

MAY 2011 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.

Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Coincidence and
convergence

s I write this, I’m in the last stages of preparing
a talk for the ACCU 2011 conference. By the
time you read this, of course, the conference

will be finished, and maybe you attended and if you did,
I hope you enjoyed it!

Anyway, this year I’m sharing a session with Roger Orr.
This came about because we each proposed our own
talks on such a similar topic that, due to timetabling and the
sheer number of proposals, we felt we should join forces.

As it happens, we each proposed a talk about the subect of
Equality, and funnily enough, at least part of each of our
inspiration came from a talk given some time ago by
Angelica Langer (possibly best known to this community for
being co-author of C++ IOStreams and Locales). She
spoke on the subject of Equality in Java (I don’t know
whether Roger and I saw the exact same talk, but the
topic was the same). This was a sufficiently complicated
topic, especially for C++ programmers coming to Java
for the first time, that it fully justified the length of the
session.

Both Roger and I thought that it was still sufficiently difficult
– not least because the problems are different for each langauge – to deserve another
session.

That a talk given by someone on a topic that certainly wasn’t directly relevant to me
(at the time) would one day affect my thinking in general about the problem isn’t that
surprising. That it so affected at least two people the same way to the extent that
they independently propose their own talks on the subject, several years later, is
perhaps unexpected. I suppose my point is this: funny how things work out, isn’t it?

 A

Volume 23 Issue3
May 2011

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Pete Goodliffe, Paul Grenyer,
Richard Harris, Yechiel Kimchi,
Chris O’Dell, Roger Orr,
Seb Rose

ACCU Chair
Hubert Matthews
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | MAY 2011

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
19 Code Critique

Competition #69
Set and collated by
Roger Orr.

22 Desert Island Books
Chris O’Dell makes her
selection.

REGULARS
23 Bookcase

The latest roundup of
book reviews.

24 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 23.3: 1st June 2011
C Vu 23.4: 1st August 2011

Overload 104:1st July 2011
Overload 105:1st September 2011

FEATURES
3 A Game of Divisions

Baron Muncharris sets a challenge.

4 Testing Times
Seb Rose shows that unit tests are for everyone.

7 On a Game of Blockade
A student performs his analysis.

8 Coding Standards for Software Correctness
Yechiel Kimchi divides and conquers.

12 Concurrent Programming in Go
Alexander Demin examines Google’s Go language.

16 Relish the Challenge
Pete Goodliffe encourages us to seek out a new challenge.

18 ACCU 2011 Conference
Chris Oldwood shares his experiences.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

MAY 2011 | | 3{cvu}

A Game of Divisions
Baron Muncharris sets a challenge.

reetings Sir R-----! I trust that I find you in good spirit?

Will you join me in a draught of this rather fine Cognac and
perchance some sporting diversion?

Good man!

I propose a game that ever puts me in mind of an adventure of mine in the
town of Bağçasaray, where I was posted after General Lacy had driven
Khan Fetih Giray out from therein. I had received word that the Khan was
anxious to retake the town and been given orders to hold it at all costs.

I had at my disposal three divisions of the Empress’ own Hussars with
which to fend off the Khan’s impending assault. Unfortunately I knew not
whether he intended to concentrate his forces at the north or at the south
gate.

This placed me in something of a quandary; entire, I was certain that my
company should prove more than a match for his, but divided they might
easily be overwhelmed.

After much deliberation I decided to place my trust in fate and directed all
my men to defend the north gate, whilst I alone stood guard over the south.

To my very great fortune, the Khan brought the greater part of his company
to bear upon the south gate, affording me an excellent morning
constitutional!

Modesty forbids me from observing that the lesson I gave them that day
in no small part contributed to their ultimate defeat at Qarasuvbazar.

But I fear I digress! We should most assuredly be better served if I
described the manner of play!

Here before you I have placed an ace of spades, which shall stand for the
north gate, and an ace of hearts, which shall stand for the south.

At each turn you must wager three coins from your purse upon these gates.
You may divide the coins between them howsoever you wish; you may
place your coins in whole or in part, it is of no consequence.

I shall then toss this here coin; if it comes up heads then the north gate shall
win the turn, else it shall be the south.

Those coins you wagered upon the winning gate shall be returned to you
and I shall add to them a bounty of equal size. Be warned, however, that
I shall have those wagered on the losing gate for my own purse!

Honour compels me to add that the coin is not fair; on the average it comes
up heads nine times out of twenty and tails eleven times out of twenty. Or
was it the other way around? Now I think on it, I have quite forgot!

No matter! The game shall last six turns and cost you one fifth part of a
coin to play.

When I described the rules of play to that oafish student acquaintance of
mine he, true to form, commenced babbling on about some utterly
inconsequential topic. As I recall it was some hospital tragedy involving
triangular pastilles of all things! I should say that the only hospital he
should concern himself with is the Bethlam Royal and of his not being
admitted therein forthwith!

But let us not tarry upon his ridiculous concerns. Come, take another
draught and think upon how you may best hedge your bets! 

Listing 1 is a C++ implementation of the game.

 G

A Game of... # 11

BARON MUNCHARRIS
In the service of the Russian military Baron Muncharris has
travelled widely in this world, and many others for that
matter, defending the honour and the interests of the
Empress of Russia. He is renowned for his bravery, his
scrupulous honesty and his fondness for a wager.

bool
bias()
{
 return
 double(rand())/(double(RAND_MAX)+1.0) < 0.5;
}
bool
toss()
{
 return
 double(rand())/(double(RAND_MAX)+1.0)
 < 0.55;
}
void
play()
{
 const bool bias_north = bias();
 double balance = -0.25;
 for(unsigned i=0;i!=16;++i)
 {
 std::cout << "Round " << i+1 << ": ";
 std::cout << "Balance
 = " << balance << std::endl;
 double north_coins = -1.0;
 while(north_coins<0.0 || north_coins>3.0)
 {
 std::cout <<
 "How many of your 3 coins will ";
 std::cout <<
 "you wager on the north gate? : ";
 std::cin >> north_coins;
 if(north_coins<0.0 || north_coins>3.0)
 {
 std::cout << "I beg your pardon?" <<
 std::endl;
 }
 }
 balance -= 3.0;
 const bool north
 = bias_north ? toss() : !toss();
 if(north) balance += 2.0*north_coins;
 else balance += 2.0*(3.0-north_coins);
 if(north) std::cout << "The north ";
 else std::cout << "The south ";
 std::cout << "gate wins!" << std::endl;
 }
 if(balance>=0.0)
 std::cout << "You won " << balance;
 else if(balance<0.0)
 std::cout << "You lost " << -balance;
 std::cout << " coins!" << std::endl;
}

Listing 1

Testing Times
Seb Rose shows that unit tests are for everyone.

ike most people who have been exposed to popular western cinema I
know that the right place to start is ‘at the very beginning’[1]. You’ve
got to understand, though, that the beginning isn’t necessarily where

you think it should be – it’s where I want it to be. And so, in time honoured
Hollywood tradition, I’m going to start this tale at the end. With a question.

Imagine you have been working on a software project. How would you
determine that the current phase of the project had completed successfully?

Assume that each phase delivers something useful to your customers. We
should also assume a broad definition of customer that includes not only
a fee paying public, but a wage paying organisation, down stream
colleagues and implementers of future maintenance and enhancement
requests.

That’s a lot of people to satisfy. Did we just start thinking about them at
the end of the project?

‘Not at all,’ you say, ‘we thought about these customers all the way through
the project. No one in their right mind would leave all this hard thinking
till the end of a project. When the deadline is approaching and the feature
set is incomplete and that intermittent defect is sucking up all our time, the
last thing we want to think about is whether the product is going to be easy
to support.’

You’re right. Of course, you’re right, but lots of organisations work this
way. They may have product management feature lists, a documentation
department, an installation development team, quality indicators and
serviceability specifications. They may even work in parallel with product
development. There may even be (gulp) regular, meaningful
communication between all these teams, but in the end those last weeks
and months are typically frantic and fraught with compromise and
mitigations.

Now, back to the question – how do you measure success? The simple
answer is that all your customers should be satisfied, but how can you tell
that they will be satisfied BEFORE you release the product?

One part of the answer is early feedback, beta programmes and the like,
but in this article I’m going to talk about testing. Acceptance testing,
integration testing, unit testing. Specifically, automated testing, using the
tests to drive the product development – outside-in.

Acceptance Test Driven Development
Here we are at the beginning of the project. What should the development
team have to get them going? A detailed, signed off requirements
document? A prioritised backlog of user stories? A vision statement from
the corporation’s Evangelist Tzar? We all have our own preferences, but
the reality is you take what you’re given and start from there.

At this point I’d like to introduce a remarkable book that came out in 2009
– Growing Object Oriented Software Guided By Tests [2]. It’s remarkable
in many ways, not least because of its utilitarian ‘does what it says on the
tin’ title, so if you haven’t read it yet I urge you to borrow it from your
local public library (if you still have one). The book covers a lot of ground,
and the design guidelines are directed at OO development. However, a lot
of the book describes a test-driven development (TDD) feedback loop –

see Figure 1 – that is not only applicable to OO development. [3]

The authors make use of Cockburn’s idea of starting a development project
with a ‘walking skeleton’ [4], which is (my highlights):

an implementation of the thinnest possible slice of real functionality that
we can automatically build, deploy and test end-to-end

This addresses some of the important barriers to automated testing up front,
letting us use automated tests (at all levels) to drive all subsequent
development. We can now write acceptance tests that can validate when
a piece of functionality is delivered, and this is known as Acceptance Test
Driven Development (ATDD).

I’ll go into more detail about the feedback loop used in all levels of TDD
a little bit later, but the point here is that, using ATDD, product owners
can collaborate with the development team to produce acceptance tests
BEFORE the code implementing the features is developed. These
acceptance tests serve as design and documentation of features and (as long
as they are run regularly) CANNOT get out of sync with the code.

Over the years, a lot of work has gone into developing frameworks that
allow acceptance tests to be expressed in a way that is consumable by
business people as well as development. One of the earliest examples I’m
aware of is FIT [5], which has been made more interactive by Fitnesse [6],
but there are many others (notably Cucumber [7]). The underlying thrust
is to allow the creation of a Domain Specific Language (DSL) that can be
used to write tests that describe (in a readable way) how to test that a feature
works as intended. The framework then translates the DSL into actions that
execute the tests.

Don’t, however, get distracted by the ATDD tools – which can lead to an
ATDD cargo cult. The value of ATDD is in improving communication
between business people and development. The whole subject is given a
much more detailed treatment in Gojko Adzic’s book Bridging the
Communication Gap [8]. And, as Elisabeth Hendrickson said recently on
her blog [9]:

Starting an adoption of ATDD with the tools is like building an arch from
the top. It doesn’t work.The tools that support ATDD – Fitnesse,
Cucumber, Robot Framework, and the like – tie everything together. But
before the organization is ready for the tools, they need the foundation.
They need to be practicing collaborative requirements elicitation and
test definition. And they need at a bare minimum to be doing automated
unit testing and have a continuous automated build system that
executes those tests.

Test Driven Development
A few weeks ago I went to the ‘Simple Design and Test’ Conference in
London. It wasn’t particularly well attended (possibly because it was on a
weekend or maybe it wasn’t well promoted) which is a shame, because

 L

SEB ROSE
Seb is a software contractor in some of the most
hostile environments, including banks, pensions and
manufactuers. He works with whatever technology is
prescribed by the client – mainly C++, .NET and
Java.

Figure 1
4 | | MAY 2011{cvu}

unnecessary complexity, whether intentional or accidental, makes life
difficult.

It’s not easy to identify when complexity is unnecessary, nor is it easy to
simplify something once it has been created. This is not news. The XP
community has long followed the precept of YAGNI (You Ain’t Gonna
Need It) which follows Ron Jeffries’ advice [10]:

Always implement things when you actually need them, never when you
just foresee that you need them.

Most of us will also be familiar with the pragmatic advice of KISS (Keep
It Simple Stupid) which advises us that simplicity should be a key goal in
design, and that unnecessary complexity should be avoided.

Why is it then, that software often seems to get complicated and messy?
Are there techniques or practices that can help us keep our house in order?

My answer is: ‘Yes. TDD.’

Those of you not familiar with TDD might find it odd that I’m motivating
a practice with ‘Test’ in the title by saying it will help our design. So, at
this point let me alter the meaning of the acronym and claim that TDD
stands for ‘Test Driven Design’. (I’m not alone in thinking that this is a
reasonable thing to do!)

Whichever expansion of TDD you prefer, the TDD process can be simply
stated as:

 Write a failing test

 Write just enough code to make it pass

 Refactor

 Repeat

Represented graphically, it looks like Figure 2.

This is deceptively simple – like so many techniques in life, it takes skill
that needs to be developed through repeated application of the principles.
For starters, you should only write enough code to make the test pass.
Resist the temptation to write extra code; don’t think ahead to the next test.
This seems counter-intuitive, if not down-right wasteful.

Bob Martin recently blogged about his ‘Transformation Priority Premise’.
He uses the example of the Bowling Game Kata [11], where the first test
checks that if you don’t hit any skittles, the score is 0. At this point his
implementation of the score() method simply returns 0. Surely this is
brainless:

At this point the programmers in the class roll their eyes and groan. They
clearly think this is dumb and are frustrated that I would be telling them
to write code that is clearly wrong.

What I have begun to discover is that returning zero is not nearly so
brainless as it looks. Not when you put it in the appropriate context.

When we use TDD, our production code goes through a sequence of
transformations. I used to think it was a transformation from stupid to
intelligent. But I’ve begun to see that this is not the case at all. Rather,
the code goes through a sequence of transformation from specific to
generic.

Returning zero from the score function is a specific case. But the case
is in the correct form. It is an integer, and it has the right value. Therefore
the shape of the algorithm is correct, it just hasn’t been generalized yet.

It’s also important not to skip the refactoring step. Remove duplication as
it arises. Extract, decompose, simplify. This applies to unit testing in
general not just TDD, but it’s crucial that you keep your code and your
tests clean as you go, because there is no later.

Developers often feel very uncomfortable when they start developing the
code using tests. We’re used to architecture and design and specification.
TDD certainly de-emphasises the importance of up-front design and
‘paper’ documentation and instead focuses on emergent design. That
doesn’t mean you don’t need to consider architectural issues. On the
contrary, as you write the next test, implement the code and refactor you
are making intentional design decisions all the time.

There’s a great session on QCon where Jim Coplien and Bob Martin
discuss whether architecture is necessary up-front, and accept that you
might need around a half an hour architecture discussion before embarking
on a medium sized telecoms product. [12]

And just in case you think that you can’t practise TDD because it isn’t
supported in your environment, have a look at the ‘Bowling Game Kata
in C’ [13].

Unit tests
Good Unit Tests are the foundation of these practices. They’ve been
around for decades, and lots has been said by the great and the good [14].
But if it’s worth saying once, it’s worth saying again…

First let’s get one thing straight, from Michael Feathers [15]. A test is NOT
a unit test if:

 It talks to the database

 It communicates across the network

 It touches the file system

 It can’t run at the same time as other unit tests

 You have to do special things to your environment (such as editing
config files) to run it

The reason for these restrictions is that unit tests need to run quickly and
reliably. Developers practicing TDD will run them every few minutes and
automated builds will need to run them unattended. Tests that have
dependencies on the environment have ways to fail that have nothing to
do with the behaviour under test and I wouldn’t include them in a unit test
suite. Your mileage may vary.

In the tradition of coining ‘-ities’, I propose the following 5 for unit testing
(along with a cast iron rule)

 Testability

 Necessity

 Granularity

 Understandability

 Maintainability

Unfortunately, I can’t make a nice acronym out of these: MUNGT,
TeNGUM. All suggestions gratefully received.

Testability

Writing unit tests is hard. People argue about what constitutes a unit.
Again, I have my opinions, but as long as they pass the Feathers test
(above) I’m not going to get into that argument here. But… you do need
some idea of unit, and when writing a test, you need to test just the unit-
under-test. If the unit-under-test depends on other units you can get into a
huge muddle trying to get those dependencies into a suitable state. This is
when you need to avail yourself of whatever language feature is available
to implement a seam.

Fi
gu

re
 2
MAY 2011 | | 5{cvu}

The seam is a concept introduced by Michael Feathers [16] that he
describes as:

a place where you can alter behavio[u]r in your program without editing
in that place

How you alter behaviour depends on what you’re doing and the
environment you’re working in. You may need to create fake
dependencies, or make use of mocking libraries. You might customise
factories or roll your own dependency injection framework. Whichever
strategy you choose, you’ll need to write your code so that it is testable.
One of the huge benefits of TDD is that the tests come first, guaranteeing
that your code is testable.

 Testability needs to be designed in

 TDD ensures code is testable

 Code with hidden dependencies is hard to test

 Dependency Injection/Inversion

Pass dependencies into code under test

Write factories that permit injection of test doubles

 Interfaces should be cohesive

Wide interfaces encourage unnecessary coupling

 Avoid globals, singletons etc.

 Retro-fitting unit tests is hard

 Take small steps

 Introduce a ‘seam’ – c.f. Working Effectively with Legacy Code

Necessity

I’ve previously said that we should only write code in response to a failing
test, but that doesn’t mean that every method has a test. Everything needs
to be tested, but not every test is necessary.

 Test observable behaviour

 Don’t modify encapsulation to aid testing

 If a behaviour isn’t observable through public interface, what is
it for?

 Don’t slavishly write one test per method

 Test behaviours

 Some methods may not need any dedicated tests

 Complex behaviours are likely to need many tests

 Choose test variants carefully

 Edge conditions

 Invalid inputs

 Multiple invocations

 Assert invariants

 Error signalling

Granularity

There’s plenty of advice about keeping methods small and classes focused.
The same advice should be applied to unit tests. Each test should only
exercise a SINGLE observable behaviour.

 It is tempting to combine related behaviours in a single test –
DON’T… even if EXACTLY the same steps are needed

Understandability

Tests will fail. When they do you want to be able to fix the problem fast,
so it’s important that the tests themselves are understandable.

 Name tests to describe the behaviour under test

 Describe nature of the test

Is it checking that preconditions are enforced?

Is a dependency going to signal an error?

 Long names are fine – you only type them once

 Be precise

shouldReturnCorrectValue is not a good name for a test

shouldReturnCorrectSumOfTwoIntegersWithoutOverflow

should_return_correct_sum_of_two_integers_without_overflow

 When a test fails you want to know WHAT WENT WRONG

 You don’t want to reverse engineer the test

 You don’t want to run smaller tests to isolate the failure

Maintainability

Code evolves and the tests evolve with it. In my experience the
maintainability of the test suite is the biggest hurdle to getting value from
your unit tests.

 Unit Tests should be written to same quality as Production code

 Tests will be maintained and read just as often as production
code

 Code is communication to other developers not just a compiler

 Organise tests into cohesive suites

 Refactor tests to avoid duplication

 Use suites to perform common set up/tear down operations

 Extract common code into methods

 Extract common functionality into classes

As Martin Fowler [17] once said:

Any fool can write code that a computer can understand. Good
programmers write code that humans can understand.

Cast iron rule

And let me be absolutely clear about the one CAST IRON RULE of unit
tests:

No Unit Test should EVER depend on the outcome of any
other Unit Test

Conclusion
Software developers are in the business of delivering value for their
customers. I hope I’ve shown that tests, no matter what layer they are
written at, can form the basis of an executable specification that can be used
by:

 business people to validate that what they expected has been
delivered

 developers to validate that what they have written does what they
intended

 developers to validate that enhancements don’t break existing
functionality

 support staff to understand what the code was intended to do

 maintainers to ensure that defects get fixed and stay fixed

So, although this doesn’t exactly answer the question I posed at the start,
it does offer a way of allowing your customers to be involved in defining
the criteria by which project success can be measured.

Finale
I’ve written this article top-down or outside-in. I couldn’t see a way to
develop it one feature at a time – there was no walking skeleton.

The literary diversions that I intended to include have been left as scribbles
on small bits of paper. Consider yourselves lucky! 
6 | | MAY 2011{cvu}

Testing Times (continued)

On a Game of Blockade
A student performs his analysis.

ecall that the Baron’s game is comprised of taking turns to place dominos
on a six by six grid of squares with each domino covering a pair of
squares. At no turn was a player allowed to place a domino such that it

created an oddly-numbered region of empty squares and Sir R----- was to be
victorious if, at the end of play, the lines running between the ranks and files
of the board were each and every one straddled by at least one domino.

When the Baron described his game to me it immediately struck me that this
game was a splendid example of the pigeonhole principle!

The pigeonhole principle states that if we have n pigeonholes and m pigeons
and that m is strictly greater than n then at least one pigeonhole must house
more than one pigeon.

That mathematicians have elected to give a specific, and admittedly rather
whimsical, name to this most blatantly obvious of observations might suggest
that they are somewhat slow witted fellows, but the truly remarkable fact is
that it is astonishingly useful for analysing games of this ilk.

Indeed, I expressed as much to the Baron, but he seemed somewhat distracted
and I was disinclined from pressing the issue.

Now, given that the game concludes with the entire board covered in dominoes
it is plain that it is impossible for a line to be straddled by just one domino;
each is an even number of squares in length and must consequently be straddled
by at least two.

Given that there are five lines running between the ranks and five between the
files we must therefore use twenty dominoes to blockade them all. But there
is but room enough on the board for eighteen and it is consequently impossible
for Sir R----- to emerge victorious; indeed even if the Baron were playing to
lose he should not have contrived to do so!

I should therefore certainly have advised Sir R----- to have declined the Baron’s
wager.

Now if we were to extend the game to the entire chessboard then this argument
is rendered impotent; there is ample room for the requisite twenty eight
dominos on a sixty four square board. This is no way demonstrates that it is
actually possible to blockade all of the lines, however, and I must confess that
my fellow students and I are at something of a loss as to whether it is possible
to cover a full chessboard with dominoes such that they are. 

 R

On a Game of...
References
[1] http://en.wikipedia.org/wiki/Do-Re-Mi
[2] Growing Object Oriented Software, Guided by Tests, Steve Freeman

& Nat Pryce, Addison Wesley, 0321503627
[3] from a Nat Pryce/Steve Freeman presentation with permission
[4] Crystal Clear: A Human-Powered Methodology for Small Teams,

Alistair Cockburn, Addison-Wesley, 0201699478
[5] http://fit.c2.com/
[6] http://fitnesse.org/
[7] http://cukes.info/
[8] Bridging the communications gap, Gojko Adzic, Neuri,

9780955683619

[9] http://testobsessed.com/2011/02/25/the-atdd-arch/
[10] http://www.xprogramming.com/Practices/PracNotNeed.html
[11] http://cleancoder.posterous.com/the-transformation-priority-

premise
[12] http://www.infoq.com/interviews/coplien-martin-tdd
[13] http://www.pvv.org/~oma/TDDinC_Smidig2007.pdf
[14] http://www.stickyminds.com/s.asp?F=S13833_ART_2
[15] http://www.artima.com/weblogs/viewpost.jsp?thread=126923
[16] Working Effectively with Legacy Code, Michael Feathers, Prentice

Hall, 0131177052
[17] Refactoring: Improving the Design of Existing Code, Martin Fowler

et al., Addison-Wesley, 0201485672
MAY 2011 | | 7{cvu}

http://en.wikipedia.org/wiki/Do-Re-Mi
http://fit.c2.com/
http://fitnesse.org/
http://cukes.info/
http://testobsessed.com/2011/02/25/the-atdd-arch/
http://www.xprogramming.com/Practices/PracNotNeed.html
http://cleancoder.posterous.com/the-transformation-priority-premise
http://cleancoder.posterous.com/the-transformation-priority-premise
http://www.infoq.com/interviews/coplien-martin-tdd
http://www.pvv.org/~oma/TDDinC_Smidig2007.pdf
http://www.stickyminds.com/s.asp?F=S13833_ART_2
http://www.artima.com/weblogs/viewpost.jsp?thread=126923

Coding Standards for Software Correctness
Yechiel Kimchi divides and conquers.

oding Standard documents in the software industry are aimed at
improving code quality. They are just a small part of the SW
development process, that targets the same goal – software quality.

Here I notice that well known and acceptable SW development processes
generally bypass the role of the individual programmer, and concentrate
on the processes that surround coding. In addition, existing coding
standards, that are made to guide the individual programmer toward
creating code of higher quality, are missing parts which, in my view, are
at least as important as the parts they contain. In this article I suggest to
approach the organization of Coding Standard documents in a different
way, claiming that the new style will greatly improve software quality –
even when all other things are kept the same.

Introduction
Correctness is arguably the single most important facet of a software tool
– at least from the engineering point of view as part of the tool’s quality.
Indeed, correctness may be interpreted in different ways: from the widest
interpretation as a synonym for fulfilling all the tool’s specifications which
may include even some marketing goals like cool interface, to one of
narrowest interpretations as a synonym for fulfilling all functionality
specifications. Correctness also includes performance, when it matters.

It is this narrow interpretation that I will concentrate on – suggesting a
methodology for addressing correctness issues in Software Engineering.
Notwithstanding this narrow interpretation, we know that despite the
importance of marketing issues (appealing to customers, time-to-market,
user interface, and so on), once users discover that too much functionality
is broken, the tool is doomed (unless the tool is supplied by a monopoly).

In between there are correctness issues that are related to other engineering
aspects of software development like maintainability, testability,
robustness, modifiability, and many more [1], and all of them affect the
tool’s quality. As will be shown, most of the latter issues can also be
addressed by the suggested technique.

As software projects became more and more complex, various methods
were developed in order to deal with achieving software quality. Examples
are tools: analyzers, test-drivers, environments, bug trackers, . . . and there
are others: SW life-cycle models, methodologies (like XP [2]), and
processes (like CM [3]), to name a few. All the above (with a few tools
exceptions) approach quality at team level and above, up to the
organization level: the individual developer is just a participant in a multi-
player game. Nevertheless, we know that most of the developer’s
contribution is at the personal level: each developer contributes her own
code, even if frequently consulting with her peers. By analogy, developers
are much more like a team of chess players than a football team. Yet, when
the Personal Software Process (PSP) was published [4], it too emphasized
processes (as the term suggests) and did not directly address the actual
mode of work of the individual. This may be understandable, given the fact
that programming paradigms differ a lot in their practices. What was left
is a set of (very good) recommendations like: log and measure your work,
find your weaknesses, monitor your improvements, and so on.

I will summarize this discussion with a quote of Bjarne Stroustrup[5], that
I have found long after starting this project:

Computer science must be at the center of software systems
development. If it is not, we must rely on individual experience and rules
of thumb, ending up with less capable, less reliable systems, developed
and maintained at unnecessarily high cost. We need changes in
education to allow for improvements of industrial practice.

Although producing high-quality code is, basically, the result of
knowledge acquired through study and experience, many of the good
practices can be summarized into a short style-guide doc-ument - and this
is the subject of this article.

The article is organized as follows:

 ‘Code quality – correctness’ states the method I want to employ in
verifying code correctness.

 ‘Coding standard documents’ describes current practices related to
coding standard documents.

 ‘Coding style for correctness’ lays out the details of the suggested
coding standard.

 Conclusions and future work.

Acknowledgment: A condensed, even terse, version of this article has
appeared in the book 97 Things Every Programmer Should Know [6].

Code quality – correctness
How do we check the correctness of the code in a given module, package,
or even the whole project? If we had a formal tool, we could put the code
with its specifications at one end, and get ‘Yes’ or a list of violations at
the other end. On a smaller scale this is done in the hardware industry: With
all due respect to millions of transistors in a CPU, SW projects have higher
complexity in both control and number of states, and, therefore, automatic
tools are still in their infancy. Thus, we end up with two main resources
for verifying code quality:

 Developers’ knowledge and attention at work.

 Testing: unit tests and QA teams.

As I mentioned in the introduction, no SW development process, model,
or document explicitly says what a competent SW developer should do in
order to elevate correctness of the code – except generally referring to the
developer’s knowledge and skills. Assuming the developer is indeed
competent is not enough to be sure there are no errors, since we are all
doomed to err from time to time: ‘even experienced programmers inject a
defect in every seven to ten lines of code’ [7]. Since mechanical formal
verification is still something to desire, and since testing usually tests the
more common scenarios, we are left with manual formal verification –
arguing that a piece of code does live up to its specifications: Probably the
only way to verify that we do indeed check all scenarios, which is more
than coverage. The bad news is that as the code grows beyond a few dozen
lines (or when we try to be too formal), the proof that is required becomes
longer and more error prone than the code. The good news is that we can
skip the formal part of the proof, and argue about the code semi-formally;
namely, we verify the code just as mathematicians verify their proofs. In
essence, it does not take a big leap in order to claim that the code in front
of us is the developer’s proof that the given specifications can be
implemented.

So here is the technique for verifying a given piece of code of whatever
size. Although it is ‘borrowed’ from mathematics, it is already known in
computer science – just not very often used:

 C

YECHIEL KIMCHI
Yechiel Kimchi has a PhD in maths, has combined
SW development and teaching since 1991, and
bashes bad books on C and C++. He is interested in
developing software that is correct, maintainable, and
efficient. Contact him at yechiel.kimchi@gmail.com.
8 | | MAY 2011{cvu}

1. The underlying approach is to divide all the code under
consideration into short sections – from a single line, such as a
function call, to blocks of less than ten lines – and arguing about
their correctness. The arguments need only be strong enough to
convince your devil’s advocate peer developer.

2. A section should be chosen so that at each endpoint the state of the
program (namely, the program counter and the values of all ‘living’
objects) satisfies an easily described property, and that the
functionality of that section (state transformation) is easy to describe
as a single task – these will make reasoning simpler.

3. The task is to argue that given the property at the beginning of a
section, the code inside the section brings the program to a state with
the property asserted at the section’s end point.

4. Arguing about a series of sections is made by
realizing that the state of the program at the
end of one section is the state at the beginning
of the next section.

5. Such endpoint properties generalize well
known concepts like precondition and post-
condition for functions, and invariant for
loops, classes (with respect to their instances)
and recursive functions.

6. Striving for sections to be as independent of one another as possible
simplifies reasoning and is a treasure when these sections are to be
modified.

Not only does the above sound simple enough, but it may be argued that
developers already do it in a less intentional and less formal way than is
described here. I agree, with one reservation: Look at your favorite bug-
tracking system and count how many bugs could be prevented with a bit
of additional care (like off-by-one loop errors). Indeed, they come mostly
from thinking about the code in a casual way, which more often than not
means oversight of the less probable paths.

Does the above guarantee bug-free code? Definitely not – but it does
reduce the bug count dramatically. The coding standard that I am going to
present is aimed at making this style of verification easy to handle – as easy
as can be – given the complexities involved in program structure.

Coding standard documents
There is no doubt that coding standard documents are made for improving
the production process of software tools/projects, and many goals are
covered by the term improving production process. Some of the goals may
be kind of coincidental – like having the code ready to be processed by a
specific tool. (This is seen a lot in the HW industry, where verification tools
have to read the textual description of the design.) However, in most cases
the main reason is to elevate the quality of the code: the more safety issues
are at stake, the more detailed and strict the standard is.

Standards usually begin by requiring some adherence to code layout and
naming conventions: these make it easier for developers to become
familiar with code developed by others, including checking its correctness
and safely modifying it. Then, standards go on and require/encourage the
use of safe constructs in the given programming language, and forbid/
discourage the usage of constructs that are more error prone.

My observation is that there are two kinds of coding standards: short ones
and long ones. I believe this characterization is serious, because from my
personal experience the length of a document is highly correlated with its
contents:

 Short documents tend to emphasize code layout, which is very
important, but is just one factor of quality. They also cover some
semantic issues, but not so many.

 Long documents tend to be very explicit in usage of the target
programming language: very meticulous about do’s and don’ts with
certain constructs of it (the ones I know of are for safety critical
products).

To summarize, existing short standards are manageable, but only partially
cover what a coding guideline document should cover (virtually all
documents I had to follow were short, concentrating on layout, and on the
semantic part gave more don’ts than do’s). On the other hand, existing long
standards are much more detailed and close to being thorough in covering
many aspects of quality: For example, JSF++ [8] is 140 pages, of which
50 pages just state the 221 rules with explanations, but without examples.

The shortcomings of the long documents, in my view, are two-folds: the
first one is that a long document is harder to master. The second one is that
the long documents tend to teach the developer about the target language.
While it is not entirely redundant to recall some of the programming
language properties (say, the lesser used), we should expect that those
developers with less than a good working knowledge of the language have

other resources to improve their technical
knowledge (including in-house courses). For
example, is the following (Rule #82 in [8])
reasonable: ‘An assignment operator shall return a
reference to *this.’

It should be noticed, however, that most developers
that come with a good working knowledge of a
language, do not necessarily have the knowledge –
let alone the habit – of practising programming

styles that emphasize correct code as the outcome. The reasons are out of
the scope of this article.

There is another issue with many coding standards: they are only partially
followed when not enforced by tools – and tools are not always available.
It is my view that one of the main reasons coding standard are not very
carefully followed is that many of them are perceived as stylistic, and not
as introducing an important technical value.

Here I state the abstract concept that my suggested rules are based upon.
The main contribution of this article is that they all can be argued to support
easier verification of code correctness. The particular rules will be listed
in the next section.

1. General coding-style rules are suggested. They are general enough
not to be limited to a single programming language, though they are
a better match for structured and object-oriented languages.

2. The rules are short and easy to remember, and being general they do
not address a specific language, nor do they try to teach a specific
language.

3. They all can be put under the title make your code correct with
subdivisions of different flavours. Assuming that developers really
want their code to be correct, they will have a tendency to better
follow them, compared to following rules that sometimes seem to be
arbitrary.

4. One subtle advantage of the rules to be presented is that once the
developer understands them and their reasons, the developer can
create more rules like them either by generalizations or by
specializations, and above all these rules need not be memorized
because they are directly based on the concept of programming.

5. Code layout rules, that always have some arbitrary flavour, are
mentioned here but not stated – leaving it to be decided at company/
project/group level.

Coding style for correctness
The rules to be presented here are organized in subsections, grouping
together rules with similar flavour. All rules, however, have common
characteristics: They are short, their justifications are short, and they all
make the code easy to understand and argue about. And one last general
comment: Every rule has exceptions but an exception should be a well
thought of exceptional case.

Code layout

No coding style document ignores code layout issues. Indeed, this is the
first thing one notices about a piece of code when first seeing it. It is also

there are two kinds of
coding standards:

short ones and long
ones
MAY 2011 | | 9{cvu}

one of the topics that introduces flames in discussion lists. Code layout is
transparent to the compiler but very important to the human being: an
unfamiliar structure is much harder to decipher. Although I expect layout
rules to be reasonable, the only important thing about them is that they are
followed consistently. One can adapt to less reasonable rules, but can never
adapt to varying/no rules. The more energy one invests in understanding
the structure of the code, the less energy one has to argue about its
correctness. Code layout begins with usage and locations of various
parentheses, indentations, space around operators, alignment rules, and
empty lines. Code layout rules refer to those practices that have no effect
on the semantics of the program (e.g., indentation affects the semantics in
Python, make, and most likely more), which can be controlled by tools
(beaut i f iers , which make l i fe easy) .
Comments do belong here (where, what, how
and how much to comment).

Naming conventions are put here, but they are
exceptional: there are no tools to enforce them,
and they may have effect on the build process.
(Some environments require that names are
distinguished by a short prefix, even as short
as six characters.) With well-chosen names,
the need for comments may be dramatically
reduced. The basic rule is: Choose descriptive,
but not too long names. Tell as much as
possible using names (variables, types, functions), and ‘Comment Only
What the Code Cannot Say’ (Kevlin Henney, in [6]).

I’ll conclude this section with a personal observation about code layout:
Over the years I have reviewed, browsed and leafed through many C and
C++ books. Some of my comments of the bad ones were recorded on a
dedicated Internet page at the Technion (Israel) [9] (BadBooks). It is my
strong personal impression that there is a very high correlation between
the code layout of a book and its technical correctness and value.

Section independence

Our desire is to have each code section (a verification atom) as independent
of each other as possible, since interactions among sections are harder to
argue about. This justifies the following rules:

 No usage of gotos: a goto explicitly makes remote sections highly
interdependent.

 No modifiable global variables: they silently make remote sections
highly dependent. More explicitly, when a function uses a global
variable, one cannot argue that ‘the function is correct’ because each
call to the function makes a different challenge to argue about. You
add a new call for that function? Start arguing its correctness all over
again.

 Limit the scope of variables to the absolute minimum: If you don’t,
you’ll repeatedly argue this variable is not used in this section – why
bother? You’ll also avoid unintentional usage of it.

 Make objects immutable whenever relevant: some object must be
accessed by several sections, but only a few will modify them. Make
such an object appear immutable to other sections, and you’ll be
able to go home earlier.

Simplify sections

The simpler a section is, the shorter the argument for its correctness. (Note
that empty sections have no bugs :-) but missing ones are bugs.) Usually
a section is a function body or a block of code (e.g., a loop body).

 Make your sections short and doing a single task.

 If you perceive a nested section, factor it out as a function.

 Avoid deeply nested blocks, not just by extracting some as
functions, but also by restructuring them (see ‘Spartan
Programming’ [10] for some techniques).

 Functions should be short: recommended upper bound is 30 lines.
Recommended size – less than 20 lines. No matter how modern is

our screen – its size and its fine resolution – our brain hasn’t changed
for the last 20 or maybe 50 thousand years: it has a limited capacity.

A note on long functions: In the 1960s, the practice was to limit functions
to < 24 lines. One may attribute it to the number of lines of text screens at
that time, but this is a very partial perception of the situation: First, most
of debugging was done when reading a printout (and typing was done by
punching cards) without this limitation. Second, if manufacturing a
monitor was so expensive at that era, why monitors were not built to have
15 lines of text? There must have been some considerations of cost-
effectiveness. In practice, I rarely needed functions longer than 15 lines,
and seeing functions longer than 50 LOC is not just a nuisance, but also
reveals low level of abstraction as well as being an obstacle in achieving

a higher one. Incidentally, the longest
function I’ve actually seen was 555 LOC, and
all I can say is that in contrast to car engines,
the bigger your function is, the weaker it is.

Narrow interfaces

Sections cannot be completely independent,
but after minimizing the number of sections
that communicate with a given section, we
would benefit if the communication between
any pair is limited to the minimal necessary

and it is in its simplest form. This is the sole purpose of encapsulation. The
developer should remember that more communication has a detrimental
effect on provability, since each channel of communication and each data
that passes through such a channel should be argued and be proven correct.
In practice we don’t think about sections that communicate, but rather
about functions, objects and modules that communicate. Note that
minimizing the scope of a variable is a means to limit communication
between a nested block and its surroundings. However, some services are
inherently communication intensive, and this issue is dealt with in ‘Stable
states’ (below).

 Functions should have only a few parameters (four is a good upper-
bound). If the initial version has too many parameters, try to
aggregate some of them, which are interrelated, into a single object
with designated states (as in ‘Stable states’, below). If this is not
enough, maybe the function has too many responsibilities – break it
to smaller functions.

 Minimize exposure of data items: They should be wrapped by a
function, or by an object, or by other means of interface (and be
private). Limiting the usage of an object by discipline is nice, but
limiting usage by a restrictive interface is trustworthy.

 The interface of an object (say, via its class) should be minimal and
complete – and complete is context dependent: just to support what
is reasonably required, and likewise for modules.

 The usage of getters (interface constructs that expose the internal
state) should be discouraged: Not only does this break the rule

Don’t ask an entity for data to do your job, tell it to do the
job for you with the data it already has.

but it makes the surrounding code dependent on the type of that data
– which may prevent future modifications of the code.

Stable states

Some entities are not useful without a wide and rich interface. A simple
example may be containers (C++’s STL containers is an example). If they
had a narrow interface there would be the need for many similar containers
(e.g., lists) that differ only by the services they provide – which is
ridiculous. So we’d rather have a single service (a class) that is usable for
different situations thanks to its wide interface. Here we manage
complexity internally, rather than externally. The key concept is invariant
– a property (set of properties) that is always true for that entity (be it an
object, a module or the state of the program at the end of a loop body).
When we design such an entity, we define a set of properties that will

Some environments
require that names are

distinguished by a short
prefix, even as short as six

characters
10 | | MAY 2011{cvu}

guarantee that the entity is still usable by its clients. Then we implement
the entity so that each of its zillion interface functions guarantees that it
preserves all those properties when it operates with the entity – an
initialization process is a must in such a case. This collection of properties
is called the invariant of the entity. In such a case we cannot argue that
such an entity will always give the correct results for the client, but we can
prove that if the client communicates correctly with that entity, that entity
will provide the expected results. Simple objects do not usually have
invariants: any state of an int in C is legal. On the other hand, if you want
an int object that can only be incremented, it’s not enough to wrap it with
functions that only increment its value – you should also make sure that it
doesn’t overflow.

 Every entity that is not trivial should be designed with an invariant
in mind, and its interface should preserve it (an entity may be a
function, if it has an internal state).

Immediate consequences of the above are:

 Avoid using setters (interface constructs that are made to modify an
attribute, usually by modifying a single data member). because
setters tend to break class invariants.

 Modifiers should be expressed as giving services to clients – not as
receiving orders from them – because the client is oblivious to how
a request is fulfilled.

Performance

Performance issues are delicate. On the one hand, here is my version of
an old rule: make your software right, then better, then fast. On top of that
there is reality that shows that performance considerations are very
sensitive to environment: the language that is used, the compiler that is
used and its exact version, and on top of all that there are hardware and
communication issues – all of those impact performance more than the
developer can usually change. Nevertheless, there are a few rules that are
not hard to follow – and more importantly, do not make the software more
complicated. Such rules will have positive contribution to performance
under all circumstances (where a language supports that facility). Here are
some of them:

 Use well established algorithms and data structures.

 Not all algorithms scale up well (e.g., matrix multiplication) and
some algorithms do not scale down well (e.g., binary search over an
array is worse than linear search for short arrays – the sweet point is
around 20 elements).

 Objects that are not modified should be annotated as const. The
compiler may avoid rereading them.

 Use operators that minimize creation of temporary objects.

 Factor out of loops values that are not modified by the loop,
especially calculations among them.

 Help the compiler inlining functions: make your functions short. (A
language may implicitly support inlining, cf. pre-C99 C.)

 Allow the compiler to utilize the cache: make functions and loop
blocks short – very short.

 When branching, put the main branch first – it may save loading the
other branches. However, there may be other considerations, like
making the shorter branch the first one – especially if it’s an error
state with a return, that allows elimination nesting of the else
block.

These are relatively simple rules that are either abstract or invoke the
hardware but are language independent. Note that some of them already
appeared before, as providing easier to verify structures.

Conclusions
Integrating the outcome of ‘Coding style for correctness’ results in
software that is built of loosely coupled relatively small components,
which are known to improve many desirable SW characteristics, like

maintainability, robustness, modifiability, testability and more. In this
work I have presented a set of coding rules that are relevant to quite a few
common programming languages. All these rules were chosen to help
arguing about software correctness – though many of them are perceived
as stylistic only. However, each specific language should have more rules
adequate for its own idiosyncrasies. For example, I won’t consider many
rules for C++ that deal with undefined behaviour in the language (this is
the responsibility of the developer to know the language), with maybe
exceptions for the more obscure cases. But I may add rules related to
ownership of objects, although in most cases this is solved now by
shared_ptr.

I have not addressed concurrent programming, but considerations there are
basically the same, while the required argumentation is much more
complicated.

There are two non-conflicting directions to continue from here: One is to
describe more useful rules, and the other is to design a tool that will assist
developers to comply with these rules. 

References and further reading
[1] Abran A. and Moore J., SWEBOK, Guide to the Software

Engineering Body of Knowledge (Ironman), IEEE Computer
Society, 2004

[2] Beck K., Extreme Programming Explained: Embrace Change,
Addison-Wesley,1st ed. 1999, 2nd ed. 2004

[3] CMMI Product Team, CMMI for Development (Ver. 1.2), Carnegie
Mellon, Software Engineering Inst., 2006

[4] Humphrey W., A Discipline for Software Engineering (1st ed.),
Addison-Wesley Longman, 1995

[5] Stroustrup B. ‘What should we teach new software developers?
Why?’ Communications of the ACM, v.53, #1 (2010), pp. 40–42

[6] Henney K. (ed.), 97 Things Every Programmer Should Know,
O’Reilly, 2010, 30–31. http://programmer.97things.oreilly.com/
wiki/index.php/Coding with Reason

[7] In Humphrey W., ‘SEI-2000-TR-022’ http://www.sei.cmu.edu/
reports/00tr022.pdf from Hayes W. and Over J. W., ‘Technical
Report, CMU/SEI-97-TR-001’, http://www.sei.cmu.edu/reports/
97tr001.pdf, 1997

[8] Doc.# 2RDU00001 Rev C, Joint Strike Fighter Air Vehicle C++
Coding Standards, Lockheed Martin Corp., 2005

[9] Kimchi Y., C and C++ Bad Books, CS Dept. The Technion, Israel
http://www.cs.technion.ac.il/users/yechiel/CS/
BadBooksC+C++.html, 1998-2007

[10] Gil Y. ‘Spartan Programming’, CS Dept. The Technion, Israel
http://ssdl-wiki.cs.technion.ac.il/wiki/index.php/Spartan
programming 1996-2011

[11] Kernighan B. and Ritchie D., The C Programming Language 2nd
ed., Prentice Hall, 1988
MAY 2011 | | 11{cvu}

http://ssdl-wiki.cs.technion.ac.il/wiki/index.php/Spartan programming 1996-2011
http://www.cs.technion.ac.il/users/yechiel/CS/BadBooksC+C++.html
http://www.cs.technion.ac.il/users/yechiel/CS/BadBooksC+C++.html
http://www.sei.cmu.edu/reports/97tr001.pdf
http://www.sei.cmu.edu/reports/97tr001.pdf
http://programmer.97things.oreilly.com/ wiki/index.php/Coding with Reason
http://programmer.97things.oreilly.com/ wiki/index.php/Coding with Reason

Concurrent Programming in Go
Alexander Demin examines Google’s Go language.

oncurrent programming, multi-threading, scaling... These trends are
becoming more and more popular even for desktop computing. And
the ability to write such applications is a must for every professional

programmer.

Almost all modern programming languages support multi-threading, but
not every language allows you to do it easily and safely. There are a few
emerging languages on the market with advanced multi-threading
capabilities, and one of them is Go.

Go was designed at Google to make handling concurrency easy. In this
article I will try to inspire some interest in Go, to give a taste of this very
interesting language for those who haven’t yet had time to look at it.

I will use a small but quite functional program as an example which I wrote
recently in Go to automate some parts of regression testing at the company
where I work.

This program does a few quite useful
routine things: it deals with a TAR
archive, parses a command line and
also does advanced multi-threaded
business logic. I hope you’ll get an
initial overview of Go and maybe a
vision of how it could be applicable in
your area of business.

We have a compiler for a proprietary
programming language translating a
dialect of BASIC into C.

For historical reasons we have no well defined regression testing for this
compiler. Recently we decided to improve it and create extensive testing
based on sources of a business application written in that BASIC.

The plan is to freeze a particular release of the compiler having no open
issues, then to compile a significant amount of code and also freeze the
results. Those results will be a master copy, and will be used for
comparison against the output produced by a modified version of the
compiler in the future. It doesn’t protect from bugs completely but at least
it guarantees against breaking existing functionality.

It’s pretty trivial issue, but we have a problem. There are more than fifteen
thousand files, at about 1G total in size (for convenience, it is all packed
into a TAR). Such a run could take a long time, and there is a
straightforward requirement to speed it up using multi CPU hardware. The
business logic of the task is easily parallelizeable.

To begin with, we can write a Makefile and simply run GNU Make with
the -j flag [specifies the number of jobs to run simultaneously. Ed] . But
a special, purely native program could do better.

Obviously, instead of running the compilation sequentially, we can launch
each compilation in a separate thread. But with more than ~15K files it
won’t be efficient to start so many threads at the same time. It’s much better
to have a pool of threads, whose size is constant and depends on the number
of CPUs. We will be assigning every task to a free thread, and if all the
threads are occupied, we will be blocked until at least one of those gets
released.

Thus, we will be maintaining N threads utilizing CPUs more optimally
without unnecessary context switching.

I decided to attempt this myself in Go. You may not believe it but this
program is only the second time I have used Go (the first one was a
benchmark of Eratosthenes Sieve [1] amongst C, C++ and Go), and after
an hour I had almost working code.

The program unpacks a given TAR archive and compiles every single file.
The key here is to run each compilation in a separate thread, with the
threads managed by a thread pool.

The main concept adopted in the code is Go channels. The channels are a
synchronous mechanism of communication between threads. Instead of
sharing memory and using a synchronization primitive such as a mutex,
semaphore or conditional variable to manage concurrent access, the

channels allow us to use another
concept: sharing by communication.
The information which needs to be
shared or sync’ed amongst multiple
threads is sent over the channels. This
makes the concurrent code easier to
read and debug because it can be
logically isolated from other threads
(primarily from their data). Data
exchange with other concurrent
execution flows is achieved by

blocking both sender and receiver on the channel.

Channels are a language feature, provided by the Go runtime. All the
complexity of the implementation is hidden from the application
developer.

The second key feature of Go which we will look at is Goroutines.
Goroutines are similar to native OS threads but not exactly the same. From
the Go documentation:

Goroutines are multiplexed onto multiple OS threads so if one should
block, such as while waiting for I/O, others continue to run. Their design
hides many of the complexities of thread creation and management.

Goroutines are similar to Erlang lightweight processes. The number of
Goroutines you can start is usually limited only by memory. Every
Goroutine has its own small stack which makes them very cheap to spawn.
The syntax of starting a Goroutine is made simple using the go keyword:

 ...
 go BackroundTask()
 ...

Now we are ready to follow the code. The most interesting thing is that
the call to compile() is the same here as it would be in a naive sequential
approach (see Listing 1).

Makefile:

 target = tar_extractor
 all:
 6g $(target).go
 6l -o $(target) $(target).6

I tested this application on a 64-bit Linux blade with 8 CPUs. During
testing I was the only user of that box, so the results are directly
comparable. The huge.tar file contains ~15 thousand source files and
its size is ~1GB.

 C

ALEXANDER DEMIN
Alexander Demin is a software engineer with a PhD in
Computer Science. Constantly exploring new
technologies he is always ready to drill down into the
code with a disassembler to prove that the bug is out
there. He may be contacted at alexander@demin.ws.

Channels are a language feature,
provided by the Go runtime. All the
complexity of the implementation

is hidden from the application
developer
12 | | MAY 2011{cvu}

MAY 2011 | | 13{cvu}

package main
import (
 "archive/tar"
 "container/vector"
 "exec"
 "flag"
 "fmt"
 "io"
 "os"
 "strings"
)
// There are two flags: a number of threads and a
// compiler name.
var jobs *int = flag.Int("jobs", 0,
 "number of concurrent jobs")
var compiler *string = flag.String("cc",
 "bcom", "compiler name")
func main() {
 flag.Parse()
 os.Args = flag.Args()
 args := os.Args
 ar := args[0]
 r, err := os.Open(ar, os.O_RDONLY, 0666);
 if err != nil {
 fmt.Printf("unable to open TAR %s\n", ar)
 os.Exit(1)
 }
 // defer is similar to "finally {}", it
 // guarantees execution of the code when a
 //scope goes out.
 defer r.Close()
 // This is a TAR unpacking TAR.
 fmt.Printf("- extracting %s\n", ar)
 // Create a TAR reader.
 tr := tar.NewReader(r)
 tests := new(vector.StringVector)
 // Traverse the archive sequentially collecting
 // the file names to compiler later.
 for {
 // Get the next file descriptor from archive.
 hdr, _ := tr.Next()
 if hdr == nil {
 break
 }
 name := &hdr.Name
 // If it is not a header file, we keep
 // its name.
 if !strings.HasPrefix(*name, "HDR_") {
 tests.Push(*name)
 }
 // Create a new file.
 w, err := os.Open("data/" + *name,
 os.O_CREAT | os.O_RDWR, 0666)
 if err != nil {
 fmt.Printf("unable to create %s\n", *name)
 os.Exit(1)
 }
 // Copy the file content from the archive
 // to the disk.
 io.Copy(w, tr)
 w.Close()
 }
 fmt.Printf("- compiling...\n")
 *compiler , _ = exec.LookPath(*compiler)
 fmt.Printf("- compiler %s\n", *compiler)
 if *jobs == 0 {
 // Call "compile()" sequentially, in the
 // main thread.

 fmt.Printf("- running sequentially\n")
 for i := 0; i < tests.Len(); i++ {
 compile(tests.At(i))
 }
 } else {
 // Call "compiler()" in parallel threads.
 fmt.Printf(
 "- running %d concurrent job(s)\n", *jobs)
 // This is a task channel, where we put the
 // names of the files we want to compile.
 // Runnner threads wait for messages on this
 // channel, which has limited capacity to do
 // throttling similar to semaphore. The empty
 // name means we are asking the runner thread
 // to wrapup.
 tasks := make(chan string, *jobs)
 // This is a runner thread wrapup acknowledge
 // channel. The main thread waits on the
 // channel until all the runners confirm
 // their wrapup. The type of messages
 // in this channel is not relevant here.
 done := make(chan bool)
 // Launch the runners.
 for i := 0; i < *jobs; i++ {
 go runner(tasks, done)
 }
 // Iterate through the list of files and pass
 // the names into the channel. If there are
 // no free runners this thread is blocked.
 for i := 0; i < tests.Len(); i++ {
 tasks <- tests.At(i)
 }
 // Send exit command to runners and wait for
 // confirmation from all of them.
 for i := 0; i < *jobs; i++ {
 tasks <- ""
 <- done
 }
 }
}
// Runner thread.
func runner(tasks chan string, done chan bool) {
 // Infinite loop.
 for {
 // Wait for a message. Usually the thread is
 // blocked here.
 name := <- tasks
 // If the name is empty, we wrapup.
 if len(name) == 0 {
 break
 }
 // Compile the file.
 compile(name)
 }
 // Send message to wrapup acknowledge channel.
 done <- true
}
func compile(name string) {
 // Call the compiler.
 c, err := exec.Run(*compiler, string{*compiler,
 name}, os.Environ(), "./data", exec.DevNull,
 exec.PassThrough, exec.PassThrough)
 if err != nil {
 fmt.Printf("unable to compile %s (%s)\n",
 name, err.String()) os.Exit(1)
 }
 c.Wait(0)
}

Li
st

in
g

1 Listing 1 (cont’d)

This is a report of the CPU load when the machine is doing nothing (all
CPUs are almost 100% idle):

Run it in a sequential mode (-jobs 0):

 make && time -p ./tar_extractor -jobs 0 huge.tar

Time:

Almost all the CPUs are 70–80% idle (I did the snapshots during the
compilation phase):

The total CPU load is 2.7% (Figure 1).

Now run with the thread pool but using one runner only (-jobs 1).

Time:

CPUs:

Obviously, it is all similar because we are running only one thread.

Now run with multiple runners in the pool (-jobs 32):

 make && time -p ./tar_extractor -jobs 32 huge.tar

Time has been reduced up to 7 times.

The overall CPU load is now 23% (again measurements taken during the
compilation phase) – see Figure 2.

In fact, all the CPUs are quite busy:

The point of this testing was to demonstrate how even the simplest
concurrent code speeds everything up several times. We can also see how
it is easy and relatively safe to write multi-threaded imperative code in Go.

Going further, I decided to compare the performance of Goroutines and
Boost (C++) Threads. Basically, this is a competition between pthreads
and Goroutines. I agree that such a comparison is not quite fair because
we are comparing native OS threads wrapped by Boost with Goroutines,
which are lightweight threads multiplexed onto OS threads. However, at
the same time we are comparing the APIs facing a developer, and this gives
us a feel for which API is nicer to use as well as benefiting from mult-
threading.

I agree that using the queue with a lock is not efficient here and can be
replaced with a lock-free implementation. But, again, this question is about
which API is easier for concurrent programming: in Go you don’t need to
remember about using lock-free containers whenever possible (you may
end up with a situation when a container cannot be implemented lock-free
at all), you solve your business problem instead of dealing with
implementation details.

I’ve created a simple program in both languages. This program needs to
execute many requests of the same type. The payload of the request will
be a little, almost empty, function. This will allow the thread management
to be stressed rather than comparing the speed of the generated code.

Listing 2 shows the code in Go, and the Makefile to build and run it with
different parameters is in Listing 3.

Listing 4 shows the code in C++, and the Makefile for running the tests is
in Listing 5.

In both programs we will be using 8 CPUs and the number of tasks will
vary.

CPU us sy ni id wa hi si st

0 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%

1 0.0% 0.0% 0.0% 99.7% 0.3% 0.0% 0.0% 0.0%

2 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%

3 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%

4 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%

5 0.0% 0.3% 0.0% 99.3% 0.3% 0.0% 0.0% 0.0%

6 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%

7 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%

real 213.81

user 187.32

sys 61.33

CPU us sy ni id wa hi si st

0 11.9% 4.3% 0.0% 82.5% 1.3% 0.0% 0.0% 0.0%

1 9.6% 2.7% 0.0% 87.7% 0.0% 0.0% 0.0% 0.0%

2 4.3% 1.3% 0.0% 92.7% 1.7% 0.0% 0.0% 0.0%

3 16.0% 6.0% 0.0% 78.0% 0.0% 0.0% 0.0% 0.0%

4 12.6% 4.3% 0.0% 82.7% 0.3% 0.0% 0.0% 0.0%

5 11.6% 3.3% 0.0% 85.0% 0.0% 0.0% 0.0% 0.0%

6 4.7% 1.3% 0.0% 94.0% 0.0% 0.0% 0.0% 0.0%

7 16.6% 6.3% 0.0% 77.1% 0.0% 0.0% 0.0% 0.0%

real 217.87

user 191.42

sys 62.53

CPU us sy ni id wa hi si st

0 5.7% 1.7% 0.0% 92.7% 1.3% 0.0% 0.0% 0.0%

1 9.6% 5.3% 0.0% 81.3% 0.0% 0.0% 0.0% 0.0%

2 7.0% 2.7% 0.0% 89.3% 1.3% 0.0% 0.3% 0.0%

3 15.3% 5.7% 0.0% 77.7% 0.0% 0.0% 0.0% 0.0%

4 6.0% 2.0% 0.0% 92.0% 0.0% 0.0% 0.0% 0.0%

5 14.3% 7.3% 0.0% 78.4% 0.0% 0.0% 0.0% 0.0%

6 7.0% 2.3% 0.0% 90.7% 0.0% 0.0% 0.0% 0.0%

7 15.3% 6.6% 0.0% 78.1% 0.0% 0.0% 0.0% 0.0%

CPU us sy ni id wa hi si st

0 56.3% 26.3% 0.0% 17.3% 0.0% 0.0% 0.0% 0.0%

1 55.5% 27.9% 0.0% 15.6% 1.0% 0.0% 0.0% 0.0%

2 56.1% 25.9% 0.0% 15.0% 0.7% 0.3% 2.0% 0.0%

3 58.1% 26.2% 0.0% 15.6% 0.0% 0.0% 0.0% 0.0%

4 57.2% 25.8% 0.0% 17.1% 0.0% 0.0% 0.0% 0.0%

5 56.8% 26.2% 0.0% 16.9% 0.0% 0.0% 0.0% 0.0%

6 59.0% 26.3% 0.0% 13.0% 1.7% 0.0% 0.0% 0.0%

7 56.5% 27.2% 0.0% 16.3% 0.0% 0.0% 0.0% 0.0%

Basically, this is a competition
between pthreads and Goroutines
14 | | MAY 2011{cvu}

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
15054 tester 18 0 41420 4980 1068 S 2.7 0.1 0:02.96 tar_extractor

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
17488 tester 16 0 45900 9732 1076 S 23.6 0.1 0:06.40 tar_extractor

Fi
gu

re
 1 Figure 2

MAY 2011 | | 15{cvu}

package main

import (
 "flag"
 "fmt"
)

var jobs *int = flag.Int("jobs", 8,
 "number of concurrent jobs")
var n *int = flag.Int("tasks", 1000000,
 "number of tasks")

func main() {
 flag.Parse()
 fmt.Printf("- running %d concurrent job(s)\n",
 *jobs)
 fmt.Printf("- running %d tasks\n", *n)
 tasks := make(chan int, *jobs)
 done := make(chan bool)
 for i := 0; i < *jobs; i++ {
 go runner(tasks, done)
 }
 for i := 1; i <= *n; i++ {
 tasks <- i
 }
 for i := 0; i < *jobs; i++ {
 tasks <- 0
 <- done
 }
}

func runner(tasks chan int, done chan bool) {
 for {
 if arg := <- tasks; arg == 0 {
 break
 }
 worker()
 }
 done <- true
}

func worker() int {
 return 0
}

#include <iostream>
#include <boost/thread.hpp>
#include <boost/bind.hpp>
#include <queue>
#include <string>
#include <sstream>
class thread_pool {
 typedef boost::function0<void> worker;
 boost::thread_group threads_;
 std::queue<worker> queue_;
 boost::mutex mutex_;
 boost::condition_variable cv_;
 bool done_;
 public:
 thread_pool() : done_(false) {
 for(int i = 0;
 i < boost::thread::hardware_concurrency();
 ++i)
 threads_.create_thread(boost::bind(
 &thread_pool::run, this));
}
void join() {
 threads_.join_all();
}
void run() {
 while (true) {
 worker job;
 {
 boost::mutex::scoped_lock lock(mutex_);
 while (queue_.empty() && !done_)
 cv_.wait(lock);
 if (queue_.empty() && done_) return;
 job = queue_.front();
 queue_.pop();
 }
 execute(job);
 }
}
void execute(const worker& job) { job(); }
void add(const worker& job) {
 boost::mutex::scoped_lock lock(mutex_);
 queue_.push(job);
 cv_.notify_one();
}
void finish() {
 boost::mutex::scoped_lock lock(mutex_);
 done_ = true;
 cv_.notify_all();
}
};
void task() {
volatile int r = 0;
}
int main(int argc, char* argv[]) {
 thread_pool pool;
 int n = argc > 1 ? std::atoi(argv[1]) : 10000;
 int threads =
 boost::thread::hardware_concurrency();
 std::cout << "- executing " << threads <<
 " concurrent job(s)" << std::endl;
 std::cout << "- running " << n << " tasks" <<
 std::endl;
 for (int i = 0; i < n; ++i) {
 pool.add(task);
 }
 pool.finish();
 pool.join();
 return 0;
}

Li
st

in
g

2 Listing 4

target = go_threading
all: build
build:
 6g $(target).go
 6l -o $(target) $(target).6

run:
 (time -p ./$(target) -tasks=$(args) \
 1>/dev/null) 2>&1 | head -1 | \
 awk '{ print $$2 }'

n = \
10000 \
100000 \
1000000 \
10000000 \
100000000

test:
 @for i in $(n); do \
 echo "`printf '% 10d' $$i`" \
 `$(MAKE) args=$$i run`; \
 done

Li
st

in
g

3

Becoming a Better Programmer # 68

Concurrent Programming in Go (continued)
Starting up C++ code:

 make && make -s test
 g++ -O2 -I ~/opt/boost-1.46.1 -o boost_threading \
 -lpthread \
 -lboost_thread \
 -L ~/opt/boost-1.46.1/stage/lib \
 boost_threading.cpp
(time -p LD_LIBRARY_PATH= \
 ~/opt/boost-1.46.1/stage/lib ./boost_threading \
 1>/dev/null) 2>&1 | head -1 | awk '{ print $2 }'
 10000 0.03
 100000 0.35
 1000000 3.43
10000000 29.57
100000000 327.37

Now run Go:

 make && make -s test
 6g go_threading.go
 6l -o go_threading go_threading.6
 10000 0.00
 100000 0.03
 1000000 0.35
 10000000 3.72
 100000000 38.27

The difference is obvious. Go code is ~9 times faster.

Finally, I dug a bit further. There is an environment variable in the Go
runtime called GOMAXPROCS which defines how many CPUs the Go
runtime is allowed to use. Surprisingly the default value is 1! It means in
the exercise above the program in Go used only one CPU while the C++
one used 8. When I set GOMAXPROCS to 8 and repeated the test, the time
of the Go version increased significantly and become almost the same as
in C++. A possible conclusion is that scheduling threads via the OS
scheduler (when native threads are involved) is more expensive than
multiplexing lightweight threads onto one native thread.

To recap, I don’t want to try to convince anybody that C++ is bad for
writing concurrent programs, of course not. Moreover, the C++ code here
can be significantly improved by using a lock-free queue. I just wanted to
highlight that the API to deal with concurrency can be different, and what
Go offers is definitely worth having a look at.

Happy Going...

Note
[1]Eratosthenes Sieve:
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

BOOST = ~/opt/boost-1.46.1
target = boost_threading
build:
 g++ -O2 -I $(BOOST) -o $(target)
 -lpthread \
 -lboost_thread \
 -L $(BOOST)/stage/lib \
 $(target).cpp
run:
 (time -p LD_LIBRARY_PATH=$(BOOST)/stage/lib \
 ./$(target) $(args) \
 1>/dev/null) 2>&1 | head -1 | awk '{ print $$2
}'
n = \
10000 \
100000 \
1000000 \
10000000 \
100000000

test:
 @for i in $(n); do \
 echo "`printf '% 10d' $$i`" \
 `$(MAKE) args=$$i run`; \
 done

Listing 5
Relish the Challenge
Pete Goodliffe encourages us to seek out a new challenge.

Success is not final, failure is not fatal: it is the
courage to continue that counts

~ Winston Churchill

e are ‘knowledge workers’. We employ our skill and knowledge
of technology to make good things happen. Or to fix it when they
don’t. This is our joy. It’s what we live for. We revel in the chance

to build things, to solve problems, to work on new technologies, and to
assemble pieces that complete interesting puzzles.

We’re wired that way. We relish the challenge.

The engaged, active programmer is constantly looking for a new, exciting
challenge.

Take a look at yourself now. Do you actively seek out new challenges in
your programming life? Do you hunt for the novel problems, or for the
things that you’re really interested in? Or are you just coasting from one
assignment to the next without much of a thought for what would motivate
you?

Can you do anything about it?

The whys and wherefores
Working on something stimulating, something challenging, on something
that you enjoy getting stuck into helps keep you motivated.

If you instead get stuck in the coding ‘sausage factory’, just churning out
the same tired code on demand, you will stop paying attention. You will
stop learning. You will stop caring and investing in crafting the best code
you can. The quality of your work will suffer. And your passion will wane.

 W

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net
16 | | MAY 2011{cvu}

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

Conversely, actively working on coding problems that challenge you will
encourage, excite you, and help you to learn and develop. It will stop you
becoming staid and stale.

Nobody likes a stale programmer. Least of all, yourself.

What’s the challenge?
So what is it that particularly interests you?

It might be that new language you’ve been reading about. Or it might be
working on a different platform. It might just be trying out a new algorithm
or library. Or to kick off a pet project. Or to attempt an optimisation or
refactor of your current system, just because you think you see an
improvement (even if – shudder to think – it doesn’t provide business
value).

Often this kind of personal challenge can only be gained on a side-project;
something you work on alongside the more mundane day-to-day tasks.
And that’s perfect – it’s the antidote to dull development. The
programming panacea. The crap code cure.

What excites you as a programmer? Look at the tasks you are working on.

 Are you happy just to be paid for producing code?

 Do you want to be paid because you will produce a particularly
exceptional job?

 Are you performing that task solely for the kudos; are plaudits are
enough for you?

 Would the many open-source eyeballs following your project give
you a deep sense of satisfaction?

 Do you want to be the first person to provide a solution in a new
niche?

 Do you want to solve a problem just for the intellectual exercise in
doing do?

 Is it just a project that particularly interests you, and your strange
peccadilloes?

 Or is it an entrepreneurial project – something you think will one
day make you millions?

As I look back over my career, I can see that I’ve worked on things in each
of those camps. But I’ve had the most fun, and produced the best software,
when working on projects that I’ve been invested in, where I’ve cared
about the project itself, as well as wanting to write exceptional code.

Don’t do it!
Of course, there are a potential downsides to seeking out cool coding
problems for ‘the fun of it’:

 It’s selfish to steer yourself towards exciting things all the time,
leaving boring stuff for other programmers to pick up.

 It’s dangerous to ‘tinker’ a working system just for the sake of the
tweak, if it’s not introducing real business value. You’re adding
unnecessary change and risk. And it’s a waste of time that could be
invested elsewhere more profitably.

 If you get side-tracked on pet projects or little ‘science experiments’,
then you’ll never get any ‘real’ work done.

 Remember: not every programming task is glamourous or exciting.
A lot of our day-to-day tasks are mundane plumbing. That’s just the
nature of programming in the real world.

 Re-writing something that already exists is a gross waste of effort.
You are not contributing to our profession’s corpus of knowledge.
You are likely to just recreate something that already exists, not as

good as existing implementations, and full of new terrible bugs.
What a waste of time!

Yada. Yada. Yada.

These positions are valid, to a point.

But this it is exactly because we have to preform dull tasks that we should
also seem to balance them with the exciting challenges. We must be
responsible in how we do this, and whether we use the resulting code.

Get challenged
So work out what you’d like to do. And do it.

 Perform some code katas that will provide valuable deliberate
practice. Throw the code away afterwards.

 Find something you’d like to write code for, just for the fun of it.

 Kick off a personal project. Don’t waste all your spare time on it, but
find something you can invest effort in that will teach you something
new.

 Maintain a broad field of personal interest, so you have good ideas
of other things to investigate and learn from.

 Don’t ignore other platforms and paradigms. Try re-writing
something you know and love on another platform or in another kind
of programming language. Compare and contrast the outcome.
Which environment lent itself better to that kind of problem?

 Consider moving on if you’re not being stretched and challenged
where you’re currently working. Don’t blindly accept the status
quo! Sometimes the boat needs to be rocked.

 Work with, or meet up with other motivated programmers. The
recent ACCU conference was an especially good example of this.
Attendees some back with a head full of new ideas, and invigorated
from the enthusiasm of their peers.

 Make sure you can see the progress you’re making. Review source
control logs to see what you’ve achieved. Keep a daily log, or a
TODO list. Enjoy knocking off items and making headway.

 Keep it fresh: take breaks so you don’t get overwhelmed, stifled, or
bored by bits of code.

 Don’t be afraid of reinventing the wheel! Write something that has
already been done before. There is no harm in trying to write your
own linked-list, or standard GUI component. It’s a really good
exercise to see how yours compares to existing ones. (Just be careful
how you employ them in practice.)

Conclusion
Yes, I’ve been hand waving. And I’ve slipped into motivational speaker
territory (again). But this stuff is important. Do you have something you’re
engaged in and love to work on?

It’s impractical and dangerous to just chase shinny new things all the time
and not write practical, useful code. But it’s also personally dangerous to
get stuck in a coding rut, only ever working on meaningless, tedious
software. 

Questions
1. Do you have projects that challenge you and stretch your skills?

2. Are there some ideas you’ve thought about for a while, but not
started? Why not start a little side-project?

3. Do you balance ‘interesting’ challenges with your ‘day to day’
work?

4. Are you challenged by other motivated programmers around you?

5. Do you have a broad field of interest that informs your work?
MAY 2011 | | 17{cvu}

18 | | MAY 2011{cvu}

ACCU 2011 Conference
Chris Oldwood shares his experiences.

his year’s ACCU conference (my fourth) was always going to be a
little bit different because this year I was going to be speaking. That
meant no stupid late nights staying up in the bar chatting with my

fellow ACCU members and other like minded individuals about
programming because I was a professional and I had a job to do…

I arrived on the Tuesday evening just in time for the obligatory visit to
Chutneys – an Indian restaurant in the centre of town. Many of the usual
suspects were already there and it took no time at all to slip into idle chat
about what we’ve all been up to since we sat in the same restaurant a year
ago. Then it was back to the bar and a chance to catch up with the late
arrivals and gatecrash a few conversations in an attempt to do a little
networking before a nice early night. What a ridiculous notion. Of course
I ended up in the bar until 4 am in a discussion about equality and value
identity – John Lakos was there! Still, I wasn’t on until Friday afternoon
so there was plenty of time to recover.

The opening keynote on Wednesday morning was from Giles Colborne,
titled ‘Advanced Simplicity’. As someone who is a backroom boy these
days I don’t spend any time doing UI work, but the talk seemed to
transcend that and provided perfect analogies that could just as easily be
applied to API design. He provided some nice examples of how you can
avoid a whole class of potential error scenarios by just using a simpler
control in the first place. There were also examples of ideas that you would
expect to work, but didn’t, and cases where people used the tool in ways
the designers hadn’t anticipated. Some quotes from the likes of Donald
Norman and Alan Cooper provided a nice backdrop.

That was the easy bit out of the way and a shot of coffee was then needed
whilst I spent the 30 minute break trying to decide between 5 typically
awesome sessions. Sometimes you just have to use darts, dice, a coin or
whatever because the line-up is so varied. For my first session I chose Peter
Pilgrim’s ‘Introduction to Scala’. I don’t generally follow the Java world
but I have heard interesting things about Scala and Peter’s introduction was
a whirlwind tour of the various language features. It has elements of
functional languages that I’m not used to but his examples still made sense
and he finished off with a nice comparison of the various JVM based
languages that seem to be vying for the hearts and minds of developers.

The 90 minute lunch break is quickly over when you’ve been nattering
away and it was Lisa Crispin and her ‘Dealing with Defects’ talk that filled
my early afternoon slot. This was an interesting look at the techniques and
tools that teams often use to track and manage bugs. There was definitely
a feeling that many organisations spend too much time on tracking and
managing bugs and not enough on preventing them in the first place. Lisa
got the audience to do a little exercise where we played the role of
developer and tester. The two had to collaborate to draw a simple map, first
standing back-to-back and then facing each other. This illustrated how
much better it is for the two to engage directly instead of via, say, email –
simple but very effective. This was a useful talk that helped to confirm my
team are heading in the right direction.

I made Kevlin Henney’s talk about OO as my final choice for the day
because I saw his ‘Value Objects’ session last year and I clearly still have
much to learn about OO even after all this time. He didn’t disappoint this
time either as he slowly managed to show that the SOLID principles rest
on flaky ground, ending up with just SID! However I got the feeling that
the Single Responsibility Principle (the S in SOLID) should also be taken
under advisement. His revelation about the Liskov Substitution Principle
was most enlightening and goes to show that the terms type, subtype, class,
interface, abstract data type, etc. are often banded about and incorrectly

used interchangeably in OO circles. The question now is whether I still
answer ‘Encapsulation, Polymorphism and Inheritance’ in a job interview?

Sadly Uncle Bob couldn’t provide the closing day’s keynote and so
Michael Feathers stepped up to the plate instead. This was a curious
keynote that I felt never really went anywhere. He commented on the
productivity of Ruby and noted the verbosity of C++ but never appeared
to come to any conclusion. Was he suggesting the world would be a better
place if we all switched to Ruby? Did the fact that there were so many C
& C++ programmers in the audience cause him to refrain from saying what
he really wanted to? If nothing else it generated chatter in the bar after…

Tom Preston-Werner, one of the big cheeses at Github, opened business
on the Thursday morning. On the one hand it’s nice to see that some
companies can provide an excellent place to work, but on the other there
is a large degree of smugness that goes with this kind of presentation.
Unmetered holidays, self organising teams, a bar on-site, and they’re
making a profit too – it sounds like programming nirvana. It sure will be
interesting to see how it scales with the age of the employees and the size
of the company.

My first optional session for the day was titled ‘Distributed Computing
2.0’ by Filip Van Laenen. I wasn’t sure what to expect from this as I didn’t
really read the blurb and therefore was somewhat surprised to hear the
details of his hobby project that used Twitter as the communication
channel for a distributed system. This immediately raised many questions
in my mind about scalability and reliability and he answered nearly all of
them during his talk as he explained how Facebook and Yahoo/Google
Groups could also be used in a channel bonding style. The problem he is
attempting to solve fits nicely inside the limits of the architecture; ok, so
it’s not a general purpose solution, but he never claimed it was. I soon
started thinking about how to use the add-on services like yfrog and twitpic
to overcome the message size limits so it’s clearly had some impact.

I suppose I didn’t really have a choice about what I was going to see in the
afternoon. Given that I had stayed up in the bar into the wee hours Tuesday
night to listen to an argument about equality I just had to go and see Roger
Orr and Steve Love cover the subject in detail. This focused mainly on the
pitfalls of how to correctly do an equivalence comparison in Java and C#
as there is much complexity involved. C# has a plethora of interfaces for
dealing with equality – more than I knew. They also showed some really
‘interesting’ behaviour around the way one JVM caches the boxed values
–100 to +100. It’s not often that people remark how simple C++ is, but in
this case it really is and the wording in the standard backed that up.

I felt I needed to hear some hard-core techie stuff at some point and so Scott
Meyers was the perfect choice with a session all about CPUs and cache
lines. Scott is an entertaining presenter and he made the low-level topic
easily understandable. Although I was aware of many of the symptoms and
solutions from Herb Sutter’s writings I gained a much better insight into
the hardware side and why these problems exist. I have much more respect
for the chip designers now! He also briefly covered Profile Guided
Optimisation and Whole Program Optimisation to cover the instruction
cache side of things.

Lightning talks – 5 minute talks by the general populace – made their
appearance again this year and their popularity is clearly growing as the

 T

CHRIS OLDWOOD
Chris started as a bedroom coder in the 80s, writing assember on 8-bit
micros. Now it’s C++ and C# on WIndows in plush corporate offices.
He is the commentator for the Godmanchester Gala Day Duck Race
and can be reached at gort@cix.co.uk

Code Critique Competition 69
Set and collated by Roger Orr. A book prize is awarded

for the best entry.

Please note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment on
published entries, and to supply their own possible code samples for the
competition (in any common programming language) to scc@accu.org.

Last issue’s code
What’s the best way to read output from Fortran fixed-format strings using
scanf? The example is a database file with lines such as

 " 26 2996100 1"

which were written by a fixed width format (i.e. this should be interpreted
as ‘leading space, _26, __2, 996, 100, __1’).

The problem is that automatic whitespace skipping in scanf means that
any %d format string is almost guaranteed to get confused for one or other
variant of full fields, e.g. the ‘obvious’ " %3d%3d%3d%3d%3d" format
string reads 26 299 610 0 1 here.

Listing 1 is a simple program demonstrating the problem (and the
asymmetry of C input/output formats!), and the results are:

 C:\cc68>output | input
 1 2 3 4 5
 100 200 300 400 500
 26 299 610 0 1

(Thanks to Robin Williams for suggesting this issue’s critique.)

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk
MAY 2011 | | 19{cvu}

number of speakers approached 23 over the two days. Olve Maudal kicked
off the first set of talks with a tongue-in-cheek piece called ‘Technical debt
is good!’ Other notable shorts include Pete Goodliffe’s ‘Manyfestos’,
which was a poke at the ever growing number of developer manifestos out
there, and Mark Dalgano’s ‘Optimise for Unhappiness’ which reflected
back on the day’s keynote to show how too many companies treat their
employees.

Friday’s keynote was due to be given by both authors of the hugely popular
book Growing Object Orientated Software, but unfortunately it was left
to Steve Freeman to go it alone. The title, ‘Good Enough Is the Enemy of
Better’, sums up perfectly how software development is often approached
in many organisations. But Steve showed how it can be a false economy
and that doing it right can pay dividends both from an operational and
maintenance perspective. As someone who is currently working on a
system built this way it’s great to be nodding in absolute agreement instead
of longing to be taking part.

The morning coffee break was swiftly followed by a visit to see Jon Skeet
discuss Java and C# – the lessons learned and mistakes replicated by the
latter from the former. Jon may be a Java programmer by day and C#
hobbyist by night, but he still knows way more about C# than most! The
discussion about the differences, such as the handling of generics was
typically enlightening as was the curious adoption of much of the Object
behaviour and how that was probably a bad choice. I left somewhat
disappointed as I had hoped for more crystal ball gazing and the answers
to some of his questions where clearly already in ‘C++’ and ‘D’ which just
goes to show how hard it is to keep up with even the ‘curly brace’
languages.

The weather really brightened up for lunch and it was somewhat of a shame
to be stuck indoors in the afternoon, but if anyone is ever a ray of sunshine
it’s Tom Gilb. I thought I should go to at least one ‘process’ related talk
and the contentious title ‘What’s Wrong With Requirements’ sounded like
it could generate some debate. Tom’s premise always seems to be that
everything can be measured and quantified and this was no different. What
seems to be wrong is that we use ‘woolly’ terms instead of backing them
up with a measurable value to guide the design and implementation. A

simple message but fairly well rammed home with plenty of entertaining
anecdotes and tangents that only Tom seems to get away with.

I really had no option about what to go to after the break because I was
one of those going to be doing the talking! It was a great experience that
I felt went pretty well, even if I did speak a little too quickly. Interestingly
however feedback suggests that I need to do work in other areas instead;
such is the problem with not being able to watch yourself. The good thing
is that I have 12 months to work on my presentation skills before next year.

The second round of lightening talks followed the day’s final coffee break
and once again it was a packed with speakers. Didier Verna is clearly in
the wrong job and should be ‘treading the boards’ as he appeared again –
twice. Richard Harris rose to the challenge from Roger Orr and Steve Love
by showing us how to correctly compare floating point numbers and Jim
Hague tried to drum up interest for the local folk dancing display before
showing what he’d unearthed whilst spelunking the King James’ Bible.
Phil Nash closed the year’s talks with a very succinct demonstration of his
new lightweight unit testing framework called Catch.

Friday always plays host to the Speakers’ Dinner where the attendees get
to spend a little more time up close and personal with the presenters. After
each course they have to switch tables whilst the speakers stay put so there
is always someone new to chat with. There was also an auction in aid of
Bletchley Park that raised a few thousand pounds and the announcement
of the handing over of the conference chair duties from Giovanni Asproni
to Jon Jagger – a tough act to follow! The formal proceedings finished
around 11 pm and so the bar played host to those that wished to continue
the festivities.

Sadly my presence ended a little earlier this year and so I had to miss out
on the Saturday sessions. I haven’t even looked at what was on because it
will only depress me further knowing what has escaped me. I know I say
it each year, but you really cannot put a price on the time you spend with
the speakers and other attendees in the bar at the end of each day. Yes, as
the evening progresses the value-per-pint slowly diminishes, but even at
4 am after going round the houses a few times it’s good to know that even
those you would consider at the top of their game still have much to debate.

ACCU 2011 Conference (continued)

Critiques

Pete Disdale < pete@papadelta.co.uk>

Q. ‘What’s the best way to read output from Fortran fixed-format strings
using scanf()?’

A. ‘Don’t. Next question?’

OK, that’s rather terse but does convey, I believe, generally sound advice.
I would even go as far as to suggest that using scanf() for any input
where that input cannot be 100% guaranteed is a Bad Idea as it can leave
trailing \ns and other garbage at end-of-line and confuse subsequent
scanf() calls on that input. Much better to use fgets() [which will
read the whole line of input and eat the newline if there is one and the input
buffer is large enough] and then use sscanf() on that buffer. Now that
the rant is done, I suppose I should provide an alternative...

The input as given is, with the exception of the leading space character,
typical of SDF files that can be produced by dBASE and early spreadsheet
programs like Supercalc – so not limited to Fortran output. Over the years
I have found the most reliable approach to reading these output files is:

 read an entire line of input using fgets()

 knowing the layout, extract each field one at a time from the input
buffer.

Given the example file, with 5 integer fields of width 3 digits each, one
approach might be something like this:

#include <stdio.h>
#define FWIDTH 3 /* field width */
#define NFIELDS 5 /* nr of fields */
int main()
{
 char line [BUFSIZ];
 int v[NFIELDS];
 while (fgets (line, BUFSIZ, stdin) != NULL)
 {
 int len = strlen(line);
 int has_newline =
 line[len - 1] == '\n' ? 1 : 0;
 char *p =

 &line[len - has_newline - FWIDTH];
 int i;
 for (i = NFIELDS - 1; i >= 0; i--)
 {
 v[i] = atoi(p);/* safe for 3 chars */
 *p = '\0', p -= FWIDTH;
 }
 printf("%i %i %i %i %i\n",
 v[0], v[1], v[2], v[3], v[4]);
 }
 return 0;
}

Note that this processes the buffer backwards (right-to-left); it could be
processed left-to-right starting at (line + 1) but this would require saving
and replacing each char position that has to be replaced with a \0 for the
atoi() to work. It also handles the case where there is no \n at the end
of the input (typically the last line of the input stream) though otherwise
error checking is minimal...

But to get back to the original question, it is possible to use scanf() (or
rather sscanf()) to process the input, using %3c to parse the input into
strings and use atoi()/strtoi() to convert to integer:

#include <stdio.h>
int main()
{
 char line [BUFSIZ];
 char s1[4], s2[4], s3[4], s4[4], s5[4];
 /* sscanf(...%Nc...) does not null-terminate
 the string */
 s1[3] = s2[3] = s3[3] = s4[3] = s5[3] =
 '\0';
 while (fgets (line, BUFSIZ, stdin) != NULL)
 {
 /* skip past leading space */
 sscanf(line + 1, "%3c%3c%3c%3c%3c\n",
 s1, s2, s3, s4, s5);
 printf("%i %i %i %i %i\n",
 atoi(s1), atoi(s2), atoi(s3),
 atoi(s4), atoi(s5));
 }
 return 0;
}

This appears to work for the implementation of sscanf() that I used, but
it would be a brave person that assumed that it would work on all
implementations.

Summary: ‘Don’t use scanf().’ Read a whole line of input and use char
pointers with atoi()/strtoi() to do the conversion to integer. If for
no other reason, such an approach affords the programmer the scope for
input validation and error checking (for example that the parsed strings are
actually composed of digits)

Commentary
This critique is straight C and highlights one of the major shortcomings of
scanf: white-space handling. (Note that trying to solve the problem using
by C++ doesn’t help because although the C++ iostream library provides
some additional control over white-space handling it does not make
handling this example any easier.)

In general the approach of reading data using fgets() and then splitting
up the lines of input as strings is usually a good solution; although if this
is a problem you face often there are some libraries that provide richer input
processing than standard C.

People are often worried about the performance overhead of processing
each character multiple times. This is not usually a problem in practice as
the cost of reading the characters, typically from disk or across a network,
into the process’s memory usually dwarfs the differences between the
different types of input format processing.

//-- output.c --
#include <stdio.h>
int process(int v1, int v2, int v3,
 int v4, int v5)
{
 printf(" %3i%3i%3i%3i%3i\n",
 v1, v2, v3, v4, v5);
}
int main()
{
 process(1, 2, 3, 4, 5);
 process(100, 200, 300, 400, 500);
 process(26, 2, 996, 100, 1);
 return 0;
}
//-- input.c --
#include <stdio.h>
int main()
{
 while (!feof(stdin))
 {
 int i1, i2, i3, i4, i5;
 scanf(" %3i%3i%3i%3i%3i\n",
 &i1, &i2, &i3, &i4, &i5);
 printf("%i %i %i %i %i\n",
 i1, i2, i3, i4, i5);
 }
}

20 | | MAY 2011{cvu}

The winner of CC 68
The winner of this code critique is of course Pete Disdale. He provided two
different ways to approach the problem and I thought explained the
underlying issue clearly. I also liked his tongue-in-cheek first answer to
the question: ‘Don’t. Next question?’

Code Critique 69
(Submissions to scc@accu.org by Jun1st)

I’ve written a streaming helper for dates – seems to work OK – and a
manipulator so I can stream today’s date, plus a convert from string
function. Please can you review my code?

Here is an example of usage:

#include "strdate.h"
void example(time_t tv)
{
 std::cout << date(tv) << std::endl;

 std::cout << strdate << std::endl;
 tv = date::convert("2000-01-01");
}

The code is in Listing 2 and a small sample program in Listing 3.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

time_t date::convert(char const *date)

{

 int yr,mn,dy;

 if (sscanf(date,"%i-%i-%i",

 &yr, &mn, &dy) < 3)

 return -1;

 // base on Mar 1968

 yr -= 1968;

 mn -= 3;

 if (mn<0)

 {

 yr--;

 mn += 12;

 }

 dy--; // 1-based

 int daycounts[]

 = {31,30,31,30,31,31,30,31,30,31,31,28};

 while (mn)

 dy += daycounts[mn--];

 dy += yr * 365;

 dy += yr / 4;

 // rebase to 1970

 dy -= 365 + 366 - 60;

 return 86400 * dy;

}

// stream date

std::ostream& operator<<(std::ostream& os,

 date const& rhs)

{

 rhs.printOn(os);

 return os;

}

// stream today's date

std::ostream& strdate(std::ostream& os)

{

 return os << date(time(0));

}

Listing 2 (cont’d)#include <iostream>

#include <time.h>

#pragma once

// date class

class date

{

 time_t const& tv;

public:

 date(time_t const& tv) : tv(tv) {}

 // print self to stream as YYYY-MM-DD

 void printOn(std::ostream& os) const;

 // convert YYYY-MM-DD to time_t

 static time_t convert(char const *);

};

void date::printOn(std::ostream& os) const

{

 int day = tv / 86400;

 // base on Mar 1968 (makes leap years easy)

 day += 365 + 366 - 60;

 int year = day / 365;

 day -= year * 365;

 day -= year/4;

 if (day < 0)

 {

 day += 365;

 year--;

 }

 int month = 0;

 int daycounts[]

 = {31,30,31,30,31,31,30,31,30,31,31,28};

 while (day >= daycounts[month])

 {

 day -= daycounts[month++];

 }

 // base on Jan

 month += 2;

 year += month/12;

 month %= 12;

 os << year+1968 << "-";

 os << (month<9?"0":"") << month+1 << "-";

 os << (day<9?"0":"") << day+1;

}

Li
st

in
g

2

#include "strdate.h"

int main()

{

 std::cout << date(86400) << std::endl;

 std::cout << date(86400*31) << std::endl;

 std::cout << strdate << std::endl;

 std::cout

 << date(date::convert("2000-01-01"))

 << std::endl;

}

Listing 3
MAY 2011 | | 21{cvu}

22 | | MAY 2011{cvu}

Desert Island Books
Chris O’Dell makes her selection.

first became aware that Chris O’Dell had joined the ACCU when she
submitted a piece for the CVu I was editing. Since then Allan Kelly and I
have been nagging her to do various things for the ACCU and this is the

latest. I’m also glad to say that Chris has become a regular at ACCU London
events.

It feels like the ACCU has not had much in the way of new blood for a little
while and it really needs the contributions from people like Chris. I would like
to try and address this, so if you have joined the ACCU in the last few months
or years, please drop me a line (my email address is at the bottom of this
column).

Chris O’Dell
When Paul suggested I write my selection of Desert Island books for CVu
I was initially flattered, then immediately panicked. This was due to two
reasons; the first is that I’ve only been coding professionally for just under
six years and as such I’m still reading my way through a lot of the standard
books most programmers should read and I felt that my selection would
not be particularly interesting or new. The other reason is that I have a
nasty habit of not finishing the books I start. I will pick up a book, read
the first few chapters and then become distracted by the next ‘must read’
book and immediately start that one without finishing the first. In fact, I
have a large pile of books that I am yet to finish or even start. I have even
taken to repeating to myself ‘Don’t buy any more books until you’ve
finished the ones you’ve got’ over and over like some sort of mantra.

One of the books that has had the greatest impact on my
day-to-day coding is Pragmatic Programmer. I
remember reading each section and thinking ‘that’s so
much clearer now’ or ‘I knew I was on the right track’.
As such, I would happily take this with me to my desert
island because I feel re-reading it would be a useful way
to bring myself back down to earth and look for a
pragmatic approach to my situation. Immediately after
finishing Pragmatic Programmer I read Mythical Man Month, which also
put a lot of pieces into place for me.

A little secret of mine is that my first job out of University was as a ‘Junior
Project Co-ordinator’. I was offered it before I had even officially
graduated and so I jumped at the chance to be earning money and starting
to pay off my debts. Unfortunately for me, I didn’t take the time to question
why I was offered a non-programming role despite interviewing for one
and turning up with the full source code of my C++ and OpenGL 3D game

– I was offered a job and so I took it. Of course, I found
myself dissatisfied. Project Management was not what I
wanted to do, for me it was not fulfilling and I didn’t care
that someone else must have believed that I did not belong
in the (strangely all male) programming team. After a time
I demanded that I be moved to the Programming team and
eventually, through my own persistence, I was moved teams
and began learning C#.

Through this experience I can now say, categorically, that I do not ever
want to walk down the Project Management path, although I did learn a
lot from that side of the business, e.g. How customers can, through no fault
of their own, miscommunicate and misunderstand their own requirements,
why the business needs visibility of the Development team’s progress or
estimates, and more importantly, how to communicate with all levels of
the business. As such, I felt that Mythical Man Month understood many
of the problems I had experienced on a project and that had been
experienced before, time and time again, even researched, analysed and
written up for everyone to read. Many of the findings have stuck with me,
such as the exponential slowdown that occurs when you add more and
more developers to a project already underway. I’ll take it with me to
ponder over again and hopefully I will be stranded with a project manager
and I can lend it to them in the hope that they may in future adjust their
Gantt charts more appropriately.

I remember reading Code Complete 2 very early on in my
career, but these days I cannot recall anything specific
from it. Maybe I should read it again now that I’ve got a
few more years under my belt, but I think I would rather
take a book which is currently in my bag at all times –
Clean Code. So far I am finding the advice within it to
be extremely practical, simple to follow and yet with the

biggest impact. The promotion of clean code inspires a sense of pride in
your work as though it is your honour to leap into existing code bases and
make them more beautiful places when you’re done. I feel that I will enjoy
finishing this book whilst in the shade of a palm tree.

Another book that I have started but not yet completed
(mostly because I picked up the shiny new Clean Code)
is Working with Legacy Code. I’m about a quarter of the
way through and enjoying what I’ve read so far. I can see
how test driven development evolved out of this book and
others like it. The idea of gradually wrangling legacy code
into something testable has given me greater confidence
and tools for dealing with such systems in my every day work. It is always
a good idea to remember that once code has been written it almost instantly
becomes a ‘legacy system’ – the addition of testing around it gives future
developers (including your future self) the confidence to work with the
code without introducing unknown bugs and breaking existing behaviour.

Whilst I’m on this desert island I might as well take some
books from the pile of those I have not yet started to read.
I’ll start with the Gang of Four’s Design Patterns. I have
been subconsciously putting off reading this because I
have been told that it’s very dry and difficult to get
through, but if it’s just me, the sun, sand and the book then
I’m sure I’ll make my way through it and that I’ll be better

off for it. I’ll also pack Refactoring from the pile as I’m hoping it will tie
in nicely with Working with Legacy Code and leave me feeling ready to
take on all legacy systems when I’m finally rescued.

I

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to
choose the eight records they would take with them to a desert island
(http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).

The format of ‘Desert Island Books’ is slightly different from the Radio 4
show. You choose about five books, one of which must be a novel, and
up to two albums. Some people even throw in the odd film. Quite a few
ACCUers have chosen their Desert Island Books to date and there are
plenty more to go.

The rules aren’t too strict but the programming books must have made
a big impact on your programming life or be ones that you would take to
a desert island. The inclusion of a novel and a couple of albums helps
us to learn a little more about you. The ACCU has some amazing
personalities and Desert Island Books has proved we only scratch the
surface most of the time.

Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?

MAY 2011 | | 23{cvu}

Beginning F#
By Robert Pickering, published by
Apress, ISBN 978-1430223894

Reviewed by Joes Staal

Not recommended

I found this book boring and not
very well structured. The author is clearly
enthusiastic about F# – he continually says how
great and wonderful the language is, but doesn’t
convince me. He introduces a lot of ideas
without explaining why and it was not before
long I felt overwhelmed by the amount of
material he tried to cover. It was very difficult
to see the wood for the trees.

The book starts with explaining how to use F#
for functional programming, imperative
programming, object-oriented programming
and usage of the F# libraries. It then delves into

more specific topics such as user interfaces, data
access (XML, ADO.NET, LINQ), parallel
programming and language oriented
programming. For me it didn’t work out. It was
just to hard to get over the introductory chapters

and into the more specific ones. I’ve started the
book three times over and was in the end
defeated. I didn’t get further than finishing
chapter 7, out of a possible 14.

Programming F#
By Chris Smith, published by
O'Reilly, ISBN 978-0596153649

Reviewed by Joes Staal

Recommended

Because I really wanted to learn
F# I decided to try this book by Chris Smith.
Although first 6 chapters titles are the same as
in Pickering, this book is completely different.

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

Bookshops

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

 Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk

 Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops

Desert Island Books (continued)

A book which I’m going to count as technical, albeit
tenuously, is Cooking for Geeks. A Christmas gift from
my boyfriend as he knows full well my inability to cook
yet refusal to give up experimenting. It contains
interesting and useful facts about cooking from a more
scientific point of view such as what temperature and
time foods should be cooked to ensure all ‘bugs’ have

been removed, which I believe will come in extremely handy when I try
to make a meal out of the island’s wildlife.

Now that we’ve got the tech books picked out the tough part is picking just
one novel. I love to read sci-fi and fantasy and as anyone who reads these
genres knows the stories tend to span quite a few physical books. My
favourite series is the Deverry Cycle by Katharine Kerr but it encompasses
sixteen books and I think that might be stretching the rules just a little bit.
I also love Neil Gaiman’s Sandman graphic novels but that’s still been
compiled into ten volumes. Isaac Asimov’s Foundation Series is seven
novels and Joe Abercrombie’s First Law is a trio of books. So, I stare at
my bookshelves mumbling to myself ‘just one book...’. I first pull out
Terry Pratchett and Neil Gaiman’s Good Omens, which I
bought for 50p from a local library clearout when I was in
school. Then I pull out Neuromancer and recollect my joy
at the discovery of cyberpunk, which also reminds me of
Snowcrash and Philip K. Dick’s Do Android’s Dream of
Electric Sheep. Finally I settle on Neil Gaiman’s American
Gods remembering how the story made me laugh and cry

and that rereading it will hopefully keep me amused
during the lonely days on my island.

As for the music I must first wonder what I am to do
with my CDs on the island? I am guessing that I
won’t have the foresight to bring a CD player with
me or that the island comes complete with power
sockets to keep it running. Maybe it would be more
appropriate to bring my iPod packed full of all my music and some sort of
solar powered charging device, but again, that would be stretching the rules
and ruining all the fun.

One of the first albums I ever bought was The Bends by Radiohead, the
angst ridden songs carried me through high school and I believe that it will
help me work through my feelings during moments of helplessness on my
island.

Another album that I can listen to over and over again
is the Eels’ Daisies of the Galaxy. I realise that in the
November issue Alan Stokes had already mentioned
this, but it was the soundtrack to my university years
and even now some of the lyrics can still evoke an
emotional response.

As always, I am open to receiving more book
recommendations, although, I shan’t be buying them until I’ve finished the
ones I’ve got. I shan’t buy any more books until I’ve finished the ones I’ve
got. I shan’t...

Next issue: James Byatt

24 | | MAY 2011

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Hubert Matthews
chair@accu.org

There has been an interesting
discussion on accu-general
recently about what people would
like to change about the ACCU. This is very
useful input for the committee and, fortunately,
aligns well with our own thoughts. The primary
focus seems to be marketing the ACCU better
and revamping the web site. Once the AGM is
out of the way, the newly elected Treasurer and
Secretary are safely ensconced and, I hope, the
financial situation improved through the fees
increase we can focus less on immediate issues
and more on the longer term.

The web site is our shop window to the world
and we would like to improve it significantly.
We have created a prototype site based on
Wordpress that allows members to post their
own content, articles, book reviews, etc as well
as aggregating the blogs of various members.
One useful feature allows members to post
events to a calendar and we hope that this will be
used to publicise not only ACCU events (such a

local group meetings) but also other non-
commercial events of interest to members such
as those run by organisations like the BCS or
even commercial companies. The existing book
reviews would be migrated to the site as
ordinary articles, thus allowing both the on-site
search and external search engines such as
Google to find them. The ACCU used to be
known for its high-quality book reviews and we
should look to live up to and enhance that
reputation. The key focus will be to provide
regular, fresh, rich and interesting content and to
achieve this by making it easy for members to
contribute. We have a wonderfully diverse and
interesting set of people, so let's make it easy for
them to contribute and showcase our collective
talents. Using a base such as Wordpress means
that we can achieve a lot at a low cost and also
benefit from the large number of plug-ins and
themes that are available. A more relevant site
will draw more traffic and therefore be more
attractive to advertisers.

What will it take to achieve this vision and how
can members help? We are looking for
volunteers to help in the following areas:

 look-and-feel (Wordpress themes and
CSS)

 gentle Wordpress set up and hacking
 content creation and editing
 ideas for what you want to see on the site
 testimonials from members as to what

value the ACCU brings to them
 data and content migration from the

existing site
 functional and security testing
 integration with advertising and payment

systems

Contributions can be both small or large and at
whatever level or to whatever extent people feel
they can help. If you want a site that meets your
needs then come and join us. The overall effort
will be coordinated by the committee but we do
not have the broad range of skills required to do
everything. If you have ideas about what you'd
like to see or can offer some assistance please
drop a line to one of the committee - it's your site
so help us make it something we will use, a site
we can all be proud of and something that will
attract new members.

Bookcase (continued)

For me, Chris Smith introduces concepts at the
right pace and gives the information I need at
that moment. More details are given later when
needed. Chapters 7 and 8 cover applied FP and
applied OOP. After these chapters the reader is
able to think and program in F# and the second
part of the book introduces scripting,
computation expressions (also called
workflows), parallel programming, reflection
and quotations (a way to perform code analysis
and inspection, allowing computation to other
platforms).

When studying both this book and Pickering, I
decided to work on some problems from Project
Euler and see how much I understood of the
material I digested. With Pickering’s book I had
trouble moving from imperative programming
towards a functional style, but with Smith’s
book I was able to write some ‘acceptable’ F#
code. Still, I am a beginner and need to hone my
skills. And although I liked the book by Chris
Smith, I am still looking for the definitive F#
guide – which should include exercises,
something both books are lack.

Dive Into Python
By Mark Pilgrim, published by
Apress, ISBN 978-1590593561

Reviewed by Paul Grenyer

I used to do the odd bit of
Python programming a few
years ago and as part of a recent
position. I hadn’t done any for a year or more and

when I came to pick it up again, to write some
acceptance tests for a .Net command line
application, I found I could hardly remember
anything. So I asked some people about good
refresher books. Dive Into Python came
dubiously recommended.

Dive Into Python is actually a great book, once
you get used to the chatty style and things like
‘... actually, what I just told you was a lie. The
truth is ...’ and ‘... you didn’t really think that did
you? Go and sit in the naughty corner!’ Each
chapter builds on the next and has copious
examples, all of which are explained in detail
line by line. The domain of all the examples are
simple and extremely well thought out.

The web service chapters aren’t really about
web services, but web service clients. I found
this rather disappointing. I skipped the chapters
on XML manipulation and regular expressions.
The chapter on dynamic functions says that you
should read the chapter on regular expressions
first, but there’s really no need as all the regular
expressions are explained in detail. The unit
testing chapters are very good. The functional
chapter is really just an extension of the unit
testing chapters. Following the optimisation
chapter, the final fifth of the book is appendices.

Dive into Python is available in its entirety at
http://diveintopython.org/ or in hardcopy
published by Apress.

Introduction to the Boost
C++ Libraries; Volume I -
Foundations
By Robert Demming and Daniel J
Duffy, published by Datasim
Education BV, ISBN 978-9491028014

Reviewed by Paul Floyd

Recommended

Though Boost is a large federation of libraries,
this book is mercifully concise and to the point.
It’s the first book that I’ve read from this
publisher. The page layout is quite basic – no
fancy fonts, icons or sidebars.

In the name of brevity, the authors attack Boost
straight off. There could have been more on
getting and installing Boost, which has a fairly
idiosyncratic build system. If you have an OS
that installs Boost by default (and you are
satisfied with that version and not hungry for the
very latest version of Boost), then this is not a
problem.

I haven’t yet tried out any of the examples, but
they look well balanced. Not all of Boost is
covered (hence the ‘Volume I’). The parts that
were chosen seem to fit together quite well and
generally cover data/smart pointers,
serialization, threads and mathematics.

At present I don’t use Boost in my day job. I
wanted to read this book to maintain my
knowledge of Boost. In the end, I felt that my
goal was achieved.

http://diveintopython.org/

	Coincidence and convergence
	A Game of Divisions
	Testing Times
	On a Game of Blockade
	Coding Standards for Software Correctness
	Concurrent Programming in Go
	Relish the Challenge
	ACCU 2011 Conference
	Code Critique Competition 69
	Desert Island Books
	Bookcase
	View From The Chair

