

NOV 2012 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

STEVE LOVE
FEATURES EDITOR

Not Doing The Wrong Thing
t just goes to show, it doesn’t matter how much experience
you think you have, how much practice you get, how
good your intentions are or how quick the hack you

want to achieve is, cutting corners just doesn’t pay. It’s
all very well telling yourself you’re embarking on a
throw-away scratch project with no future beyond
exploring some idea or new technology. You might justify
your deliberate lack of attention to detail by convincing
yourself you’re ‘writing one to throw away’ and will do it
properly in the next phase. You can pretend all you like that
you get enough practice at doing it the right way, and that a
quick hack won’t hurt. However much experience you have, it
doesn’t count for much if you don’t put it into practice. If you
consider yourself to have quite a lot of experience then, well,
you really ought to know better...

Such is the diatribe I recently inflicted on myself for not
writing a bunch of tests up front. Not only that, but not even
structuring the code in the project with the idea in mind of
being able to test it. “It’s just a play project,” I told myself.
“Once I’ve explored the ideas and got something working, then
I’ll do it properly.” Yeah. Right.

It doesn’t take long before the play project has morphed into the outline of
something a bit more real, that does real stuff, has a database, front end, a load of
logic...and no tests. All of a sudden the realisation hits: if only you had a way of
exploring why this bit didn’t work without having to run the whole thing up, add
some dummy data, click buttons in the UI and then watch the results in a debugger
(or worse, adding a load of output to the console in order to diagnose it), you’d
save a whole load of time, effort and electrical current, and be much calmer and
more fulfilled.

And so, after quite a bit of time refactoring, and reminding yourself of the identity
of the muppet responsible for this rubbish in the first place, you finally add some
tests, discover a few things you thought did work but in fact didn’t, and reflect that
you probably don’t need any more practice at doing it wrong, but you do need
more practice at doing it right. First time round.

I
Volume 24 Issue 5
November 2012

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Pete Goodliffe, Paul Grenyer,
Huw Lloyd, Roger Orr,
Richard Polton, Mark Radford

ACCU Chair
Alan Griffiths
chair@accu.org

ACCU Secretary
Giovanni Asproni
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
R G Pauer
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

2 | | NOV 2012

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
22 Standards Report

Mark Radford presents
the latest news from the
ongoing C++ Standards
process.

23 Agile East Anglia: A Short
History
Paul Grenyer gives us a
potted history of a local
group.

24 Code Critique Competition
Competition 78 and the
answers to 77.

27 Two Pence Worth
An opportunity to share
your pearls of wisdom.

REGULARS
28 Bookcase

The latest roundup of
book reviews.

31 ACCU Members Zone
Membership news.

SUBMISSION DATES
C Vu 24.6: 1st December 2012
C Vu 25.1: 1st February 2013

Overload 113:1st January 2013
Overload 114:1st March 2013

FEATURES
3 Using the Unix ptrace API

Roger Orr exposes the Unix debugging API.

8 Functional Decomposition
Richard Polton looks at more functional techniques for
reducing duplication.

16 The Contradictions of Technical Recruitment
Huw Lloyd reflects on the interview process.

20 The Advanced Coding Test
Pete Goodliffe drives his point home.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Using the Unix ptrace API
Roger Orr exposes the Unix debugging API.

n a previous issue of CVu (Vol 23 Issue 1) I wrote about the Windows
debugging API and promised to write a future article about the Unix
debug API. Here is that article: slightly later than anticipated.

Many programmers spend a significant amount of time using debuggers
but in my experience few of them have much understanding of how they
work. It can be useful to look at this, for a couple of reasons:

 knowing a little about how something works can help you use it
better

 you might wish to write your own tool to make use of the same API

The classic mechanism for debugging application programs in Unix is
based around the ptrace function. This function allows the controlling
process to perform a variety of tasks on the target process: for example to
read and write memory, to examine and change the registers and to receive
notifications of signals received by the target process. This forms the basis
of the interactive debuggers dbx and gdb. Additionally Unix can invoke
the ptrace interface whenever the target process makes a system call.
The Unix strace utility uses this mechanism to intercept and record the
system calls which are called by a process, together with the name of each
system call, its arguments and its return value.

There are a number of problems with this API – it was originally designed
a long time ago and some of its features have become slightly problematic
since. Moreover, each flavour of Unix has made slightly different
implementation decisions and often also added extensions to the basic API.
There seem to be regular attempts to produce a new API without some of
the peculiarities of the existing implementations, but given the widespread
availability of the API and the existence of many cross-platform tools
which use ptrace (albeit often containing platform-specific code to
handle the differences) there has not yet been a clear successor. Solaris,
for instance, has added other debugging and profiling mechanisms which
they consider better and removed ptrace as a system call – but the
function is still available as it is emulated using the newer functionality.

What’s in the Unix debugging API?
Debugging is invoked when a process calls ptrace with the
PTRACE_TRACEME argument (i.e. requesting to be debugged) or a process
can try to request debugging of a target process by calling ptrace with
the PTRACE_ATTACH argument. Only one process at a time can attach to
a process so this call will fail if a debugger is already attached. The use of
PTRACE_ATTACH may be restricted by security policies on various
versions of Unix – typically it only works if the target process has the same
user id but stronger restrictions can be – and often are – available. For
example, on Mac OS X a process can use the PTRACE_DENY_ATTACH
function code to prevent it from being debugged. This is one of the places
where the age of the API shows – the security concerns often a necessary
part of today’s computing world were largely absent when ptrace was
designed.

Once successfully attached to the target the debugging process typically
runs in a loop, calling one of the wait functions to receive the next status
change of the target and then using ptrace to inspect and/or modify the
target process and then to continue its execution.

When using an interactive debugger it is common to set breakpoints in the
target program – this is done by modifying the code in the target to add a
breakpoint instruction and then responding to the resultant event. There is
a lot of work behind the scenes in a good debugger to do such things as
resolving the low level addresses and register values into high level

constructs such as line numbers, source code and variables; these
techniques are not covered in this article.

A d e b u gg e r c a n d e t a c h f r o m a deb u gg e e b y u s i n g
ptrace(PTRACE_DETACH, pid, 0, 0), letting the target process run
freely. Unless this is done, when the debugging process terminates the
target process is also automatically terminated.

Linux ProcessTracer
I am going to use a program that traces calls to open and close (and major
events in a program’s lifecycle) to provide the framework for exploring
ptrace. Although the basic shape of the program would be the same on
any flavour of Unix I have written and tested the program on Linux; I will
try to point out in the text where the program is Linux-specific.

I will demonstrate the action of the process tracer by targetting an example
program named BadProgram. The source code for BadProgram is very
simple and is shown in Listing 1.

As is probably apparent, if any of the command line arguments refer to a
file that cannot be opened for read, the call to fclose will segfault when
it tries to access the null value of fp.

Here is an example of the tracing in use on the example program when it
accesses a null pointer after failing to open the noexist file:

 $./ProcessTracer ./BadProgram /dev/null noexist
 open("/etc/ld.so.cache") = 3
 close(3) = 0
 open("/lib/x86_64-linux-gnu/libc.so.6") = 3
 close(3)
 ** opening /dev/null
 open("/dev/null") = 3
 close(3)
 ** opening noexist
 open("noexist") = -2(No such file or directory")
 Segmentation violation
 Terminated by signal 11

Here we can see four calls to open. The first two calls are from the program
loader itself opening files as part of starting the program. These calls are

I

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

#include <stdio.h>

int main(int argc, char **argv)
{
 int idx;
 for (idx = 1; idx < argc; ++idx)
 {
 printf("** opening %s\n", argv[idx]);
 FILE *fp = fopen(argv[idx], "r");
 fclose(fp);
 }
}

Listing 1
NOV 2012 | | 3{cvu}

then followed by the two calls from the example code: a successful call to
open /dev/null and a failed call to open noexist.

Now we’ve seen the process tracer in action let’s go back to the beginning
and build it up step by step.

Getting started
The first step in ProcessTracer is to create the child process with tracing
enabled. As described above this is done by making a call to ptrace with
the argument PTRACE_TRACEME in the child process. In Unix the
standard way to create a child process is to clone the current process using
fork and then call exec to replace the clone with the desired target. The
usual place for the call to ptrace is therefore to put it in the code executed
in the cloned child process after the call to fork which created the new
process and before the exec which loads the target.

Listing 2 is an extract from ProcessTracer (without error handling, for
clarity) showing this.

At this point the original process has been provided with the process ID
of the new child and, since the child process has asked to be debugged, the
call to execv in the child process is blocked internally waiting for the
parent process to handle the associated ptrace event.

We must now take a look at the main debug loop.

The heart of the matter
In its simplest form the ‘debug loop’ looks like Listing 3.

This loop is purely reactive and isn’t doing anything more than displaying
the various debug events. Let’s look at what it does and then extend it
further in a moment.

The first call, to wait, halts the debugger until the next event is ready from
the debuggee. On a successful return, the process id of the child raising
the event is returned. The wait call returns -1 to indicate there are no more
debug events to process – the child process(es) have completed and we can
leave the main loop.

We check the error number is ECHILD (no children) and if not raise an
error. (The implementation of make_error is in the full source code for
the article.)

The call returns a status value for the event, and we use a set of macros
defined in wait.h to extract the event type and any related arguments
from the status field. As can be seen from the structure of the loop the
possible event types are:

 Stopped (WIFSTOPPED)

The process has stopped at a signal event and the status contains the
signal number. Normally you simply want to pass the signal on to
the process that reported it so it can do its normal processing on the
signal. One exception however is the SIGTRAP signal which is
generated by a breakpoint and is also used by ptrace for some of the
events that it generates. It is important that the SIGTRAP is not

passed on to the target process as the default action is to terminate
the process.

The very first event you receive when debugging is a stop event
from the child process. (In our case this occurs when the child
process is inside the call to execv.) This event gives the debugger
a chance to set up the debugging environment and to decide how to
let the child process continue. The only exception to this is if the
execv fails because, for instance, the target binary does not exist.
In this case you may receive an ‘Exited’ event first, so for robustness
you must ensure this possibility is catered for.

 Exited (WIFEXITED)

The process has called exit (or otherwise terminated normally)
with the specified exit status.

 Signaled (WIFSIGNALED)

The process has terminated in response to the specified signal (for
example, SIGABRT from calling abort).

 Continued (WIFCONTINUED)

The process has resumed by means of SIGCONT (newer versions of
Linux only).

The final stage of the main loop is calling ptrace with the
PTRACE_CONT argument which resumes the child process until the
next debug event. The code then goes back to the controlling wait
call until one of the next events occurs. Other arguments are possible

pid_t const cpid = fork();
if (cpid > 0)
{
 // In the parent
 return cpid;
}
else if (cpid == 0)
{
 // In the new child
 if (ptrace(PTRACE_TRACEME, 0, 0, 0) == -1)
 {
 // Handle error
 }
 execv(argv[0], argv);
 // Handle failing to start the new process
}

Li
st

in
g

2 void TrivialPtrace::run()
{
 int status(0); // Status of the
 // stopped child process
 while ((pid = wait(&status)) != -1)
 {
 int send_signal(0);
 if (WIFSTOPPED(status))
 {
 int const signal(WSTOPSIG(status));
 os << "Signal: " << signal << std::endl;
 if (signal != SIGTRAP)
 send_signal = signal;
 }
 else if (WIFEXITED(status))
 {
 os << "Exit(" << WEXITSTATUS(status) << ")"
 << std::endl;
 }
 else if (WIFSIGNALED(status))
 {
 os << "Terminated: signal "
 << WTERMSIG(status)
 << std::endl;
 }
 else if (WIFCONTINUED(status))
 {
 os << "Continued" << std::endl;
 }
 else
 {
 os << "Unexpected status: " << status
 << std::endl;
 }

 ptrace(PTRACE_CONT, pid, 0, send_signal);
 }
 if (errno != ECHILD)
 {
 throw make_error("wait");
 }
}

Listing 3
4 | | NOV 2012{cvu}

when resuming the child process – for example
PTRACE_SINGLESTEP, which resumes the child process for just a
single instruction; or PTRACE_SYSCALL, which resumes the child
process until the next time it enters or leaves a system call or
generates a normal debug event; we will use this value later on in the
article.

Here is the output from running this trivial ptrace example against our
‘bad’ program:

 $./TrivialPtrace ./BadProgram /dev/null noexist
 Signal: 5
 ** opening /dev/null
 ** opening noexist
 Signal: 11
 Terminated: signal 11

The first output ‘Signal 5’ is caused by the initial SIGTRAP signal event
returned by the ptrace API when the connection to the target process is
first made. This first event would typically be used to initialise the
debugger for the target process.

A quick check of signal.h shows that signal 11 (on my system) is
SIGSEGV – segmentation violation. The full processTracer program
adds code to map signal numbers to more ‘friendly’ strings.

Thread and process start and stop

The tracing program at this point suffers from what can be a fairly
important restriction – it will debug only the initial target thread and
process selected. We can demonstrate this by invoking a shell and then
running our bad program from the shell.

 $./TrivialPtrace /bin/sh
 Signal: 5
 $./BadProgram /dev/null noexist
 ** opening /dev/null
 ** opening noexist
 Signal: 17
 Segmentation fault (core dumped)
 $ ^D
 Exit(0)

Here we see no sign of the SEGSEGV signal (11) but only the SIGCHLD
signal (17) which is received by the shell when its child process –
BadProgram – exits. It is very common to want to follow processes (and
threads) created by the target process. How can we do this with ptrace?

In the early days of ptrace the usual way to do this was to turn on system
call tracing and process the calls that created new processes, such as fork.
When fork returns in the parent process the return value is the pid of the
new child process. The debugger could then issue a call to
ptrace(PTRACE_ATTACH, pid, 0, 0). Unfortunately this was
subject to a race condition as the child process may have already executed
a number of instructions before the debugger received the event via
ptrace and was able to attach to the new pid. This mechanism is still
available and may be used for portability reasons.

However, Linux has added some extensions to ptrace to improve support
for debugging child process and also to provide support for debugging
multiple threads. Note this is one of the places where Linux diverges from
other versions of Unix as it has provided its own implementation for
supporting threads, via the clone system call.

I found a lot of questions on the Internet about the best way to program
this – it seems that the documentation is not entirely clear. Here are the
steps I have found minimally sufficient.

Request tracing of child processes

When the child process is stopped at the initial stop event we set additional
ptrace options PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK
and PTRACE_O_TRACECLONE. This makes the system automatically turn
on tracing for processes and threads created by the three system calls fork,
vfork and clone. Additionally, the newly created processes and threads

in turn inherit these ptrace settings. Note that setting these options can
only be done when the child process is stopped on a ptrace event.

Wait for all the child processes

We have to replace wait with a call to waitpid and provide a Linux-
specific value __WALL for the third argument. If we fail to do this we do
not receive signals for all the additional tasks.

Process the additional events

One we have set the options above the system will deliver additional debug
events using the ‘Stopped’ status. The debugging process receives
notifications from the parent process with signal type SIGTRAP with
additional flags OR’d in to the status value to indicate which system call
the event was raised by. Additionally the debugger also receives an initial
SIGSTOP signal from each newly created thread or process. It seems
necessary, despite what the ptrace documentation states, to avoid
sending on the SIGSTOP signal to the process being debugged. Here too
Linux has added a further option, PTRACE_O_TRACEEXEC, which can be
enabled to OR an additional flag value into these initial events.

I modified the earlier example to create a MultiPtrace class which
handles threads and processes. I refactored the handling of stopped events
into a separate function: OnStop which is invoked in the debug loop like
Listing 5. The OnStop function itself is shown in Listing 6.

Now when we run the previous example we receive the debugging events
from both the direct child, the shell, and also from its child processes:

void TrivialPtrace::run()
{
 int status(0); // Status of the
 // stopped child process
 while ((pid = wait(&status)) != -1)
 {
 int send_signal(0);
 if (WIFSTOPPED(status))
 {
 int const signal(WSTOPSIG(status));
 os << "Signal: " << signal << std::endl;
 if (signal != SIGTRAP)
 send_signal = signal;
 }
 else if (WIFEXITED(status))
 {
 os << "Exit(" << WEXITSTATUS(status) << ")"
 << std::endl;
 }
 else if (WIFSIGNALED(status))
 {
 os << "Terminated: signal "
 << WTERMSIG(status)
 << std::endl;
 }
 else if (WIFCONTINUED(status))
 {
 os << "Continued" << std::endl;
 }
 else
 {
 os << "Unexpected status: " << status
 << std::endl;
 }
 ptrace(PTRACE_CONT, pid, 0, send_signal);
 }
 if (errno != ECHILD)
 {
 throw make_error("wait");
 }
}

Listing 4
NOV 2012 | | 5{cvu}

 $./MultiPtrace /bin/sh
 $./BadProgram /dev/null noexist
 Event: 1
 Signal: 19
 Signal: 5
 ** opening /dev/null
 ** opening noexist
 Signal: 11
 Terminated: signal 11
 Signal: 17
 Segmentation fault (core dumped)
 $ ^D
 Exit(0)

System calls
The next step is to look at tracing system calls; which is enabled by simply
replacing PTRACE_CONT with PTRACE_SYSCALL in the main debugging
loop. Having done this we get two more events on every system call; one
event on entry to the system call and one event just before exiting the
system call. The event returned is a ‘stopped’ event with the stop signal
value SIGTRAP. This is the same value used for a software breakpoint
event and while this makes sense of what is occurring it can mean
additional work by the debugger to differentiate between the two cases.

This overloading of the SIGTRAP processing is unnecessary – a distinct
value for a system call event would have been a cleaner design. (Those who
read the earlier article on the Windows debugging interface may recall a
similar overload with the so-called ‘initial breakpoint’ event sent to notify
the debugger that the initialisation has completed.) Some later versions of
ptrace now support an additional option – PTRACE_O_TRACESYSGOOD
– which, when set, changes the signal value by ORing it with 0x80 and
hence removes the ambiguity. Prior to this option (and for systems not

supporting it) you normally disambiguate the two cases by calling ptrace
with the PTRACE_GETSIGINFO argument to return information about the
underlying signal – the returned value of si_code will be SIGTRAP for
the system call entry/exit case.

Now we can expand a little further on the initial SIGTRAP event we saw
in the TrivialPtrace example: this is actually a system call exit event
for the execve call in the child process.

The events generated on entry and exit to a system call are distinguished
by the value of the register used for the return code, which contains a
special value of -ENOSYS on entry and the actual return value or error code
on exit. Note that this technique works as no system call returns -ENOSYS
on failure.

This information is not provided by the ptrace event itself, the debugger
has to make an additional call using the PTRACE_GETREGS function code
to read the register values for the target process. We then have to get down
to the specifics of the architecture – which register will contain the return
code we are we looking at? The documentation for each hardware platform
includes a section on calling conventions and the system calling
convention gives us the information we are looking for.

System call conventions on x86 and x64

The Linux convention on Intel x86 hardware is to use the eax register for
the system call number on entry and the return code on exit. The arguments
to the system call (up to six arguments depending on the call) are passed
in ebx, ecx, edx, esi, edi and ebp.

As described above, when a syscall entry event occurs the eax value is
overwritten by the special value -ENOSYS. The ptrace interface
therefore saves the original eax value in orig_eax so the debugger still
has access to the system call number. It also does this on the system call
exit case so the debugger knows which system call is exiting.

The basic logic looks something like Listing 7.

The actual handling of each function will obviously involve decoding the
actual value of each of the valid arguments to the function call.

For the x64 API the rax register replaces the eax register and the system
call arguments are passed in rdi, rsi, rdx, r10, r8 and r9 with the
original system call number returned in orig_rax. The resultant code is
very similar to that shown in Listing 7 for the x86 case.

Turning a register value into a file name
The process tracer program in this article is interested in just two system
calls: open and close. The corresponding system call numbers are
__NR_open and __NR_close.

The close call takes a single argument, the file handle to close, and so
displaying this is easy. The open call is more complicated as we are
interested in the first argument ("const char * path") and this
argument is the address of the character string.

The return code from the system call is negative on error and the error code
is the negation of this number. It can be displayed as a text string by using

if (WIFSTOPPED(status))
{
 send_signal = OnStop(WSTOPSIG(status),
 status >> 16);
}Li

st
in

g
5

struct user_regs_struct regs;
if (ptrace(PTRACE_GETREGS, pid, 0, ®s) == -1)
{
 throw make_error("ptrace(PTRACE_GETREGS)");
}
int const rc = regs.eax;
int const func = regs.orig_eax;
if (rc == -ENOSYS)
{
 OnCallEntry(func, regs.ebx, regs.ecx, ...);
}
else
{
 OnCallExit(func, rc);
}

Listing 7

int MultiPtrace::OnStop(int signal, int event)
{
 if (!initialised)
 {
 initialised = true;
 long const options =
 PTRACE_O_TRACEFORK |
 PTRACE_O_TRACEVFORK |
 PTRACE_O_TRACECLONE;
 if (ptrace(PTRACE_SETOPTIONS, pid,
 0, options) == -1)
 {
 throw make_error("PTRACE_SETOPTIONS");
 }
 return 0;
 }

 if (event)
 {
 os << "Event: " << event << std::endl;
 }
 else
 {
 os << "Signal: " << signal << std::endl;
 }
 return (signal == SIGTRAP || signal == SIGSTOP)
 ? 0 : signal;
}

Li
st

in
g

6

6 | | NOV 2012{cvu}

std::string ProcessTracer::readString(long addr)
{
 std::string result; std::ostringstream os;
 os << "/proc/" << pid << "/mem";
 std::ifstream mem(os.str().c_str(),
 std::ios::binary);
 mem.exceptions(std::ios::failbit);
 mem.seekg((std::streampos)addr);
 std::getline(mem, result, '\0');
 return result;
}

Listing 9

the standard strerror() function. (This is a slight simplification: only
‘small’ negative numbers indicate an error.)

We need to invoke ptrace again to read the string, this time using the
PTRACE_PEEKDATA function code. This function can be slightly
awkward to use as it only provides access to memory one word at a time.

In order to read a NUL-terminated string we must bear in mind that the start
of the string may not be aligned on a word boundary, so we may need to
read (and ignore) a few bytes before the string starts. The algorithm then
reads words one at a time and processes characters from each word until
the terminating null is located.

Listing 8 is an implementation of this algorithm.

A further difficulty with the access mechanism occurs when reading
arbitrary data (this issue doesn’t occur when reading printable character
strings) as the return code of -1 may be caused by an error reading from
the target or by reading the value of -1 from the target process. The only
way to differentiate between these two cases is to set errno to zero before
making the call and examine its value afterwards: it will still be zero for
successful completion and the error number on failure.

This is another place where the original design of ptrace is showing signs
of age. The mechanism is unwieldy to use and causes performance

problems when reading larger data structures as each word of memory read
involves a separate system call.

Many versions of Unix now provide other ways to access memory from
another process. In Linux we can make use of the /proc pseudo-
filesystem to access the memory of the target process using the filesystem
API to read /proc/pid/mem for the target process id.

Listing 9 is the same method reimplemented in terms of this filesystem.

In production code it is likely that the open file stream would be cached
for performance.

Extending process tracer
We have now completed the implementation of the simple process tracer
demonstrated at the beginning of the article. The basic framework is in
place to handle the debug events generated by the child process(es) and
thread(s) and we have looked at how to access data in the target process.

The standard system tool strace performs all this, and more, and for most
of the process tracing needs you might have this is likely to be the right
solution! It is already configured to understand and display the various
system call argument types and has a range of options available.

However, there are times when a more specific tool is required and
techniques like the ones described in this article can be used to implement
such tools.

Conclusion
I have covered only the basics of a call tracer in this article and there is
obviously a lot more that must be added to write a proper interactive
debugger. However I hope that the overview of the debug API that I have
presented here has given you some understanding of the bare bones of the
interaction between the debugger and the target; and some sympathy for
the complexity of the task involved in providing a tool such as gdb or
strace. 

Acknowledgements
Many thanks to Irfan Butt for reviewing this article and correcting a
number of mistakes.

Source code
The full source code for this article can be found at:
http://www.howzatt.demon.co.uk/articles/LinuxProcessTracer.zip

std::string ProcessTracer::readString(long addr)
{
 std::string result;
 int offset = addr % sizeof(long);
 char *peekAddr = (char *)addr - offset;
 // Loop round to find the end of the string
 bool stringFound = false;
 do
 {
 long const peekWord =
 ptrace(PTRACE_PEEKDATA, pid,
 peekAddr, NULL);
 if (-1 == peekWord)
 {
 throw make_error
 ("ptrace(PTRACE_PEEKDATA)");
 }
 char const * const tmpString =
 (char const *)&peekWord;
 for (unsigned int i = offset;
 i != sizeof(long); i++)
 {
 if (tmpString[i] == '\0')
 {
 stringFound = true;
 break;
 }
 result.push_back(tmpString[i]);
 }
 peekAddr += sizeof(long);
 offset = 0;
 } while (!stringFound);
 return result;
}

Li
st

in
g

8

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines. We
need articles at all levels of software development experience; you don’t have to write about rocket science or brain surgery.

What do you have to contribute?

 What are you doing right now?

 What technology are you using?

 What did you just explain to someone?

 What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
NOV 2012 | | 7{cvu}

http://www.howzatt.demon.co.uk/articles/LinuxProcessTracer.zip

Introducing Some Order # 3
Functional Decomposition
Richard Polton looks at more functional

techniques for reducing duplication.

ue of the most-frequently occuring meta-patterns (that’s a word I use
to describe a pattern of patterns ;-) that I have come across in my most
recent position is the imperative loop. Generally speaking, the loop

will have a simple body, possibly containing some decision branches, and
almost always will result in a value of some sort. For example,

 var l = new List<U>();
 for(int i=0; i<myContainer.Count; ++i)
 {
 l.Add(Convert.ToTypeU(myContainer[i]));
 }
 return l;

(and yes, I know this could be done in a foreach statement as well, but
believe it or not, this was how it was).

This commonly occuring pattern is a map, in that it takes an input
container, myContainer in this case, and transforms each element into
another type before inserting it into a new container, l. Using .NET2.0,
we have to create our own map function, but of course with the
introduction of all that wonderful LINQ-iness, Microsoft have kindly
removed most of the hand-cranking for us. But let’s stick to .NET2.0 for
now – it’s easier to see how things work.

So, with .NET2.0, we declare a delegate and a function:

 public delegate B map_fn<A,B>(A a);
 public static List map<A,B>(map_fn<A,B> f,
 List<A> input)

In case you are wondering, this parameter ordering style is often associated
with functional programming, and we will use these functions later on to
demonstrate functional composition. So, we have:

 public static List map<A,B>(map_fn<A,B> f,
 IEnumerable<A> input)
 {
 List r = new List();
 foreach(A a in input) r.Add(f(a));
 return r;
 }

Lovely! Now we can rewrite our original code as

 return map(
 delegate(T t)
 {
 return Convert.ToTypeU(t);
 },
 myContainer);

So, armed thusly we can strike out across the codebase replacing the
numerous transformations with our map function. However, while this is
easy to say it quickly becomes less easy to do. One reason for that is the

dreaded predicate. Oh woe! someone sneaked in a little if statement into
our clean loop (see Listing 1). What to do?

Lackaday! Now how should we progress? We cannot use the map function
because that is a 1-to-1 transformation, meaning that one element in the
result set is produced for every element in the input set. What we need is
a filter. So, again, define a delegate and a function., as in Listing 2.

And so now we can rewrite the loop in terms of map and filter.

 T limit;
 return
 map(delegate(T t) {return Convert.ToTypeU(t);},
 filter(delegate(T t) {return t<=limit;},
 myContainer));

Hmm, well, it does what we want but it’s not very efficient is it? Having
to loop through the input container twice is not good at all (although it is
more in keeping with C#’s long-windedness). What we need now is some
mechanism which allows us to present each individual element in the input
container to both the filter and the map at once. The simplest, and most
C#, way of doing this is to return IEnumerable from the map and

O

RICHARD POLTON
Richard has enjoyed functional programming ever
since discovering SICP and feels heartened that
programming languages are evolving back to LISP.
He likes ‘making it better’ and enjoys riding his bike
when he can’t. He can be contacted at
richard.polton@shaftesbury.me

T limit; // imagine it has a value, please ;-)
var l = new List<U>();
for(int i=0; i<myContainer.Count; ++i)
{
 if(myContainer[i] <= limit)
 l.Add(Convert.ToTypeU(myContainer[i]));
}
return l;

Listing 1

public delegate bool filter_fn<A>(A a);
public static List<A> filter<A>(filter_fn<A> f,
 IEnumerable<A> input)
{
 List<A> r = new List<A>();
 foreach(A a in input)
 if(f(a)) r.Add(a);
 return r;
}

Listing 2

public static
 IEnumerable map<A,B>(map_fn<A,B> f,
 IEnumerable<A> input)
{
 foreach(A a in input) yield return f(a);
}

public static
 Enumerable<A> filter<A>(filter_fn<A> f,
 Enumerable<A> input)
{
 foreach(A a in input)
 if(f(a)) yield return a;
}

Listing 3
8 | | NOV 2012{cvu}

filter functions instead of List. This means that the output container
will be produced as it is consumed. So, rewrite map and filter as shown
in Listing 3.

Now, with these new definitions for map and filter, the input container
is only traversed once. Bonus! Albeit with the downside of having to
explicitly force the IEnumerable to a list with a constructor call or
similar, eg

 return new List<U>(
 map(delegate(T t) {return Convert.ToTypeU(t);},
 filter(delegate(T t) { return t<=limit; },
 myContainer)));

Of course, we are not required to build a list. We could change the calling
code to consume an IEnumerable instead, remembering that such a
collection can only be traversed once, but for the purposes of this article
we are making the minimum drop-in changes.

Now we have a one-liner which describes our pattern, a filtered
transformation, and we have implemented it throughout the codebase.
Everything is hunky-dory and looking great, but we have this nagging
feeling that we could improve this, and indeed we could. There is a
composite pattern called ‘choose’ that we can implement which rolls the
filter and the map into a single function (Listing 4).

In this way, it is clear that the input container is only traversed once. Now
we can rewrite our original looping code as

 return choose<T,U>(
 delegate(T t)
 {
 return t<=limit ? new OptionType<U>
 (Convert.ToTypeU(t)) : OptionType<U>.None;
 },
 myContainer);

We now feel quite pleased with ourselves, having trimmed much
duplication from our codebase and replaced it with standard patterns. One
might very well ask what comes next and how can we build upon this?
Another common pattern which is related to the above is the find pattern.
The behaviour of this pattern should come as no great surprise; it is used
to identify the first element in a container which satisfies some predicate.
Imagine we find code like this:

 T r;
 foreach(T a in myContainer)
 {
 if(a>limit)
 {
 r=a;
 break;
 }
 }

Clearly, if no element of myContainer is greater than the limit then r
will be null otherwise r will contain the first element which is greater than

the limit. While less common in our codebase, this did occur reasonably
frequently. Before creating a new function find which replaces this
pattern, we need to decide how to implement the failure scenario, that is
the case where no element exists in the container that satisfies the
predicate . We choose to throw a custom except ion of type
KeyNotFoundException (in fact, following from the F# practice)
although we could have returned an OptionType<T>.Null [1] as long
as our input container could be guaranteed not to contain that element.

We have already defined a filter_fn which we shall reuse here.

 public class KeyNotFoundException : Exception;
 public static A find<A>(filter_fn<A> f,
 IEnumerable<A> input)
 {
 foreach(A a in input)
 if(f(a)) return a;
 throw new KeyNotFoundExpception();
 }

Now the example code can be rewritten using the find function as

 T r;
 try
 {
 r = find(delegate(T t) { return t>limit; },
 myContainer);
 }
 catch(KeyNotFoundExpception)
 {
 }

Not ideal, because it’s not declarative, but it’s better. We can of course
improve on this but that can wait for another time. Now we have ‘find’,
we can trawl the codebase looking for instances of this pattern and replace
them. In the same manner as we did with ‘choose’ earlier, we can replace
the combined ‘map’ and ‘find’ with a single composite pattern ‘pick’. That
is, if we have

 U r;
 foreach(T a in myContainer)
 {
 if(a>limit)
 {
 r=new U(a);
 break;
 }
 }

we define

 public static B pick<A, B>(choose_fn<A, B> f,
 IEnumerable<A> input) where B : class
 {
 foreach (A a in input)
 {
 OptionType intermediate = f(a);
 if (!intermediate.None)
 return intermediate.Some;
 }
 throw new KeyNotFoundException();
 }

and so we can write

 U r;
 try
 {
 r = pick(delegate(T t)
 { return t>limit ? new OptionType<U>(new U(t))
 : OptionType<U>.Null;}, myContainer);
 }
 catch(KeyNotFoundException)
 {
 }

public delegate OptionType choose_fn<A,
 B>(A a) where B:class;

public static IEnumerable
 choose<A,B>(choose_fn<A> f,
 IEnumerable<A> input) where B:class
{
 foreach(A a in input)
 {
 OptionType intermediate = f(a);
 if(!intermediate.None) yield
 return intermediate.Some;
 }
}

Li
st

in
g

4

NOV 2012 | | 9{cvu}

Gah! This try ... catch is annoying, isn’t it? Let’s do something about
it now. We can’t wait forever for high-quality code! Analysing the
structure we can see that try ... catch should take two functions as
parameters, each of them returning a type U, in our examples. So, we write
Listing 5 and now we can replace the pick example with Listing 6.

At this point, we have converted large swathes of repetitive code into a
functional style and in so doing will almost certainly have observed
marked similarities between chunks of code, thus further enhancing
quality by removing repetition (the Evil Copy-and-Paste demon certainly
is tempting). There are two more patterns which are of particular use
although there are several more which have not been required here. These
last two patterns are referred to by the names ‘fold’ and ‘partition’. Let us
start with ‘fold’.

The ‘fold’ is an accumulation operation. That is to say, the fold function
is given an initial state and an accumulator function, and returns the value
after applying the accumulator over each element in the container in turn.
One example that occurs frequently in this codebase was the calculation
of the sum of certain record fields. For example, we find

 double tot=0.0;
 foreach(Record r in myRecords)
 {
 tot+=r.Value;
 }
 return tot;

and

 DateTime dt = DateTime.MinDate;
 foreach(Record r in myRecords)
 {
 if(r.Date>dt) dt=r.Date;
 }
 return dt;

The pattern to be recognised here is the iteration over the sequence while
making use of a previously-calculated value. Let us create a ‘fold’ function
(Listing 7).

Now, using this function we can rewrite the two examples above as

 return fold(delegate(double tot, Record r) {
 return tot+r.Value; }, 0.0, myRecords);

and

 return fold(delegate(DateTime dt, Record r) {
 return r.Date > dt ? r.Date : dt; },
 DateTime.MinDate, myRecords);

In a similar manner, the ‘fold’ function can be used to find the minimum
of a sequence and the count, as well as slightly more complex cases like
compiling a string from a list of integers.

The final pattern to be explored here is the partition. This has not been
observed often in this codebase but when it occurs it is invariably mashed
in with some other pattern and so the extraction of the two can be tricky.
Obviously, YMMV. Anyway, the partition function does exactly what it
appears to do, that is, given a predicate and an input sequence, it returns
two sequences in which the elements in the first satisfy the predicate and
the elements in the second do not. Given the definition of tuple2 in
Listing 8, we can implement partition as shown in Listing 9 and now
we can split our sequence of records, for example, into two. One sequence
should hold those elements which are less than a date and the remainder
should be in the second sequence.

 DateTime limit;
 tuple2<List<Record>,List<Record>>
 val = partition(delegate(Record r)
 { return r.Date < limit; }, myRecords);

public struct tuple2<A, B>
{
 public tuple2(A a, B b)
 {
 field1 = a;
 field2 = b;
 }
 public A field1;
 public B field2;
}

Listing 8

public static tuple2<List<A>,
 List<A>> partition<A>
 (filter_fn<A> f, IEnumerable<A> input)
 {
 var left = new List<A>();
 var right = new List<A>();
 foreach (A a in input)
 if (f(a))
 left.Add(a);
 else
 right.Add(a);
 return new tuple2<List<A>,
 List<A>>(left, right);
}

Listing 9

public delegate A try_fn<A>();

public static A try_<A,Ex>(try_fn<A> try_f,
 try_fn<A> catch_f) where Ex:Exception
{
 try
 {
 return try_f();
 }
 catch(Ex)
 {
 return catch_f();
 }
}

Li
st

in
g

5

U r = try_<U,KeyNotFoundException>(
 delegate()
 {
 return pick(delegate(T t)
 {
 return t>limit ? new OptionType<U>
 (new U(t)) : OptionType<U>.Null;
 },
 myContainer);
 },
 delegate()
 {
 return new U();
 });

Li
st

in
g

6

public delegate B fold_fn<A,B>(B state, A a);
public static B fold<A,B>(fold_fn<A,B> f,
 B initialState, IEnumerable<A> input)
{
 B state = initialState;
 foreach(A a in input)
 {
 state = f(state, a);
 }
 return state;
}

Listing 7
10 | | NOV 2012{cvu}

Functional composition in C#
Now that we have some functions to perform common tasks, it’s time to
talk about another aspect of functional programming as applied to C#;
functional composition. Coming from a C++ background with a pre-
conceived idea of how to do this we were quickly disabused of the notion
by the syntactic constraints. But first, before launching into a technical
explanation of how functional composition was implemented, let us briefly
describe what it is and why we want to do it, so to speak.

So, the mighty Wikipedia [2] gives this for mathematical function
composition:

In mathematics, function composition is the application of one function
to the results of another. For instance, the functions f: X  Y and
g: Y  Z can be composed by computing the output of g when it has
an argument of f(x) instead of x. Intuitively, if z is a function g of y and
y is a function f of x, then z is a function of x.

and, from a different link [3], this for programmatic functional
composition:

In computer science, function composition (not to be confused with
object composition) is an act or mechanism to combine simple
functions to build more complicated ones. Like the usual composition
of functions in mathematics, the result of each function is passed as
the argument of the next, and the result of the last one is the result of
the whole.

Programmers frequently apply functions to results of other functions,
and all programming languages allow it. In some cases, the
composition of functions is interesting as a function in its own right, to
be used later. Such a function can always be defined but languages
with first-class functions make it easier.

The ability to easily compose functions encourages factoring
(breaking apart) functions for maintainability and code reuse. More
generally, big systems might be built by composing whole programs.

So, with these definitions in mind, what we would like to be able to write
is something akin to:

 t > (f >> g)

where > should be interpreted as an operator which takes a function on the
right-hand side and its argument(s) on the left-hand side, in other words it
reverses the arguments; and >> should be interpreted as the functional
composition operator that returns the output of g given that the output of
f is passed as the input to g. So, as a first step, let us define two functions
fn1 and fn2 as

 public static R1 fn1(T t);
 public static R2 fn2(R1 r);

C# gives us the delegate type which is analogous to a strongly-typed C
function pointer. This means that we can create a pair of delegates

 public delegate R1 dfn1(T t);
 public delegate R2 dfn2(R1 r);

 public static dfn1 fn1_d = fn1;
 public static dfn2 fn2_d = fn2;

Now we have the components but how can we combine them? Ideally, we
would like to be able to extend the delegate type by adding a pair of
operators, namely > and >>. Unfortunately, C# 2.0 does not allow this
because, for some unknown (to the author) reason, the delegate type is
neither a struct nor a class and so cannot be extended. Hmmm ... So, what
should we do? The default response is to add a layer of indirection and, in
this case, we will create a class which mimics the behaviour of a
delegate and encapsulates the actual delegate we wish to access.

Create a class called Func and store within it a delegate, as shown in
Listing 10.

So far so good. Now we can create a Func object and initialise it with the
delegate of our choosing, like this:

 Func<T,R1> fn1_f = new Func<T,R1>(fn1_d);
 Func<T,R1> fn2_f = new Func<R1,R2>(fn2_d);

We are now in a position to extend the Func class further to access the
underlying delegate. For now, let us define a function act which
executes the underlying function.

 public RetType act(A a)
 {
 return _f(a);
 }

Okay. So now we can write

 T t = new T();
 R2 r2 = fn2_f.act(fn1_f.act(t));

which is close; it’s composition of a sort. What we need to do next is to
reverse the order of the components in the declaration. As illustrated
above, we already have an idea of how we wish to represent the composed
functions so it is necessary to consult the C# language specification.
Taking a look through the MDSN library [4], we see that we cannot create
new operators! Boo hiss! Additionally, if we implement the > operator we
are required to implement the < operator as well! This presents us with two
new problems but, with a little thought, it will be possible to work around
them.

In the case of the proposed composition operator, we suggest a new
function be added to the Func interface. Let us call this new function
‘Then’. We suggest that this function would transform the goal into

 t > f.Then(g)

which, while not ideal, still captures the meaning in a succinct and clear
manner. The only real issue we have with this modified solution is the
manner in which multiple functions are composed together. That is, if we
want to write

 t > (f >> g >> h)

then we have to write

 t > f.Then(g).Then(h)

This by itself is fine, and means the same thing as

 t > f.Then(g.Then(h))

which we prefer not to use. So, having modified our desired goal to be the
creation of

 t > f.Then(g)

let us define ‘Then’. In class Func<A,RetType> define

 public Func<A,C> Then(Func<RetType,C> g)
 {
 return new Func<A,C>(delegate(A a)
 { return g.act(act(a)); });
 }

Now we can define a composed function fc, say, as

 Func<A,C> fc = f.Then(g);

Progress! The final step is the > operator. As previously discussed this is
complicated by the requirement of the C# language specification that the
opposite operator, <, is also declared. While the < operator could be used
to preserve the usual order of the function arguments (which is how it is
used in F#), unfortunately the C# language spec also requires that both
operators are implemented using the same signature! Doh!

public class Func<A,RetType>
{
 private System.Func<A,RetType> _f;
 public Func(System.Func<A,RetType> f)
 {
 _f = f;
 }
}

Listing 10
NOV 2012 | | 11{cvu}

This is an issue which we decide to tackle by virtue of throwing a
NotImplementedException. There seems to be little else we can do
to avoid this and so commenting and a run-time failure is the best we can
achieve at present. Therefore, the > and < operators are implemented in
class Func<A, RetType> as shown in Listing 11.

And now we can finally write code in the desired manner, that is

 t > f.Then(g)

Note that we could also have written this equivalently as

 t > f > g

And so, having created the structure an example seems like a good idea.
The example we will present takes a fairly common task, that of a
command-line parser which distinguishes between mandatory and
optional arguments, and transforms it into a reusable pattern.

In Listing 12 is the somewhat long-winded code as it existed prior to
transformation. Imagine that ParseCommandLine is a function which
accepts a string array and returns a dictionary of strings, that
Functional.map is a 1-to-1 transformation operation (as described
above) and that StringUtils.Split is a safe wrapper around
string.Split.

As can be seen from the code, there is a lot of repetition. We aim to reduce,
or remove, this using functional composition. The first task is to recognise
that there are two types of command line parameters: mandatory and
optional. So we create two dictionaries, one for each type, and name them
appropriately. As we are using .NET2.0 here, we have created some utility
functions for dictionary and list creation. We have toDict which takes
an array and returns a Dictionary, toList which takes an array and
returns a List, init which creates a list using a generator function and
Augment, which concatenates an element and a container of the same
type. Listing 13 shows the transformed code using functional composition.

Clearly, in Listing 13, we have included some generally applicable
functions into the class definition but, in the real world, you would expect
to see SplitAndPopulateArguments , the two instances of
SplitArgsInto and Validate in some public static utility class.

In Listing 13, ParseCommandLine is the function of interest and the line
of particular interest is

 bool result = args > SplitArgsInto(mandatoryArgs,
 optionalArgs).Then(Validate(mandatoryArgs));

This is where all the magic happens; the rest of it is setting up and tearing
down, if you like. This is the pattern that we reuse throughout our codebase.

Currying
We have demonstrated composition of functions but one thing that went
unsaid was a concept referred to as currying. Now it is important to point
out that this has nothing to do with the UK’s national dish but instead is
concerned with partial function calls. That is to say, if we have a function

f which expects two parameters x and y then f(x) is a curried call to f.
See Wikipedia’s entry on ‘currying’ [5] by way of reference.

If we momentarily forget C# syntactic issues, we could write

 R1 f(T1 t1, T2 t2) { return new R1(t1,t2); }
 T1 t1 = new T1();
 <some type> f1 = f(t1);
 T2 t2 = new T2();
 R1 r1 = f1(t2);

and the final line would be the point at which 'f' is actually called. At the
start of this article when we discussed meta-functions, the ordering of
function arguments was mentioned. Taking 'map' for example, we expect
to present the transformation function as the first argument and the
container over which the transformation will be applied as the second
argument. This is for currying purposes. For example, in C#, suppose we
can curry functions and suppose we have

 IEnumerable map<A,B>(Func<A,B> f,
 IEnumerable<A> input)

Then, if we have defined the > operator as above, we can write

 IEnumerable<double> d =
 new double[]{1.2,2.1,3.7,4.8,5.0}
 > map(Math.Floor);

Clearly, in C# as it stands this is not possible but, as illustrated implicitly
in the command-line parsing example above, with a little work it can be
achieved. In order to make this example work in C#, define a second
function also called map as

 Func<IEnumerable<A>,IEnumerable>
 map<A,B>(Func<A,B> f)
 {
 return new Func<IEnumerable<A>,IEnumerable>
 (delegate (IEnumerable<A> input)
 { return map(f, input); });
 }

If we create the analogous ‘filter’ function we can re-implement the
‘choose’ function in terms of ‘map’ and ‘filter’. ‘choose’ is equivalent to
filter(predicate).Then(map(transformation)) as long as
we ensure that the input sequence is traversed only once.

Composition in action
Having presented a simple example and demonstrated the neatness and
reusability of the composition pattern, you are doubtless wondering how
this might be applicable in other areas. One area that is of interest to the
author, which shall be very quickly illustrated here, is combinations.

In the example in Listing 14, there is an ordered set of arrays of functions,
each array containing functions whose input type is the output type of the
functions in the prior array. For example, suppose we have Listing 14, then
output is a list of 432 doubles which have been obtained by composing all
of the functions in all of the allowable combinations. Of course this code
can be reduced further using .NET3.5 syntax but we elect to leave it as it
is for ease of comprehension. Equally obviously the arrays of functions do
not have to be fixed, they could be dynamically generated. The possibilities
are endless :-) 

References
[1] See article in C Vu 24.4
[2] Wikipedia: http://en.wikipedia.org/wiki/Function_composition
[3] Wikipedia: http://en.wikipedia.org/wiki/

Function_composition_%28computer_science%29
[4] MSDN: http://msdn.microsoft.com/en-us/library/ms228593
[5] Wikipedia: http://en.wikipedia.org/wiki/Currying

public static RetType operator >(A a, Func<A,
 RetType> f)
{
 return f.act(a);
}

/// <summary>Not implemented because it makes no
sense. C# compiler requires the matching operator
but logic does not</summary>
public static RetType operator <(A a, Func<A,
 RetType> f)
{
 throw new NotImplementedException();
}

Li
st

in
g

11
12 | | NOV 2012{cvu}

http://en.wikipedia.org/wiki/Function_composition_%28computer_science%29
http://en.wikipedia.org/wiki/Function_composition_%28computer_science%29
http://msdn.microsoft.com/en-us/library/ms228593
http://en.wikipedia.org/wiki/Currying

NOV 2012 | | 13{cvu}

class ArgumentParser
{
 private const char _separator = ',';
 public static Arguments
 ParseCommandLine(string[] args)
 {
 string statusString = string.Empty;
 string folioString = string.Empty;
 string allotmentsString = string.Empty;
 string entitiesString = string.Empty;
 string counterpartiesString = string.Empty;
 string boStatusString = string.Empty;
 string businessEventsString = string.Empty;
 string acceptEventString = "291";
 string dbAccessString =
 "user/password@testServer";

 try
 {
 foreach (KeyValuePair<string,
 string> p in ParseCommandLine(args))
 {
 // Skip leading "-"
 string key = p.Key.StartsWith("-")
 ? p.Key.Substring(1) : p.Key;
 string value = p.Value;

 switch (key.ToLower())
 {
 case "status":
 statusString = value;
 break;
 case "folios":
 folioString = value;
 break;
 case "allotments":
 allotmentsString = value;
 break;
 case "businessevents":
 businessEventsString = value;
 break;
 case "entities":
 entitiesString = value;
 break;
 case "counterparties":
 counterpartiesString = value;
 break;
 case "bocommentstring":
 boStatusString = value;
 break;
 case "kernelevent":
 acceptEventString = value;
 break;
 case "dbdetails":
 dbAccessString = value;
 break;
 default:
 throw new ArgumentException
 ("Wrong commandline parameter :",
 key);
 }
 }
 List<int> statusList =
 SplitAndPopulateArguments(statusString);
 List<int> portfolioList =
 SplitAndPopulateArguments(folioString);
 List<int> allotmentList =
 SplitAndPopulateArguments
 (allotmentsString);

 List<int> businessEventsList =
 SplitAndPopulateArguments
 (businessEventsString);
 List<int> entityList =
 SplitAndPopulateArguments
 (entitiesString);
 List<int> counterpartyList =
 SplitAndPopulateArguments
 (counterpartiesString);

 Arguments arguments =
 new Arguments(statusList,
 portfolioList,
 allotmentList,
 businessEventsList,
 entityList,
 counterpartyList,
 boStatusString,
 acceptEventString,
 dbAccessString);
 SanityCheckArguments(arguments);
 return arguments;
 }

 catch(Exception ex)
 {
 throw new ArgumentException(ex.Message);
 }
 }

 private static List<int>
 SplitAndPopulateArguments
 (string toSplit)
 {
 return string.IsNullOrEmpty(toSplit)
 ? new List<int>()
 : Functional.map<string,int>
 (delegate(string param)
 { return int.Parse(param); },
 StringUtils.Split(toSplit,_separator));
 }

 // This method checks some mandatory fields are
 // populated otherwise it throws an
 // ArgumentException message
 private static void
 SanityCheckArguments(Arguments arguments)
 {
 if (arguments.GetStatuses().Count <= 0)
 {
 throw new ArgumentException
 ("The user must provide at least one
 valid status");
 }
 if (arguments.GetPortfolios().Count <= 0)
 {
 throw new ArgumentException
 ("The user must provide at least one
 valid portfolio id");
 }
 if
 (arguments.GetAcceptEventStr().Length == 0)
 {
 throw new ArgumentException
 ("BO event is cannot be null");
 }
 }
}

Li
st

in
g

12
Listing 12 (cont’d)

14 | | NOV 2012{cvu}

class ArgumentParser
{
 public static Arguments ParseCommandLine
 (string[] args)
 {
 const string defaultEvent = "291";

 try
 {
 Dictionary<string, string> mandatoryArgs =
 Functional.array.toDict<string>
 (new string[] {"status", "folios",
 "dbdetails"});

 Dictionary<string, string> optionalArgs =
 Functional.array.toDict<string,
 string>(new string[] {"kernelevent",
 "allotments", "businessevents",
 "entities", "counterparties",
 "bocommentstring"},

 Functional.seq.toList
 (Enumerators.Augment(defaultEvent,
 Functional.init(7, delegate(int i) {
 return string.Empty; }))));

 bool result = args > SplitArgsInto
 (mandatoryArgs, optionalArgs).
 Then(Validate(mandatoryArgs));

 const char sep = ',';

 return new Arguments
 SplitAndPopulateArguments(sep,
 mandatoryArgs["status"]),
 SplitAndPopulateArguments(sep,
 mandatoryArgs["folios"]),
 SplitAndPopulateArguments(sep,
 optionalArgs["allotments"]),
 SplitAndPopulateArguments(sep,
 optionalArgs["businessevents"]),
 SplitAndPopulateArguments(sep,
 optionalArgs["entities"]),
 SplitAndPopulateArguments(sep,
 optionalArgs["counterparties"]),
 optionalArgs["bocommentstring"],
 optionalArgs["kernelevent"],
 mandatoryArgs["dbdetails"]);
 }
 catch(Exception ex)
 {
 throw new ArgumentException(ex.Message);
 }
 }

 public static List<int>
 SplitAndPopulateArguments
 (char separator, string toSplit)
 {
 return string.IsNullOrEmpty(toSplit)
 ? new List<int>()
 : Functional.map<string,int>
 (delegate(string param)
 { return int.Parse(param); },
 StringUtils.Split(toSplit, separator));
 }

Li
st

in
g

13 public static string SplitArgsInto
 (Dictionary<string, string> mandatory,
 Dictionary<string, string> optional,
 IEnumerable<string> args)
 {
 foreach (KeyValuePair<string,
 string> kv in ParseCommandLine
 (args.ToArray()))
 {
 string k = (kv.Key.StartsWith("-") ?
 kv.Key.Substring(1) : kv.Key).ToLower(),
 v = kv.Value;

 if (mandatory.ContainsKey(k))
 mandatory[k] = v;
 else if (optional.ContainsKey(k))
 optional[k] = v;
 else return "Unrecognised commandline
 parameter :" + kv.Key);
 }
 return string.Empty;
 }

 public static
 Functional.Func<IEnumerable<string>,
 string> SplitArgsInto
 (Dictionary<string, string> mandatory,
 Dictionary<string, string> optional)
 {
 return
 new Functional.Func<IEnumerable<string>,
 string>(delegate
 (IEnumerable<string> args)
 { return SplitArgsInto(mandatory,
 optional, args); });
 }

 public static
 Functional.Func<string, bool>
 Validate(Dictionary<string,
 string> mandatory)
 {
 return new Functional.Func<string,
 bool>(delegate (string result)
 {

 if (!string.IsNullOrEmpty(result))
 throw new ArgumentException(result);

 foreach (KeyValuePair<string,
 string> kv in Functional.filter(
 delegate (KeyValuePair<string,
 string> kv)
 {
 return string.IsNullOrEmpty(kv.Value);
 },
 mandatory))

 throw new ArgumentException("The user
 must provide a valid " + kv.Key);
 return true;
 });
 }
}

Listing 13 (cont’d)

NOV 2012 | | 15{cvu}

 using System.Math;

 Func<int,int> f1 = new Func<int,int>(delegate (int a) { return a+2; });
 Func<int,int> f2 = new Func<int,int>(delegate (int a) { return a-2; });
 Func<int,int> f3 = new Func<int,int>(delegate (int a) { return a*2; });
 Func<int,int> f4 = new Func<int,int>(delegate (int a) { return a/2; });

 Func<int,double> g1 = new Func<int,double>(delegate (int a) { return Sin(a); });
 Func<int,double> g2 = new Func<int,double>(delegate (int a) { return Asin(a); });
 Func<int,double> g3 = new Func<int,double>(delegate (int a) { return Cos(a); });
 Func<int,double> g4 = new Func<int,double>(delegate (int a) { return Acos(a); });
 Func<int,double> g5 = new Func<int,double>(delegate (int a) { return Tan(a); });
 Func<int,double> g6 = new Func<int,double>(delegate (int a) { return Atan(a); });

 Func<double,double> h1 = new Func<double,double>(delegate (double a) { return Sinh(a); });
 Func<double,double> h2 = new Func<double,double>(delegate (double a) { return Cosh(a); });
 Func<double,double> h3 = new Func<double,double>(delegate (double a) { return Tanh(a); });

 Func<int,int>[] arr1 = new Func<int,int>[] {f1, f2, f3, f4};
 Func<int,double>[] arr2 = new Func<int,double>[] {g1, g2, g3, g4, g5, g6};
 Func<double,double>[] arr3 = new Func<double,double>[] {h1, h2, h3};

 int[] initialiser = new int[]{1,3,6,-10,-12,0};

 List<double> output = new List<double>();
 foreach(int i in initialiser)
 foreach(Func<int,int> f in arr1)
 foreach(Func<int,double> g in arr2)
 foreach(Func<double,double> h in arr3)
 output.Add(i > f.Then(g).Then(h));

Listing 14

The Contradictions of Technical Recruitment
Huw Lloyd reflects on the interview process.

ig through the archives of any long-standing software development
forum and you’re likely to find discussions on how to conduct
interviews for the purposes of increasing the project headcount.

Usually the hirers will have a particular set of activities in mind that need
to be undertaken, and an appreciation for the technologies they would like
the candidates to use in fulfilling the work. From this the hirers formulate
a description of the candidates they wish to hire. There then follows,
provided the hirers are fortunate, a steady flow, or trickle, of candidates to
interview.

Interviewing the candidates presents a small but surmountable problem of
verifying their technical competence, which may be resolved by a
battery of test activities. If the candidate navigates the tests and they
presented themselves well, they may then find themselves on the
final shortlist for potential hiring or employment.

This is the usual scene for technical recruitment. To elaborate, here’s
a brief job description that an agent sent to me earlier today:

C# – Greenfield – Front Office – Contract – London – £650pd

I am looking for expert C# Developers to work on 2 Greenfield projects in
a leading city based investment bank:

1) Collateral Optimization Engine (Fixed Income) – Up to £650 – City
based – Expert front-to-back C# (not asp.net) – Must have Fixed
Income or Futures front office experience

2) FX Options eTrading – Up to £650 – City based – Expert server-side
C# (C++/Java) background – Must have investment banking/hedge
fund experience.

For completeness, here are some details the agent omitted:

1. The client is expecting you to work flat out for a year at least. Ideally
they will want to hold onto you until the next time they have to make
some sweeping budget cuts. Four years would be ‘solid’.

2. They want you to know everything about the technology that is
required and they want you to undertake any jobs they see as urgent.

3. Despite the greenfield adjective, you’re well aware that in this kind
of culture you don’t get to spend much time tinkering with design
options, or looking into space.

Now, there are different ways to read this brief description, which
constitutes the first gambit of an agent to acquire a fresh batch of CVs and
phone numbers for this and other, less glamorous, projects. Let’s assume
you’ve had some experience with this situation and that you qualify for
the role or, rather, that you can see a way of presenting yourself such that
you may be construed as qualifying. Let’s also assume you’re aware of
what ‘must have investment banking experience’ means. Here’s the
question: does this ‘usual scenario’ seem reasonable, where surely here the
case is quite a straightforward one of hours worked in a professional
manner for high pay, with anything extra being a bonus?

Irrespective of whether it seems reasonable, it is, I assure you, normal. In
the following sections, I present several interrelated contradictions to this
model of recruitment.

The contradictions of the expertise and development
The first and basic contradiction that manifests itself here, and elsewhere
(repeatedly), is development. How did you, the expert programmer,
acquire the skills that are being sought by this agent? What personality
traits were central to this activity? If amongst those traits you omitted
curiosity, learning, elegant design, insight and creativity, you’re going to
fall short of being a bona fide expert. If, on the other hand, you do exhibit
these, and other, traits, what kinds of impoverishing things are going to
happen during those years of high pay when these traits are denied
expression?

There are ways to resolve this contradiction, of course. Perhaps the best
way, given the all round naïvety, is to present yourself as an expert and
then proceed to become the expert on the job, this way there’ll be things
to learn. But this doesn’t seem to be what the hirers want, does it? On the
other hand, perhaps you have acquired all the syntactic and empirical
knowledge required for passing the technical tests, consider yourself an
expert, and other than being a bit confused as to why some people go on
about design, collaboration and something called concepts, you’ve no
reason to let reflection get in the way of rolling up your sleeves and getting
on with the work. Is this the expert that we want to unleash on core
company architecture?

Let’s go back to the original need to increase the project headcount and
contrast this with the source of our basic contradiction, which is
development. Ah, the Newtonian model of project management has
distracted us. What we really need is ‘to increase the numbers on the team,
such that all of the team members experience some improvement in their
working environment, with increased satisfaction in doing the work that
is required, whilst being presented with the kinds of challenges that meet
with their daily personal conduct, such that they will be working as
satisfied productive team members for several years, if not more’.

Great, progress. That seems reasonable as a first effort, but we’re in a hurry,
so let’s refine this so that an agent can recite it, and then do our interviews.

The contradictions of testing and integration
We have interviews to conduct! That means we’ll need those technical
tests from last time again, because without them, we might end up with
someone not suitable...

Technical tests... Not suitable...

Could it be?

Is it possible?

Could it be that those technical tests mean that we end up with someone
not suitable? Is that possible? Yes, it is perfectly possible. Here are some
reasons why.

Firstly, there may be significant inconsistencies amongst the interviewers.
It may well happen that an interviewee will score well with one technical
interviewer and not with another. One conclusion to draw from this is that
the interviewee knows how to solve one set of problems but not the kinds
of problems presented by the second interviewer. That’s one way of

D

HUW LLOYD
Huw Lloyd is a software developer, tutor and researcher
in educational psychology. He can be reached at
huw.softdesigns@gmail.com

Perhaps the best way is to present
yourself as an expert and then proceed

to become the expert on the job
16 | | NOV 2012{cvu}

looking at it. But what if these two interviewers have very different models
of what is required?

I recall an interview I attended for a large consultancy. Upon greeting me
the interviewer, a senior consultant with the firm, turned to the whiteboard,
drew four dots in a square formation on the board and said, “What’s this?”
I looked at him whilst weighing up my various answers, “four dots on a
whiteboard” was probably the best compromise between accuracy and
patronization. For this interviewer silence was evidently a sign of
ignorance, clearly I did not know what a scope operator was.

On another occasion, with a different consultancy, I was requested to
create and work through an entity relationship model for the interviewer,
who was ‘the client’. “When I am sitting down”, the interviewer said, “I
am the client.” He paused, looked around casually, stood up and said, “And
when I’m standing up, I am the interviewer.”

Clearly these two interviewers had elaborate models and expectations. The
question is whether the other interviewers agreed with them!

Note also, that these assumptions also relate to the other themes, for
instance as assertions of authority and seniority. In the case of the
interviewer as client, do you, as the interviewee and potentially more junior
employee, agree to pretend to pretend, whilst the interviewer gets to write
the script and pull the rug away when he so chooses, or do you confront
him?

A second condition of unsuitable testing, is that you’re testing (exploring
would be a better word) the wrong thing.

Let’s return to the developmental mode of consideration. The person we
are looking for is going to integrate into a team and the team as a whole
will hopefully work better once he or she is fully on board. How do we
determine whether someone is going to integrate well?

The standard approach to interview testing is to determine what the
candidate does and doesn’t know. Yet this will not tell you anything about
how the candidate works with others and whether he or she will integrate
with the team.

Furthermore you will be fooled if you believe that the ‘not knowing’ results
from such a test equate to ‘can’t do’. ‘Not knowing’, rather, means ‘can’t
do on their own in this situation’. Now this reach, of what can be done with
some assistance, is actually a variable property. Some people with a little
extra assistance can do a great deal more, whilst others may not gain the
same benefits – their knowledge and methods of activity may be closer to
the binary model that testing implies. This means that some of the
candidates who do very well at the technical tests are unlikely to integrate
very well on things that they don’t know how to do, and are more likely
to take particular, potentially divisive, strategies regarding the kinds of
‘collaboration’ they are used to. [1]

For some scientific researchers of psychology this notion of cognitive
reach contributes instrumentally to studying development. This potential
for development, mediated by appropriate instruction,
is often called the “zone of proximal development” [2].
Hence, how far you are able to reach in an unfamiliar
setting contributes to informing us beyond what in this
particular instance you’re able to do. It tells us that you
can listen carefully to others, that you can identify
what is not known, and that you can build upon
relevant information that is provided such as through auxiliary symbolic
models.

A second interesting aspect of cognitive reach is that it has reciprocity too.
If you are able to conduct assisted activities successfully far beyond your
usual current independent limits, it is likely that you will also be equipped

to provide the right kind of information and orientation to help others reach
beyond theirs. This sounds like exactly the kinds of skills we’d like for
team integration, doesn’t it?

More contradictions of expertise and development
Hirers and, by proxy, interviewers are often focused on short term project
needs and the competencies of the candidates, rather than on longer term
development. If, as an employer, you have an urgent need for a developer,
then you have something wrong with your enterprise, and it isn’t the
absence of developers.

There are plenty of competent developers who would like to work in, or
for, a place that honoured their own development. An urgent need for
developers is a clear message about the kind of culture being recruited for.
For example, I have seen many job descriptions labelled urgent that also
stipulate the necessity for a particular syntax or library as a ‘must have’.
If you’re looking to hire someone for many years, then what is a month to
gain a working memory familiarity with your particular syntax of choice
amortized over this duration?

This issue leads to a third and more profound point about cognitive reach,
which is that the things we are able to do with assistance foreshadow what
we will be able to do independently in the future. This is worth reflecting on.

Fundamentally the mindset for this kind of mutual support in reaching is
grounded in a helping mindset which is often anathema to a culture of
demonstrating cleverness and claims to authority.

The basis of the helping mindset is one of process; it’s about how we do
things rather than what, in particular, we do. If, as a helper, you are focused
on telling others what to do, you are acting as an expert [3]. If your only
mode of helping is telling others what to do, collaboration and team
integration are not going to be improving noticeably, because you’re not
providing a framework for others’ development.

In other words, to play the expert role without attending to development,
is actually tantamount to denying the opportunity for others to develop.
Instead, you are contributing to establishing a hierarchy of ‘knowledge
power’: a culture of silos, where experts are urgently required at high rates
of pay.

The contradictions of assessment and understanding
Interviewers often employ a school model of knowledge, which arguably
isn’t right for schools either.

One of the things many of us learnt at school is that the exams we took
and the means of passing them do not have that much to do with whether
a pupil understands or appreciates the subject. The exams are incidental
to genuine learning. Yet many people persist with the notion that tests
demonstrate whether the critical capacities for knowledge are present.
Whether they can repeat an answer, formulaically. Yet this unthinking
answer is as far from a real, conceptual, answer as correctly reciting the
syntax for an SQL statement is from an appreciation of normalisation. Such
a situation would be laughed at were it not for the state of the whole
industry and our wider culture.

More specifically on the theme of technical assessment, the interviewer
may not know the important difference between empirical concepts and
theoretic (or scientific) concepts [4]. It is quite possible that the primary
interviewer for these high paying jobs does not know the difference. In

such circumstances, they will be unable to discriminate between
superficial technical knowledge and technical insights that pave the way
towards orders of power of magnitude in improvements of software
capability.

The person we are looking for is
going to integrate into a team and the
team as a whole will hopefully work
better once he or she is fully on board

If your only mode of helping is telling others
what to do, collaboration and team integration

are not going to be improving noticeably
NOV 2012 | | 17{cvu}

Knowledge is certainly key to the successful activity of software
development. However, some of this knowledge is far more superficial and
subject to change, such as knowing the particular syntax for an API for
instance.

Other forms of knowledge are more efficacious: knowing when to probe
around to find out how others have dealt with a particular problem,
knowing how to partition a system or write a class, knowing the various
constraints and affordances of particular means of writing software such
as scripts or programming languages, knowing how the procedures and
standards of the organisation influence the choice of means of
implementation, knowing what it means to persist data or what impedance
mismatch is, or having a notion of the concurrency capacity of a particular
server instance. These forms of knowledge are
more significant than recalling the particular
syntax for a left outer join.[5]

This insightful knowledge is theoretic and, as has
been explained by noteworthy scholars such as
Dewey [6] and Piaget [7], these ideas cannot be
communicated directly. Rather they must be
constructed personally to appreciate them. This
means that the methods employed by a ‘non-
technical’ interviewer must be skewed. The
damage would be less if we recognised this.
However, many technically competent people
take the interview methods of the non-technical as de facto standard
practices, thereby discarding any means of attaining a high quality,
nuanced evaluation.

The contradictions of investment and value
What is the programmer’s attitude as she leaves her desk to interview a
candidate, in order to give some feedback to the hirers about the technical
competence of the candidate? Perhaps, if she has done some preparation,
she will have a portfolio of programming tasks or puzzles to solve. If she
has done less work, she may have a few sheets of code in which the object
is to find the bugs. The basic point is that the test presented will be more
a reflection of the tester’s notion of what programming is about and in
particular where they spend much of their time.

Where, psychologically, people spend much of their time is often conflated
with what is valued, which is reflected in attitude. If you poll people for
what they value most (such as their favourite book [8]) many people will
select the activities that take the longest. It is processes of this sort, a variant
of cognitive dissonance, that lead programmers to test another
programmer’s debugging skills.

I do not wish to devalue the skills inherent in debugging of a real kind,
which is often a highly conceptual activity, yet I have not encountered this
kind of real debugging during interviews. Interview debugging is often
mocked up and artificial.

Then there are the programming interviews about demonstrating
cleverness which, as we’ve seen, is often an indirect reference to claims
of authority. Yet much of all the variants of this politicized access to
knowledge is merely a familiarity with protocols, such as knowing where
to go to diagnose a particular problem in a particular system. (Polyani [9]
describes this as “absorbing elements through an operation”.) Anyone can
acquire this kind of expertise provided they stick around long enough. This
certainly satisfies an older generation's notion of seniority within a
company based upon length of service, but is that the kind of knowledge
and respect we aspire to?

Note also, that if you have a culture of expertise along these lines there
will be vested interests in not changing the way things are done or, at a
push, certainly not changing them quickly. This applies even if there are
clearly better ways of conducting the work. Provided the work is
sufficiently muddled, in an expert culture there will be people who believe
they stand to gain by keeping things that way. [10]

The contradictions of formality and intuition
The interviewer may be looking for something to fail the candidate on,
because there’s something else not right. Perhaps the interviewer has
intuitions which are difficult to express using their interview model. Or
perhaps the interviewer has a hidden agenda: to some people, the smarter
you are, the more of a threat you are. Either way, a simple way forward,
for this style of interview, is to continue presenting technical tests until the
interviewee makes a mistake.

The role of intuition in the workplace is pervasive. Intuition entails a non-
conscious mode of directing ones awareness, rather like the experience of
having a word or answer on the tip of one’s tongue. If we design our
processes such that intuition is disregarded, we deny a powerful source of

creativity and a powerful means of overcoming
frustrating circumstances. For example, the side
effects of a managerial response to change efforts,
by requesting a well articulated alternative may
lead into quicksand. This is simply because the
necessity for a well articulated description
coupled with an absence of resources and
conditions to formulate the articulation results in
status quo.

Widening channels of communication to
encourage the translation of intuitions and

speculations into clear explanations can be given a boost by incorporating
this awareness into the process of recruitment. Workplace awareness for
intuitive processes has significant cultural ramifications for facilitating
where the creative work takes place in an organisation. Is it to be found in
the half-starved processes that are reduced to a few private moments
between meetings, or can it be facilitated as the core activity of those
collaborations, that energise the work of a whole team?

Achieving a culture of creative participation of this form is no easy
endeavour. However, even small shifts in the direction of inclusiveness
and mutual permission for this creative attitude can have considerable
benefits. Giving credence to these processes during interviews and
recruitment is an example of such a shift.

The contradictions of partitioning and sharing work
From a technical stand point, the manner of conducting interviews has
tangible implications for the enterprise, including the structure of the code.
This is, essentially, the point of Conway’s law [11]. A fragmented or
partitioned team will, at best, produce a fragmented and partitioned
software product. But this is not the kind of partitioning that good design
entails. This is a partitioning where one subsystem is built without any
internal relatedness to the other subsystems.

As many companies begin to explore further the potential for distributed
work, these issues stemming from cutting corners and paying lip-service
to technical problems, by only heeding empirical practice, will come
increasingly and frequently to the fore. Typically there exists a spectrum
of approaches to remediate this situation. At one end presides the
acknowledgement of development along with all that it implies. The
opposite end, which some might refer to as the conservative approach,
entails imposing yet greater and more rigid constraints.

Conclusion
I have enumerated key contradictions inherent in the problem of
recruitment, which implicate team cohesion, effectiveness and
development. These and other contradictions are interrelated. They
comprise a complex whole, whereby each facet cannot be treated
successfully in exclusion to the others.

A central theme has been the critique of the normative methods of
recruitment that lead, in a self-fulfilling manner, to a perpetual and often
urgent search for technical expertise. In juxtaposition to the expertise
model, I have presented an alternative, viable model of development. The
developmental model presents challenges too, yet I believe the arguments
in favour of it are compelling.

perhaps the interviewer
has a hidden agenda: to

some people, the
smarter you are, the

more of a threat you are
18 | | NOV 2012{cvu}

I hope to have provided some readers with a pause for thought regarding
their practices and culture. I also hope to have provided some pointers for
improving the recruitment process, particularly the implications for the
developmental alternative. For an effective organisation, where team
integration is genuinely sought, the architects of the organisation, which
include all those involved in the process of recruitment, will need to
confront these issues. 

Acknowledgements
Thanks to Shane Hastie, Kevlin Henney and Helen Lloyd for their reviews.

Thanks also to the recruiter, who gave permission to quote the job details.

References, notes and further reading
[1] I am fully aware of the need to create circumstances and supportive

environments for those people labelled with particular psychological
symptoms. In a supportive environment discrimination means ‘to
notice differences’.

[2] Vygotsky, L. S., (1987) ‘Thinking and Speech’, in The Collected
Works of L. S. Vygotsky, Volume 1. Plenum Press.

[3] Schein, E., (1999) Process Consultation Revisited: Building the
Helping Relationship. Addison-Wesley Longman.

[4] Davydov, V. V., (2008) Problems of Developmental Instruction, A
Theoretical and Experimental Psychological Study. Nova

[5] Caveat lector. Not all syntaxes are equally arbitrary. Some
syntaxes such as the equals sign in mathematics indicate
concepts. A clinical precision in their use has more profound
implications.

 [6] Dewey, J., (1967) ‘Psychology’, in John Dewey, The Early Works
1882–1898, Volume 2. Southern Illinois University Press.

[7] Piaget, J. (1976) To Understand is to Invent. Penguin.
[8] Lord of the Rings came top of the BBC’s ‘The Big Read’, a poll

conducted in 2003. See http://www.bbc.co.uk/arts/bigread/
[9] Polyani, M. (1958) Personal Knowledge: Towards a Post-Critical

Philosophy, p61. Routledge, Kegan & Paul.
[10] This is the tip of the iceberg, the domain name for which is

‘organisational development’.
[11] Conway, M. E. (1968), ‘How do Committees Invent?’, Datamation

14 (5): 28–31
Festinger, L. (1957) A Theory of Cognitive Dissonance. Stanford

University Press

This article was first published on infoq (http://www.infoq.com/articles/
contradictions-technical-recruitment), August 2012

Software
Engineering
(part-time)

MSc in

����������	
�����
�������	���
�������
���	����	�������	����
����������
��
������	����	���
�����
��

���������
	���
��
��������	��������
�
����� ������
�������
�������
	�����	��������	������!�	�����
��

����������"�	����#���
������������
�	�������	
� ��	�������
��
���������
���
�����
���
�����	
��

��������	���	
�������
����������
�	���
������ ��	������	��	
���	��
���

�� �$������ �����%��	�
NOV 2012 | | 19{cvu}���&�
�����&
�&��&�!

Becoming a Better Programmer # 77
The Advanced Coding Test
Pete Goodliffe drives his point home.

Logic will get you from A to B.
Imagination will take you everywhere else.

~ Albert Einstein

or your intellectual delight and mental edification, I present a train of
thought my mind idled over one autumn evening. I won’t claim that
it’s a mature thesis; it is merely an interesting thought experiment. But

it will perhaps help you ponder your present programming prowess. And
potentially provide a plan to polish it.

Second nature
After enough experience, we find that the practice of software
development becomes second nature for a programmer. Have you reached
this stage?

Once you become familiar with the syntax of your programming language,
with the concepts of good program design, and have learnt to appreciate
the difference between good and bad code, you find yourself naturally
making good (or at least reasonable) coding decisions without any
discernible effort.

Most of the time you do not unduly tax the grey cells. A lot of coding
activities and ‘design in the small’ becomes instinctive. Correct syntax
comes out of the finger’s muscle memory, and the code structure you
construct appears to be ‘obvious’.

This state of working isn’t necessarily mindless coding – the bad practice
of ‘shooting from the hip’. (Although it is a symptom of how some poor
programmers mindlessly work.) It’s just the way high-calibre
programmers work.

It’s a good thing. This is what experience gives you.

This state is defined by the Four Stages of Competence model [1] as
unconscious competence; something we are able to do without consciously
thinking about it. We can perform this task effectively, without even
realising exactly what we’re doing and how difficult it is.

Driving the point home
There are many activities in which we achieve a state of unconscious
competence. Some are professional. Some are far more mundane. Most
humans can walk and eat without carefully considering each movement,
and without making complex prior plans to enable them to do so.

Another great example is driving a car.

Driving is an interesting analogue of programming; there are some
interesting lessons we can pull out from a comparison of the two.

It takes a significant amount of learning to become a competent driver. It
requires effort to learn the mechanics of the car, as well as learning the
etiquette and rules of the road. Driving well requires a concert of actions
and skills; it’s an intricate process. You have to invest a lot of effort and
practice to achieve competence at this.

When a new driver first passes their driving test they are at the conscious
competence stage of learning. They know they can drive, and they have to
pay attention to carefully coordinate all the contending forces. The
selection of a new gear is a conscious process (for those enlightened drivers

with manual transmission). Mastery of the clutch requires thoughtful
balance.

But after more experience, a lot of these mechanics become automatic. We
gain confidence. The controls and handling of the vehicle become second
nature. We become accustomed to how the vehicle responds to the controls
we adjust. We naturally adopt the correct road positioning. We become
masters of the operation of the vehicle.

Once a driver reaches this stage, their attention is freed up to concentrate
on the remaining unknown – the road itself, and the decisions that it
constantly presents.

How much does this sound like programming?

Some people are better drivers than others. Some people have better tools
(their vehicles) than others. Some people have more natural ability than
others.

How much does this sound like programming?

The majority of problems on the road – the accidents, delays, etc – are due
to driver error. Crashes happen to cars but they are caused by the people
who learnt to use them.

Seriously: how much does this sound like programming?

A little knowledge is dangerous
The state of conscious competence can, if you’re not careful, lead to a
complacency. Rather than concentrating on the road, you end up
‘coasting’, driving on automatic (in the metaphorical sense, not the
transmission system). Rather than looking out for hazards on the road
ahead, you’re thinking about what to eat for dinner.

It is important to overcome this kind of complacency to become a better
driver. Otherwise, frankly, you are a liability. You could very easily do
more harm than good.

How much does this sound like programming?

Do you have what it takes?
Before you are let loose in a vehicle, you have to prove that you are capable.
You have to pass a driving test. It’s illegal to drive on public roads without
having first passed this test. The driving test proves that you have the
necessary skills, and the responsibility, to drive. It demonstrates that you
can not only handle a car, but can make good decisions under the pressure
of the conditions of the road.

Now, there isn’t a direct equivalent of a driving test in the programming
world; certification is not a legal prerequisite to write code (nor should it
be, in the author’s opinion). But, to enter gainful employment you do
usually have to demonstrate a reasonable level of skill: having passed a
course, or be able to prove demonstrable prior experience.

In the UK, and in many other countries, there is an extra level of
certification that a driver can earn, a far more rigorous test. This is the
advanced driving test.

To pass this test you have to demonstrate a superior level of control of the
vehicle in more demanding driving conditions. You must possess a far
greater level of awareness of road conditions, of what’s going on around
you, and where potential hazards are. An ‘advanced’ driver concentrates
more fully on their driving, and has better anticipation and planning.

It is a higher standard of driving.

This advanced test is not mandatory. But some occupations require drivers
to have earned a higher qualification before they can drive professionally.

F

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net or @petegoodliffe
20 | | NOV 2010{cvu}

For example, police drivers have to undergo far more rigorous training and
pass a very stringent driving test.

Even if it is not mandatory professionally, achieving an ‘advanced’ driver
status imparts many benefits:

 You learn greater skills.

 You run a greatly reduced risk of accidents.

 A gain a better awareness of the limitations of the equipment you
use.

 An understanding of the dangers and pitfalls inherent in driving.

 The ability to make better decisions, with greater confidence; to be
more decisive.

 To be more considerate to other people.

 Also, there is a selfish motivation: advanced drivers have reduced
insurance premiums because they are far less likely to be involved
in accidents!

It’s not tenable to expect every driver to achieve ‘advanced’ level before
they are allowed on the road. Indeed, it doesn’t make sense.

But the advanced level is definitely something to aspire to.

The equivalent?
So here’s the thought experiment: what would the equivalent of an
‘advanced’ driving test for software developers look like?

We often argue about the true value of certification in our industry. A lot
of the certification peddled by training organisations is pure bunk, snake
oil that helps you tick boxes in job application forms.

But some of it is valuable.

Would a physical test be of any use? What would it look like? How specific
would it have to be to specific technology areas? Would this specialisation
make it impractical to run? I’m sure there are coders that you respect, and
who you recognise as advanced. But is it possible, or practical, or useful,
to realistically certify them as such?

Even if we don’t try to define a strict ‘advanced test’, what skills would
you expect of an ‘advanced’ coder?

As we’ve seen, the majority of advanced programmer skills are gained by
experience garnered on the job. But not every long-serving coder continues
to learn and hone their skills. Time on the job is not enough. Indeed,
advanced coding skills are orthogonal to developer promotion path. If you
serve faithfully in a job for n years your company might give you a pay
rise and allow you to climb another step up the corporate ladder. But this
doesn’t necessarily mean you’re any better a programmer than when you
joined.

An advanced programmer will demonstrably:

 Be confident in their abilities. And confidently know when they’ve
reached the limit of their skills.

 Make better decisions.

 Be more mindful of the work they are doing.

 Have a greater set of skills, and mastery of the tools they are using.

 Anticipate what other coders might find ‘unexpected’ and already
have a plan to deal with these situations

In many respects, this is an analogue of the list of characteristics of an
advanced driver that we saw above.

One of the classic skills an advanced driver must perform is driving whilst
giving a running commentary. The driver mindfully describes what they
can see, what they’re thinking, and what they plan to do as they drive. This
shows that they have identified potential hazards and have already
considered how they will react.

How might we do that as programmers? How well would design reviews
before coding help foster a similar state? Does pair programming, and the
constant conversation that this develops, give a similar kind of benefit?

Conclusion
Think for yourself and let others enjoy the privilege of doing so too.

~ Voltaire

This is a little thought experiment. Nothing more. But it’s interesting to
think about this kind of thing, to provide a framework that might help us
become better programmers.

It’s certainly very valuable to consider the stages in our coding abilities.
To determine when you’ve moved from conscious competence to
unconscious competence. And to recognise that you can progress from a
‘standard’ level to more ‘advanced’.

Questions
1. What is the programmer’s equivalent of a driving test? Could there

be such a thing?

2. Are your programming skills at the ‘standard test’ level or at the
‘advanced level’? Do you think you frequently achieve the
unconscious competence level?

3. Do you want to maintain your current skill level? Do you want to
improve it? How will do you this?

4. How could you test a programmer’s ability to perform an
‘emergency stop’?!

5. Is there any extra value to be gained from investing in your skills? If
advanced drivers enjoy lower insurance premiums, how does being
an ‘advanced coder’ materially benefit you?

6. If coding is like driving, do we treat code testers like crash test
dummies? 

References
[1] Four Stages of Competence:

http://en.wikipedia.org/wiki/Four_stages_of_competence
NOV 2010 | | 21{cvu}

http://en.wikipedia.org/wiki/Four_stages_of_competence

22 | | NOV 2012{cvu}

Standards Report
Mark Radford reports the latest from the next version of C++.

he international C++ Standards’ Committee met in Portland, Oregon
during the week Monday 15th – Friday 19th October. There were
around eighty attendees, which means attendance is on the up

(typically meetings were attended by forty to fifty people during C++2011
development).

Working towards C++2017, the time scale is quite aggressive and there is
much work to be done. Therefore, study groups have formed, each with
its own remit. There are six currently active study groups: concurrency,
modules, the file system, networking, transactional memory, and
numerics. These are in addition to the normal workings groups, consisting
of the core (CWG), library (LWG) and evolution (EWG) working groups.
The idea is that the study group carries out initial investigation work,
before detailed specifications are drawn up at CWG, LWG or EWG level.

The working groups met daily, as did the concurrency study group.
However, owing to there being only one more more room available, other
study groups each met for half a day at a time. The exception to this was
the transactional memory study group: while they only met occasionally,
their meetings were co-located with the concurrency group, because of the
overlap in the two subject areas.

While all this was going on, there were still issues and defect reports
(relating to the current standard) to be processed. These were handled by
the CWG or LWG as appropriate. Meanwhile the EWG was handling
requests and proposals for new features. Again, this is where study groups
become relevant: after looking at a proposal or new feature request, one
course of action for the EWG is to delegate the next phase of the work to
a study group.

You have probably figured out from the above, that concurrency is where
much of the action is at the moment. For that reason, much of the material
I will now discuss is concurrency related.

Papers
Obviously many papers were discussed at Portland, and, owing to time and
space limitations, I can only mention a very few of them. However, all the
papers can be found at http://www.open-std.org/JTC1/SC22/WG21/docs/
papers, and in particular the pre-Portland mailing can be found at http://
www.open-std.org/JTC1/SC22/WG21/docs/papers/2012/#mailing2012-09.

Some of the issues associated with output streams in multi-threaded code
are examined in C++ Stream Mutexes (N3395). This proposal addresses
the problem that stream output operations, while currently guaranteeing
that they will not produce race conditions, do not guarantee that the effect
will be sensible. This is problematic because many applications want to
write spontaneously to an output stream, such as when writing debug
information to a log file. The concurrency group was in general agreement
on the need to provide this stream locking facility. The consequence of not
doing so is likely to be that printf() is used instead (because Posix
provides some threading guarantees).

The current standard library component std::queue is designed for use
only in sequential code. C++ Concurrent Queues (N3434) addresses
requirements of queues in concurrent code. Some of the operations look
the same, or similar, to those already familiar from the existing
std::queue. The differences are in the interface’s operational aspects.

For example, pushing an element onto the queue may not be possible
immediately in a concurrent context. The push operations described in the
paper wait until it is possible to push the element onto the queue. Note the
presence of member functions such as try_push(): these execute an
operation only if it can be executed soon, and if it can’t be executed soon
it is not executed at all. That is to say, if the queue is full then waiting is
avoided, however try_push() will block if it is just a matter of waiting
for a mutex lock to become available. These functions return a status to
indicate whether or not the operation was actually executed. The interface
described is an abstract one so, for example, concrete classes could
implement bounded or unbounded queues. There was some discussion of
this paper, for example, on the possibility of also having a concurrent stack.
Another point of discussion was on the value_pop() member function,
and how to make it exception safe. The conclusion was that the basic
exception guarantee is the best that could be offered. Just to explain that
last point a little: remember how std::queue (and std::stack) have
separate functions for querying and popping the front/top element, because
that is the only way to be exception safe? The problem is, that approach
doesn’t work in a concurrent context, because the element at the front/top
may be changed (by another thread) between the query and pop operations.

There are many other interesting concurrency papers that I would like to
cover but can’t. For example, you might want to look up Shared locking
in C++ (N3427), and async and ~future (N3451). The former is a proposal
for improving the thread locking library to facilitate multi-reader/single-
writers, while the latter addresses the problem of surprising blocking
behaviour in ~future. The latter has caused a lively discussion, which I
hope to come back to. However, before I end this column I was to briefly
move out of the concurrency domain.

The paper A Database Access Library (N3415) begins to address the need
for, well, a database access library, in C++. This is something C++ will
need if it is to provide a full set of general purpose libraries – and, provide
a full set of general purpose libraries is something it needs to do in order
to remain useful as a general purpose language. This proposal was
discussed by the EWG. Although it has not been done yet, there was
interest in forming a new study group to work in this field.

Finally
That concludes my column featuring the Portland meeting, sadly with
more left out than went in. There is much of interest for me to (hopefully)
come back to in future columns.

I would like to thank Roger Orr and Alisdair Meredith for posting updates
to the BSI C++ Panel reflector during the week of the meeting. Also I
would like to thank the CVu editor, Steve Love, for his patience that
allowed me to get coverage from Portland into this column.

T

MARK RADFORD
Mark Radford has been developing software for twenty-five years, and
has been a member of the BSI C++ Panel for fourteen of them. His
interests are mainly in C++, C# and Python. He can be contacted at
mark@twonine.co.uk

NOV 2012 | | 23{cvu}

Agile East Anglia: A Short History
Paul Grenyer gives us a potted history of a local

group from its inception in December 2011.

t’s well know within the ACCU that I was born in Norwich, Norfolk,
UK. After some years working away, I am now back home and working
in Norwich. I’ve always enjoyed the banter about Norwich being a

backwater and not somewhere for someone who wants a career in software
development because until recently I believed it too. However, in the last
year the technology community in Norwich has got together to make itself
known.

Agile East Anglia was started by me as an Extreme Tuesday Club (xTc)
inspired pub meet on Monday 5th December 2011 at the Coach and Horses
on Thorpe Road in Norwich. Attended by a handful of people from local
firm Aviva it was followed on Monday 9th January 2012 by a less well
attended meeting at the same place.

On a cold and snowy Monday 6th February, with sponsorship from
Ipswich based consultancy firm Smart421, Agile East Anglia put on a
presentation on Agile User Stories given by well known Agile consultant
Rachel Davies at The Assembly House in Norwich. Around 20 people
attended, predominantly from Aviva, but also people from other firms such
as Archant, Smart421, Axon Active AG and Proxama.

On Monday 26th March, Agile East Anglia put on a second Agile
presentation: this time it was a Dialogue Sheets workshop given by Agile
consultant Allan Kelly. Again it was at the Assembly House in Norwich
and sponsored by Smart421. Around 20 people attended. This time there
were more people from local East Anglian companies such as Ifftner
(Ipswich), Redgate (Cambridge), Call Connection (Ipswich) and Purple
Tuesday, as well as people from Archant, Smart421 and Axon Active AG.

On Tuesday 10th April, I presented The Walking Skeleton for the newly
formed facebook group, Norwich Developers Community. The group was
created and run by Stephen Pengilley to bring together Norwich’s software
developers.

On Thursday 19th April, Agile East Anglia regular John Fagan gave a
presentation on the Lean Startup book for the Norwich Startups meetup
group. The group was created and run by Juliana Meyer to bring
entrepreneurs, developers, and anyone interested in startup companies in
Norwich together. Starting in September 2011, Norwich Startups had
already had a number of well attended meetings and was well established.

It was about this time that John Fagan and I independently had the idea to
bring all of the groups together with the aim of making something bigger
and even better. Purple Tuesday cofounder Seb Butcher had also expressed
interest in getting involved with Agile East Anglia. Stephen Pengilley and
Juliana Meyer were both approached with a view to merging Norwich
Developer community and Norwich Startups with Agile East Anglia.

On Thursday 3rd May at the Gunton Arms near Cromer, John Fagan, Seb
Butcher, Juliana Meyer, Stephen Pengilley and I got together to discuss
and shape the new group, which had the working title “On The Code City”.

On Thursday 7th June Agile East Anglia held a meeting at the Hog and
Armour in Norwich. Nearly 30 people came to hear Agile consultant Liz
Keogh speak about behavior Driven Development. Smart421 continued
their sponsorship and there were attendees from Ifftner, Redgate, Call
Connection, Purple Tuesday, Smart421, Axon Active AG and newcomers
Silo18 (Norwich). During the introduction it was announced that Agile
East Anglia would be merging with the Norwich Developers Community
and Norwich Startups under the name “SyncNorwich”. Seb Butcher,
Stephen Pengilley and John Fagan were introduced to the Agile East
Anglia group and the date of the first SyncNorwich meeting was

announced as 5th July, with a presentation from Colm McMullan on his
one man startup.

With the formation of SyncNorwich, this became the last Agile East Anglia
event. Future meetings had already been planned, including Lightning
Talks, a presentation on Kanban from Benjamin Mitchell, a session on
iteration planning from Simon Cromarty and a workshop on GIT from Pete
Goodliffe. All of these sessions were adopted into the SyncNorwich
programme.

In less than a year SyncNorwich has attracted over 300 members and
regularly gets in excess of 60 people to its events. Plans are currently
underway for SyncNorwich’s first conference in February 2013.

I

PAUL GRENYER
Paul Grenyer is a husband, father, software consultant,
author, testing and agile evangelist. He can be contacted at
paul.grenyer@gmail.com

Code Critique Competition 78
Set and collated by Roger Orr. A book

prize is awarded for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
I’m trying to get started with Python ... tell me why the programme below
doesn’t work. The program is supposed to find a nine digit number using all
of the digits 1 to 9 which is divisible by 9 (not difficult!) but is such that

 removing the last digit gives an 8 digit number divisible by 8

 then removing the last digit gives a 7 digit number divisible by 7 … and
so on down to

 then removing the last digit gives a 2 figure number divisible by 2

 then removing the last digit gives a 1 digit number divisible by 1 (not
difficult!).

Why does it tell me that i is not iterable:

 $./program.py
 Traceback (most recent call last):
 File "./program.py", line 8, in <module>
 for i in x:
 TypeError: 'float' object is not iterable

The program is in Listing 1.

Editor’s note: to make this printable I’ve used one space, not the
recommended four, for each indentation and split long lines with a
continuation character (\)].

Critiques

Ian Bolland <ian.bolland@nut.eu.com>

The error looks mysterious if you read from the top and stop at the line
where it is reported. It looks as though three iterations over x have
succeeded, while the fourth has failed.

If you carry on as far as the line:

 x=p+q+r+s+t+u+v

then the mystery is solved. Initially x refers to the list [1,3,7,9] (or in
Python terminology is bound to the list). Lists are iterable, so the program
successfully starts each of the loops. During the course of the iterations x
is reset to refer to a numeric value (in Python terminology it is rebound).
So the next time the program re-enters one of the inner loops it tries to
iterate over a numeric value rather than a list, and so it crashes.

In Python you can bind a name to an object of any type, and can rebind a
name to an object of a different type. However, you have to ensure that
you never use the name in a way that is incompatible with the type of object
that is currently bound to it. This is much easier if you don’t rebind a name
to an object of a radically different type.

In this case the rebinding is clearly unintentional. The author has used
single-character names up to w, and wanting a new name has chosen x,

forgetting that he has already used it to refer to the list [1,3,7,9]. Needless
to say, this sort of naming convention is a bad idea in any language.

The TypeError can be fixed in various ways. The simplest is to remove
the rebinding of x and use the RHS expression directly in the if test, i.e.:

 if p+q+r+s+t+u+v == 0 :
 print z

With this change the program runs, and prints

 381654729

A couple of minutes with a calculator (or the Python shell) verifies that
this is the correct answer. This surprises me – if I ever write code this
complicated, it seldom contains only one error. So let,s see how we can
simplify the code. The author has gone to some trouble to avoid generating
obviously impossible permutations by observing that:

 the first 5 digits are divisible by 5, and so digit 5 must be 5

 the first 2 digits are divisible by 2, and hence digit 2 must be even.
For the same reason, digits 4, 6 and 8 must be even

 digits 1, 3, 7 and 9 must be the remaining odd digits.

A comment to explain this would have been useful, even if the rest of the
code does not need commenting.

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

#!/usr/bin/python
x=[1,3,7,9]
y=[2,4,6,8]
e=5
for a in x:
 for c in x:
 for g in x:
 for i in x:
 if a<>c and a<>g and a<>i and c<>g and \
 c<>i and g<>i:
 for b in y:
 for d in y:
 for f in y:
 for h in y:
 if b<>d and b<>f and b<>h and d<>f \
 and d<>h and f<>h:
 z=10**8*a+10**7*b+10**6*c+ \
 10**5*d+10**4*e+ \
 10**3*f +100*g+10*h+i
 p,q,r,s,t,u,v,w= \
 z-z%10,z-z%100,z-z%1000, \
 z-z%10000,z-z%100000, \
 z-z%1000000,z-z%10000000, \
 z-z%100000000
 p,q,r,s,t,u,v,w= \
 p/10.,q/100.,r/1000.,s/10000., \
 t/100000.,u/1000000.,v/10000000., \
 w/100000000.
 p,q,r,s,t,u,v= \
 p%8,q%7,r%6,s%5,t%4,u%3,v%2,
 x=p+q+r+s+t+u+v
 if x==0:
 print z

Listing 1
24 | | NOV 2012{cvu}

I’m not convinced of the importance of efficiency in this case, but for the
moment I will play along with the assumption, and will start by improving
the implementation of the algorithm as written.

To start with, there are a few examples of dubious style:

1. The <> operator is obsolete: use != instead.

2. I don’t like the way that the calculations involving p, q, r, s, t, u,
v and w are combined into single statements. It makes the code less
readable than writing each calculation as a separate statement, and
incurs a slight run-time overhead constructing a temporary tuple to
hold the calculated values.

3. The calculations use three different ways to represent powers of 10.
I would use 10**n in each case, to avoid counting zeros. And there
is no good reason to use floating-point constants at all.

4. I also dislike the test controlling the print z statement. I would
have written this as:

 if (p==0 and q==0 ...):

which more clearly expresses the condition that all the remainders
must be zero. Better still, I would have combined it with the
previous statement and written the test as:

 if (p%8==0 and q%7==0 ...) :

And if efficiency is important, it is worth observing that the algorithm only
generates permutations for which s%5 and v%2 are zero. In fact s, v and
w need never have been calculated – these calculations slow down the
program by about 20%.

Moving on to more significant improvements, we note that the two sets of
loops and the subsequent tests generate permutations of the sequences x
and y. This can be done more simply by using the standard library function
itertools.permutations to replace 8 loops and 2 tests by:

 from itertools import permutations
 for a, c, g, i in permutations ([1,3,7,9]):
 for b, d, f, h in permutations([2,4,6,8]):

and as a bonus we can revert to using the standard 4-space indentation.

The calculation of the values of the first n digits can also be simplified by
holding the digits in an array and calculating the values using the
recurrence relation:

 value[n+1] = value[n]*10 + digits[n]

Not only is this simpler, it also allows us to test for divisibility by n at each
step, stopping as soon as the current permutation fails one of these tests.

This gives:

 from itertools import permutations

 # Standard tests for divisibility imply that
 # in any valid solution, digits 2,4,6,8 are
 # even, and digit 5 is 5.
 # Only generate permutations which satisfy
 # these conditions.

 for o1,o2,o3,o4 in permutations([1,3,7,9]):
 for e1,e2,e3,e4 in permutations([2,4,6,8]):
 digits = (o1,e1,o2,e2,5,e3,o3,e4,o4)
 value = digits[0]*10 + digits[1]
 # value is divisible by 2 because
 # digits[1] is even.
 # Test divisibility by 3..9
 for n in xrange(3,10) :
 value = value*10 + digits[n-1]
 if value%n != 0 :
 break
 else :
 print value

The Python for/break/else construct is slightly unusual. In this case it
works as follows. If value%n != 0 for any iteration then the break is
executed, the loop terminates completely, and the else is not executed.
If no iteration executes a break then the loop terminates by executing the

else clause. This means that the print statement is only executed if
value%n == 0 for all n. If you don’t like for/else (and some people
don’t), you can use an extra boolean variable in a normal for loop to get
the same effect.

I have written the loop over n to avoid testing divisibility by 1 and 2 (which
slow the program down noticeably), but I don’t mind testing for divisibility
by 9, since this is only executed once.

Using the standard library module ‘timeit’ on the original program gives:

100 loops, best of 3: 3.04 msec per loop

and on the improved version gives:

1000 loops, best of 3: 714 usec per loop

So, not only is the improved version shorter and simpler, it is also much
faster. Part of the speedup is caused by the more efficient permutations
algorithm, but most of it is caused by the avoidance of unnecessary
arithmetic, and particularly by the early termination of loops as soon as
any divisibility test fails.

However, as I said, I am not convinced of the importance of efficiency in
this case. Premature optimisation is a well-known pitfall in software
development: the general rule is ‘first make it right, and then make it fast’.
In a case such as this, where the program is only needed to run once, then
it needs to be very slow indeed before it is worth optimising. The
optimisation effort might pay off if you can write, test, debug and run the
optimised version while the straightforward version is still running. But
this is very rare.

So let’s look at how a straightforward version might be written. For a start,
we can take the brute-force approach of testing all permutations of the
digits. Factorial n looks scary, but when n=9 it is only 362880.

Secondly, the task of testing the divisors of leading digits becomes easier
if we hold the digits in a string. The leading n digits of s are divisible by n if

 int(s[:n]) % n == 0

So we can write the program as:

 from itertools import permutations
 for digits in permutations ("123456789") :
 digits = "".join(digits)
 if all ((int(digits[:n]) % n == 0
 for n in xrange(1,10))) :
 print digits

Here:

 The first line makes itertools permutations available.

 The second line generates all permutations of the digits (the string is
treated as a sequence of single- character digits). These are returned
as a tuple of characters.

 The third line is the Python idiom for concatenating a sequence of
strings. Effectively this turns the tuple of digits into a single string.
Note that this is a case where rebinding a name to hold a value of a
different type is acceptable. The tuple returned by permutations is
essentially a temporary value used only to construct the digits string,
and there is no benefit in inventing a separate name for it.

 The fourth line tests whether all the leading n-digit values are
divisible by n, for n in the range 1 to 9. I have used xrange(1,10)
to keep the solution as close as possible to the initial problem
statement. xrange(2,9) would also work in this case, but it might
mislead a Python learner into thinking that xrange generates the
inclusive range 2 to 9, rather than 2 to 8.

Using ‘timeit’ on this version gives:

10 loops, best of 3: 1.64 sec per loop

which is less time than it would have taken me even to fire up my editor
to start writing the optimised version. So I would go with the
straightforward version.
NOV 2012 | | 25{cvu}

Paul Evans <paul.xa.evans@barclays.com>

It’s actually saying that x isn’t iterable and that’s because Python changes
the dynamic binding of the variable x from the list [1,3,7,9] (set in line 2)
to be bound to the float p+q+r+s+t+u+v (set in line 31) in the first
iteration of the for loop at line 8. Simply renaming the variable x in lines
31 and 32 to m removes the bug and the program now gives the correct
answer of 381654729.

The indentation problem can be solved along with a major cleanup of lines
5 to 16 by using the permutations function from the itertools
module. Lines 17 to 31 can also be cleaned up by using a string to handle
the 'removing the last digit' part of the problem. Python’s join, map, str,
int and sum built-ins along with some list comprehension also work
better here. We can eliminate testing for divisibility by 5 and 2 as ‘(not
difficult!)’ due to the placement of 5 and the even digits. Finally we can
use meaningful names, some more list comprehension and the range
built-in. Putting parentheses around the print argument makes the code
Python 3.x compatible to give us:

 from itertools import permutations as perms
 odds = [i for i in range(1, 10, 2) if i != 5]
 evens = range(2, 10, 2)
 testers = [i for i in range(3, 9) if i != 5]
 for o in perms(odds):
 for e in perms(evens):
 n = (o[0], e[0], o[1], e[1], 5, \
 e[2], o[2], e[3], o[3])
 number = "".join(map(str, n))
 if sum(int(number[:i]) % i \
 for i in testers) == 0:
 print(int(number))

Ola M <aleksandra.mierzejewska@gmail.com>

The immediate reason for the error showing up is the re-use of the x
variable. It is used in line 2 to denote a range, and changed on line 20
into a float. The error shows on line 9, because after full iteration in the
4 inner for loops the 3rd for loop tries to go to the next element of x.
But in the meantime x was used as a float. After changing the second x
to another name – the program works and gives the correct result.

Although we have working code at this point, still some of its aspects are
not best practice. The variable names are meaningless, which made the
original error easy to make. There is no need to convert variables p, q, r,...
to floats with the . – they can stay integers.

Most importantly, the author of this code used some mathematical rules
to save on a number of calculations, but not all of them. I think that it would
be simpler and more consistent to either go the whole way with the maths
approach or to simplify the algorithm and go through all possible
combinations. After all there are just 9! numbers to check.

Personally I would go with the mathematical approach. In the original
solution, the author notices that E must be 5 to be divisible by 5 and that
every second number must be even, to be divisible by 2, 4, 6 and 8. If we
go further with this approach we can see that number CD (c*10+b) must
be divisible by 4, that EFG must be divisible by 8, that sum of A, B and C
must be divisible by 3 and sum of D, E, F must be divisible by 3. Once all
these conditions are met we are left with six numbers, for which we need
to check that ABCDEFG is divisible by 7.

However, as the author mentioned the aim was to learn some Python, the
above solution is not really helpful... In that case I’d go through all
permutations of the given numbers – that, I believe, significantly simplifies
the code. The running time is still negligible and we get the same result of
381654729.

 #! /usr/bin/python
 import itertools

 def isPD(perm):
 num=perm[0]
 for i in range(len(x)-1):
 num=num*10+perm[i+1]

 if(num%(i+2)!=0):
 return 0
 return num

 x=[1,2,3,4,5,6,7,8,9]
 for perm in list(itertools.permutations(x)):
 res=isPD(perm)
 if(res):
 print res

Commentary
I was a little nervous of setting a code critique in a different language since
sometimes when I’ve strayed away from C and C++ in the past there have
been few entries – but it was good to see several critiques this time. So if
you have a potential critique in another language please send it in!

The original problem has three parts – the user’s problem with the runtime
error, the mathematical problem they are trying to solve and the fact that
they’re starting to learn Python.

All three entrants did cover the three points, although the lure of improving
performance (not mentioned by the original writer) proved hard to ignore!

One of the hardest things for newcomers to a language is knowing what
techniques are available. While all three solutions imported itertools,
I think it might have been useful to give some background to what this does
and how you know it exists. Paul mentions the word ‘built-ins’ which is a
useful clue for a newcomer to the language and Ian gives some details
about the term ‘rebinding’ and why it must be done with care. It can be
hard though to put yourself back in the mind of a beginner.

I think between them the critiques covered pretty well all the points in the
code sample so I’ve nothing further to add – I hope the student would have
learned some useful tips and well as having a working program!

The Winner of CC 77
There were things I liked about each critique; such as Paul’s expressive
variables names (odds and evens) and Ola’s introduction of a function call
to separate the problem cleanly into two sections. However, I felt Ian’s
solution was the most detailed and also his final solution was the clearest
to understand, so I have awarded him the prize.

Code critique 78
(Submissions to scc@accu.org by Dec 1st)

I thought it was time to start trying out some of the new C++11 concurrency
features; but it looks like the compilers might be a bit buggy still. Shouldn’t
the following program cleanly separate log output from the two threads? I
started with MSVC 2012 and it worked Ok until I turned on optimising; so I
tried g++ with -std=c++11 – both sometimes give mixed lines.

Sample output is in Listing 2 and the code is in Listing 3.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

29 Sep 23:40:37 [1]: starting the calculation
29 Sep 23:40:37 [2]: starting the calculation
29 Sep 23:40:37 [1]: next...
29 Sep 23:40:37 [2]: next...
29 Sep 23:40:37 [129 Sep 23:40:37 [2]: next...
]: next...
29 Sep 23:40:37 [2]: next...
29 Sep 23:40:37 [1]: next...
29 Sep 23:40:37 [2]: next...
29 Sep 23:40:37 [1]: next...
29 Sep 23:40:37 [2]: ending the calculation
29 Sep 23:40:37 [1]: next...
29 Sep 23:40:37 [1]: ending the calculation

Listing 2
26 | | NOV 2012{cvu}

NOV 2012 | | 27{cvu}

#include <iostream>
#include <mutex>
#include <string>
#include <thread>
// get now
std::string now()
{
 time_t const timeNow = time(0);
 char buffer[16];
 strftime(buffer, sizeof(buffer),
 "%d %b %H:%M:%S", localtime(&timeNow));
 return buffer;
}
// log message
void log(int id, std::string const & message)
{
 std::mutex mutex;
 mutex.lock();
 std::cout << now() << " [" << id << "]: "
 << message << std::endl;
 mutex.unlock();
}
// simulate some activity
void dosomething()
{
 int i(0);
 for (int j = 0; j != 10000; ++j)
 {
 for (int k = 0; k != 10000; ++k)
 {
 ++i;
 }
 }
}

// calculate
void calculate(int id, int count)
{
 log(id, "starting the calculation");
 for (int idx = 0; idx != count; ++idx)
 {
 dosomething();
 log(id, "next...");
 }
 log(id, "ending the calculation");
}

int main()
{
 try
 {
 std::thread t1(calculate, 1, 5);
 std::thread t2(calculate, 2, 4);
 t1.join();
 t2.join();
 }
 catch (std::exception const & ex)
 {
 std::cerr << "exception: " << ex.what()
 << std::endl;
 }
}

Listing 3 (cont’d)
Li

st
in

g
3

Code Critique Competition (continued)

Two Pence Worth
An opportunity to share your pearls of wisdom with us.

One of the marvellous things about being part of an organisation like ACCU
is that people are always willing to help out and put in their two-pence-worth
of advice. In this new section of CVu, we’ll capture some of those gems and
print the best ones. If you have your own 2p to add to the collective wisdom
of the group, send it to cvu@accu.org.

‘In order to maximise the security of your job, write everything in
Powershell.’ Chris, Cambridgeshire

‘Always repeat yourself: adding comments that repeat the code
reinforces your point.’ @UncleDave

‘Ensure people can identify the provenance of bugs by putting the URL
of where you nicked the code from in a comment.’

Doctor Love, London

‘Consider using more than one letter for variable names. That way you
won’t run out of names so quickly.’ Donald, United States

‘Pair programming is a great way to save money on desks and other
equipment.’ Twitter rumour

‘Search and replace is a great cheap alternative to expensive
refactoring tools, but make sure Case Sensitive searches are possible!’

Cheap Chaz, Cheam

‘When pasting code from somewhere, always keep the typos so future
programmers know where you copied it from.’ Doctor Love, London

‘A full-featured IDE editor turns not being a touch-typist into an
advantage. Amaze and confound your typing friends with word
completion and auto-formatting!’ Bill, USA

‘Call your tests ‘test1’, ‘test2 etc. so that people know what order to
run them in.’ Anon

‘Upgrade to a modern C++ compiler so that you can start using threads
in your code.’ A man from Runcorn

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU
website, which contains a list of all of the books currently available. If there is something that you
want to review, but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can
have it. I will instruct you from there. Remember though, if the book review is such a stinker as
to be awarded the most un-glamorous ‘not recommended’ rating, you are entitled to another book
completely free.

Thanks to Pearson and Computer Bookshop for their continued support in providing us with
books.

Jez Higgins (jez@jezuk.co.uk)
Getting Started with
Kanban
By Paul Klipp, published by
Kanbanery, self-published ebook

Reviewed by Paul Grenyer

Other than Allan Kelly’s 10
things to know about Kanban software
development blog post, which is awesome,
Getting Started with Kanban by Paul Klipp is the
only Kanban material I have read so far. I really
like these short books which seem to be coming
out thick and fast at the moment. I really must
get mine ready! It took me less than an hour to
get through this book. I suppose it could have
been presented for free as a long blog post or an
article, but I’m really not bothered paying £1.54
for it. It was worth it.

I literally had no idea about Kanban other than
it was a looser Agile (than something like
Scrum). I enjoyed reading this book and I learnt
a lot in a very short period of time. I am now
comfortable with what Kanban is and how it
works and I can really see the appeal. I may even
have to revise my thinking that to be Agile you
have to have iterations.

About half the book is dedicated to an overview
of Kanban with a list of other books you should
read, including Kanban by David J. Anderson
which is next on my reading list, and the final
half to a description of the Kanban process that
Paul Klipp uses. This really helps give some
context to Kanban.

If you want to learn about Kanban quickly and
easily, read this book.

Gnuplot in Action:
Understanding Data with
Graphs
By Philipp K. Janert, published by
Manning, ISBN: 978-1-933988-39-9

Reviewed by Fred Youhanaie

I have been using Gnuplot on and off since the
early nineties. Due to its simple interface and the
on-line help facility I was able to get by with all
simple plotting tasks, so I never bothered with

reading the manual, and as a result I never
learned of its more advanced facilities. For
complex tasks I would instead opt for alternative
tools such as Cern’s ROOT software. This book,
however, has changed all that, tipping the
balance in favour of Gnuplot.

The four parts of the book, each with 3–5
chapters, take the reader from a very gentle
introduction, to advanced Gnuplot topics, to
graphical analysis techniques. All the chapters
are well written, with plenty of good examples.
The largest of the four parts, Advanced Gnuplot,
has dedicated chapters for topics such as 3D
plotting and colour, as well as methods for
generating plots, and slide-shows, using scripts.

The book is as much about Gnuplot commands
and options as it is about its application to
graphical data analysis, although for the latter
the author also refers you to specialist books.
With data driven computing (Big Data) getting
more and more attention everyday, this book has
its place on the data analyst’s bookshelf.

As with most Manning books, those who buy the
printed copy of the book are automatically
entitled to download the electronic e-book
versions free of charge.

Introduction to the Boost
C++ Libraries Volume II –
Advanced Libraries
By Robert Demming and Daniel J.
Duffy, published by Datasim
Education, ISBN: 978-94-91028-02-1

Reviewed by Paul Floyd

Fairly obviously, this books carries on where
Volume 1 left off. Roughly, the libraries covered
fall into three main categories: maths, network
and graphs, as well as a few odds and ends.

I felt that the early mathematical chapters were
a bit lacking. The examples seemed to lack
purpose other than being examples. Some of the
examples didn’t even seem to illustrate the point
being made that well. For example, in Chapter
2 ‘Math Toolkit: Special Functions’, there are
examples of using nextafter, float_next

and float_prior. The results are streamed
out to cout at the default precision whereas at
least 16 places are needed to be able to see any
difference.

Things improved from Chapter 3 onwards, and
I felt that from then on there were no more gaps
in the coverage, and the chapters on I/O
networks and graphs made plenty of effort to
cover the background subject matter. I would
recommend this book for all but the first two
chapters.

Measuring the Software
Process – Statistical
Process Control for
Software Process
Improvement
By William A. Florac, Anita D.
Carleton, published by Addison Wesley, ISBN: 978-
0201604443

Reviewed by Paul Floyd

What a difference there is between this book and
the subject of my book review, Practical
Software Measurement. I suppose that in a way
that makes them rather complementary. This
book is very much concerned with the practical
side of measurement and statistical analysis.

The first two chapters cover background and
planning what to measure. The core of the book
then covers collecting data, analyzing it and
using it for process improvement. The tone and
language is similar to that of Deming, talking
about the process being under statistical control
(or not). If the process is not under statistical
control, then it’s because there are assignable
causes. Once you’ve identified and eliminated
assignable causes, then the remaining variations
are inherent in the process, and you can set about
reducing that variation.

The final two chapters give advice on how to
improve your process based on the
measurements and analysis and some practical
tips covering getting started and a FAQ. The
appendices mostly cover the statistical methods
that are required for the analysis described in the
book.
28 | | NOV 2012{cvu}

I felt that the best part of the book was the advice
on how much data to collect and how soon to
start using the analyses. The main thing that
seemed to be lacking was real-world examples.
These methods seem to be commonplace in
manufacturing industry but rare in software
development. There are some examples in the
text, but too short to give any real feeling as to
how much benefit can be had from applying
measurement in this way.

Practical Software
Measurement – Objective
Information for Decision
Makers
By John McGarry, David Card, Cheryl
Jones, Beth Layman, Elizabeth Clark,
Joseph Dean and Fred Hall, published by Addison
Wesley Professional, ISBN: 978-0-20-171516-3

Reviewed by Paul Floyd

Not recommended.

Seven authors for 268 pages, or about 38 pages
each. It does look a bit like a committee. That’s
not a criticism, just something I find remarkable
as I’m used to books being written by one or two
people.

I found the first three chapters quite good,
covering background, a model for the process of
measurement and planning for introducing
measurement into a development process. Then
I felt that the book lost its way. The next chapters
cover the ‘do-check-act’ parts of the Deming
cycle. For example, the ‘Perform Measurement’
chapter includes explanations of the differences
between line charts, bar charts and scatter charts.
There are a lot of general guidelines, most of
which seemed like obvious common sense.

The appendices (over 100 pages) were better
with a larger, more developed example and a
couple of real world case studies.

There isn’t enough technical content to be of
much use to someone that will be a practitioner
of measurement. That leaves management as the
target audience, more or less as the book subtitle
says. I hope that most managers don’t need
general advice that would be applicable to any
major undertaking (stuff like don’t alienate your
staff and get high management buy-in). I’m
afraid this one’s heading to the back of my
bookshelf.

Release It!
By Michael T Nygard, published by
Pragmatic Bookshelf, ISBN:978-0-
9787-3921-8

Reviewed by Chris Oldwood

I’m not exactly sure how I came
across this book; it had a good reputation on the
grapevine and I appeared to be spending more
time working on distributed systems, so seemed
a suitable choice.

As Michael states in the preface, this is a book
for architects, designers and developers working
on enterprise-class systems. In essence the focus
is on server-based and back-end systems – not

desktop apps. The book is split into 4 parts:
Stability, Capacity, General Design Issues and
Operations with the first two parts taking a
pattern language approach, whilst the latter two
are more of a collection of loosely related topics.

The first two parts both start with a 10-page case
study that sets the scene for the collection of
patterns and anti-patterns that follow. Besides
providing a back-drop for the pattern language
the case study includes an attempt to put a real
cost to the business on the failures in question.
This provides a sobering thought that only goes
to highlight how important the subject matter
really is. There are also numerous side-bars
throughout the book that take a far more
technical look at the issues in question, such as
capturing network packets.

Specifying timeouts was already on my list of
essentials, but now the terms Circuit Breaker
and Bulkhead also seem to be part of my regular
vernacular. The key message from the Stability
chapters is about de-coupling the various parts
system whereas the Capacity section is about
being careful with pooling and caching. The
anti-patterns in the Capacity part have a definite
web bias but I suspect that’s just because there
are so many more different ways to host your
servers.

The grab-bag of topics covered under General
Design Issues includes multi-homed servers,
clustering and configuration files – all
interesting stuff. This leads on to the final part
on Operations. Once again Michael takes a few
pages to recount a story before heading into
discussions around log file formats and various
forms of monitoring. Chapter 18 concludes the
book by proposing how to adopt a more agile
approach to development so that systems will be
able to mature and grow in ways that seek to
minimise the chances of the anti-patterns rearing
their ugly heads.

Software Configuration
Management Patterns
By Stephen P Berczuk with Brad
Appleton, published by Addison-
Wesley, ISBN: 978-0201741179

Reviewed by Chris Oldwood

I’ve been blessed in that right from the start of
my professional career I’ve always had a
Version Control System behind the codebase
I’m working on. Naturally in the intervening
years I’ve formed my own opinions about
codelines and good SCM policies. So why buy
a book? Mainly I was looking for a deeper
understanding of the forces that drives the need
to isolate and join codelines and also a dictionary
to help ensure I understood the correct meanings
of the terminology I appeared to be using.

This is a neat little book weighing in around 160
pages after you’ve ignored the aging
appendices, so slips nicely on the shelf. Like
many books of its era, it takes a patterns-style
approach to describing the various concepts, but
only after going through some background
notes. The first 3 chapters are all about getting

a fluid development process in place and putting
some key terms into the right context. I suspect
most of this is de rigueur these days but the
books listed in the further reading sections are all
sound recommendations that you probably
already own.

The meat of the book is a language of patterns
that are both specific to the SCM world, such as
‘Mainline’, and also tangential like ‘Unit Test’.
The reason for this is that they are all part of the
larger context which is the developer’s
Workspace – the sandbox that we play in day-
to-day. Hence ‘Private Workspace’ is
introduced early on as the pattern language
loosely follows the timeline of changes from
sandbox, to branch, to build system. ‘Integration
Build’ on the other hand tackles the post-commit
side of the process.

There are seven patterns that directly relate to
branches of various kinds, each of which has a
different policy. Curiously ‘Codeline Policy’ –
the meta-pattern if you like – doesn’t get
documented until you’ve already met three of
the concrete types. Then there are five patterns
covering the build and test side which may seem
out-of-place but really it’s about promoting
practices that ensure commits are solid as you’re
effectively publishing your changes at that
point. This just leaves a couple of other
miscellaneous SCM patterns to shore up the
good practices, e.g. ‘Task Level Commit’.

Sadly the two appendices highlight how far this
subject has moved on in the last 10 years because
although some of the main URLs in Appendix
A are still valid, the list of SCM tools in
Appendix B is pretty hopeless. There isn’t even
mention of Subversion (only CVS) let alone any
of the more well-established Distributed VCSs
like Git or Mercurial.

I came looking for a book that discussed
branches and merging in a bit more detail than
the bigger general-purpose development books
cover – which I found.

REST in Practice
By Jim Weber, Savas Parastatidis,
Ian Robinson, published by O’Reilly,
ISBN: 978-0-596-80582-1

Reviewed by Paul Grenyer

I read this book because I wanted
to learn about REST for a project I’m doing.
This book taught me about REST. In fact it did
it in the first five chapters. That’s less than half
the book and it could have been quicker! There
is a lot of, to my mind, unnecessary detail that
could have been postponed to later chapters or
even an appendix. I just wanted to get to the code
and to the ‘how’, I’m not overly interested in the
‘why’ in this much depth. Furthermore I found
the vast majority of the diagrams
incomprehensible and totally unhelpful.

However, the book did answer my questions
about REST and even using the same REST
framework I’d chosen for my project. Unlike a
lot of other books, web service clients were not
neglected. In fact they were there in as much
NOV 2012 | | 29{cvu}

detail as the server side components with real
code! The format of the book is also great for
skipping to the good parts and the parts with
code.

Inside the C++ Object
Model
By Stanley B Lippman, published by
Addison-Wesley, ISBN: 978-
0201834543

Reviewed by Chris Oldwood

I managed to pick this book up second hand from
Jon Jagger’s book stall at the ACCU conference
this year. It’s been on my wish list for a long time
as I’ve always had a fondness for ‘under the
hood’ style books. The big question though is
how well has it aged? Surprisingly well it
seems...

Just a week or so ago the age old argument about
C++ being bloated and inefficient reared its ugly
head again. The answer it now seems is to point
the protagonists to this book as Lippman cites
this common myth in his preface as one reason
for writing it. I agree with him that an
understanding of the implementation helps with
writing more efficient code from the get go as
you know the costs of various language features.

The book is split into 7 chapters and starts with
the fundamental Object Model – how an object
is represented in memory. He doesn’t just cover
what a v-table is, but instead walks through in
detail how we got from a C style struct to a C++
polymorphic object, including such trade-offs as
where to place the v-table. He makes continuous
references to the evolution of Cfront which
helps you understand the earlier constraints that
drove the language.

Once the model is cemented he goes on to talk
about constructors (default & copy), data
members and then different types of functions
(static, non-static & virtual) in the following 3
chapters. He covers the Named Return Value
Optimisation in depth and provides some
performance figures to back things up. What is
particularly noticeable is the number of pages

devoted to dealing with Virtual Base Classes –
you’ll begin to understand why developers often
shy away from them.

Chapter 5 looks at the semantics (rather than just
the mechanics) of constructors and destructors
and their effects on the compiler. Chapter 6
covers new & delete and the tricky issues that
initialising arrays throw up. Plus he covers
temporary objects in fine detail as that provides
a common source of folklore it seems.

The final chapter looks at the then ‘new editions’
to the language – Templates, Exception
Handling and Runtime Type Identification
(RTTI). Given its age this chapter is lighter on
content, but the mechanics and lineage are still
very useful. I also learnt another thing about
name resolution within templates that really
surprised me – this alone made purchasing it
worth the price.

Fluent C#
By Rebecca Riordan, published by
SAMS, ISBN: 978-0672331046

Reviewed by Adam Petersen

Let me state right up front that
I’m not in the intended
audience for this book. Fluent C# is a
book for beginners to programming.
Although I do feel like one from time
to time, I’ve spent the better parts of my
adult life hacking together software systems of
all scales. Reviewing a book for novices is hard.
My view will be quite different. A reader with
little programming experience is likely to focus
on other aspects and will probably face different
problems. So why did I opt to review it? Well,
this book claims to be different. It’s based on
principles of cognitive science and instructional
design. Both topics I have an interest in. From
that perspective parts of the book provide an
interesting read. To a beginner interested in
learning C#, the technical inaccuracies are likely
to become an obstacle.

Superficially, Fluent C# is similar to the well-
known Head-First books. Perhaps this is of little

surprise since they both draw their educational
principles from the same basic research. The
learning concept is based on activating multiple
senses. The book is littered with graphics,
dialogues and attempts to provide the big picture
early on. The details are filled-in as we read
along. Whereas I’m a big fan of the Head-First
concept, Fluent C# doesn’t work as well. The
most striking problem is the layout. All pages
are set in a soft, brown tone that becomes
strenuous to read. The layout definitely has to be
fixed in future editions.

As far as the technical content goes, Jon Skeet
has published a +60 pages document on Fluent
C#. The document contains notes and an
unofficial errata for the book. The errors range
from ambiguous language, syntax errors, and all
the way down to the curious case of code in a
different language than the C# promised in the
title (in this case some VB code got included in
one example). Some amount of errors is
inevitable; I mean, even Knuth makes them. But
in a book aimed at beginners, the number of
errors and omissions has to be considered a
serious flaw. If we look beyond the errors to the
actual content, we see that the bulk of the book
is about writing applications with the Windows
Presentation Foundation (WPF). The actual C#
introduction is quite rudimentary. A lot of later
additions like implicit typing and LINQ are
skipped. Instead the author attempts to mix in
some high-level design discussions. I find it hard
to see how a novice programmer could benefit
from these brief discussions on architectural
design patterns. A pattern like Model View
Presenter (MVP) is non-trivial in its details and
requires experience beyond what Fluent C#
provides.

I took on this book with high expectations. Far
too many introductory books take a narrow,
technical perspective. Programming is hard
enough as it is. We need books like this,
designed to actually learn from. I do hope future
editions address the present problems. In its
current state I cannot recommend the book.
30 | | NOV 2012{cvu}

accu ACCU Information
Membership news and committee reports
View From the Chair
Alan Griffiths
chair@accu.org

One of the great things about the
ACCU is that volunteers do everything. People
volunteer their time and skills to progress the
things they feel the organisation needs. In return
for this they get a feeling of accomplishment and
recognition from their peers (the other
members).

One of the problems with ACCU is that
volunteers do everything. People doing things
are all volunteers who usually have families, full
time jobs and other distractions from getting
ACCU business done. That means that things
can happen slower than one might hope.

Writing “From the Chair” makes me reflect on
what has happened and what needs to happen.
I’d love to be reporting something and exciting
every time but the reality is that we are making
slow, steady progress. It is far from exciting.

Since my last report one of our widely
recognised volunteers has decided that his other
commitments are such that he has had to reduce
his contribution to ACCU. Over the last decade
Paul Grenyer has created our “Mentored
Developers” group and kept it going. That has
now changed and Chris O’Dell has taken over
organising the “Mentored Developers” and has
replaced Paul on the committee. I’m sure you’ll
join me in thanking Paul for his contribution
over the years and wishing him well with his
new activities and in welcoming Chris.

One other service that Paul provided for the
ACCU was moderating the accu-contacts
mailing list. This isn’t an onerous task – there are
a few emails each week to classify as “OK”,
“Spam” or “needs fixing” – but we don’t
currently have a replacement for this role. Please
contact me at chair@accu.org if you are willing
and able to take over.

Our “website” working group headed by Dirk
Haun has started to understand and document
the complexity of the problem they are facing.
Like many of the problems we developers face
every day it looks simple until you understand it!
And like we do every day the team has started
identifying things they can fix incrementally. I
understand that some volunteers have stepped
forward to help since my last report. Hopefully
there will be more details to report next time, but
until then “thanks” to those getting to grips with
the problems.

You’ll have seen elsewhere (such as the accu-
members mailing list and the website) that
Giovanni Asproni has been making sure that our
processes are clear and taking steps to bring us
into the internet age. Some examples are
publishing the officers list and contact details
and our complaints procedure on the website. He

has also set out how members can participate in
committee meetings.

Giovanni has also been working with Mick
Brooks on updating the constitution “for the
internet age” (as planned at last year’s AGM). A
draft has now been circulated to the committee,
and will probably be made public around the
time you read this. This is an important piece of
work and will be voted on under the new remote
voting rules introduced at last year’s AGM.
There will be an opportunity to discuss the draft
before the motion is formally proposed – watch
accu-members for updates.

We’ve just passed the busiest time of year for
membership renewals – and Mick Brooks (the
Membership Secretary) reports that membership
numbers are holding steady. We can view that
positively that ACCU still offers value for
money in these difficult economic times.

The ACCU does a good job of keeping the
loyalty of existing members so it is doing
something right, but it doesn’t do so well at
attracting new members. There must be loads of
developers “out there” who would benefit from
ACCU if only they knew what it could do for
them. A pity we don’t have a volunteer with the
skills and motivation to help them.

Secretary’s Report
Giovanni Asproni
secretary@accu.org

Making the ACCU more trans-
parent
You may have noticed that the current
committee is trying to make the inner workings
of the association more transparent to the
membership – we started with the creation of the
accu-members mailing list, and the publication
on it of the minutes of each meeting after they
are approved, and of other announcements of
importance to the membership.

Then we published the officers page with the
names and (most) emails of the committee
members, the journal editors and the conference
Chair.

We also published the complaints procedure –
after some episodes of discontent from members
with the way the association was dealing with
some issues, we realised that we needed to create
a clear complaints procedure.

Finally, we are opening up the participation to
the committee meetings. Those meetings have
always been open to the membership, but,
probably, only a few members knew that.

What follows is what we have already published
on the accu-members mailing list and on the
members section of the ACCU website. If you
have any comments, suggestions, or even
criticism, please send them to
secretary@accu.org.

Committee meetings: what to do if you
want to attend
Committee meetings have always been open to
members, but chances are only a few people
knew that. That said, there are at least two
problems.

First, the available space is usually limited since
the meetings are often held at the home of one of
the committee members, or in a room lent to us
by a company or a charity – e.g., the meeting of
July 2012 was held at Bletchley Park in a very
small room.

Second, it may be difficult for members to attend
in person either because they live far away from
where the meeting is being held, or because they
are interested only in part of it.

Therefore, in order to alleviate those problems,
we are willing to experiment with Google
hangouts – and other virtual meeting
technologies – to let people attend remotely. We
are already using these technologies to allow
committee members to take part in the meetings
when they cannot participate in person. The
procedure will be as follows. The secretary will
advertise the meeting time, place and agenda in
advance on the accu-members list. If you are
interested in attending, either in person or
virtually, send an email to secretary@accu.org,
and you will be sent the joining instructions.

One thing to keep in mind is that there are some
technical limitations – e.g., Google hangouts
allow only a maximum of ten people connected,
and participants must have a google plus account
– and we are still experimenting with the
technology, so things may not be very smooth at
the beginning and we may be forced to limit the
virtual attendance to just a few, on a first come
first served basis and subject to availability, with
committee members getting precedence. Since
the space constraints are going to stay, we will
need to limit in-person attendance as well on the
same first come first served basis with
precedence given to the committee members.

Complaints procedure
The ACCU is an association run by volunteers
who do that in their spare time for no
compensation. They always try to do their best,
but, sometimes, they make mistakes which may
end up upsetting some members.

If you want to report an issue to the committee,
you can contact any committee member – to find
their names, roles and email addresses login
with your details and follow the link ‘Officers’
under the ‘Members Section’ area on the left
side menu – but, the best procedure is the
following:

 If you want to complain about matters
regarding one of the ACCU magazines,
the best thing to do is to email the editor
first. Their mail addresses are
NOV 2012 | | 31{cvu}

accuACCU Information
Membership news and committee reports
REVIEWS

cvu@accu.org for CVu and
overload@accu.org for Overload. If you
are not satisfied with the answer you can
escalate to the publications officer at
publications@accu.org

 If you want to complain about something
regarding the conference, you should
contact the Conference Chair first at
conference@accu.org

 For anything else, the best thing to do is to
contact the secretary at
secretary@accu.org or the ACCU chair at
chair@accu.org

If you feel you need to escalate your issue
further, please contact the ACCU Chair at
chair@accu.org, and, if you are still not
satisfied, the constitution allows you to call a
general meeting. Please have a look at the
constitution for the details.

ACCU officers
The names, positions and (where available) the email addresses for the ACCU officers are given in
the table below:

Name Email Role

Committee: Executive members

Alan Griffiths chair@accu.org Chair

Robert Pauer treasurer@accu.org Treasurer

Giovanni Asproni secretary@accu.org Secretary

Mick Brooks accumembership@accu.org Membership Secretary

Seb Rose ads@accu.org Advertising

Astrid Byro publicity@accu.org Publicity

Roger Orr publications@accu.org Publications Officer

Committee: Non-executive Members

Ali Cehreli US Agent

Andrew Marlow andrew@andrewpetermarlow.co.uk

Chris O'Dell christine.ann.odell@gmail.com Mentored Developers

Dirk Haun dirk@haun-online.de Website

Jon Jagger conference@accu.org ACCU Conference Chair

Mark Radford standards@accu.org Standards

Matthew Jones Local Groups

Paul Grenyer

Silas Brown Disabilities

Stewart Brodie

Tom Hughes tom@compton.nu

Journals

Steve Love cvu@accu.org CVu Editor

Frances Buontempo overload@accu.org Overload Editor

If you read something
in C Vu that you
particularly enjoyed,
you disagreed with or
that has just made
you think, why not put
pen to paper (or finger
to keyboard) and tell us about it?
32 | | NOV 2012{cvu}

	Not Doing The Wrong Thing
	Using the Unix ptrace API
	Functional Decomposition
	The Contradictions of Technical Recruitment
	The Advanced Coding Test
	Standards Report
	Agile East Anglia: A Short History
	Code Critique Competition 78
	Two Pence Worth
	Bookcase
	ACCU Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Helvetica
 /HelveticaNeue-BoldExt
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

