.

Ultimately we would like to separate the success branch and the failure
branch of ThisIsIt() individually but the current construction makes

this separation difficult. With this goal in mind, let us identify the
individual components of the branches and extract them into functions.

Using our active imagination, and playing fast-and-loose with the types for
the moment, let us extract each individual if statement into a separate
function and rewrite ThisIsIt accordingly (see Listing 2). At this point
a pattern can be seen emerging. Take a starting value, perform a check and
then branch, returning the result of the branch as the result of the function.
Okay, this could be defined recursively but we’re going to tackle this
iteratively. Also note that exceptions are used to break the control flow (we
will come back to this at a later point). So, to consider the success branch,
we take a value, check it, call a function, take the value, check it, call a
function, take a value, check it ... and so on.

 I

RICHARD POLTON
Richard has enjoyed functional programming ever
since discovering SICP and feels heartened that
programming languages are evolving back to LISP.
He likes ‘making it better’ and enjoys riding his bike
when he can’t. He can be contacted at
richard.polton@shaftesbury.me
12 | | JAN 2013{cvu}

http://wiki.hsr.ch/PeterSommerlad/files/2012ACCU-1.pdf
http://pivotal.github.com/jasmine/

So far so good. It’s abundantly clear where the return value is coming from
although you’ll have to take my word for it that we can consider the failure
cases using this approach. Anyway, we now have a load of temporary
variables which serve to do little more than take up screen space (and the
compiler will assuredly ‘file’ them away) so let’s replace them with

 var value = DoIt4(DoIt3(DoIt2(DoIt1(
 GetInitialValueFromSomewhere()))));

Hmm, it’s all back-to-front. Let’s suppose we can re-arrange the functions
in their natural order with a helpful Extension method which we’ll call
Then (and yes I’ve changed GetInitialValueFromSomewhere into
GetInitialValue because they’re not quite the same thing, as we’ll see
shortly) then we can write a function value_fn such that

 Func<???,???> value_fn = GetInitialValue()
 .Then(DoIt1)
 .Then(DoIt2)
 .Then(DoIt3)
 .Then(DoIt4);

This example of the FLUENT PROGRAMMING style is also essentially the
COMPOSITION pattern, so called because we can compose a single function
from two or more functions. If we name our resultant composition
JustDoIt, then for some types A and B to be defined, we can write it as

 Func<A,B> JustDoIt = x =>
 (DoIt1.Then(DoIt2).Then(DoIt3).Then(DoIt4))(x);

enabling us to rewrite the entire expression as

 Func<???,???> value_fn
 = GetInitialValue().Then(JustDoIt);
 var value = value_fn();

That’s much better, and with appropriate and meaningful naming, the
essence of the algorithm can be captured succinctly. The key here is that
Then does not actually execute the DoIt[1-4] functions itself. It is

RetType ThisIsIt()
{
 var a = GetInitialValueFromSomewhere();
 if(a!=null)
 {
 var b = DoSomethingWith(a);
 if(b!=null)
 {
 var c = DoSomethingWith(b);
 if(c!=null)
 {
 var d = DoSomethingWith(c);
 if(d==null)
 throw new ArgumentException("Arg!!!");
 return d;
 }
 else
 {
 throw new ArgumentException("Bad C");
 }
 }
 else
 {
 throw new ArgumentException("Bad B");
 }
 }
 else
 {
 throw new ArgumentException
 ("It's all gone pear-shaped");
 }

}

Li
st

in
g

1 RetType ThisIsIt2()
{
 var a = GetInitialValueFromSomewhere();
 var b = DoIt1(a);
 var c = DoIt2(b);
 var d = DoIt3(c);
 var e = DoIt4(d);
 return e;
}

B DoIt1(A a)
{
 if(a!=null)
 {
 return DoSomethingWith(a);
 }
 else
 {
 throw new ArgumentException
 ("It's all gone pear-shaped");
 }
}

C DoIt2(B b)
{
 if(b!=null)
 {
 return DoSomethingWith(b);
 }
 else
 {
 throw new ArgumentException("Bad B");
 }
}

D DoIt3(C c)
{
 if(c!=null)
 {
 return DoSomethingWith(c);
 }
 else
 {
 throw new ArgumentException("Bad C");
 }
}

RetType DoIt4(D d)
{
 if(d!=null)
 {
 return d;
 }
 else
 {
 throw new ArgumentException("Arg!!!");
 }
}

Listing 2

We can always transform a function taking N parameters into a
sequence of functions taking one parameter each by writing (this is
known as ‘currying’, see previous article in CVu and also see
http://en.wikipedia.org/wiki/Currying)
Func<T1,Func<T2,RetType>> transformedFunction =
 (T1 t1) => (T2 t2) => originalFunction(t1,t2);
and as an aside this might be worthy of consideration when ordering
functions parameters – keeping those that change least often on the
inside, ie t1 in this example, and so in the context of JustDoIt we
might call the function in this manner
 t2.In(transformedFunction(t1).Then(...))

Currying
JAN 2013 | | 13{cvu}

instead the classic composition operator (little ‘o’) as described in a
previous CVu article

 static Func<T1,T3> Then<T1,T2,T3>
 (this Func<T1,T2> f, Func<T2,T3> g)
 {
 return t1=>g(f(t1));
 }

As you have probably observed, the manner in which the parameter is
passed to DoIt1 in the definition of JustDoIt does not fit this pattern
neatly because the parameter has to be passed explicitly, but we can always
choose to maintain the symmetry of the functions by writing

 Func<A,B> JustDoIt = x => x.In(DoIt1
 .Then(DoIt2)
 .Then(DoIt3)
 .Then(DoIt4));

where In() is the classic method–parameter inversion function which was
also discussed in a previous CVu article, ie

 static T2 In<T1,T2>(this T1 t1, Func<T1,T2> f)
 {
 return f(t1);
 }

and using In again, we can write

 var value =
 GetInitialValueFromSomewhere().In(JustDoIt);

At this point we do have a workable solution, as we have captured the
individual pieces of the failure branch in our DoIt[1-4] functions.
However, there is a further factorisation we can make before we can say
‘Done’. We just need to deal with the failure cases in a way which does
not obscure the success branch of our algorithm. If all the DoIt[1-4]
functions had only a single branch, ie no if statement at all, then the type
of JustDoIt would be simply Func<T1,RetType>. However, there is
at least a binary decision which we need to capture. As it happens, it turns
out that what we are trying to achieve is well-known in certain circles ;-)
and there is, therefore, an established pattern, the MONAD PATTERN, which
we can utilise. In the MONAD PATTERN a number of operations are chained
together in some order with the possibility of some state being transported
between the operations behind the scenes. In our specific case, the state
that is transported is the union of the result of the binary decision (null or
not null) and the accompanying data value. In the example here, we are
going to pull the success or failure check out of the DoIt functions into a
wrapper which we shall call Bind() so that the DoIt[1-4] functions
can then concern themselves exclusively with the success branch.

Now, using a new function called ToMonadicType which turns a plain
value into a ‘decorated’, ie monadic, value we rewrite our functions as in
Listing 3, where Bind is defined as Listing 4.

We can think of our Bind function as a generalised Then function which
encapsulates the binary decision thus allowing us to focus on the success
branch in our DoIt functions. In Monad terms, ToMonadicType is
referred to as Return. This particular Monad is known as the EXCEPTION

MONAD. If the evaluation is successful then it stores a value and if
unsuccessful then it stores the exception information.

We can, of course, also implement a monadic JustDoIt function, say
JustDoItM, and use it in ThisIsIt3 should we desire to do so. In this
case, we would write

 Func<A, RetType> JustDoItM = x=>x.ToMonadicType()
 .Bind(DoIt1M)
 .Bind(DoIt2M)
 .Bind(DoIt3M)
 .Bind(DoIt4M);

and then, in ThisIsIt3, we would write

 var a = GetInitialValueFromSomewhere()
 .In(JustDoItM);

So, to summarise, the steps we have taken in this example are:

 Obtain some evil imperative code with lots of nested if .. else clauses

 Separate into functions each of which should return the value that is
to be used as the input parameter to the next function in the sequence

 Define Return

 Define Bind and move the decision point, eg the ‘if null’ checks,
into the Bind

 Redefine the separate functions in terms of the Monadic Return and
process only the success branch

 Compose the functions.

Do we really need all those exceptions?

If we take a mental step back and reconsider the code, then we can see that
the exceptions in ThisIsIt are being used purely to break the flow,
almost in a goto sense. While this is quite normal, the raising of an
exception in this manner is not strictly an exceptional circumstance. It is,
however, a common idiom. The use of this idiom, though, forces
consumers of our code to speak exception or die (to paraphrase the
‘Stormtroopers of Death’, see http: / /en.wikipedia.org/wiki/
Speak_English_or_Die). That is to say that we are enforcing the decision
that the branching can only be between a successful transformation and a
catastrophic failure. Back in the day, we would have written a return
statement instead of the throw ..., returning some default value which
the consuming code knew needed to be handled in a special way. Of course,

MonadType DoIt1M(A a)
{
 return DoSomethingWith(a).ToMonadicType();
}
MonadType<C> DoIt2M(B b)
{
 return DoSomethingWith(b).ToMonadicType();
}
MonadType<D> DoIt3M(C c)
{
 return DoSomethingWith(c).ToMonadicType();
}
MonadType<RetType> DoIt4M(D d)
{
 return d.ToMonadicType();
}
RetType ThisIsIt3()
{
 var a =

GetInitialValueFromSomewhere().ToMonadicType()
 .Bind(DoIt1M)
 .Bind(DoIt2M)
 .Bind(DoIt3M)
 .Bind(DoIt4M);
 if(a.HasValue) return a.Value;
 throw a.ShowException;
}

Listing 3

static MonadType<U> Bind<T,U>
 (this MonadType<T> t, Func<T,MonadType<U>> f)
{
 if(t.HasValue)
 {
 var value = f(t.Value);
 return value!=null ? value : new MonadType<U>
 (new ArgumentException("Bad input data"));
 }
 return new MonadType<U>(t.ShowException);
}

Listing 3
14 | | JAN 2013{cvu}

http://en.wikipedia.org/wiki/Speak_English_or_Die
http://en.wikipedia.org/wiki/Speak_English_or_Die

static IEnumerable<U> Choose<T,U>
 (this IEnumerable<T> input,
 Func<T,Option<U>> transformation)
{
 foreach(var elem in input)
 {
 var intermediate = transformation(elem);
 if(intermediate.IsSome)
 yield return intermediate.Some;
 }
}

Listing 6

it is part of modern style to replace these early returns with a thrown
exception without pausing for thought.

Therefore, it can be seen that replacing the original code with the monadic
code presented above has the effect of allowing the consumers to make
their own decisions about what constitutes a fatal error in the context of
their own code, and all without having to reserve a magic value.

There is in common usage another very similar Monad called the OPTION

MONAD which could also be used here. Given that the exceptions are being
used as goto statements, we could use the OPTION MONAD instead
because the OPTION MONAD does not store anything in the failure case.
System.Nullable and OPTIONTYPE from a previous article are
approximations to the OPTION MONAD.

However, let us expand the example slightly to illustrate a common usage
of the OPTION MONAD. Suppose that we have a sequence of input data and
we wish to transform it into another sequence containing the same number
elements or fewer using ThisIsIt as the transformation function. As
ThisIsIt stands, we would have to write something like Listing 4.

Yuck! Nestled deep in that code is the actual transformation but you would
have to look carefully to be sure that nothing else was happening. This is,
of course, similar to the pattern that map, also known in C#-land as
Enumerable.Select, was designed to implement. The difficulty we
will experience here if we tried to use map is that map guarantees the
number of output elements will be the same as the number of input
elements.

Of course, we could compose a filter and a map to transform our input
sequence but as this is a common pattern let us define a function, called
Choose, as shown in Listing 5.

We can now write the sequence transformation as

 var output = input.Choose(ThisIsit);

This has neatly removed the exception handling code from the front-line,
as it were, but has the unfortunate side-effect of polluting what could
otherwise be a generic function, Choose, with a specific mechanism for

handling the failure branch. Instead, with the appropriate definition of
Option, we can raise the failure handler out of the generic function and
write Choose as Listing 6 and the sequence transformation as Listing 7.

In this example Option<U> is the OPTION MONAD. Let’s use the Choose
transformation with the current implementation of ThisIsIt.

This has considerably reduced the noise in our code and has made it much
easier for the reader to determine the intent. Of course, if we can rewrite
ThisIsIt as ThisIsIt4 returning an OPTION MONAD instead of an
EXCEPTION MONAD or throwing an Exception, we can rewrite our
transformation as

 var input = new[]{a1,a2,a3,a4};
 var output = input.Choose(ThisIsit4);

which has completely reduced the code to its fundamental behaviour.

So, what is a Monad? For the technical definition, you need look no further
than t he Wik iped i a a r t i c l e h t t p : / / en . wi k i pe d i a .o rg /w ik i /
Monad_(functional_programming). You could also take a look at the F#
wikibook (http://en.wikibooks.org/wiki/F_Sharp_Programming/
Computation_Expressions), which gives a good description too, as does
the book Lea rn You A Haske l l Fo r Grea t Go od (h t t p : / /
learnyouahaskell.com/a-fistful-of-monads).

Additionally, having got to grips with the idea, you could do worse than
take a look at http://lorgonblog.wordpress.com/2007/12/02/c-3-0-lambda-
and-the-first-post-of-a-series-about-monadic-parser-combinators/ for a
relatively easy-to-follow practical demonstration of another common
monadic pattern.

Additionally, Luca’s blog post http://lucabolognese.wordpress.com/2012/
11/23/exceptions-vs-return-values-to-represent-errors-in-f-iithe-critical-
monad/ is worth a read. However, if you are coming at this from an OOP
perspective, these articles might still not help all that much.

Recall that Monads originate in functional programming languages. As the
description implies, functional programming languages are about
functions. Monads give functional programmes the ability to bundle data
with functions, as a better closure if you will, or maybe like a structure or
class in OOP terminology although the MONAD PATTERN is still useful in
OOP because it provides a standard pattern that can be used to describe
our classes. Strictly not as a technical definition of a Monad but instead a
woolly and loose description, I find it helps to think of Monads as a
container of functions which satisfy a well-known interface, a structure if
you will. In addition, a Monad may also contain some state information,
ie data. In OOP terminology we can think of a Monad as a Class or more
accurately a family of Classes that implement a specific interface. This
interface, which we shall think of as the Monadic interface, as a minimum
supplies Return and Bind.

These two functions have well-defined signatures, which could be written
in C# syntax as

 M<T> Return<T>(T t)

var input = new[]{a1,a2,a3,a4};
var output = new List<T>();
foreach(var elem in input)
{
 try
 {
 var tmp = ThisIsIt(elem);
 output.Add(tmp);
 }
 catch(ArgumentException arg)
 {
 ; // continue
 }
}

Li
st

in
g

4

static IEnumerable<U> Choose<T,U>
 (this IEnumerable<T> input,
 Func<T,U> transformation)
{
 foreach(var elem in input)
 {
 try
 {
 var intermediate = transformation(elem);
 yield return intermediate;
 }
 catch(Exception)
 {
 ; // continue
 }
 }
}

Li
st

in
g

5

var output = input.Choose(elem =>
{
 try { return ThisIsIt(elem).ToOption(); }
 catch(Exception) { return Option<U>.None; }
});

Listing 7
JAN 2013 | | 15{cvu}

and

 M<V> Bind<U,V>(M<U> u, Func<U,M<V>> fn)

where M is the Monad in question. Return, then, is an adapter which
transforms an unadorned instance of T into a Monad of T. Bind is a
wrapper around a transformation between underlying types.

Return is probably more familiar if it were written

 static M<T> ToMonadOfT<T>(this T t)

but Bind is more interesting. Bind, which we saw earlier in this article,
is where the real work is done.

That is, the body of Bind is the code which makes the decisions about how
the monad should behave. So, let us consider a Monad as a structure with
a well-known interface which groups a number of functions together
possibly with some state information. Often the functions are grouped
together in a ‘workflow’, which may have an implied or actual order. We
can think of workflow as a form of functional composition.

As monads are so useful, it has come about that compilers for certain
programming languages ‘know’about the Monadic interface and so they
can provide special syntax for structures which satisfy the base
requirements, eg the F# compiler transforms Return and Bind to
return and let! respectively.

Two commonly occurring monads, and among the simplest, are the
OPTION MONAD and the EXCEPTION MONAD which we have explored
already.

Both of these essentially encapsulate the same decision, albeit with less or
more additional information respectively. That is, both of these Monads
encapsulate a binary choice. The Monad is either ‘true’ (in the context of
the monad) and contains some state information or ‘false’. The difference
between these two Monads is that, in the ‘false’ case, the EXCEPTION

MONAD contains additionally some exception information.

Trivial partial implementations are shown in Listing 8 and Listing 9.

Let us now consider some familiar use-cases of the EXCEPTION MONAD.

1. Dictionary look-up
A fairly common device occurring in various projects is when we want to
look up some data based upon some key, which might not be present. One
of the simplest examples of this is looking up some value in a dictionary.
In C#,

 var value = dict["key"]

fails with an exception if key is not present in the dictionary. (As an aside,
this is the reason for the existence of the TryGetValue function.)

In general, therefore, we cannot use the natural syntax to query the
dictionary unless we choose to wrap the query in a try .. catch block.
And so suddenly our simple and clear one-liner turns into this

 string value;
 try
 {
 value = dict["key"];
 }
 catch(Exception ex)
 {
 value = string.Empty;
 }

Yuck! The essence of what we are trying to do has been completely
obscured by the packaging. In a manner reminiscent of the
Functional.Switch from a previous article, we could define Try such
that

 var value = Functional.Try<Exception>
 (()=>dict["key"], ex=>string.Empty);

where the first function parameter is a lambda function that should be
‘tried’ and the second is a lambda function that should be evaluated in the
event that an exception of the specified type is caught. This is a bit clunky
though, as it does not map cleanly to common usage, ie try { ... }
catch(exception) { ... }. Instead the exception type is bundled
with the Try() signature and the Catch clause must be presented either
as a lambda, which isn’t too bad, or an array of lambdas in the event that
we wish to handle one of multiple exception types, which is less good.

Even this, though, has demerits because it requires a magic value of
string.Empty. It might be the case that it is meaningful to store
string.Empty in the dictionary but now we have effectively reserved
it as an error indicator. Step forward the EXCEPTION MONAD, which we
will call MException for the purposes of this article. First we define
Return trivially as

 static MException<T> ToMException<T>(this T t)
 {
 return new MException<T>(t);
 }

and Bind as

 static MException<V> Bind<U,V>
 (this MException<U> u,
 Func<U,MException<V>> fn)
 {
 if(u.HasException)
 return new MException<V>(u.ShowException);
 try
 {
 return fn(u.Value);
 }
 catch(Exception ex)
 {
 return new MException<U>(ex);
 }
 }

With these two functions we can write the slightly long-winded

 var value = "key".ToMException()
 .Bind(key => dict[key].ToMException());

class Option<T>
{
 public Option(T t) {_t = t; _isSome=true; }

 public T Some {
 get {
 if(_isSome) return _t ;
 else throw new AccessException();
 }
 }
 public Option<T> None {
 get { return Option(); }
 }
 public bool IsSome { get { return _isSome; } }
 public bool IsNone { get { return !IsSome; } }
}

Li
st

in
g

8

class MException<T>
{
 public MException(T t)
 {_t = t; _isSome=true; _exception=null; }

 public T value {
 get {
 if(_isSome) return _t ;
 else throw new AccessException();
 }
 }
 public bool HasException {
 get { return _isSome; }
 }
}

Li
st

in
g

9

16 | | JAN 2013{cvu}

where value is of type MException<U> and so we have one line again.
At this point, you are probably wondering what exactly has been gained
especially as we have had to create two new functions and repeatedly call
one of them. The primary difference between the monadic code above and
the simpler functional code earlier is that the monadic code stores extra
information. That is the state of the monad is either the value or the
exception that was thrown. In order to access the value of value, we
would call value.HasException and, if no exception is present,
value.Value.

Recall that Bind operates like the short-circuit operators. That is, if the
condition is false then it returns early and so any subsequent Bind
operations will also terminate early. Suppose then that we have a chain of
transformations. In the fluent style we might write

 var value = "key".ToMException()
 .Bind(Lookup.Then(Validate)
 .Then(Enrich).Then(toEx));

where

 Func<K,V> Lookup = key => dict[key];

 Func<V,MException<V>> toEx = v => v.ToMException();

and Validate and Enrich are defined appropriately.

There is a problem with this, though. The dict is bundled inside Lookup
as a closure variable. So we rewrite our fluent one-liner slightly using

LookupIn(dict).Then(Validate).Then(Enrich)
 .Then(toEx)

where

 Func<Dictionary<K,V>,Func<K,V>> LookupIn
 = dict => key => dict[key];

Alternatively we could encapsulate the inner binder function as a single
function

 Func<Dictionary<K,V>,
 Func<K,MException<Enrichment>>> Generate =
 dict => dict.In(LookupIn.Then(Validate)
 .Then(Enrich).Then(toEx));

And so we have

var value =
 "key".ToMException().Bind(dict.In(Generate));

We might also want to extend this to other aspects of the Dictionary.
For example, consider the extension method ToDictionary. This takes
a sequence as its input and returns a new Dictionary. However,
ToDictionary behaves badly if there are duplicates. In fact, the entire
operation fails in this instance which, if the key or value creation functions
are expensive, could be undesirable. Instead we could use the monad
pattern, again the EXCEPTION MONAD, to make our lives easier. I leave this
as an exercise for the reader (although sample code can be found on Google
Code in functional-utils-csharp).

2. Try...Catch...Finally
As another example taking the EXCEPTION MONAD as a starting point we
can implement functional wrappers for the decidedly-imperative
try...catch...finally construct. Listing 10 presents a trivial
implementation of what is essentially three further versions of the Bind
function for MException, calling them Try, Catch and Finally.

As can be seen, the signatures are not precisely monadic and this is because
of the usage pattern but the monadic behaviour can be seen clearly. As Try
returns a monad, it follows that it can be passed to a following Catch or
Finally. Note that the implementation of Finally given here is not
strictly a Bind implementation because it is really a wrapper around an
Action but, in order to be able to chain these functions together into a
single statement, it is necessary that Finally should be a proper function
and, in order to be a function, it must return something, so we choose to
return the monad itself. From a semantic point of view, chaining multiple
Finally function calls is of questionable value but, in the above trivial

implementation, it is possible. That aside, the functional composition of
the monadic pattern means that we can chain together multiple Catch
functions in a single clause, leading to code of the form

 var r = Try(()=>DoSomethingAndReturnANewU()).
 Catch((AccessException acc) =>
 new U("Caught an AccessException")).
 Catch((Exception ex) =>
 new U("Caught an Exception")).
 Finally(CleanUp);

To conclude, the OPTION and EXCEPTION MONADS both enable us to
encapsulate decisions and as a consequence can be used to implement
short-circuit logic in a way which allows clean separation between the
success branch from the failure branch. The MONAD PATTERN itself is a
very useful meta-pattern which can be used in many situations where we
have a sequence of functions we wish to apply in a certain order.
Additionally, if there are data to be transported between the functions
which do not contribute to the algorithm then these can be bundled within
the Monad. The two Monads which have been introduced here are among
the simplest and there are, therefore, many more of greater complexity.
Feel free to trawl the internet looking for other monads, and see if you can
work them into your code.

public static class TryCatchFinallyMonadBuilder
{
 private static MException<T>
 Return<T>(this T t)
 {
 return new MException<T>(t);
 }

 public static MException<U>
 Try</*T,*/U>(Func</*T is void,*/U> tfm)
 {
 try
 {
 return tfm().Return();
 }
 catch (Exception ex)
 {
 return new MException<U>(ex);
 }
 }

 public static MException<T> Catch<Ex, T>
 (this MException<T> tcf,
 Func<Ex, T> catchClause)
 where Ex : Exception
 {
 return tcf.HasException &&
 ((tcf.ShowException is Ex) ||
 tcf.ShowException.GetType()
 .IsSubclassOf(typeof(Ex)))
 ? catchClause
 (tcf.ShowException as Ex).Return()
 : Return(tcf.Value);
 }

 public static MException<T>
 Finally<T>(this MException<T> t,
 Action<T> tfm)
 {
 tfm(t.HasException ? default(T)
 : t.Value);
 return t;
 }
}

Listing 10
JAN 2013 | | 17{cvu}

Code Critique Competition 79
Set and collated by Roger Orr. A book

prize is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
I thought it was time to start trying out some of the new C++11
concurrency features; but it looks like the compilers might be a bit buggy
still. Shouldn’t the following program cleanly separate log output from
the two threads? I started with MSVC 2012 and it worked Ok until I turned
on optimising; so I tried g++ with -std=c++11 – both sometimes give
mixed lines.

Sample output is in Listing 1 and the code is in Listing 2.

Critiques

Peter Sommerlad <peter.sommerlad@hsr.ch>

I am not sure I am getting all problems, but I can point out an explanation
for the behaviour.

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

// log message
void log(int id, std::string const & message)
{
 std::mutex mutex;
 mutex.lock();
 std::cout << now() << " [" << id << "]: "
 << message << std::endl;
 mutex.unlock();
}

// simulate some activity
void dosomething()
{
 int i(0);
 for (int j = 0; j != 10000; ++j)
 {
 for (int k = 0; k != 10000; ++k)
 {
 ++i;
 }
 }
}

// calculate
void calculate(int id, int count)
{
 log(id, "starting the calculation");
 for (int idx = 0; idx != count; ++idx)
 {
 dosomething();
 log(id, "next...");
 }
 log(id, "ending the calculation");
}

int main()
{
 try
 {
 std::thread t1(calculate, 1, 5);
 std::thread t2(calculate, 2, 4);
 t1.join();
 t2.join();
 }

 catch (std::exception const & ex)
 {
 std::cerr << "exception: " << ex.what()
 << std::endl;
 }
}

Listing 2 (cont’d)

29 Sep 23:40:37 [1]: starting the calculation
29 Sep 23:40:37 [2]: starting the calculation
29 Sep 23:40:37 [1]: next...
29 Sep 23:40:37 [2]: next...
29 Sep 23:40:37 [129 Sep 23:40:37 [2]: next...
]: next...
29 Sep 23:40:37 [2]: next...
29 Sep 23:40:37 [1]: next...
29 Sep 23:40:37 [2]: next...
29 Sep 23:40:37 [1]: next...
29 Sep 23:40:37 [2]: ending the calculation
29 Sep 23:40:37 [1]: next...
29 Sep 23:40:37 [1]: ending the calculation

Li
st

in
g

1

#include <iostream>
#include <mutex>
#include <string>
#include <thread>

// get now
std::string now()
{
 time_t const timeNow = time(0);
 char buffer[16];
 strftime(buffer, sizeof(buffer),
 "%d %b %H:%M:%S", localtime(&timeNow));
 return buffer;
}

Li
st

in
g

2

18 | | JAN 2013{cvu}

1. The synchronization is wrong

To synchronize two threads with a mutex they must share the same object
to synchronize with. That means, in many systems such mutex variables
are more or less global. In the situation of the example code with functions
only, the mutex might be passed down the call chain from main or be a
global variable (arrgh).

The following code will use a new mutex instance whenever it is called
thus in fact not doing any cross-thread synchronization at all:

 void log(int id, std::string const & message)
 {
 std::mutex mutex; // new object each time
 mutex.lock();
 std::cout << now() << " [" << id << "]: "
 << message << std::endl;
 mutex.unlock();
 }

In addition it lacks RAII, so if the output would result in an exception (i.e.
std::bad_alloc from std::string’s construction) the lock
wouldn’t be released, if the mutex object really would be shared across the
threads.

Minor issues:

 code assumes at least 32-bit int, because it increments to quite a
large number in the dosomething function, an overflow would
cause undefined behaviour. I would also prefer using an unsigned
type to avoid any undefined behaviour even in case of overflow.

 time output C++11: The time output is still very c-ish. A C++11
version of the log would use std::chrono elements
(unfortunately the following code is untested, since my compiler
doesn't implement std::put_time manipulator yet, which works
like strftime() but more efficient by directly using the
underlying streambuf as buffer and also without the danger of a
too short buffer.

 using clock=std::chrono::system_clock;
 auto tm=clock::to_time_t(clock::now());
 // create a C struct time_t
 std::cout <<std::put_time(std::localtime(&tm),
 "%d %b %H:%M:%S"));

 main could use a try-catch function block.

2. Why it works on some systems anyway

Because std::cout is a global object, using it concurrently would be
dangerous anyway. While iostream objects in general are not safely to
be used from multiple threads, std::cout normally is. std::cout is
usually synchronised with C’s stdio library stdout stream, and because
of the following clause [iostream.objects.overview] of the standard is
synchronized, and then it is safe to use it from different threads (it won’t
crash).

4 Concurrent access to a synchronized (27.5.3.4) standard iostream
object’s formatted and unformatted input (27.7.2.1) and output
(27.7.3.1) functions or a standard C stream by multiple threads shall not
result in a data race (1.10). [Note: Users must still synchronize
concurrent use of these objects and streams by multiple threads if they
wish to avoid interleaved characters. - end note]

The note also tells us what to do about interleaving characters that the
original code’s poster asked about. But why does it work on some
platforms? That is actually a quality of implementation issue or sheer luck
:-). An implementation might create a temporary object on the first call of
the shift operator that will lock the stream, holding the lock while the
expression statement is active and release the temporary object after the
full expression is done, thus effectively releasing the lock.

3. How it could be done right

Pass the mutex’s reference through the call chain. Because of thread’s
constructor we might need to use std::ref() as a wrapper to pass the
mutex reference instead of a copy, which is not possible. In the log()
function I used std::lock_guard<std::mutex> to actually do the

locking the RAII/Scoped Locking Idiom way as it always should be done.
An even better version would be to make all functions taking the log a
template function where the mutex’s type is the template parameter. I also
C++11-ified the now() function a bit, but only so that I could still compile
it on my system. It might not be the best version, but at least IMHO a
working one.

#include <iostream>
#include <mutex>
#include <string>
#include <thread>
#include <chrono>
std::string now() {
 using clock=std::chrono::system_clock;
 auto const timeNow =
 clock::to_time_t(clock::now());
 // no put_time yet: should be better
 char buffer[16];
 strftime(buffer, sizeof(buffer),
 "%d %b %H:%M:%S", localtime(&timeNow));
 return buffer;
}
void log(int id, std::string const & message,
 std::mutex &mutex) {
 std::lock_guard<std::mutex> locker(mutex);
 std::cout << now() << " [" << id << "]: "
 << message <<std::endl;
}
// simulate some activity
void dosomething() {
 unsigned long i(0);
 for (int j = 0; j != 10000; ++j) {
 for (int k = 0; k != 10000; ++k) {
 ++i;
 }
 }
}
void calculate(int id, int count,
 std::mutex &lock) {
 log(id, "starting the calculation", lock);
 for (int idx = 0; idx != count; ++idx) {
 dosomething();
 log(id, "next...", lock);
 }
 log(id, "ending the calculation", lock);
}
int main()
 try {
 std::mutex lock;
 std::thread t1(calculate, 1, 5,
 std::ref(lock));
 std::thread t2(calculate, 2, 4,
 std::ref(lock));
 t1.join();
 t2.join();
 }
 catch (std::exception const & ex) {
 std::cerr << "exception: " << ex.what()
 << std::endl;
 }
}

Joe Wood <joew60@yahoo.com>

There are a number of problems with the supplied code, which we shall
tackle in such a way as to get a better program after each iteration, although
your view on the order may vary.

First the reason that the program causes interleaved output. The mutex in
log is declared std::mutex mutex, this causes a new mutex to be
created for each invocation of log, with the result that there is no locking
JAN 2013 | | 19{cvu}

between threads since each thread locks on its own mutex. The cleanest
solution is to change the declaration of mutex to static std::mutex
mutex, thus providing a single mutex encapsulated in the log function.
The resulting program now works as desired, but we can do better.

If an exception is thrown in log, the mutex is left locked and the system
will deadlock. In the sample program this is not a major problem because
it will have failed anyway, but in a production system we might not want
to leave a locked mutex. This is easily overcome by adding the line

 std::lock_guard<std::mutex> lock(mutex);

immediately below the declaration of mutex, and removing the line

 mutex.unlock();

at the end of log. lock_guard guarantees (even in the presence of
exceptions) to release the mutex when the log function terminates.

There are potentially a few problems with the function now. C++11
introduces nullptr explicitly to distinguish between "0", "0l" and NULL
in various forms. Therefore it would be better to replace the line

 time_t const timeNow = time(0);

with

 time_t const timeNow = time(nullptr);

buffer is declared as being 16 chars long, which is fine provided the
"%b" conversion parameter to strftime never returns more than three
characters. I am not sure if this is true in all locales, so let us err on the
side of caution and make buffer 25 chars long.

The function localtime uses a global buffer which is not thread safe.
As currently written this is not a problem as now is called from inside log
and hence guarded by the mutex. However, we might want to call now from
outside log, so we better use localtime_r and supply our own struct
tm buffer. Hence the call to strftime now becomes

 struct tm tm_time;
 strftime(buffer, sizeof(buffer),
 "%d %b %H:%M:%S",
 localtime_r(&timeNow, &tm_time));

Which brings use neatly to a potential performance issue. We definitely
want to write each output line without any interleaving, but holding the
mutex while we build up the output reduces the scope for exploiting multi-
processors. Provided we can accept that the displayed time may not be
exactly when the output line was produced, we can get better multi-
processor usage by replacing the log function with these two functions.

 // lock output stream and display message
 void put_message (std::string const &message){
 static std::mutex mutex;
 std::lock_guard<std::mutex> lock(mutex);
 std::cout << message << std::endl;
 }

 // log message
 void log(int id, std::string const &message) {
 std::stringstream oss;
 oss << now() << " [" << id << "]: "
 << message;
 put_message(oss.str());
 }

Regretfully, I do not know of any way to test the resulting program beyond
trial and error. I am not sure if I like the free inter mixing of C++ threading
primitives into any old code, at least in Ada tasking primitives have to be
confined to tasks. This example looks straight forward with a protected
type (light weight Ada task which guarantees mutual exclusion) to hold
the put_message routine.

Huw Lewis <huw.lewis2409@gmail.com>

The mixed up output is down to a simple misunderstanding of mutex
objects. The developer doesn’t appear to realise that a mutex object must
be shared by all threads accessing the shared resource (in this case the
shared resource is std::cout). The log function declares a mutex object

to perform this role, but as it is declared on the stack in this position it is
an entirely new and independent (and therefore ineffective) mutex object
for each call to log.

A single word fix is available – declare that std::mutex object as static.
Now all calls to log from whatever threads will use the same mutex object.
Job done? Yes, but no. That solution is crude and is vulnerable to race
conditions in the initial construction of the mutex object.

I prefer the OO approach – let’s make the log an object with a built in
mutex to provide thread safety. Note also that I’ve used the
std::lock_guard to lock and unlock the mutex using RAII.

 // A log class that writes its
 // output to std::cout.
 class Log
 {
 private:
 // A mutex to protect std::cout from
 // concurrent use
 std::mutex mutex_;

 // get time now
 std::string now() const
 {
 time_t const timeNow = time(0);
 char buffer[16];
 strftime(buffer, sizeof(buffer),
 "%d %b %H:%M:%S", localtime(&timeNow));
 return buffer;
 }

 public:
 // log a message to cout
 void log(int id, std::string const& message)
 {
 std::lock_guard<std::mutex> guard(mutex_);

 std::cout << now() << " [" << id << "]: "
 << message << std::endl;
 }
 };

The worker thread functions could use a global Log object, but I think it
would be neater to similarly wrap the calculate method up as a
Calculator class with a calculate method. The Calculator
constructor can take a reference to the Log object and use it throughout
its lifetime.

There are many other options around the threading model. For example,
the log could run in another thread with a mutex and semaphore protecting
a queue of messages to be written by the thread’s main loop.

Finally before I get carried away with over the top designs, I’d like to revert
to a simpler scheme that better meets the requirement. The std::cout
streaming operators are (for most compilers) ‘atomic’ operations i.e. each
streaming operation on that object (cout) will not be interrupted by others
in other threads. So it is possible to fix this without needing a mutex
object!! The simple solution is to construct the string to be logged (e.g.
using ostringstream), then send it to std::cout in a single
operation.

 // log a message to cout
 void log(int id, std::string const& message)
 {
 // format the string to be logged
 std::ostringstream output;
 output << now() << " [" << id << "]: "
 << message << std::endl;

 // send to cout in one go - no need to
 // synchronise!
 std::cout << output.str();
 }
20 | | JAN 2013{cvu}

Ola M <aleksandra.mierzejewska@gmail.com>

[Solution from Ola + Michal]

In the given solution the threads are not synchronised, because the mutex
is created locally in the log function. This means each thread will lock
and unlock its own mutex.

To fix the problem, we could move out the mutex to the global scope or
make it static. We chose however to pass the mutex as an argument.
It's important to note here, that arguments to thread function are copied,
so to pass the mutex by reference it must be wrapped in std::ref-
attaching code.

Another thing that might need to be added is exception handling inside the
calculate function – this is because exception thrown by that function
would not be passed back to main thread.

#include <iostream>
#include <mutex>
#include <string>
#include <thread>

// get now
std::string now()
{
 time_t const timeNow = time(0);
 char buffer[16];
 strftime(buffer, sizeof(buffer),
 "%d %b %H:%M:%S", localtime(&timeNow));
 return buffer;
}

// log message
void log(int id, std::string const & message,
 std::mutex & mutex)
{

// static std::mutex mutex;
 mutex.lock();
 std::cout << now() << " [" << id << "]: "
 << message << std::endl;
 mutex.unlock();
}

// simulate some activity
void dosomething()
{
 int i(0);

 for (int j = 0; j != 10000; ++j)
 {
 for (int k = 0; k != 10000; ++k)
 {
 ++i;
 }
 }
}

// calculate
void calculate(int id, int count,
 std::mutex & mut)
{
 //std::mutex & mut = *m;
 log(id, "starting the calculation", mut);
 for (int idx = 0; idx != count; ++idx)
 {
 dosomething();
 log(id, "next...", mut);
 }
 log(id, "ending the calculation", mut);
}

int main()
{
 try
 {
 std::mutex mut;
 std::thread t1(calculate, 1, 5,
 std::ref(mut));
 std::thread t2(calculate, 2, 4,
 std::ref(mut));
 t1.join();
 t2.join();
 }
 catch (std::exception const & ex)
 {
 std::cerr << "exception: " << ex.what()
 << std::endl;
 }
}

Commentary
I read the code that inspired this critique in a recently published book; this
goes to show you shouldn’t apply example code, no matter what the source,
without thought!

As all the entrants pointed out the problem is that the mutex object must
be shared between all the threads that access the shared resource
(std::cout) and this means it cannot be an automatic variable as
separate instances of this are created on each call to the function.

Getting synchronisation right is hard. The simple code shown here worked
fine on a multi-core machine when compiled using MSVC without
optimisation; merely executing concurrent code successfully – even
several times – does not prove correctness.

Note too that although making the mutex static is guaranteed by the
C++11 standard to be safe not all compilers fully support this behaviour
(MSVC, for example, is not in general race-free for local static variable
initialisation.)

In this case there is another problem with synchronisation – we can fix the
bug in the log function but we cannot fix the problem that other pieces
of the program may also use std::cout and we may have interleaved
characters from this concurrent use. Joe’s solution of using
ostringstream may improve matters, if used consistently, but this will
depend on the actual implementation of the stream.

Lawrence Crowl has submitted a paper (N3395) to the ISO C++ committee
about this very issue; to quote:

At present, stream output operations guarantee that they will not
produce race conditions, but do not guarantee that the effect will be
sensible. Some form of external synchronization is required.
Unfortunately, without a standard mechanism for synchronizing,
independently developed software will be unable to synchronize.

The paper proposes a few possible solutions; as yet no clear decision for
the best way forward has been reached.

The other issue in the code is the use of a fixed-size buffer for the call to
strftime when using one of the string output formats: in this case %b.
There is no guarantee that I can find about the maximum (or minimum)
length of the abbreviated month name in the different locales a C runtime
may support.

So, for example, if I add this call at the start of main:

 setlocale(LC_TIME, "frs");

then I get no timestamps in my log output as the abbreviation for Décembre
is "déc." which, being four letters long, means the call to strftime fails
as the output would exceed sizeof(buffer). (Here I’m using the
MSVC runtime on Windows.)

The Winner of CC 78
All four entrants successfully identified the problem caused by multiple
instances of the mutex variable and provided various solutions. However
JAN 2013 | | 21{cvu}

Joe was the only person to pick up the questionable call to strftime so
I think he is the worthy winner of this issue’s critique.

Code critique 79
(Submissions to scc@accu.org by Feb 1st)

Thanks to Francis Glassborow for sending me this one: modified to prevent
an easy Google search for other people’s comments.

I keep getting a compiler warning when I compile the code with gcc. Please
help me get rid of it!

 gcc cc79.c -o cc79
 cc79.c: In function 'addFirst':
 cc79.c:36:17: warning: assignment from
 incompatible pointer type [enabled by default]
 cc79.c: In function 'printList':
 cc79.c:46:9: warning: assignment from
 incompatible pointer type [enabled by default].

I’ve tried with Microsoft VC and that gives me an even more confusing error:

 cc79.c(36) : warning C4133: '=' : incompatible
 types - from 'LLNODE *' to 'LLNODE *'"

The code is in Listing 3.

(As usual, there’s the ‘presenting problem’ to solve but there are other
issues to highlight in the code.)

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

/* This program builds a basic linked list. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef struct { // Define a linked list node
 char *name;
 struct LLNODE *next;
}LLNODE;

void addFirst(char *data); //Declare function
 //prototypes
void printList(void);

LLNODE *head = NULL; //Define global pointer
 //variable head

int main(int argc, char *argv[])
{
 addFirst("Peter");
 addFirst("Paul");
 addFirst("Mary");
 printList();
 return EXIT_SUCCESS;
}
void addFirst(char *data)
{
 LLNODE *newNode;
 newNode = malloc(sizeof(LLNODE));
 newNode->name = data;
 newNode->next = head; //errors here
 head = newNode;
}
void printList(void)
{
 LLNODE *itr = head;
 while(itr != NULL)
 {
 printf("%s\n", itr->name);
 itr = itr->next; //And errors here.
 }
}

Listing 3
22 | | JAN 2013{cvu}

Regional Meetings
Chris Oldwood rounds up a whole series of talks from ACCU

London, and Paul Grenyer gives us SyncNorwich.

ACCU London
Chris Oldwood provides a summary of the happenings at three recent ACCU
London meetings.

October 2012: Continuous Delivery – compèred by Ed Sykes

ontinuous Delivery is one of those techniques that I know what it is
in theory but aren’t sure what everyone actually does in practice. One
obvious way to find out more about it would be to buy the book on

the topic – Continuous Delivery. Instead I chose a different route – to listen
to various people describe how they’re doing it.

The venue was the Mozilla offices near Leicester Square. This was a new
venue to me and it was a real treat to be greeted by hot pizza, and fizzy
pop courtesy of 7Digital/1E. The turnout was excellent with around 50
people spread across the chairs and sofas. Most of those were different
faces, but there were a still a few regulars to catch up
with before the session.

Rather than a single speaker or set of lightning talks
the format was three speakers each giving closer to a
15-minute presentation on how they are executing
Continuous Delivery in their organisation. With a
large audience clearly wanting to extract every last
ounce of information from the presenters there was a barrage of questions
after each segment that they deftly handled.

One of my goals was to find out what the size of a ‘feature’ is so that when
I see the stream of tweets from companies boasting at the number of
features they’ve pushed into production today I have some frame of
reference. Luckily I didn’t have to wait too long as first up was Chris
O’Dell describing how the process works at 7Digital. Her team seems to
have adopted many of the modern practices, such as pair programming and
Kanban to create a very fluid environment. This wasn’t plain sailing and
they clearly still have some baggage to address for some time yet. The most
useful part of the presentation was the slides that walked through a ‘day
in the life’ of a change, from development right through to deployment.
Chris left you with a feeling that they walk-the-walk as well as talking-
the-talk.

Next up was Ed himself with Cosmin Onea to explain the 1E approach.
This is a company that seems to have to deal with a little more ‘paperwork’
for the final hurdle which I can definitely empathise with. They had a video
similar to Chris’s earlier slides that presented the change workflow, but
this time in a style more reminiscent of a production-line. Naturally there
were many parallels to the first talk, with automated build, testing and
deployment the common thread. A desire to avoid feature branches and
focus on small well defined tasks was also apparent.

The final speaker was Robert Chatley, who instead chose to talk about how
he has tackled cloud based deployments. I suspect a fair portion of the
audience is working on systems that are, or intend to, run in the cloud and
so this was probably highly relevant for them. The crux of the presentation
was about how to keep that purity of deploying exactly what you’ve tested,
which in his case extended right down into the OS image on which the tests
were run. He also provided some tips on how you might go about switching
over from one version of the software to the next which requires a fair bit
of thought when you have a considerable number of nodes to upgrade and
whilst maintaining a minimum level of capacity.

Nice though the offices of Mozilla are with its alluring fridges, it was time
to switch to a more traditional watering hole and continue the discussion

with proper ale. Not unsurprisingly I discovered there is quite a bit of
latitude in the definition of Continuous Delivery and that for some this only
extends from DEV through to UAT. Sadly there is often some heavy-
handed ‘review’ process in place to bring the pipeline to an eventual
standstill. Even so, I came away positive knowing that my team and I are
heading in the right direction and that there is still a wealth of tooling to
explore to help extract every last ounce out of the process.

November 2012: Introduction to Clang – Dietmar Kuhl

The London branch of the ACCU went back to its roots last night at the
Bloomberg offices as Dietmar Kuhl gave an introductory talk on Clang.
This is one of those technologies, along with LLVM, that has been floating
around my subconscious just waiting to be investigated further;
particularly as I’ve been playing with GCC purely for its static code

analysis benefits.

Dietmar started with a very brief overview of what
Clang is, might be used for, and what some of the goals
were that shaped its architecture. The most notable of
these are the avoidance of exceptions and RTTI,
although it has its own variant of RTTI instead. He also
mentioned its open source nature and the fact that it has
active input from a couple of big names which is

always reassuring.

We discovered that Bloomberg use other mainstream C++ compilers for
its core business and that Dietmar’s interest in Clang is more on the
research side at present. After the brief introduction he swiftly moved on
to showing us how to build a plug-in for Clang. These are how you tap
into the various pipelines within the tool so that you can execute some of
your own code to run on the various events as they occur during
compilation.

Obviously such a large tool can’t be covered in any depth in just 60
minutes, but he did a great job of picking a realistic static code analysis
problem and then showed how you might go about implementing it. The
example was about detecting dodgy casts (C style and the C++ reinterpret
kind) from long to int, which can break when moving from 32-bit to 64-
bit platforms. The amount of code was surprisingly small and most of the
time was probably spent explaining how types were represented and then
how you go about comparing them correctly.

One of the goals of Clang is better diagnostics, which for those of us who
remember using deciphering tools like STLFilt on their C++ errors, will
surely appreciate. He showed the output from his example plug-in and it
was good to see the types referred to by their local typedefs rather than the
underlying names.

C

they walk-the-walk
as well as

talking-the-talk

PAUL GRENYER
Paul Grenyer is a husband, father, software consultant,
author, testing and agile evangelist. He can be contacted
at paul.grenyer@gmail.com

CHRIS OLDWOOD
Chris started as a bedroom coder in the 80s, writing
assember on 8-bit micros. Now it’s C++ and C# on
WIndows. He is the commentator for the
Godmanchester Gala Day Duck Race and can be
reached at gort@cix.co.uk or @chrisoldwood
JAN 2013 | | 23{cvu}

24 | | JAN 2013{cvu}

With a 50+ audience there were plenty of questions afterwards as Dietmar
had clearly stirred imaginations. The most notable question for me was
about how this might affect the vendors of lint-style code analysis tools as
the platform looks to provide plenty of scope in this area – if the developer
community is willing. The question Dietmar clearly wanted to be asked
was ‘which pub?’ and with that we trotted off to The Flying Horse opposite
to further our discussions.

Clearly the local brew was good stuff because it seems at one point I
suggested you might be able to use Clang as a code generator that would
allow you to write C++ 11 style code that could then still be compiled with
Visual C++ 6. But it was just a joke, right?

December 2012: Christmas Dinner

There are only two times of the year when the ACCU London branch
doesn’t meet for a traditional presentation – April, when the conference is
on, and Christmas. Instead we get together at a restaurant and spend the
entire evening chewing-the-fat (quite literally in some cases) rather than
it being confined to a swift pint after an hour’s lecture. The format is still
largely the same though as we retire to a pub afterwards. Oh, and we still
end up in the same chain of pizza restaurant each year.

You’d think that such a progressive bunch of programmers with one eye
on the agile landscape would embrace change and mix it up once in a while.
But then, why bother. The restaurant is just a means to an end, one in which
we get to catch up with the physical forms of some of those people we only
normally recognise by their tiny avatars (or an egg) and converse with in
chunks of 140 characters or less. Despite modern gadgets allowing us to
stay ‘in touch’ with one another 24x7 there are still times when only beer
and pizza will do.

SyncNorwich 6 Review
Paul Grenyer reviews a recent SyncNorwich gathering sponsored by Aviva.

Aviva Christmas Special at Carrow Road

SyncNorwich [1] is going from strength to strength. A year and a day
before the Aviva Christmas Special at Carrow Road, I was sat in the Coach
and Horses [2] on Thorpe Road for the very first Agile East Anglia [3]
meeting. A year ago there were half a dozen of us, tonight, after the
addition of Norwich Startups and Norwich Developer Community and
rebranding as SyncNorwich in June, there were 110 of us in one of the most
prestigious venues in Norwich. It’s difficult to describe how incredible that
feels, so I won’t try, anyone who was there will have seen how much it
meant to me.

Tonight’s event was sponsored by Aviva. SyncNorwich is very grateful
to them for hiring the venue, buying a drink for everyone and three fantastic
speakers.

First up is Juliana Meyer who gives an introduction to SyncNorwich for
those who are new to the group and a recap of many of the events that
SyncNorwich has been involved with over the last six months. I have seen
variations of this presentation many times, but Juliana always makes it feel
fresh and new.

Juliana was followed by the charismatic John Marshall from UK Trade and
Investment [4], who uses his two minute presentation judiciously to tell
SyncNorwich about the companies he is working with and the money he
has to give away to help companies trade overseas. Tonight he is just as
informative and entertaining as at Hot Source [5] a week ago.

Next up we had SyncNorwich favorite, ignite style lightning talks [6]. This
time around there were four. Chris Leighton was up first and despite her
slides working against her gave an excellent and well delivered
presentation on startup training from the Business Skills Clinic [7]. Chris
was followed by local entrepreneur Keith Beacham who took us through
a very slick presentation about the highs and lows of startup companies
and investment. I first saw William Harvey give his lightning talk on
funding for low carbon companies at SyncNorwich Corner at the Common
Room [8] in November. It was great to have him at a full SyncNorwich
event and soak up some of the infectious enthusiasm. Last up were Tom

McLoughlin and Josh Davies from FXHome [9]. They gave us a hilarious
description of the trials and tribulations of making their startup successful
and told us about some of the amazing people in the video industry that
they’ve worked with.

Before the break SyncNorwich gave FXHome the chance to show their
latest promotional film to the group. It was fantastic and you can watch it
at http://www.retinaburnblog.co.uk/whats-your-idea-fxhome-hitfilm/.

After the break it was the turn of Rob Houghton whose charismatic and
engaging Northern style was the highlight of the evening and went down
extremely well with the SyncNorwich crowd. He told us about Horses Vs
Tanks and his vision to revolutionise the use of technology at Aviva. Rob’s
session was followed by an extremely interesting, amusing and
informative question and answer session.

The last of the presentations came from Jason Vettraino and Jason Steele
who spoke about the joys and perils of a mobile application that they
developed at Aviva. This was the first technical presentation we’ve had at
SyncNorwich since Dan Wagner-Hall from Google spoke about testing
[10]. It was great to have some good honest technology back in the
programme and again this presentation was both amusing and informative
and followed by an engaging question and answer session with Sky Viker-
Rumsey providing his usual difficult questioning to the Jasons.

The Aviva SyncNorwich Christmas special was wrapped up with a run
down of future events, including SyncConf [11] given by John Fagan and
our January Student/Employer Speed Dating & CyberDojo [12] event
given by Seb Butcher. After that were the Smart421 [13] robots! The
highlight that many had come for.

References
[1] http://www.syncnorwich.com/
[2] http://www.thecoachthorperoad.co.uk/
[3] http://paulgrenyer.blogspot.co.uk/2012/12/agile-east-anglia-short-

history.html
[4] https://www.ukti.gov.uk/
[5] http://hotsourcenorwich.co.uk/
[6] http://en.wikipedia.org/wiki/Ignite_(event)
[7] http://businessskillsclinic.com/
[8] http://paulgrenyer.blogspot.co.uk/2012/11/syncnorwich-at-

common-room-review.html
[9] http://fxhome.com/
[10] http://paulgrenyer.blogspot.co.uk/2012/10/syncnorwich-4-

reviews.html
[11] http://syncconf.com/
[12] http://www.syncnorwich.com/events/87908322/
[13] http://www.smart421.com/

Acknowledgements
Thanks to James Neale (www.jamesnealephotography.com) for kind
permission to use the photograph.

http://www.syncnorwich.com/
http://www.thecoachthorperoad.co.uk/
http://paulgrenyer.blogspot.co.uk/2012/12/agile-east-anglia-short-history.html
http://paulgrenyer.blogspot.co.uk/2012/12/agile-east-anglia-short-history.html
https://www.ukti.gov.uk/
http://hotsourcenorwich.co.uk/
http://en.wikipedia.org/wiki/Ignite_(event)
http://businessskillsclinic.com/
http://paulgrenyer.blogspot.co.uk/2012/11/syncnorwich-at-common-room-review.html
http://paulgrenyer.blogspot.co.uk/2012/11/syncnorwich-at-common-room-review.html
http://fxhome.com/
http://paulgrenyer.blogspot.co.uk/2012/10/syncnorwich-4-reviews.html
http://paulgrenyer.blogspot.co.uk/2012/10/syncnorwich-4-reviews.html
http://syncconf.com/
http://www.syncnorwich.com/events/87908322/
http://www.retinaburnblog.co.uk/whats-your-idea-fxhome-hitfilm/
http://www.smart421.com/
www.jamesnealephotography.com

JAN 2013 | | 25{cvu}

Standards Report
Mark Radford reports the latest from C++ Standardisation.

When the first C++ standard was published in 1998, the standards’
committee then spent a lot of time and effort on the issues raised as a result.
These issues consisted of reports (from the user community) of potential
defects in the standard, or simply requests for clarification regarding
various aspects of the standard. When I wrote my last column (focusing
on the Portland meeting) I was very enthusiastic about the work going into
new C++17 features, and I rather glossed over the issue processing aspect
of the committee’s work. Ever since the C++2011 standard was published
last year, once again, much effort has gone into (and continues to go into)
processing the many issues.

Up to now I’ve been writing on the basis that C++17 is the next version
of the standard. However, it seems there has been a slight variation in this
plan. An issue processing exercise also took place following the
publication of the 1998 standard, the result being ‘C++2003’, a ‘bug fix’
update to the standard. The same thing is being planned now: an update,
known as C++14, is now scheduled for 2014. The difference this time is
that C++14 is likely to contain a small number of new features.

What new features will go into C++14 is, at the moment, still unknown.
However, a decision is expected to be taken at the Chicago meeting
(October 2013). Basically, anything that is ready by then is likely to be
included. Likely candidates include: user-defined literals (N3402), the
get<TYPE> part of tuple tidbits (N3404) and string_ref (N3442).
Mike Spertus’ paper (N3404) entitled ‘Tuple Tidbits’ caught my eye, so
I’ll pick on this paper to talk about a little more.

Currently fields in tuples are accessed by their index e.g. get<2>(). Mike
Spertus’ idea is for them to be accessible by their type, so that
get<std::string> would access a field of type std::string. Of
course this would only work if the tuple contained only one field of type
std::string. The idea is that if there were more than one then a compile
error would result.

Another very neat idea in this paper (sadly, as I currently understand it,
not to be in C++14) is ‘functoriality’. The idea is that a tuple object with
fields that are pointers to functions, or function objects, can be applied to
another tuple object containing data fields, in one operation. I’ll repeat an
example from the paper (using simple function pointers) to give you the
idea:

 auto funcs = make_tuple(sqrt, strlen, atof);
 auto vals = make_tuple(9, "foo", "7.3");
 auto result = funcs(vals); // result is
 // tuple<double, size_t, double>(3, 3, 7.3)

Seeing this it occurred to me that these three lines of code could be
compressed into a single statement:

auto result = make_tuple(sqrt, strlen,
 atof)(make_tuple(9, "foo", "7.3"));

Now, if we have a function pointer called execute and another called
on_args , that each point to the appropriate make_tuple<>
instantiation, the following would be very expressive indeed:

 auto result = execute(sqrt, strlen, atof)
 (on_args(9, "foo", "7.3"));

You can find all of the standards committee’s papers (past and present) at
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/.

MARK RADFORD
Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark@twonine.co.uk

Two Pence Worth
An opportunity to share your pearls of wisdom with us.

One of the marvellous things about being part of an organisation like ACCU
is that people are always willing to help out and put in their two-pence-worth
of advice. We have captured some of those gems and printed the best ones.

“Write TODOs in the code to save money on bug tracking software”
Arthur, Arundel

“Make Friday ‘Open Source’ day and let your devs work on OSS
projects. They don’t do any work anyway” B., Bristol

“When pasting code from a book add some error handling to ensure it
works correctly” Dr Love, London

“Use the Singleton pattern only when it would actually be of some
benefit” Chris, Cambs.

“Liberally spread platform-specifics throughout your code –
especially word size reliance – to show how much you know about
your computer” Ed, London

“Write multiple statements on one line to make use of the extra screen
width that multiple monitors provide” Arthur, Arundel

“Save money on heating bills by writing all your code to target
GPGPUs” Chris, Cambs

“Brighten up your colleagues’ day by using Unicode variable names”
Anon

“Help save the planet by removing all unnecessary white space in code,
thereby reducing file sizes” Ed, London

“Add some light-heartedness to your team by adopting Comic Sans as
the in-house font” Chris, Cambs

“Reduce finger strain by only using identifier names from keys in the
middle row” Mavis, Beaconsfield

“Remove the X,C and V keys from developers’ keyboards to stop them
copy-and-pasting code” Chris, Cambs

If you have your own 2p to add to the collective wisdom of the group, send
it to cvu@accu.org.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/

26 | | JAN 2013{cvu}

Desert Island Books
Ed Sykes finds things to read on a Desert Island.

d’s been a regular at the ACCU Conference and the mailing lists for quite
some time, although I can’t quite put my finger on exactly how long. I
think my first recollection of him at the conference was ear-wigging on

a conversation about unit testing and build management – topics which I
think remain close to Ed’s heart! Recently he's been getting involved in
organising the ACCU London meetings, which has given me more
opportunity to chat with him over a beer or two afterward, which is the usual
form for these things.

All Creatures Great and Small
I love this semi-autobiographical work written - under the
pseudonym James Herriot – by James Alfred Wight. I’ve
read this book more than any other, mostly due to
obsessive reading and re-reading as a pre-teen. One story
in particular sticks: a collie who rampantly terrorises
Herriot – a vet visiting the farm – by leaping through a
hedge and gleefully barking in his ear. Set in the 40s and
50s it describes a time of change in the agricultural
communities of Yorkshire, a change away from using
animals to mechanisation. It vividly describes characters such as the
Farnham brothers, each – in their own way – as mad as a cat in a bath. The
book delights with comic observations and big heart. Marooned, this is the
book that I would turn to first. Lying far away from England – alone
amongst the palm trees – this book would provide home-comfort through
widescreen panoramas of England's landscape and national character.

I, Robot
Isaac Assimov is a personal hero. His writing style is simple
but his ideas are extraordinary. Looking back and
connecting the dots, it planted the idea of studying
Psychology and Artificial Intelligence at University –
guiding me to programming. Without this book I would
have studied German and French; I probably wouldn’t be
in London or writing software. I, Robot influenced other
science fiction writers and thinkers. It wove The Three

Laws of Robotics into
the fabric of human
consciousness and culture. It was
the first time I came across the idea
that software could mimic human
intelligence, emotion and soul. Assimov,
and his approach to life, has been a big inspiration to me and this was the
first of his works I read.

Freakonomics
Studying psychology showed the power of statistics in
answering interesting questions. Freakonomics blew my
mind. Here, data revealed stories of the human condition
hitherto untold. Amongst them, the startling story between
abortion and crime rates. It opened my eyes to a new side of
economics, gently lighting a path of interest towards classic
economics. Lucky enough to live in London, I saw the
authors talking about their follow-up, SuperFreakonomics,
at the LSE. I even had a chance to ask them a few questions and get my
books signed. Magical.

Implementation Patterns
There are lots of books about patterns at the OO level, but
this book is about small patterns that emerge at the micro
level. One idea that stuck: pay attention to the symmetry
in your code, it tells you about the design. Reading it felt
like being in Kent’s head. This book brought maturity and
awareness of my own decision making at the statement,
expression, function and class level. The strength of this
book is that it taught me to think about thinking, a skill
that goes beyond java – the language of the examples.

Growing Object Orientated Software
Guided By Tests
This book is about the London school of TDD. It’s the
story of the creation of a software system using TDD at
the unit and system level. It named themes and expressed
idea that were appearing in my own work: TDD moving
to the system level; The trend towards automation; the
value in faking interfaces to external systems.
Particularly rewarding was the mentored group on the accu-mentored
mailing list. The authors joined the study group, clarifying and expanding
their thinking. I think this is destined to become a modern classic.

E

Desert Island Books is based (loosely) on the popular BBC Radio 4
programme, Desert Island Disks (http://www.bbc.co.uk/radio4/factual/
desertislanddiscs.shtml). Many ACCU members have chosen their
Desert Island Books, and there are plenty more to go. If you would like
to share your Desert Island Books, please email cvu@accu.org
Choose 4 ‘technical’ books – books that have influenced your
programming life or that you would like to read – and explain what
attracts you to them. Include a novel and two albums – you can slip in a
film if you want – as this helps us get to know you better as a person.

What’s it all about?

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines. We
need articles at all levels of software development experience; you don’t have to write about rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

JAN 2013 | | 27{cvu}

21st Century C
By Ben Klement,
published by O’Reilly,
ISBN 978-1-4493-2714-9

Reviewed by Alexander
Demin

This is the first
sentence from the
preface: ‘C has only a
handful of keywords
and is a bit rough around the edges, and it rocks.
You can do anything with it. Like the C, G and
D chords of a guitar, you can learn the basic
mechanics pretty quickly, and then spend the
rest of your life getting better.’

Frankly, I had been hooked by this book from
the start because I personally share exactly the
same feeling about C. So, I continued reading,
and here is my, of course, biased and subjective
review.

As follows from the title, this book is about the
latest cutting edge C, but it is not a textbook.
Instead, the author explains some details of
modern C, which many people still do not use
sticking instead with ‘classic’ approaches, and
also covers best practices for productive
working with C.

First, the author briefly covers the situation with
standards (C89, C99 and C11) and major
implementations (gcc, clang). He steps through
programming environments of modern C,
debugging and documenting, version control,
and packaging. Then he comes to the language
itself. There is a chapter called ‘C syntax you can
ignore’, which I read first. The rest of the book
is dedicated the best practices: use of structures
and pointers, text (mostly about Unicode),
object-oriented approaches in C and a few
mainstream libraries.

It may look like the material is a bit chaotic, but,
again, this is not a textbook. The material
definitely helps with rethinking your current use
of C applying all new fancy bells and whistles.

Finally, a couple of my personal findings. For
example, I had not heard at all about the
restrict keyword and the asprintf()
function. I liked a lot that the author promotes
makefiles instead of piling up zillions of scripts,
plus the advice of using private_ prefix in
structure field names (simple and harmless but
practical).

Any book can become tedious if you agree with
everything. But I found that some topics like ‘a
good use of goto’, autotools and doxygen
generate a lot of arguments in me. Such ‘holy
war’ subjects make the book even better because
you will have more topics for a chat with your
colleagues on the kitchen.

The Economics of
Software Quality
By Capers Jones and Olivier
Bonsignour, published by
Addison-Wesley, ISBN 978-
0-13-258220-9

Reviewed by Paul Floyd

There are two authors
that get referenced a lot in
the body of literature on
software development when it comes to
measuring software. They are Barry Boehm and
Capers Jones. That’s not a large number, I guess
because not many organizations have the means
to do that sort of research and even fewer are
willing to make it public. Whilst Boehm worked
in the US defence industry, Capers Jones
worked at IBM.

Starting on the positive side, this book covers all
aspects of quality and in depth. For metrics, it
does preach for the use of function points rather
than lines of code. Probably the most interesting
parts for me were the measurements of risks of
defects by development stage (this somewhat
assumes a waterfall-y development process) and
the comparison of effectiveness of various
methodologies and tools.

There is quite a lot of repetition in the book. It
reminded me a bit of a politician being
interviewed, when the politician is repeatedly
making a point even if the interviewer is trying
to move on to something else. This does get the
point over, particularly if you’re picking the
book up and trying to use it to look up a
reference. When I read it cover to cover though,
it did drag on a bit. I wasn’t too keen on the tables
of subjective measurements given numerical
values to 2 decimal places, like ‘Risk of
application causing environmental damages –
9.80’. I feel that this gives a false sense of
precision and authority. There were a few
clangers that undermine this authority. For
instance, Perl is written Pearl, Mac is written
Mack and one that really set my teeth on edge
(wearing my Electronics Engineer hat) was the
claim that ‘Electrical engineering uses K to mean
a value of 1,028, but software engineering uses
K for an even 1,000’. Yes, that is 1,028, not
1,024. They are both even, though you might say
that 1,000 is more of a ‘round’ figure. And no,
Electrical engineers never use 1,024 for K for
electrical things. 1Kohm or 1KV is always
1,000. When it comes to addressing memory
then the 210 version is often used. Ah, bee in
bonnet. Another electronics oddity crops up in
a table of languages that do not support static
analysis, which includes Verilog (a hardware
description language that has a great deal of
static analysis tool support).

One of the points repeatedly made is that the cost
of fixing a defect does not change depending on
when it is discovered in the development cycle,
contrary to the popularly held belief that the later
a defect is found, the more it costs to fix. I can
accept this if the defect is a coding defect. I don’t
agree if the defect is in the design error, which
in my experience takes much longer to fix than
something like an out-by-one coding error.
Another point that is strongly emphasized is the
increase in risk (and the number of defects) with
the size of a project. I have no beef with that.

In summary, an interesting book that is
ironically a bit let down by a few defects.

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU
website, which contains a list of all of the books currently available. If there is something that you
want to review, but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can
have it. I will instruct you from there. Remember though, if the book review is such a stinker as
to be awarded the most un-glamorous ‘not recommended’ rating, you are entitled to another book
completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with
books.

Jez Higgins (jez@jezuk.co.uk)

28 | | JAN 2013

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From the Chair
Alan Griffiths
chair@accu.org

When it comes to delegation there’s
a big difference between responsibility and
authority. In theory one cannot delegate
responsibility – even when someone in authority
‘makes someone else responsible’ for something
they retain the responsibility for what happens.
We see this in the news week after week with
politicians, heads of businesses and other
organisations being held responsible for what
someone else actually did (or didn’t) do. If
something goes wrong ‘on their watch’ they are
ultimately responsible.

Authority is different: it can, and should, be
delegated. If the management decide a computer
system needs to be developed then they delegate
the authority to a development team that is more
able to focus on the details. But the management
remains responsible for the actions of the group
they’ve appointed.

Of course, it is equally true that responsibility
can be accepted. That development team accepts
responsibility for making the decision – but that
is a new responsibility (to the management) not
a shift in the responsibility the management has
to shareholders and customers.

Why am I going on about this?

Because it applies to the ACCU.

The membership has delegated the authority to
run the organisation to me and the other
members of the committee.

As a committee we too have delegated authority
to various committee and non-committee
members, special interest groups and contracted
work to non-members.

But despite delegating authority to people and
groups that accept responsibility we all retain
responsibilities that cannot be delegated.
You,and other members have a responsibility
for what the committee has been doing on your
behalf!

In my reports ‘From The Chair’ I’ve detailed a
lot of what’s been going on – both so that
members get to see how the committee exercises
its authority and meets its responsibilities, and
also so that the people doing the work get
recognition for the things they are doing. (In this
regard I should mention that Martin Moene
made and implemented some suggestions for
improving the website – thanks Martin.)

For the same reasons the secretary has been
posting committee minutes to the accu-members
mailing list. You might not be interested in
everything – but if there is something of interest
you should be able to identify what progress is
being made.

You can also see which committee members
take responsibility for ‘actions’ and the manner
in which those ‘actions’ are fulfilled.

It is for you, the members to decide whether the
committee as a whole, and as individuals, has
been doing a good job. And now is the time to
start thinking about it – because if you want
something to change you must act before the
AGM.

There is one further thing that requires your
urgent attention: the secretary has posted a draft
for a revised constitution on the website and
invited discussion on accu-members. At the time
of writing the silence has been remarkable.

I don’t intend to denigrate the work done by
those drafting the new constitution – they’ve
done a lot of work on a hard problem, and I think
they’ve done a creditable job and special thanks
are due to Mick Brooks and Giovanni Asproni.
But changing the constitution like this is a BIG
DEAL, it involves a number of compromises
and I don’t believe that the first draft can have
encountered universal approval. It is not my

experience that ACCU members are reluctant to
express opinions. Where are the questions and
suggestions?

Now is the time to raise and fix any issues you
see with the proposals.

The deadline is rapidly approaching where a
motion to change the constitution must be
notified to the membership – after which the
discussion is limited to voting ‘yes’ or ‘no’. It
would be very disappointing if the work done on
constitutional change went to waste because no-
one raised a legitimate concern early enough for
it to be addressed,

Please everyone, have a look at the draft for a
new constitution, have a look at what the
committee has been doing and let us know
whether you approve.

	CVu24-6_final.pdf
	For The Sake Of It
	Impact of Semantic Association on Information Recall Performance (Part 1)
	Navigating a Route
	Hello World in Javascript
	The Composition Pattern and the Monad
	Code Critique Competition 79
	Regional Meetings
	Standards Report
	Two Pence Worth
	Desert Island Books
	Bookcase
	View From the Chair

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Helvetica
 /HelveticaNeue-BoldExt
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

