

MAY 2010 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Choose Your Language
Carefully

common question I get asked at interviews for
programming jobs (as a contractor, this is a fairly
frequent experience) is, ‘Which language do you

prefer: C# or C++?’ I’ve been using C# for some years,
having come to it from a C++ background, and it’s an
interesting question for me, but the interviewers don’t always
get the response they seem to be expecting!
When I first started working in C#, the first thing I missed was
deterministic destruction. It was a while before I learned to trust
the garbage collector and allow at least some of my types to not
implement the IDisposable interface. Top of my list, however, is
the whole idea of complexity guarantees for the various .Net
collection types and the operations they allow. When I’m
using C++’s STL containers and algorithms, I know how to
trade off one for another against speed or size constraints. In
.Net, there is no indication of whether a List<T> is an array,
linked-list or (in .Net 3.5) an associative container – it supports
some operations which might be appropriate for each of those.
There’s no way to discover how complex an operation is for a
given container type. One expects a hash table to have a faster look-up than a list, in
general, but the documentation is unforthcoming on this point.
The things in C# I miss most when writing C++ are mainly about writing succinct
code. The sheer richness of the .Net Framework Library means I can do many things
‘out of the box’, without resorting to 3rd party libraries. But, more fundamentally
than that is the interface keyword. This one thing makes writing C# code a little less
verbose, and a little easier to get right, than the equivalent C++ code. This leads on to
the fact that programming to true interfaces is not as widespread in C++ as it is in
C# or Java. Using 3rd party libraries in C++ can be more traumatic due to the lack of
that central idiom.
So, which do I prefer? Both. Neither. Something else. It depends. Mostly, on what
I’m trying to achieve. As with many things, it all depends on what problem I need to
solve.

 A

Volume 22 Issue 2
May 2010

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Frances Buontempo,
Iain Charlton, Pete Goodliffe,
Paul Grenyer, Richard Harris,
Roger Orr, David Sykes

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | MAY 2010

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
19 Desert Island Books

Paul Grenyer maroons
Pete Goodliffe.

21 Code Critique
Competition #63
Set and collated by
Roger Orr.

24 Regional Meetings
The latest London
meeting.

24 Inspirational (P)articles
Frances Buontempo
keeps us inspired.

25 Conference Retrospective
Paul Grenyer reflects on
this year’s conference.

REGULARS
29 Bookcase

The latest roundup of
ACCU book reviews.

32 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 22.3: 1st June 2010
C Vu 22.4: 1st August 2010

Overload 98: 1st July 2010
Overload 99: 1st September 2010

FEATURES
3 A Timer for Rummikub

David Sykes develops a PIC-based timer using test-driven
development.

8 Live to Love to Learn (Part 3)
Pete Goodliffe concludes his journey of self-improvement.

11 A Game of Nerve
Baron Muncharris has another tall tale.

12 Lazy Initialisation of Shared Resources
Iain Charlton looks at managing object lifetime from birth
to death and beyond.

18 On a Game of Stategy
The Baron’s student acquaintance performs his analysis.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

A Timer for Rummikub
David Sykes develops a PIC-based timer using test-driven

development.

recent game of Rummikub became frustrated by lack of a simple
timer. One of the players insisted on stretching his time, but none of
our watches had second hands. We tried a sandglass, but this made

things worse as finishing a turn early meant you had to wait for it to be reset.
What we wanted, I thought, was a simple box with a button and a light.
When you finish your turn you press the button. If the button wasn’t
pressed before the end of a minute then the light came on, and you took
your penalty. There are undoubtedly a million solutions to this, but none
would look like the picture I had in my head. One of my hobbies is
experimenting with PIC processors, and I knew I could make something
that worked the way I wanted.
My paid job involves development and maintenance of a massive legacy
system, and much of the time using TDD is not appropriate. Extracting
code to test can sometimes take an order of magnitude longer than ‘just
fixing the bug’. However for new development, and my personal projects,
I have found test driven development to be of immense benefit in
producing highly reliable code much more quickly, and more enjoyably
too. When I began applying it to developing code for PIC processors it
encouraged me to isolate myself from the actual hardware, and greatly
reduced the time spent with the target circuit, and frustration with the lack
of debugger or emulator. This article documents my experience with a very
small example project.

What I wanted, and how I thought I would get it
What I imagined happening was an initial short period of fast flashing to
show that the button press had been registered, a brief flash every ten
seconds to show signs of life, a bit more fast flashing for the last few
seconds, then full on. Hold this for a while, say 10 seconds, then put the
device into a low power sleep, hopefully with sufficiently low power
consumption to remove the need for a power switch. Pressing the button
mid sequence will restart the sequence, or wake it up if it has gone to sleep.
Just about any PIC processor would do, but the one that comes with the
PIC Programmer I use, the Flash Starter Kit [1], is the 12F675 (£1.77
Maplin). With up to 6 IO pins, an internal oscillator, two timers, and an

interruptible sleep mode this chip has everything that is needed for such a
simple circuit (Figure 1).
My choice of language is C. It’s almost as efficient as assembler, and
compilable by the C++ compilers I use for the Test Driven Development.
The HI-TECH C compiler [3] for PIC chips is available free, and more than
adequate.

The basic hardware framework

The first thing I like to do is start with something to see, and Listing 1 shows
the minimum code required to do something visible. The code simply
configures the IO pins to be outputs, and then increments the output
register with a delay to make the leds flash at a visible rate.
The code is placed in a file, for example GameTimer.c, and built on the
command line with
 picl GameTimer.c –-CHIP=12F675

This produces a GameTimer.hex file containing the compiled code.
Burning the hex file to the chip using the PicKit Classic Programmer
results in a bunch of flashing leds.

Introducing a timer interrupt
Many PIC projects react to timed events, as will this one. Timed events
can be triggered using one of the two timers. The internal clock drives the
timer which, when enabled, causes an interrupt when it overflows to zero.
Using the internal 4MHz clock, the timers are incremented every 1uS.
Timer 1 is a 16 bit timer, and so it overflows every 65536uS, approximately
15 times a second. This provides ample timing resolution.
Listing 2 shows the framework code using Timer 1 interrupts. Timer 1
interrupts are enabled by setting the GIE, TMR1IE and PEIE flags, the
processor then waits. Every 65536uS the timer overflows, causing an
interrupt which calls the interrupt routine. The interrupt routine does what

A

DAVID SYKES
David studied electronic engineering, but was seduced into
software by the 6502. He now develops software producing
catalogues for products including school supplies and industrial
chemicals. He can be contacted at david@sykes.org.uk

#include <pic.h>
__CONFIG(INTIO & WDTDIS & MCLRDIS & BORDIS &
UNPROTECT & PWRTEN);

void main()
{
 int iostate,delay;
 GPIO = 0; // clear all I/O pins
 TRISIO = 0b00000000; // make all I/O pins
outputs

 // Sequence all the output pins.
 while (1)
 {
 for (delay = 0 ; delay < 1000 ; delay++){}
 GPIO = iostate++;
 }
}

Listing 1
Fi

gu
re

 1
MAY 2010 | | 3{cvu}

it needs to, clears the TMR1IF interrupt flag, and returns the processor to
what it was doing, which in this case is simply waiting.

Development
This completes the basic framework from which the game timer will be
constructed. The desired flashing of the led can be considered as a simple
sequence of toggling the led state between on and off at specific times.
Times between state changes will be measured in interrupt counts, and a
single byte could represent up to 256 / 15 = 17 seconds. If these timings
were relative then a byte array would be sufficient to specify the entire
flashing sequence. For example one second of around 5Hz flashing might
be represented as:
 {1,2,1,2,1,2,1,2,1,2,0}

i.e. on for one interrupt duration, off for two, repeated five times for a total
number of 15 interrupts, ~1s. A null terminator will clearly be required to
identify the end of the sequence.

Development can be done with any compiler and test framework that
handles C code. My personal projects get done on whatever machine
happens to be at hand, which could be a Mac, PC or Linux machine with
or without a test framework. For that reason I tend to start simply by using
the most trivial of test functionality, and develop it from there if required:
 void Assert(bool value) {
 if (!value) std::cout << "TEST FAILURE\n"; }

The first code to develop is a routine that is called by the interrupt routine,
and that changes the state of the led according to the timing data. For the
first test I choose to test a few representative samples, and check that the
led changes when I expect it to (Listing 3).
Now is a good time to consider how the test sequence data will be passed
to the ProcessInterrupt routine. In most environments this might be
done through some form of dependency injection.
 ProcessInterrupt(flashingSequence);

However this involves pointers, and on PIC chips the size of the 12F675
pointers are a big deal, to be avoided if possible. Ultimately there will only
be one flashing sequence, so the final code should be able to refer to the
data as a fixed array. To enable this, and also gain considerable flexibility
in mocking access to the hardware, I use a preprocessing seam [4]. The
code is written in a file that is included by both the test and the target
program. Data items and references to the hardware are mocked simply
by providing an alternative definition before the file is included.
Adding mocks for the led state we get:
 bool ledState(0);
 bool GetLedState(){return(ledState);}
 void SetLedState(bool state){ledState = state;}
 unsigned char flashingSequence[] = {
 10, 20, 30, 0};
 #include "ProcessInterrupt.inc"

This fails to compile because there is no ProcessInterrupt.inc file
or ProcessInterrupt() routine. The first step is to provide a skeleton
file with definition.
 void ProcessInterrupt(){}

The project now compiles, but the tests fail. So far so good. The final step
is to provide code to pass the test, shown in listing 4.
I’d like to say this was the first attempt, and I generally find with TDD
that by this point so much thinking has gone in that first attempts work
more often than not. This time, however, I started countdown with an initial
value of 0, and used a post decrement: countdown--. This adds one more
cycle to each step than I expected, which for this project is irrelevant but
for some projects could be a key source of failure. In any event the second
version passed the tests.
According to the tests we have the code we need, so lets see how it looks
on the PIC. The code is included in a C wrapper, but before the include
line the hardware versions of SetLedState and GetLedState are
defined, together with the flashingSequence data. A production

#include <pic.h>
__CONFIG(INTIO & WDTDIS & MCLRDIS &
 BORDIS & UNPROTECT & PWRTEN);

int iostate = 0;

void main()
{
 GPIO = 0; // clear all I/O pins
 TRISIO = 0b00000000;
 // make all I/O pins outputs

 TMR1IE = 1; // TMR1 Overflow Interrupt
 // Enable bit
 GIE = 1; // Global Interrupt Enable
 PEIE = 1; // Enable all unmasked peripheral
 // interrupts
 TMR1ON = 1; // Enable Timer1

 while(1)
 { // Wait for interrupts
 }

}

void interrupt InterruptRoutine(void)
{
 GPIO = iostate++;
 TMR1IF = 0;
}

Li
st

in
g

2

unsigned char flashingSequence[] = {
 10, 20, 30, 0};
void TestFlashSequence()
{
 Assert(!GetLedState()); // led off
 ProcessInterrupt(); // First action is to
 // turn the led on
 Assert(GetLedState());
 for (int count = 0 ;
 count < 10 ; count++) ProcessInterrupt();
 Assert(!GetLedState()); // 1st timing event
 for (int count = 0 ; count < 20 ; count++)
 ProcessInterrupt();
 Assert(GetLedState()); // 2nd
 for (int count = 0 ; count < 30 ; count++)
 ProcessInterrupt();
 Assert(!GetLedState()); // 3rd...
}

Li
st

in
g

3

unsigned char sequencePosition = 0;
unsigned char countdown = 1;
void ProcessInterrupt()
{
 if (--countdown == 0)
 {
 SetLedState(!GetLedState());
 countdown =
 flashingSequence[sequencePosition++];
 }
}

Listing 4
4 | | MAY 2010{cvu}

version of the circuit might have the led attached to IO pin 0, however the
Flash Starter Kit has the leds set up as a multiplexed grid attached to IO
pins 1,2,4 and 5. On the flash starter kit setting GPIO to 0x10 will turn
LED0 on.
This project is simple enough that writing a subroutine to set and get the
LED state would go unnoticed, but I can’t bring myself to do it, and use
#define instead. Note that the GPIO register cannot be trusted to read
the same value that was written, so a stored copy is required and Listing
5 goes in to ProcessInterrupt.c.
The interrupt routine is also modified to call the ProcessInterrupt
function, and to clear the interrupt flag when complete.
 #include "ProcessInterrupt.h"
 void interrupt InterruptRoutine(void)
 {
 ProcessInterrupt();
 TMR1IF = 0;
 }

The code is compiled with
 picl GameTimer.c ProcessInterrupt.c –-CHIP=12F675

On power up the leds will now flash with the programmed sequence, but
once only and it will not respond to the press of the button.

Pressing the button
Pressing the button mid sequence will need to reset the sequence to its
initial position, for which we require a routine that resets the sequence
state. One way to test this is to start the sequence, resetting it midway and
checking to ensure it has been reset as expected. The test cannot rely on
the state left by the previous test, and so starts by resetting the state (see
Listing 6).
With a simple stub for ResetState in ProcessInterrupt.inc the
code compiles and the test fails.
 void ResetState(void){}

Now to write code that passes the test:
 void ResetState(void)
 {
 sequencePosition = 0;
 countdown = 1;
 SetLedState(0);
 }

This time the tests passed first time.

Implementing the button press code on the PIC
On the 12F675 chip the GPIO3 pin is input only, and therefore an obvious
choice for the button input. Unsurprisingly the PIC starter kit provides a
button attached to this pin (Figure 2), tied high so the input goes low when
the button is pressed. Checking for the button press could be done either
in the interrupt routine or the main loop. Placing it in the interrupt routine
is simplest, keeping all the functionality there avoids any 'multithreading'
issues.
 void interrupt InterruptRoutine(void)
 {
 if (!GPIO3)
 ResetState();
 ...

After adding a prototype for ResetState in ProcessInterrupt.h
the code builds and runs first time. Pressing the button now resets the
sequence back to the beginning.

Going to sleep
When the sequence completes the chip is to go into a low power sleep
mode. Putting the chip ‘to sleep’ requires setting various hardware flags
and executing a SLEEP instruction. The chip can be woken from sleep by
one of several interrupts, the most significant of which for this project is
a change of state on the IO pins. This means that the button can be used
to wake the chip without any extra hardware.
Because the sleep mode is terminated with an interrupt it must be initiated
in the main code. However the end of the sequence is detected in the
interrupt routine. Thus the interrupt routine must signal to the main routine
that a sleep is required, which can be done by simply setting a flag.
The code to test the initiation of sleep mode is as follows Listing 7.
To get the code to compile the sleepRequested flag is defined in
ProcessInterrupt.inc

 unsigned char sleepRequested = 0;

The code now compiles, but the test fai ls . To pass the test
ProcessInterrupt is modified to set sleepRequested when the 0
terminator is reached (Listing 8).

Figure 2

#include <pic.h>
#define LED_ON 0x10
#define LED_OFF 0
unsigned char led = 0; // bool not implemented
#define SetLedState(state){ GPIO = led =
state?LED_ON:LED_OFF; }
#define GetLedState() (led == LED_ON)
unsigned char flashingSequence[] = {
 2,1,2,1,2,1,2,1,2,138,3,150,3,150,3,150,
 3,150,3,134,2,1,2,1,2,1,2,1,2,1,2,1,2,1,
 2,1,2,1,2,1,2,1,2,1,2,1,150,0};
#include “ProcessInterrupt.h”
#include “ProcessInterrupt.inc”

Prototype the function in its header file,
ProcessInterrupt.h
void ProcessInterrupt(void);

Li
st

in
g

5

void TestResetState()
{
 ResetState();
 for (int count = 0 ;
 count < 5 ; count++) ProcessInterrupt();
 Assert(GetLedState());
 ResetState();
 Assert(!GetLedState());
 ProcessInterrupt();
 Assert(GetLedState());
}

Li
st

in
g

6 Listing 7
MAY 2010 | | 5{cvu}

Implementing the sleep on the PIC
Now that the interrupt routine sets the sleepRequested flag as required
all that remains is to detect the flag change in the main loop and activate
the sleep mode.
This involves turning off the led to save power, halting the timer to prevent
it triggering an interrupt, and setting GPIO3 to trigger a wake up interrupt
on change (Listing 9).
If the port change interrupt is triggered then its appropriate flag must also
be cleared at the end of the interrupt routine, just like the timer 1 interrupt.
There is no harm in doing this every interrupt (Listing 10).

Turning the prototype into a device
That completes the prototype, and if usb power is available then this could
be used as it is.
More usefully, however, this needs to become a stand alone circuit. The
12F675 will cope with a supply of between 2 and 5.5v, so two 1.5v batteries
will do as the power supply. The schematic for the device is shown in
Figure 3, drawn using McCAD Schematics LITE [5].

In my mind I picture a coloured half sphere, 2 or 3 inches in diameter, that
sits on the table. Pressing the sphere starts or resets the timer. The sphere
lights up, and maybe makes a sound, when the time is up. I have yet to
find a suitable sphere.

Conclusion
This article should be sufficient to get somebody started with developing
basic embedded systems with very little cost. I hope it also shows ways of
utilising TDD to speed up development, and avoid dependency on
expensive emulators or logic analysers.
The PIC 12F675 is a remarkable little device, but there are hundreds of
other chips in the PIC range, and many other types of easy to access
microcontrollers such as the Arduino. The possibilities are endless.

References
[1] http://www.maplin.co.uk/Module.aspx?ModuleNo=37172 (Maplin

£45. An alternative is the Velleman PIC Programmer[2])
[2] http://www.maplin.co.uk/Module.aspx?ModuleNo=48074
[3] http://www.microchip.com/stellent/idcplg?IdcService=

SS_GET_PAGE&nodeId=1406&dDocName=en542849
[4] Working Effectively with Legacy Code, Michael Feathers.
[5] www.mccad.com

void TestSleep()
{
 sleepRequested = false;
 ResetState();
 for (int count = 0 ;
 count < 60 ; count++) ProcessInterrupt();
 Assert(!sleepRequested);
 ProcessInterrupt();
 Assert(sleepRequested);
}

Li
st

in
g

7

void ProcessInterrupt()
{
 if (--countdown == 0)
 {
 SetLedState(!GetLedState());
 countdown =
 flashingSequence[sequencePosition++];
 if (countdown == 0)
 sleepRequested = 1;
 }
}

Li
st

in
g

8

void interrupt InterruptRoutine(void)
{
 ...
 TMR1IF = 0;
 GPIF = 0;
}

Li
st

in
g

10

extern unsigned char sleepRequested;
...
if (sleepRequested)
{
 TMR1ON = 0; // Stop the timer 1 from waking us
up
 sleepRequested = 0; // Clear the request
 GPIO = 0; // Turn all the leds off
 GPIE = 1; // Enable Port Change Interrupt
 IOCB = 8; // Set Port Change Interrupt for
 // button input
 SLEEP();
 IOCB = 0; // Disable Port Change Interrupt
 GPIE = 0;
 TMR1ON = 1; // Timer 1 back on
}

Li
st

in
g

9
Figure 3
6 | | MAY 2010{cvu}

http://www.maplin.co.uk/Module.aspx?ModuleNo=37172
http://www.maplin.co.uk/Module.aspx?ModuleNo=48074
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en542849
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en542849
www.mccad.com

Bl

How to apply
Please email or post CV with covering letter, stating which position
you are applying for to:

Dr Steven Kurlander
Oxford Asset Management
Broad Street
Oxford
OX1 3BP
United Kingdom

accu@applytooxam.com

+44 1865 258 138

www.oxam.com

Benefi ts
Health Insurance (including family)
Pension Scheme
Life Insurance

Closing Date
Ongoing

Start Date
Spring 2010

Who Are We?
OxFORD ASSET MANAGEMENT is an invest-
ment management company situated in the
centre of Oxford. Founded in 1996, we’re proud
of having generated positive returns for our in-
vestors each year, including 2008, particularly
as many assets are managed for pensions,
charities and endowments. We blend the intel-
lectual rigour of a leading research group with
advanced technical implementation. We like to
maintain a low profi le, nobody comes to work in
a suit and we are a sociable company.

What Do We Do?
We use quantitative computer-based models
to predict price changes in liquid fi nancial in-
struments. Our models are based on analyz-
ing as much data as we can gather and we
actively trade in markets around the world. As
these markets become more effi cient, partly
because of organizations like ours, we need
to develop improved models in order to remain
competitive. Working to understand and profi t
from these markets provides many interesting
mathematical, computational and technical
challenges, especially as markets become in-
creasingly electronic and automated. We enjoy
tackling diffi cult problems, and strive to fi nd
better solutions.

Who Do We Want?
Although most of us have advanced degrees
in mathematics, computer science, physics or
econometrics from the world’s leading universi-
ties and departments, we are just as interested
in raw talent and will consider all outstanding
graduate applicants. We expect all prospective
candidates to work effi ciently both in a team
environment and individually. We value mental
fl exibility, innovative thinking and the ability to
work in a collaborative atmosphere. No prior ex-
perience in the fi nancial industry is necessary.
We want to hear from you if you are ambitious
and would relish the challenge, opportunity and
excellent compensation offered.

Software Engineers
We are seeking outstanding software engineers to develop
and maintain system critical software. You will be responsible
for all aspects of software development on a diverse range
of projects, such as automating trading strategies, integrating
third party data into our system and the development of data
analysis tools.

You will have the following:

A high quality degree in computer science or related disci-•
pline

Several years • C++ experience, including the use of the STL
and Boost

The ability to write high performance code without sacrifi c-•
ing correctness, stability or maintainability

A good understanding of Linux, scripting, working with large •
numerical data sets and large scale systems

Mental fl exibility, innovative thinking and the ability to work •
quickly in a collaborative atmosphere

Any experience in the following areas would be advantageous:
numerical analysis, optimisation, signal processing, statistics,
machine learning or natural language processing.

You’re developing software that’s highly effi cient and never fails.
We’re using software to generate positive returns in chaotic
fi nancial markets. We think we should talk.

E CEPTIONAL REWARDS, CENTRAL O FORD

Why does a leading Quant Fund want
to recruit leading software engineers?

Professionalism in Programming # 61
Live to Love to Learn (Part 3)
Pete Goodliffe concludes his journey of self-improvement.

Tell me, and I will forget. Show me, and I may
remember. Involve me, and I will understand.

~ Confucius
his is the third article in my mini-series on how software developers
learn. So far we’ve investigated why this is important, and what we
should be learning. We’ve looked at some learning models and

uncovered many valuable facts about the way the brain stores, processes
and retains information. But that’s all been background. We’ve not yet
actually put any wheels on our boat, and looked at the practical tools and
processes that will help us to learn better.
Three issues in, it’s about time to rectify this omission. In this final
instalment, we’ll plumb some much more practical depths. Less hand
waving, more brain bending.
I embarked on writing this series on learning because it is vital to invest
in your learning. Programmers are knowledge workers – learning (and then
applying) new stuff is what we’re constantly doing.
The pragmatic programmers describe a vivid and potent metaphor for
learning – they talk about your knowledge portfolio [1]. Consider your
current working set of knowledge like a portfolio of investments. This
metaphor beautifully highlights how we should manage the information
we have gathered, carefully investing to keep our portfolio current, and
bringing in new investments to strengthen it. Consider which items you
should retire from your portfolio, to make room for other things. Be aware
of the risk/reward balance of the items in your portfolio. Some things are
common knowledge, but a safe investment to hold – they are low risk, easy
to learn about, and guaranteed to be useful in the future. Other investments
are riskier – they may not be mainstream technologies and practices, so
studying them may not pay off in the future. But if they do become
mainstream then you will be one of a smaller set of people experienced in
that niche, and so able to exploit that knowledge more. These higher risk
knowledge investments may pay much greater dividends in the future. You
need a good spread of risk and a healthy range of knowledge investments.

Purposefully manage your knowledge portfolio.

The angle of approach
Whenever I look at a topic in programming (and by now, I’ve looked at
quite a few), the essence of success always seems to be determined by a
single issue. And in the field of learning it seems as clear as ever: to be
successful at learning you have to adopt the correct attitude. Your attitude
towards learning will directly determine the quality of your learning.
We saw in the previous column how mental state can affect performance,
and the social psychologist Carol Dweck’s research into the affect of
mental attitude on ability to learn: that those who believed they could learn
did so far more effectively than those who thought they couldn’t [2]. Self-
belief is an incredibly important attitude.
We must take responsibility for learning – it is something we must do for
ourselves, we cannot expect others to make us learn. We must adopt an
attitude of continuous learning, never believing that we know it all or that
we know enough – there must always be a hunger for new knowledge, a

driving curiosity. This couples with humility; again recognising that we
don’t know everything and that we can learn from anyone and anything.
The most effective tool in learning is to care about what you’re learning,
and to be prepared to invest effort in order to learn. Dweck wrote about
this in [3]: Effort is one of the things that gives meaning to life. Effort means
you care about something, that something is important to you and you are
willing to work for it. If you are prepared to invest effort into learning about
something, it not only shows that you value the topic, it means that you
intend to and desire to learn.

Getting mechanical
We’ll conclude our look at learning with some useful and very practical
mechanisms to improve our learning. There are some very useful tools,
processes, and plans that we can employ to boost our learning
effectiveness.
First, what tools are available? As strange as it sounds, the most potent and
powerful tool we can employ is the entire human body. A human being is
a large interconnected system, the brain is our CPU, but it’s connected and
influenced heavily by the rest of our fleshy substance.
Let’s start by focussing on the brain. Sadly, we’re not really ever given a
user’s manual for the brain. (And even if we were, most men wouldn’t read
it anyway...)
Firstly, we must keep this thing well prepared mechanically. Use the
correct fuel: enjoy a healthy diet and make sure you keep well hydrated.
It is said that the best brain foods are protein-rich foods such as meat, fish
and cheese: these are good sources of amino acids. Also ensure you give
yourself a good supply of the appropriate vitamins and minerals (vitamin
B, sodium, potassium, and omega-3 are all said to be important for brain
function). To keep your brain working in top condition (and let’s be clear
– to be an effective developer you really should consider how to keep your
brain working as well as you can) you should pay attention to this kind of
thing.
Other very obvious basic brain mechanics are to get plenty of sleep and
avoid as much stress as possible to enable you to be less distracted and
better able to think. It sounds glib advice, but how often do you consider
how continual stress or burning the candle at both ends affects your
effectiveness?

Using all of the brain
In the last column we investigated the left/right brain modes. Most
developers lean towards left-brain modes of thinking, so to maximise use

T

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net

It’s always great to get feedback about articles published in CVu. Every
author appreciates it. But the honest truth is that authors tend to hear
very little from the readership, either good or bad. That’s just par for the
course.
However, this series on learning has garnered a lot more feedback than
many of the other articles I’ve written. I find this genuinely interesting,
and rather heartening. It shows how many software developers are
considering the importance of better capitalising the power of their brain,
and want to improve their learning skills.
Thanks for the feedback, I hope you all have found these articles useful
and interesting. And if you don’t, then please blame the editor for ruining
my fact-packed prose... (Sorry, Steve!)
Perhaps you might also like to take a little time to tell another CVu or
Overload author how much you appreciate their article. It’s always
appreciated.

Thanks for all the fish
8 | | MAY 2010{cvu}

of our potential brain power we need to learn to dial down the left side of
our brain to give the right side a fighting chance. Otherwise we’ll only
exploit half of our potential learning power.
Do remember, though, that both modes of thought are essential. We really
need to work out how to get both brain modes to work in concert. In order
to think and learn effectively we must be able to bring both ‘sides’ of our
brain into use.
There are some very basic documented ways to stimulate the right side of
your brain. Cross-sensory feedback will stimulate parts of the brain that
we don’t normally exercise. Consider trying some of these actions whilst
learning:

listening to music whilst you work,
doodling whilst you think (yes I am paying attention in your meeting,
look at how many doodles I’ve made...),
fiddling with something (a pen or a paperclip, perhaps),
talking whilst you work (vocalising what you’re doing or learning,
it really does help you retain more knowledge),
making thought processes concrete rather than purely intellectual –
like modelling things with building blocks or CRC cards,
meditative practices (many help you attain greater focus and cut out
distractions).

These actions can help to invoke the right brain whilst performing
activities that you might naturally focus more on left-brain operation. Each
of these expand sensory input and serve to activate more neural pathways
than normal.

Multiple input, maximal output
Different personality types learn in different ways. I can’t prescribe the
best method of learning for everyone. However, try to learn a topic by
absorbing information from many different information sources. In this
modern connected world we’re presented with many media forms:

The written: e.g. books, magazines, blogs.
The spoken: e.g. audio books, presentations, user groups, podcasts,
courses
The visual: e.g. video podcasts, tv shows, performances

Some people will respond better to particular media. What works best for
you? For the best results mix several of these sources. Use podcasts on a
topic to reinforce what you’re reading in a book. Attend a training course
and read a book on the topic, too.

Use as many input types as possible to maximise your learning
potential.

Take note
Whilst learning, grab a notepad and capture information as you uncover
it, rather than let it wash over you.
This serves two purposes. Firstly, it keeps you focussed and helps you to
maintain concentration on the topic. It’s a basic idea, but remarkably
helpful. Secondly, even if you throw those notes away immediately
afterwards, the cross-sensory stimulation will aid your recall of facts.

Takes notes as you learn. Even if you throw them away.

The practice of learning
Our key to learning is to pay attention to the practice of learning. Or rather,
the verb: practise. No, learning is an activity; unless you remain
consciously and actively involved you will not learn effectively. Learning
without practise, without applying the new knowledge, will not lead to
deep understanding or long-term recall. We need to perform what is known
as deliberate practise [3].

It is perfectly possible to perform pointless practise; to not pay full
attention and waste your own time and effort. I’m reminded of some high-
school recorder lessons that I was subjected to (ooh, many years ago now).
This class was dumped into a room, each given a ‘learn the recorder’ book,
and expected to get on with it. That teaching method certainly leaves a lot
to be desired. And it’s obvious that a group of kids that don’t care at all
about playing recorder will never learn to play the recorder. There was no
motivation, a failing attitude.
But more importantly, a thirty minute lesson where no one is paying
attention or deliberately trying to learn will never lead to learning. At the
next lesson all the kids started back at page one again; they’d forgotten
everything they’d read previously. There was no actual learning taking
place in those lessons. A whole term saw very few people progress beyond
the first half-hour of the teaching plan. The lessons were literally a load of
hot air. And raucous screeching sounds.

Learning without doing is a fruitless task.

Ensure that your learning regimen involves mindful practice. Powerful
techniques to consider here are Coding Katas [4] and Coding Dojos. Katas
were introduced into the development world by Dave Thomas of pragmatic
programmer fame. A kata, like its martial arts synonym, is a small task or
process that a student can repeat deliberately in order to learn a skill.
Perhaps a simple coding exercise or refactoring task. Coding Dojos are
meetings where programmers gather to perform katas together. Specific,
deliberate learning meetings.
Dojos are becoming increasingly popular. Jon Jagger and Olve Maudal ran
an excellent Dojo at this year’s ACCU conference, for example.

Networking
If the brain is the CPU of our learning machine, then we should consider
other uses of the machine that will aid learning. In the modern world, few
computers are an island. Networking is an essential learning aid. The social
context enhances our learning, and adds accountability (aiding attitude)
and greater interactivity (aiding deliberate practice and cross-sensory
feedback).
These are all invaluable social learning practices:

pair programming
study groups
mentoring and teaching (by teaching others you solidify your
knowledge, you are forced to learn more yourself, and as you see a
newbie begin to gain a wider picture you will realise flaws in your
own knowledge, or see foundational knowledge in a fresh light that
will be really beneficial)
writing articles (for magazines, for the web, for blogs)
discussion (perhaps in the pub)

I have a cunning plan
In the common work scenario you start from ground zero and need to get
up to speed with something in super-fast time. You need to pick up a new
codebase, a new set of technologies, and a new problem domain. And be
effective and productive almost immediately.
This is rarely possible. But you can be effective fairly rapidly as long as
you recognise that you are starting out at the novice Dreyfus level
(remember our look at the Dreyfus Model of Skills Acquisition in the last
column [5]?). In order to be effective at this point you must find a good
set of rules to follow, since novices rely on rules to get work done.
But you want to progress beyond novice level, don’t you?
In order to learn effectively you need to put in place a considered learning
plan. Now, if I wanted to get from my home in Cambridge to visit a friend
in Inverness, I wouldn’t just jump in the car and set off. I’d need to plan a
route first. I wouldn’t even set up my satnav and follow its instructions.
Should I really trust a device to know best? Does it know how I prefer to
MAY 2010 | | 9{cvu}

travel, any particularly busy roads at this time of year, which roads the
authorities have decided to perform military assaults on today, etc?
Similarly, does a teacher know better about how to get me from here to
knowledge?
So I’d have to carefully plan a route first. Maybe getting in the car isn’t
actually the best way to get to Inverness – perhaps I should instead fly
there, and hire a car at the other end.

Put in place a deliberate learning plan.

So how might we apply this practically to our learning? Start by
recognising exactly what you do know right now. Determine what you
need to know. Weigh up the possible routes to get there: books, courses,
web research, podcasts, etc.
Then determine two or three waypoints along the way you can
purposefully aim for. Don’t aim too far into the future, as once you have
learnt more you may need to re-plan your learning route. Work out how
to learn enough to get to those first waypoints. Work out exactly how you’ll
know when you’ve got there. (Consider this Test Driven Learning – work
out some tests (katas, specific tasks, etc) that will prove you know
something. You can use these same tests in the future to check for
regressions in your learning). Then once you have a specific plan in place,
begin learning.
Planning and executing a learning journey will make your work more
focussed and directed. It may prevent you from wasting time by browsing
for far too general information on the web, or reading all of a book when
only two chapters in the middle are relevant.

Mapping your learning journey
The final tool we’ll look at in our learning arsenal is an old favourite: the
mind map. Mind maps are a powerful outlining
technique that appeases the left
brain’s linear organisational fetish
whilst satisfying the right brain’s
spatial, relational desires.
Mind maps are structured outlines in
which you start with a key concept in
the middle and add information
around it forming a web. You can add
extra relations between items, and
freely use colour, illustration, size and position to highlight extra
information.
I often produce mind maps for talks and articles I’m writing. Being an
unashamed sad geek, I tend to produce these electronically (I used
FreeMind [6] which works on Windows, Mac, and Linux). Then I can keep
them under source control and version them alongside my articles.
However, many people claim that you will miss the full benefit of the mind
mapping technique by doing this. The more visceral, physical act of
creating a hand-written version helps you explore and retain information.
By laying out the relations yourself rather than relying on a machine to
typeset the ‘document’ for you, you consider inter-relations and build a
tangible picture in your mind that will aid later recall.
Next time you’re learning, why not try to record knowledge in a mind map
as you go? When investigating a learning route and working out what you
need to know, record your findings in a mind map.

Use mind maps to catalogue information. They are a proven,
powerful tool.

Take away
It’s time to wrap this journey up. There is so much more that could be said,
but there isn’t time or space to. If this stuff has piqued an interest for you

(I truly hope that it has – it’s vital if you want to stay at the peak of your
career!) then start looking into it yourself. Perhaps you could start with
Andy Hunt’s recent book on the subject, Pragmatic Thinking and Learning
[7]. It’s highly recommended.
Finally, then, here are some practical ideas to help you improve your
learning. These are simple techniques to take away...

Cultivate a healthy set of attitudes: take responsibility for your
learning.
Learn one programming language per year. (This is excellent advice
in The Pragmatic Programmer that is still very valid today.)
Scratch an itch (What are you curious about? Perhaps something
‘leftfield’. Ensure that at all times you have something you’re
learning about that isn’t directly related to your day job).
Read at least one book every two months (Read more if you want,
but set some kind of benchmark to aim for).
Look after your learning machine – get good nutrition, and plenty of
rest. Avoid stress. Have fun!
Build mental maps as you learn.
Try to use both sides of your brain.
Perform deliberate practice and exercise as you learn.
Network: actively learn from others, and seek to teach/mentor
others.
Enjoy learning. This stuff is fun.
Apply any new knowledge cautiously.

Conclusion
You have to take responsibility for your own learning. It’s not up to your
employer, your state education system, an assigned mentor, or any other
person.
You are in charge of your own learning. It’s important to continually
improve your skills to improve as a developer. And to do that you have to
learn to learn. To make it rewarding you have to learn to love doing it.
Learn to live to love to learn.

Questions to ponder
When were you last in a situation that required learning?
How did you approach it?
How successful were you?
How quickly did you learn?
How could you have performed better?
Did you learn, then work, or learn as you worked?
Which do you think is most effective?

References
[1] The Pragmatic Programmer. Andrew Hunt and David Thomas

(1999) ISBN-10: 020161622X
[2] Mindset: The New Psychology of Success. Carol S Dweck. Ballantine

Books. ISBN: 0345472322
[3] Self-theories: Their role in motivation, personality and development

(1999) Carol S Dweck. ISBN-10: 1841690244
[4] http://codekata.pragprog.com/
[5] ‘Live to Love to Learn, Part Two’. Professionalism in Programming

#60. Pete Goodliffe. In: CVu 22.1.
[6] FreeMind. http://freemind.sourceforge.net/ Other tools are available.

Including pen and paper.
[7] Pragmatic Thinking and Learning. Andy Hunt.

ISBN-10: 1-934356-05-0
10 | | MAY 2010{cvu}

http://codekata.pragprog.com/
http://freemind.sourceforge.net/

MAY 2010 | | 11{cvu}

A Game of Nerve
Baron Muncharris has another tall tale.

ail and well met Sir R-----! As ever, it is my very great pleasure to
invite you to join me in a glass of restorative spirits and perhaps a
little sport.

Why you seem pained my friend; what ails you?
Your back, you say?
It so happens that I have in my possession a quantity of snake oil liniment
prepared by the master apothecaries of the South Sea Floating City, of
which I can vouchsafe efficacy.
I travelled to that remarkable city after my ill-fated expedition to the South
Americas during which I discovered, and subsequently forgot, the location
of the fabled City of Gold. Fortuitously, I came away from my adventure
with a solid gold pillow with which I was able to secure accommodation
in the city’s most luxurious hostelry during its passage back to Europe.
The journey was, for the most part, a pleasant one during which I sampled
the finest comestibles known to man. Had we not been set upon by the
notoriously belligerent South Sea Dragon I should have considered it one
of the most pleasant, not to say the most splendidly provisioned, journeys
that I ever undertook.
The Dragon set upon the city on a warm Tuesday, during afternoon tea. I
was sitting outside a charming bistro in the French quarter enjoying a
particularly excellent slice of cake when he descended upon us with a
terrible roar. I immediately leapt to the defence of the city with the closest
weapon to hand; my dessert fork.

With men falling to his fiery wrath all about me, I charged him. As he
opened his jaw, enveloped me in flame and roasted me alive, I leapt onto
his tongue and drove my diminutive trident through his palate and into his
brain, killing him instantly. If I hadn’t had access to that miraculous
liniment I suspect that my complexion might have been permanently
affected.
I passed the several hours of my convalescence at dice with my consulting
apothecary in a game that is most popular amongst their number.
Perhaps you too might appreciate such diversion from your discomfort?
Splendid!
Their game consists of up to four turns casting a pair of dice and will cost
you nine coins to play. At each turn, both dice must be cast and you may
then elect to forfeit your remaining turns and collect their sum as your prize
if you haven’t the nerve to chance a greater bounty.
That loathsome student acquaintance of mine, upon hearing these rules,
started squawking on about how he expected his condition to improve over
the future, although, given his record, I should expect it to degrade to
dribbling incomprehension in short order.
Now, take another drink and a moment to decide whether you shall play!

H

{cvu}

Lazy Initialisation of Shared Resources
Iain Charlton looks at managing object lifetime from birth to

death and beyond.

t is interesting that the later part of the lifetime of an object is often well
managed, and implementations such as auto_ptr, scoped_ptr,
shared_ptr and so on remove the need to explicitly manage de-

allocation when they are applied correctly.
Why then have we not focussed equally on when to allocate? The answer
to this question is probably simple: we know in code when we first need
an object (i.e. when a containing class is constructed), so we create it then
explicitly. When we want to defer the construction of large objects or the
initialisation of resources with a large time overhead, lazy initialisation is
often implemented inside an object, such that allocated and initialisation
only when a client requests access to that data.

Why lazy initialisation sometimes isn’t enough
The code snippet in Listing 1 illustrates how the classic lazy initialisation
pattern of a member shared_ptr is insufficient for delaying the
initialisation of the object beyond its first aggregation into a client class.
In create_log_users, as soon as the log function is called on the
log_manager object, the log_impl object is allocated, initialised and
put into the shared_ptr. Ideally, the shared_ptr would not be
initialised until the log_user class genuinely needed to use it, probably
inside the log function.

Making a shared_ptr lazy: lazy_ptr
The inspiration for a lazy_ptr comes from shared_ptr. What’s great
about shared_ptr is its ability to destroy the wrapped object without the
client code knowing anything of the destructor implementation. Even
better, the destruction is handled by a functor, which can be bound to any
appropriate function: a member or static member (public, protected or
hidden), any public member of other objects visible to the creator of the
shared_ptr or any visible free function. With that in mind, lazy_ptr
takes a construction or resetting functor that returns a pointer to the

I

IAIN CHARLTON
Iain Charlton has a background in mechanical
engineering, biomechanics R&D, and software
development. He is currently writing C++ and managing
projects for motion capture, biomechanical modelling
and clinical reporting products. He can be contacted at
iain.charlton@vicon.com.

public:
 virtual void operator() (
 const std::string &) = 0
 {
 //...
)
};
// Log manager
class log_manager
{
public:
 log_manager()
 {
 }
 boost::shared_ptr< log > log()
 {
 if(! m_log)
 {
 m_log.reset(new log_impl);
 }
 return m_log;
 }

private:
 boost::shared_ptr< log_impl > m_log;
};

// Log user
class log_user
{
public:
 log_user(boost::shared_ptr< log > i_log,
 const std::string & i_name)
 : m_log(i_log)
 , m_name(i_name)
 {
 }
 void output (const std::string & i_string)
 {
 (*m_log) (m_name);
 (*m_log) (i_string);
 }

private:
 boost::shared_ptr< log > m_log;
 const std::string m_name;
};
void create_log_users(log_manager & i_log_man)
{
 log_user logger1(i_log_man.log(), "debug");
 log_user logger2(i_log_man.log(), "normal");

#ifdef _DEBUG
 logger1.output("initialised");
#endif
 logger2.output("initialised");
}

#include <boost/shared_ptr.hpp>

// Abstract log base class
class log
{
public:
 virtual void operator () (
 const std::string &) = 0;
};

// Log implementation.
class log_impl : public log
{

Li
st

in
g

1
Listing 1 (cont’d)
12 | | MAY 2010

contained type and takes no input arguments. The basic interface is shown
in Listing 2.
Construction of a lazy_ptr can be default (such that the wrapped pointer
is null), with a construction functor of arbitrary type, or paired
construction and destruction functors of arbitrary type. The resetting

functions allow pretty much the same behaviour as the constructors such
that the wrapped pointer, construction and destruction functors can be
replaced. Behaviour is equivalent to creating a new lazy_ptr and
assigning it to the existing one.
The important part of the lazy_ptr interface is the lock function. Rather
like weak_ptr::lock, this is the only way to access the wrapped pointer

 // Assignment from compatible type.
 // No-throw if it compiles.
 template< typename S >
 lazy_ptr< S > & operator=(
 const lazy_ptr < S > & i_other)
 {
 lazy_ptr < T >(i_other).swap(*this);
 return *this;
 }

 // Reset the pointer.
 void reset()
 {
 lazy_ptr< T >().swap(*this);
 }

 template< typename C >
 void reset(C i_ctor)
 {
 lazy_ptr< T >(i_ctor).swap(*this);
 }

 template< typename C, typename D >
 void reset(C i_ctor, D i_dtor)
 {
 lazy_ptr< T >(i_ctor, i_dtor).swap(
 *this);
 }

 // Test for pointer validity.
 bool valid() const
 {
 return m_impl ? m_impl->ptr_valid() : false;
 }

 // Access to the wrapped object.
 boost::shared_ptr< T > lock()
 {
 return m_impl ?
 m_impl->template lock< T >() :
 boost::shared_ptr< T >();
 }

 // Swap. No-throw.
 void swap(lazy_ptr< T > & i_other)
 {
 std::swap(m_impl, i_other.m_impl);
 }

private:
 // Static destroy.
 static void destroy(T * i_ptr)
 {
 delete i_ptr;
 }

 // Implementation.
 boost::shared_ptr< lazy_ptr_impl > m_impl;
 template< typename S > friend class lazy_ptr;
};

#endif //_LAZY_PTR_H_

Listin
g

 2
 (co

n
t’d

)

#ifndef _LAZY_PTR_H_
#define _LAZY_PTR_H_

#include "lazy_ptr_impl.h"
#include <boost/shared_ptr.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_base_of.hpp>

template< typename T >
class lazy_ptr
{
public:
 // Default constructor.
 lazy_ptr()
 {
 }

 // Construct with a construction functor.
 // C’s copy constructor must not throw.
 template< typename C >
 explicit lazy_ptr(C i_ctor)
 : m_impl(
 new lazy_ptr_impl_t< T, C, void(*)(T*) >(
 i_ctor,
 &lazy_ptr< T >::destroy))
 {
 }

 // As above with a destruction functor.
 // D’s copy constructor must not throw.
 template< typename C, typename D >
 lazy_ptr(C i_ctor, D i_dtor)
 : m_impl(
 new lazy_ptr_impl_t< T, C, D >(
 i_ctor,
 i_dtor))
 {

 }

 // Copy construction from same type. No-throw.
 lazy_ptr(const lazy_ptr< S > & i_other)
 : m_impl(i_other.m_impl)
 {
 }

 // Copy construction from compatible type.
 // No-throw if it compiles.
 template< typename S >
 lazy_ptr(const lazy_ptr< T > & i_other)
 : m_impl(i_other.m_impl)
 {
 BOOST_STATIC_ASSERT(
 (boost::is_base_of< T, S >::value));
 }

 // Assignment from same type. No-throw.
 lazy_ptr< T > & operator=(
 const lazy_ptr < T > & i_other)
 {
 lazy_ptr< T >(i_other).swap(*this);
 return *this;
 }

Li
st

in
g

2

MAY 2010 | | 13{cvu}

and will result in lazy allocation and initialisation of the wrapped pointer,
returning a shared_ptr to it. Boolean conversion provides another
weak_ptr and shared_ptr-like function, returning false if the
wrapped pointer is null.
Privately, the class includes a static destroy function (which we will see
used in the implementation to provide a default destruction functor when
none is provided) and a shared_ptr to the implementation class. Finally,
lazy_ptr objects of different type are friends to allow copying and
assignment between compatible types.
Of course, the simplicity of this implementation is dependent on additional
complexity in the pimpl object: an abstract base class that provides the
necessary polymorphic functionality for allocating, initialising and
managing the wrapped pointer (see Listing 3).

Now, the template lock function on the base class uses a static_cast
of a void * in order to get around templating the implementation. If we
did this, implicit up-casting of the lazy_ptr wouldn’t be as
straightforward, as lazy_ptrs of differing (but compatible) types
wouldn’t be able to share the same implementation on a simple
shared_ptr: there would have to be some kind of proxy class generated.
Such an additional class would require nested reference counting (not in
itself a bad thing) and an additional allocation on copy or assignment of
lazy_ptr objects of differing type. This additional allocation is perhaps
contrary to expectation and creates new opportunities to throw within the
copy operation. In the current implementation, copy construction and
assignment are guaranteed no-throw operations.
One notable omission from lazy_ptr and its implementation is the lack
of an allocator template argument for construction and reset. This is not
by design; rather it is in the interest of brevity. Adding such functionality
is trivial, requiring the template allocator functors to be passed through to
a new derivative of lazy_ptr_impl, which itself passes the allocator on
to the encapsulated shared_ptr.

Example uses
Now, let’s return to the initial example and use lazy_ptr instead of
shared_ptr and see the differences (Listing 4).

 // Public destructor.
 virtual ~ lazy_ptr_impl_t()
 {
 }

 // Implementation of lazy_ptr_impl.
public:
 virtual bool pointer_valid() const
 {
 return m_object;
 }

private:
 // Private lock function using opaque pointer.
 // Throws std::logic_error if recursive.
 virtual void * private_lock() // throws
 {
 if(! m_object)
 {
 if(m_constructed)
 {
 throw std::logic_error(
 "recursive lazy_ptr construction");
 }
 m_constructed = true;
 T * object = m_ctor();
 if(object)
 {
 m_object.reset(object, m_dtor);
 }
 }
 return &m_object;
 }

private:
 // Construction functor.
 C m_ctor;
 // Destruction functor.
 D m_dtor;
 // Recursive construction flag.
 bool m_constructed;
 // Object.
 boost::shared_ptr< T > m_object;
};

#endif //_LAZY_PTR_IMPL_H_

Listin
g

 3
 (co

n
t’d

)

#ifndef _LAZY_PTR_IMPL_H_
#define _LAZY_PTR_IMPL_H_

#include <boost/noncopyable.hpp>
#include <boost/shared_ptr.hpp>
#include <stdexcept>

class lazy_ptr_impl : private boost::noncopyable
{
public:
 // Access to the wrapped object.
 // Throws (see lazy_ptr_impl_t).
 template< typename T >
 boost::shared_ptr< T > lock()
 {
 void * p = private_lock();
 return *static_cast<boost::shared_ptr<T>*>(
 p);
 }

 // Test for pointer validity. No-throw.
 virtual bool pointer_valid() const = 0;

protected:
 // Default construction accessible to
 // implementing classes only.
 lazy_ptr_impl()
 {
 }

 // Destruction accessible to implementing
 // classes only.
 virtual ~lazy_ptr_impl() = 0
 {
 }

private:
 // Private lock function using opaque pointer.
 // Throws (see lazy_ptr_impl_t).
 virtual void * private_lock() = 0;
};
// Template implementation of lazy_ptr_impl.
template< typename T, typename C, typename D >
class lazy_ptr_impl_t : public lazy_ptr_impl
{
public:
 // Construct an empty implementation
 // (embedded shared_ptr null).
 lazy_ptr_impl_t(C i_ctor, D i_dtor)
 : m_ctor(i_ctor)
 , m_dtor(i_dtor)
 , m_constructed(false)
 {
 }

Li
st

in
g

3

14 | | MAY 2010{cvu}

The example code has changed very little, but with a trade in complexity
in the log function initially containing the lazy initialisation to the new
initialisation function create_log. This member doesn’t need to be
static, but this makes for the simplest code as it is not necessary to write
or invoke the use of a binding functor such as boost::bind in order to
use it.
Now when the code is executed, the calls to log_manager::log do not
cause the encapsulated log_impl to be initialised: instead this is deferred
until either of the log_user clients need to use their log interfaces and
call lazy_ptr::lock to do so, again, probably within the log function.
A second class of problem can be neatly avoided using lazy_ptr:
complex initialisation order of application resources. When we start up an
application, there are frequently many resources allocated and initialised
which are often inter-dependent. Listing 5 shows how a small number of
application resources that depend on each other (although have no circular
dependencies) can be declared such that lazy initialisation will result in the
independent object being created first and the object with the most
dependencies last. (Listing 5)
The order of the manager classes inside the app_manager is deliberately
different to their preferred construction order to illustrate how the
construction order of the lazy_ptr members is not tied to the
dependency ordering. Instead, the construction order is resolved at run
time when one of the lazy_ptr objects members are required for use,
for instance when undo_man is called. This calls lock on the
m_undo_man member, which internally calls lock on both the
m_log_man and the m_event_man as the construction functions are
called. Looking back to the implementation in lazy_ptr_impl.h,
notice how any circular dependencies between components constructed
within lazy_ptr::lock will throw when private_lock is called
recursively.

#include "lazy_ptr.h"

// Abstract log base class
class log
{
public:
 virtual void operator () (
 const std::string &) = 0;
};

// Log implementation.
class log_impl : public log
{
public:
 virtual void operator() (
 const std::string &) = 0
 {
 //...
 }
};

// Log manager
class log_manager
{
public:
 log_manager()
 : m_log(&log_manager::create_log)
 {
 }

 lazy_ptr< log > log()
 {
 return m_log;
 }

private:
 static log_impl * create_log()
 {
 return new log_impl;
 }

 lazy_ptr< log_impl > m_log;
};

// Log user
class log_user
{
public:
 log_user(lazy_ptr< log > i_log,
 const std::string & i_name)
 : m_log(i_log)
 , m_name(i_name)
 {
 }

 void output (const std::strring & i_string)
 {
 boost::shared_ptr< log > log = m_log.lock();
 if (log)
 {
 (*log) (m_name);
 (*log) (i_string);
 }
 }

private:
 lazy_ptr< log > m_log;
 const std::string m_name;
};

Li
st

in
g

4 void create_log_users(log_manager & i_log_man)
{
 log_user logger1(i_log_man.log(), "debug");
 log_user logger2(i_log_man.log(), "normal");

#ifdef _DEBUG
 logger1.output("initialised");
#endif
 logger2.output("initialised");
}

Listin
g

 4
 (co

n
t’d

)

#include "lazy_ptr.h"
#include <boost/bind.hpp>

using namespace boost;

class event_manager
{
public:
 static event_manager * create()
 {
 return new event_manager;
 }
};

class log_manager
{
public:
 static log_manager * create(
 lazy_ptr< event_manager > i_event_man)
 {
 return new log_manager(
 i_event_man.lock());
 }

Listin
g

 5
MAY 2010 | | 15{cvu}

An encouraging aspect of this code design is that it is a very easy re-factor
from ordinary shared_ptr members: the static create functions must be
added and the previous instantiation of the shared_ptr members in the
app_manager replaced with lazy_ptr instantiations instead. Making
the constructors of the aggregated classes private is of course optional.
One caveat to this kind of coding using lazy_ptr is that we should still
think about initialisation ordering, rather than simply forget about it and
defer it until run time. As undesirable as it is, two stage initialisation is
occasionally hard to avoid, and this lazy_ptr pattern offers little scope
for improvement, if anything, making the problem extremely difficult to
resolve.

Managing complete lifetime with weak_lazy_ptr
Once we have a working lazy_ptr dotted around in our code, we may
start to hanker for the other lifetime management tools offered in boost
and tr1: the weak referencing pointer. This would then allow us to hold
a reference to a resource that can be in one of three states:

1. Not yet constructed.
2. Constructed.
3. Destroyed.

This is rather an attractive prospect, which is why weak_ptr exists. With
lazy_ptr us ing shared_ptr in te rna l ly to reference i t s
implementation, this is an easy new class to implement by replacing the
shared_ptr with a weak_ptr as shown in weak_lazy_ptr.h and
weak_lazy_ptr.hpp. (See Listing 6.)

private:
 log_manager(
 shared_ptr< event_manager > i_event_man)
 : m_event_man(i_event_man)
 {
 }

 shared_ptr< event_manager > m_event_man;
};

class undo_manager
{
public:
 static undo_manager * create(
 lazy_ptr< log_manager > & i_log_man,
 lazy_ptr< event_manager > & i_event_man)
 {
 return new undo_manager(
 i_log_man.lock(),
 i_event_man.lock());
 }

private:
 undo_manager(
 shared_ptr< log_manager > i_log_man,
 shared_ptr< event_manager > i_event_man)
 : m_log_man(i_log_man)
 , m_event_man(i_event_man)
 {
 }

 shared_ptr< log_manager > m_log_man;
 shared_ptr< event_manager > m_event_man;
};

class app_manager
{
public:
 app_manager()
 : m_undo_man(bind(
 &undo_manager::create,
 m_log_man,
 m_event_man))
 , m_log_man(bind(
 &log_manager::create,
 m_event_man))
 , m_event_man(
 &event_manager::create)
 {
 }

 shared_ptr< undo_manager > undo_man()
 {
 return m_undo_man.lock();
 }
 shared_ptr< log_manager > log_man()
 {
 return m_log_man.lock();
 }
 shared_ptr< event_manager > event_man()
 {
 return m_event_man.lock();
 }

private:
 lazy_ptr< undo_manager > m_undo_man;
 lazy_ptr< log_manager > m_log_man;
 lazy_ptr< event_manager > m_event_man;
};

Li
st

in
g

5
(c

on
t’d

)

#ifndef _WEAK_LAZY_PTR_H_
#define _WEAK_LAZY_PTR_H_

#include "lazy_ptr.h"
#include <boost/weak_ptr.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_base_of.hpp>

template< typename T >
class weak_lazy_ptr
{
public:
 // Constructors.
 weak_lazy_ptr()
 {
 }

 // Copy construction from same type. No-throw.
 weak_lazy_ptr(
 const weak_lazy_ptr< T > & i_other)
 : m_impl(i_other.m_impl)
 {
 }

 weak_lazy_ptr(
 const lazy_ptr< T > & i_other)
 : m_impl(i_other.m_impl)
 {
 }

 // Copy construction from compatible type.
 // No-throw if it compiles.
 template< typename S >
 weak_lazy_ptr(
 const weak_lazy_ptr< S > & i_other)
 {
 BOOST_STATIC_ASSERT(
 boost::is_base_of< T, S >::value));
 }

Listin
g

 6
16 | | MAY 2010{cvu}

In order for weak_lazy_ptr to work, it must be declared a friend of
lazy_ptr, as it requires access to the private, shared implementation.
Armed with weak_lazy_ptr, we can take weak references to an object
that has not yet been initialised such that initialisation can safely fail if all
strong lazy_ptr references go out of scope. There is a limitation of this
design, in that strong shared_ptr references to the initialised object will not
keep a weak_lazy_ptr ‘alive’, as they reference the encapsulated
object, rather than the shared implementation. In order to design this into
the weak referencing system, shared_ptr and lazy_ptr must share
implementations, meaning some modifications to boost headers. These
changes are by no means difficult, but for many may be undesirable. For
those using shared_ptr and weak_ptr from an STL implementing
TR1, this is even less likely to be a favourable option.

Conclusions
Although lazy initialisation is a relatively infrequently used design pattern
(compared to the factory pattern or RAII), providing a mechanism for lazy
allocation of shared resources is a useful tool. What’s more, the
implementation presented here makes porting code with heavy use of
shared_ptr and weak_ptr very easy.
The overhead of using lazy_ptr is marginal, compared to
shared_ptr. Creating the object initially requires a single heap

allocation in addition to the construction of a shared_ptr (which itself
incurs two heap allocations) and subsequent copies incur a shared_ptr
copy (two straight pointer copies). Using weak_lazy_ptr is only
slightly more costly than using weak_ptr, with no additional allocations
or copies taking place other than of the encapsulated weak_ptr itself.
The marginal downside to the simple implementation of lazy_ptr
presented here is the weakness (no pun intended) of the behaviour when
only shared and weak references exist: any weak_lazy_ptr references
will cease to be valid when the last lazy_ptr referencing the same
memory goes out of scope, rather than any shared_ptr references taken
from lazy_ptr::lock keeping them alive. This deficiency is however
one of behaviour, rather than instability and can be overcome by careful
design of client code.
The example uses of lazy_ptr presented here are by no means
exhaustive and it is likely that there are usage patterns beyond the scope
for which the class was initially designed.

Acknowledgements
This article and the code presented were checked and critiqued by Nick
Bullock, who contributed some valuable ideas to the design of the
lazy_ptr and the weak_lazy_ptr.

 template< typename S >
 weak_lazy_ptr(
 const lazy_ptr< S > & i_other)
 : m_impl(i_other.m_impl)
 {
 BOOST_STATIC_ASSERT(
 (boost::is_base_of< T, S >::value));
 }

 // Assignment from same type. No-throw.
 weak_lazy_ptr< T > & operator=(
 const weak_lazy_ptr < T > & i_other)
 {
 weak_lazy_ptr< T >(i_other).swap(*this);
 return *this;
 }

 weak_lazy_ptr< T > & operator=(
 const lazy_ptr < T > & i_other)
 {
 weak_lazy_ptr< T >(i_other).swap(*this);
 return *this;
 }

 // Assignment from compatible type.
 // No-throw if it compiles.
 template< typename S >
 weak_lazy_ptr< S > & operator=(
 const weak_lazy_ptr < S > & i_other)
 {
 BOOST_STATIC_ASSERT(
 (boost::is_base_of< T, S >::value));
 weak_lazy_ptr< T >(i_other).swap(*this);
 return *this;
 }

 template< typename S >
 weak_lazy_ptr< S > & operator=(
 const lazy_ptr < S > & i_other)
 {
 BOOST_STATIC_ASSERT(
 (boost::is_base_of< T, S >::value));
 weak_lazy_ptr< T >(i_other).swap(*this);
 return *this;
 }

Li
st

in
g

6
(c

on
t’d

) // Test for pointer validity.
 operator bool() const
 {
 boost::shared_ptr< lazy_ptr_impl > impl =
 m_impl.lock();
 return impl ? impl->pointer_valid() : false;
 }

 // Access to the wrapped object.
 boost::shared_ptr< T > lock()
 {
 boost::shared_ptr< lazy_ptr_impl > impl =
 m_impl.lock();
 return impl ?
 impl->template lock< T >() :
 boost::shared_ptr< T >();
 }

 // Swap. No-throw.
 void swap(weak_lazy_ptr< T > & i_other)
 {
 std::swap(m_impl, i_other.m_impl);
 }

private:
 // Implementation.
 boost::weak_ptr< lazy_ptr_impl > m_impl;

 template< typename S >
 friend class weak_lazy_ptr;
};

#endif //_WEAK_LAZY_PTR_H_

Listin
g

 6
 (c

o
n

t’d
)

MAY 2010 | | 17{cvu}

18 | | MAY 2010{cvu}

On a Game of Strategy
The Baron’s student acquantance performs his analysis.

he Baron’s game consists of taking turns to place coins on empty
squares on a chess board until each player has placed three coins.
During play, each square on the board is considered to be controlled

by the player who has the closest coin, with the distance being measured
by the least number of moves required by a chess king piece to move from
the one to the other. After the three turns, the first player is deemed the
winner if he controls more squares than the second and the second player
is deemed the winner otherwise.
I was immediately struck by the observation that assignment of control of
squares is equivalent to constructing a Voronoi diagram, being a
tessellation of the plane into regions each containing all those points
closest to one of a given set of points, albeit in this case a discrete rather
than a more familiar continuous one.
A noteworthy property of Voronoi diagrams is that each is the dual of a
Delaunay triangulation of the same set of points. These are the uniquely
defined sets of triangles whose vertices coincide with the given set of
points such that every triangle can be circumscribed with a circle which
contains no points other than its vertices or, in rare circumstances, those
lying along its edges.
Indeed, one of the simplest schemes for drawing a Voronoi diagram is to
first construct a Delaunay triangulation and to then figure its dual, or in
other words to construct those irregular polygons that result from
connecting the centres of the circumscribed circles of neighbouring
triangles.
Unfortunately neither I nor my fellow students could fathom how this
observation might help in forming an effective strategy for the playing of
this game. Furthermore, out initial attempts to form a strategy met with
little success. We therefore resolved to play as many games as possible in
order to develop some sense of how the game might unfold.
We were able to somewhat reduce the immense scope of this endeavour
with the realisation that the first move need not range over the entire board.
By considering symmetries of rotation and reflection, we concluded that
we need only play on the first four ranks and furthermore on the first rank,
just the first file, on the second the first two, on the third the first three and
on the fourth the first four.
So, armed with an amply supply of that splendid new fortifying beverage,
coffee, we spent a sleepless weekend furiously playing the game and I can
report that at no point did we find a sequence of moves by which the first
player could ensure victory.
I should therefore have advised Sir R----- to have accepted the Baron’s
challenge, although only if he were willing to think very carefully about
the consequences of his moves.

The figures
Figure 1 shows a Delaunay triangulation with its circumscribed circles.
Figure 2 shows that connecting the centres of the circles yields the Voronoi
diagram.
Figure 3 is the set of first moves.

The listings
Listing 1: Constructing a sequence of trial moves.
Listing 2: Deciding whether to ignore a first move.
Listing 3: A recursive maximin search for the best score.

T

O O O O

O O O

O O

O

Figure 3
Figure 2

Figure 1

std::vector<position>
make_positions()
{
 std::vector<position> positions(64);
 for(size_t rank=0;rank!=8;++rank)
 {
 for(size_t file=0;file!=8;++file)
 {
 positions[rank*8+file] = position(
 rank, file);
 }
 }
 return positions;
}

Listing 1

Desert Island Books
Paul Grenyer drops Pete Goodliffe on the island.

hile I was speaking aloud about ways to describe Pete Goodliffe, Jez
Higgins suggested I use a recent comment from accu-general, ‘blond,
balding, barefoot’. While accurate these aren’t a particularly nice way

to describe Pete, although barefoot is at least accurate and not disparaging,
like the other two.

When I think of Pete four things instantly spring to mind, his friendly
personality, his bare feet, Cambridge, and curry. I have had many a curry
and more than a few beers with Pete Goodliffe, both in Oxford and on
occasion in Cambridge. When I think about Pete technically, his sound and
solid technical knowledge and advice stand out. He has a lot of experience
in software development and not only does he make it work for him to
generate great software, he is always happy to help others and pass on the
knowledge where he can (sorry Pete, I won’t mention the book).

I very narrowly missed out on working with Pete a few years ago, which was
a shame because I would have learnt a lot.

Pete Goodliffe
So here I am, stuck on a desert island with nothing but the birds for
company. Still, it could be worse; at least the conversation won’t get too
geeky. I can’t help but wonder what kind of calamitous event catapulted

me from my secure (if dull) office chair to this remote tropical location.
Probably one of those stories that no one will ever believe back home, but
it almost certainly involved a few beers, an ill-placed wager, and a
temperamental particle physicist. Curse you CERN and Speyside!
At least I’ve got the decent weather. Let’s just hope global warming
doesn’t shrink my new island home even further. Perhaps this stack of
improbably placed books would provide me a small tower to sit on if the
tide does indeed rise.
For my company on this forsaken isle, the gods of Fate and Calamity [PJG:
I’ve never been described like that before!] have seen fit to bestow upon me
four programming books, one novel, and two albums.
The computer books seem sadistic, cruel and somewhat ironic, as they
haven't left me a computer [PJG: You didn’t ask!]. If they had, I’d ram it
full if e-books, anyway. At least I’m good for toilet paper for a while. The
CDs are just plain torture, as the swines didn’t leave me a CD player [PJG:
See previous comment]. I’ll have to fashion one from a coconut tree and
an albatross. Or just whistle.
So that means it’s only the novel that’s useful, then. Better pick a big one...

w

MAY 2010 | | 19{cvu}

bool
ignore_first_move(const position &pos)
{
 return pos.rank<4 && pos.file<=pos.rank;
}Li

st
in

g
2

 if(long(score.second)-long(score.first) >
 long(second_score.second)-
 long(second_score.first))
 {
 second_score = score;
 }
 positions.push_back(second.back());
 second.pop_back();
 std::swap(positions.back(),
 positions[j]);
 }
 if(long(second_score.first)-
 long(second_score.second) >
 long(first_score.first)-
 long(first_score.second))
 {
 first_score = second_score;
 }
 positions.push_back(first.back());
 first.pop_back();
 std::swap(positions.back(), positions[i]);
 }
 }
 return first_score;
}
std::pair<size_t, size_t>
best_score()
{
 return best_score(0, make_positions(),
 std::vector<position>(),
 std::vector<position>());
}

Listing 3 (cont’d)

std::pair<size_t, size_t>
best_score(size_t move,
 std::vector<position> &positions,
 std::vector<position> &first,
 std::vector<position> &second)
{
 if(move==3) return score(first, second);
 std::pair<size_t, size_t> first_score(0, 64);
 for(size_t i=0;i!=positions.size();++i)
 {
 if(move!=0 ||
 !ignore_first_move(positions[i]))
 {
 std::swap(positions[i], positions.back());
 first.push_back(positions.back());
 positions.pop_back();
 std::pair<size_t, size_t>
 second_score(64, 0);
 for(size_t j=0;j!=positions.size();++j)
 {
 std::swap(positions[j],
 positions.back());
 second.push_back(positions.back());
 positions.pop_back();
 std::pair<size_t, size_t> score =
 best_score(move+1, positions,
 first, second);

Li
st

in
g

3

On a Game of Strategy (continued)

So what computer books should I chose? I could select four books I have
always wanted to read, but never got round to buying. I could select four
random books on a whim that might be interesting. But given that I won’t
be able to fiddle with a computer any more (unless I find myself a
convenient passing rescue party), I may as well select four classic books
that have enthused me in days gone by. Books that will help me reminisce
about the good old days when I had hair, when keys were rubbery, and
when computers had rainbows on them.
And that is indeed my first choice. I’ll re-read First Steps
with Your ZX Spectrum by Carolyn Hughes. I haven’t
picked this book up in about 30 years, but it was my first
ever programming book, and the thing that first gave me a
passion for programming. I digested the entire book before
I ever got near a computer. It has immense personal
significance to me. And it also had pretty cartoon pictures
of computers telling you what to do. I’ve not read a book like it since.
In a fit of nostalgia, I recently bought that same book on Amazon. For three
pence. Seriously. Three pence. The postage was two orders of magnitude
more than the book itself. That really does show how the value of
knowledge decreases over time.
The next book providing this stranded programmer with a stroll down
memory lane is Booch’s classic Object Oriented Analysis and Design With

Applications. I may be developing a theme here, as I
recall this book also had a number of interesting cartoons
in it. But that’s not why I’m choosing it. I first
encountered OOAD at university and it provided an
incredibly clear, well reasoned and enjoyable overview
of quality design techniques and the application of OO
principles to software design. It was a genuinely great
introduction to the philosophy of software design. It is

also unusual, being one of the minority of hard-cover programming books
I’ve ever owned. So it might be useful for hitting wild animals with.
This book pre-dates the quadrilateral joys of UML, and I always loved
Booch’s OO diagramming style. He represented classes by clouds; simply
because they were easier to draw on the back of a napkin. The man’s a
genius.
The Pragmatic Programmer by Andy Hunt and Dave Thomas will be my
third book. It’s a wonderful clear, entertaining, and motivating discourse
of the practice of programming from a personal and social standpoint. It’s
the kind of book that I love to read, and one of the few books that you can
read over and over again, because you actually want to.
It’s full of sage, refreshing advice.
However, it could have been vastly improved with a few
carefully placed cartoons.
My last techie book is a hard call. Of the numerous books
that have challenged and/or aided me in my career I’d
struggle to chose just one. I could spend some serious

time digesting a hardcore C++ tome, like Bjarne’s TCPPPL, or any of
Meyer’s or Sutter’s excellent C++ references. I could pick up a
development process book, like Beck’s eXtreme Programming Explained
(I remember that one being a very fresh read when I first opened it). Or I
could drill into any of a number of design books, like the classic (and
painfully obvious) Gang of Four tome or a number of later pattern
languages. Perhaps something more recent would be a good companion
like Michael Feathers’ legacy code book.
I’m stuck.
So I think I’ll select Sam’s Teach Yourself C++ in 24
Hours and be done with it. It’s bound to be wonderful
nonsense, and is certain to produce an emotional
response. Can’t be any worse than a Schildt book, can it?
I think I’ll need the laughs.
Now to ship those books securely to my remote prison I’ll need to pack
them carefully. I wonder if anyone will notice if I wrap them in a stack of
ACCU magazines?
Presuming that I’m supplied with standard desert island accoutrements

such as a copy of the Bible and the complete works of
Shakespeare (perhaps with an accompanying infinite
number of monkeys on an infinite number of typewriters –
hopefully on their own island) then my choice of novel will
be a collection of C.S. Lewis’ Chronicles of Narnia. I’ve
always had a soft spot for these books (as with much of
Lewis’ other writing). I love the Christian symbolism in
them, and have started getting into them with my children,

so these books would bring back a selection of old and new memories as
I’m stranded here.
It just remains for me to make the choice of two albums.
I’m an avid music lover with a wide and somewhat
eclectic taste. However, should my soundtrack for a
tropical adventure be something relaxing like a Sigur
Ross album, something by Lamb, or Air’s chilled Moon
Safari, or perhaps something more upbeat like a Kings of

Leon or Killers album? My choice will instead be the
awesome Flaming Lip’s masterwork Yoshimi Battles the
Pink Robots, and Delirious’ Mezamorphis. Both of these
are epic, dense, layered, meaningful and rewarding
listens.
So that’s it. Spare a thought for me marooned here, and

pray I don’t suffer from a coconut allergy or sun stroke.

Next issue: Phil Bass

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to
choose the eight records they would take with them to a desert island
(http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).
The format of ‘Desert Island Books’ is slightly different from the Radio 4
show. You choose about five books, one of which must be a novel, and
up to two albums. Some people even throw in the odd film. Quite a few
ACCUers have chosen their Desert Island Books to date and there are
plenty more to go.
The rules aren’t too strict but the programming books must have made
a big impact on your programming life or be ones that you would take to
a desert island. The inclusion of a novel and a couple of albums helps
us to learn a little more about you. The ACCU has some amazing
personalities and Desert Island Books has proved we only scratch the
surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?
20 | | MAY 2010{cvu}

Code Critique Competition 63
Set and collated by Roger Orr.

lease note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment
on published entries, and to supply their own possible code samples

for the competit ion (in any common programming language) to
scc@accu.org. A book prize is awarded to the winning entry.

Last issue’s code
A new version of the C++ standard is nearing finalisation and is partly
implemented in both Microsoft’s Visual Studio 2010 compiler (out in beta)
and the latest versions of g++ (also available on cygwin for Windows users).
So I thought it was a good time to present a code sample trying to use one
of the new standard libraries: <regex>. I found some example code
implementing a minimal subset of the well-known grep command that was
originally written to use the boost regex.hpp library and converted it to
use the new standard library. I was expecting this to be a simple matter of
changing the include file and some namespace names, but to my surprise
the code didn’t work correctly on Visual Studio 2010; it compiled cleanly and
at first appeared to run successfully but when I used with the -i option (for
a case insensitive search) the program failed with a runtime error:

 C:>grep -i test
 Error: regular expression error
So this issue’s code is slightly unusual in that I’m also providing part of the
<regex> header to help you identify the problem. As usual, please also
use the opportunity to comment on other parts of the code.

Critiques

Balog Pal <pasa@lib.hu>

As usual, I start with a fast scan of the code to collect suspicious things,
and analyze them later to be good or bad.

P

Listing 1
Listing1

// define USE_BOOST for the old way
#ifdef USE_BOOST
#include <boost/regex.hpp>
using namespace boost;
#else
#include <regex>
#if defined(_MSC_VER) && (_MSC_VER <= 1500)
// Visual Studio 2008 has it in 'tr1'
using namespace std::tr1;
#else
using namespace std;
#endif
#endif
#include <map>
#include <stdio.h>
#include <stdlib.h>
static const int MAX_LINE_LEN = 65536;
std::map<std::string, bool> option;
void usage()
{
 printf("Usage: grep [-i -l] <pattern>\n");
 printf("Options:\n");
 printf("-i case insensitive\n");
 printf("-l line numbers\n");
}
int process(regex expbuf)
{
 char buff[MAX_LINE_LEN + 1];
 long lineno = 0;
 /* Start reading the file */
 while (fgets(buff, MAX_LINE_LEN, stdin))
 {
 lineno++;
 bool rc = regex_search(buff, expbuf);
 if (rc)
 {

Li
st

in
g

1

 if (option["l"])
 printf("%li:", lineno);
 printf(buff);
 }
 }
 return 0;
}
int main(int argc, char **argv)
{
 regex expbuf;
 int cflags = regex_constants::ECMAScript;
 if (argc <= 1)
 usage(), exit(1);
 argv++;
 argc--;
 if (**argv == '-')
 {
 switch (*++*argv)
 {
 case 'i':
 case 'l':
 option[*argv]++;
 break;
 default:
 printf("-i or -l expected\n");
 exit(1);
 }
 argv++;
 argc--;
 }
 try
 {
 if (option["i"])
 {
 cflags |= regex_constants::icase;
 }
 expbuf.assign(argv[0], cflags);
 }
 catch (std::exception & ex)
 {
 fprintf(stderr, "Error: %s\n",
 ex.what());
 exit(1);
 }
 return process(expbuf);
}

Listing 1 (cont’d)

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk
MAY 2010 | | 21{cvu}

MAX_LINE_LEN constant with all-caps and excess ‘static’ predicts
a likely keyhole problem [ED: see http://www.aristeia.com/TKP/]
use of printf()
process gets regex by value
C-style array/fixed size buffer
use of fgets
cflags typed int initialized with something from another
namespace
juggling with ++ and *s processing argv
postincrements/decrements
cflags (type int!) used with binary or
argv not checked after option elimination
option uses a string/bool map and access like ["i"] smells
overkill
multiple calls to exit(1) from different situations

The text says problem encountered using the "i" option. The only
difference this creates is to set a different value in cflags, so let’s follow
that first. cflags is fortunately used only once, in call to assign. Assign
has a bunch of overloads, which should be ours? Let’s call them #1 to #5
in the order they are in the listing.
We pass two arguments, with types (char *, int).

#1 has one arg, out.
#2 wants enum as second arg, out.
#3 can convert ours to const char *, size_t, and add the
default as third, selectable.

#4 wants enum as second arg, out.
#5 wants the same type for first two args, will not work for either
char * or int, out.

So #3 will be called, passing our string as s, our or-ed special value as len,
and adding the default cflags. Hardly what we wanted, when #2 looks
like taking a C-style string and a flag_type that seems to use the same
constants our cflags did. Though implementation of the functions is not
provided it is a safe bet that len in #3 is used to tell the length of the string
passed (instead of the 0-termination), sending over 0x100 with some short
string in argv could easily lead to a crash or other UB, the reported error
is just luck, the library probably reads the input from its start and throws
at the early '\0' encountered, never looking past that. The ‘good’
behavior in the optionless case is more a mystery, I’d predict it should only
use the first letter of the pattern ignoring the rest. [ED: this is correct]
The solution shall be obvious: cflags shall have to be flag_type, then
the correct overload is called with the correct values and we have some
chance to work. Certainly |= will not work unless the library provides an
overloaded operator – we need a cast, or better a function that adds a flag
to the passed enum, doing the necessary cast internally.
Now let’s look for the other items in the list. (I reordered the bullets by
increasing severity).

map: The option map could be map<char, bool> with the same
effect and similar use just changing double quotes to single. Hardly
a big deal, but why waste resources. I don’t recall grep having
multiletter options. [ED: some more recent versions of grep do]
exit(1): I personally don’t like calling exit() at all, and try to
return from main, to have full cleanup of everything. (Including
locals in main()). In this code I see little reason to not use return
instead. If numbers are returned, why not return different values for
different problems to provide extra info? Or if we stick with binary,
why not use EXIT_SUCCESS and EXIT_FAILURE? This again is
no big deal, but could make little better.
regex by value: hopefully if compiles, the class handles the copy
in a sensible way. I’d pass by reference.
argv processing: the code ‘eliminates’ the filename and options to
leave just the pattern. The argc check is only at front, so if we use
a command line with options only, argv will be at trailer, and pass
a null pointer to assign. That is likely illegal. Even if legal not nice,
and doesn’t fit the logic that should print a command line error
indication. The development probably got abruptly stopped due to
the posted problem, and loops were planned to collect multiple
options.
I don’t like using * with argv in general, and a thing like *++*
would not pass my review for sure. Especially as it is not even
needed. A cleaner way is to refer argv[0] to the item, and look for
'-' in argv[0][0] and option character in argv[0][1] (or later
with an index variable).
Incrementing argv could be questioned too, but it is quite
idiomatic. Though preincrement is the thing we expect.
The option in the map is set by ++ too. It is defined and works for
bool, but I’d use = true as that is more obvious.
As summary this block is better rephrased, and must check argc an
extra time.
fixed buff[] and fgets: overrun-wise the code looks okay,
though passes discrepant values, there is no point to allocate an extra
char if it is not used ever. fgets is okay 0-termination-wise too. But
if the input line is too long, the code will not detect it, and go ahead
incrementing lineno. The output will be like if the program
wrapped the lines at the MAX boundary, and counted accordingly.
The provided numbers will not match the ‘real’ numbers. The
problem is not trivial to deal with, but one sensible solution is to emit
a warning on long lines, that just part was checked, then read on until
newline discarding input, so keeping the count correct. Reading
unlimited amount into memory could be wrong.

enum option_type
{
 ECMAScript = 0x01,
 // ...
 icase = 0x0100,
 // ...
};
template<class charT,
 class traits = regex_traits<charT> >
 class basic_regex
{
//...
typedef option_type flag_type;
// ...
basic_regex& assign(const basic_regex& that);
basic_regex& assign(const charT *ptr,
 flag_type f = regex_constants::ECMAScript);
basic_regex& assign(const charT *ptr,
 size_t len,
 flag_type f = regex_constants::ECMAScript);
template<class s_traits, class A>
basic_regex& assign(
 const basic_string<charT, s_traits, A>& s,
 flag_type f = regex_constants::ECMAScript);
template<class InputIterator>
basic_regex& assign(InputIterator first,
 InputIterator last,
 flag_type f = regex_constants::ECMAScript);
// ...
};
typedef basic_regex<char> regex;
template<class charT, class traits>
bool regex_search(const charT *s,
 const basic_regex<charT, traits>& re,
 regex_constants::match_flag_type f =
 regex_constants::match_default);

Li
st

in
g

2

22 | | MAY 2010{cvu}

printf: in usage text is output using printf, without params, that
is an overkill. We use printf for formatted output, and with great
care to match the format string and params. For other situations it is
better avoided.
And we reach the big killer with it in process.

 printf(buff);

That is what we never ever do. Or at least shouldn’t, in order to avoid
those security patches some companies send us monthly – or the
vulnerabilities they are patching. The first param of printf is the
format string. So that is what shall be there. Stuff that comes from
outside, that is not in our control, is not healthy food in that field.
The text read from the stream can have % params, and those will be
processed, using trash found on stack. With luck only causing a core
dump immediately, but could do anything really. Many ‘run
arbitrary code’ attacks use exactly this form of code.

What is the saddest part of the story, the text claims the code ‘compiled
cleanly’ on two compilers. I know for sure, that g++, even old versions
have checks on printf family functions, and can warn about passing non-
literal as format. So clean compilation was obtained by not using possible
warnings. [ED: In my experience only experts know how to turn on g++
warnings! I used -Wall which didn’t catch it.]

Commentary
I was puzzled by the main problem with this code – the "-i" option not
working – as the same code does work with the regex version of boost.
And, I thought, the new standard regular expressions were based on the
boost implementation. I had even reviewed that chapter in the first draft
of the new standard.
I discovered the problem was a combination of two issues: ‘wiggle room’
in the draft standard and a piece of ‘helpfulness’ in the implementation.
In the draft C++0x standard syntax_option_type was allowed to be
either an enum or an integer type. The original boost regex library used an
integer type and so cflags, as an int, matched the second parameter
(flag_type) of the second assign method.
In Microsoft’s implementation syntax_option_type was an enum,
and so, as Pal stated, the cflags argument does not match the second
parameter for this assign method. So I would have expected, from the draft
standard, to get a compilation error at this point.
However Microsoft’s implementation added a default value for the third
parameter of the third overload of assign – presumably trying to be
helpful for the case when the value supplied would be usual regex default.
However this means that the two arguments supplied (const char *
and int) will match the parameters const char * and size_t.
This is an example of the problems that can be caused by conversions
between enumeration and integer values, coupled with the dangers of
having both default arguments and overloads.
Note: Since the critique was published the C++0x standard has been
revised again (it is now in ‘final committee draft’ (FCD) state) and the
‘wiggle room’ of allowing the syntax_option_type to be an integer
type has been removed. This will help to ensure consistent behaviour
across implementations, but of course won’t help this particular problem;
I hope Microsoft remove the default argument in a subsequent release of
their compiler.

The Winner of CC 62
As Pal was the only entrant (again!) I am awarding him the prize. Come
on the rest of you – I’m sure you all have things to say about this code!

Code Critique 63
(Submissions to scc@accu.org by June 1st)
We have a little piece of straight C code this time.

The following program is designed to sort a list of names, but does
something very strange. Here is what I get when I try to run it:

 C:> cc63
 Anthony Hopkins
 John Guilgud
 Michael Caine
 Charlie Chaplin
 ^Z
 0: Caine Anthony
 1: Charlie Chaplin
 2: Hopkins Guilgud
 3: Michael John?O3
Help!

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This helps overseas members who
typically get the magazine much later than members in the UK and Europe.

/**
 * Program to read first_name last_name
 * and print sorted. See also cc50
 */
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
typedef
int (*compar)(const void*, const void*);
typedef struct name
{
 char *ln; // last name
 char *fn; // first name
} name;
// order last names before first names
int compare(name *n1, name *n2)
{
 int t = strcmp(n1->ln, n2->ln);
 if (!t)
 t = strcmp(n1->fn, n2->fn);
 return t;
}
int main()
{
 char line[80];
 struct name *names = NULL;
 int n = 0;
 int i;
 while (gets(line))
 {
 struct name *nm;
 char *p;
 n = n + 1;
 names = (name*)
 realloc(names, n * sizeof(name));
 nm = names + n - 1;
 p = strstr(line, " ");
 nm->fn = (char*)malloc(p - line);
 strncpy(nm->fn, line, p - line);
 nm->ln = strdup(p+1);
 }
 qsort(names, sizeof(name),
 n, (compar)compare);
 for (i = 0; i < n; i++)
 {
 printf("%i: %s %s\n",
 i, names[i].fn, names[i].ln);
 }
}

Listing 2
MAY 2010 | | 23{cvu}

http://www.accu.org/journals/

24 | | MAY 2010{cvu}

Regional Meetings
Chris Oldwood enjoys a night out data mapping and generating

code.

ACCU London March 2010

Paul Grenyer: Enterprise Web Application Development in Java
with AJAX and ORMs

March 2010 saw the London branch of the ACCU meet to listen to Paul
Grenyer talk about Enterprise Web Application Development. After a brief
biography and definition of what an Enterprise Application is he leapt into
the heart of the topic – writing code to communicate with a database.
Unlike traditional talks where code is illustrated with slides, he decided to
go ‘live’ and use Eclipse, a shell and later a web browser as his presentation
tools. This is always a brave move but aside from one minor glitch it went
very smoothly and I think everyone appreciated seeing real code running
against a real database.
The early part of the presentation looked at techniques for mapping objects
to relational databases. His first example was a classic manual SQL
approach where the developer writes all the code to invoke the query,
extract the result data and clean up. Anyone who attended his previous talk
about resource management in database access code will know the lengths
required for this approach. He then switched to using Hibernate, one of the
most popular O/RM tools, to take much of the legwork out of this affair.
This was refined over subsequent iterations to slowly reduce the amount
of client code at the expense of a more complex class hierarchy using the
Data Mapper and Registry patterns. The payoff though was the ability to
Unit Test and Integration Test the Database Access layer.

The Integration Testing aspect was of particular interest to me as I had been
working on this issue myself, albeit in C#, and was glad to see I was
following a similar approach. Paul had MySQL running locally and the
technique involved creating a database from scratch that contained just the
tables and objects – no data. The tests would then be responsible for adding
and removing any data; he used the natural rollback feature of transactions
to perform the clean up. His test code essentially performed a round-trip
by writing a new object and then reading it back again, being careful to
ensure he was really hitting the database and not being served up his
previous object from some internal cache.
The latter part of his presentation looked at the GUI side of things and the
Google Web Toolkit (GWT) in particular. This toolkit allows you to write
your presentation code in Java as well - turning it into JavaScript to run in
the client's browser – so that you can use the same code on both client and
server. The server-side logic was exposed as a web service and invoked
from the client via AJAX. Having only done classic ASP in the past I found
it quite impressive to see what could be achieved with such little code and
the murmurs from the audience seemed to concur. His parting gift was to
skin the UI with a light dash of CSS to show how easily it could be tarted
up without touching the code.
As always we moved from the conference room to the pub across the road
to continue any discussions, although I probably monopolised the speaker
as I had a number of questions about his Integration Testing methods. His
talk may have had Java in the title, but as is often the case many of the
concepts and techniques he illustrated apply equally well to other similar
platforms such as C#/.Net.

Inspirational (P)articles
Frances Buontempo inspires us once more.

kata is a martial arts exercise used to practise a sequence of moves
over and over to perfect it, and allow it to become second nature.
Recently I saw a blog [1] concerning code katas. Though I hadn’t

really paid attention the first time I read about Uncle Bob’s bowling kata
[2], I got it this time. Find a small problem to solve and write the code for
it every day until it becomes second nature. For example, in interviews
there are certain questions that crop up again and again that I used to be
able to solve immediately, but it’s been a while and I’ve forgotten all the
details, so I tend to come out with a hand waving response which is close
but doesn’t get all the fine details. Perhaps if I practise them again and
again, they will become second nature, and that will stop the brief panic
of thinking I used to be able to do this, but it’s all gone vague. In addition
to being able to code a specific algorithm, this means I will actually write
some code on a regular basis, something which doesn’t always happen in
my day job, even though I’m a programmer. You can use the same solution
every time, or find different solutions. You can concentrate on the tests.
You will discover things that are holding you up and find ways to improve.
You will learn your development tools better. For example, I keep catching
myself using the mouse, which slows me down. This line of thought
provoked me into finding a list of keyboard shortcuts for the IDE I use at
work, which cheered me up.

Initially, the idea of writing code to do the same thing over and over again
seemed odd. However a chess player, musician, racing driver and any other
hobbyist or professional you can think of will practise, possibly every day.
They continue to practise, even when they are the world leader, or quite
good. I personally feel as though I am attempting to cruise on what I’ve
learnt so far, which is no fun at all. I want to get better. I’ve seen several
puzzles, problems at work, and interview questions in my time: rather than
saying, ‘Seen it’, I will practise some of these as katas and get better.
Hopefully, this will inspire you to practise too. Reference [3] gives a series
of thoughts and links concerning code katas, and there are many other sites
out there with lists of suitable kata problems.

References
[1] http://blog.objectmentor.com/articles/2009/11/21/whats-all-this-

nonsense-about-katas
[2] http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata
[3] http://codekata.pragprog.com/

If you have an inspiration you want to share, to encourage the readers of
CVu, please send it to Frances.Buontempo@gmail.com.

A

http://blog.objectmentor.com/articles/2009/11/21/whats-all-this-nonsense-about-katas
http://blog.objectmentor.com/articles/2009/11/21/whats-all-this-nonsense-about-katas
http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata
http://codekata.pragprog.com/

A Conference Retrospective
Paul Grenyer reflects on his time at this year’s conference.

his year’s ACCU conference took place in Oxford, UK in April. It
was another excellent conference, fully packed with technical
sessions, seminars, lightning talks, birds-of-a-feather sessions, social

events and more. In this article, Paul Grenyer provides a summary of his
conference experiences. If you weren’t able to attend, this will hopefully
give you a flavour of what you missed. Photos courtesy of Anne-Jayne
Metcalfe.

Wednesday

The Roots of Scrum: How the Japanese Lean Experience Changed
Global Software Development

Jeff Sutherland
Synopsis: Dr. Jeff Sutherland covers the history of Scrum from its inception
through his participation with Ken Schwaber in rolling out Scrum to industry,
to its impact on Google, Microsoft, Yahoo, Oracle, Siemans, Philips, GE, and
thousands of other companies. He describes the relationship of Scrum to
experience at Bell Labs, MIT, iRobot, and the Grameen Bank, his
communications with Kent Beck who used Scrum experience to help create
XP, and how the Agile Manifesto accelerated Scrum adoption. Most
important, he concludes by describing how team
spirit is at the root of product innovation and
hyperproductive teams and how that spirit can
transform organizations.

Just as last year with Robert Martin’s key note,
the 2010 ACCU conference got off to a storming
start with this key note from Jeff Sutherland. I
wish I could have got my entire team, the
managers and to some extent the board to see. It
contained good explanations about so many
things about Scrum that I have been trying to explain for some weeks now.
Sutherland, one of the fathers of Scrum, described how Scrum is based on
leadership, honesty and transparency and how, in comparison, fraud, greed
and corruption fuelled the current global financial crisis. He went on to
explain how Toyota’s lean Scrum methodologies helped it to put its main
competition, General Motors, out of business and how, when it let
leadership, honesty and transparency slip, it got into trouble that resulted
in car recalls. He also described how lean allowed Toyota to develop the
Prius in half the normal time by removing waste and impediments form
the project. This case study also helped to demonstrate how lean agile
methodologies helped define Scrum.
In talking about Scrum itself, Dr Sutherland went on to describe how
Scrum:

Removes management practices in favour of leadership
Empowers employees
Uses rules and procedures as enabling tools
Uses hierarchy to support organisational learning.

With the use of a diagram,
Jeff Sutherland, showed
how simple a framework
Scrum really is. He went on
to explain how Gantt charts

are always 100% wrong, as things change quickly and they become out of
date. Teams must, therefore, be able to self-organise in order to be truly
agile.

Introduction to Scrum: Shock Therapy – How new teams in
California and Sweden systematically achieve
hyperproductivity in a few sprints

Jeff Sutherland
Synopsis: New teams need to learn how to do Scrum well starting the first
day. This talk will describe how expert coaches at MySpace in California and
Jayway in Sweden bootstrap new teams in a few short sprints into a
hyperproductive state. This requires new teams to do eight things well in a

systematic way. Good ScrumMasters with make
sure their teams understand these basics for high
performance and great ScrumMasters will make
sure the teams execute all of them well. This
session will review the critical success factors for
new Scrum team formation.

Hoping to learn some more about Scrum I want
into Dr Sutherland’s follow-up presentation and
I wasn’t disappointed as there was more of the
same! It was good to have the idea that Sprints

could be one, two, three or four weeks as I had previously believed that
Sprints had to be 30 days to be Scrum.
Sutherland described how he encourages Scrum to be implemented and
understood from board level down and two of the main things that get
enforced, by the board, are Test Driven Development (TDD) and
Continuous Integration (CI). I see these as two of the bare minimum
requirements for software development.
I especially like the definition of ‘done’ given:

Feature complete
Code complete
No known defects
Approved by product owner
Production ready

Dr Sutherland reiterated his previous point that Scrum should be lean and
reminded me that although the right way to estimate stories is with relative
story points, in a Sprint planning meeting those stories should be broken
into tasks and real time estimates given to each one.

T

I had previously
believed that Sprints

had to be 30 days to be
Scrum

Gantt charts are
always 100% wrong PAUL GRENYER

An active ACCU member since 2000, Paul is the founder
of the Mentored Developers. Having worked in industries
as diverse as direct mail, mobile phones and finance,
Paul now works for a small company in Norwich writing
Java. He can be contacted at paul.grenyer@gmail.com
MAY 2010 | | 25{cvu}

Real QA – the argument for smarter quality assurance than mere
testing
Tom Gilb
Synopsis: Traditional testing, as a means towards quality assurance, is far
too costly and far too ineffective. There are much smarter ways to approach
software quality. This session will argue with facts for a half dozen more-
cost-effective ways to get reliability and all other qualities, like usability,
security, adaptability, into your systems, than conventional testing.

It seems that Scrum themed sessions were the order of the day for me as
Tom Gilb works closely with Jeff Sutherland and both attend each other’s
presentations. I went into this presentation unsure what to expect and
hoping to learn something. Although I enjoyed it and may just possibly
have missed something subtle, it appeared the whole point was that quality
should be specified quantitatively in requirements, and those requirements
should also be high quality and bug free, rather than trying to ensure it with
only testing at the end.

Jon Jagger’s Coding Dojo
I was invited, well it was more like press ganged, to a late collaborative
programming session. I was a member of one of five pairs who were
developing a simple unsplice function and accompanying tests. We ran
several iterations and were informed we should be working as a group,
rather than competing. At the end of each iteration the people in each pair
were changed, and each pair would work
on another pair’s code. It was an
interesting look at the way teams
co l l abora te toge the r in an ag i l e
environment. In retrospect I wish we’d
planned and shared a bit better, but with
the information we were given I think we
did quite well.

Thursday

Hello, I’ll Be Your Tester Today

James Bach
Synopsis: This talk is how I introduce myself to programmers. It is especially
aimed at programmers who may wonder why any intelligent person would
willingly be a tester, and why projects needs testers, and how to work with
testers. I will talk about what makes skilled testers different and special and
about the commitments I make to the programmers I work with. I will help
you set a high, but reasonable standard for the testers you work with.

If I am successful, then by the end of my talk, at least a few programmers
in the audience will have become testers.

The ACCU conference has always been about quality, but this year is very
special, especially with the keynote speakers. James back is a highly
charged and very amusing individual. In fact he’s the sort of tester I’d like
to be working with.

He explained that he started his testing career as a test manager for Apple
about 20 years ago. Throughout his key note, James highlighted the many
differences between testers and developers. Including the fact that,
apparently, testers have more social interaction. Another subtlety he
pointed out was that testers don’t break code, developers do, and testers
do not steer projects, they make suggestions and hold the light so
developers can create great code.
One of the best parts of the keynote were the testing related subtitles James
added to a clip from The Towering Inferno where Steve McQueen is
gathering the requirements he needs to fight the fire. I can’t describe its
brilliance in a way that will do it just here.
The point that resonated the most for me is that testers need to be able to
think their way around a system with or without a specification or
requirements. They need to think outside the box as, after all, requirements
are often rumours, right? This is the opposite end of the scale from what
Tom Gilb was saying yesterday. From an understanding of what the system
should do and bags full of common sense testers should be able start testing
and test effectively.

Genemodulabstraxibilicity

Steve Love
Synopsis: The title says it all! If it’s hard to write unit tests, or they take too
long to run, if your plugins need the whole application for their distribution,

if you can’t (re)use a bit of your colleague’s
code without importing the entire team’s
work, if your multi-threaded code performs
better when you run it sequentially, or
you’ve got 5 versions of the same 3rd party
library littering your source repository,
then you’re suffering from this. Or perhaps
just part of it...

Modern languages provide us with many
tools for creating beautiful, modular,

general, flexible and simple abstractions, yet it seems they give us even
more tools for writing ugly, monolithic, specific, rigid and complicated, er,
concretions.

With examples of both kinds in C#, Python, C++ and maybe even C++0x (if
it stays still long enough to get the syntax right :-)), this is a talk about our
(code’s) propensity for wearing too many hats.

Steve is one of my oldest friends from the ACCU, going back to the first
conference I attended in the early naughties. The lessons and observations
he discussed in the session are what the ACCU is all about for me. He
described lots of the common pitfalls of the code that a lot of people write
and how to avoid them sensibly.
There was of course just the right amount of singleton bashing and plenty
of humour, not to mention of course, the subliminal elephant that no one
was meant to be thinking about. Other important points made were that
too many comments is a sign of poorly written code and public inheritance
is the strongest form of coupling.
What surprised me the most was Steve’s description of a painful code
review where he was pulled up for using single entry, single exit. The
company Steve was working for actually explicitly stated that they tried
to enforce multiple exit points. Just when I thought I’d heard it all....

Data warehouse, OLAP, Data Cubes, Business Intelligence –
Buzzwords explained
Sven Rosvall
Synopsis: In the database world there are many buzzwords that most
software engineers only hear about but never get experience with. This talk
aims to clarify what lies behind some of these buzzwords and describe key
differences from the more common transactional database. The talk will also
provide enough insight for engineers to decide if any of these technologies
are useful in their current or future projects.

The presenter has worked for many years on the periphery of the databases,
wondering about these buzzwords. He eventually got involved with data
warehouses and now wants to share his experiences with fellow engineers.

testers need to be able to think
their way around a system with

or without a specification or
requirements
26 | | MAY 2010{cvu}

Sven is another ACCU member I’ve known for many years. His
presentation did exactly what it says on the tin. I came away understanding
the difference between OLTP and OLAP and that we really need to try and
break our own databases up onto separate servers to improve performance.
Although I’m still a little hazy on data cubes, I now understand dimensions
and how data is reorganised when it is transferred from OLTP to OLAP
to make it easier to query. This was certainly one of the most useful
sessions of the conference so far.

Database Testing Demystified

Sven Rosvall
Synopsis: Testing databases is not as easy as unit testing of classes and
functions. Databases are full of state and internal logics which must be set
up before testing can start. There are also lots of dependencies that are
difficult to isolate or stub out.

This presentation will look at some techniques to create automated tests for
databases and how to debug SQL code including single stepping stored
procedures. We will automate database testing with the use of popular unit
testing frameworks. We will test simple CRUD statements, calls to stored
procedures and verify triggers. Test suites in Java and .Net will be
demonstrated.

We will also see how a database can be developed with agile methods.
Databases are traditionally developed up front as the database schema is
difficult to change later.

Another great session from Sven (immediately following the previous one)
even if the material from the second half does overlap what I’m speaking
about a fair bit. The highlight here for me was seeing the SQL Unit Testing
Framework SPUnit in action and the ability to step through stored
procedures in SQL Server Management Console.

TDD at the System Scale

Steve Freeman, Nat Pryce
Synopsis: We present our experience applying ‘system-test first’ test-
driven development (TDD) in the development
of large systems and systems-of-systems. We
try to address integration and system testing as
early as possible. The sooner the system is in
a deployable state, the easier it is to react to
changing business needs because we can
deliver new features to users as soon as is
deemed necessary. We therefore start by
writing tests that build and deploy the system and interact with it from the
outside and, to make those tests pass, add code to the system in the classic
‘unit-test first’ TDD style.

Many teams applying TDD start writing unit-tests and leave integration and
system testing until late in the project because they find it difficult to write
tests that cope with the distributed architecture and concurrent behaviour
of their system. We will describe how we address common pitfalls, including
unreliable tests, tests that give false positives, slow-running tests and test
code that becomes difficult to maintain as the system grows.

We will also describe how writing system tests guides our architectural
decisions. Writing unit tests first guides design of the code to be flexibile and
maintainable. In a similar way, we have found that writing system tests first
guides the architecture to be easier to monitor, manage and support.

A couple of colleagues and I saw Steve and Nat speak at JP Morgan in
February and it was a little bit like disorganised chaos with Steve doing
most of the talking and Nat chipping in. There was a marked improvement
this time, with Nat doing the majority of the speaking.

I was a little bit concerned to see that they were advocating starting with
system level tests before unit tests, but I can see how it might work in some
circumstances. The same old system level problems, such as driving the

GUI, faking external systems, etc, are still there, but Nat and Steve came
up with some interesting ideas to overcome theses.
The main points that stood out for me were:

Making the system scheduler external so that it can be faked during
test.
Use an audit interface instead of direct logging so the system can
decide what it wants to report as a whole.
Add hooks so that you can easily ask the system if it is happy.

Another point I realised is that I really need to read their book!

Friday

The Multicore Revolution: We’ve Only Just Begun

Russel Winder
I will and have travelled a long way to hear Russel speak, even for a short
period of time, on many occasions. He is very entertaining and today was
no different. Before talking about the architecture of multi-core

processors, Russel spoke about the different
forces occurring in atoms. Unfortunately it’s
so long for me since A-level physics, I was
rather lost!
The two important points that Russel made
were that we need to stop thinking in a single
processor, single memory model and consider

a mulit-core, multiple memory model and that although the hardware is
mostly there, there is a lot of catching up to do on the software side.
Fortunately no kittens were harmed during the production of Russel’s
slides as he is using Open Office.org instead of Powerpoint.

Understanding User Stories
Rachel Davies
Synopsis: On traditional projects, software developers are often presented
with volumes of requirements that seem to be definitive and yet are full of
holes. On agile projects, the whole team gets involved in establishing user
stories on index cards. Come along to this session to understand the life-
cycle of a user story from inception to implementation. You’ll get a chance
to practise working through some real user stories. We’ll also investigate
ways that agile teams handle requirements that don’t seem to be user
stories.

I didn’t read the description of the session sufficiently! So I was a little
shocked when the layout of the room indicated it would clearly be
interactive. I don’t really enjoy that sort of thing, but this was superb and
the 90 mins just flew by!
This session was, for me, really about confirming what I have read recently
about writing user stories. It was nice to know I was generally right and
to find ways to smooth some of the rough edges.
We played a game where one person wrote down a story, e.g. ‘A man opens
a door.’ Then the next person draws it and the following person then writes
down what they think has been drawn and this goes right around the group.
Each person only sees what the previous person has written or drawn. The

I was a little shocked when the
layout of the room indicated it would
clearly be interactive

they were advocating
starting with system level

tests before unit tests
MAY 2010 | | 27{cvu}

idea of the exercise is to show how if one person describes something and
another person documents it, things get lost and other things get added. The
final description was ‘A man with a hat, closes a door.’
We also did a brief exercise where one member of a three or four person
team is the product owner and the other members of the team ask them
questions to determine what is needed for a system and write stories. This
also worked very well.
Based on what I saw I’d be very happy to have Rachel come and coach
my team.

FindBugs: Testing (Java-) Code Against Bugs And Defects

Bernhard Merkle
Synopsis: This session should be really fun. We will make a deep dive into
findbugs, a very useful tool which every programmer should use to test Java
code against potential bugs, defects and antipatterns.

After a first overview of the problem domain (static analysis), we will take
some of Joshua Bloch’s ‘Effective Java’ Rules from his book and see how/
if they can be implemented in a tool like findbugs. I will show how findbugs
works internally, and we will implement a new bug detector (findbugs rule)
to find specific defects we are interested in.

Additionally we cover different levels of static analysis like code-, design-
and architecture-level. Interestingly findbugs checks code and design level,
but fails itself (!) on the architecture level; which means
the tool itself suffered major architecture erosion from
version 0.7 to the current 1.3.8.

I am participating now in the findbugs project and
contributed several architectural refactorings on the
findbugs 2.0 branch which is currently under
development and should hopefully be finished during
the time of the ACCU 2010 conference. We will see
how far an automated and tool supported approach can lead to better results
and how tools like findbugs can discover areas of code- and design-erosion
and suggest improvements. Additionally we will look at the next generation
of analysis which is architecture analysis.

Bernhard took us through a very interesting look at what findbugs provides
and showed us many examples of bugs in established code bases, such as
Eclipse and the Java SDK itself, that could have been found simply by
running findbugs. He included some great photos of non-programming
bugs and lots of excellent humour.
Findbugs can also highlight architectural problems and Bernhard showed
us how the architecture of findbugs itself has got steadily worse over the
years.
Bernhard convinced me that we should add findbugs to our static analysis

arsenal, which current consists of just PMD.

Saturday

Lightening Keynotes

Due to the volcano eruption in Iceland, Dan North didn’t make it to the
conference for the Friday keynote, so Russel Winder had been moved
forward to Friday. The Saturday keynote was replaced with four fifteen
minute ‘Lightning talks’. Lightning talks are just very brief talks, usually
only five minutes and usually for people who aren’t already speakers to
give them a chance to try it out. On this occasion the talks were given by
four conference speakers:

Robert ‘Uncle Bob’ Martin – The birthday problem.
Walter Bright – C’s Worst Mistake.
James Bach – Testing models.

Jim Hague – Are you getting
enough?

All were humorous in one way or
another and all very good.

Coupling as
resistance to change,
understanding and
fixing it
Tony Barrett-Powell
Synopsis : Coup l ing , the
number of things a unit of code
depends on, is an important
consideration when designing
and maintaining software. Without
due care a slow increase in coupling
between units over a few releases of
a software product, or even over a
number of iterations within a release, can
lead to software that is difficult to change, or
worse results in a ripple effect throughout seemingly unrelated units. We
cannot write software without some coupling, how else would the code
achieve anything? Thus, coupling is not a bad thing in itself, it is the degree

to which a unit is coupled to other units that can be
undesirable, yet is not an absolute measure.
Understanding of what coupling is, its many forms and
how to recognise them is useful if we want to avoid
unnecessary coupling in the software we create. It is
important to control coupling in software if it is to be
improved over a number of releases, as high coupling
slows development, increases time to market and

inevitably lost revenue.

This session attempts to explore coupling in all its manifestations, examine
the difference between good and bad coupling and to consider its bedfellow
cohesion. The session will also explore the techniques used before, during
and after the act of design which can be used to reduce unnecessary
coupling and as an aside looks at those which can lead to increased
coupling. The intent of the session is to arm those designing and writing
software with the understanding and techniques to create loosely coupled
and maintainable software.

I have known Tony a good few years, but this is the first time I have seen
him speak. He is very good and this subject is close to my heart.
Tony explained how lots of coupled code is very difficult to change and
even harder to understand. He took us through inheritance coupling and

temporal coupling and explained cohesion as a measure of the strength
of functional relatedness of elements within a module. If it’s all
together it’s cohesive, if it’s split up it’s coupled.
Tony continued by explaining Afferent and Efferent coupling.
Afferent coupling occurs at the package level and efferent coupling is

the number of classes inside a package that reference classes outside of a
package.

A Simple Matter of Configuration – how can we tame
the complex world of configuration?
Roger Orr
Synopsis: Configuration is a vital element of many programs. However it
is often hard to get configuration right, leading to people wasting time and
programs that do not work correctly.

In my experience explicit discussion of design options for the configuration
of a program is rare and, all too often, the choice is made arbitrarily. I believe
that looking at the usage patterns of the program early on helps to pick the
best method(s) for configuring it and hence reduce the cost of problems
caused by configuration issues.

Configuration is a complex subject and there doesn’t seem to be an obvious
single solution that works in every case, but we can try to fight against the
common ‘anti-pattern’ of using multiple, unrelated, configuration techniques
at the same time.

If it’s all together it’s
cohesive, if it’s split

up it’s coupled

coupled code is very difficult to
change and even harder to understand
28 | | MAY 2010{cvu}

Agile Estimating and Planning
By Mike Cohn, published by
Prentice Hall,
ISBN: 978-0131479418

Reviewed by Paul Grenyer

Verdict: Highly
recommended
I bought this book
because I’m generally

rubbish at estimating (I usually under estimate).
Also, although we have the technical elements
of agile (source control, unit tests, continuous
integration, etc) sorted, our agile project
management is not all it could be. Agile
Estimating and Planning may be as close as I
ever get to a silver bullet.
To be honest I expected to be let down and that
the scenarios described in the book would not

match the situations I find myself in. I was not
let down at all. The book covers both planning
when features are important and planning when
a deadline is important.
It taught me that it was wrong to break stories
into tasks when release planning and to leave
that for iteration planning. The book discusses
the use of both story points and ideal days in
estimating, what they both are, the differences
between them and then suggests you should use
story points.
It described what release and iteration planning
are and when to use them. It also discusses how
to predict, where necessary, and how to measure
velocity in order to calculate the duration of
projects. One of the most important things
covered from my point of view was how, when

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)
MAY 2010 | | 29{cvu}

I will look at some of the issues surrounding configuration; firstly by trying to
answer the ‘six key questions’ (who, why, what, where, when and how) for
this subject to help understand the size of the problem and the forces at work.

I’ll then sketch out some possible design patterns and look at their trade-offs
and interaction with the intention that I (and you) can reduce the pain of
getting programs working in different environments by making more
informed and deliberate decisions.

I am looking at the problem in the general case, using examples from various
problem domains, and expert knowledge of a particular language or API is
not assumed.

This was the last session I attended as I was speaking in one of the final
slots of the day. Again, I have known Roger, through the ACCU a long
time and shared many a drink and lunch with him. He took us through a
humorous look at how to configure applications. This wasn’t a look at build
configuration, but the way we actually pass settings to a program.
I have come across many of the same problems in my career, and although
there was no specific solution to the problem, one of the proposed
solutions, storing settings in a database is one I use regularly. Roger
showed me lots of methods and their pitfalls, that I had never even
considered!

Enterprise Web Application Development in Java with
AJAX and ORMs
Paul Grenyer
Synopsis: Recently Java enterprise web application programming has
been leaning towards a more classical J2EE approach. Traditional Java
Server Page (JSP) programming, and even libraries such as Struts, are
being replaced by new AJAX libraries that make GUI programming more
straight forward, robust and easier to unit test.

In this session I will look at what an enterprise web application is.

I will demonstrate how to develop a more robust GUI with an AJAX library
and how to create a more object orientated Data Access Layer (DAL) with
an Object Relational Mapping (ORM) library.

After defining what an enterprise web application is I will move on to
demonstrate how to create a DAL, with real code examples, and explain how
to use a registry to abstract away Data Access Objects (DAOs) so that the
real DAOs can be used in production and integration testing while
seamlessly substituting mock objects for unit testing.

Then I will look at an AJAX library and demonstrate how to create the
presentation layer in Java, again with real code examples, and make
Remote Procedure Calls to access the DAL. I will then look at how to
integrate the AJAX library into traditional Spring MVC in order to tap into the
vast library of functionality that the Spring Framework can provide for web
based enterprise application. I will explain how the tools provided by Spring
make integration testing of DAO objects very simple.

Finally I will look at how to use Spring Security to authenticate users of the
application and secure individual Remote Procedure (RPC) calls made from
the client application, running in a browser, to the server.

I don’t know how good I was, but this presentation flowed for me easier
than any other presentation I have done. I have never managed to speak
for the full ninety minutes before and I came in on time.
It was one of the final sessions of the conference, I was up against some
stiff competition and most people had actually already gone home. Even
so I had an audience of about half a dozen.

Finally
This was the best ACCU conference I have ever been to, simply because
of the amount directly useful information I was able to absorb. I’m sure
next year will be even better.

A Conference Retrospective (continued)

and with what to report to the product owner and
stake holders.
The book finishes with a 60 page case study. I
was tempted not to bother reading this as it goes
over the main points covered in the rest of the
book again. I was glad I read it and if you buy
this book you should read the case study if you
read nothing else. It helps put in context how
estimating should be done and describes the
processes surrounding it.
All I have to do now is write a distilled version
for my team, including the project managers,
product owners and stakeholder and put it into
practice.

Computers and Intractability: A Guide
to the Theory of NP-Completeness
by Michael R. Garey and David S.
Johnson, published by W. H.
Freeman and Co., 1979 (with an
‘Update for the Current Printing’
spanning two pages dated
December, 1983)

Approximation Algorithms for NP-hard
Problems
by Dorit S. Hochbaum et al.,
published by PWS Publishing
Company, 1997

Complexity and Approximation:
Combinatorial Optimization Problems
and Their Approximability Properties
by G. Ausiello; P. Crescenzi;
G. Gambosi; V. Kann; A. Marchetti-
Spaccamela; and M. Protasi,
published by Springer, 1999

Reviewed by Paul Colin Gloster

None of these books is suitable
as a first book on algorithms.
They are all worth reading. They share a lot of
overlap, but each also has its own merits making
it worthwhile to read all three instead of merely
any one of the three books.
Practical examples of how some of the abstract,
general algorithms can be used were given in
Approximation Algorithms for NP-hard
Problems. As with many other books, varied
application domains were mentioned without

managing to convey more than a tiny fraction of
how many of the application domains these are
useful for. It seems to me that more examples
related to physics or electronic engineering were
mentioned than in average books, but many
other targets for deployment were also
mentioned. The other books under review do not
provide any advice as to some applications in the
real world of the abstract algorithms. Of course,
the onus is on you determine the relevance or
otherwise of someone else’s work to your own
problem, but help does not go astray as it often
is not obvious. For example, I was surprised to
notice a variant of the knapsack problems
promoted for refactoring in Bouktif; Antoniol;
Merlo; and Neteler, ‘A novel approach to
optimize clone refactoring activity’,
proceedings of the 2006 annual conference on
genetic and evolutionary computation.
Computers and Intractability: A Guide to the
Theory of NP-Completeness mainly deals with
NP-completeness, but also briefly deals with
some complexity classes omitted in many
textbooks. Complexity and Approximation:
Combinatorial Optimization Problems and
Their Approximability Properties deals with
many more such complexity classes and does so
in depth, but does not cover all of the complexity
classes in Computers and Intractability: A
Guide to the Theory of NP-Completeness.
However, some classes were briefly mentioned
in Complexity and Approximation:
Combinatorial Optimization Problems and
Their Approximability Properties without being
explained, viz. ZPP; QP; NPOPB-complete;
APX-intermediate; and various DTIME
complexities. (Though it may not be too difficult
to deduce what is meant by DTIME.)
Approximation Algorithms for NP-hard
Problems also has many complexity classes
which are not in introductory textbooks, and also
classes which are only very briefly mentioned
(such as RP; IP; and MIP). Few of the classes
dealt with in depth in one of these books appears
at all in any of the other two books. NC and RNC
(complexity classes for concurrency) are in
neither Computers and Intractability: A Guide
to the Theory of NP-Completeness nor
Complexity and Approximation: Combinatorial
Optimization Problems and Their
Approximability Properties and are very briefly
mentioned in Approximation Algorithms for
NP-hard Problems.

Approximation preserving reducibility is an
important topic which fortunately has a chapter
devoted to it in Complexity and Approximation:
Combinatorial Optimization Problems and
Their Approximability Properties. It is
unfortunately not always possible, and this
gloomy outlook is the closest thing to a mention
of it in Computers and Intractability: A Guide to
the Theory of NP-Completeness. This topic was
almost briefly mentioned in Approximation
Algorithms for NP-hard Problems. Indeed, a
conspectus of the few hundreds of pages of
Computers and Intractability: A Guide to the
Theory of NP-Completeness is: you’re screwed,
in contrast to the other two books which provide
bounds and advice on published alternatives to
intractable algorithms. However, the vast
majority of the hundreds of NP-complete
problems (and some NP-hard problems;
problems which are ‘NP-complete in the strong
sense’; problems not known to be in NP nor co-
NP; #P-complete variants; pseudo-polynomial
variants; and fortunately polynomial variants)
listed in Computers and Intractability: A Guide
to the Theory of NP-Completeness are ignored
in the other two books. Computers and
Intractability: A Guide to the Theory of NP-
Completeness also had a smaller list of open
problems, by which was meant a list of problems
whose complexities were unknown at the time.
That list has been out of date for over a decade.
The chapter on heuristic methods in Complexity
and Approximation: Combinatorial
Optimization Problems and Their
Approximability Properties is too short. This
book’s appendix on mathematical preliminaries
is not rigorous. Problems were described as
being equivalent to other problems (for example
on page 424) with no way to find these other
problems in the book.
The bibliography of Computers and
Intractability: A Guide to the Theory of NP-
Completeness helpfully shows where papers
were cited in the book.
Obtaining an integer programming solution
based on a real linear programming solution was
mentioned on page 65 of Approximation
Algorithms for NP-hard Problems with no
indication that this does not generally result in
an almost optimal integer programming solution
until page 460. In this book it was mentioned
that evaluating a matrix’s determinant is
bounded by O(n cubed) with no hint that less
complex algorithms exist for this even in the
general case. This book has a chapter on Monte
Carlo algorithms based on Markov chain
simulation for statistical physics. Physicists
would not easily understand this chapter, but I
could say that about anything in computer
science.
In one section of Approximation Algorithms for
NP-hard Problems, care was taken to avoid
confusion between an approximation
algorithm’s absolute performance ratio and its
asymptotic performance ratio. This is the only
book under review which has a chapter on online

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
30 | | MAY 2010{cvu}

algorithms. In this sense, an online algorithm is
an algorithm which is provided with only some
of the input before it must output some of the
output, as opposed to being online in the sense
of being powered on or networked.

Algorithmic Graph Theory
By Alan Gibbons, published by
Cambridge University Press,
copyright 1985, ‘digital printing
1999’, ISBN: 978-0521288811

Reviewed by Colin Paul Gloster

This is a small book which is
intended for students to learn
about graph theory. It does have some
algorithms in it, but it is not a rival to a textbook
on algorithms, not even for merely graphs. It
does not always give the most efficient
algorithms: instead an attempt is made to
explain about the problems, so research papers
presenting more advanced algorithms than those
detailed in the book are cited for further study.
Instead of an unhelpfully unannotated
bibliography, each chapter has a section with
good educational background to relevant
papers.
I am not convinced that the book’s emphasis on
understanding instead of as a cookbook of
algorithms succeeds in imparting better
understanding, but it does not make it harder to
understand. A clear advantage of this book is
that unlike other books (and even research
papers) is that it does not present special cases
as if they are generalities.
Do not allow the amount of criticism in this
review to provide an unbalanced impression of
this book... too many terms and concepts are
introduced in exercises instead of in the
chapters’ bodies. The book has too many goto
statements. It is sometimes hard to see the
complement diacritic in subscripts. Even titles
in American English were translated into U.K.
English.

EJB3 In Action
By Debu Panda, Reza Rahman,
Derek Lane, published by
Manning, ISBN: 978-1933988344

Reviewed by Paul Grenyer

Verdict: Recommended
I bought and read this book as
I wanted to learn about
Enterprise Java Beans having only used Spring
for Enterprise Java development up to this point.
This is an excellent book for just that.
It explains in a reasonable amount of detail what
stableful and stateless session beans, message
driven beans and entity beans are. After a
number of chapters describing how to use
session beans and a further chapter on message
driven beans a large amount of the book is turned
over to entity beans and the Java Persistence
API. As a user of Hibernate I found going over
a very similar API somewhat tedious in places,
but I am sure this would not be the case for a

novice ORM user. I also think Hibernate does it
better.
I found the general style of the book, although
chatty, quite easy to read. Although the authors
mention many of the areas where Spring has
similar or even better functionality it is clear, as
you would expect, that the authors favour EJB
in all cases even when EJB is still quite heavy
weight in comparison.
My biggest criticism of the book is that it’s more
of a text book that a practical guide. Although
the source code for the example application is
available to download, it is not possible to put
the application together just from reading the
book. Deploying an application to a container is
also handled very late in the book. If I was
actually wanting to do some EJB development
at this stage I would want to try things out and
therefore having deployment examples at the
start of the book would be paramount.

iPhone Advanced Projects
Various authors, published by
APress, ISBN: 978-1-4302-2403-7

Reviewed by Pete Goodliffe

Verdict: OK
This is another book in the
APress iPhone ‘projects’
series. It follows the form of its
predecessors; it is a series of 11 essays by
different authors on a particular topic which that
they have some familiarity (I’m not sure I can
always say ‘expertise’) in.

Production

First, the book production bears discussion.
Unlike previous books, this one is printed in
plain black and white rather than the accustomed
luxurious full-colour. The book still costs the
same amount, so this appears to be a ploy by
publisher to increase profit rather than a way to
position book at lower price point to gain more
readers.
Unfortunately, the book suffers because of this.
Not only is it less visually appealing, it is less
practical and easy to follow. Some visual
modification should have been applied to the
format to make it work in black and white.
Without colour, the sans-serif body text is harder
to read and is less distinct from headings,
subtitles, and illustrations.
In particular, many screen shots suffer. Often an
author refers to details that are completely lost
in a sea of black ink. These images should have
been edited to improve contrast, or the text
reworked to explain the point without an
illustration.

Editing

On the whole this book has been well edited and
proofed, probably better than some of the other
books in the series. There are only a few typos.
It hangs together as well as the other books,
which is fine – it’s a series of unconnected
essays on different topics.

As another ‘grab bag’ book, you’ll either want
to make a purchase if you care about a specific
topic included, or you just want a general
overview of a number of topics.

Topics

The book covers the expected iPhone topics:
Graphics/UI (creating particle systems,
OpenGL ES reflections, and making responsive
UIs), networking (writing an app backend server
to integrate with iPhone app, using push
notifications, yet another socket-based UDP
example, and sending an email from your app),
audio, debugging, and data handling (both in
SQLite, and Core Data).
Most chapters are sufficiently detailed. The
audio chapter, I felt, was a chatty overview, but
didn’t provide as good a grounding as just
reading the iPhone audio docs.
As ever, the detail in each chapter cannot replace
the iPhone SDK docs which are complete and
detailed. However, there are often little
information gems that will help your
development and save you a little time working
with that technology.

Conclusion

If you’re new to iPhone programming, this
might be an interesting book. Also consider the
other APress titles in the series, and chose the
book with the topics you are most interested in.

JavaScript for Programmers
By Paul J. Deitel and Harvey M.
Deitel, published by Prentice Hall,
ISBN: 978-0137001316

Reviewed by:

Summary: Not recommended
I didn’t get to the last page of
this book, in fact only page 100
or so. It is simply awful. From the title
one would expect that programmers
could read this and gain JavaScript
knowledge. In fact it turns out to be a long-
winded painful introduction to all sorts of things
including the history of the web, CSS and even
object-oriented programming, which is so
painfully and badly explained that
‘programmers’ would only tear their hair out. I
need write no more.

Ruby in Practice
By Jeremy McAnally & Assaf
Arkin et al, published by
Manning, ISBN: 978-1933988474

Reviewed by Simon Sebright

Summary: Recommended
with reservations
I enjoyed reading this book. It
was just the thing for me, being an experienced
programmer and having just got into Ruby, in
my case through the Rails framework.
The book is a series of small, fairly independent
articles/chapters on using Ruby in the real
world. These are collated into a number of Parts:
MAY 2010 | | 31{cvu}

32 | | MAY 2010

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Jez Higgins
chair@accu.org

2009 has been more of the same
for ACCU.
In many ways, this is a good
thing. The organisation continues to do the
things it does, which are the things the
membership enjoy and benefit from, and so they
continue to support them. Things sustain
themselves. Traffic on accu-general is fairly
high, the signal-to-noise ratio is good (even if
the signal-to-pun ratio needs work), and the
atmosphere is friendly.
CVu and Overload are consistently interesting,
across a broad range of subjects. The
appointment of Steve Love as regular CVu
editor has provided some welcome stability
there. While our series of guest editors through
2008 and into 2009 was a success, it put a lot of

pressure on, in particular, the Publications
Officer and our Production Editor. Steve’s just
celebrated his first year at the CVu helm, with
Ric Parkin shortly to mark two years steering
Overload.
While I’m pleased the organisation seems to be
ticking over, I confess, as I stand down as Chair,
to a certain disappointment. When I took over as
Chair in 2006, I was hopeful that we would be
able to raise the membership. At that time, the
roles of Conference Chair and the ACCU Chair
were expressly split. Chairing the conference is
a time consuming activity, and dividing the roles
would allow the ACCU Chair to focus on the
organisation. While that’s been the case, the
time I’ve spent hasn’t been used quite as I
anticipated.
Voluntary organisations typically do roll
steadily on and change is, generally, only
provoked by some kind of crisis. By crisis, I
don’t necessarily mean anything disastrous, but

simply some kind of unsettling event – losing
funding or, indeed, gaining funding, a
resignation from a post, and so on. The crisis
provides an opportunity to try new things. The
ACCU Chair standing down is such a time, and
presented such an opportunity, but I missed the
chance it gave me. On the plus side, I didn’t
completely balls it up. I’ve enjoyed it too.
My successor in the Chair, Hubert Matthews,
will be here to introduce himself next time.
I’d like to thank the many people who’ve helped
and advised me over the last four years,
including the various journal editors, the
conference Chair and committee, and the past
and current members of the committee.
In particular, I’d like to single out the work done
by secretary Alan Bellingham, membership
secretary Mick Brooks, and treasurer Stewart
Brodie. If not for them, we wouldn’t be here
now.

Ruby Techniques, Integration and
Communication, Data and Document
Techniques.
Each article is well-written, and has (apparently)
sample code to go with it where appropriate,
although it's not quite clear who actually wrote
each article, there being rather a lot of ‘with"
authors on the front page. The authors are well
aligned with the Pragmatic Programmer
mindset, which gives the astute reader a boost in
confidence.

I learned quite a bit about Ruby in general, in
particular how many areas are covered by
freely-available libraries, and how the scripting
approach to solving some problems can be so
easy.
I have reservations for a couple of reasons.
Firstly, there could have been more discussion
and demonstration of the actual Ruby
techniques involved in each of the areas.
Secondly, it’s aimed at people who are
experienced programmers plus they are ‘getting

into’ Ruby. But, if you are one of those people,
then happy reading.

Bookcase (continued)

	Choose Your Language Carefully
	A Timer for Rummikub
	Live to Love to Learn (Part 3)
	A Game of Nerve
	Lazy Initialisation of Shared Resources
	On a Game of Strategy
	Desert Island Books
	Code Critique Competition 63
	Inspirational (P)articles
	Regional Meetings
	A Conference Retrospective
	Bookcase
	View From The Chair

