

JUL 2010 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Software Construction Site
colleague was recently comparing the task of
managing a software development team with that
of organising a construction site. The idea was

prompted by a large construction project going on
near our office; he sits near the window overlooking
it, which makes me wonder if any of the site managers
look up at our office and compare what they do with
managing a software team.
I quite like the analogy; it certainly strikes some parallels.
There’s certainly more in both fields than meets the eye. It’s
much more than just ensuring you have enough people to do
the work – although estimating how many people you need
can certainly be a trial. On a construction site, it’s very
expensive to have people idle, so they must have the raw
materials always to hand. But on a large site, where do you
put two hundred tonnes of sand so that you’re not
stopping someone’s work just by it being there? Then
there are the logistical challenges of moving the
materials around as work in one area completes, and
needs to start somewhere else.
The people problem might seem a straightforward issue as
well, until you consider that a project will need a variety of
different skill sets, and at different phases of completion. As with
the raw materials, you need to ensure that the skills are there at the right time to
avoid holding other parts up.
All in all, an interesting enough comparison I thought I’d share with you. So, I have
a question for you. Can we learn more about our own craft by thinking about
comparisons like these? Or are they at best a distraction from the unique challenges
software development presents?

 A
Volume 22 Issue 3
July 2010

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Ian Bruntlett, Asti Byro,
John Fraser, Pete Goodliffe,
Paul Grenyer, Richard Harris,
Xavier Nodet, Roger Orr,
Matthew Wilson

ACCU Chair
Hubert Matthews
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | JUL 2010

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
17 1st Annual UK Vintage

Computing Festival
Asti Byro provides an
overview of a great day
out.

18 Regional Meetings
The latest meetings from
around the country.

19 Desert Island Books
Phil Bass heads for the
lifeboats.

22 Code Critique
Competition #64
Set and collated by
Roger Orr.

REGULARS
33 Bookcase

The latest roundup of
ACCU book reviews.

36 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 22.4: 1st August 2010
C Vu 22.5: 1st October 2010

Overload 99: 1st September 2010
Overload 100:1st November 2010

FEATURES
3 Implementing One-to-Many Relations in C++

Xavier Nodet looks at managing relationships in C++.

8 Software Development in 2010
Pete Goodliffe helps shows us how to develop winning
software.

9 Experiments in String Switching
Matthew Wilson examines switching on strings.

12 Competency Scale
Ian Bruntlett thinks about expertise.

13 Implication Assert
John Fraser describes a novel use of assert.

15 A Game of Guesswork
The Baron puts up another wager.

16 On a Game of Nerve
The Baron’s acquaintance performs his analysis.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Implementing One-to-Many Relations in C++
Xavier Nodet looks at managing relationships in C++.

his paper presents a memory-ecient implementation of One-to- Many
relations in C++. Automating relations relives the programmers from
tedious and error-prone manual management of back-pointers and

notications when objects are inserted or removed from a relation, or
destroyed altogether. This implementation only uses a minimal amount of
memory: a container of pointers in the owner, and one pointer in each
owned object.
Thanks to the use of the powerful mechanisms of C++ templates, these
relations are perfectly type-safe, without the need for down-casting, very
exible, and often as ecient as hand-written code.

Introduction
The need to manage relations between objects is at the core of many
business applications: objects refer to each other with various semantics,
with or without inverse links, for various durations.
A very common case is the One-to-Many relation: an Owner object has
relationships with several User objects. The owner must know which
objects it is related to, and the users have an inverse link to their owner.
When a user is added to or removed from its owner, both links should be
updated. When the owner is destroyed, all the owned objects are also
destroyed. Such relations are extremely common, and often implemented
with ad-hoc code.
This paper proposes a set of classes to implement those One-to-Many
relations with a minimal amount of code to be written in the Owner and
User classes, and performance equivalent to hand-written code, both in
terms of memory and CPU.

One-to-many relations
For the purpose of this paper, a One-to-Many relation between classes
Owner and User is defined as the following:

An Owner instance refers to one or more instances of User.
A given instance of User can appear at most once in any Owner.
A User refers to 0 or 1 instance of Owner.
A User refers to an Owner if and only if this Owner has the address
of User in its list.

Preliminary implementation in C++
The core idea of the proposed implementation is that each relation is
represented by two classes RelationOwner and RelationUser,
one for the Owner, and one for the User. For this preliminary
implementation, an instance of User is necessarily owned by one
instance of Owner. The RelationOwner class stores pointers to the
instances of User which it has a relationship with, and the
RelationUser class stores a pointer to its owner. The classes
Owner and User inherit from RelationOwner and RelationUser.
This is all that’s needed to implement the relation, but programmers
may choose to hide the API provided by RelationOwner and
RelationUser through methods of Owner and User delegating to
their base class.
You will find in listing 1 a preliminary version of the RelationOwner
class. It defines a container to hold pointers to instances of User,
and methods to attach a User to its Owner and detach it, and iterate
over the content of the container.
Note the destructor that first swaps the _owned container with an empty
one before deleting all the objects that it owns. Iterating on a container

that’s not the one that stores all the pointers to the users is necessary
because, when deleted, the users will try to remove themselves from this
container. Copying would be less efficient in itself, and erasing from an
empty container is quicker...
The RelationUser class is presented in listing 2. The interesting thing
to notice is the implementation of the user() method, that returns
the address of the User object. It uses the CURIOUSLY RECURRING
TEMPLATE PATTERN and this was suggested to me on Stack
Overflow (see [1]). The CRTP idiom occurs when the base class
RelationUser is templated on the type of its derived class User

T

XAVIER NODET
Xavier has been programming for almost as long as he
can remember, and is still as eager to learn as the day he
first saw a ZX81. So he’s always on the look for new stuff
to read, to try or to tinker with...
He can be contacted at xavier.nodet@gmail.com.

template <class Owner,class User>
class RelationUser;

template <class Owner, class User>
class RelationOwner {
 friend class RelationUser<Owner, User>;
public:
 typedef std::set<User_> Container;
 typedef
 typename Container::const_iterator iterator;
public:
 ~RelationOwner();
 iterator begin() const {return _users.begin();}
 iterator end() const {return _users.end();}
private:
 void attach(User_ u) {_users.insert(u);}
 void detach(User_ u) {_users.erase(u);}
private:
 Container _users;
};
template <class Owner, class User>
RelationOwner<Owner,User>::~RelationOwner() {
 Container temp;
 swap(_users, temp);
 for (iterator it (temp.begin());
 it != temp.end(); ++it) {
 delete _it ;
 }
}

Listing 1

template <class Owner, class User>
class RelationUser {
public:
 explicit RelationUser(Owner_ o)
 : _owner(o)
 { _owner..>attach(user()); }
 ~RelationUser() { _owner..>detach(user()); }
private:
 User_ user() {return static_cast<User_>(this);}
private:
 Owner_ _owner;
};

Listing 2
JUL 2010 | | 3{cvu}

(see [2]). Indeed, we need the user() method to return the address
of the User instance, not of its RelationUser base class. See
‘Smart pointers’ on page 7 for a complete discussion on this topic.

A simple example
Listing 3 is an example of use, and the printed output is:
 Users of Owner: 1 2 3
 User '2' destroyed
 Users of Owner: 1 3
 User '1' destroyed
 User '3' destroyed

The net result is that just by inheriting from those classes, users get
automatic management of ownership.

Adding functionalities

Several relations to the same class

The most pressing issue with the code above is that it is not possible to
add two or more relations from one class to another... Suppose the user
wants to implement a link between two objects, with a ‘preceding’ and
‘following’ node for each link. To define the Node class that should hold
the Links , one wou l d ne ed t o i nhe r i t tw ice f rom t he
RelationOwner<Node,Link>, but this is clearly impossible.
The solution is to add a type marker template parameter to the
RelationOwner template class, e.g. an empty struct. Once two dierent
types Preceding and Following have been defined, the Node can
inherit from both RelationOwner<Node,Link,Preceding> and
RelationOwner<Node,Link,Following>, which are different
classes from the compiler’s point of view, even if the rest of their definition
is exactly the same. Providing a default value allows programmers that
don’t need this feature to simply ignore it. See Listing 4.
Such a template parameter is also added to RelationUser so that each
RelationUser instantiation can refer to its RelationOwner
counterpart: now that the owner may have several RelationOwner base
classes, it has several attach() and detach() methods. This implies
that RelationUser must be able to access the correct method: the one
that corresponds to the other side of the relation, but not another. Calls to
those methods must thus be qualied, which implies to know the exact type
of RelationOwner.

Flexibility using policies

Another issue is that storing the users in an std::set, which is the
default, is not necessarily always the best choice. It may be the case that
the same user should appear several times in the same relation. Or that, on
the contrary, it can never be the case that a user is inserted twice, and an
std::vector would be a better choice.
As defined by Andrei Alexandrescu in [3], ‘a policy defines a class
interface or a class template interface. [They] have much in common

class User;
class Owner;

class Named {
public:
 Named(const std::string& name)
 : _name(name) {}
 const std:: string& name() const {
 return _name;
 }
 ~Named() {
 std :: cout << "Object '" << _name
 << "' destroyed" << std::endl;
 }
private:
 std :: string _name;
};

class Owner
 : public RelationOwner<Owner, User> {
public:
 void show();
};

class User
 : public RelationUser<Owner, User>
 , public Named {
public:
 User(Owner_ owner, const std::string& name)
 : RelationUser<Owner,User>(owner)
 , Named(name)
 {}
};

void Owner::show() {
 std :: cout << "Users of Owner: ";
 for (Owner::iterator it (begin());
 it != end(); ++it) {
 std :: cout << (_it)..>name() << " ";
 }
 std :: cout << std::endl;
}

void test() {
 Owner_ owner (new Owner());
 User_ user1 (new User(owner, "1"));
 User_ user2 (new User(owner, "2"));
 User_ user3 (new User(owner, "3"));
 owner..>show();

 delete user2;
 owner..>show();
 delete owner; // All users deleted
}

Li
st

in
g

3

template <class Owner, class User,
 class RelId = void>
class RelationOwner {
 ...
};

template <class Owner, class User,
 class RelId = void>
class RelationUser {
 typedef typename
 RelationOwner<Owner,User,RelId> RelOwner;
public:
 RelationUser(Owner owner)
 : _owner(owner)
 {
 _owner..>RelOwner::attach(user());
 }
 ~RelationUser() {
 owner()..>RelOwner::detach(user());
 }
 ...
};

struct Preceding {};
struct Following {};

class Owner
 : public RelationOwner<Owner,User,Preceding>
 , public RelationOwner<Owner,User,Following> {
 ...
};

Listing 4
4 | | JUL 2010{cvu}

with traits, but differ in that they put less emphasis on types and more
emphasis on behavior’.

Policy for container of users

A policy can define the type of the container to use in the
RelationOwner template, and methods to insert and remove objects
from this container (see Listing 5).
The Policy t emp la t e pa r ame te r i s , by de f au l t , t he
SetValuesPolicy<User> class. This class denes a Container type,
and methods insert() and remove(). Another class can dene those
fou r m ember s so t ha t an std::vector i s u sed , a s i n
VectorNoCheckValuesPolicy, or any other data-structure.

Policy for deletion behavior

If a User instance is not necessarily tied to an Owner instance but can live
on its own, another policy can be defined to determine the behavior of the
RelationOwner when it is destroyed: should it also destroy all the users?
Should it do something else? (Listing 6 contains a policy for deletion
behavior.
By default, destruction of a RelationOwner instance triggers the
destruction of all the users in this relation. But providing another
operator() allows to choose another behavior. Note that the user is
always ‘detached’: as the owner is being destroyed, one does not want to
have pointers to it any more... A static_cast is needed for this call, so

that the call to detach() is not ambiguous when User implements
several relations.

Array-like API for access to users

It is very easy to provide an array-like API on Owner (Listing 7).

template <class L>
struct SetValuesPolicy {
 typedef std::set<L> Container;
 static void insert(Container& c, L l) {
 c. insert (l);
 }
 static void remove(Container& c, L l) {
 c. erase(l);
 }
};

template <class L>
struct VectorNoCheckValuesPolicy {
 typedef std::vector<L> Container;
 static void insert(Container& c, L l) {
 c.push_back(l);
 }
 static void remove(Container& c, L l) {
 c. erase(std :: remove(c.begin(), c.end(), l
),
 c.end());
 }
};

template <class Owner, class User,
 class RelId = void,
 class Policy = SetValuesPolicy<User> >
class RelationOwner {
public:
 typedef typename Policy::Container Container;
public:
 void attach(User owned) {
 Policy :: insert (_users,owned);
 }
 void detach(User owned) {
 Policy :: remove(_users,owned);
 }
 ...
private:
 typename Policy::Container _users;
};

Li
st

in
g

5 template <class L> struct DefaultEnder {
 void operator()(L l) { delete l; }
};

template <class Owner, class User,
 class RelId = void,
 class Policy = SetValuesPolicy<User>,
 class UserEnder = DefaultEnder<User> >
class RelationUser {
public:
 void reset() {
 if (_owner) {
 _owner..>detach(user());
 _owner = 0;
 }
 }
 ...
 private:
 User user() {return static_cast<User>(this);}
 RelOwner _owner;
 };

 template <...>
 class RelationOwner {
 ...
 public:
 ~RelationOwner() {
 Container temp;
 swap(_users, temp);
 for (iterator it (temp.begin());
 it != temp.end(); ++it) {
 static_cast<RelUser>(it)..>reset();
 UserEnder()(it);
 }
 }
 ...
private:
 typename Policy::Container _users;
};

Listing 6

template <class L>
struct VectorValuesPolicy {
 ...
 static L elem(const Container& c, size_t i) {
 return c[i];
 }
 static size_t nbElem(const Container& c) {
 return c.size ();
 }
};

template <class RelationUser>
class RelationOwner {
 ...
 User user(int i) const {
 return Policy::elem(_users,i);
 }
 size_t nbUsers() const {
 return Policy::nbElem(_users);
 }
 ...
};

Listing 7
JUL 2010 | | 5{cvu}

What’s interesting is the Policy class does not need to define those elem
and nbElem methods as long as methods user(size_t) and
nbUsers() on RelationOwner are not used. Those will be compiled
only if used somewhere in the code, and this compilation will only succeed
if Policy has the correct API. Users of set-based relations (for which the
policy does not provide the API) will thus not be able to access elements
with the array-like API, and won’t have to wait for run-time before
discovering this...

Example of use
Listing 8 shows usage of the RelationOwner and RelationUser
classes. The output for this example is:
 owner1 is related as Preceding to 'user1'
 owner1 is not related as Following to any item
 owner2 is not related as Preceding to any item
 owner2 is related as Following to 'user1' 'user2'
 Deleting owner1
 owner2 is not related as Preceding to any item
 owner2 is related as Following to 'user2'

Other approaches

The traditional approach

The usual way to manage those links is to have each object hold a pointer
(or a container of pointers) to the object(s) that it may have a relation with.
E.g. in a Belongs-To relation between Plant and ProductionLine
classes, each Plant holds a list (or array, or any other container) of
po in t e r s t o i t s ProductionLine i n s t a nc es , w h i l e t he
ProductionLine instances have a pointer to their Plant. Each time a
relation is implemented this way, some code must be added in both classes
to manage this relation: setting the back-pointer when a new object is being
referred to, resetting it when the object is no longer referred to, making
sure that the pointer is removed from the container if the object referred
to gets destroyed, and notifying or even destroying the objects referred to
when the containing object gets destroyed. All this code gets repeated for

#include "relations.h"

using namespace std;
class Named {
public:
 Named(const string& name)
 : _name(name)
 {}
 const string& name() const { return _name; }
 ~Named() {
 cout << "Object '" << _name
 << "' destroyed" << endl;
 }
private:
 string _name;
};

using namespace relations;

struct Preceding {};
struct Following {};

class User;
class Owner;

typedef RelationUser<Owner,User,Preceding,
 VectorNoCheckValuesPolicy<User> >
 PrecedingUser;
typedef RelationOwner<PrecedingUser>
 PrecedingOwner;
typedef RelationUser<Owner,User,Following>
 FollowingUser;
typedef RelationOwner<FollowingUser>
 FollowingOwner;

class Owner
: public PrecedingOwner
, public FollowingOwner
, public Named {
public:
typedef PrecedingOwner Preceding;
typedef FollowingOwner Following;
Owner(const string& name) : Named(name) {}
};

class User
 : public PrecedingUser
 , public FollowingUser
 , public Named {

Li
st

in
g

8 public:
 typedef PrecedingUser Preceding;
 typedef FollowingUser Following;
 User(Owner owner1,
 Owner owner2,
 const string& name)
 : Preceding(owner1)
 , Following(owner2)
 , Named(name)
 {}
};

template <class Rel>
void printRel(typename Rel::_Owner owner,
 const string& relName) {
 if (owner..>Rel::begin() == owner..>Rel::end())
{
 cout << owner..>name()
 << " is not related as "
 << relName << " to any item";
 } else {
 cout << owner..>name()
 << " is related as "
 << relName << " to ";
 for (Rel :: iterator it
(owner..>Rel::begin());
 it != owner..>Rel::end(); ++it) {
 cout << "'" << (it)..>name() << "' ";
 }
 }
 cout << endl;
}

void test() {
 Owner owner1 (new Owner("owner1"));
 Owner owner2 (new Owner("owner2"));
 User user1 (new User(owner1, owner2, "user1"));
 User user2 (new User(0, owner2, "user2"));
 printRel<Owner::Preceding>(owner1,
"Preceding");
 printRel<Owner::Following>(owner1,
"Following");
 printRel<Owner::Preceding>(owner2,
"Preceding");
 printRel<Owner::Following>(owner2,
"Following");

 cout << "Deleting "
 << owner1..>name() << endl;
delete owner1;
printRel<Owner::Preceding>(owner2, "Preceding");
printRel<Owner::Following>(owner2, "Following");
}

Listing 8 (cont’d)
6 | | JUL 2010{cvu}

each relation, which is bug-prone and decreases the cohesiveness of the
classes. In particular, the destructor of Owner needs to be updated (so that
it notifies the owned objects) each time a relation is added, which is a
change that’s very easy to forget.

Code generation

Generating the code to handle the relations from a description of the BOM
is a possible solution. Compared to the traditional approach, there is much
less risk of mistakes. But it requires that this description is available, and
external tools generate the code.

Smart pointers

A smart pointer class can be devised with the goal of being used in the
User class to refer to the Owner instance. Destruction of the smart pointer
(when the User instance is destroyed) would trigger the notication of the
Owner so that it removes the address of the User from its list. The main
drawback of this approach is that there is no way for the smart pointer
instance to know the address of the User instance it belongs to, other than
getting it at construction time and storing it.
The proposed approach solves this problem efficiently. Recall the code to
retrieve the address of the User instance from inside the RelationUser
class:
 template <class, class User>
 class RelationUser {
 ...
 User_ user() {return static_cast<User_>(this);}
 };

The reasons this code works are the following:
The compiler provides the this pointer, which is not of type
User*, but of type RelationUser<...>*, as we’re in a method
of the latter.
It is only at the point of instantiation (i.e. when the compiler actually
encounters a call to RelationUser<...>::user()) that the
compiler inserts the code of the method.
The method is called in the destructor of RelationUser to notify
the Owner of the destruction of an object it owns. This destructor is
instantiated from the destructor of User. The User class is
obviously known to the compiler at this point.
As User is a template parameter of RelationUser the former is
known to the compiler when instantiating the code for
RelationUser<...>::user(). The compiler can thus generate
the code to convert a pointer to the base class RelationUser into
a pointer to the derived class User. Et voilà...

The fact that the compiler provides the this pointer, plus the fact that
User inherits from RelationUser (something the compiler knows as
User is a template parameter of RelationUser), allows to retrieve the
address of the User object without incurring the cost of storing it. In terms
of CPU, the implementation of the cast is a no-op if the RelationUser
class is the first super-class of the User and simply the substraction of a
constant in the other cases. Pretty cheap...
Now suppose that the User class stores, as a member, an instance of a
smart pointer. There is no way [4] this smart pointer would be able to
retrieve the address of User without getting it from User itself and storing
it. The inheritance solution proposed in this paper is thus more efficient in
terms of memory.

Relationship manager

One proposed solution to these issues, as in [5], is to have all relations
managed and stored into a ‘central’ RelationhipManager class. This
approach increases the cohesiveness of the classes in the BOM, but does
so at the expense of the additional memory needed to store the information:
the Owner and User classes store a pointer to the relationship manager

(instead of a pointer to the other object in the relation), but the latter must
also use additional memory to hold all the information about which object
has a relation with which. This approach is also less efficient in terms of
CPU.

Conclusion
This paper shows an efficient implementation of One-to-Many relations
in C++.
Thanks to the template mechanisms, this implementation is type-safe,
flexible and often as efficient as hand-written code.

Acknowledgements
Thanks to Kevlin Henney and Georges Schumacher for their
encouragements and very useful comments.

References and notes
[1] http://stackoverflow.com/questions/709790/how-can-i-know-the-

address-of-owner-object-in-c/709996#709996
[2] The Curiously Recurring Template Pattern: http://c2.com/cgi/

wiki?CuriouslyRecurringTemplate
[3] Andrei Alexandrescu. Modern C++ Design (Addison-Wesley,

2001)
[4] Except if allowing non-portable code using undefined behavior
[5] Andy Bulka, Relationship Manager, http://www.andypatterns.com/

index.php?cID=44

The full code is available at http://xavier.nodet.free.fr/Relations/
JUL 2010 | | 7{cvu}

http://stackoverflow.com/questions/709790/how-can-i-know-the-address-of-owner-object-in-c/709996#709996
http://stackoverflow.com/questions/709790/how-can-i-know-the-address-of-owner-object-in-c/709996#709996
http://c2.com/cgi/wiki?CuriouslyRecurringTemplate
http://c2.com/cgi/wiki?CuriouslyRecurringTemplate
http://www.andypatterns.com/index.php?cID=44
http://www.andypatterns.com/index.php?cID=44
http://xavier.nodet.free.fr/Relations/

8 | | JUL 2010{cvu}

so you need some software?

do you really need it?

are you “agile”?

do you like writing
software?

do something more
interesting instead

look for a
new job

do you like
knitting?

knit yourself
a tank top

you
win

you
lose

take a deep breath;
here we go...

here we go (again,
and again, and...)

do you have analysis?

do you have design?

do you have code?

get someone else
to do it for you

do you have requirements?

when was
delivery due?

code like mad!

I don’t believe you

is there time to test?

did you ship
on time?

did anyone
notice?

wow! well
done

has anyone collated
user stories yet?

do you have an on-
site “customer”?

hit them with
a big stick

can anyone play
customer?

chose an
iteration size

so what are you
doing here, then?

daring!

sane

bit large

um... agile,
eh?

NO YES

YES

YES

YES

YES

NO

NO

NO

YES

NO

NO
YES

YESNO

YESNO

1 WEEK

2 WEEKS

3 WEEKS

1 MONTH,
1 YEAR,
1 DECADE...

ah well, you’re
faking it anyway...

NO

YES

YES NO

NO YES

OF COURSE NOT

NOYES

NO

they were a
bunch of cowboys,

anyway

ASAPYESTERDAY

think “fashionable”

WHATʼS THAT, THEN?

A
 R

E
A

LIS
T

IC
 D

E
A

D
LIN

E

Software Development in 2010
Pete Goodliffe helps shows us how to

develop winning software.

orget all of the theoretical software
development practices pedalled by
booksellers and popular speakers. We all

know that software development is
really a game, and there are
very few rules. Will you
win or lose?

F

Professionalism in Programming # 63

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net

Thanks for all the fish

Experiments in String Switching
Matthew Wilson examines switching on strings.

his article describes my recent efforts in starting to synthesise
succinct, simple, syntax for selecting between string cases. In so
doing, it discovers a new use for the old trick for returning arrays from

functions.

Introduction
In the last couple of years I’ve been developing a lot of command-line
software, and I’ve become mighty tired of boilerplate coding for the
handling of command-line arguments. One product of this is a new (and I
think superior) command-line argument sorting and parsing (CLASP)
library, which I hope to introduce to the ACCU community in a
forthcoming CVu article (after its first public-domain release). Right now,
I want to discuss a smaller, separate component that happens to be used in
evaluating the values obtained via CLASP, or any other command-line
argument.
One of the programs that I’ve been reworking lately is a source analysis
tool that can examine any C-family language. By default, it infers the
programming language from the file extension (and some other heuristics),
but occasionally it’s necessary or more convenient to specify the language
explicitly. The command-line switch involved, --language (short form
alias -L), understands values specifying the language and, optionally, the
language version, as in:

 --language=C,99
 --language=D
 --language=C++,98
 --language=Java,1.2

The CLASP library provides the ability to test for the presence of a
command-line option and elicit its value, as in:

 int tool_main(
 clasp::arguments_t const* args
)
 {
 ...
 char const* val;
 if(clasp::check_option(args,
 "--language", &val, NULL))
 {
 ... // parse language and version from val
 }
 ...

That’s nice and expressive, but of course that’s only the easy part. Now
we have to split the value by a comma and, optionally, a period (or full-
stop to the British/Antipodeans amongst you). Once that’s done, we then
have to recognise the language string fragment, and convert the version-
hi and version-lo string fragments to integers. (We could treat the version
fragment atomically, and convert it to a floating-point value, but I am one
of those programmers who know just enough about floating-point
programming to avoid it wherever I possibly can.)
Apart from the ‘recognise the language’ part, the rest of this programming
is pretty straightforward. I’ll just show you how I’ve done it, implemented
in terms of common STLSoft components, and you can substitute
whatever you might use instead. Listing 1 shows all the processing except
the language recognition and verification.

There’s no need to check whether either split operation succeeds, because
if we fail to elicit a language string it will be detected in the detect/verify
step, and if we elicit an invalid language version that’ll be picked up by
the string-to-integer checks.
All that’s left is to implement the check of the language string fragment
and translate it into the corresponding language enumerator (in this case
language_t) , or to report an invalid language and return
EXIT_FAILURE. There are a variety of possibilities.
One would be to have a giant if-else chain.

T

MATTHEW WILSON
Matthew is a software development consultant and trainer
for Synesis Software who helps clients to build high-
performance software that does not break, and an author
of articles and books that attempt to do the same. He can
be contacted at matthew@synesis.com.au.

enum language_t
{
 SSSALC_LANG_NEUTRAL = 0x0000,
 SSSALC_LANG_C = 0x0100,
 . . .
 SSSALC_LANG_JAVA = 0x1000,
};

int tool_main(
 clasp::arguments_t const* args
)
{
 ...
 language_t language = SSSALC_LANG_NEUTRAL;
 int langVerHi = 0;
 int langVerLo = 0;
 char const* val;
 if(clasp::check_option(args, "--language",
 &val, NULL))
 {
 string_t langStr;
 string_t verStr;
 string_t verHiStr;
 string_t verLoStr;

 stlsoft::split(val, ',', langStr, verStr);
 stlsoft::split(verStr, '.', verHiStr,
 verLoStr);

 ... // detect and verify language

 if(!stlsoft::try_parse_to<int>(
 langVerHiStr, &langVerHi) ||
 !stlsoft::try_parse_to<int>(
 langVerLoStr, &langVerLo))
 {
 ff::fmtln(std::cerr,
 "Invalid language version specified:
 {0}", val);
 return EXIT_FAILURE;
 }
 }

Listing 1
JUL 2010 | | 9{cvu}

 if("C" == langStr)
 {
 language = SSSALC_LANG_C;
 }
 else
 if("C++" == langStr)
 {
 language = SSSALC_LANG_CPLUSPLUS;
 }
 else
 . . .

Yuck!
The way I am accustomed to doing this is to define a simple dedicated
aggregate structure consisting of two fields – one of type char const*
and the other of type language_t – and a static constant literal array of
them, as in:
 struct language_map_t
 {
 char const* name;
 language_t lang;
 };
 static const language_map_t languages[] =
 {
 { "C", SSSALC_LANG_C },
 { "C++", SSSALC_LANG_CPLUSPLUS },
 { "D", SSSALC_LANG_D },
 . . .
 }

Then, we’d iterate over the array, comparing the name member with the
received language string, and setting the language variable to the lang
member of the corresponding element. If we get to the end of the array,
then the user has specified an invalid language. It’s simple to do, and hard
to get wrong:
 size_t i;
 for(i = 0; i != NUM_ELEMENTS(languages); ++i)
 {
 if(languages[i].name == langStr)
 {
 language = languages[i].lang;
 }
 }
 if(i == NUM_ELEMENTS(languages))
 {
 ff::fmtln(std::cerr,
 "Invalid language specified: {0}", val);
 return EXIT_FAILURE;
 }

But the problem is, it’s so incredibly tedious to do! There’s no challenge,
nothing fun, just wearisome repetitive boilerplate. In a fit of pique I
dec i de d t o s e ek a n a l t e rn a t i ve . The r e su l t i s t he
stlsoft::string_switch() function, and the associated
stlsoft::string_cases() function, both of which appear in the
latest alpha release of STLSoft 1.10. They are used as in Listing 2.
To be sure, it’s not rocket surgery, but it’s highly expressive and, if I say
so myself, a pleasure to use. And that’s important, because boring
boilerplate work has a habit of getting itself wrong.
Let’s now look at the implementation, and you can consider whether it’s
worth the effort.

Implementation
To get this to work with multiple compilers took me more effort than I’d
care to admit, involving a blind alley involving fixed array class templates
(STLSoft’s fixed_array_1d [1], if you’re interested) and workarounds
involving std::vector. As is often the case, I slept on it, and the next

day hacked it back to the bare bones to get the current solution in just an
hour or two. Fred Brooks’ wisdom on writing two versions strikes again
[2].
Although I plan to enhance them to work with arbitrary string types in the
future, at the moment the functions work only with C-style strings.
Consequently, they’re pretty straightforward. Let’s first look at the easy
one, string_switch(), in Listing 3.

// in namespace stlsoft
template<
 typename C
, typename E
, size_t N
>
inline bool string_switch(
 C const* s
, E* result
, ximpl::string_case_item_array_t<C, E, N>
 const& cases
)
{
 { for(size_t i = 0; i != cases.size(); ++i)
 {
 ximpl::string_case_item_t<C, E>
 const& case_ = cases[i];
 if(0 == ::strcmp(case_.name, s))
 {
 *result = case_.value;
 return true;
 }
 }}
 return false;
}

Listing 3

#include <stlsoft/util/string_switch.hpp>

static int tool_main(
 clasp::arguments_t const* args
)
{
 . . .
 char const* val;
 if(clasp::check_option(args, "--language",
 &val, NULL))
 {
 . . .
 stlsoft::split(val, ',', langStr, verStr);
 stlsoft::split(verStr, '.',
 verHiStr, verLoStr);

 if(!stlsoft::string_switch(
 langStr.c_str()
 , &language
 , stlsoft::string_cases(
 "C", SSSALC_LANG_C
 , "C++", SSSALC_LANG_CPLUSPLUS
 , "C#", SSSALC_LANG_CSHARP
 , "D", SSSALC_LANG_D
 , "Java", SSSALC_LANG_JAVA
)
)
)
 {
 ff::fmtln(std::cerr,
 "Invalid language specified: {0}", val);
 return EXIT_FAILURE;
 }

 ...

Listing 2
10 | | JUL 2010{cvu}

I hope it’s obvious what’s going on. It’s effectively equivalent to the loop
of the hand-written solution shown earlier.
The next part is where it gets trickier. For various reasons – including the
desire to incur no more costs than the hand-written form – I did not want
to allocate memory. Consequently, string_cases() is a suite of ten
overloads, handling arity from 1 to 10. I’ll show you the implementation
of the ternary version along with the supporting data structures (see Listing
4). (Note: if you’re creating function (template) suites, you should either
generate them with Python/Ruby or use a mix of layout and IDE keyboard
macros to ensure that you’re not actually writing them all by hand. That,
as I’m sure you can appreciate, is a recipe for tedium-induced mistakes to
creep in.)
The key to the problem is the trick of how to return an array from a function.
As I’m sure you are aware, gentle readers, it’s not valid C or C++ to return
a naked array:
 int[10] bad_wolf(); // Not allowed!

But it’s very easy to achieve. Just put it in a structure:

 struct snarl
 {
 int ar[10];
 };
 snarl bad_wolf();

All the templaty-looking magic in Listing 4 really amounts to nothing more
than populating a matching-nary array of string_case_item_t<>
(wrapped inside an instance of string_case_item_array_t<>).
As I mentioned earlier, it’s a bit scrappy. There are several points at which
there’s an ostensibly runtime check of the size of the array, when it could
be compile-time. And the so-called character-genericity is, for the
moment, subverted by the use of strcmp(); this will be easily improved
by using character/string traits.
More seriously, it only works with C-style strings. I already have a good
idea how to apply string access shims [1] [3] to string_switch(), to
enable its first argument to be any type representable as a string. But
making the arguments to string_cases() generic will take a fair bit
more deviousness, I think. I’d be happy to hear from anyone with ideas.
I should mention that Chris Oldwood, one of my reviewing friends,
suggested that this is overkill (which has some truth) and offers nothing
over the alternative of defining the cases in an array and passing that to a
function similar to string_switch(). The reasons I want to persist with
string_cases() are that it is still quite a bit more succinct, and the
cases are defined where they’re used. Also, once I’ve made it more generic,
it’ll be able to use case arguments of arbitrary string types, some of which
may, if required, be variables.

Acknowledgements
I’d like to thank Steve Love, the CVu editor, for dealing patiently with this
chronically deadline-slipped author, and my friends and review panel
resident experts, Garth Lancaster and Chris Oldwood.

References
[1] Imperfect C++, Matthew Wilson, Addison-Wesley, 2004
[2] The Mythical Man Month, Frederick P. Brooks, Addison-Wesley,

1995
[3] ‘An Introduction to FastFormat, part 2: Custom Argument and Sink

Types’, Matthew Wilson Overload 90, April 2009

// in namespace stlsoft
namespace ximpl
{
 template<
 typename C
 , typename E
 >
 struct string_case_item_t
 {
 C const* name;
 E value;
 };

 template<
 typename C
 , typename E
 , size_t N
 >
 struct string_case_item_array_t
 {
 string_case_item_array_t(
 string_case_item_t<C, E> const* p
 , size_t n
)
 : len(n)
 {
 STLSOFT_ASSERT(N == n);
 { for(size_t i = 0; i != n; ++i, ++p)
 {
 ptr[i].name = p->name;
 ptr[i].value = p->value;
 }}
 }
 size_t size() const
 {
 return N;
 }
 string_case_item_t<C, E> const& operator
[](size_t i) const
 {
 STLSOFT_ASSERT(i < N);
 return ptr[i];
 }
 private: // Fields
 size_t const len;
 string_case_item_t<C, E> ptr[N];
 };
} /* namespace ximpl */

Li
st

in
g

4 template<
 typename C
, typename E
>
inline ximpl::string_case_item_array_t<C, E, 3>
 string_cases(
 C const* name0
, E value0
, C const* name1
, E value1
, C const* name2
, E value2
)
{
 ximpl::string_case_item_t<C, E> items[] =
 {
 { name0, value0 }
 , { name1, value1 }
 , { name2, value2 }
 };
 return ximpl::string_case_item_array_t<C,
 E, STLSOFT_NUM_ELEMENTS(items)>(items,
 STLSOFT_NUM_ELEMENTS(items));
}

Listing 4 (cont’d)
JUL 2010 | | 11{cvu}

12 | | JUL 2010{cvu}

Competency Scale
Ian Bruntlett thinks about expertise.

he differing levels of C++ expertise have been some discussed on
accu-general where 0 is no knowledge and 10 is Bjarne Stroustrup.
It has also been noted that the average programmer rates themselves

higher than average. In order to gauge my own expertise in programming
in general, I decided to expand on this. Here is the competency scale:

This scale can be used on accu-contacts etc to list the minimum acceptable
competence for key skills. One particular use could be to illustrate the
current skill levels. For instance, someone could have had C++(7) in the

past but, due to working with other languages for a period of time, slip
down to C++(Was 7, now 5).
There are other skills to be measured as well, not just programming skills.
Refactoring – Do you just copy and paste code into functions (0) or do you
put it into suitable functions. (Similar things apply to classes and
templates).
Other skills, left as an exercise for the reader, would be: Design, Coding,
Literacy (reading about the topic), Literacy (writing about the topic), use
of Standard Libraries, use of other related libraries, knowledge of the
application/business domain.
My own ratings are in the table below.

0 No knowledge

Novice

1 Done a “Hello World” program from a magazine/web site article.

2 Novice/Tourist – relies on ‘phrase books’ (e.g. O’Reilly’s books).

3 Novice – less reliant on books.

Practised

4 Gaining confidence – books / man pages used for reference.

5 Average – knows the ins and outs of the language/topic.

6 Fluent – above average, becoming an expert.

Expert

7 Expert.

8 Lead programmer.

9 Mentor.

10 Guru (e.g Bjarne Stroustrup for C++).

T

Skill Score

bash (Linux shell scripting) 3

awk 2

Python 2

Perl 3

C 7

C++ was 7, now 4

Creating solution domain libraries was 8, now 6

Business domain (energy trading and forecasting) 4

Refactoring 7

Literacy (C++, reading) 6

C++ Builder was 7 now 5

Visual C++ / MFC 2

Hardware troubleshooting 6

Guiding novice users 7

Boost 2

Algorithms 6

STL 5 was 6

Assembly Language was 8 now 4

IAN BRUNTLETT
On and off, Ian has been programming for some years.
He is a volunteer system administrator for a mental health
charity called Contact (www.contactmorpeth.org.uk). As
part of his work, Ian has compiled a free Software Toolkit
(http://contactmorpeth/wikispaces.com/SoftwareToolkit).

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org

www.contactmorpeth.org.uk
http://contactmorpeth/wikispaces.com/SoftwareToolkit

Implication Assert
John Fraser describes a novel use of assert.

ssertions are very useful for documenting and checking software
contracts; preconditions, post-conditions and invariants. They
provide a functional, referentially transparent (i.e. stateless)

expression that describes the state of a system at a particular point in time.
The expression that is evaluated by an assert statement can include any
n u mbe r o f un a r y o r b i na ry o pe ra t o r s , f o r e xam pl e ,
Assert(!condition1&&condition2 j| condition3). There
is however another useful binary operator called the implication
operator that is not directly supported by most languages but can be formed
by using negation (NOT) and disjunction (OR). In this article I will show
you why the implication operator is useful and how to use it in an assert
statement.

Notation
Before describing the implication operator and its use in assert statements
it is necessary to define some notation that will be used throughout the
rest of this article.

The assert statement
First, let us look at the assert statement and describe its purpose and
behaviour. The code below shows a method and a precondition defined
using an assert statement.
 void SomeMethod(int parm1, int parm2)
 {
 assert(parm1 != 0 && parm2 != parm1);
 ...
 // now parm1 and parm2 can be used in the body
 // of the method knowing that parm1 != 0 and
 // parm2 != parm1
 ...
 }

To anyone reading the code shown above, the assert statement acts as
clear documentation for the responsibility of the caller of SomeMethod;
the caller of SomeMethod must ensure that parm1 does not equal zero
and that parm1 does not equal parm2. Likewise the assert statement
documents the responsibility of SomeMethod in that SomeMethod does
not need to check that the values of parm1 and parm2 are valid before
using them; the code in the body of SomeMethod after the assert
statement can be read with the assumption that parm1 and parm2 contain
valid values. Using assert statements in this way can simply the code
of SomeMethod and the caller of SomeMethod. SomeMethod can be
written without having to check that the values of parm1 and parm2 are
valid before they are used. If the caller of SomeMethod ensures that the
values of parm1 and parm2 meet the precondition before calling
SomeMethod then the caller will not have to handle an exception resulting
from invalid parameters passed to SomeMethod.
At runtime (typically in a debug build) the expression passed as parameter
to the assert is evaluated and if the result is true then the assertion is

valid and no action needs to be is taken. If the result of the expression is
false then the action that occurs is typically platform dependent and
configurable. Some implementations of assert will halt execution of the
program invoking the debugger, alternatively an assert can throw an
exception and/or log an error message to file or the console.

Assert with conditional

Now let us look at what problem the implication operator can solve with
regard to assert statements. The author of the code shown below would
like to make the assertion that if the interrupt variable is not equal to
zero then the value of data should not be equal to zero. The point of the
conditional statement around the assertion is that the code should only
check the assertion that data does not equal zero if interrupt does not
equal zero, in other words, if interrupt equals zero then we do not care
if data is zero or not therefore the assert should not halt execution of
the program.
 void EventHandler(int interrupt, int data)
 {
 if(interrupt != 0)
 {
 assert(data != 0);
 }
 ...
 ...
 }

Whilst the code above will work, there are two issues with the way this
code is structured. One of the issues is that the conditional if statement
will not be compiled out when a release build is made; typically assert
statements are not a part of the final executable and are compiled out when
a release build is made. The other issue is that the assert statement does
not represent a complete expression of what should be asserted, for the
reason that a conditional is used before the assert. This makes the assertion
difficult to read because the assertion is not only about data but also about
interrupt and interrupt is not a part of the assert expression. It also
makes the assertion difficult to parse, for example, a tool that performs
static analysis or displays documentation about each method along with
its software contracts would not know to include the conditional statement
as a part of the precondition, it would just use the expression that is a
parameter to the assert statement.

Implication operator
The implication operator is a binary operator meaning that it takes two
operands as parameters. You have already seen an example of two binary
operators in the notation table at the beginning of this article; the
disjunction and conjugation operators both take two operands as input. The
symbol for the implication operator is an arrow (→). The truth table for
the implication operator is shown below. Notice that when p is false as
in the 3rd and 4th rows of the truth table, the result of p → q (p implies
q) is always true; it is this behaviour that we will make use when forming
the expression for an assert statement.

Symbol Description Example

∨ Disjunction (OR): this acts like the || operator in C++ p ∨ q

∧ Conjunction (AND): this acts like the && operator in
C++

p ∧ q

¬ Negation (NOT): this acts like the ! operator in C++ ¬ p

A

JOHN FRASER
John Fraser has been developing software for 20 years
mainly in C++ and C#. He currently works for the Institute
of Cancer Research in London writing software that will help
medical staff visualize the effectiveness of treatments.
John can be contacted at logic_cube@btopenworld.com
JUL 2010 | | 13{cvu}

The implication operator is not directly supported by most languages but
it can be represented in terms of other operators that are supported. The
implication operator → can be represented in terms of negation (not) and
disjunction (or). For example, the expression p → q (p implies q) can be
expressed as ¬p ∨ q (i.e. not p or q). To prove this, the following table
compares p → q with ¬p ∨ q and shows that the result of each expression
is the same for each combination of p and q.

Have a look at the second row of the truth table. Notice that the value in
the column for p → q contains false. Having a look at the rest of the rows
you can see that the only time the implication is false is when p is true and
q is false, otherwise the implication is true. In rows three and four the value
in the implication column is true but have a look at the values for q. In row
three the value of q is true and in row four the value is false; this means it
doesn’t matter what the value of q is if the value of p is false, the implication
will always be true. Now we can use the behaviour of the implication
operator shown in the truth table to rewrite the assert statement using a
single expression without the need for the conditional if statement around
it.
 void EventHandler(int interrupt, int data)
 {
 assert(!(interrupt !=0) || data !=0);
 ...
 ...
 }

As you can see, the expression in the assert statement has been written
based upon column four in the truth table, i.e. assert(!(p) || (q))
where p is interrupt != 0 and q is data != 0. Let us test the
behaviour of the expression for two cases to see what it evaluates to for
different values of p and q. If interrupt !=0 is true and data != 0 is
false then the negation of interrupt !=0 achieved using the ! (not)
operator in the code above would evaluate to false, so !(interrupt
!=0) evaluates to false. As data != 0 also evaluates to false, the
result of !(interrupt !=0) || data !=0 would also evaluate to
false and the assertion would halt execution of the program. This is the
behaviour that we want; we only want the assertion to halt execution of
the program if interrupt is not equal to zero and data equals zero. If
interrupt !=0 is false (i.e. interrupt equals 0) and data != 0
is false then the negation of interrupt !=0 evaluates to true. Now
because in this case the interrupt variable equals zero we actually don’t
care what the result of data != 0 evaluates to. In this instance data !=
0 is false meaning that the result of !(interrupt !=0) || data
!=0 evaluates to true and the assert will not halt execution of the
program.
Although the code now uses an assertion that includes interrupt and
data, the assertion is difficult to read, i.e. the intention of the assertion,
which is to make use of the implication operator may be unclear. This can
be solved by writing an assert macro that indicates the intention, making

the assertion easier to read by formalising the premise and conclusion of
the implication using two parameters.
 #define assert_implication(p,q) assert(!(p)||(q))
 void EventHandler(int interrupt, int data)
 {
 assert_implication(interrupt != 0,
 data != 0);
 ...
 ...
 }

Using the macro the code is easier to read; the relationship between
interrupt and data has also been made explicit due to the naming of
the macro (assert implication). The expression can now be read as
interrupt != 0 → data != 0. Using the implication operator the assertion
will only halt execution of the program in the case where interrupt !=
0 is true and data != 0 is false (i.e. interrupt has some value
other than zero and data is equal to zero). If interrupt != 0 evaluates
to false then we do not care about the value of data and so because of
the use of the implication operator the assertion will evaluate to true and
not halt execution of the program.

Summary
For assertions that are required to be evaluated conditionally, it is possible
to use a conditional if statement followed by the actual assertion.
However, this article has pointed out two issues with this approach and has
shown a way for the conditional if to be removed and formed as a part of
the assertion expression by making use of the implication operator. A
macro has also been introduced that makes the intention of the assertion
explicit with the result that the assertion is easier to understand.

p q p→q

true true true

true false false

false true true

false false true

p ¬p q ¬p∨q p→q

true false true true true

true false false false false

false true true true true

false true false true true
14 | | JUL 2010{cvu}

JUL 2010 | | 15{cvu}

A Game of Guesswork
Baron Muncharris sets a challenge.

reetings Sir R-----. I trust that I find you in good spirits this evening?
Will you take a glass of this excellent porter and join me in a little
sport?

Splendid!
I propose a game that is popular amongst Antipodean opal scavengers as
a means to improve their skill at guesswork.
Opals, as any reputable botanist will confirm, are the seeds of the majestic
opal tree which grows in some abundance atop the vast monoliths of that
region. Its mouth-watering fruits are greatly enjoyed by the Titans on those
occasions when, attracted by its entirely confused seasons, they choose to
winter thereabouts.
Having gorged themselves upon these fruits, the atrociously mannered
Titans cast the scraps deep into the surrounding deserts leaving their stones
scattered haphazardly therein.
Given the consequent lack of predictability of the location of opals it is
small wonder that a talent for guesswork is so highly prized amongst their
scavengers and that they are willing to expend so much of their spare time
in practice of it.
Finding myself stranded in a camp of these hardy fellows after a
misadventure involving a very great number of rabbits, upon which I have
no desire to expand, I discovered that I have some small talent in their
industry. During the course of an afternoon I chanced upon some several
thousand stones to which I added some few thousand more at their game
after our labour.
But I digress.
See here, I have placed two upturned cups on the table. Beneath one of
them is a token and if you pay me a stake of 1 and 7/8ths of a coin you
make guess which it is. If you are correct you shall win a prize of 1/8th of
a coin.
Now this may strike you as a somewhat unworthy bounty but pray hear
me out!
If you guess correctly you may play a second round of the game for the
same stake. In this round there are three cups rather than two and the prize
is doubled.
If you guess correctly again you may likewise enter into a third round in
which the cups number four and the prize is triple that of the second round.
Play continues in this fashion with every correct guess giving you the
option to pay your stake again and enter into another round in which the
number of cups is increased by one and the prize multiplied by the number
of cups employed in the round just played.
An incorrect guess brings the game to an end, but you may elect to begin
again with another first round if you so desire.
When I explained these rules to that disreputable student acquaintance of
mine he began blathering on, in his usual witless fashion, about how the
harmonies of Sirius are oft lengthier than expected, although quite what
bearing he imagines the endless dirges of the Canicular peoples might have
upon this game entirely escapes me. Perhaps a touch of dog day sunstroke
has accelerated the deterioration of his already meagre faculties.
Now come recharge your glass and think on your thirst for a wager!

Listing
Listing 1 shows a C++ implementation of the game.

G size_t
rnd(const size_t n)
{
 return size_t(double(n) * double(rand()) /
 (double(RAND_MAX)+1.0));
}

void
play()
{
 const double stake = 1.0 + 7.0/8.0;
 double prize = 1.0/8.0;
 size_t cups = 2;
 double balance = 0.0;

 char again = 'Y';
 while(toupper(again)=='Y')
 {
 balance -= stake;
 const size_t cup = 1 + rnd(cups);
 size_t picked = 0;
 while(picked==0 || picked>cups)
 {
 std::cout << "Pick a cup from 1 to "
 << cups << " : ";
 std::cin >> picked;
 std::cin.clear();
 std::cin.ignore(
 std::numeric_limits<int>::max(), '\n');
 }

 if(picked==cup)
 {
 balance += prize;
 prize *= double(cups);
 ++cups;

 std::cout << "Right! Balance = "
 << balance << std::endl;
 }
 else
 {
 prize = 1.0/8.0;
 cups = 2;
 std::cout << "Wrong! Balance = "
 << balance << std::endl;
 }

 again = '\0';
 while(toupper(again)!='Y'
 && toupper(again)!='N')
 {
 std::cout << "Play again? [Y/N] : ";
 std::cin >> again;

 std::cin.ignore(
 std::numeric_limits<int>::max(), '\n');
 }
 }
 }

Listing 1

On a Game of Nerve
The Baron’s acquaintance performs his analysis.

he Baron’s latest game consists of up to four turns throwing a pair of
dice and costs nine coins to play. After each turn the player may elect
to stop playing and collect their sum as winnings.

On hearing these rules, it immediately occurred to me that he should only
continue the game if he has thrown a sum less than that he might expect
to win in future turns.
We can thus reckon the expected winnings before throwing the dice by
considering the expected winnings after throwing them conditional upon
the cases of having done better and having done worse than expected in
future turns.
I explained this insight to the Baron, but fear I may not have done so with
sufficiently clarity since I was struck with the impression that he had not
fully understood me. Hopefully I shall do better with this exposition!
Let us assume that the expected winnings when there are a number, let us
say n, turns left is equal to en. The expected winnings when there are n+1
turns left can then be figured as the sum of en times the probability that
we roll less than or equal to en and the expected sum of a throw given that
it is greater than en times the probability that we make such a throw.
We write this as

where x represents possible sums of the pair of dice, p the probability of
observing the event that follows it and E the expected value of the symbol
before the bar assuming it satisfies the condition after it.
We can figure this conditional expectation with the formula

where the capital sigma stands for the sum of the terms that follow it for
every value y greater than en.
The expected sum of a roll of a pair of dice is 7, so

We can therefore figure the expected winnings in a game of two turns with
the formula

Noting that the probabilities of rolling sums from two to twelve are equal to

we can rewrite this as

Given this result, we can figure the expected winnings when there are three
turns remaining and, given that, the expected winnings when there are four.
In doing so, we find that the expected winnings in the Baron’s game are 8
coins plus 7349 of 7776th parts of a coin, or 427 of 7776th parts of a coin
less than the cost to play. The game is thus biased in favour of the Baron
and as such, unless Sir R----- had had a particularly keen appetite for a
wager, I should have advised him to refrain from play.
Incidentally, I recently ran into Monsiour L----- and, on proudly
recounting to him the tale of how I and my fellow students played the
Baron’s game of strategy for 48 hours straight to demonstrate that it could
always have been won by Sir R-----, he pointed out that this was obviously
true if Sir R----- plays so that one half turn of the board leaves the coins
in the same positions, albeit with tails exchanged for heads.
If, after such a turn of the board, Sir R----- flips the coins over it would
have no effect on the state of the board and hence both players must control
the same number of squares. Sir R----- must therefore always be able to
force a draw.
It is with some shame that I must admit that I have not the nerve to report
this to my fellow students for fear that they shall vent upon me their
frustration at having utterly wasted their time.

Listings
Listing 1: The probabilities of sums
Listing 2: The conditional expectation of sums no less than the
minimum
Listing 3: The expected winnings in a game of n turns

Sum 2 3 4 5 6 7 8 9 10 11 12

Probability 1/36 2/36 3/36 4/36 3/36 6/36 5/36 4/36 3/36 2/36 1/36

T

en 1+ p x en≤() en× p x en>() E x x en>[]×+=

E x x en>[]

y p x y=()×
y en>
∑

p x en>()
--=

e1 7=

e2 p x 7≤() 7 p x 7>() E x x 7>[]×+×=

double
p_equal(unsigned long i)
{
 static const unsigned long n[13] =
 {0, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1};
 return i<=12 ? double(n[i])/36.0 : 0.0;
}

double
p_less_equal(unsigned long i)
{
 static const unsigned long n[13] =
 {0, 0, 1, 3, 6, 10, 15, 21, 26, 30, 33, 35,
 36};
 return i<=12 ? double(n[i])/36.0 : 0.0;
}

Listing 1

e2
1

36
------ 2

36
------ 3

36
------ 4

36
------ 5

36
------ 6

36
------+ + + + +⎝ ⎠

⎛ ⎞ 7 5
36
------ 4

36
------ 3

36
------ 2

36
------ 1

36
------+ + + +⎝ ⎠

⎛ ⎞
8 5

36
------× 9+

4
36
------× 10+

3
36
------× 11+ 2

36
------ 12 1

36
------×+×⎝ ⎠

⎛ ⎞

5
36
------ 4

36
------ 3

36
------ 2

36
------ 1

36
------+ + + +⎝ ⎠

⎛ ⎞
---×+×=

21
36
------ 7 40

36
------ 36

36
------ 30

36
------ 22

36
------ 12

36
------+ + + +⎝ ⎠

⎛ ⎞+×=

147
36
--------- 140

36
---------+ 287

36
--------- 735

36
------= ==
16 | | JUL 2010{cvu}

1st Annual UK Vintage Computing Festival
This was held at the National Museum of Computing,

Bletchley Park on 19th and 20th June 2010.

n the 19th of June, Richard (my partner) and I went to the 1st Annual
UK Vintage Computing Festival. We’d been looking forward to this
for the best part of 9 months and so we got an early night and an early

start (for us at least). Fortunately, the lovely thing about Bletchley is that
it’s only about 30 minutes by train from London Euston Station so by
lunchtime we were strolling up the drive to the Mansion House.
First stop had to be the vendors’ tents but I’m afraid they were something
of a disappointment. If you were in the market for a Sinclair or Amiga or
Acorn, then you were in luck but anything more exotic on display was not
for sale. :-(That said, there were some very interesting displays from
enthusiasts, particularly the riscos guys [1] who were rocking some hot
stuff on beagleboards [2]. Sadly, yet again we were thwarted in our desire
to acquire this nifty bit of kit. The other interesting thing that I learned is
that the Amiga OS is still going strong and seems to have a dedicated cadre
of followers [3].
Having exhausted the shopping possibilities, we took a spin through The
National Museum of Computing. Since last year’s Autumn Conference at
Bletchley, TNMOC has been making great strides in improving its
offering. They have now added a room on networking and a room on
analogue computing with some fascinating early punchcard equipment

and early computers. In addition, the WITCH project [4] is moving apace
and should be nearing completion by the time the next ACCU/Bletchley
Autumn Lecture happens (mark it in your calendar for November 6th!!!).
Before we left (having neglected to buy tickets to see the evening
entertainment – a show by Orchestral Manoeuvres in the Dark), we ducked
into the ABC Enigma Cinema to see a 25 minute film about the LEO. It
was fabulous! Not only was the film extremely well done but it was the
original reel-to-reel from 50 years ago being played on an utterly
enchanting piece of original kit. I definitely need to spend more time
examining the vintage projectors on my next visit!
Anyway, to summarise, the festival is a great start and I can imagine it
growing into a valuable resource for vintage computing enthusiasts in the
future.

Asti Byro

References
[1] riscos: http://www.riscos.com/
[2] Beagleboards: http://beagleboard.org/
[3] Amiga OS: http://www.amiga25.com/
[4] The WITCH project: http://www.tnmoc.org/126/section.aspx/105

O

On a Game of Nerve (continued)

If you read something in C Vu that you particularly enjoyed, you disagreed with or that has just made you think, why not put pen
to paper (or finger to keyboard) and tell us about it?

If you’ve been out-and-about and have come across something you think other readers might find interesting, share the
experience...especially if it’s something they can look out for next year!

And if you attend any of the regional meetings, let your fellow ACCU-ers know what they are missing!
double
expected_value(unsigned long n)
{
 if(n==0) return 0.0;
 if(n==1) return 7.0;

 const double play_expected(
 expected_value(n-1));
 const unsigned long stick(ceil(play_expected));
 const double stick_expected(
 conditional_expectation(stick));

 const double p_play(p_less_equal(stick-1));
 const double p_stick(1.0-p_play);

 return p_play*play_expected
 + p_stick*stick_expected;
}

Listing 3

double
conditional_expectation(unsigned long min)
{
 double p = 0.0;
 double x = 0.0;

 for(unsigned long i=min;i<=12;++i)
 {
 p += p_equal(i);
 x += p_equal(i) * double(i);
 }
 return x/p;
}

Li
st

in
g

2

JUL 2010 | | 17{cvu}

http://www.riscos.com/
http://beagleboard.org/
http://www.amiga25.com/
http://www.tnmoc.org/126/section.aspx/105

Regional Meetings
A round-up of happenings across the country.

ACCU London
Two regional meetings have been held in London since the last CVu was
published.

May 2010 – Kevlin Henney: Rethinking unit testing in C++

The London branch of the ACCU met up once again in May at one of the
SkillsMatter offices for a presentation by Kevlin Henney. There was a
good turnout of around 20, with a few new faces to boot. That wasn’t overly
surprising given that Kevlin is a renowned speaker – I’ve seen him speak
a number of times at the ACCU conference and found his material to be
very insightful, with a dash of dry humour and controversy to keep you on
your toes.
For the most part I think the C++ suffix in the presentation’s title was a
little superfluous. Yes, he was demonstrating with examples in C++, but
much of the message was clearly language agnostic. The first half
illustrated the evolution of unit testing from a bunch of random chunks of
‘test’ code through to an organised set of tests that had a significant air of
‘Formal Specification’ about it. The initial tests were really just a stream
of consciousness laid out sequentially in a
single scope with no attention paid to
s t ru c t u r e a nd c on s e q u e n t l y f u t u re
maintenance costs. This was then evolved
into a procedural style whereby the tests were
partitioned around the (member) functions
under test. One of the main issues with this
style is that it’s impossible not to use the
same functions in other test methods, which
makes the idea of isolated tests and order
independence somewhat moot.
Th e ne x t p r o g r e s s i on was co in ed
‘contextual’ whereby the partitioning was biased towards ‘behaviours’ or
‘features’ rather than the implementation. By this point the names of the
tests started to follow natural language rather than the more terse method
naming we use daily and Kevlin described how some developers find this
transition difficult because they’re not used to such expression. Although
not as rigid, the style was reminiscent of the BDD Given/When/Then form
with the test name resembling a proposition rather than an exclamation.
The judicious application of macros meant that the source file was taking
on a more formal shape with a SPECIFICATION at the top, followed by
a series of PROPOSITIONs. But, not only did the code appear more
formal, the output from the tests had a more intention revealing feel about
it. Nat Pryce and Steve Freeman gave a talk a few months back about TDD
in which they highlighted the importance of the test diagnostics and these
ideas certainly enhanced that message.
A brief diversion into unit testing C++ code with NUnit & C++/CLI then
followed. Once again the aid of a few macros helped to hide away the test
method attributes and static Assert invocations so that visually the code
appeared just like the native versions. Kevlin admitted that there are
limitations to this technique, but it was a good first approximation that
showed a nice meshing of the two ‘meta’ techniques – .Net reflection and
C/C++ pre-processing.
For his grand finale Kevlin showed how he could capture the expression
being asserted. However this was not only in textual form, but also in
programmatic form so that the output for a test failure would display the
failed expression and the values of the variables used within that
expression. Naturally the audience wanted to see behind the curtain and

we quickly found ourselves staring into Expression Template territory.
Kevlin only had a partial implementation due to time constraints, but there
was already a significant body of template code. The most interesting
aspect was the choice of operator used to allow the code to work its magic
by ‘capturing’ the leftmost part of the assert expression – it needed to be
overloadable, practically unused and higher than those you would
normally find inside assert expressions. The proverbial rabbit that he
pulled out of the hat was the ->* operator which I readily confess to not
knowing, but promptly Googled when I got home.
Not that I departed for home the moment the bell went as there was still
the matter of post-discussion beer which was satisfied by The Slaughtered
Lamb. Fortunately we had a few of the non-members join us in the pub
afterwards which gave us ample opportunity to slip The King’s Shilling
into their pint…

June 2010 – Giles Thomas: IronPython at large

12 or 13 people gathered at Cititec’s offices near Old Street for this month’s
talk, given by Giles Thomas, co-founder and managing director of

Resolver Systems. IronPython is a version of
Python for the .Net environment, and Giles
gave us a quick demonstration of it by
launching a window by cal l ing into
Windows.Forms from a (Iron)Python
console, and adding controls and event
handlers while the program was running!
This was the first time for many years I’d
seen somebody patching running code...
The main product at Resolver Systems is a
spreadsheet called Resolver One, and Giles
introduced it by talking about how many MS

Excel ‘applications’ he’d seen and supported where the VBA code had
become so unmanageable as to make any changes or improvements almost
impossible. Resolver One is designed to expose the scripting capability
directly, thus making Python the language behind a spreadheet. More than
that, the spreadsheet /is/ the Python code. When you edit a cell and add a
formula, the code window updates showing the Python code, so you can
edit it and define your own functions etc. Plus, IronPython exposes all of
.Net too. Resolver One is also written entirely in IronPython, a fact many
of those attending found surprising. Giles explained that they had initially
thought they would encounter performance issues, and have to write
libraries in C# or perhaps C to handle possible bottlenecks, but it turns out
they’ve not encountered the need for that yet.
As a development house, they use Extreme Programming principles, and
one of the ‘key facts’ was the ratio between lines of code and lines of test
code was on the order of 3 or 4 test lines to 1 line of app code. An important
part of this is the code is developed using stricty TDD. Giles quoted some
stats gathered in statically typed languages, where the ratio is
approximately the same. A common perception of dynamic languages like
Python is the apparent need for more tests to make up for the lack of
compile-time type-safety. Giles explained that this was not their
experience, and that static languages require as much test code as dynamic
ones, because it’s difficult not to test for type-safety even though the
compiler does that for you. We didn’t get time to explore this further, but
I wonder what other teams’ experiences are in this area.
Alas Giles was unable to join us for a drink after the talk, but he had brought
along a colleague from Resolver Systems’ development team. Glenn was

static languages require as
much test code as dynamic
ones, because it’s difficult
not to test for type-safety
even though the compiler

does that for you
18 | | JUL 2010{cvu}

Regional Meetings (continued)
able to enlighten us on much more about the product and his team over a
beer or two.
Many thanks to Stefano Cicu and Cititec for hosting the event and
providing us with the facilities for another very interesting presentation.

Software East
Paul Grenyer provides an overview of the latest meeting in the east.

Allan Kelly : The falling off a log theory

This was this first Software East presentation I have attended. It was hosted
at the Redgate offices just off the A14. They were very nice, if not as
technologically advanced as Morgan Stanley. It just so happened that
Allen Kelly, the speaker, was arriving as I phoned him from the car park,
so we wondered in together to find no receptionist and a sign directing us
to the Seagull Suite on the first floor. From the first floor there was no
indication of where the Seagull Suite was, so Allan gave Mark Dalgarno,
the event organiser a call and he showed us to the suite via the ‘SQL
Servery’, Red Gate’s appropriately named cafeteria .
The presentation was scheduled to take place between 6.30pm and 8.30pm.
Two hours is a long time for these events, even though I can imagine Allan
speaking for two hours without a problem. I found out that the first half

hour is for networking and buffet eating, so I tucked in and chatted to Allan
and Pete Goodliffe.
Allan spoke about setting up your own business. He believes that it’s as
easy as falling of a log and it is! He pointed out that all you need to do is
pay an accountant and they set it up and do all the legal and financial stuff
for you. I know this to be true as I have done it.
Allan’s main thrust though was that there needs to be at least two of you,
a techie and a salesman. That way you may just make it to through your
first year. Again, the same thing had occurred to me. Whenever I have
thought of setting up my business and going it alone I’ve always had two
problems, I’m no good at selling and I don’t have an idea for a product. A
salesman wouldn’t necessarily have an idea for a product, but they should
be able to sell!
Allan went on to explain how he missed out on making a billion dollars
by not developing an idea for a product he had early in his career that
someone else later did. I did have some sympathy, but mostly envy.
Allan over ran and after questions at the end he finished about 8.30pm. The
most significant question asked from my point of view was where do us
techies find a salesman and, unfortunately, no one really had an answer.
The rest of the group stayed to polish off the buffet and do some more
networking while I sloped off for the drive back to Norwich.
Desert Island Books
Phil Bass heads for the life boats.

hil Bass has been an ACCU member for well over ten years. I have
only met him a couple of times, outside of accu-general, at the
conference. It has always been a matter of pride for me that someone

as knowledgeable as Phil is a firm supporter of the mentored developers.

I am also very happy to say that Phil tells another very imaginative story
behind his desert island books.

Phil Bass

Attention all passengers ...

The ship is sinking. Three days into a round-the-world cruise and this
happens. It was going to be the trip of a lifetime, an adventure, something
to look back on in my retirement. I can’t believe it.
There’s a rumour we hit an iceberg. This far south? A
certain amount of panic is forgiveable, but that’s insane.
Of course, we couldn’t get anything sensible out of the
crew. ‘There’s a technical problem’, they said, yesterday.
‘There’s no need to worry. We’re going to stop off at the
next port for some minor repairs.’ Apparently it was a
problem with the engine or the navigation systems or the heating/
ventilation; everyone had a different story.
But the captain has just announced that the ship is taking on water and that
we won’t reach port in time. All passengers are to transfer to the lifeboats.
There’s an island on the horizon; we’ll set up camp there until we can be
rescued. Unfortunately, both the communications and navigation systems
are severely damaged. We have only a rough idea of where we are and we
haven’t been able to radio for help. We may be marooned for some time.

Heroes and aspirations

We can take some clothes and a single piece of hand luggage with us. I
have quite a few books and CDs in the cabin – it was supposed to be a three
month voyage – and I can’t bear to see them all go to the bottom of the
sea. Which ones shall I choose?
As I started to pack my bag I remembered a
conversation I had at dinner on our first night on
board. There was a teacher at our table with a passing
interest in psychology. She asked me, ‘If you were a
book title, which would you be?’ Strange question, I
thought. The sort of question you might hear at a

speed-dating session. I wondered,
briefly, if she was evaluating me for
a holiday romance, but no, that was just my ego talking.
Then it struck me that if any book title summed up who I
am it was probably Gödel, Escher, Bach: An Eternal
Golden Braid.
To me Gödel’s mathematical theorems, Bach’s music and

Escher’s drawings are works of astonishing originality and beauty. I’m a
‘vertical’, straight-line thinker and I simply can’t imagine where they got
their ideas. I think that is why Gödel, Escher and Bach all have a place in
my personal catalogue of great men alongside the likes of Newton,
Einstein, Babbage and Darwin.
I grabbed Gödel, Escher, Bach and thrust it into the bag. It was a book I’d
been meaning to get for years, but have never read. I’d bought it specially
for the voyage and it must be saved at all costs!

P

If you were a
book title, which

would you be?
JUL 2010 | | 19{cvu}

A few objects more

I suppose a man is defined to a large extent by what he does for a living.
I’ve been a programmer for all my adult life and no book collection of mine
would be complete without one or two books on the noble art of computer
programming. Knuth, however, is not in the cabin and I wouldn’t take him
to a desert island if he was. I’m going to enjoy my stay on that rock out
there if I can and I need something lighter than that.
The first book that taught me something about program design was
Michael A Jackson’s Principles of Program Design. I remember the idea
that the structure of the code should follow naturally from the structure of
its inputs and outputs, which made sense in the days when batch processing
was the norm. Later I read some books on structured design by Tom De
Marco, Ed Yourdon and others. I learnt about data flow diagrams and,
perhaps the most important lesson of all, that we should strive to minimise
coupling and maximise cohesion. Although these taught me many things
no one book from this period stands out in my memory.
Then came object-oriented design, a new paradigm that spawned a
plethora of books. In spite of that embarrassment of riches there is one OO
book that had a significant impact on my approach to software
development: Bertrand Meyer’s Object-Oriented Software Construction.
It starts by considering what ‘quality’ means when applied to software, lists
some criteria by which we can judge the quality of our code and states some
principles that must be adhered to in order to build good quality software.
It then describes a programming language designed to
support those principles. That language is Eiffel.
Eiffel is both an object-oriented language and a
programming environment. The language has classes,
parameterised types, exceptions and support for
preconditions, postconditions and invariants. The
environment provides a garbage collector, compiler/
linker/dependency manager and several other tools to
aid the Eiffel programmer. In short, it has pretty much
everything today’s programmers have come to expect.
It’s a bit too object-oriented for my taste and has a number of features that
I don’t like, but I think it deserves to have a much
larger following. I’ve never used Eiffel, Java or C#
(no, really!), but given a choice from those three I’d
try Eiffel first simply because of the clarity of the
reasoning in Meyer’s book.
Object-Oriented Construction goes into the bag.

Pretty patterns

The tannoy blares out again. ‘Will all passengers,
please, assemble on the sun deck for evacuation.’
I have just a few minutes to choose what else to pack.
Instinctively, I reach for Design Patterns – Elements of Reusable Object-
Oriented Software. With an Escher print on the cover and a foreword by
Grady Booch (one of the foremost proponents of object-oriented
programming) it sits very comfortably alongside my earlier choices. But,
more than that, it is the book that has had the greatest influence on my
approach to programming.
By the time Design Patterns was published I had been programming for
20 years and, although I wasn’t consciously aware of it, I had built up a
small catalogue of tricks and techniques that could be applied to a wide
range of programs. As I read each chapter I kept coming across problems
I’d wrestled with in the past and solutions that I recognised from my own

accumulated experience. This book brought them all
together, gave them names, clearly defined the
problems and explained when and why a particular
solution works. It was a revelation.

Man and machine

There is no clock in the cabin, nothing to measure the
passage of time, but I can feel the seconds ticking by

as I scan the bookshelf. It’s getting hard to make
decisions.
‘No more technical books’, I tell myself. There won’t be
any opportunity to write software where we’re going
now. That narrows down the choice enough for me to
pick Alan Turing – The Enigma, a biography by Andrew
Hodges.
It’s quite a few years since I read Hodges’ account of the
life and work of Alan Turing, so my recollection is rather

hazy. It does include some technical information, including a concise
description of Turing machines, but it is mainly a sympathetic exploration
of Alan Turing himself. As Douglas Hofstadter said in an early review, ‘...
it is hard to imagine a more thoughtful and warm biography than this one’.
The title, of course, simultaneously refers to Turing’s work on the German
Enigma machines, to the necessarily secretive nature of a gay man working
for the government in the 1940s and to the uncertainty surrounding
Turing’s suicide.

Pure escapism
Glancing through the port hole I can see a calm blue sea, the sun glinting
off the gentle waves. For a moment a profound sense of
peace and tranquillity pervades my thoughts. But
something about that view through the window isn’t
right. There’s no horizon! With the cold logic of
Sherlock Holmes I deduce that the ship is listing
noticeably now.
For the first time the full implications of our
predicament sink in. It could be hell on that island and
I’m going to need something that will transport me,
metaphorically speaking, to a better place. Jasper
Fforde’s The Eyre Affair comes to mind immediately, I search for its bright
red cover and shove it hastily into the bulging bag.
The Eyre Affair is set in an alternative universe in which literary debate is
so fierce that it leads to gang wars and murder. In this world ‘Jane Eyre’

ends (lamely) with Jane accompanying her cousin
to India to help with his missionary work. The
villain of The Eyre Affair, Acheron Hades, uses a
Prose Portal to enter works of fiction, threatening
to kidnap their characters as a form of blackmail.
It falls to literary detective, Thursday Next, to
pursue Hades into ‘Jane Eyre’ and stop him.
Eventually she succeeds, but in the process the
ending is changed so that Thornfield Hall burns
down, Rochester’s mad wife dies and Rochester

himself is badly injured. Returning to her real world Thursday Next
discovers that public reaction to the new ending is positive, but her
employers are not best pleased with her efforts and the book ends with
Thursday facing an uncertain future.
The Eyre Affair is a wild, wacky, witty and extremely funny book in the
style of Terry Pratchett. Indeed, Pratchett himself commented, ‘Ingenious
– I shall watch Jasper Fforde nervously’.

Watching the birds
The engines have stopped. There’s just time to grab a couple of CDs and
then I must go. Apart from a fascination with science in all its forms, my
other passion is music. My CD collection covers a fairly broad spectrum;
there are rock, pop, folk, jazz and classical
albums that I really treasure. Leaving them
behind will be heart-breaking but, strangely,
it’s not too hard to select just two to preserve
my sanity on the island.
A sea bird flies past the porthole as I pull
Through the Window Pane by Guillemots from
the rack. For those who don’t know Fyfe
Dangerfield’s compositions they’re hard to

But something about
that view through the

window isn’t right.
There’s no horizon!
20 | | JUL 2010{cvu}

describe because they don’t fit into any well-defined category. Many of
the tracks would make excellent film soundtrack material, but that’s not
what they are. On my web site I say: ‘This has everything: memorable
melodies, irresistible rhythms, sweet harmonies, epic arrangements;
sometimes all in the same song’. Every one of the 12 tracks seems to be a
window into Fyfe’s varied emotions. There’s wistfulness, sadness, anger,
despair, joy, love, playfulness and even a touch of humour. Very few artists
have that wide a repertoire and very few bands can
provide a vehicle for expressing it as well as
Guillemots.

Five-pointed star
There’s a knock on the door. A middle-aged man
in a smart nautical uniform politely tells me I must
vacate the room and join the other passengers on
deck. With trembling fingers I pick out Light
Flight: The Anthology by Pentangle and stow it
hastily in my sanity bag.
Quoting from my web site again, Light Flight contains ‘some of the most

beautiful folk songs performed by the most
accomplished folk/jazz group there’s ever
been’. By adding this album to Window Pane
I can cover a reasonably large subset of musical
styles and, at the same time, have songs whose
poignant and exquisite beauty never fails to
move me.
Back in the 70s when I was a student I went to
see Pentangle at the New Theatre, Oxford. It
was a disappointing performance and they split

up shortly afterwards. The following year (I think) a friend of a friend
invited me to a private gig at St. Catherine’s college where John Renbourn
and Jacqui McShee (both ex-Pentangle) were to play. It was an intimate
setting, ideally suited to John’s fine acoustic guitar playing and Jacqui’s
clear, mellow voice. It was a magical evening and my Pentangle CD
reminds me of that night, too.

Regrets – too few to mention
As I lower myself down into the lifeboat I can’t help thinking about the
books and CDs I left behind, either on the ship or back at home.
There are many programming books that have been invaluable to me in
my career. The single most important book for me as a C++ programmer
is, of course, The C++ Programming Language by Bjarne Stroustrup.
Scott Meyers’ Effective C++ and More Effective C++, Herb Sutter’s
Exceptional C++, Andrei Alexandrescu’s Modern C++ Design and
Vandevoorde & Josuttis’ C++ Templates have all been of direct practical
use in my professional work. Generative Programming by Czarnecki and
Eisenecker has broadened my programming horizons. I might have chosen
any of those for a desert island with all mod cons including an internet

connection, but I’m not going to need them on that God-forsaken rock in
the distance.
I would have liked to have brought some old favourites for bedtime
reading. Something by John Wyndham, Arthur C Clarke, Ray Bradbury
or Iain Banks, perhaps. Alice in Wonderland or The World of Pooh would
add variety. Then there are the epic stories of Tolkein or Stephen
Donaldson. Sandi Toksvig writes entertaining novels. And there are more

Jasper Fforde books, not to mention lots of Terry
Pratchet.
I shall sorely miss listening to Elbow performing
The Seldom Seen Kid. I’ve played albums by
Genesis, Yes, King Crimson and Soft Machine so
often that they will never be forgotten, but I shall
pine for them just same. Of the jazzier CDs in my
collection remembering those by Back Door,
Weather Report and Brand X brings a tinge of
regret. Then there are odd ones like Tom
Griesgraber’s A Whisper in the Thunder
(atmospheric Chapman Stick music), Gorillaz

Demon Days and the free folk song downloads from Kray Van Kirk. I
could go on, but I’m getting a lump in my throat.
No, I wouldn’t swap any of those for the five books and two CDs in the
little bag I’m carrying. As I hand the bag to the lifeboat crew for safe
keeping I hear myself saying, ‘Careful with that, mate; it’s precious.’

The books

Gödel, Escher, Bach: An Eternal Golden Braid, Douglas Hofstadter.
Object-Oriented Software Construction, Bertrand Meyer.
Design Patterns – Elements of Reusable Object-Oriented Software, Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides.
Alan Turing – The Enigma, Andrew Hodges.
The Eyre Affair, Jasper Fforde.

The albums

Through the Window Pane, Guillemots.
Light Flight: The Anthology, Pentangle.

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to
choose the eight records they would take with them to a desert island
(http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).
The format of ‘Desert Island Books’ is slightly different from the Radio 4
show. You choose about five books, one of which must be a novel, and
up to two albums. Some people even throw in the odd film. Quite a few
ACCUers have chosen their Desert Island Books to date and there are
plenty more to go.
The rules aren’t too strict but the programming books must have made
a big impact on your programming life or be ones that you would take to
a desert island. The inclusion of a novel and a couple of albums helps
us to learn a little more about you. The ACCU has some amazing
personalities and Desert Island Books has proved we only scratch the
surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?

Next issue: Chris Oldwood

There’s wistfulness,
sadness, anger,

despair, joy, love,
playfulness and even a

touch of humour
JUL 2010 | | 21{cvu}

Code Critique Competition 64
Set and collated by Roger Orr.

lease note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment
on published entries, and to supply their own possible code samples

for the competit ion (in any common programming language) to
scc@accu.org. A book prize is awarded to the winning entry.

Thanks to Louis Lavery, who wrote:
Fixing some one else’s, often poorly written, code does not appeal to
me, sorry, but that’s how it is (and you did say ‘I’m sure you all have
things to say about this code’).

So, I’d like to suggest an alternative, something that does appeal to me
and, I feel sure, will to others. Well I would say that, being as it’s my idea!

The idea is to state a problem together with a solution and ask for
improvements (which, in some cases, might lead to a full rewrite due to
taking a different view or to generalising and in others to the conclusion
there’s no way to improve it).

I reckon this’ll have a greater appeal than the ‘Code Critique’ as it’s a
natural thing for programmers to do. You see a short piece of code, you
know what it’s supposed to do (and it does do it) but there’s something
about it that makes you think it can be done a little better, maybe the
improvement would just be that the code is easier to under stand[1].

Of course trying to think up bits of code like that isn’t easy, probably nigh
on impossible. But such code does exist. We all come across it in our
daily work.

He also supplied an example of such a piece of code, which I intend to use
in the next critique to see how the idea fares. Maybe this appeals to you,
and you have some suitable code to send me for a future issue!

Last issue’s code
We have a little piece of straight C code this time (Listing 1).
The following program is designed to sort a list of names, but does
something very strange. Here is what I get when I try to run it:

 C:> cc63
 Anthony Hopkins
 John Guilgud
 Michael Caine
 Charlie Chaplin
 ^Z
 0: Caine Anthony
 1: Charlie Chaplin
 2: Hopkins Guilgud
 3: Michael John?O3
Help!

Critiques

Matthew Wilson <stlsoft@gmail.com>

Version 0:
 Anthony Hopkins
 John Guilgud
 Michael Caine
 Charlie Chaplin

 ^Z
 0: Caine Anthony²²²²
 1: Charlie²²²² Chaplin
 2: Hopkins Guilgud
 3: Michael²²²² John²²²²²²²²
 Press any key to continue . . .

Given a specification that assumes each line of input can always be
guaranteed to contain at least one space and will never contain more than
79 characters, then there are only two faulting defects and three lurking
defects.

P

Li
st

in
g

1
Listing 1 (cont’d)

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

/**
 * Program to read first_name last_name
 * and print sorted. See also cc50
 */
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
typedef
int (*compar)(const void*, const void*);
typedef struct name
{
 char *ln; // last name
 char *fn; // first name
} name;
// order last names before first names
int compare(name *n1, name *n2)
{
 int t = strcmp(n1->ln, n2->ln);
 if (!t)
 t = strcmp(n1->fn, n2->fn);
 return t;
}
int main()
{
 char line[80];
 struct name *names = NULL;
 int n = 0;
 int i;
 while (gets(line))
 {
 struct name *nm;
 char *p;
 n = n + 1;
 names = (name*)
 realloc(names, n * sizeof(name));
 nm = names + n - 1;
 p = strstr(line, " ");
 nm->fn = (char*)malloc(p - line);
 strncpy(nm->fn, line, p - line);
 nm->ln = strdup(p+1);
 }
 qsort(names, sizeof(name),
 n, (compar)compare);
 for (i = 0; i < n; i++)
 {
 printf("%i: %s %s\n",
 i, names[i].fn, names[i].ln);
 }
}

Listing 1
22 | | JUL 2010{cvu}

Faulting defects

Let’s consider the two faulting defects first.

Faulting Defect 1 – corrupted surname

The use of strncpy() does not result in a nul-terminated copy of the
source string
 nm->fn = (char*)malloc(p - line);
 strncpy(nm->fn, line, p - line);

changed to
 nm->fn = (char*)malloc(1 + (p - line));
 memcpy(nm->fn, line, p - line);
 nm->fn[p - line] = '\0';

Now the output is
 Anthony Hopkins
 John Guilgud
 Michael Caine
 Charlie Chaplin
 ^Z
 0: Caine Anthony
 1: Charlie Chaplin
 2: Hopkins Guilgud
 3: Michael John
 Press any key to continue . . .

Faulting Defect 2 – mixed names after sort

The arguments to sort() are the wrong way around:
 qsort(names, sizeof(name), n, (compar)compare);

changed to
 qsort(names, n, sizeof(name), (compar)compare);

Lurking defects

The three lurking defects all pertain to the exhaustibility of memory:
If malloc() fails, nm->fn will be NULL, and the subsequent
memcpy() / strncpy() call will produce undefined behaviour
(hopefully a fatal fault)
Same for strdup() and nm->ln [there’s more to say about this
later ...]
The same for realloc() and names. Furthermore, the direct
assignment to names means that even if it’s checked, the previous
memory block held by names will be lost. It’s customary to
realloc() to a new (temporary) pointer, check the result, and if
successful then assign to the regular holding pointer.

Other issues

There are other issues, divided into serious and benign/trivial. First, the
serious:

the result of strstr() is not checked, so an input line that does not
contain a space will cause undefined (and likely fatal) behaviour in
the subsequent evaluation and copying of name information
the program will very likely overflow, due to the use of an input
buffer of only 80 characters, at which point undefined behaviour
will occur. Changing this to a large number reduces the chances of
it happening in normal use but does not remove the vulnerability.
gets() should not be used
strdup() is non-standard
the use of three lines (two in the original) to copy the forename is
ugly: too much work being done in the application logic. This
should be factored out into a helper function, e.g. strndup(), as
in:

 /* assuming p has been checked */
 nm->fn = strndup(line, p - line);

The benign issues are:

the use of strstr() over strchr is unnecessary. Could instead
be strchr(line, ' ');
the name name for the type is parlously unambiguous. Why not
name_t

the names fn and ln are unnecessarily terse. Why not forename
and surname?
the compare() function should take its arguments as pointers to
const. (This is only benign in so far as it will not cause any
problems in the current implementation. If changed, it could be
faulting/lurking.)
the syntax if(!t) implies that t is treated as boolean. Rather, the
result is effectively tri-state [>0, 0, <0], and I find the boolean
suggestion confusing. It should be explicitly if(0 == t)
none of the memory is cleaned up at the end of the program. On
systems that clean up after processes exit, this is not a problem. But
if the code is used on a system that does not do so, leaks would
occur. This goes from being possible to being a near certainty if the
code is transposed into a larger program, that may live for longer and
for which memory leaks would be a practical problem.
rather than casting from one function type to another, I prefer to pass
an existing compare_void(void const*, void const*),
which would do the casts and invoke a compare_name(name_t
const*, name_t const*), defined as per the current
compare() function. I believe that’s much less prone to accidental
inappropriate casting.

Summary

I’ve offered advice on what to do about all problems save one: the overflow
of gets(). Whenever I use C for reading lines from FILE* streams, I
avoid the Streams library like the plague, instead – pardon the plug – using
the cstring_readLine() function from my cstring library
(http://synesis.com.au/software/cstring).
This would look something like:
 cstring_t line = cstring_t_DEFAULT;
 CSTRING_RC rc;

 while(CSTRING_RC_SUCCESS ==
 (rc = cstring_readline(stdin, &line, NULL)))
 {
 … // process each line, via ptr and
 // len members
 cstring_truncate(&line, 0);
 }
 if(CSTRING_RC_EOF != rc)
 {
 // deal with error other than EOF
 …
 }
 cstring_destroy(&line);

[cstring_readLine() handles all the buffer issues]
So, were I to have to write this program for a production system I’d use
cstring for the input, define name_t as containing two cstring_t
members, write helper functions for splitting the cstring_t line into
name_t’s two members, handle all possible allocation failures, and detect
(and stop) if an invalid line was read.

Paul Stephenson <p.j.stephenson@gmail.com>

So, you’re the new developer on the team, are you? And I see you’ve been
given that pesky ‘sort actors’ names’ utility that nobody else wanted to do.
Well, thanks for coming to me with your bug report.
Firstly, I’ll see if I can reproduce your error, and then we’ll try to fix the
bugs so that the utility behaves correctly as far as we can tell. Finally, I’ll
give you some tips on your style, and how we keep code maintainable in
this team.

Li
st

in
g

2

JUL 2010 | | 23{cvu}

http://synesis.com.au/software/cstring

Reproduce it

When given a bug report of this kind, the first thing I like to do is reproduce
it. So let’s paste the code into Emacs and see what happens with me. My
gcc compiler warns about gets being dangerous – let’s leave that for the
moment – but manages to produce me a cc63 executable. OK, let’s try your
example:
 $./cc63
 Anthony Hopkins
 John Guilgud
 Michael Caine
 Charlie Chaplin
 ^D
 0: Caine Anthony
 1: Charlie Chaplin
 2: Hopkins Guilgud
 3: Michael JohnðÙ

Great! I get almost the same output as you, which means we’re pretty much
on the same page, and gives me confidence that any fixes I make are likely
to work for you too. The only difference between your run and mine was
in the weird characters at the end. The presence of these almost always
suggests a problem with null-termination of strings or buffer overruns,
where arbitrary bits of memory are unintentionally written to the output,
so you might expect them to vary between systems.
Apart from the weird characters, the first obvious error with this example
is that the first and last names of the actors are all mixed up, which leads
me to wonder: when you say ‘designed to sort a list of names’, are they
meant to be sorted by first name (as typed in) or by last name? It is useful
to be clear about such things when reporting the bug. Luckily, if I dig into
the code I can see from the comment to the compare function that they
should be sorted primarily by last name, so I’ll assume that’s the
requirement.
Now, I expect I’ll be testing this code quite often, and it’ll get tedious
typing in all those names every time. Let’s write a little bash script that
will run the test on a given input file. While we’re there, we might as well
use it to compare the output with what we expected.

#!/bin/bash

input=$1
expected_output=$2
thisdir=`dirname $0`
output=`cat $input | $thisdir/cc63`
diffoutput=`echo "$output" | diff -u -
$expected_output`

if [-z "$diffoutput"]; then
 echo "Test passed. Output:"
 cat $expected_output
else
 echo "Test FAILED!"
 echo "---- Expected output ----"
 cat $expected_output
 echo "---- Actual output ----"
 echo "$output"
 echo "---- Diff ----"
 echo "$diffoutput"
fi

Now I’ll write the example input into actors.txt and the expected
output for cc63 into actors-result.txt. This is what it looks like
when the test script is run:
 $./cc63-test actors.txt actors-result.txt
 Test FAILED!
 ---- Expected output ----
 0: Michael Caine
 1: Charlie Chaplin

 2: John Guilgud
 3: Anthony Hopkins
 ---- Actual output ----
 0: Caine Anthony
 1: Charlie Chaplin
 2: Hopkins Guilgud
 3: Michael JohnPÿ
 ---- Diff ----
 --- - 2010-04-27 14:39:49.862546883 +0100
 +++ actors-result.txt 2010-04-27
14:23:20.000000000 +0100
 @@ -1,4 +1,4 @@
 -0: Caine Anthony
 +0: Michael Caine
 1: Charlie Chaplin
 -2: Hopkins Guilgud
 -3: Michael JohnPÿ
 +2: John Guilgud
 +3: Anthony Hopkins

Interesting. The test script seems to work, but I’ve noticed something else:
the output has the mixed-up names in the same order as before, but the
weird characters have changed from last time. It seems that in this case,
the output corruption even varies between runs.

Fixing the obvious

Now we’ve got our handy tester script set up, let’s start looking at the code.
Rather than pick each line apart right now and get distracted by side issues,
I’d first like to find out why the names are being strangely mixed up. The
creation of the names array mostly seems to do what I think you meant it
to do, although there are some issues we’ll come back to later. What about
the qsort? Well, it looks like you’re passing the required arguments, but
it’s not a function I use very often, so let’s just check the man page:
 void qsort(void *base, size_t nmemb,
 size_t size,
 int(*compar)(const void *, const void *));

Aha, you had n and sizeof(name) the wrong way round: you need the
number of members second and the size of each member third. Let’s fix
that and inch a little closer to correctness:
 qsort(names, n, sizeof(name),
 (compar)compare);

After a recompilation, how does our output look now?
 $./cc63-test actors.txt actors-result.txt
 Test FAILED!
 ---- Expected output ----
 0: Michael Caine
 1: Charlie Chaplin
 2: John Guilgud
 3: Anthony Hopkins
 ---- Actual output ----
 0: Michael Caine
 1: Charlie Chaplin
 2: John@ Guilgud
 3: Anthony Hopkins
 ---- Diff ----
 --- - 2010-04-27 14:45:06.907776877 +0100
 +++ actors-result.txt 2010-04-27
14:23:20.000000000 +0100
 @@ -1,4 +1,4 @@
 0: Michael Caine
 1: Charlie Chaplin
 -2: John@ Guilgud
 +2: John Guilgud
 3: Anthony Hopkins

Right, we are getting somewhere. The first and last names have stayed
together, and the resulting list is indeed sorted by last name. John Guilgud
is still suffering though. Why could that be? The corruption looks like it’s
24 | | JUL 2010{cvu}

on the ‘John’ (it was in the original example too), so let’s look how first
names are stored:
 p = strstr(line, " ");
 nm->fn = (char*)malloc(p - line);
 strncpy(nm->fn, line, p - line);

Everything from the beginning of the line to the first space is copied into
nm->fn, which has just enough space (p - line bytes). I said earlier
there might be a null-termination problem, and here it is.
With the input "John Guilgud", p points to the space and p - line is 4
bytes. That’s enough space for "John" but not the zero byte to terminate
the string. We need to allocate an extra byte for it:
 nm->fn = (char*)malloc(p - line + 1);

What’s more, checking the man page for strncpy, it won’t add a
terminating byte into nm->fn for us, because we’re only copying up to
the space. We’ll have to do it ourselves:
 p = strstr(line, " ");
 nm->fn = (char*)malloc(p - line + 1);
 strncpy(nm->fn, line, p - line);
 nm->fn[p - line] = '\0';

With this fix, let’s try our example once more:
 $./cc63-test actors.txt actors-result.txt
 Test passed. Output:
 0: Michael Caine
 1: Charlie Chaplin
 2: John Guilgud
 3: Anthony Hopkins

A closer look at gets

OK, we finally have the desired output from our single test case of the
example input! Are we finished now? Well, no, there’s a lot more to do
before I’ll let this into any production system. While I’ve been compiling
the various fixes above, gcc has constantly been reminding me about
gets, so let’s start by looking at that. What was the warning again?

 $ gcc -o cc63 cc63.c
 /tmp/ccy8Mdlq.o: In function `main':
 cc63.c:(.text+0x138): warning: the `gets'
 function is dangerous and should not be used.

Wow, that’s pretty strong stuff for a compilation at the default warning
level. Why is it dangerous? Well, let’s have a look at the line array: it’s
80 bytes big. That should be plenty for most actors’ names, shouldn’t it?
Although gets is quick and easy to use, it doesn’t notice if some naughty
person tries to pretend there’s someone with a stupidly long name out there.
Or maybe there really is such a name ... [pause for Google search] ... let’s
put just a fraction of this German American’s name[1] into a new input
file called long-name.txt. The expected output is in long-name-
result.txt:

 $./cc63-test long-name.txt long-name-result.txt
 Test FAILED!
 ---- Expected output ----
 0: Hubert
Wolfeschlegelsteinhausenbergerdorffvoralternwarenge
wissenhaftschaferswesenchafewarenwholgepflegeundsor
gfaltigkeit...
 ---- Actual output ----

 ---- Diff ----
 --- - 2010-04-27 14:56:31.516277996 +0100
 +++ long-name-result.txt 2010-04-27
14:54:46.000000000 +0100
 @@ -1 +1 @@

 -
 +0: Hubert
Wolfeschlegelsteinhausenbergerdorffvoralternwarenge
wissenhaftschaferswesenchafewarenwholgepflegeundsor
gfaltigkeit...

What, no actual output at all? Let’s look at it without the test script:
 $ cat long-name.txt | ./cc63
 Segmentation fault

Boom! I don’t know whether Mr Wolfe (as he chose to be known) ever
dabbled in amateur dramatics, but perhaps our sneaky user wasn’t sure, or
maybe he was searching for a security hole and not really wanting to sort
actors’ names at all.
So gets is trying to fit the 123 characters of input into the 80 bytes
allocated for line, which just doesn’t go. Instead, it scribbles all over
some other areas of memory as well, including some we’re not allowed to
touch, causing the crash. How do we fix this? We have to use fgets
instead:
 while (fgets(line, 80, stdin))

The warning has now disappeared, which is a good start. First let’s test the
original example again:

 $./cc63-test actors.txt actors-result.txt
 Test FAILED!
 ---- Expected output ----
 0: Michael Caine
 1: Charlie Chaplin
 2: John Guilgud
 3: Anthony Hopkins
 ---- Actual output ----
 0: Michael Caine

 1: Charlie Chaplin

 2: John Guilgud

 3: Anthony Hopkins
 ---- Diff ----
 --- - 2010-04-27 15:01:49.857578926 +0100
 +++ actors-result.txt 2010-04-27
14:23:20.000000000 +0100
 @@ -1,7 +1,4 @@
 0: Michael Caine
 -
 1: Charlie Chaplin
 -
 2: John Guilgud
 -
 3: Anthony Hopkins

Oh dear, we’ve broken it again. What are those extra newlines doing there?
It seems that fgets doesn’t behave exactly the same as gets: newlines
are now kept in the line buffer unless the input reaches 79 bytes. This is
awkward, and points out that the ‘getting a name from the input stream’
operation should really be its own function so that fiddly bits like this can
be abstracted away from the rest of the code.
OK, so let’s write a new function get_input_line. We overwrite the
final newline if and only if the input is less than the maximum (which itself
is one less than the buffer size):
 char *get_input_line(char *line,
 int line_size, FILE *stream)
 {
 char *result;
 result = fgets(line, line_size, stream);
 if (result)
JUL 2010 | | 25{cvu}

 {
 size_t input_len = strlen(line);
 if (input_len < line_size - 1)
 line[input_len - 1] = '\0';
 }
 return result;
 }

We can then simply replace fgets with get_input_line in the main
function:
 while (get_input_line(line, 80, stdin))

Note that I’ve left in stream as an argument to get_input_line, even
though I could have hard-coded stdin within the function. This is
because most utilities of this sort are written to accept either standard input
or a filename on the command line. If this one ever gets updated to accept
a filename, we won’t have to modify get_input_line, which will help
maintenance.
Anyway, rerunning with actors.txt now passes the test again.

Finding the space

I have a niggling feeling that this line is going to cause us trouble:
 p = strstr(line, " ");

What is this saying? In order to split the input line into first and last names,
we simply find a pointer to the space between them and use its position to
create copies of each one. Note that we could just as well use strchr()
to search for a single space character rather than a substring, which feels
more efficient, but to be honest the outcome is equivalent and the
differences are negligible so I’ll leave it as it is. Anyway, the approach
sounds sensible, until you realise that since this input comes from the user,
it could contain anything. What if there are two spaces, like in Simon
Russell Beale? Or no spaces, like Madonna?
Let’s deal with Simon Russell Beale first. The strstr() function will
find the first space, and so split his name into "Simon" and "Russell Beale",
sorting on "Russell Beale" as his surname. This is wrong, but could easily
be rectified by finding the last space with strrchr() instead. The
problem is that then our cheeky user will go and enter "Robert De Niro".
Extracting the surname from an arbitrary full name is actually very difficult
for software to accomplish, if not impossible. I’ll therefore leave the code
as it is and not worry about it any more, unless our stakeholders express a
preference for how these cases should be handled.
It’s less obvious from the code what will happen with Madonna, so let’s
try it:
 $ echo Madonna > no-space.txt
 $ cat no-space.txt | ./cc63
 [...slight pause...]
 Segmentation fault

Oh dear. What’s happening here? Well, that strstr line is trying to locate
a pointer to the first space in "Madonna". Reasonably enough, it returns
NULL to indicate the absence of a space. The bug is on the next line:
 nm->fn = (char*)malloc(p - line + 1);

With p having the value NULL, the expression p - line + 1 is going
to have a crazy value. Just for fun, let’s see what it is. I inserted the
following line to print out some memory addresses:
 printf("line = %08x, p = %08x,\n"
 "p - line + 1 = %u\n",
 line, p, p - line + 1);

Now I get this output:
 $ cat no-space.txt | ./cc63
 line = bfe6d51c, p = 00000000,
 p - line + 1 = 1075391205

 Segmentation fault

So we are allocating around 1GB memory to hold Madonna’s first name.
This actually works on my machine, but the following line then copies over
a billion bytes from line into nm->fn. This causes the crash, since line
is, as we noted before, only 80 bytes big.
So, how to deal with Madonna? It’s even a valid input, so it’s not as though
you could claim that such ‘far-fetched theoretical scenarios’ will never be
triggered in practice. Clearly, an actor with a single name must be sorted
as though that is her surname. We can probably assume that she has a blank
first name, but if we are in any doubt it would be a good time to consult
with our users or stakeholders.
We need to rewrite the code so that, in the event of no space appearing in
the input, the whole string is copied into the last name field, and the first
name field is initialised to the empty string.
 p = strstr(line, " ");
 if (p)
 {
 nm->fn = (char*)malloc(p - line + 1);
 strncpy(nm->fn, line, p - line);
 nm->fn[p - line] = '\0';
 nm->ln = strdup(p+1);
 }
 else
 {
 nm->fn = "";
 nm->ln = strdup(line);
 }

What happens now?
 $ cat no-space.txt | ./cc63
 0: Madonna

No crash. Looks good. Hang on, wasn’t I meant to be using a test script,
at least when segfaults have been eliminated?
 $./cc63-test no-space.txt no-space-result.txt
 Test FAILED!
 ---- Expected output ----
 0: Madonna
 ---- Actual output ----
 0: Madonna
 ---- Diff ----
 --- - 2010-04-27 15:18:22.477023604 +0100
 +++ no-space-result.txt 2010-04-27
15:10:14.000000000 +0100
 @@ -1 +1 @@
 -0: Madonna
 +0: Madonna

Oh, that’s annoying. By having a blank first name, Madonna is being
printed out with a leading space. I might easily have missed that without
cc63-test screaming in my face. It looks like time for pulling another
bit of the code into its own function, this time for printing a name:
 void print_name(int index, struct name *nm)
 {
 // nm->fn[0] is zero if nm->fn is empty
 if (nm->fn[0] == '\0')
 printf("%i: %s\n", index, nm->ln);
 else
 printf("%i: %s %s\n", index, nm->fn,
 nm->ln);
 }

So the loop now looks like this:
 for (i = 0; i < n; i++)
 {
26 | | JUL 2010{cvu}

 print_name(i, &names[i]);
 }

As a result, Madonna is happier:
 $./cc63-test no-space.txt no-space-result.txt
 Test passed. Output:
 0: Madonna

Let’s remember to check the original as well:
 $./cc63-test actors.txt actors-result.txt
 Test passed. Output:
 0: Michael Caine
 1: Charlie Chaplin
 2: John Guilgud
 3: Anthony Hopkins

Good, good. We had another test file, didn’t we? Oh yes, that German
name:
 $./cc63-test long-name.txt long-name-result.txt
 Test FAILED!
 ---- Expected output ----
 0: Hubert
Wolfeschlegelsteinhausenbergerdorffvoralternwarenge
wissenhaftschaferswesenchafewarenwholgepflegeundsor
gfaltigkeit...
 ---- Actual output ----
 0: Hubert
Wolfeschlegelsteinhausenbergerdorffvoralternwarenge
wissenhaftschaferswes
 1: enchafewarenwholgepflegeundsorgfaltigkeit...
 ---- Diff ----
 --- - 2010-04-27 15:28:23.620914006 +0100
 +++ long-name-result.txt 2010-04-27
14:54:46.000000000 +0100
 @@ -1,2 +1 @@
 -0: Hubert
Wolfeschlegelsteinhausenbergerdorffvoralternwarenge
wissenhaftschaferswes
 -1: enchafewarenwholgepflegeundsorgfaltigkeit...
 +0: Hubert
Wolfeschlegelsteinhausenbergerdorffvoralternwarenge
wissenhaftschaferswesenchafewarenwholgepflegeundsor
gfaltigkeit...

Hmm. You probably noticed I forgot to retest Mr Wolfe after fixing the
gets bug, which was remiss of me. Ideally all the test files would be
wrapped up in a single suite, the whole of which would be run regularly
so this sort of thing wouldn’t happen.
So, what’s the problem here? Looking at the actual output, it seems that
our fgets fix has successfully stopped crashes from happening but still
doesn’t give us a useful result in the event of someone really having such
a long name. How should we fix this? Well, to be honest, if the intent of
the utility is to sort names on input, then anything that only accepts part
of the input isn’t going to give the right answer. If we want to cope with
arbitrary-length names then we have to do some clever tricks to append
each piece of input to the current name structure somehow. Consult the
stakeholders here: if the utility is only going to be used internally then they
may well agree that the effort required is too great for virtually no practical
gain. I will therefore leave the matter here. At this point I should put long-
name.txt’s actual result into long-name-result.txt.
That way, although the output is fairly nonsensical, the test scripts will still
notice if we were to re-introduce a crashing bug at a later date.

Further improvements

We seem to have a fairly solid piece of code now. What else could be
improved? At this point I’m mainly thinking about Bernard, the future

developer who has to maintain this utility after you’ve disappeared to
Barbados with your lottery winnings.
Looking at the structure of the main() function, there are three basic
operations: get the input, sort the names, and print the output. When you
can break a function down so easily with this kind of analysis, then it is a
prime candidate for refactoring the code into small functions, each with
its own clear responsibility. Since each function has to have a name too,
then you improve the documentation without even adding any comments.
Here’s what my main() function might look like:
 int main()
 {
 struct name *names = NULL;
 int num_names = 0;

 if (!get_input_names(&names, &num_names))
 return EXIT_FAILURE;
 sort_names(names, num_names);
 print_names(names, num_names);
 return EXIT_SUCCESS;
 }

Here, we’ve managed to move two of the local variables, line and i, out
of the main() function, leaving only the names array and the number of
names. The increases comprehension of the code as there’s less for Bernard
to think about at any one time. I made get_input_names() a boolean
function, returning a false value if there’s a problem with the input, in
order to allow the utility to abort, and note that the & in front of names
and num_names makes it blindingly obvious that these are intended to be
output parameters.
I’ve added return codes to main()– when I compile with the -Wall
option, gcc points out their absence – and since the convention for
returning zero (false) on success is slightly counter-intuitive, I’ve used the
constants EXIT_SUCCESS and EXIT_FAILURE from stdlib.h
instead.
The functions sort_names() and print_names() are fairly robust:
both work when names is NULL, so long as num_names is zero to match,
and print_names() doesn’t require names to be sorted, and so can be
re-used in other places, for example to print out what the array looks like
before the sort.
Why create the sort_names() function at all? After all, it’s only one line
of code! There are two reasons. Firstly, we’ve made main() clearer: the
function name shows that it’s not just any old sorting operation, it’s sorting
names, and by hiding sizeof(name) and (compar)compare we’ve
removed some implementation details that might confuse poor Bernard on
first reading. Secondly, we might decide in future that qsort isn’t good
enough. By abstracting away the algorithm used, we are free in future to
change it to something better, with the confidence that only a small piece
of nicely encapsulated code will have to be modified.
You may have noticed I renamed n to num_names in my restructuring of
main(). Why would I do that? I tend to think that cryptic variable names
like nm, fn, ln, n and so on are unnecessary. In these days of large screens
and auto-completion by text editors, it’s not much effort to make Bernard’s
life a lot easier by using current_name, first_name, last_name
and num_names instead. I’ll let you change the others throughout the
code.

Final points

What other comments should I make? We haven’t looked at the
compare() function at all. Apart from the unhelpful variable names, I
would change one other thing. By writing if (!t) it looks like you’re
saying ‘if the call to strcmp failed’, as its return value t is treated as a
boolean. I know strcmp is a super-standard function and lots of C
programmers instinctively know about its behaviour, but for Bernard’s
sake I would write if (t == 0), which is more likely to conjure up
mental images of equality than of failure.
JUL 2010 | | 27{cvu}

I would avoid having both struct name and the name typedef. It is
confusing to mix the two within the code, especially as they have the same,
er, name. To be honest, using struct name throughout is not a hardship,
but if you really want to lose the struct then I would use NAME or
name_t as the typedef, to distinguish it easily as a type, rather than, say,
a variable.
I haven’t mentioned the use of dynamic memory allocation at all. You are
relying on the weird feature of realloc() to call malloc() if names
starts out being NULL. It makes the code shorter but it does mean I had a
momentary panic and had to look up realloc()’s documentation. We
don’t free any memory in this utility, which is OK as it stands, since the
whole program exits after printing the result, but it does ring a few alarm
bells. This actor-sorting code couldn’t easily be dropped in as part of a
larger system without additional work. It is always worth considering
creating static buffers for simplicity: in this case we decided to keep the
80-character line limit for the input anyway, so unless memory is really
tight or datasets are expected to be huge then struct name could simply
contain two 80-character arrays and save quite a lot of hassle. Of course,
if memory is really tight then you need a good deal more error-checking
on your calls to malloc() and realloc() as it is.
Finally, remember that, given the considerable odds against that lottery
win and your trip to Barbados going ahead, who is Bernard the maintainer
most likely to be? It’s you, in 18 months’ time, struggling to remember
why you couldn’t have made this code just a little bit easier to understand.

References

[1] http://everything2.com/title/Longest+names

Pete Disdale <pete@papadelta.co.uk>

I have seen far worse C code than this and, if I’m honest, have written some
of it! There are really only two things wrong with it however, ‘wrong’ in
the sense of preventing it from working as intended – given safe input
anyway – but also quite a few things worthy of comment. The easiest way
I find to do this is a line by line walk through the code, with my comments
in standard /* ... */ C comments fashion.
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

typedef int (*compar) (const void*, const void*);

typedef struct name
{
 char *ln; // last name
 char *fn; // first name
} name;

/*
 * I don't think that this is strictly wrong, but
 * using the same symbol for the typedef and struct
 * tag name is potentially confusing. In fact, that
 * confusion is shown further down where the writer
 * has sometimes used 'name' and sometimes 'struct
 * name' when referring to the same entity. Also,
 * like many C programmers I hate typing long
 * symbol names but there are occasions when a
 * longer name makes the code more readable; I
 * would suggest using 'lastname' and 'firstname'
 * for the struct members here -- this is simply a
 * personal preference!
 */

// order last names before first names
int compare (name *n1, name *n2)
{
 int t = strcmp (n1->ln, n2->ln);
 if (!t)
 t = strcmp (n1->fn, n2->fn);

 return t;
}

/* This exemplifies the comment above about symbol
 * names; the code is fine but one has to look
 * carefully to ensure that the code is fine! Also,
 * whilst one can not say that "if (!t)" is
 * strictly wrong, I think there are times where
 * "if (t == 0)" is more meaningful to the reader,
 * and reinforces the point that strcmp() returns
 * an int rather than a boolean type. Again
 * personal preference.
 *
 * Finally, compar was typedef'd to receive const
 * pointers, so on the grounds that compare()
 * should not change what its parameters point to,
 * they should be declared const.
 */

int main()
{
 char line[80];

/*
 * That fixed buffer size literal will come back
 * and bite someone at some future time. Much
 * better to #define a buffer size, and use it
 * whenever possible in places where a buffer
 * overrun is possible.
 * #define BUFLEN 80
 * and
 * char line[BUFLEN];
 * is not much extra typing to do...
 */

 struct name *names = NULL;

/*
 * See comment above. Why bother to typedef the
 * struct and not use the typedef?
 */

 int n = 0;
 int i;
 while (gets(line))

/*
 * Using gets() is a cardinal sin!
 * Much safer would be:
 * while (fgets(line, BUFLEN, stdin) != NULL)
 * to mitigate a buffer overrun. Remember that the
 * input to this program could be redirected from
 * file, and that file could very easily have lines
 * longer than "normal" keyboard input.
 */

 {
 struct name *nm;

/*
 * Why not use the typedef name? (see next but one
 * comment)
 */

 char *p;
 n = n + 1;

/*
 * It is not very safe to bump this element counter
 * until the new line of input has been validated
 * and successfully added to the names array.
28 | | JUL 2010{cvu}

 * Remember that this number will be passed later
 * to qsort(), which could give odd results if e.g.
 * mem allocation fails and there are fewer
 * elements available than stated.
 */

 names = (name *) realloc (names,
 n * sizeof(name));

/*
 * ... as is done here?
 *
 * One other comment: realloc() is a very useful
 * function but as used here is potentially very
 * inefficient as the number of name elements gets
 * large, and could lead to serious memory
 * fragmentation. Not to mention that one should
 * always check the return value of any malloc()
 * functions for NULL...
 *
 * A better approach might be to use a linked list
 * for storage (or better still would be a binary
 * tree as this would obviate the need to later
 * sort the list). There are plenty of examples of
 * how to implement a binary tree, even the
 * Structures chapter in K&R has sample code.
 */

 nm = names + n - 1;
 p = strstr (line, " ");

/*
 * And if there is no space character in the input?
 * Or even multiple spaces? In the first case, the
 * malloc() below will fail spectacularly, and in
 * the second case the lastname will have some
 * leading whitespace (which will make the qsort()
 * not work as intended.
 */

 nm->fn = (char *) malloc (p - line);
 strncpy (nm->fn, line, p - line);

/*
 * Here is major problem 1: even assuming that p is
 * valid there is no allowance made for the null
 * terminator for the first name. And while strncpy
 * will not overflow nm->fn it also does not add
 * the '\0' to the end. One way around this would
 * have been to write
 *
 * *p = '\0';
 *
 * to terminate the string and to use strdup() to
 * sort out the allocation of the right size (as is
 * done with last name below. The code as it
 * stands will not terminate the first name string,
 * and is primarily responsible for the strange
 * output from the sample input.
 */

 nm->ln = strdup (p + 1);
 }

 qsort (names, sizeof(name), n,
 (compar)compare);

/*
 * Here is major problem 2: the calling sequence is
 * wrong! It should be:
 *

 * qsort (names, n, sizeof(name),
 * (compar)compare);
 *
 * As it happens, using 4 input strings (and
 * compiling in small model, as I did) this error
 * was not apparent as both n and sizeof(name) had
 * the same value. But that said, there is no
 * sanity checking at all of the input: what if n
 * were zero? qsort() might not like that.
 */

 for (i = 0; i < n; i++)
 {
 printf ("%i: %s %s\n", i, names[i].fn,
 names[i].ln);
 }

/*
 * main() was defined above as returning int, but
 * here there is no return value. The shell will
 * presumably receive whatever was in the
 * AX/EAX/RAX register at the time; far from ideal
 * behaviour.
 */

}

Apart from the above comments, the code demonstrates a general lack of
error checking (e.g. for null pointers) and assumes well-formed input,
which might be OK for a ‘one-off, for personal use only’ piece of code but
would be a liability for production code.
To finish up, here is my attempt at tackling some of these potential
shortcomings. I haven’t taken the binary tree route in order to keep the
functionality similar to the original, but have tried to address the points
made earlier in the comments and suggested ways to write this program
more defensively. Not that this attempt could not be improved upon – even
though I’m old enough for a free bus pass I’m still learning and enjoying
the experience! (Pete Goodliffe hits the nail on the head with his CVu
article). Maybe this code could used for a future Code Critique?

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>

#define LINELEN 80

typedef int (*compar) (const void*,
 const void*);

typedef struct name
{
 char *lastname;
 char *firstname;
} Name;

/**
 * function prototypes
 */
int main (void);
int compare (const Name *n1, const Name *n2);
char *skipws (const char *s);
char *findws (const char *s);
char *trimline (char *line);

/**
 * main()
 * Returns 0 on success, 1 on error
 */
JUL 2010 | | 29{cvu}

int main()
{
 char line[LINELEN];
 Name *names = NULL;
 int n = 0;
 int retcode = 0; /* assume all OK */

 while (fgets(line, LINELEN, stdin) != NULL)
 {
 Name *nm;
 char *p;
 char *linep = trimline (line);

 if (!*linep)
 {
 fprintf (stderr,
 "Empty input - ignored\n");
 continue;
 }

 if ((p = findws (linep)) == NULL)
 {
 fprintf (stderr,
 "\"%s\": incomplete data - ignored\n",
 linep);
 continue;
 }

 /* else terminate the firstname
 and skip to lastname */
 *p = '\0';
 p = skipws (p + 1);

 names = (Name *) realloc (names,
 (n + 1) * sizeof(Name));
 if (names == NULL)
 {
 fprintf (stderr,
 "Out of memory - aborting\n");
 exit(1);
 }

 nm = &names[n];
 nm->firstname = strdup (linep);
 nm->lastname = strdup (p);

 if (nm->firstname == NULL ||
 nm->lastname == NULL)
 {
 fprintf (stderr, "Out of memory - results"
 " are incomplete\n");
 break;
 }

 /* else all OK - safe to bump counter */
 ++n;
 }

 if (n == 0)
 {
 fprintf (stderr, "No valid data to "
 "process!\n");
 retcode = 1;
 }
 else
 {
 int i;
 /* no point sorting less than two entries */
 if (n > 1)
 qsort (names, n, sizeof(Name),
 (compar)compare);

 for (i = 0; i < n; i++)
 printf ("%i: '%s' '%s'\n", i,
 names[i].firstname,
 names[i].lastname);
 free (names);
 }

 return retcode;
}

/**
 * Given a line of input (null terminated)
 * removes any leading and trailing whitespace,
 * including any end-of-line characters.
 * Returns a pointer to the trimmed line or NULL
 * if the input was NULL.
 */
char *trimline (char *line)
{
 if (line != NULL)
 {
 line = skipws (line);
 if (*line)
 {
 char *p = line + strlen(line) - 1;
 while (p >= line &&
 strchr(" \t\r\n", *p) != NULL)
 *p-- = '\0';
 }
 }
 return line;
}

/**
 * Compares two Name elements (using strcmp so
 * case sensitive)
 * Primary comparison is lastname, secondary is
 * firstname.
 */
int compare (const Name *n1, const Name *n2)
{
 int t = strcmp (n1->lastname, n2->lastname);
 if (t == 0)
 t = strcmp (n1->firstname, n2->firstname);
 return t;
}

/**
 * Given a char pointer to a null terminated
 * string, advances it skip over any space or
 * tab characters until either a non-whitespace
 * character or null is found.
 * Returns a pointer to the first non-white char
 * or NULL if the input was NULL.
 */
char *skipws (const char *s)
{
 if (s != NULL)
 {
 while (*s && (*s == ' ' || *s == '\t'))
 ++s;
 }
 return (char *) s;
}

/**
 * Given a pointer to a string of text, returns
 * a pointer to the first occurrence of a space
 * or tab character, or NULL if not found.
 */
30 | | JUL 2010{cvu}

char *findws (const char *s)
{
 char *p, *q;

 if (s == NULL)
 return NULL;

 p = strchr (s, ' ');
 q = strchr (s, '\t');

 if (p == NULL && q == NULL)
 return NULL;

 if (p == NULL)
 return q;

 if (q == NULL)
 return p;

 return (p < q) ? p : q;
}

PS. My promotion of main() to the first function in the source is personal
preference only – it obviously has no influence in the way that the code
works (or doesn’t....)

Terry Whiterod <terry.whiterod@beraninstruments.com>

First let’s first concentrate on why the code produces the wrong result.
qsort() is defined as qsort(array, number of elements, size of an
element, compare function). The code calls qsort but swaps the ‘number
of elements’ and ‘size of an element’ parameters. This results in 8 elements
of 4 bytes each being sorted rather than 4 elements of 8 bytes. As
sizeof(name) is 8 and there are 4 names.
The junk "?03" on the end of the line "3:Michael John?03" is due to a
missing terminator introduced by strncpy(nm->fn, line, p-
line); strncmp() will not append a terminator if the source string is
greater than or equal to the buffer size specified in the last parameter
p-line . This a lso raises another problem, the nm->fn =
(char*)malloc(p - line); line creates a buffer big enough for the
first name but not the string terminator. This could be changed to nm->fn
= (char*)malloc((p - line) + 1);

Fixing these three problems will produce the expected output:

 0: Michael Caine
 1: Charlie Chaplin
 2: John Guilgud
 3: Anthony Hopkins

But other code robustness problems remain:
The return values of malloc() and realloc() should be checked
against NULL in case the memory allocation fails.
There should be matching free() calls for the names array, first and last
name strings, strdup() will allocate a string that can be freed using
free().
After while(gets(line)) the line variable should be checked to see
if it contains an empty string. This occurs if the user just presses the return
key.
The result of strstr(line, " "); should be checked for a NULL
pointer. This occurs if the user enters a first name only.
It is unsafe to use a fixed buffer char line[80]; and pass it into
gets() as no bounds checking is performed. If the user enters more than
80 characters then the memory after the array is overwritten.
It would be best to check the n1 and n2 parameters to the compare()
function against NULL before using them. This is true for the fn and ln

elements of the structures too. This function is called by external code and
is not guaranteed to supply valid pointers.
And several less serious issues:
int compare(name* n1, name* n2) should be defined as int
compare(const void* vn1, const void* vn2) instead and the
parameters cast to the expected type before use. Otherwise the function
declaration does not match the specification for qsort:

void qsort (void * base, size_t num, size_t size,
 int (* comparator)
 (const void *, const void *));

Pointer arithmetic is bad, I would suggest using a different function to find
the space character in the name, one that returns an array index. If one does
not exist in a common library then one could be created.
It would be clearer to split the main loop up into several functions, each
one describing the action to be taken:

while (get_name(line, sizeof(line))
{
 if (validate_name(line))
 {
 if (allocate_names(&names, ++n))
 {
 nm = &names[n - 1];
 extract_names(line, name);
 }
 }
}
sort_names(names);
print_names(names);

The line length (80) should be defined as a preprocessor constant e.g.
 #define LINE_LENGTH 80
 char line[LINE_LENGTH];

I would also prefer to see variable names lengthened e.g. nm to name, ln
to lastName, fn to firstName, n to numberOfNames etc. This
increases readability and would make typing mistakes much less likely.
Alarm bells should ring when you see a line like this:
 char* ln; // last name

as the variable name should make the comment redundant. Strive to reduce
comments by making the code obvious.
 char* lastName;

Well that’s it, I am sure there are many other style issues that could be
commented on but I have tried to cover my major concerns. Problems
aren’t always evident as bugs, we should try to produce elegant and
readable code. Code should check return codes and take appropriate action
as errors occur. If code is readable then bugs are more obvious and can be
solved quickly during the coding stage and not once the code has been
delivered to the customer.

Balog Pal <pasa@lib.hu>
Uh, this sample is just plain disgusting. Really. Though I rather cut the
flame, as it is about the C language, especially pre-C99, and whoever still
picks it to do anything when we have 2010 on calendar... Hopefully other
entries will show how it is done in C++, and point out how many problems
are just sidestepped that way, including memory leaks and buffer overruns.
So here I pretend the scope of the problem was just to sort the supplied list
of names using qsort, correctly, and is allowed to do anything for other
input (including lines longer than 80 chars, not having a single space), and
leaking memory is not a concern either. And we do get enough memory
so allocations (in realloc and strdup) never fail.
Scanning the code filtering out the just mentioned problems leaves us with
just a few yellow flags:
JUL 2010 | | 31{cvu}

the compare function, while correct inside, lacks const
qualification of the input pointers
use strstr instead of strchr to look for a single character
use of blacklisted function strncpy

The rest seem like ‘should be what required’.
strncpy masquerades as a fixed, replacement function (like strncat,
snprintf...) for strcpy. It does take a size parameter and promises to
limit action to that length – so far so good – but the rest of the specification
is a mess. On one hand, if the source string is too long, it will not zero-
terminate the result. While if source is short, it will fill the rest of the buffer
with zeroes. None of that behaviour fits with the original use cases of
strcpy, so used as replacement it will do mostly harm. The general
suggestion is to not use it ever, write your own safe_strcpy or pick an
existing one.
This turns out the actual source of our problem: the duplicate of the first
name is created without zero-termination. That in turn will cause
undefined behavior in the compare function and printf. The simplest
fix is to make this field also with strdup like the last name, by overwriting
the located space character with 0, then pass the line:

 p = strchr(line, ' ');
 *p = 0;
 nm->fn = strdup(line);

With that the output is correct for the input.

Commentary
I was, like Balog, half expecting an answer suggesting the use of C++ but
we got various critiques of the C code instead.
As most entrants pointed out, the C runtime library contains some bad
design decisions.

strncpy is poorly specified as it differs from the other strn…
functions in ways making it easy to use unsafely
realloc tries to do too many things: allocate new buffers, or
change the effective size of existing buffers. It is also hard to write
proper error handling
gets is dangerous (no way to prevent buffer overrun) and it is then
made worse by fgets handling line terminators differently.

I think all three functions are best avoided. The old adage ‘a bad workman
blames his tools’ doesn’t apply here – the tools in this instance actually
are a problem.

The Winner of CC 63
As is often the case there was a lot of overlap between the entries but I
think that Paul’s critique was the most helpful – I liked the way he started
with reproducing the error and then writing a simple automated test
harness. He also asked a good question over how to sort names with
multiple spaces!

Code Critique 64
(Submissions to scc@accu.org by Aug 1st)
I’m trying to write a simple quadratic equation solver for the equation "a * x
* x + b * x + c = 0" that writes output to a file but I am having problems getting
it working. It’s OK for some inputs but I’m having problems, in particular with
equations that have no (real) solution.

The code is shown in Listing 2. You can also get the current problem from
the accu-general mail list (next entry is posted around the last issue's
deadline) or from the ACCU website (http://www.accu.org/journals/).
This particularly helps overseas members who typically get the magazine
much later than members in the UK and Europe.

C:> cc64
Enter quadratic coeffs: 1 0 -1
Roots: 1 and -1
C:> cc64
Enter quadratic coeffs: 1 2 3
Roots: -1.#IND and -1.#IND
Didn't match

// Solve quadratic equation.
// Save the roots.
// Read and verify they wrote OK.

#include <cmath>
#include <fstream>
#include <iostream>

void tofile(double a, double b)
{
 std::ofstream("file.dat") << a << b;
}

void fromFile(double & a, double & b)
{
 std::ifstream("file.dat") >> a >> b;
}

void verify(double rootHigh, double rootLow)
{
 double readRootHigh, readRootLow;
 fromFile(readRootHigh, readRootLow);

 if ((readRootHigh != rootHigh) ||
 (readRootLow != rootLow))
 {
 std::cout << "Didn't match" << std::endl;
 }
}

int main()
{
 std::cout <<
 "Enter quadratic coefficients: ";
 double a,b,c,rootHigh,rootLow;

 if (std::cin >> a >> b >> c)
 {
 rootHigh = (-b + sqrt(b*b - 4*a*c)) / 2*a;
 rootLow = (-b - sqrt(b*b - 4*a*c)) / 2*a;
 std::cout << "Roots: " << rootHigh <<
 " and " << rootLow << std::endl;

 tofile(rootHigh, rootLow);

 verify(rootHigh, rootLow);
 }
}

Listing 2
32 | | JUL 2010{cvu}

Implementing
Automated Software
By Elfiede Dustin, Thom
Garrett, Bernie Gauf,
published by Addison
Wesley (2009), ISBN 978-
03211580511

Reviewed by Matthew Jones

I was looking forwards to reviewing this book
because I’ve introduced a test framework at
work, we use automated builds, we do some
TDD, and we have some automated module
tests. I was hoping that this book (with its
impressive claims on the back cover) would take
me to the next level. I was disappointed.
The book is vague, repetitive and far from
concise. Editors and reviewers are
acknowledged, but it has the feel of something
that was padded to make a target, or that they
were paid by the page. Nearly three quarters of
all pages have one (or more) ‘as we saw in
Chapter X’ in them, rendering the nine pages of
contents almost irrelevant. It could do with some
ruthlessly edited to lose 50 to 100 pages. The
authors all work together in a company which
specialises in AST for the defense (yes they are
American) industry. No doubt the pace and
presentation style reflect this, and maybe that’s
where the majority of the intended audience lie.
The book is divided into two sections. The first,
what & why, takes 4 chapters (what is AST, why
do it, business case, failures and pitfalls) and
seemed to be pitched at student level: each
concept is introduced in annoying detail, with
lots of obvious examples and felt almost

patronising. For example, one paragraph tells us
that if we make a 10% improvement in a task that
costs the industry billions, our savings could be
millions. Amazing! Please tell me more! The
second section, how, is divided into six chapters
each detailing a ‘key’: a key point related to
successful implementation of AST. What they
tell us is that development of an AST
implementation should be treated like any other
serious software development project: it should
be justified, required, planned, resourced
correctly (there is an entire chapter on ‘putting
the right people on the job’), tested, tracked,
measured, and carried out according to some
defined process. That’s it in a nutshell. There are
4 appendices: some lists, a case study, and one
useful run down of the popular and/or effective
tools that the authors have used, both FOSS and
commercial. If you feel the need for a 329 page
book to state these fairly obvious truths, then
buy it. Otherwise, avoid. Perhaps I was
expecting a more technical approach, explaining
actually AST techniques, but the title is
accurate: the book is all about implementation,
and that is always going to be largely a project
management issue.
I find it odd that many other reviewers generally
score this book well (80%+ on Amazon). Maybe
other books on testing make this one look good,
but I really doubt that it ‘fills a huge gap in our
knowledge of software testing’ (back cover
comment from a professor of SW engineering).
Maybe they are right and I am wrong, but don’t
say I didn’t warn you.
In summary: tedious.

The Economics of
Iterative Software
Development
By Walker Royce, Kurt
Bittner, and Mike Perrow,
published by Addison
Wesley (2010), ISBN 978-
03211509352

Reviewed by Allan Kelly

It was the word ‘economics’ in the title that got
my attention. It’s not the first book to take
liberties with the title, nor are these the first
authors to abuse the word economics. You will
find very little economics in this book, a shame
really because a more discussion of the under
supply and over demand of software would be a
good thing.
What you will find is plenty of discussion about
metrics, or rather the importance of measuring
things. I guess that’s what prompted the word
economics in the title.
Really this is a book of to halves. What the third
author did I don’t know because it seems pretty
clear the two parts were written by different
people.
The first half is a very readable, short, discussion
of iterative software development and why it is
preferable from big functional phased
development. Just don’t look for the word Agile
in the book, the authors base most of their
examples and discussion on the (Rational)
Unified Process. Perhaps unsurprising when
you consider the authors have close links to IBM
and Rational in particular.
This half of the book offers a few insights: their
description of ‘diseconomies of scale’ in
software development will stay with me. It is so
obvious I wonder why I’ve never heard it before.
On the whole though this is not a book of new
insights, more a retelling of a popular story.
The second half is about measurement, the
chapters are still short but, as so often happens
with metrics, the discussion can be a bit dry.
More solid metrics and worked examples would
help. Despite this the author(s) know their stuff
and there is a good discussion here. But when it
comes to details there is too much hand waving.
Perhaps a bigger flaw in the book is the failure
to cite references or research. The authors write
with authority in their voice and, as far as I can
tell, have a right to be authoritative. However it
is hard to tell when they are offering their own
experience, observations, solid research,
industry data or just opinion. I find myself

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
JUL 2010 | | 33{cvu}

asking ‘Can they prove that?’ time and time
again.
In writing that I know I’m being a little unfair:
writers who provide scrupulous detailed
references and examples to prove their facts
usually end up writing turgid texts. Few authors
manage to provide both evidence and readability
in one text.
While I’d happily recommend the first half of
this book to a manager wanting a quick
introduction to iterative development I can’t say
the same for the second half. So let your
manager read the first half, but not the second;
then talk to them about details and tell them RUP
is not the only fruit.

iPhone User Interface
Design Projects
by various authors, published
by Apress (2009), ISBN 978-
1430223597

Reviewed by: Pete Goodliffe

Verdict: OK
This is another book in
Apress’ iPhone development series. Like all the
later books in the series, it’s produced in black
and white, which is a shame given that the book
focuses on user interfaces.
It is a collection of essays from ten different
authors. Each chapter stands alone. Some of the
authors are clearly programmers, and their
descriptions of interface design come from a
techie viewpoint. Others authors are domain
experts or people who hired in programmers to
get their job done. These discussions are far less
technical in nature.
I’ve read quite a few of the APress iPhone books
now, and although they are good, I’m starting to
get tired of each chapter starting with a gushing
‘the iPhone is great’ section before getting into
the meat of the topic. I’d like to see a little
heavier editorial control if this series continues.
The chapters are personal in nature, and that is
part of the charm of these books. However some
of the lengthy intros add nothing of value to their
chapters.
The material in this book is not as strong as
others in this series. This opinion does reflect my
bias as a coder rather than an UI designer, but
experienced UI designers won’t find much
essential or new information in this book. In
general, good iPhone UI design requires an
understanding the native iPhone idioms and of
how to create compelling touch-based interfaces
for small screen sizes. Some chapters go a way
towards describing this; but sadly the book is by
no means a compelling or thorough discourse on
the subject.
I will admit my favourite chapter was a very
interesting one on the Font catalogue application
FontShuffle. The UI material here was
somewhat thin, but it was a really interesting
insight into the world of typography.
If you’re starting off on some iPhone UI design
work, know nothing about the topic, and fancy

a chatty, but brief, introduction to subject this
book is OK. If you are a UI designer then you’ll
probably not find much of value here.

Python Essential
Reference, Fourth
Edition
by David M. Beazley, published
by Addison Wesley (2009), ISBN
978-0672329784

Reviewed by Garry Lancaster

Recommended
For anyone who is unfamiliar with it, Python is
a dynamically typed language, with a clear and
concise syntax, which is increasing in
popularity. Some term it a scripting language,
but others use it for very large applications.
This book’s main audience is those with
experience of other languages who pick things
up quickly. Perhaps you’ve heard about Python
and want to know what the fuss is about? Well,
this book functions well enough as a no-waffle
introduction. Later, it will stay on your desk as
an initial reference source when programming.
It is then that the comprehensive 78 page index
will come in extremely useful. It isn’t suitable
for programming novices, who would be better
served by a more gentle introductory text.
The first third of the 700 plus pages are devoted
to explaining the core Python language in depth.
This is very successful, and will usually answer
any language-specific questions you might
have. Most of the remainder covers the Python
Library – such areas as string handling, database
access, file and directory handling, and
networking and web programming. Given the
wide scope of the library, here the focus is
necessarily more on breadth rather than depth.
Some functions get just single sentence
descriptions, whilst others have one sentence per
parameter or more. Fortunately, there are
numerous short examples. So, for in depth
library insight, additional sources will
sometimes be required, yet there is enough here
to get you started.
Windows programmers should note that the
very useful Windows specific libraries, such as
for COM programming, are not covered, as
coverage is restricted to the standard, cross-
platform, parts of Python. The book
concentrates primarily on Python version 2.6, as
the majority of existing Python code is written
for the 2.x branch, but does point out where
version 3 differs.

Science : A Four
Thousand Year History
By Patricia Fara, published by
Oxford University Press (2010),
ISBN 978-0199580279

Reviewed by Ian Bruntlett

According to this book,
science began in the
Mesopotamia region. We can look back to the
Cradle of Civilisation being the founding of

Babylon in about 2000 BC – but, typically for
the dissemination of ideas, the Babylonians used
prior knowledge – the invention of writing.
The first scientists weren’t called scientists.
However, one thing in common is a spectrum
with one end being the application of scientific
knowledge (farmers, sailors, fortune tellers –
astronomy, accountants, business men,
administrators – mathematics etc) and the other
end of the spectrum being theorists
(philosophers, wealthy amateurs – aristocrats/
clergy).
These are the days of Big Science – e.g. the
Hubble space telescope, the Large Hadron
Collider. Science wasn’t always Big. Initially
they were individuals who performed wondrous
feats and they were referred to as Magicians.
This lengthy transition is told in this book.
Maybe I’m being a little naïve... but it has often
been the cry of programmers that they don’t
want anything to do with politics... but after
reading this book, you’ll be aware of Science’s
competing influences – scientists themselves,
industrialists, politicians, media and the
military.
If you have already read Thomas S. Kuhn’s The
Structure of Scientific Revolutions, you really
need to read this book. It attempts to cover 4,000
years worth of knowledge working in just under
500 pages. It does have some notes and diagrams
but it also has about 17 pages listing the book’s
sources for diligent readers.

Ten Years of
UserFriendly.org
By J.D. "Illiad" Frazer,
published by Manning
(2008), ISBN 978-
1935182122

Reviewed by Alison Lloyd

UserFriendly holds a
special place for me, as
the first web comic I ever read. Detailing the
exploits of the employees of a small Canadian
ISP, it is also heavy on geek humour, and pretty
much any technologically inclined person
should be able to find something to relate to.
Indeed, it has become part of the techie heritage:
if you ever wondered where ‘problem exists
between keyboard and chair’ (PEBKAC) came
from, wonder no more!
This is a big, chunky volume, with one week’s
worth of comics per double page. In addition to
the strips, J.D. Frazer has added comments
alongside some strips; these range from trivial
(‘look how much better I am at drawing this
character’) to story background and planning, to
insight and opinion on the real-world events that
inspired certain strips or stories. There is also
some background information on J.D. Frazer
himself, from which we learn that his inspiration
for the story was when he and some friends
started a small ISP. Taken together, the reader is
walked through the early development and
34 | | JUL 2010{cvu}

subsequent maturation of the comic in an
engaging and light-hearted way.
The Sunday comics tend to be based on some
topic of the day which had some technical
relevance or interest. As you might expect,
things like the SCO lawsuits and various Google
happenings feature large. As this archive goes
back ten years, it serves as a memory lane of
many major events in technology, many
annotated with the author’s personal
recollections and opinions.
The major let-down of this book is that the
Sunday strips (which are published in colour
online) are reproduced in black and white. This
isn’t too bad to start with, but many strips use
colour as part of the punch-line (e.g. the colour
worn by a particular character, or similar),
which really grates when the colour is absent. I
assume the decision was made for cost reasons,
but it is a real pity and I feel detracts significantly
from what is otherwise an excellent read.
In summary, this book will appeal to geeks
everywhere. It stands up well as something to
dip in and out of, and for a longer read, with the
cartoon strips balanced nicely by comments and
background from the author. Aside from the lack
of colour, the layout is sensible and uncluttered.
All in all, a pleasure to (re)read, and something
that I’ve dipped back into more than once after
(re)reading it cover-to-cover.

User Stories Applied
– For Agile Software
Development
By Mike Cohn, published by
Addison Wesley (2004), ISBN:
978-0321205681

Reviewed by Paul Grenyer

After reading Agile
Estimating and Planning, also by Mike Cohn, I
was rather disappointed with User Stories
Applied. Then I saw that Agile Estimating and
Planning was published in November 2005 and
User Stories Applied was published twenty
months earlier in March 2004. A lot of the
material in User Stories Applied forms the basis
for and is expanded in Agile Estimating and
Planning. Therefore I have come to the
conclusion that Mike Cohn spent the twenty
months between the two books improving as a
writer! However, I think there is great scope for
merging the two books and coming up with a
better title. There is not enough user story based
material here for a single book.
Only about half the book is actually about
writing user stories. The other sections cover
things like planning and testing. There is also
some discussion about identifying roles within
a system which, on the first read, felt a bit thin.
Then when the case study came at the end and I
had had chance to think about user roles in my
own context I started see how useful defining
them could be.
As you would expect, user stories are talked
about in a reasonable amount of depth and most

of the advice seems good to me. One of the main
points I liked was the clear explanation of how
user stories differ from tradition requirements
capture and upfront design.
Mike Cohn asks questions at the end of each
chapter. At the end of the book there are two
appendices, one giving an introduction to XP
and the other the answers to the questions.
Overall User Stories Applied is a little bit killer,
but mostly filler.

Volume 4 Fascicle 1,
Bitwise Tricks &
Techniques; Binary
Decision Diagrams
By D Knuth, 261 pages, ISBN 0-
321-58050-8

Reviewed by Frances
Buontempo

Warning: Contains maths.
This fascicle is the second of five, 0 being the
first of course. Together they will form a new 4th
volume to Knuth’s epic trilogy. Why would you
read the short paper back versions rather than
wait for the whole hard back volume? Knuth
wants you to read it (and do the exercises) to
provide a detailed review so that the next volume
is perfect. Why might you read it? It’s certainly
less intimidating than a large heavy detailed
technical tome, or at least not as big.
Two thirds of the pages are text and diagrams
etc. The remainder is exercises and answers.
Knuth frequently refers to the exercises during
the course of the text, pointing out that you will
get lost if you don’t heed his advice and do the
exercises. Knuth is right – I did read the book
without doing all the exercises. In fact I only
tried about 20 in total, and cheated by reading
the answers on a few of those. By the end of the
book I was slightly lost. The main thing I had
learnt by the end of the book was that I needed
to re-read it and try more exercises to understand
more of it. I have spent a lot of my time reading
mathematics books, and I always have to read
them at least twice to understand them properly.
Once through to get completely lost, but get to
grips with the author’s style and notation, and
once more to actually learn the technical details
in any depth. This book is no exception. It is not
for the faint hearted.
The book is in two sections: the first covers a
wealth of disparate information on bitwise
manipulations such as bit shifting, reversing,
swapping and permuting in general, tweaking
several bits at once, and how to minimise the
number of operations performed. The first
algorithm given in the book shows how to
compute the binary logarithm of a number,

. This is called Algorithm B.
Each algorithm and theorem in the book is
designated by a single letter, or primed letter.
Since there is no index of algorithms and
theorems, finding them when they are referred
to elsewhere in the text is linear rather than
logarithmic. The figures are labelled in numeric

order, but they can be hard to find, since again
there is no listing with page numbers. I am told
this is easy to do in Latex, which ironically
Knuth should know how to drive. The second
part of the book is about binary decision
diagrams, BDD. These are defined as ‘A binary
decision tree with shared sub-trees, a directed
acyclic graph in which exactly two
distinguished arcs emanate from every non-sink
node.’ Like the majority of the sentences in this
book, it require a few reads through. It’s a DAG
with two arcs from every non-leaf node. The leaf
nodes will be either TRUE or FALSE, allowing
these data structures to be used for decision
making. Knuth adds two restrictions: they
should be minimal, so that no non-sink node’s
outgoing paths lead to the same node, and they
should be ordered, that is if you label the nodes
and traverse the BDD the labels will be in
increasing order. He proves that you can order
and minimise any decision diagram. He gives
many examples of the use of BDD in
combinatorial problems and shows how to
minimise the space and time they take to
complete. This book is packed with information,
very hard to read, especially if you don’t do
enough of the exercises. Do I recommend it? I’m
not sure. I enjoyed reading it, but struggled to
understand several algorithms and applications.
Reading a whole Knuth book was an awesome
experience, though it will only be a chapter in
the upcoming new volume. It seems you can
pick up all 5 fascicles about £35 at the moment.
Should you? Only if you do the exercises...

λ x x2log=
JUL 2010 | | 35{cvu}

36 | | JUL 2010

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Hubert Matthews
chair@accu.org

The not quite earth-shattering
news of my election at the last
AGM seems to have been
somewhat overshadowed by some other election
thing going on at roughly the same time. Not
only that, but those other new incumbents seem
to be taking a rather dim view of perks and
expenses, so the ACCU private jet will have to
wait for a while. And no-one wants to form a
coalition with me, either.
So, what next and where do we go from here?
The ACCU is successful so we must preserve
that. I believe that this success is because our
members are:

passionate about programming,
focused on learning, and
having fun

I prefer ‘passionate about programming’ to
‘professionalism in programming’ as I feel it
reflects better the enthusiasm that we have for
our craft. Professionalism has overtones of
wearing ties and being earnest and there are
already other organisations (such as the BCS,
IET, IEEE, etc) that tread this path. Passion is
contagious and is much more likely to attract
and interest potential new members, particularly
the next generation of developers.
The emphasis on learning leads me to the next
area: conferences and events. The spring
conference is the jewel in the crown of the
ACCU. It has grown over the years because of
the work of a very dedicated group of people.
We have even had an autumn conference again,
something that has not happened for a number of
years and something I’d like to see continue. My
thanks go to all of the organisers for their hard
work; we all appreciate it greatly. The spring
conference, to me, is a technical forum with lots
of hard-core programming content. The autumn
conference could then become a forum for those
other aspects of software development that are
less technical.
Those who present at conferences will attest to
the value of so doing. There’s nothing like
having to present your ideas publicly in a
coherent form to get you to sort out your
thinking. To this end, I would like to float the
possibility of having small-scale workshops on
writing or presenting to help budding authors
develop their skills. I’m sure that we can find
enough ‘usual suspects’ from within the ranks to
assist. If we ran such workshops, the overall
timetable of events could be a large spring
technical conference, a small autumn conference
on broader issues, with one or two presentation
and writing workshops in between. Regular
events would reinforce our already strong sense

of community, as do the local ACCU group
meetings around the country.
On a more mundane note, the ACCU
constitution is quite old and doesn’t reflect the
current state of affairs. For instance, it doesn’t
mention the conference at all so there is no
official recognition of the work of the
conference team and no measure of
accountability to the membership. A review
seems appropriate and your input and ideas are
most welcome, as always.
I am proud to be able to lead an organisation that
has been a fundamental part of my development
as a programmer. I sincerely hope that we can
share this experience of growth and learning
with as many new programmers as possible. The
ACCU is full of outrageously interesting,
amusing and talented people. Long may it
continue.

ACCU 2010: a view from the
conference chair
Giovanni Asproni
conference@accu.org

The ACCU 2010 conference was yet another
memorable one. We managed to have a great
programme and the usual great atmosphere, and
all this despite many last minute problems. In
fact, a few speakers had to pull-out for personal
reasons just days before the start, and, as if that
was not enough, the Eyjafjallajokull decided to
erupt just after the conference started, making it
impossible for some speakers, including Lisa
Crispin, and Dan North (who was supposed to
deliver a keynote), to be there.
Luckily, we had a contingency plan that relied
on having so many great speakers around. I
simply asked some of them if they want to take
the free slots. So, we had Robert Martin
explaining us ‘WTF is a monad’, Diomidis
Spinellis talking about a mechanical device the
Antikythera mechanism that was, effectively, a
specialized computer built around 150–100 BC,
and, on the Saturday, a session of ‘Lightning
Keynotes’ – delivered by Robert Martin, James
Bach, Walter Bright, and Jim Hague – to replace
the missing keynote, and a very successful
‘coding dojo’ by Olve Maudal and Jon Jagger to
fill up an empty 90 minute slot. The lightning
keynotes were so successful that quite a few
delegates suggested keeping them for the next
editions of the conference as well.
One very positive side-effect of the volcanic
eruption was that almost all the speakers were at
the conference dinner, making it even more
interesting than usual, and, for some, more
expensive, given the money they spent in the
very successful charity auction for Bletchley
Park held during the dessert.

At the end I was very tired (after the conference,
I needed an entire week to recover), but also very
satisfied – the feedback from the attendees was
exceptional, with many of them telling me that
this was the best ACCU conference they had
been to! Unfortunately I cannot take all the
credit. In fact, most of it goes to the conference
committee, the AYA organisers (Julie, Belinda
and Marsha) who, as always, did an outstanding
job, to the people I always consult for opinions
and suggestions, Allan Kelly, Alan Griffiths and
my official Consigliori Kevlin ‘Hacker’ Henney
(who had also the idea of the lightning
keynotes), and finally to all the speakers and
delegates who always make the conference so
special.
We are now starting the organisation for 2011.
In the last few years we have been making
changes to the committee every year in order to
bring new ideas in and to give other ACCU
members a chance to participate in the
organisation of the conference. This year is no
exception, and the two longest serving
committee members – Ewan Milne and Alan
Lenton – have stepped down down. Please, join
me in thanking them for their invaluable
contributions to the success of the conference.
They will be replaced by Jon Jagger and Alan
Griffiths, two ACCU members well known for
their knowledge and experience.
If you have any feedback, comments, or
suggestions regarding the conference, or even if
you have an idea for a proposal, but you are not
quite sure about it and want some help or
feedback, feel free to email me at
conference@accu.org.

	Software Construction Site
	Implementing One-to-Many Relations in C++
	Software Development in 2010
	Experiments in String Switching
	Competency Scale
	Implication Assert
	A Game of Guesswork
	On a Game of Nerve
	1st Annual UK Vintage Computing Festival
	Regional Meetings
	Desert Island Books
	Code Critique Competition 64
	Bookcase
	View From The Chair
	ACCU 2010: a view from the conference chair

