

MAR 2010 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

By Convention
o much about the way we interact with the world
around us is driven by convention. Sometime those
conventions have ‘side-effects’, for example

driving on a particular side of the road. In a country
where it is conventional to drive on the left, it’s also –
by implication – conventional to drive around traffic
islands clockwise. Going against convention has
consequences ranging from mild to severe, but you’d be
very lucky indeed to escape without any consequences at all.
Some conventions allow us to operate almost automatically.
Doors without handles are pushed. Doors with handles that do
not pull often cause a moment of confusion.
Having to go against our familiar conventions also gives us
pause. Having to drive on the right hand side of the road
when you are accustomed to driving on the left means you
have to concentrate a bit more, and pay attention to the
implied things like going counter-clockwise around traffic
islands. Even as a pedestrian, when crossing a two-way road
you naturally and automatically expect traffic in a particular
lane to be travelling in a particular direction, and when cars are
on the ‘wrong’ side of the road, crossing that road takes a bit more thought.
So it is with programming. When we read code in a particular language, we
naturally and automatically make assumptions about its behaviour according to
the idioms of that language. For example, in Python member functions, it’s
conventional to use self to refer to the current object instance. It’s not enforced,
but it would cause most Python programmers significant confusion if you were to
write this instead, even though it’s entirely legal to do so.
Deliberately going against convention can have positive consequences, however.
When it was introduced by Alexander Stepanov, the C++ STL went against a
huge body of accepted wisdom for container and algorithm libraries that had
gone before it.
Such paradigm-shifts are the result of questioning the accepted conventions, and
challenging them. You can’t just go out and drive on the wrong side of the
road...or remove all handles from doors that only push, either!

 S
Volume 22 Issue 1
March 2010

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Ian Bruntlett, Pete Goodliffe,
Paul Grenyer, Richard Harris,
Jex Higgins, Alan Lenton,
Phil Nash, Roger Orr,Terje Slet
Dáire Stockdale

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | MAR 2010

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
27 Inspirational (P)articles

Dáire Stockdale shares a
recent source of
inspiration.

28 Code Critique
Competition #62
Set and collated by
Roger Orr.

33 Desert Island Books
Paul Grenyer maroons
Terje Slettebø.

REGULARS
34 Bookcase

The latest roundup of
ACCU book reviews.

36 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 22.2: 1st April 2010
C Vu 22.3: 1st June 2010

Overload 97: 1st May 2010
Overload 98: 1st July 2010

FEATURES
3 Live to Love to Learn (Part 2)

Pete Goodliffe continues his journey of self-improvement.

6 Of Lag, Throughput and Jitter
Alan Lenton gives a glossary of terms.

8 Continuous Integration for One
Jez Higgins sees value in team tools for one person.

10 Code Formatting in C++
Phil Nash explains why formatting counts.

13 A Game of Stategy
Baron Muncharris sets us another challenge.

14 On a Game of Skill
The Baron’s student acquaintance plays the game.

15 Assert Yourself
Richard Harris finds new respect for the humble assert.

16 Developing Web Applications with the Google Web Toolkit
Paul Grenyer explores web UI development in Java.

26 More About Bash
Ian Bruntlett discovers more *nix shell tools.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Professionalism in Programming # 60
Live to Love to Learn (Part 2)
Pete Goodliffe continues his journey of self-improvement.

Learning is like rowing upstream: not to
advance is to drop back.

~ Confucius
n the previous instalment of this column we began a journey of self-
improvement. This is an unrepentant exploration of a ‘soft skills’ topic,
one that is very often radically under-appreciated in our field.

In the last issue we considered the importance of learning to our craft.
Software developers are in the knowledge business. We’re not mechanical
automatons, doing the same thing over and over. We’re constantly solving
new problems and facing new challenges. We’re continually acquiring
information, using information, and generating information. We must
therefore be able to learn constantly, or it’s Game Over. We must ensure
that we know how to learn.
We also thought a little about what to learn. This list includes technology
and technical skills, as well as softer skills (e.g. team-working). It also
includes more ‘left-field’ non-programming topics; we need a broad
world-view to inform our technical decision making processes. Learning
basket-weaving might just give you valuable insights into your day job!

The facts of life
Here are a few facts that provide some useful context to the world of
learning.
Learning is a basic human skill. We all do it. We just do it in different
amounts. Small children are constantly learning and amassing new skills.
Language, cause-and-effect, and social skills are picked up rapidly from
birth. As are basic physiological capabilities like eating, walking, and
continence. (Although continence might also be considered a social skill
of sorts.)
When it arrives freshly formatted, the human brain rapidly absorbs
information and develops skills across a wide range of experiences. It’s a
remarkable device, both intricate and powerful, and we need to learn how
to best use it. Unfortunately, it doesn’t come with a User’s Manual. (Even
if it did, most men wouldn’t read it, anyway).
Our learning is often too narrowly focused. Infants absorb information
in many disciplines rapidly. And simultaneously. They don’t know that
they’re simply not supposed to. But all too soon, our training starts; we’re
introduced to the thought police.
Or, rather, at school we hop on board the academic train and our incredible
generalised learning capability is slowly frittered away. At primary school
we are taught a range of topics. At secondary school these topics are
formalised and compartmentalised somewhat. As we progress through the
academic system we cut out certain topics and concentrate on those that
suit us best (because of interest or aptitude). At (UK) GCSE level, we
narrow the focus to about 8 subjects. We progress to A-Level and narrow
that focus to 3 or 4 subjects. Then we progress to university level where
we focus on a single subject.
This increasing focus in learning is useful in that it allows us time to
become highly proficient in one area, and to devote time to practise the
specific skills required to master that subject. It also allows us to chose a
single topic that excites and interests us: surely a prerequisite for effective
learning.
But often such high specialisation is detrimental to your ability to learn in
general. It ingrains a lack of curiosity for other disciplines or any
appreciation of the wider human experience. However, it is when
disciplines collide that we often see the the most exquisite insights

(consider, for example, how Alexander’s architectural work illuminated
the field of software design [1]).
Learning is hard. When an infant learns, the world is new and exciting;
as they coast through it they just absorb stuff. After a certain point, the
things you have to learn become less interesting. Adults force you to learn
stuff. It involves effort. Effort which you could expend on other tasks, like
playing with your friends, or your toys. Then you’re given homework and
learning starts to take over your precious ‘free time’. It feels like hard work.
It is hard work.
Learning is hard.
That hard work will, though, be rewarded. But it’s easy to resent learning
as a tedious chore that stands between us and ‘fun’ or ‘ability’. Many
people’s early school experience of learning still colours their adult life
approach to learning, even if they don’t realise it. How often have you
balanced the reward of learning something against the effort involved?
How often has the initial learning effort put you off learning something
new? Are you now automatically programmed to avoid areas you know
nothing about because it is uncomfortable to appear ignorant?

Have your past experiences coloured the way you approach
learning?

We must learn how to learn. Many people were spoon-fed information
in school, and told not to criticise. This instils a bad attitude to learning;
where it is something someone gives you, or that a teacher does to you.
Learning is actually a personal process that you have to take individual
responsibility for.

Do you take personal responsibility for your own learning?

Don’t blithely accept what you’re told. Keep your brain engaged. It’s
dangerously easy to fall into the trap of believing what you’re reading or
being told is the gospel truth, rather than something that should be
evaluated.

How many people read things on the internet and presume that they
are true? Wikipedia has a genuine air of authority, yet contains many
remarkable mis-truths. Some of the tubes of the internet are rather
grimy.
How many people read things in their newspaper and
unquestioningly presume that they are correct? True, there are
lunatics out there on the web, but paid journalists wouldn’t make
things up, would they? Wrong: there are plenty of lunatics in the
media, too. If you believed everything you read in the newspaper
then you wouldn’t eat or drink anything for fear that it would given
you an incurable disease.
If it’s in a textbook, written by an academic, peer reviewed, and
recommended by a prestigious university then it must be correct.
But consider who paid to write the book, or who funded the
research. What are their motives driven by? Many things presented
as fact in the most prestigious journals are, in fact, opinion and
conjecture backed up by slim arguments. For example, 70% of

I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net
MAR 2010 | | 3{cvu}

everything I’ve written up to this point was made up. Including that
statistic.

Be aware that you can learn the wrong thing and believe it’s the right thing.
This can be at best embarrassing, and at worst dangerous. This is illustrated
by the Four Stages of Competence (a classification posited in the by 1940s
by psychologist Abraham Maslow). You may have:

Conscious incompetence. You don’t know something. But
you know that you’re ignorant. This is a relatively safe position
to be in. You probably don’t care – it’s not something you need
to know. Or you know that you’re ignorant and it is a source of
frustration.
Conscious competence. This is also a good state to be in. You
know something. And you know that you know it. To use this
skill you have to make a conscious effort, and concentrate.
Unconscious competence. This is when your knowledge of a topic
is so great that it has become second nature. You are no longer aware
that you are using your expertise. Most adults, for example, can
consider walking and balance as an unconscious competence – we
just do it without a second thought.
Unconscious incompetence. This is the dangerous place to be. You
don’t know that you don’t know something. You are ignorant of
your ignorance. Indeed, it is very possible that you think you
understand the subject but don’t appreciate how very wrong you are.
It is a blind spot in your knowledge.

So be very careful when claiming competence in any subject, let alone any
level of expertise.

Understanding the brain
Psychologists, biologists, and other similar evil geniuses have studied the
human brain for years, and have formulated many models of brain
behaviour and models of learning. There is an overwhelming quantity of
research on the subject (some quite contradictory).
Understanding (at least at a basic level) how the brain works, and some of
its characteristics will help us work out how to learn most effectively.
The left brain/right brain split. We hear a lot about the ‘left-brain’ and
the ‘right-brain’. These terms have entered pop culture, and you are as
likely to hear them discussed by artists and CEOs as by psychologists. It
comes from research (pioneered in the 1970s by Roger W Sperry who
coined the left/right brain terminology) discovering that our mental
activity is split between the two hemispheres of the brain; either side
controlling a different mode of thinking [2]. The left hemisphere tends to
govern analytic and logical activities (language, symbolic representation,
rational deduction, the linear thought process) whilst the right hemisphere
performs non-linear processes (characterised as non-rational, spatial,
holistic, and identifying spatial relationships).
The common view is that people rely more, or tend towards using, one side
of their brain rather than other. Artistic, creative types favour their right
brain; academics and office-workers favour the left. Apart from
reinforcing a social stereotype, this is not strictly accurate since the split
of brain activity is not pure laterally biased. Several psychologists have
since tried to come up with other terms, but popular culture has latched on
to left- and right- and we’re stuck with them.

Both parts of our brain and both modes of thought are essential. In order
to think and learn effectively we must be able to bring both ‘sides’ of our
brain into use. Since programmers tend to lean towards the left-brain mode
of operation, we must learn to introduce more right-brain thinking into our

regimen; this requires us to find ways to ‘dial down’ our left brain activity
to give the other side a fighting chance.
We’ll see some ways to do this later. There’s a lot more that could be said
on this subject; it is a huge topic, and well worth investigating more if you
are interested.

Personality type affects learning style. If you favour the right-brain
mode of thinking you will learn best when presented with patterns and an
holistic view of a subject, rather than a serial stream of information. You’ll
prefer to make associations and understand overarching themes. If you
favour the left-brain you want a linear rational presentation of the topic.
You’ll prefer to assimilate facts than to have a grand story told you.
Clearly your brain wiring has a radical effect on the most effective style
of learning for you.
There are many models of personality type, perhaps the most famous being
the Myers-Briggs Type Indicator (MBTI) [3]. MBTI classifies your
personality along four axes. Your personality type will effect how you
associate knowledge, and how you best learn. One MBTI axis is Introvert-
Extrovert. Introverts would rather learn on their own – they need private
mental space to work things through. Extroverts learn well in groups where
they can discuss and feed off the ideas of others. Another interesting axis
is Sensing-Intuition. The Sensing personality is the classic left-brainer who
emphasises facts and details. They must complete one task before moving
on. Intuitive people are right-brainers who use their imagination more.
They can move on without completing a task or before they understand
everything about a subject.
Understanding your particular personality type (there are many MBTI tests
available on the web, for example) will reveal specific ways to make your
learning routine maximally effective.

Understand how you learn best.

Memory fades. There was a time when psychologists believed that a
memory, once made, was permanent. However this is not the case: a certain
enzyme (PKMzeta) is required to keep synaptic connections valid. Lose
the enzyme, you lose the memory! [4]
Our memory is also fallible in other, less chemical, ways. The brain isn’t
perfect. You’ll notice that old memories can change and distort in your
mind. (So it’s probably not true that things aren’t as good as they used to
be.) Memories and opinions can easily warp as we recollect them, to fit
our current preferences or preconceived notions. We can very easily
implant our own false memories (unconsciously) or become subject to
false suggestion from others.
In order to keep your memory active, it must be refreshed – constantly read
and exercised. If you don’t need and employ a skill then you will use it. [5]

Use your knowledge. Or you’ll lose it.

Memory grows. It was originally thought that mental capacity decreased
over time; that humans start off with a fixed number of brain cells and
over the course of a lifetime this number decreases (due to the ageing
process, damage caused by trauma, or other abuse – like excessive alcohol
intake).
This was determined by scientists studying animals in laboratory cages;
they saw no sign of neurogenesis – the growth of brain cells. But this was
simply because a brain devoid of stimulus need make no new connections.

Be aware that you can learn the wrong
thing and believe it’s the right thing.

This can be at best embarrassing, and
at worst dangerous.

The common view is that people rely
more, or tend towards using, one
side of their brain rather than other
4 | | MAR 2010{cvu}

The test subjects’ brains didn’t expand because there was no need to; life
in a cage stunts brain growth. That’s a pretty damning indictment of
modern cubicle working!
In the early 1990s, psychologist Elizabeth Gould discovered that in
suitable conditions (an environment with stimulation and opportunities to
interact and learn) the brain is perfectly capable of growing neurons and
making new connections [6]. Other subsequent studies have drawn links
between exercise and increased brain growth.
So that’s good news – you have a practically limitless ability to expand
your mind. And the scientists have proved that you need stimulation do to
so! Break out of your cubicle, and feel free to drink a beer!
Mental state effects learning. Factors such as stress and a lack of sleep
will clearly contribute to an inability to concentrate, and so will degrade
your ability to learn. Your mental attitude also dictates how well you will
learn. Psychologist Carol Dweck’s research [7] shows that students who
believed that they couldn’t increase their knowledge were not able to do
so. Those who believed they could increase their mental capability were
easily able to.

Believe in your ability to learn.

People who enjoy learning naturally learn more. People who want to learn,
learn more. Is this the power of mind over matter? Perhaps it is; and it’s
something we need to exploit. I’ve long argued that our attitude effects the
quality of our work. This is the central theme of my book Code Craft [8].
Learning models There are a number of very
illuminating models of learning that have been
constructed by educational psychologists. The
Dreyfus Model of Skill Acquisition is a
particularly interesting example, postulated by
brothers Stuart and Hubert Dreyfus in 1980
whilst they were working on artificial computer
intelligence [9]. After examining highly skilled
practitioners in fields such as airline pilots and
chess grand-masters, they identified five
specific levels of understanding:

Novice A complete newbie. Novices want
to get results fast, but have no experience
to guide them in doing do. They look for rules they can follow by
rote, and have no judgement to tell whether those rules are good or
bad. Given good rules (or luck finding suitable resources on
Google), novices can get quite far. Novices have no knowledge of a
topic (yet).
Advanced beginner At this level, some experience that has lead to
learning; you can break free from rules a little and try tasks on your
own. But perception is still limited, and you’ll get stuck when things
go wrong. At this level there is a better understanding of where to
get answers (you know the best API references, for example) but
you are still not at a level where you can comprehend the bigger
picture. The beginner can’t focus out irrelevant details, as far as
they’re concerned everything and anything could be important to the
problem at hand. Beginners rapidly gain explicit knowledge – the
kind of factual knowledge than can be easily written down and
articulated.
Competent This stage sees you with a mental model of the problem
domain; you’ve mapped the knowledge base, and have begun to
associate parts and understand the relative importance of different
aspects. This big picture view allows you to approach unknown
problems, and plan methodical routes into those problems rather
than diving in and hoping rules will get you to a solution. This is a
good place to be.
Proficient people move beyond competency. They have a much
better understanding of the big picture, and are frustrated with the
simplifications that the novice needed. They can correct previous
errors and reflect on their experiences to work better in the future.

At this point you can also learn from other’s experiences and
assimilate them into your body of understanding. Proficient people
can interpret maxims (as opposed to simplistic rules) and apply them
to a problem (e.g. they know how and when to apply design
patterns). Now it is easy to identify and focus only on the issues that
really matter, confidently ignoring irrelevant details. Here we see
the person has gained significant tacit knowledge – knowledge that’s
hard to transfer by exposition, that is only gained by experience and
deep understanding.
Expert This is the pinnacle of the learning tree. There are very few
experts. They are authorities on a subject; they know it completely,
and can use this skill interlinked with other skills. They can teach
others (although they probably teach competents better than novices
as there is less of a disconnect). Experts have intuition, so rather than
needing rules they naturally see an answer, even if they can’t
articulate why it’s the best solution.

Why is the Dreyfus Model interesting? It's a revealing framework to
understand where you currently stand in the mastery of a topic, and help
determine where you need to get to. Do you need to be an expert? Most
people are competent and this is satisfactory (indeed, a team of experts
would be far too top-heavy, and probably dysfunctional).
It also illustrates how you should expect to be solving problems at each
stage of your learning. Are you looking for simple rules to apply, hungrily
gathering maxims to draw experience from, or intuitively sensing
answers? How much of a ‘big picture’ view do you have of the topic?

The Dreyfus model is also a very useful aid for
teamwork. If you know where a colleague sits on
the notice-expert spectrum you can better tailor
your interaction with them. It will help you learn
how to work with other people – should you give
them some simple rules, explain some maxims,
or leave them to weave new information into
their broader understanding?
Note than the Dreyfus model applies per skill.
You may be an expert in a particular topic, and
a complete notice in another. This is natural.
And should also be a source of humility – even
if you know all there is to know about Behaviour

Driven Design, you may no nothing about the Joe Bloggs Test Framework.
It should excite you that there is something more to learn that may enhance
your expertise in BDD, whilst keeping you humble that you aren’t an
infallible expert in every subject! No one likes a know-it-all.
Shu-Ha-Ri is another interesting model of learning that originates in
Japanese Martial Arts. It is a set of three terms describing the stages a
student goes through to to achieve mastery in their discipline, roughly
translating to Learn, Detach, Transcend. In the Shu phase, the student
studies under one teacher; he does not understand enough to mix concepts
from different streams, but aims to imitate the teacher precisely. He must
build up experience in the field, absorbing the teacher’s explicit and tacit
knowledge. Once he has a full understanding of the techniques, the student
reflects on them in the Ha phase. The knowledge he has learned will not
change, but he can interpret, reflect and explore the deeper meaning.
Finally, the student progresses to Ri, where he moves beyond studentship;
he has original thoughts, and becomes a master himself. He now has the
skills and experience to innovate.
Heed this model. Don’t try to transcend and innovate until you have
completed the Shu phase of your learning (remember to be aware of
unconscious incompetence) and have completed the Ha phase of
understanding the knowledge.

Conclusion
These are key factors in working out how to learn most effectively. Let’s
review them again:

Learning is a basic human skill. We can all do it. We do it all the
time.

a revealing framework to
understand where you
currently stand in the

mastery of a topic, and
help determine where

you need to get to
MAR 2010 | | 5{cvu}

Live to Love to Learn (Part 2) (continued)

Hunting the Snark # 6
Our learning is too narrowly focused. Consider a wider sphere of
reference. Draw inspiration from other fields.
Learning is hard work. It doesn’t come for free. But you don’t get
a reward without an investment.
Learn to learn. That’s why I’m writing this series! The most
effective learning is done on purpose and planned to maximise
effectiveness.
The left brain/right brain split. We need to employ all of our
available brainpower to make our learning maximally effective.
Personality type affects learning style. Understand how you best
learn and exploit that to your advantage.
Memory fades. Unless you refresh your knowledge by using it,
your memory of it will become unreliable.
Memory grows. Constant stimulation is required to maintain
growing mental capacity.
Mental state effects learning. Cultivate a positive attitude towards
learning. Otherwise you may as well not bother.
Learning models. Certain models can help us classify levels of
expertise and plan how to gain it.

When I set out to write this column I intended to talk about a number of
quite specific techniques that will help us to learn better, and explain the
above topics briefly as background material to justify the techniques. As
you can see, I’ve hardly gone into any detail and yet I’ve filled many inches
of magazine space.

So, in the next instalment, I promise we’ll look at some very practical
techniques to improve our learning capabilities.

References
[1] Design Patterns: Elements of Reusable Object-Oriented Software.

Gamme, Helm, Johnson and Vlissides, Addison-Wesley, ISBN:
0201633612 and A Pattern Language: Towns, Buildings,
Construction, Alexander, ISBN: 0195019199

[2] ‘Lateral specialization in the surgically separated hemispheres’ R.W.
Sperry in Neurosciences Third Study Program. F. Schmitt and F.
Worden (Eds.), Cambridge: MIT Press 3:5-19 (1974).

[3] http://en.wikipedia.org/wiki/Myers-Briggs_Type_Indicator
[4] ‘Brain Researchers Open Door to Editing Memory’ in New York

Times. http://www.nytimes.com/2009/04/06/health/research/
06brain.html?_r=1

[5] Use it or lose it
[6] ‘Neurogenesis in the Neocortex of Adult Primates’ Elizabeth Gould,

Alison J. Reeves, Michael S. A. Graziano, Charles G. Gross in
Science 15 October 1999:Vol. 286. no. 5439, pp. 548 – 52.

[7] Mindset: The New Psychology of Success, Carol S Dweck, Ballantine
Books. ISBN: 0345472322

[8] Code Craft: The Practice of Writing Excellent Code, Pete Goodliffe,
No Starch Press. ISBN: 1593271190

[9] A Five-Stage Model of the Mental Activities Involved in Directed
Skill Acquisition, Stuart E. Dreyfus and Hubert L. Dreyfus, Storming
Media. (Available from: http://handle.dtic.mil/100.2/ADA084551)
Of Lag, Throughput and Jitter
Alan Lenton gives a glossary of terms.

ver the last few years quite a number of people have asked me to
explain the difference between latency, throughput and jitter. I was
surprised at how many of them were programmers <cough, err

software engineers>, but thinking things through, about that’s probably not
surprising because most programmers don’t usually end up at the sharp end
of networking. So, here for your edification is the Alan Lenton guide to
latency, throughput and, as a special bonus, jitter!
Perhaps the best way to explain it is using an analogy. Suppose we have
a wedding party, The bride and groom have exchanged their vows, the
photographs have been taken and it’s time to travel to the reception. There
are 24 limos to take the party to the reception. Everyone gets in. The cars
line up behind the happy couple’s car and it’s time to move off.
Now, as it happens there is a single lane highway that just happens to go
from where the party are now, to the hall where the reception is being held.
As luck would have it, the highway is empty and the cars are able to
proceed single file at top legal speed (70 miles/hour where I come from)
to the reception. The time it takes each car to get to the reception (let’s say
16 minutes) is the latency.
Of course, getting the whole party there takes longer than that, because the
cars are spaced out for safety, so let’s say it takes another 12 minutes
between the time the first car arrives and the last one discharges its
passengers. This is the throughput – two cars/minute. So in this scenario
it takes a total of 28 minutes from the time the first car departs to the time
the last car pulls in, the passengers get out and we can toast the happy
couple with Verve Clicquot NV champagne.

OK – now let’s look at a scenario where the road-making machines have
been busy during the wedding ceremony and have widened the highway
to a two lane affair (fast machines and slow grooms). This time the cars
line up two abreast and set off. It still takes the same time for the first cars
to get there, 16 minutes, but since they are arriving two at a time it only
takes half the time, six minutes, between the first and last car’s arrival –
giving us four cars/minute. That makes a total of only 22 minutes for the
whole caboodle.
Of course, if we had a six lane highway we could get all the cars through
in two minutes bringing the total time down to 18 minutes. That’s probably
as much increase in throughput as is worth doing at this stage since the time
cost of the latency is now much greater than that of the throughput.
So how would we reduce the latency? Well, we could try and reduce the
distance travelled – take out all the bends in the highway and have it made
into a straight line between the start and the finish. That’s probably a little
excessive, so the most obvious way to reduce the latency is to speed up
the cars. So let’s assume that there are no highway patrols and no speed
cameras so we can double the speed. That means that it

O

ALAN LENTON
Alan is a programmer, a sociologist, a games designer, a
wargamer, writer of a weekly tech news and analysis
column, and an ocassional writer of short stories (see
http://www.ibgames.com/alan/crystalfalls/index.html if
you like horror). None of these skills seem to be
appreciated by putative employers...
6 | | MAR 2010{cvu}

http://handle.dtic.mil/100.2/ADA084551
http://www.nytimes.com/2009/04/06/health/research/06brain.html?_r=1
http://www.nytimes.com/2009/04/06/health/research/06brain.html?_r=1
http://en.wikipedia.org/wiki/Myers-Briggs_Type_Indicator

only takes eight minutes for the first cars to arrive – if you happen to have
a six lane highway, the total time comes down to ten minutes from start to
finish. That’s not bad!
And jitter? Now this is interesting. In this case, imagine everyone has been
sloppy about setting their cruise controls so that the speeds of the
individual cars are slightly different. Not a lot different, just a tiny
difference. This means that by the time the cars arrive they are just a little
bit out of formation and the time between the arrival of each car is slightly
different. We call this difference jitter. If the jitter is really bad, some cars
might arrive out of order, and those of you who have attended weddings
will know that this is serious, and can cause undying feuds...
So we now have latency, throughput and jitter. How do these apply to the
Internet?
Well, modern networks divide the stuff you are sending (or receiving) into
packets of data (the cars) and send them off to their destination. Network
latency is considered to be the time it takes for you to send a packet and
to receive an answer (a round trip, rather than the one way trip we used),
throughput is considered to be the amount of data you send each second -
usually measured in bits/second – and jitter is a measure of the difference
in time between the arrival of packets.
And how does it affect you?
Well, if you are playing an online game the most important factor is latency
(lag in the common game parlance). The longer it takes for you to get a
response to your command from the game, the more difficult and
frustrating it is to play. Of course, the acceptable lag/latency is different
for different types of games. For a turn-based game a lag of several seconds
will not make any appreciable difference, but for an on-line shoot ’em up,
even a few tens of milliseconds can be too much. A lagged combat flight
sim will have you shooting at opponents who are no longer actually in sight
– even though most flight sims are slowed down by a factor of at least four!
The normal way to handle this is to use a probabilistic method of
determining whether the bullet has hit. The easiest way to visualise it is to
think of a cone of probability of bullets hitting, rather than a stream of
single bullets. Unless of course you are lazy, in which case you offload
the work to the client, instead of doing it at the server. You will then find
yourself in an arms race with your players, who will repeatedly hack the
client to give themselves an advantage.

If you are downloading a large file, the important factor is throughput.
Large files have hundreds of thousands of packets. A several second initial
lag when you ask for the file is nothing compared to the tens of minutes it
takes between the first packet to arrive and the last one. The more packets
you can get through the pipe at the same time (the more lanes), the shorter
the download.
Finally, jitter matters if you are receiving streaming video and audio. In
video if the packets are arriving at slightly different intervals, and you are
watching them in real time, then the picture will appear jerky. In audio the
voice or music is distorted by the timing.
Partly this is caused by congestion, and partly it’s in the nature of the
internet, which you should think of as being like a fishing net where
computers and routers are each knot, rather than two tin cans with a piece
of string stretched between them. In the internet different packets can take
different routes, some of which are longer than others, and as we all know
from school physics, even light travels at a finite speed, so longer routes
will take a longer time.
There are solutions, of course, and the most common is buffering – you
don’t start playing the video until you have a chunk of it already
downloaded, so you are never in a state where the next packet isn’t already
there, and each packet can be displayed at the correct time. Unfortunately,
you can’t delay people’s phone calls in this way, which is why Voice over
Internet Protocol (VoIP) can still be a little on the ropey side.

So now you have more than you ever wanted to know about latency,
throughput, and jitter. Think of it as a little something for you to use
to demonstrate your superiority at both dinner parties and wedding
receptions – especially if you are the best man!
Confession – this started life as a short piece in my weekly
newsletter, ‘Winding Down’. I’ve rewritten and extended it for this
rag. Normally, I write fresh stuff for CVu, but this issue I plead a

stinking cold striking just as the deadline came up, and exhaustion from
having to actually work and commute – yes, surprise, surprise, I finally
got a job!

for an on-line shoot ’em up, even a few
tens of milliseconds can be too much
MAR 2010 | | 7{cvu}

Continuous Integration for One
Jez Higgins sees value in team tools for one person.

ike many of my programming chums, I
believe in the importance of the build.
Breaking the build is a bad thing.

Knowingly breaking the build is, well I’m not
a religious man, but it’s a sin.
Sometimes the build goes wonky or tests start
failing because of mishap or misfortune.
Someone makes a change to one place in the
code, somebody else makes a change in
another part, something goes awry and oopsy.
Of course, tools can help us here. If you’ve got
something that regularly checks your source
code repository for changes, rebuilds
everything as soon as it does, and runs your
tests, then you can find out if there’s a problem
sooner rather than later.
These tools have a name, continuous integration servers, and are so called
because they automate the process of continuous integration as described
by Martin Fowler [1]. You can put something together yourself pretty
easily, but there are any number of them available. At work, we’ve been
using CruiseControl, one of the more widely used CI servers, to reasonable
effect over the past few months of pretty intense development.
We want to push our automated build a little bit further. For various
reasons, our environment is awkward. Putting a release up into the test
servers is complex and still involves a certain amount
of time and a degree of manual intervention.
Consequently, it isn’t happening as often as it should.
We are in a quieter period at the moment and we’re
managing, but when things hot up again it’s going to
be a problem. What we would like to do is finish
automating the process, and have our CI server build
and deploy nightly into our test environment. With that complete, we’re
going to try and kick off the GUI testing scripts as well. Our testers can
spend more time with their feet on the desk drinking tea, while the
developers can be secure that yesterday’s work does actually work.
It’s fallen to me to make this happen. One of the things I needed to do first
was spent a bit of time fiddling with the build server. CruiseControl, while
a sound piece of kit, doesn’t, however, lend itself to easy fiddling. It’s
driven by configuration files and to pick up changes you need to bounce
the server. If you make a mistake in the configuration it’s not necessarily
obvious why, and that’s just a faff and a time consuming one.
By coincidence as I started this work, several people on accu-general had
been discussing the Hudson build server. One thing that stuck in my mind
was that Hudson could be configured entirely though its GUI. I’m slightly
ashamed to say that’s the reason why I gave it a try, but I’m glad I did.
Hudson is extremely easy to fiddle with – setting up builds, chaining
different builds together, tool integration, and so on, are all straightforward
and can be done via a web browser. I doubt there’s anything it can do that
can’t be done with CruiseControl, but for exploratory work it’s streets
ahead.

Most of the time I work remotely, accessing work machines over Citrix.
It sufficient most of the time, but the Citrix connection isn’t exactly snappy
and that becomes a little frustrating when you need work across it for an
extended period.
Because, at the time, I was more interesting in finding out about Hudson
than anything, I installed it on my own server. The network latency
between my desktop machine and the server by my left ankle is always
going to beat Citrix. So I had Hudson and I needed some code. Fortunately,
I had some of that too.. From a standing start to building my Mango library

[2] of Java bits and bobs and running its tests, via
installing a plugin to pull code from Bazaar
repositories, took about five minutes.
I poked around Hudson a bit more and found a setting
to draw a chart of test results. I can see why such a
thing is useful in a team situation, but Mango is one
man project. I build it and run the tests whenever I
work on it. Poking some more, I found another setting

that drew a chart of compiler warnings. That’s when I had a little
revelation.
Continuous integration servers are useful to a group because they’ll let you
know, and know quickly, when the build has broken. And that’s true and
it’s a real benefit. But it doesn’t apply for a one man project. When there’s
only you, there’s no one to integrate with. If a test has failed, it must be
you (by which I mean me) who broke it and that must have happened in
the last few minutes. What CI servers can do for the one man project is
remember. Remember your test results. Keeping track of build times.
Remember your compiler warnings. Stuff you wouldn’t yourself record
unless you were an outrageously meticulous record keeper.
As it happened, Mango had no compiler warnings in the build. However
I had another library that did. Written in Java several years ago, I hadn’t
had reason to work on it for quite some time. Building with a modern Java
compiler produced a slew of warnings, which I’d not had the inclination
to fix. Hooking up Hudson to build it, within a few minutes I had a chart
telling me exactly how many warnings I had – seventy – together with
breakdowns of warnings by type and class name, hyperlinked into the
source.
As I explored the warnings report, some of them looked very simple to fix.
So I fixed them and committed the changes. So Hudson rebuilt the code
and sent me an email telling me it had. That prompted me to look again at
the Hudson build console, where I saw the warnings graph had gone down
a little. Which prompted me to fix another warning. You can probably fill
in the rest. See Figure 1.

L

When there’s only
you, there’s no one

to integrate with

JEZ HIGGINS
Jez works in his attic, which was recently replastered, living
the devil-may-care life of a journeyman programmer. He is
currently learning to tumble turn without getting water up his
nose. His website is http://www.jezuk.co.uk/

Figure 1
8 | | MAR 2010{cvu}

Figure 2

By remembering what had happened in
previous builds and then telling me in an easy
to understand way, Hudson prompted me to
fix a codebase that had languished for years.
The second spike on the chart is where,
having sorted out everything in the main
code, I turned on warnings in the test code.
The psychological effect of that graph was
really remarkable. By having a record of the
build warnings that didn’t simply scroll off
the top of the terminal and disappear, I
shamed myself ito fixing them, while
simultaneously providing a tool to help fix
the problems and positive feedback as I did
so.
I decided to make deliberate use of it. When
building my Arabica XML toolkit [3], I’ve
always used GCC’s default warnings.
Recently I’ve been exchanging emails with
a chap called Ash, who’s using Arabica to
provide XML support for the Flusspferd
Javascript project. Flusspferd builds at a
higher warning level than I do and Ash had
sent me a few patches to silence various
things he was seeing. Setting up Hudson to
build Arabica took, again, only a couple of
minutes even though it’s a C++ project using
Autotools rather than a Java project using
Ant. I cranked up the warning level. 600
hundred warnings! Blimey!
I suspect that Hudson’s GCC warnings
parser isn’t quite as refined as the Java
warnings parser, so I don’t believe that was
the true number. Nevertheless it was still a lot
and rather more that I was expecting. They
were gone in 15 builds (Figure 2). All of
them, gone. I didn’t have to make 600
individual fixes – a change in an include file
can wipe out several warning messages at a
stroke – but I think that’s pretty quick. And
I know I’ll keep those warnings at zero too.
In the next few days, I hacked Arabica’s test
suite to generate JUnit compatible output.
Now Hudson tracks those for me too, as
shown in Figure 3. Another plugin prompted
me to add in Cobertura test coverage analysis to the Mango build. Hudson
charts those results too. If you look at Figure 4 carefully, you’ll see the
lower line starting to trend up.
I installed Hudson on my server so I could fiddle around with it a bit,
expecting to throw it in a couple of days. I didn’t expect that it would creep
into my brain and change the way I worked on my individual projects.

References
[1] Building a Feature with Continuous Integration,

http://martinfowler.com/articles/continuousIntegration.html
#BuildingAFeatureWithContinuousIntegration

[2] Mango, Java library of iterators, algorithms, and functions,
http://www.jezuk.co.uk/mango

[3] Arabica, an XML and HTML toolkit written in C++,
http://www.jezuk.co.uk/arabica

[4] Flusspferd, Javascript bindings for C++, http://flusspferd.org/

Figure 3
Figure 4
MAR 2010 | | 9{cvu}

http://martinfowler.com/articles/continuousIntegration.html#BuildingAFeatureWithContinuousIntegration
http://www.jezuk.co.uk/mango
http://www.jezuk.co.uk/arabica
http://flusspferd.org/

Code Formatting in C++
Phil Nash explains why format counts.

ode formatting or layout is one of the most religious areas
of software development. With so many bloody battles
fought and lost most developers learned long ago to avoid

the matter altogether. They tend to do this by making
consistency the only rule that matters. When in Rome do as the
romans do. After all, everyone knows that it’s all subjective and
doesn’t actually matter.
Or does it?
I’m going to present a couple of views that I hope will lead you looking
at the matter once again. Some of them a little cliched. Some a little more
novel.
First one of the cliches:

code is written for humans to read – otherwise we’d all be writing
assembler

Of course high level languages are not only about human-readability. They
are also about portability and economy of expression, among other things.
Nonetheless human-readability is certainly a large part of it. So if we use
high level languages in order to make our code more readable, should the
layout of that code be irrelevant? Looked at from this perspective we may
say, ‘it should be relevant, but code is also for other humans and it’s the
differences in styles that create the problems – it all balances out to zero’.
In the context of software development is it worth fighting religious war
over a zero-sum game?
What if there was a way to come to a
consensus? Would there now be some
advantage to looking at layout? If so, how
much advantage? These are questions that I
hope to answer shortly.
In the meantime, here’s another cliche:

code fo rmat t i ng i s j us t pe rsona l
preference. It has no intrinsic value

Again – is it worth fighting over something
that has no value? But what if it did?
Sometimes it can be useful to look at the
extremes. Consider listing 1. It’s not too
difficult spot the familiar ‘first c++ program’ example, even if it’s in a less
familiar layout. But are you sure it’s correct? It shouldn’t take too long to
spot the bug (and even if you don’t, the compiler will point it out to you),
but now look at the same code expanded to a more canonical form, in
listing 2.
I would bet that, for the majority of c/c++ developers spotting the missing
; in the second example was faster, and perhaps even more ‘automatic’
than in the first. Even if you agree with that you may wonder, still, how
much that matters. We’re talking seconds, or perhaps milliseconds,
difference in time. And that leads us to another cliche:

The majority of development time is spent debugging code, rather than
writing it

This is often wheeled out when encouraging use of longer, more
descriptive, identifier names, or the use of a more verbose, but explicit,
way of doing something. Actually those areas are somewhat related to our
topic, but here the point is: if actual coding time is a small part of overall
development time, do a few milliseconds here, a second or two there, make
any difference (and remember that was a fairly extreme case)?
These are all good questions. I’m now going to explore some possible
answers for them. What I’m going to present here is my own view, based
on my own experience and research, as well as the experience of a number
of others that have tried my techniques. However the ‘number of others’
is not statistically relevant enough (nor the conditions controlled) to call
it a study, so this remains merely a theory. I encourage you to consider this
material and let me know how you get on with it.

How the eyes and brain read
A few years ago I studied (or, more accurately started studying) speed
reading. A significant portion of what you learn is understanding how the

eye moves across the page, takes information
in, and works with the brain to turn this into
the experience we know as reading. By
understanding these principles we can adjust
our reading style to take advantage of their
strengths (and play down their weaknesses).
As I learnt more I wondered whether the same
ideas could be applied to writing as well as
reading. It seemed logical that if you write in
a way that more closely matches how the eyes
and brain read best then reading will be
easier, and potentially faster. As I continued
studying I found that this is the case. One
commonplace example is newspaper and

magazine text. This text is arranged in columns as columnar material is
easier to digest by the eyes and brain when reading. From here I began to
wonder if this knowledge should affect the way we write code.
Before we look at my conclusions I’ll summarise the key speed reading
insights I thought would be relevant:
Perhaps most important is that the eyes don’t move across the page in a
smooth, flowing, manner. Instead they jump in discrete fixations. At each
fixation the eyes transmit a chunk of information to the brain. The size and
content of each chunk varies and is one of the areas that a speed reader
will exercise, attempting to take in more information at each fixation to
avoid wasting too much ‘seek time’. An average, untrained (in the speed
reading sense), reader will take in about 2-4 words per fixation. For longer
words this will decrease, and if the words are unfamiliar may drop below
the one-word-per-fixation level.

C

PHIL NASH
Phil Nash has been coding for 29 years, and getting
paid for much of the last 19 of them, working with C++
and related languages, including C#, Java and
Objective-C. He runs a blog at
http://www.levelofindirection.com and can be followed
on Twitter as phil_nash.

int main (int argc , charargv[]){printf("hello world\n")}

Listing 1

int main (int argc , char* argv [])
{
 printf("hello world\n")
}

Listing 2

if actual coding time is a
small part of overall

development time, do a
few milliseconds here, a

second or two there, make
any difference
10 | | MAR 2010{cvu}

Following from this is the insight that as well as several words along the
same line being taken in in a single fixation, multiple lines may be taken
in. But that’s crazy talk! When you’re reading you don’t read the lines
above and below, do you? (unless you’re regressing, which is a bad habit
that speed readers try to overcome as soon as possible). Well, speed readers
will push the envelope here, but even for the rest of us we will still be taking
in more information than we are consciously reading. The smooth,
flowing, word-by-word reading experience that we perceive is an illusion.
There is actually a disconnect between the information being captured by
the eyes, transmitted to the brain, assembled and interpreted, and the
perception of words flowing through our conscious minds.
We’re in danger of getting too deep here. Let’s stick with the knowledge
that we can take several words horizontally and vertically in at each
fixation. We can add to that another counter-intuitive nugget from the
speed reading world. Good speed readers don’t necessarily scan left-to-
right then down the page (assuming a western reading context), but may
scan in different directions according to different strategies – e.g., scanning
down the page, then back to the top for the next column – even if they then
have to mentally reassemble back into the original word order (I never got
to this stage).
None of this addresses the question of whether this is even worth looking
at. Are we trying to solve a problem that doesn’t exist? We’re constantly
warned against premature optimisation but can that apply to our approach
to code layout too?
Actually we have touched on one relevant principle already. I’ll highlight
it again here:

The smooth, flowing, word-by-word reading experience that we perceive
is an illusion

Why is this relevant? Well for one it tells us that what we think is happening
is not necessarily what is actually happening. A lot of processing is
occurring before the material we are reading is even presented to us
consciously. With practice we can get better at reading unoptimised

material – so much so that we are unaware of it. That doesn’t mean the
processing isn’t happening. Processing has a cost associated with it. It tires
us in particular it tires parts of the brain that we tend to use for other
programming related activities too, such as solving certain types of
problems – or extracting relevant details from a sea of information. It’s
almost like offloading some heavy number-crunching to a GPU then
finding that your refresh rates are suffering.
Another factor is the concept of flow. When we are thinking about one
problem and we are focused on it we are in a certain flow. The more we
are then distracted by the mechanics of the task – consciously or
subconsciously – the more it can knock us out of the the flow. Again, we
may be so used to this that we hardly notice. Pay attention next time you
are stuck in a problem and you find yourself losing track the more you have
to hunt around through the code.
In summary, we need to get out of the trap of just looking at the numbers
(a second here, a few milliseconds there). They may bear little relation to
the real factors at play.
There’s more we can learn from the world of speed reading and eye-brain
coordination, but we now have some things to go on that can lead us to
conclusions about code formatting.

Code fixation
First, the way eye fixations are able to take in multiple words both
horizontally and vertically suggests that islands of related code should be
readily assimilated in one or two fixations. Such islands can be created
through logical grouping, and effective use of whitespace both to separate
from other islands and for alignment purposes. Alignment touches on

another eye–brain insight that I’ve not mentioned yet. Briefly, reading
speeds can be enhanced by the use of a guide. This may be a moving object
such as a finger or pencil), but just having a hard edge can be helpful too.
However, too much of the same thing can make it harder to keep track of
where we are, so if the hard edge is too long it loses some of its
effectiveness. It follows, therefore, that small blocks with hard edges
achieved through alignment should help the eye to more readily distinguish
the associations between sections of code.
A lot of these are things we already do to some extent. Our use of code
blocks and indentation help visually organise code to make it easier to take
in – but can we take it further?
One good example is blocks of variable declarations. I’ll be using C++ as
an example here, as that has been my focus in this, but most of what I’m
talking about applies to most, if not all, programming languages. I’d argue
that you’ll notice the difference in C++ more than most.
So, here is a typical stretch of variable declarations in listing 3.
Already this is organised into a little island. If the declarations were
scattered around we would lose that aspect. Whether that makes sense for
your application is another matter. I’m not suggesting you lose the benefit
of declaring variables closer to where they are used. What I really want to
illustrate is what happens if you add a bit of whitespace for alignment
purposes. See listing 4.
Now most of us have probably seen code like this. Maybe we already prefer
such a style. But quite a number of developers seem to be against it, either
actively (they really dislike it), or at least have concerns over the extra
overhead of writing and maintaining in this style.
Well, if you’re one of that number, please bear with me. There is more to
get out of this yet. Also, as we’ll see, I believe the big wins are actually in
other areas that we’re building up to.
So let’s analyse the properties of his format for a moment. Firstly we have
three columns here. The first column contains the types. The second the
names and the third the initially assigned values, if any. One of the potential
problems here is that, as each column is as wide as the longest field in that
column, the more columns we have the more horizontal space we’ll end
up using. In C++, between templates and namespaces, this can get out of
control quickly. As we’ll come onto a bit more later, if you have to scroll
to take in a line you’ll undermine any efforts to make things more readable.
Another problem is that it amplifies the objection over the writing and
maintenance overhead of such a style. In this simple example we have
seven points at which whitespace must be maintained for alignment
purposes!
A compromise is to use just two columns, as in listing 5.
This still allows the identifier names to be easily scanned, but at some loss
of clarity with respect to the initialised values. Arguably the identifier
names are the most important element here (from the perspective of fast
lookup), and are the most obfuscated in the original example, so this is still

char* txt="hello" ;
int i = 7;
std::string txt2 = "world";
std::vector<std::string> v;

Listing 3

char* txt = "hello";
int i = 7;
std::string txt2 = "world";
std::vector<std::string> v;

Listing 4

char* txt = "hello";
int i = 7;
std::string txt2 = "world";
std::vector<std::string> v;

Listing 5

When you’re reading you don’t read
the lines above and below, do you?
MAR 2010 | | 11{cvu}

a big improvement. How big? We’re getting to that. At this point I just
wanted to present some options and examples, with a little rationale. We’ll
build on these shortly.

For sake of arguments
Blocks of variable declarations are common, but spreading them out
through a function is perhaps even more common – making the above
examples less relevant.
However there are a couple of places where we do still regularly see groups
of related variable declarations in once place. One is in class definitions,
where member variables are usually grouped in one place. Immediate
readability of the names is probably even more important here as we tend
to flip back to a class definition in a header file (in the case of C++) just
for a moment to get the names.
But the other place, and where I’d like to focus further, is function
parameter lists.
Parameter lists are obviously important. They define the interface between
the function (or method – I’ll use function here to mean both) and its caller.
When looking at a function signature (usually at the prototype in a header
file) a caller can see what arguments need to be passed in. However, when
looking at the function body the parameter list shows you what has been
passed in. If these two statements sound obvious then why do we so often
neglect how these things are presented – as if they are second class citizens
in our code?
How often have you seen (or written) a function that takes some number
of parameters, where the parameter list is all on one line and spans more
than a typical screen-width? – sometimes several screen-widths! Often an
attempt is made to rectify the situation by splitting the list over one or more
lines, sometimes even one parameter per line (but by no means always).
Even then the tendency is to place the first parameter on the same line as
the function name, then try to line up the subsequent parameters with the
first. Something like listing 6.
Does this look familiar? I don’t know about you but, even though it might
look like an extreme example, I see this sort of code all the time. And
remember this is where someone has made an attempt to split across lines
and use alignment! Just today I saw an example on my current project of
a function signature that was 239 characters wide – and that was by no
means the worst case in the project.

And we haven’t even added namespaces yet (except for std)!
I think you’ll agree that this is a big readability issue. The issue is made
worse by a lack of consistency which often accompanies such attempts.
Sometimes multiple parameters are on one line, sometimes split across
several. Sometimes aligned, sometimes not. Even if the developer is
following other conventions consistently this one seems to slip through the
cracks – probably because it is often not defined and it can be difficult to
know exactly what to do in a consistent way.
I have a theory about this state of affairs. It’s an important theory (even if
it turns out not to hold in this case) because it touches on a principle of
why people get so religious about code formatting in the first place. I’m
going to expand on that a bit later, but for now the theory is this:

Developers can’t find a consistent style because the most obvious
consistent style seems somehow ‘wrong’

The underlying principle, which I’ll come back to is:
Regardless of what is objectively good, what is familiar always wins out

So what is the one true way when it comes to formatting function
signatures? Well, apart from ‘one true way’ being an overstatement, I’m
going to leave my specific recommendation for a subsequent article (how
else could I get you to come back?)

End of scope
Before I finish for now I want to come back to the issue of how important
this all is in the first place. We touched on three areas that I believe are
worthy of consideration:

The overhead of reading code ‘unoptimised’ for reading may be
more significant than we realise due to the subconscious processes
that are at play – not just in time, but in energy and focus.
Even relatively small interruptions to our state of flow can have a
noticeable impact on our productivity. Sometimes it can even
become a serious bottleneck – think ‘butterfly effect’.
Having a consistent style may actually speed up code writing time,
but optimising that style for the way our eye-brain connection works
can lead to significant increases in code reading/ comprehension
time.

In the next articles I will present my recommendation for function
signature formatting and return once again to the question of how much
difference it makes, including some anecdotal evidence.

void NamespaceQualifier :: SomeDescriptiveClassName ::LongishMethodName(int firstParameter ,
 const std : : string& secondPar
 const std : : vector& thirdPara
 Widget fourthParameter)Li

st
in

g
6

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
12 | | MAR 2010{cvu}

A Game of Strategy
Baron Muncharris sets us another challenge.

ir R-----! my fine fellow! I must say that it does me good to see you
here this winter's night. Come take a glass of this warming spirit to
see off Jack Frost and his mischievous cohorts.

As a Gentleman of sport, might I tempt you to pit your purse against mine
in a game of strategy?
Splendid! It is to my shame that I entertained the remotest doubt that a man
of your mettle would shy from a challenge.
I have in mind a game that I learnt from Feldmarschall von ?'?a§dr,
commander of the dragon army of that greatest and most enlightened
nation of Neptune; East Grinstead. It is employed there to train young
officers in the art of placing defensive forces in the contested territory
between them and West Grinstead; the two nations having been formally
at war following the rape of Bramber some several hundred years ago.
The rules of the game are simple enough. I shall place a coin heads up upon
a chess board and then you shall counter by placing a coin tails up upon
any square other than that I have chosen. Each square on the board will be
deemed to be controlled by the player whose coin is closest to it, as
measured by the least number of moves required to move from the one to
the other by a king in the noble game of chess.
We shall continue to take turns placing coins in unoccupied squares until
we have both placed three coins on the board. If, after we have each played
our three coins, I control more squares on the board than you then I shall
have won the game and may take all six coins as my bounty. To counter
the advantage I have in playing first, you shall win and take the coins if
you control a greater or equal number of squares as I.
Now I feel it is only fair to warn you that I have something of a natural
talent for strategy. Indeed, after having bested every officer in training I
was immediately given the rank of Oberleutnant and dispatched to defend
the border. This was, of course, during the well reported escalation of
hostilities that arose after East Grinstead beat West Grinstead 13 knees to
3 in the Neptune International Cup and the subsequent accusations that the
former had been wearing illegal performance enhancing lederhosen.
The account of how I diffused the situation and averted all out war with a
well timed witticism regarding the peoples of Saturn is a tale for another
evening.
I explained these rules to that witless student whom it is my very great
misfortune to know and he started babbling on about the strangulation of
some poor fellow called Delaney during a discreet duel with Lord
Fauntleroy. Not a minute later he admitted that his story probably had little
bearing on the playing of this game; a fact so transparently self evident that
it should have been clear to all but the most feeble of minds.
Now, sit here and take another glass whilst I decide on my first move!

Figure 1 shows the distances of squares from O and Figure 2 shows coins
and controlled squares after each round of a game (heads: O, tails: X)..

Listing 1 is a struct representing a position; listing 2 is measuring the distance
between two positions; listing 3 is calculating the scores.

4 3 3 3 3 3 3 3

4 3 2 2 2 2 2 3

4 3 2 1 1 1 2 3

4 3 2 1 O 1 2 3

4 3 2 1 1 1 2 3

4 3 2 2 2 2 2 3

4 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4

S O O O O O O O O

O O O O O O O

X O O O O O O

O X X O O O O O

X X X O O O O

X X X X X O O O

X X X X X O O

X X X X X X O

O O O O O O O

O O O O O O

X O O O O X

O X X O O X X

X X X X O X X

X X X X X O X

O X X X X O O O

X X X O O O O

X X X X

X O X X X

O O X O X X

O X O O O O X X

X X O X X

X X X X X O O O

O X X X X O O O O

X X X O O O O

struct position
{
 size_t rank;
 size_t file;
 position();
 position(size_t rank, size_t file);
 bool operator==(const position &x) const;
};
position::position()
{
}
position::position(size_t rank,
 size_t file) : rank(rank), file(file)
{
}
bool
position::operator==(const position &x) const
{
 return rank==x.rank && file==x.file;
}

Listing 1
Figure 2

Fi
gu

re
 1
MAR 2010 | | 13{cvu}

On A Game of Skill
The Baron’s student acquaintance plays the game.

ecall that the Baron's latest game involved taking turns to select cards
from the set
A♥ 2♥ 3♥ A♠ 2♠ 3♠ A♣ 2♣ 3♣

and trying to construct tricks of three cards with either the same suit or face
value. The Baron’s opponent is the first to select a card and has the
advantage that three cards all differing in both suit and face value are a
winning trick provided they include the first card selected.
The Baron balances this advantage with the fact that he is also considered
the winner if neither he nor his opponent can build a winning trick before
the cards are exhausted.
Upon hearing the rules, I immediately exclaimed that the game is
isomorphic to the children’s game of tic-tac-toe, as can readily be seen by
properly laying out the cards upon the table.
Specifically, the first card chosen by the Baron’s opponent should be
surrounded by the remaining cards such that each row is formed from one
suit and each column from one value. For example, if the first card is 3♠
we could lay out the cards as follows.

Here, the Baron’s winning tricks are the rows and columns and his
opponent’s the rows, columns and diagonals.

Now, when the Baron selects a card we shall place an X in the gap and for
his opponent an O. Doing so, an example of play might be

We can thusly construct a game of tic-tac-toe for any first choice of card
and, as any child might tell you, this game cannot be won by either player
barring error.
As such I should have advised Sir R----- to have declined to play.

A♣ 3♣ 2♣

A♠ 3♠ 2♠

A♥ 3♥ 2♥

R
A♣ 3♣ 2♣ A♣ 3♣ X A♣ 3♣ X

A♠ O 2♠ A♠ O 2♠ A♠ O O

A♥ 3♥ 2♥ A♥ 3♥ 2♥ A♥ 3♥ 2♥

A♣ 3♣ X A♣ O X A♣ O X

X O O X O O X O O

A♥ 3♥ 2♥ A♥ 3♥ 2♥ A♥ X 2♥

A♣ O X X O X X O X

X O O X O O X O O

A♥ X O A♥ X O O X O
14 | | MAR 2010{cvu}

 while(first!=last)
 {
 const size_t dist = distance(x, *first++);
 if(dist<best) best = dist;
 }
 return best;
}
std::pair<size_t, size_t>
score(const std::vector<position> &first,
 const std::vector<position> &second)
{
 std::pair<size_t, size_t> score(0, 0);
 for(size_t rank=0;rank!=8;++rank)
 {
 for(size_t file=0;file!=8;++file)
 {
 const position x(rank, file);
 const size_t first_best
 = shortest(x, first);
 const size_t second_best
 = shortest(x, second);
 if(first_best < second_best)
 ++score.first;
 if(second_best < first_best)
 ++score.second;
 }
 }
 return score;
}

Listing 3 (cont’d)

size_t
abs_diff(size_t x, size_t y)
{
 return x>y ? x-y : y-x;
}
size_t
distance(const position &x, const position &y)
{
 const size_t rank_dist
 = abs_diff(x.rank, y.rank);
 const size_t file_dist
 = abs_diff(x.file, y.file);
 return std::max(rank_dist, file_dist);
}

Li
st

in
g

2

size_t
shortest(const position &x,
 const std::vector<position> &moves)
{
 size_t best = 8;
 std::vector<position>::const_iterator first
 = moves.begin();
 std::vector<position>::const_iterator last
 = moves.end();

Li
st

in
g

3

A Game of Strategy (continued)

MAR 2010 | | 15{cvu}

Assert Yourself
Richard Harris finds new respect for the humble assert.

hen I started out as a, for want of a better description, professional
programmer, I was advised by a senior colleague to avoid asserts
and rely instead upon proper error handling. The reasoning was

sound enough; since asserts compile to nothing during a release build any
errors that they check for will pass by unnoticed.
Relatively recently, I came to the conclusion that this argument misses a
crucial point; asserts are not for checking statements that should be true,
but rather for checking statements that must be true.
The distinction is principally that the former are not within the control of
your own code and the latter are. Any requirements that can be broken by
a client using the public interface to your code, be that functions declared
in a header file or public member functions of a class, or by interaction
with external libraries and/or resources fall into the former and are rightly
handled with a fully featured error mechanism such as exceptions. Any
requirements that are logical consequences of the
correct implementation of your code are rightly
handled with asserts.
The most obvious example is the use of asserts to
describe pre and post conditions of any non-public
functions used to abstract away implementation
details of functions in the public interface to your
code. As such, they serve as a kind of compiler
en fo rced documen ta t i on to a s s i s t fu tu re
maintenance; not as powerful as that provided by
languages like Eiffel, but useful nevertheless.
Now I am reasonably certain that I haven’t raised any
points that aren’t already well known. However, I
have recently been exposed to another use of assertions that I suspect is
not so widely disseminated.
I am currently trying to generalise an algorithm for constructing Delaunay
triangulations from the plane to an arbitrary numbers of dimensions. A
Delaunay triangulation is a unique scheme for connecting points in a plane
into triangles such that every vertex is one of the points. All of my sources
claim that such a generalisation is possible, although irritatingly none of
them provide any specific details on how one might go about it.
Neither a description of the algorithm nor my desire to generalise it are
pertinent to this article, so I shall provide neither. I can almost hear the
sighs of relief from readers sick to their stomachs of my relentless crusade
to force feed mathematics to members of the ACCU.
I shall, however, attempt to impress upon you the tremendous difficulties
that arise when trying to generalise an algorithm that operates in two
dimensions to one that operates in an arbitrary number. The difficult step
is, in fact, moving from two to three dimensions. Many geometrical
properties that are blisteringly obvious in two dimensions turn out to be
patently false in three.

A nice example is the fact that there are an infinite number of regular
polygons; polygons with sides of equal length and internal angles of equal
size. In contrast there are only five regular polyhedra; the Platonic solids.
The simplest way to demonstrate that this is so is to transform the problem
from one of geometry to one of algebra and to reason about numbers rather
than shapes. In doing so, one is equipped to further show that there are six
in four dimensions and just three in all other numbers of dimensions.
The fact that we as humans seem spectacularly ill equipped to reason about
geometry in more than two dimensions is something I believe to be a
consequence of the fact that we live in a two dimensional world. Our
retinas are two dimensional; we see in two dimensions plus depth. Our
movement is two dimensional; until very recently in our history we were
more or less constrained to move only upon the surface of the Earth. Small
wonder that we seem to have an intuitive grasp of two dimensional

geometry, but are often flummoxed in three or more
dimensions; try to imagine a rotating a four
dimensional analogue of a triangle for a clear
demonstration of our cognitive limitations.
The transformation of a problem from one of
geometry to one of algebra is almost always the
easiest way to generalise it to higher number of
dimension and it is exactly this approach that I have
taken in trying to construct my arbitrary dimensional
Delaunay triangulations.
Specifically, I represent my multidimensional
triangles with arrays of indices into a collection of
points. I must now try and figure out the rules for

manipulating those arrays of indices such that their geometrical
interpretation represents a Delaunay triangulation. Unfortunately this is
not an easy task since I am not capable of intuiting the geometric operations
required to manipulate my triangles from which I might derive a system
of rules for manipulating my arrays of indices. Indeed, I have upon my desk
a number of models built out of toothpicks and ticky tack!
And it is here that asserts have come to my rescue. By using asserts to test
things that I believe to be true I have been able to discover when I have
held erroneous beliefs due to my pedestrian two dimensionalism. They
have proven to be a supremely effective tool for whittling away at my
assumptions and revealing the true rules for the geometric manipulation
of multidimensional triangles.
I am convinced that this can be exploited in the development of any
algorithm. Unit tests can tell us that our code fails to meet requirements,
but not why. With appropriate use of asserts we can reveal the why and that
is the reason behind my new-found respect for this humble and unfairly
overlooked device.

W

RICHARD HARRIS
Richard Harris has been a professional programmer since
1996. He has a background in Artificial Intelligence and
numerical computing and is currently employed writing
software for financial regulation.

If you read something in C Vu
that you particularly enjoyed, you
disagreed with or that has just
made you think, why not put pen
to paper (or finger to keyboard)
and tell us about it?

we as humans seem
spectacularly ill

equipped to reason
about geometry in

more than two
dimensions

16 | | MAR 2010{cvu}

Developing Web Applications with the
Google Web Toolkit

Paul Grenyer explores Web UI development in Java.

he Model View Controller pattern [1] is often used to build Java based
enterprise web applications. It separates the user interface (view)
from the application logic (controller) and data (domain).

Traditionally the view is implemented using Java Server Pages (JSP) and
there are a number of frameworks, such as Struts [2] that can help you do
this. However, fundamentally you still have to write JSPs and they are
cumbersome and difficult to test.
Writing a user interface for a Java application using JSP does not make
much sense when you consider that the rest of the application is written in
Java. If there is any functionality shared by the user interface and the
application logic it must be implemented and maintained twice. If you have
objects in the domain that need to have all or part of their state displayed,
you have to decompose them and transfer the data to a page to be displayed.
The Google Web Toolkit [3] solves all of these problems and is much
easier to write and test than JSPs. In this article I am going to look at GWT
application project structure and how to write an application for creating
and modifying Spring Security users as an example of how to develop
applications with GWT.

Creating a GWT application
Creating an application with the GWT plugin could not be much simpler.
Click the New Web Application Project button from the GWT plugin
toolbar and fill in the New Web Application Project dialog (Figure 1):

1. Fill in the project name (e.g: UserManager).
2. Fill in the package name (e.g: uk.co.marauder.

usermanager). This is the top level package under which the Java
parts of the project will be.

3. Untick the Use Google App Engine as it is not required for a GWT
project.

4. Click Finish to create the project.
This will create a project called UserManager. If you are keen to see what
a GWT web application looks like it can be run in the normal Eclipse way
by selecting the project in Eclipse’s Project Explorer and clicking the green
run arrow. This will open a development mode window containing a URL
similar to the following:
 http://localhost:8888/UserManager.html?gwt.
 codesvr=192.168.106.1:9997

The web application is running in an embedded webserver and can be
accessed by pasting the URL into a browser. The first time you do this
you will need to follow the instructions to install the GWT Developer
plugin.
Once the plugin is installed and your browser restarted the Web
Application Starter Project, which is the default GWT project, is displayed
(see Figure 2). It consists of a title, and edit box with a label and a button.
Clicking the button sends the contents of the edit box to the server, via

Remote Procedure Call (RPC). The server returns some information which
is displayed in a dialog box (see Figure 3). Although this seems very

T
‘E

PAUL GRENYER
An active ACCU member since 2000, Paul is the founder
of the Mentored Developers. Having worked in industries
as diverse as direct mail, mobile phones and finance,
Paul now works for a small company in Norwich writing
Java. He can be contacted at paul.grenyer@gmail.com

Figure 1
Figure 3

Figure 2

simple, the application is demonstrating two of the most important features
of GWT:

The ability to write a web application front end in Java
Remote procedure calls

Let’s take a look at the project structure. As you can see from Figure 4,
GWT projects have a fairly normal Eclipse project structure with a few
extras. The extras are the GWT SDK, which consists of the two JARs
needed to write and compile Java code and the war directory which
provides a deployable structure for the web application. When the
application is ready for deployment this directory can be zipped into a .
war file and deployed to a servlet container such as Apache Tomcat [4].
GWT project structure is explained in detail in the Organising Projects
development guide [5] on the GWT website. I have included some extracts
below to give an overview:

Module XML files
Individual units of GWT configuration are called modules. A module
bundles together all the configuration settings that your GWT project
needs:

Inherited modules
An entry point application class name; these are optional, although
any module referred to in HTML must have at least one entry-point
class specified
Source path entries
Public path entries
Deferred binding rules, including property providers and class
generators

Modules are defined in XML and placed into your project’s package
hierarchy. Modules may appear in any package in your classpath, although
it is strongly recommended that they appear in the root package of a
standard project layout.
The XML Module file generated for the UserManager project,
UserManager.gwt.xml, looks like Listing 1 and:

Defines the name of the module for the project (usermanager)
Inherits the required GWT modules:

com.google.gwt.user.User

com.google.gwt.user.theme.standard.Standard

Specifies the entry point class:
uk.co.marauder.usermanager.client.UserManger

Tells the GWT compiler where to find the source files it needs
relative to the module XML file (client).

HTML host pages
GWT modules are stored on a web server as a set of JavaScript and related
files. In order to run the module, it must be loaded from a web page of some
sort. Any HTML page can include a GWT application via a SCRIPT tag.
This HTML page is referred to as a host page from the GWT application’s
point of view. A typical HTML host page for an application written with
GWT from scratch might not include any visible HTML body content at
all.
The UserManager host page, UserManager.html, looks like Listing 2.

GWT was designed to
make i t easy to add
GWT functionality to
ex i s t i ng we b
applications with only
minor changes. It is
possible to allow the
GWT modu le t o
se l e c t i ve ly i n se r t
widgets into specific
places in an HTML
page. To accomplish
this in the example
above, the id attribute is
used to specify a unique
ident i f ie r tha t your
GWT code will use to
attach widgets to that
HTML element.
The UserManager host
page:

Specifies a style sheet called (UserManager.css), which is also
generated as part of the project.
Sets the page title
Includes the JavaScript generated for the module by the GWT
compiler (usermanager.nocache.js).

<?xml version="1.0" encoding="UTF-8"?>
<module rename-to='usermanager'>
 <inherits name='com.google.gwt.user.User'/>
 <inherits name='com.google.gwt.user.theme.standard.Standard'/>
 <entry-point class='uk.co.marauder.usermanager.client.UserManager'/>
 <source path='client'/>
</module>

Li
st

in
g

1
Figure 4

<html>
<head>
 <meta http-equiv="content-type"
 content="text/html; charset=UTF-8">
 <link type="text/css" rel="stylesheet"
 href="UserManager.css">

 <title>Web Application Starter Project</title>

 <script type="text/javascript"
 language="javascript"
 src="usermanager/usermanager.nocache.js">
 </script>
</head>

<body>
 <h1>Web Application Starter Project</h1>
 <table align="center">
 <tr>
 <td colspan="2" style="font-weight:bold;">
 Please enter your name:
 </td>
 </tr>
 <tr>
 <td id="nameFieldContainer"></td>
 <td id="sendButtonContainer"></td>
 </tr>
 </table>
</body>
</html>

Listing 2
MAR 2010 | | 17{cvu}

Specifies the body of the HTML tag, including two place holders for
GWT functionality (nameFieldContainer and
sendButtonContainer). The td tags include an id attribute
associated with them. This attribute is accessible through the DOM
class. You can easily attach widgets using the method RootPanel.
get().

Entry point classes
A module entry-point is any class that is assignable to EntryPoint and
that can be constructed without parameters. When a module is loaded,
every entry point class is instantiated and its EntryPoint.
onModuleLoad() method is called.
Part of the UserManager entry point class, UserManager.java, is
shown in Listing 3.
Here a button and a text box widget are created and attached to the HTML
host page via RootPanel.get(). There is plenty more code in
UserManager.java which I have not shown. It, along with the code in
GreetingService.java, GreetingServiceAsync.java and
GreetingServiceImpl.java, is mostly related to making a Remote
Procedure Call (RPC) and displaying a dialog box, which I will describe
in more detail later.

The WAR directory
The war directory is the deployment image of your web application. It is
in the standard expanded war format recognised by a variety of Java web
servers, including Tomcat, Jetty, and other J2EE servlet containers
(Table 1). It contains a variety of resources:

Static content you provide, such as the host HTML page
GWT compiled output
Java class files and jar files for server-side code
A web.xml file that configures your web app and any servlets

The web.xml file is worth looking at in a little more detail (Listing 4).
In its most basic form, web.xml specifies the default or welcome HTML
page. For the UserManager project it also tells the servlet container how
to handle RPC calls, but as I am going to look at that in more detail later
I have omitted it here.

Writing web applications with GWT
To demonstrate how to write a web application in GWT I am going to work
through an example and develop a front end for creating and editing Spring
Security users, using a slightly modified version of the data access layer I
developed as part of my Data Access Layer Design for Java Enterprise
Applications [6] article. In the article I created a class to model a Spring
Security user and wrote a data access layer capable of serialising it to and
from a database. Listing 5 shows a slightly modified version of the class.
The modifications required are making all the setters public and the whole
class serializable using the GWT IsSerializable marker interface.
This is because, as we will see shortly, we need to be able to use Dozer, a
Java Bean to Java Bean mapper that recursively copies data from one
object to another, to make a copy of the class and have it serialised between
the client and server.
The User class has fields for a user name, password, enabled flag and a
list of authorities. Therefore the user interface for creating and editing
Spring Security users needs to have an equivalent widget for each, plus a
button for saving users, a button for finding users, buttons for adding and
removing authorities and an edit box for entering authorities to add.

Making a basic project
To start off with we need a basic GWT application and the UserManager
project is ideal. If you have not done so already, create it and remove the
following files as these are an example of how to implement remote
procedure calls and are not needed:

 GreetingService.java

 GreetingServiceAsync.java

 GreetingServiceImpl.java

Directory File Purpose

war/ UserManager.html A host HTML page that loads the UserManager application.

war/ UserManager.css A static style sheet that styles the UserManager application.

war/usermanager/ The UserManager module directory where the GWT compiler writes output and files on the public
path are copied.

war/usermanager/ usermanager.nocache.js This is the script that must be loaded from the host HTMLto load the GWT module into the page.

war/WEB-INF All non-public resources live here, see the servlet specification for more detail.

war/WEB-INF web.xml Configures the web application and any servlets.

war/WEB-INF/classes Java compiled class files live here to implement server side functionality.

war/WEB-INF/lib Any library dependencies the server code needs go here.

war/WEB-INF/lib gwt-servlet.jar This GWT JAR is needed for RPC support.

public class UserManager implements EntryPoint
{
 ...
 public void onModuleLoad()
 {
 final Button sendButton = new Button("Send");
 final TextBox nameField = new TextBox();
 nameField.setText("GWT User");
 sendButton.addStyleName("sendButton");
 RootPanel.get(
 "nameFieldContainer").add(nameField);
 RootPanel.get(
 "sendButtonContainer").add(sendButton);
 ...
 }
}

Li
st

in
g

3 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems,
 Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 ...
 <welcome-file-list>
 <welcome-file>UserManager.html</welcome-file>
 </welcome-file-list>
</web-app>

Listing 4
Ta

bl
e

1

18 | | MAR 2010{cvu}

Then remove the <servlet> and <servlet-mapping> elements from
web.xml so that it looks like Listing 6.

Again, the <servlet> and <servlet-mapping> elements are used
by the example remote procedure call implementation and are therefore
not needed. UserManager.html has a lot of HTML from the web
application start project that we do not need, so modify it so that it looks
like Listing 7.
This leaves us with a basic host page that displays an appropriate title and
a place holder (gridContainer) for our application that will be
horizontally centred in the browser. Finally remove all the web application
starter project code from the UserManager class, so that we just have the
basic class:
 public class UserManager implements EntryPoint
 {
 public void onModuleLoad()
 {
 }
 }

Creating the interface
You now have a very basic GWT application with a place holder ready for
the grid which will hold the widgets. Run the application to make sure all
is well. Next, add the widgets, as shown in Listing 8.
GWT widgets are a lot like Swing [7] widgets. As you can see here there
is a text box for the user name, a password text box for the password and
a text box for entering new rules. The password text box is the same as a

public class User implements IsSerializable
{
 private String username;
 private String password;
 private boolean enabled;
 private List<String> auths
 = new ArrayList<String>();

 @SuppressWarnings("unused")

 private User()
 {}

 public User(String username, String password,
 boolean enabled)
 {
 this.username = username;
 this.password = password;
 this.enabled = enabled;
 }

 public void addAuth(String auth)
 {
 auths.add(auth);
 }

 public String getUsername()
 {
 return username;
 }

 public void setUsername(String username)
 {
 this.username = username;
 }

 public String getPassword()
 {
 return password;
 }

 public void setPassword(String password)
 {
 this.password = password;
 }

 public boolean isEnabled()
 {
 return enabled;
 }

 public void setEnabled(boolean enabled)
 {
 this.enabled = enabled;
 }

 public List<String> getAuths()
 {
 return auths;
 }

 public void setAuths(List<String> auths)
 {
 this.auths = auths;
 }
}

Li
st

in
g

5 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web
 Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <!-- Default page to serve -->
 <welcome-file-list>
 <welcome-file>UserManager.html
 </welcome-file>
 </welcome-file-list>
</web-app>

Listing 6

<html>
 <head>
 <meta http-equiv="content-type"
 content="text/html; charset=UTF-8">

 <link type="text/css" rel="stylesheet"
 href="UserManager.css">

 <title>User Manager</title>

 <script type="text/javascript"
 language="javascript"
 src="usermanager/usermanager.nocache.js">
 </script>
 </head>

 <body>
 <h1>User Manager</h1>
 <table align="center">
 <tr>
 <td id="gridContainer"></td>
 </tr>
 </table>
 </body>
</html>

Listing 7
MAR 2010 | | 19{cvu}

regular text box, except it masks the characters that are entered. There is
check box for marking a user as enabled or disabled, a list box to hold the
authorities and buttons for finding and saving users and adding and
removing authorities.
Creating the widgets is not enough. They need to be arranged and displayed
on a panel. One way to do this is to use a Grid. To keep the application
readable and expressive, create a buildGrid method:
 private Grid buildGrid()
 {
 final Grid grid = new Grid(5,5);
 // Add widgets to grid
 return grid;
 }

The Grid constructor takes the number of rows and columns (in that order)
that are required. The setWidget method is used to add widgets to the
Grid. It takes a row and column and the widget to add. The widgets can
be arranged any way you want, but I’ve decided to put the user name text
box, the Find and the Save buttons on the first row:
 grid.setWidget(0,0, new Label("Username:"));
 grid.setWidget(0,1, usernameTextBox);
 grid.setWidget(0,2, findBtn);
 grid.setWidget(0,3, saveBtn);

You will notice that there is another type of widget here. The Label
widget allows you to put text into the grid as a widget, so it’s easier to
customise with CSS. You could use the setText method instead if you
wanted to. The first row is followed by the password text box on the next
row:
 grid.setWidget(1,0, new Label("Password:"));
 grid.setWidget(1,1, passwordTextBox);

then the enabled check box on the row after that:
 grid.setWidget(2,1, enabledChkBox);

and the authorities widgets on the final two rows:
 grid.setWidget(3,0, new Label("Authorities:"));
 grid.setWidget(3,1, authListBox);
 grid.setWidget(3,2,removeAuthBtn);
 grid.setWidget(4,1,authTextBox);
 grid.setWidget(4,2,addAuthBtn);

Place all of this code in the buildGrid method directly after the Grid
instantiation. Then to display the grid it needs to be added to the host page:

public void onModuleLoad()
{
 RootPanel.get("gridContainer").add(buildGrid());
}

If you run the application now you will see, the not especially sexy,
interface (Figure 5). I will take a look at how to sex-it-up once the rest of
the functionality is in place.
As it stands you can type in the text boxes, click the check box and press
the buttons, but they do not do anything. Next, let’s look at the authorities
widgets. The authorities list box currently looks like a combo box. To make
it behave as a list box it needs to be told to display more than one item.
The add button should only be enabled when there is text in the authorities
text box and the remove button should only be enabled when an authority
is selected in the authorities list box. Create another method called
setupAuthWidgets and start by setting the number of visible items for
the list box and disabling both the buttons:
 private void setupAuthWidgets()
 {
 authListBox.setVisibleItemCount(5);
 removeAuthBtn.setEnabled(false);
 addAuthBtn.setEnabled(false);
 }

Call it after adding the grid to the panel:
 public void onModuleLoad()
 {
 RootPanel.get(
 "gridContainer").add(buildGrid());
 setupAuthWidgets();
 }

To detect whether there is text or not in the authorities text box, we need
to add a change handler:
 authTextBox.addChangeHandler(new ChangeHandler()
 {
 @Override
 public void onChange(ChangeEvent event)
 {
 final TextBox tb
 = (TextBox) event.getSource();
 addAuthBtn.setEnabled(
 tb.getText().length() > 0);
 }
 });

Put this change handler in the setupAuthWidgets method. When the
contents of the authorities text box changes the change handler’s
onChange method is called. Its ChangeEvent parameter includes a
reference to the widget that has changed, which is accessible via the
getSource method, which returns object so must be cast to the

Figure 5

public class UserManager implements EntryPoint
{
 private final TextBox usernameTextBox
 = new TextBox();
 private final Button findBtn
 = new Button("Find");
 private final Button saveBtn
 = new Button("Save");
 private final TextBox passwordTextBox
 = new PasswordTextBox();
 private final CheckBox enabledChkBox
 = new CheckBox("Enabled");
 private final ListBox authListBox
 = new ListBox();
 private final TextBox authTextBox
 = new TextBox();
 private final Button addAuthBtn
 = new Button("Add");
 private final Button removeAuthBtn
 = new Button("Remove");
 ...
}

Li
st

in
g

8

20 | | MAR 2010{cvu}

appropriate type. Getting the text from the text box and checking its length
is then used to enable and disable the authorities add button via its
setEnabled method.
We also need a change handler to enable and disable the authorities remove
button when an item in the authorities list box is selected or no items are
selected:
 authListBox.addChangeHandler(new ChangeHandler()
 {
 @Override
 public void onChange(ChangeEvent event)
 {
 final ListBox lb
 = (ListBox) event.getSource();
 removeAuthBtn.setEnabled(
 lb.getSelectedIndex() != -1);
 }
 });

Put this change handler in the setupAuthWidgets method. It works in
the same way as the change handler for the text box, except that the list
box’s getSelectedIndex method is used to determine if an item is
selected. If no item is selected it returns -1.
To add authorities into the authorities list box you need to add a click
handler to the authorities Add button:
 addAuthBtn.addClickHandler(new ClickHandler()
 {
 @Override
 public void onClick(ClickEvent event)
 {
 authListBox.insertItem(
 authTextBox.getText(), -1);
 }
 });

When the button is clicked the onClick method is called. The contents
of the authorities text box is read and inserted into the authorities list box
at position -1, which means new authorities are always inserted at the top
of the list. A click handler is also needed to remove items from the
authorities list box:
 removeAuthBtn.addClickHandler(new ClickHandler()
 {
 @Override
 public void onClick(ClickEvent event)
 {
 authListBox.removeItem(
 authListBox.getSelectedIndex());
 }
 });

In this case when the Remove button is clicked and the onClick method
called, the index of the currently selected item is retrieved using the
getSelectedIndex method and removed from the authorities list box
using the removeItem method.
If you run the application now you will see that when you type an authority
into the authorities text box, the Add button enables and clicking it inserts
the authority into the authorities list box. Selecting the authority in the list
box enables the Remove button and clicking it removes the authority from
the list box. However, the Remove button remains enabled even when
there are no selected authorities in the list box. This is due to the change
handlers not getting called when items are inserted or removed from a list
box. This is by design as GWT assumes that you know when you are
inserting or removing items from a list box as you are explicitly calling
insertItem or removeItem. This is not the behaviour that we want
though!
To get the behaviour we want we need to inherit from com.google.
gwt.user.client.ui.ListBox and override insertItem and
removeItem and modify the implementations so that they cause the
change handlers to be called. To do this, create a package called uk.co.

marauder.usermanager.client.widgets. It is a sub package of
uk.co.marauder.usermanager.client, so will be compiled by
the GWT compiler. In the new package create a class called ListBox
(Listing 8).
One of the great things about Java is package scoping, which allows us to
create a class called ListBox which inherits from another class also called
ListBox in another package. As you can see, in the overridden
insertItem and removeItem methods the first thing that happens is
the original super class method is called. This is so that the insertion and
removal behaviour is unchanged. Then the fireNativeEvent static
method of the ChangeEvent class is used to fire a change event, which
in turn causes the change handlers to be invoked. To use the modified list
box, simply replace the import of com.google.gwt.user.client.
ui.ListBox in UserManager.java with uk.co.marauder.
usermanager.client.widgets.ListBox . If you run the
application now it will behave as expected.
From a user interface point of view, all that is left to do is implement the
Find and Save buttons. For these, create another setup method, called
something like setupButtons and two more click handlers (Listing 9).
Call setupButtons right after setupAuthWidgets. The Find button
click handler simply gets the user name from the user name text box and
passes it to the findUser method, which we have not written yet. The
Save button click handler creates a new User object and initialises it with
the user name, password and enabled flag from the user name text box, the
password text box and the enabled check box. It then iterates through all
the authorities in the authorities list box and adds each one to the user.
Finally it is passes the User object to the saveUser method, which we
have not written yet.

Remote procedure calls
GWT only implements a restricted subset of the Java API, so any action
that uses something outside of that subset, such as writing to a database,
must be carried out on the server via an RPC call. Making an RPC call is
the equivalent to making a method call to the server and is actually quite
easy to do with GWT.
First we need a service interface which defines the methods we want to be
able to call on the server. The interface must extend GWT’s
RemoteService interface:
 @RemoteServiceRelativePath("user")
 public interface UserService
 extends RemoteService
 {
 User find(String username);
 void save(User user);
 }

Li
st

in
g

16

public class ListBox
 extends com.google.gwt.user.client.ui.ListBox
{
 @Override
 public void insertItem(String item,int index)
 {
 super.insertItem(item, index);
 ChangeEvent.fireNativeEvent(
 Document.get().createChangeEvent(),
 this);
 }
 @Override
 public void removeItem(int index)
 {
 super.removeItem(index);
 ChangeEvent.fireNativeEvent(
 Document.get().createChangeEvent(),
 this);
 }
}

Listing 8
MAR 2010 | | 21{cvu}

Our service interface has two methods. One to find users, which takes a
user name and returns a User object and one to save users which just takes
a User object. The RemoteServiceRelativePath annotation is used
in conjunction with the servlet-mapping element in web.xml to
specify the URL for the service.
An asynchronous interface is also required to allow the client to make calls
to the service interface, by specifying the callbacks used:
 public interface UserServiceAsync
 {
 void find(String username,
 AsyncCallback<User> callback);
 void save(User user,
 AsyncCallback<Void> callback);
 }

The asynchronous interface must have the same name as the service
interface, but appended with Async and must be in the same package. Put
both interfaces into the uk.co.marauder.usermanager.client
package as the service interface needs to be seen by both the client and the
server.
The server side implementation, which usually goes in the server package
(e.g. uk.co.marauder.usermanager.server), must both implement
the service interface and extend GWT’s RemoteServiceServlet
(Listing 10).
To be callable, UserServiceImpl, must be configured in web.xml as
a servlet. The <servlet> element is used to give the servlet a name and
specify the class that implements it:
 <servlet>
 <servlet-name>userManagerServlet</servlet-name>
 <servlet-class>
 uk.co.marauder.usermanager.server.
 UserServiceImpl
 </servlet-class>
 </servlet>

The url at which the servlet will be accessed must also be configured using
the <servlet-mapping> element.
 <servlet-mapping>
 <servlet-name>userManagerServlet</servlet-name>
 <url-pattern>/usermanager/user</url-pattern>
 </servlet-mapping>

<servlet-mapping> uses the name of the servlet as defined by
<servlet> and specifies the url pattern with <url-pattern>. The first
part of the url pattern, before the slash, is the relative (to the server) path
to the web application and the second part, after the slash, is the name of
the remote service and must be the same as specified in the
RemoteServiceRelativePath annotation. The remote service is
now ready to call from the client.
To make a call to the remote service you first need to create an instance
of the asynchronous interface. You only need to do it once, so make it a
field of the UserManager:
 public class UserManager implements EntryPoint
 {
 private final UserServiceAsync userService
 = GWT.create(UserService.class);
 …
 }

A call can be made on an interface implementation instance just like calling
any method on any object, however you need to give it an implementation
of the appropriate AsyncCallback interface (Listing 11).

private void setupButtons()
{
 findBtn.addClickHandler(new ClickHandler()
 {
 @Override
 public void onClick(ClickEvent event)
 {
 final String username
 = usernameTextBox.getText();
 findUser(username);
 }

 });

 saveBtn.addClickHandler(new ClickHandler()
 {
 @Override
 public void onClick(ClickEvent event)
 {
 final User user
 = new User(usernameTextBox.getText(),
 passwordTextBox.getText(),
 enabledChkBox.getValue());
 for(int i = 0;
 i < authListBox.getItemCount(); ++i)
 {
 user.addAuth(authListBox.getItemText(i));
 }
 saveUser(user);
 }
 });
}

Li
st

in
g

9 public class UserServiceImpl
 extends RemoteServiceServlet
 implements UserService
{
 @Override
 public User find(String username)
 {
 return null;
 }

 @Override
 public void save(User user)
 {
 }
}

Listing 10

private void findUser(final String username)
{
 userService.find(username,
 new AsyncCallback<User>()
 {
 @Override
 public void onFailure(Throwable caught)
 {
 Window.alert(caught.getMessage());
 }
 @Override
 public void onSuccess(User user)
 {
 if (user != null)
 {
 updateUser(user);
 }
 else
 {
 Window.alert(
 "Could not find: " + username);
 }
 }
 });
}

Listing 11
22 | | MAR 2010{cvu}

The AyncCallback interface has two methods you must implement,
onSuccess and onFailure. The onFailure method is called if there
is a failure on the server side, such as an exception being thrown and passes
the failure back as a Throwable object. This object can be queried and
the error message displayed to the user, in this case by way of an alert
message box. The onSuccess method takes a parameter of the type
specified as AsynCallback’s generic parameter. This is the object
returned from the RPC call. All objects passed to or returned from RPC
calls must implement the GWT IsSerializable marker interface, have
a default constructor, which can be private, and be visible to the client and
server side. RPC calls are entirely asynchronous, so calls return
immediately and the AsynCallback methods are called sometime later.
In this case, if the user has been found, a non-null User object is passed
back and then passed on to the updateUser method for display in the
interface. If it is not found null is passed back and the user is informed
via a message box that the user could not be found. The updateUser
method looks like this:
 private void updateUser(User newUser)
 {
 usernameTextBox.setText(newUser.getUsername());
 passwordTextBox.setText(newUser.getPassword());
 enabledChkBox.setValue(newUser.isEnabled());
 authTextBox.setText("");
 authListBox.clear();
 for(String s : newUser.getAuths())
 {
 authListBox.insertItem(s,-1);
 }
 }

As you can see it takes the user name, password and enabled flag from the
User object and uses them to set the text or value in the appropriate widget.
It then clears the authorities list box and the inserts the authorities from
the User object.
The saveUser method is similar (Listing 12).
Again the onFailure method reports failure to the user. The remote
service save method return type is void, there is nothing returned.
However, the onSuccess method must still be implemented to indicate
when the method returns. Its single parameter is therefore of type Void.
If the User object is successfully saved, the clear method is called to
clear all the widgets and a message box is displayed to the user indicating
success. The clear method is implemented as follows:
 private void clear()
 {
 usernameTextBox.setText("");
 passwordTextBox.setText("");
 enabledChkBox.setValue(false);
 authTextBox.setText("");
 authListBox.clear();
 }

It clears the contents of all text boxes, sets the check box to unchecked and
clears the authorities list.

Integrating the data access layer
If you run the application now and try to find and save users you will get
messages telling you that you have saved users successfully and messages
that none of the users you have saved can be found. This is because the
find and save methods of UserServiceImpl are yet to be
implemented. The required implementation is described in my ‘Data
Access Layer Design for Java Enterprise Applications’ article (and can be
downloaded here [9]). First drop the classes and interfaces from the data
access layer into a newly created uk.co.marauder.usermanager.
dao package. The required classes and interfaces are:

AbstractDMRegistry
DMRegistry
HibernateTemplateDMRegistry

UserDataMapper
UserHibernateDataMapper

UserManager (not to be confused with the client side
UserManager).

You will also need the Hibernate JAR and the JARs on which it depends.
Put these in WEB-INF\lib in the war directory and add them to the User
Manager project. The User.hbm.xml file is also required so that
Hibernate knows how to persist the User object. Put the file in the uk.
co.marauder.usermanager.model package alongside the User.
java file. The Hibernate SessionFactory, which we will see how to
create in a minute, also requires the hibernate.properties file. Put
it in the src folder at the root package level.
The data access layer UserManager class will handle the persisting and
retrieving of User objects. It is used by both the find and save methods
of the UserServiceImpl class, but, unlike the SessionFactory
class, is not thread safe so a SessionFactory object should be created
in the constructor and stored as a field and the UserManager created on
demand (Listing 13).
After creating the UserManager object, finding and saving User objects
is trivial (Listing 14).
All that is required to find a user is to pass the user name to the load
method of the UserManager and return the User object. null is

private void saveUser(final User user)
{
 userService.save(user,
 new AsyncCallback<Void>()
 {
 @Override
 public void onFailure(Throwable caught)
 {
 Window.alert(caught.getMessage());
 }
 @Override
 public void onSuccess(Void result)
 {
 clear();
 Window.alert("Saved " + user.getUsername()
 + " successfully");
 }
 });
}

Listing 12

public class UserServiceImpl
 extends RemoteServiceServlet
 implements UserService
{
 final SessionFactory sessions;

 public UserServiceImpl()
 {
 sessions = new Configuration()
 .addClass(User.class)
 .buildSessionFactory();
 }
 private UserManager getUserMgr()
 {
 final HibernateTemplate hibernateTemplate
 = new HibernateTemplate(sessions);
 return new UserManager(
 new HibernateTemplateDMRegistry(
 hibernateTemplate));
 }
 ...
}

Listing 13
MAR 2010 | | 23{cvu}

returned and handled by the client if the user cannot be found. To save a
User object, just pass it to the save method.
If you run the application and try to save a user you will see that it is
serialised to the database successfully. However, if you try to find that user
again you will receive an error:
 The call failed on the server; see server log for
 details.

If you look at the output in the Eclipse console window (or equivalent) you
will see the following exception message:
com.google.gwt.user.client.rpc.SerializationException:
 Type 'org.hibernate.collection.PersistentBag' was
 not included in the set of types which can be
 serialized by this SerializationPolicy or its Class
 object could not be loaded. For security purposes,
 this type will not be serialized.

This is due to the way Hibernate handles retrieving collections. Instead of
pu t t i ng t he i t em s i n to an
ArrayList<String>, which GWT knows
how to serialise via RPC, it puts them into its
o wn c l a s s t y pe org.hibernate.
collection.PersistentBag which
GWT does not know how to serialise, even
though PersistentBag implements the
List interface. Unlike Java, which does not
need to know at compile time how an interface
is implemented, GWT needs to know about the
complete hierarchy if it is going to be able to use
all the classes in it.
The easiest way to get around this problem is
to copy the User object returned by Hibernate into a fresh User object
that uses an ArrayList<String> rather than a PersistentBag. This
could be done manually using a copy-constructor, but that would get
tedious as domain objects get more complex. Helpfully there is a library,

called Dozer [9] that recursively copies data from one object to another.
The Dozer JAR can be downloaded from the Dozer website and should be
placed in the WEB-INF\lib directory along with its dependant JARs
commons-beanutils and commons-lang and added to the User
Manager project.
Dozer’s use is very simple. Just create a DozerBeanMapper and call the
map method with the object to copy and the type of the object to copy it
to and the copy is returned. The only draw back is that, unlike Hibernate,
Dozer can only use public accessors. This is why all the set methods of
the User class, as well as the get methods, must be public:
 @Override
 public User find(String username)
 {
 User user = getUserMgr().load(username);
 if (user != null)
 {
 user = new DozerBeanMapper().map(
 user,User.class);
 }
 return user;
 }

If the object to copy is null, map throws an exception therefore the object
to be copied needs to be checked for null first. If you run the application
now you will be able to both save and find users.

Sexing-up the interface
The basic functionality of the application is now complete. If you look back
at Figure 5 you will see that the main problems with the layout are the
buttons being different widths and the authorities list box not being the
same width as the text boxes. This can all be fixed with CSS. Replace the
contents of the existing UserManager.css file in the war’s WEB-INF
directory with the Listing 15, and refresh the application in the browser.
There is no need to restart the application to apply CSS changes. You will

see that all the text boxes and the list box are
the same width and all the buttons are the same
width. Most GWT widgets have a default style
name, such as gwt-TextBox or gwt-
Button. These are used in the CSS file to
specify things like font size and widget width.
The GWT Grid widget does not have a default
style name, so one must be added manually
using the setStyleName method. It also
does not have a way to specify the cell
alignments in CSS so this too must be done
manually by subclassing Grid in a similar
way to ListBox (Listing 16).

The constructor, as well as assigning a style name, iterates through each
cell in the grid and sets the vertical and horizontal alignment.
Figure 6 shows the far more aesthetic version of the application with the
CSS changes.

Finally
There is plenty more you would want to do to this web
application, such as disable all widgets when the find is in
progress, provide a list of users to choose from instead of relying
on the find, provide a list of authorities and prevent duplicates
etc, but implementing these is not necessary to demonstrate
creating a GWT application with RPC and Hibernate.
The Google Web Toolkit is a far more powerful and elegant tool
for creating web application front ends than any of the JSP based
libraries used by most. Here I have demonstrated just how easy
it is, as well as demonstrating how to avoid some of the pitfalls.
GWT can do a lot more than I have shown here and I hope to
demonstrate further features in future articles.

Li
st

in
g

13 public class UserServiceImpl extends
RemoteServiceServlet implements UserService
{
 private final UserManager mgr;
 ...
 @Override
 public User find(String username)
 {
 return getUserMgr().load(username);
 }
 @Override
 public void save(User user)
 {
 getUserMgr().save(user);
 }
}

Li
st

in
g

14
Fi

gu
re

 6

The Google Web Toolkit is
a far more powerful and
elegant tool for creating

web application front ends
than any of the JSP based

libraries used by most
24 | | MAR 2010{cvu}

Appendix A: Installing GWT 2.0 Eclipse plugin
Although Eclipse [10] is not required for working with GWT it can make
development much easier. If you do not want to use Eclipse the SDK can
be downloaded by itself and a supplied tool used to generate projects from
the command line. The GWT plugin is available for versions 3.5 (Galileo),
3.4 (Ganymede) and 3.3 (Europa) of Eclipse. More information is
available from the GWT Plugin [11] download page.
The GWT plugin is best installed into a fresh install of Eclipse. I am
currently using Galileo for Java EE developers (eclipse-jee-
galileo-SR1-win32), but the plugin works just as well with the
standard version. The GWT plugin has a dependency on Eclipse’s Web
Standard Tools (WST), which if not already installed, can be installed as
follows:

1. Go to the Help menu and select Install new software.
2. If it isn’t already present, manually add the appropriate update url:

http://download.eclipse.org/releases/galileo/
3. Then expand Web, XML, and Java EE Development from the list

and select Eclipse Web Developer Tools.
4. Click next and follow the install instructions.
5. Restart Eclipse when asked.

Installing the GWT plugin is much the same process:
1. Go to the Help menu and select Install new software.
2. Add the update url: http://dl.google.com/eclipse/plugin/3.5 (or the

apropriate link for your version of Eclipse)
3. Tick Google Plugin for Eclipse 3.5 and Google Web Toolkit SDK

2.0.0. Untick Google App Enginer SDK 1 unless you particularly
want to install it. It is not needed for the GWT plugin.

4. Click next and follow the install instructions.
5. Restarted Eclipse when asked.

More detailed instructions can be found on the Google Plugin for Eclipse
3.5 (Galileo) Installation Instructions [12] page of the GWT website.

References
[1] Model View Controller: http://www.marauder-consulting.co.uk/

Model_View_Controller.pdf
[2] Apache Struts: http://struts.apache.org/
[3] Google Web Toolkit: http://code.google.com/webtoolkit/
[4] Apache Tomcat: http://tomcat.apache.org/
[5] Organising Projects Development Guide: http://code.google.com/

webtoolkit/doc/latest/DevGuideOrganizingProjects.html
[6] Data Access Layer Design for Java Enterprise Applications:

http://www.paulgrenyer.com/
Data_Access_Layer_Design_for_Java_Enterprise_Applications.pdf

[7] Swing Layout Managers: http://java.sun.com/docs/books/tutorial/
uiswing/layout/using.html

[8] Download Data Access Layer project: http://paulgrenyer.net/dnld/
dataaccesslayer.zip

[9] Dozer: http://dozer.sourceforge.net/
[10] Eclipse: http://www.eclipse.org/
[11] Google Web Toolkit Download: http://code.google.com/eclipse/

docs/download.html
[12] Google Plugin for Eclipse 3.5 (Galileo) Installation Instructions

http://code.google.com/eclipse/docs/install-eclipse-3.5.html

h1
{
 font-size: 2em;
 font-weight: bold;

 text-align: center;
}

.gwt-Label
{
 font-size: 12pt;
}

.gwt-Button
{
 font-size: 12pt;
 width: 80;
}

.gwt-TextBox
{
 font-size: 12pt;
 width: 200;
}

.gwt-PasswordTextBox
{
 font-size: 12pt;
 width: 200;
}

.gwt-listBox
{
 font-size: 12pt;
 width: 200;
}

.gwt-CheckBox
{
 font-size: 12pt;
 width: 200;
}

.gwt-Grid
{
 border: 1px solid black;
}

Li
st

in
g

15

public class Grid extends com.google.gwt.user.
client.ui.Grid
{
 public Grid(int rows, int columns)
 {
 super(rows, columns);
 this.setStyleName("gwt-Grid");

 for(int x = 0; x < columns; ++x)
 {
 for(int y = 0; y < rows; ++y)
 {
 this.getCellFormatter()
 .setAlignment(y, x,
 HasAlignment.ALIGN_LEFT,
 HasAlignment.ALIGN_TOP);
 }
 }
 }
}

Li
st

in
g

16
MAR 2010 | | 25{cvu}

http://www.marauder-consulting.co.uk/Model_View_Controller.pdf
http://www.marauder-consulting.co.uk/Model_View_Controller.pdf
http://struts.apache.org/
http://code.google.com/webtoolkit/
http://tomcat.apache.org/
http://www.paulgrenyer.com/Data_Access_Layer_Design_for_Java_Enterprise_Applications.pdf
http://www.paulgrenyer.com/Data_Access_Layer_Design_for_Java_Enterprise_Applications.pdf
http://java.sun.com/docs/books/tutorial/uiswing/layout/using.html
http://java.sun.com/docs/books/tutorial/uiswing/layout/using.html
http://paulgrenyer.net/dnld/dataaccesslayer.zip
http://paulgrenyer.net/dnld/dataaccesslayer.zip
http://dozer.sourceforge.net/
http://www.eclipse.org/
http://code.google.com/eclipse/docs/download.html
http://code.google.com/eclipse/docs/download.html
http://code.google.com/eclipse/docs/install-eclipse-3.5.html

More About Bash
Ian Bruntlett discovers more *nix shell tools.

ere are some more titbits of information about using the Linux
command line prompt (in Linux parlance ‘a shell’) – bash. As a
technicality I’d like to point out that bash is just another program

and can be replaced with a different program, also acting as a shell. I wrote
[1] and [2] while learning about bash. This short article is intended to
further inform the reader, building on the previous articles. I am trying to
balance this text, hopefully being thorough without stating the obvious.
Note: I use *nix as an abbreviation of Unix, GNU/Linux.

Pipelines
Even DOS had pipelining, where the output of one program – eg grep –
could be piped to the input of another program e.g. more.
 grep *.c | more

This invokes grep, passes it the parameter *.c and sends the resulting
output to a temporary file. When grep has finished, more is executed with
the temporary file sent to the input of more which lists the output in pages
on the screen.
This idea was borrowed from Unix. However, the implementation wasn’t
complete. In DOS, grep would be started, its output saved in a temporary
file, grep would terminate OK and the resulting temporary file sent as
input to the more command.
In Unix, however, grep and more are started as a pipeline of programmes.
How does this work? Well both grep and more are started together, with
a ‘pipeline’ connecting the output (stdout) of grep to the input (stdin)
of more.

Arcane commands – man, info and apropos
It’s pretty easy to pick up all the DOS commands. *nix commands are
documented in Big Fat Books from O’Reilly and many of the commands
seem trivial. However, in *nix, the sum of the combined parts is greater
than the whole. See my review of Linux and the Unix Philosophy, a book
that hammers home the tenet that all data should be text based (however
I still believe that binary files are important). So if you’re looking at a *nix
shell script and you’re wondering what the individual commands do, you
can either buy a book or use the inbuilt help. Both have their values. My
copy of the Linux Pocket Guide has got lots of notes in the margins. Despite
liking the dead tree version, I think one day I will mainly use the on-line
help.
Quite often people are encouraged to read the man pages. The man
command, short for ‘manual’, searches a database. On Rutherford PC
running Ubuntu 9.10, that database is scattered into folders held inside
/usr/share/man. For example running man man gives you 600+ lines
of text that describe man and lists its command line options. It handles
paging so you’ll never need to type man widget | less.
The info command also searches online information (this time in
/usr/share/info). The twist is that the info pages are an early form
of hypertext. Typing in the command info brings you into the top level

of the info tree and gives information to guide the user through info’s
particular interface.
The apropos command searches the man pages for relevant pages. It is
identical to running man -k keyword but I learnt to apropos long before
finding out about man-k.

Testing – regular expressions (regexps)
Regexps [3] [4] can get very complicated and, therefore, difficult to test.
The simplest test can be made from the command line using two
commands – echo and grep (short for global regular expression print).
 echo The quick brown fox | grep 'o'

This could be tested on a more industrial scale by processing a whole file
of lines using the command grep <expression> test_input.txt
For example, here is my test_input.txt:

The quick brown fox jumped over the lazy brown dog.
The quick brown fop jumped over the quick brown fox.
Humpty Dumpty could not be put back together again.

ian@Rutherford:~/wrk$ grep -E 'fo?' test_input.txt
The quick brown fox jumped over the lazy brown dog.
The quick brown fop jumped over the quick brown fox.

Testing and developing complex pipelines
Here is an example of a slightly complex pipeline that lists programs in
sorted order:
 ps x | awk '{print $5, $4}' | sort

It’s not that complicated and I built it up, step by step at the keyboard.
However, there are times when a tool could make life easier. There are two
particularly useful commands – cat and tee.

The tee command – peeking into a pipeline.

Similar to the cat command (see next paragraph), tee copies its input
(stdin) to its output (stdout). However, it can be told to duplicate the
data flowing through the pipeline. By giving a filename as a parameter,
tee will 1) copy its input (stdin) to its output (stdout) and 2) send a
copy of that data to the named file.

The cat command – injecting a file into a pipeline.

I usually overlook the cat command, preferring to use the more command
to see a text file page by page. The parameters passed to cat tell it what
to output. In its simplest form, cat wibble.txt simply copies the
contents of wibble.txt to its output (stdout). There can be more
parameters passed to cat – e.g. cat wibble.txt dibble.txt would
instruct cat to copy the contents of wibble.txt to its output (stdout)
followed by the contents of dibble.txt.
However, cat has a special ability. A parameter can either be a filename
or the dash character –. When cat is running and it reaches the –
parameter, it copies its own input (stdin) to its output (stdout) before
going on to process any remaining parameters.
What is the use of that? If you want to inject data into a pipeline, this is
where the cat command begins to be useful.

 ps x | tee ps_output.txt | awk '{print $5, $4}'
 | sort | cat heading.txt -

H

IAN BRUNTLETT
On and off, Ian has been programming for some years.
He is a volunteer system administrator for a mental health
charity called Contact (www.contactmorpeth.org.uk). As
part of his work, Ian has compiled a free Software Toolkit
(http://contactmorpeth/wikispaces.com/SoftwareToolkit).
26 | | MAR 2010{cvu}

www.contactmorpeth.org.uk
http://contactmorpeth/wikispaces.com/SoftwareToolkit

More About Bash (continued)
This command line lists processes and sends a copy of that data to stdout
and to ps_output.txt. awk’s input (stdin) is tied to tee’s output
(stdout) which prints the 5th and 4th text fields of the ps output.Finally,
cat is used to send a heading to stdout, closely followed by stdin to
stdout.
For instance, if I wasn’t sure what ps was outputting, I could try:-
 ps x | tee ps_output.txt | awk '{print $5, $4}' |
 sort

Once the pipeline has finished executing, looking at ps_output.txt
might yield clues regarding the pipeline’s behaviour.

References
[1] Ian Bruntlett, ‘Interpreting Custom Unix Shell Scripts’ in CVu 21.4,

September 2009
[2] Ian Bruntlett, ‘Beyond Pipelining Programmes in Linux’ in CVu

21.5, November 2009
[3] Tony Stubblebine, Regular Expression Pocket Reference, O’Reilly.

This book refers to Mastering Regular Expressions by Jeffrey Friedl
(also from O’Reilly).

[4] D. J. Barrett, Linux Pocket Guide, O’Reilly.

Bibliography
Mike Gancarz, Linuz and the Unix Philosophy, Digital Press.
Arnold Robbins, sed & awk Pocket Reference, O’Reilly.
Inspirational (P)articles
Dáire Stockdale shares a recent source of inspiration.

hanks to Dáire Stockdale, a senior software engineer working for
http://www.realtimeworlds.com, for sharing with us inspiration from a
a seemingly unlikely source: a book about evolution. The idea that

complicated systems can be formed from simple rules is beautiful and
inspirational.

I’m not sure I have the time or wordcraft to write a piece,
but I did find reading Dawkins latest book, The greatest
Show on Earth, explaining the inner details of evolution
to be almost an epiphany.
I suspect that similar to many reading this list, biology
was my least favourite science, I preferred maths and
physics, and of course I thought I understood evolution.
However Dawkins’ book highlights the elegant
simplicity of our world in such a beautiful way, and I
found it really appealed to my programmer’s heart.
Whereas previously I had understood evolution to mean
a process that was fantastically complex, but which
worked due to the sheer timescale available to it (a ‘brute
force’ algorithm, searching for best fits), he explains that
in fact it is even simpler, and from the moment the process begins, it
necessarily and quite rapidly produces results.

He explains, far better then I can here, how the apparent complexity of
nature really is emergent from a few ‘simple’ rules, and that its not so hard
to fashion the changes we see around us. I think programmers will really
appreciate and ‘get’ these sections of the book, more than most. After

reading the book, I can’t see cats and dogs without
appreciating just how easy it is for natural selection to
morph between them. Also, when he talks of the
impossibility of knowing what a given DNA sequence
‘produces’ without actually ‘growing’ it [1] I was
reminded of Turing program stopping problems. I also
found myself admiring the painstaking attention to detail
gone to in by experimental biologists in proving, through
example, evolution at work.
Even if you think you understand evolution, this book
will probably surprise and enlighten you :) After reading
my copy I have gone and bought some more for friends :)

Note
[1] My terminology. I’m not sure what this process might actually be

called.

T
a process that

was fantastically
complex, but

which worked
due to the sheer

timescale
available to it
MAR 2010 | | 27{cvu}

Code Critique Competition 62
Set and collated by Roger Orr.

lease note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment
on published entries, and to supply their own possible code samples

for the competit ion (in any common programming language) to
scc@accu.org. A book prize is awarded to the winning entry.

Last issue’s code
I am trying to write a simple two-way map to allow items to be addressed by
two different keys but I’m getting some odd behaviour. I’ve written a simple
test program and everything works fine except for the last line output – I
expect the last size to be 1 but I get 2. Can you help?

Last issue’s code is shown in Listing 1.

P

Listing 1
Listing1

//twowaymap.h
#include <map>
template <typename T, typename U>
class twoway_map
{
public:
 typedef typename
 std::map<T,U>::size_type size_type;
 void insert(const T& key1, const T& key2,
 const U& value)
 {
 U & p = map1[key1] = value;
 map2[key2] = &p;
 }
 void erase1(const T& key1)
 {
 if (map1.find(key1) != map1.end())
 {
 for (typename std::map<T,U*>::iterator
 it = map2.begin();
 it != map2.end(); ++it)
 {
 if (it->second == &map1[key1])
 {
 map2.erase(it->first);
 map1.erase(key1);
 }
 }
 }
 }
 void erase2(const T& key2)
 {
 if (map2.find(key2) != map2.end())
 {
 for (typename std::map<T,U>::iterator
 it = map1.begin();
 it != map1.end(); ++it)
 {
 if (&it->second == map2[key2])

Li
st

in
g

1

 {
 map1.erase(it->first);
 map2.erase(key2);
 }
 }
 }
 }
 U& at1(const T& key1)
 {
 return map1[key1];
 }
 U& at2(const T& key2)
 {
 return *map2[key2];
 }
 size_type size() const
 {
 return map1.size();
 }

private:
 std::map<T,U> map1;
 std::map<T,U*> map2;
};

//test.cpp
#include "twowaymap.h"
#include <string>
#include <iostream>

struct colour
{
 colour() {}
 colour(int r, int g, int b)
 {
 rgb = r << 16 | g << 8 | b;
 }
 operator int() { return rgb; }
 int rgb;
};
using std::cout;
using std::endl;

int main()
{
 twoway_map<std::string, colour> m;
 m.insert("Red", "Rouge", colour(255,0,0));
 m.insert("Green", "Vert", colour(0,255,0));
 m.insert("Blue", "Bleu", colour(0,0,255));
 cout << "size: " << m.size() << endl;
 cout << std::hex << m.at1("Red") << endl;
 cout << std::hex << m.at2("Vert") << endl;
 cout << std::hex << m.at1("Blue") << endl;
 m.erase2("Bleu");
 cout << "size: " << m.size() << endl;
 m.erase1("Blue");
 cout << "size: " << m.size() << endl;
 m.erase1("Red");
 cout << "size: " << m.size() << endl;
}

Listing 1 (cont’d)

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk
28 | | MAR 2010{cvu}

Critiques

Balog Pal <pasa@lib.hu>

I started wondering even before I got to the code. The target is said to be
a ‘two way map’ and continues, ‘as it shall have two keys’. For me a two-
way map means a different beast, a map where you can swap the roles of
key and value, and knowing either one can fetch the other. What is
described here I’d name maybe a two-key or alternative-keyed map. And
I have used many of the first kind, but nothing like this.
So the first thing I do is try design one such class in my head with essential
functions and test cases. Then compare that with the presented code. The
interface does not look hard, we’ll need some insertion with the keys and
value and fetch by either key. Possibly erase by either key too. How many
test cases will that need? And here comes some explosion. Like a zillion,
including repeated inserts and erases of the two-key combinations. The
real problem is I cannot tell the expected behaviour of almost any of those.
Here I look at the code for some help, to find indeed the basic functions
are like imagined, but neither the implementation nor the ‘test’ suggests
the solution. The visible insert works with triplets – good – and we have
the sneaky inserts with the atX() functions, that make no sense, so look
more like a bug. Suppose not having that, let’s start with empty map and
insert triplets (a, A, 1), (b, B, 2). After that what should happen on inserts:
(a, A, 1) (a, A, 2) (a, C, 1) (a, B, 1) (b, A, 1) ? And after those, issuing
erase on any of the existing keys, or on a non-existing one? Even without
an extra insertion, what erase shall do, remove the whole triplet or let the
other half-pair linger? The ‘testing’ part just writes out the result without
telling what is expected. The ‘just the last’ is bad is hardly enough
information with the code that smells undefined behaviour with the pointer
and iterator juggling. The expected result of the second erase would be
interesting but all we're told it is ‘okay’ at executing there...
Trying to run it lands in a crash right at the first erase attempt. Incrementing
the iterator that was just invalidated by the erase... Fixing that the output
is 2,2,2, whether just by accident is to be seen.
So let’s look the code for problems. I start with the struct colour. It
is hardly meant seriously – probably just dropped in to have something to
drive the test, but still it is better put it into shape.

Its default ctor does not init the state. Member rgb shall be
initialised to something (say 0), preferably in the init list. The way it
is it is hardly a ‘constructor’.
In the other ctor the expression is probably correct, but only due to
wild chance. As operator precedence is a royal mess in C,
expressions shall use ()s, like (r << 16) | (g << 8) | b.
The most accepted approach to stuff using bit operations (|) is to use
unsigned types, not signed ones. So I’d use unsigned int instead
of int for the member and the operator.
The second ctor would provide wild results if passed values not in
0–255 range so some checks or an assert would be a benefit.

On to twoway_map. The first thing to inspect is how the state is stored.
We see two maps, one holding the first key and the value, and another that
has the second key and a pointer to the value. In member functions we see
iteration over the whole maps in a search. This makes the choice a suspect.
With maps couldn’t we do the job just through lookups? And using
pointers imposes fragility. It is not an error in itself, but drags in the
obligation to be extremely careful about the pointed thing's lifetime and
cross consistency.
The first function, insert, looks simple. And it does what is likely
intended for empty maps, or new keys, creating an entry in the main holder
and a referring one in the other. A pointer to an element in map1 is stored
so we’ll have to review any erase operations to remove all the referring
pointers. If the passed key1, key2 argument already exists in the map,
multiple pointers can refer to the same node in map1 or some nodes may
be not referred any longer. We can’t tell whether it is a bug or a feature.
The size function returns size of the first map. To me that would imply
the author thought the two maps will have the same element count. It is

clearly not enforced in any way, with proper calls to just the insert function
alone we can create more or less entries in either map. So the meaning of
the return value is moot.
The assessor functions are non-const, and return non-const reference,
that may work like map’s [] operator. Though this class has the state in
two maps and the functions show no attempt to keep them in synch. I’d
bet this is a serious overlook on the creator’s part, who did not consider
here the map’s feature of auto-inserting nodes. Possibly they even started
out as const functions and const got removed due to a compiler error.
A correct implementation should use find() and handle the not found
case some way. As it stands at1() would create a default-initialized value
to be returned, while at2() would dereference a null pointer invoking
problems.
The erase members are the most interesting beasts – with all kind of
problems. One already mentioned earlier, erase happens on the actual
iterator that has a ++ in the for. Any code that walks a map (and many
like collections) shall have the bare ++it only on the else branch.
Usually map.erase(it++) is seen on the other, here it->first is
called for, that invokes an extra search for the already found element. That
hardly makes sense unless multimap was used. The placement of
erase(key) is off too, normally it should either follow the loop or being
followed by a break;
On my reviews even a fraction of discovered problems would invoke
‘square 1’ – and for a fix we better really go back to the design table. Not
having the requirements I make up some, to show a solution route.
The one in Listing A is created as a version to be easily read and verified
against expectations. (Beyond juggling with first and second...).

The class is called twokey_map better describing the purpose.
The template has a third argument to allow different types for the
two keys, with the default of using the same type, so usage is similar
to the original, with no real cost, and even more clarity in the code
The state is held in two maps without pointers, or any other hard
cross-reference. One binds key1 to key2 and the other backwards.
So we can find out the key-pair having either of the keys, and by a
simple map lookup. The first map also stores the value, to avoid
another map with the same key.
The design rule of the state here is that the key pairs are ‘exclusive’,
instances of key1 have 1-1 relation to those in key2, that is
enforced in both insert and erase operations.
fetch operations are const key-wise, attempt to ask a key not stored
is an error (signaled by exception here). A non-const version may
be provided that uses the usual add/remove const trick, making the
value part modifiable, if it is needed.

Understanding the design constraints should make the code evident, so just
a light explanation:

Private typedefs are for convenience. map binds both key2 and
value to key1, and the stock pair is used instead of a custom
struct. backmap provides the reverse lookup of the keys.
The find functions are the error filters to be used when we expect the
key be there. (unfortunately map has no const [] operator that
would do that stock).
insert() is similar to the original code’s version, but first makes
sure to clean up, and leaving no doubt of the possible post-condition.
at1() does the obvious thing, and at2() just looks up the first key
to be usable with at1().
the erase operations do nothing if the key-pair is not there, and
remove the entries from both maps otherwise.
size() now makes sense, as all operations ensure the two maps
have the same element count.

This is good for a reference version that does the job, but has many
redundant lookups. To cover those a different implementation can be
created. The code in Listing B is supposed to replace the marked section
in the first version. Importantly it has the very same public interface, and
MAR 2010 | | 29{cvu}

shall work with the same test suite. The goal was to keep lookups to the
minimum. (It is easier to understand and review having the first version,
in practice it is a good idea to have solid code before doing optimizations.)

The first map is kept the same, and as it did the whole job optimally
on key1-using functions. The other map now stores an iterator to
the first map as the ‘value’ instead of the key itself, so lookups in the
first map are avoided. We can do that because the other design
constraints ensure proper pairs with the same lifetime, no ugly cases
for invalidated iterators.
The find functions left a single use and got inlined.
at1() is really the same as before, just losing a readability point to
a missing abstraction barrier.
at2() fetches the iterator to the first map ready to use, nuking one
key lookup.
The erase functions stayed exactly with the same source thanks to
our typedefs, and the luck that map’s erase has an overload, and
the code switched to the one taking iterator from one taking the key.

The massive-looking change is in the insert member. Demonstrating
how simplicity is flushed as we try to squeeze operations. Content from
erase() is getting inlined so we can capture some of the internal state.
If the entry for key1 is present it is no longer removed then inserted, but
just reassigned in place.
A test suite is not provided to save space.
Listing A
#include <map>
#include <utility>
#include <stdexcept>

// class to map a value to two alternative keys
template <typename KEY, typename VALUE,
 typename KEY2 = KEY>
class twokey_map
{
private:
 typedef std::map<KEY,
 std::pair<KEY2, VALUE> > tMap;
 typedef typename tMap::const_iterator
 tMapIter;
// ->
 typedef std::map<KEY2, KEY> tBackMap;
 typedef typename tBackMap::const_iterator
 tBackMapIter;

 tMap map; // main holder of value,
 // auxillary info is the second key
 tBackMap backmap; // links the other key to
 // the main holder

private:
// helpers to access element that is expected
// to be there
 tMapIter find1(const KEY& key) const
 {
 const tMapIter res = map.find(key);
 if(res == map.end())
 throw std::out_of_range("no key1");
 return res;
 }

 tBackMapIter find2(const KEY2& key2) const
 {
 const tBackMapIter res =
 backmap.find(key2);
 if(res == backmap.end())
 throw std::out_of_range("no key2");
 return res;
 }

public:
// overwrites any existing association on
// either key
 void insert(const KEY& key, const KEY2&
 key2, const VALUE& value)
 {
 erase1(key);
 erase2(key2);
 backmap[key2] = key;
 map[key] = std::make_pair(key2, value);
 }

// throws if called for non-existing key
 const VALUE& at1(const KEY& key) const
 {
 return find1(key)->second.second;
 };

// throws if called for non-existing key
 const VALUE& at2(const KEY2& key2) const
 {
 return at1(find2(key2)->second);
 }
// <-

// no-op if called for non-existing key
 void erase1(const KEY& key)
 {
 const tMapIter it = map.find(key);
 if(it == map.end())
 return;
 backmap.erase(it->second.first);
 map.erase(it);
 }

// no-op if called for non-existing key
 void erase2(const KEY2& key2)
 {
 const tBackMapIter it =
 backmap.find(key2);
 if(it == backmap.end())
 return;
 map.erase(it->second);
 backmap.erase(it);
 }

 void clear()
 {
 map.clear();
 backmap.clear();
 }

 typedef typename tMap::size_type size_type;
 size_type size() const
 {
 return map.size();
 }
};

Listing B
 typedef std::map<KEY2, tMapIter> tBackMap;
 typedef typename tBackMap::const_iterator
 tBackMapIter;

 tMap map; // main holder of value,
 // auxillary info is the second key
 tBackMap backmap; // links the other key to
 // the main holder

public:
// overwrites any existing association on
30 | | MAR 2010{cvu}

// either key
 void insert(const KEY& key, const KEY2&
 key2, const VALUE& value)
 {
 {
 const tBackMapIter it2 =
 backmap.find(key2);
 if(it2 != backmap.end())
 map.erase(it2->second);
 }

 typename tMap::iterator it1 =
 map.find(key);

 if(it1 != map.end())
 {
 backmap.erase(it1->second.first);
 it1->second =
 std::make_pair(key2, value);
 }
 else
 it1 = map.insert(
 std::make_pair(key,
 std::make_pair(key2, value))).first;

 backmap[key2] = it1;
 }

// throws if called for non-existing key
 const VALUE& at1(const KEY& key) const
 {
 tMapIter it = map.find(key);
 if(it == map.end())
 throw std::out_of_range("no key1");
 return it->second.second;
 };

// throws if called for non-existing key
 const VALUE& at2(const KEY2& key2) const
 {
 const tBackMapIter it =
 backmap.find(key2);
 if(it == backmap.end())
 throw std::out_of_range("no key2");
 return (it->second)->second.second;
 }

Commentary
As Pal wrote when thinking about test cases ‘The real problem is I cannot
tell the expected behaviour of almost any of those.’ In particular, it is
unclear what the code should do when one of the keys is a duplicate.
Pal also included the following comment along with his entry: ‘This is
another of those poor quality examples, where the context is too thin to show
a solution. So we’re stuck with what-ifs and pointing at mistakes in the code
without really going out to the light....’
I must agree with him, at least in part. In actual practice when people
present code like this they often fail to explain what they’re trying to do;
fortunately you can ask questions to elucidate the purpose of the code and
point out corner cases that the original design missed. This isn’t always
the case – for example when maintaining a program after the original
author has moved on, but hopefully in these cases there are other ways to
find out the code’s desired behaviour.
However, as the code critique is non-interactive, I will try to add a little
more context to the problem in future.

This isn’t a problem with the bug in the sample program the user has
provided though, as they chose unique keys; so we can resolve the bug here
without necessarily needing to decide on the correct response to duplicate
keys.
Many modern C++ environments provide extensive help with debugging
usage of the standard library – a good reason for preferring it, in general,
to hand written containers, so the first thing is to turn on the appropriate
settings and see if additional light is thrown.
For example with g++ you might use -D_GLIBCXX_DEBUG; with this
option executed the program now generates the error message:
 attempt to increment a singular iterator.

Or, using the debugging runtime with Visual Studio, for example with
/MDd, you get an exception at the point of error: the ++it in the loop inside
erase1().
Either, or even both, of these techniques can greatly assist debugging this
sort of trouble. As Pal stated, the problem is that modifying the map while
iterating through it is dangerous, and must be done using the iterator itself
(and taking care even so). The debugging messages produced will make
this easier to identify. The easiest way to avoid the trouble in this case is
simply to break out of the loop. After all, if we have found the key there’s
no point continuing to search the map anyway.

The Winner of CC 61
As Pal was the only entrant I am awarding him the prize. However, I have
no compunction in doing so as his critique provided good coverage of the
problems with the code.

Code Critique 62
(Submissions to scc@accu.org by Apr 1st)
A new version of the C++ standard is nearing finalisation and is partly
implemented in both Microsoft’s Visual Studio 2010 compiler (out in beta)
and the latest versions of g++ (also available on cygwin for Windows
users). So I thought it was a good time to present a code sample trying to
use one of the new standard libraries: <regex>.
I found some example code implementing a minimal subset of the well-
known grep command that was originally written to use the boost
regex.hpp library and converted it to use the new standard library. I was
expecting this to be a simple matter of changing the include file and some
namespace names, but to my surprise the code didn’t work correctly on
Visual Studio 2010; it compiled cleanly and at first appeared to run
successfully but when I used with the -i option (for a case insensitive
search) the program failed with a runtime error:

 C:>grep -i test
 Error: regular expression error

So this issue’s code is slightly unusual in that I’m also providing part of
the <regex> header to help you identify the problem. As usual, please
also use the opportunity to comment on other parts of the code.
The code is in Listing 2.
The relevant bits of the implementation of <regex> are in Listing 3.
You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This helps overseas members who
typically get the magazine much later than members in the UK and Europe.
MAR 2010 | | 31{cvu}

http://www.accu.org/journals/

// define USE_BOOST for the old way
#ifdef USE_BOOST
#include <boost/regex.hpp>
using namespace boost;
#else
#include <regex>
#if defined(_MSC_VER) && (_MSC_VER <= 1500)
// Visual Studio 2008 has it in 'tr1'
using namespace std::tr1;
#else
using namespace std;
#endif
#endif

#include <map>
#include <stdio.h>
#include <stdlib.h>
static const int MAX_LINE_LEN = 65536;
std::map<std::string, bool> option;

void usage()
{
 printf("Usage: grep [-i -l] <pattern>\n");
 printf("Options:\n");
 printf("-i case insensitive\n");
 printf("-l line numbers\n");
}

int process(regex expbuf)
{
 char buff[MAX_LINE_LEN + 1];
 long lineno = 0;
 /* Start reading the file */
 while (fgets(buff, MAX_LINE_LEN, stdin))
 {
 lineno++;
 bool rc = regex_search(buff, expbuf);
 if (rc)
 {
 if (option["l"])
 printf("%li:", lineno);
 printf(buff);
 }
 }
 return 0;
}

int main(int argc, char **argv)
{
 regex expbuf;
 int cflags = regex_constants::ECMAScript;
 if (argc <= 1)
 usage(), exit(1);
 argv++;
 argc--;
 if (**argv == '-')
 {
 switch (*++*argv)
 {
 case 'i':
 case 'l':
 option[*argv]++;
 break;
 default:
 printf("-i or -l expected\n");
 exit(1);
 }
 argv++;
 argc--;
 }

Li
st

in
g

2

enum option_type
{
 ECMAScript = 0x01,
 // ...
 icase = 0x0100,
 // ...
};

template<class charT,
 class traits = regex_traits<charT> >
 class basic_regex
{
//...
typedef option_type flag_type;
// ...
basic_regex& assign(const basic_regex& that);

basic_regex& assign(const charT *ptr,
 flag_type f = regex_constants::ECMAScript);

basic_regex& assign(const charT *ptr,
 size_t len,
 flag_type f = regex_constants::ECMAScript);

template<class s_traits, class A>
basic_regex& assign(
 const basic_string<charT, s_traits, A>& s,
 flag_type f = regex_constants::ECMAScript);

template<class InputIterator>
basic_regex& assign(InputIterator first,
 InputIterator last,
 flag_type f = regex_constants::ECMAScript);
// ...
};

typedef basic_regex<char> regex;

template<class charT, class traits>
bool regex_search(const charT *s,
 const basic_regex<charT, traits>& re,
 regex_constants::match_flag_type f =
 regex_constants::match_default);

Listing 3

 try
 {
 if (option["i"])
 {
 cflags |= regex_constants::icase;
 }
 expbuf.assign(argv[0], cflags);
 }
 catch (std::exception & ex)
 {
 fprintf(stderr, "Error: %s\n",
 ex.what());
 exit(1);
 }

 return process(expbuf);
}

Listing 2 (cont’d)
32 | | MAR 2010{cvu}

MAR 2010 | | 33{cvu}

Desert Island Books
Paul Grenyer strands Terje Slettebø with nothing

but a few books and some music for company.

lthough he has been rather quiet of late, Terje exploded onto accu-
general only a few years ago. Terje always has a lot to say and makes
an immense contribution to the ACCU. As with so many others, I have

been lucky enough to meet him at the ACCU conference.

Terje Slettebø
I was honoured when Paul asked me if I could write an instalment in this
series. I’ve felt I’ve been quite out of the circulation, both regarding C++
and ACCU, for a while, but some things are timeless, and it would be
timeless books (and albums) that you’d want to bring with you on a desert
island (you’d never know if or when you’d be ‘rescued’).
Some others have wondered if we’ve all ended up on the same island
(would it be a desert island, then, though?), and if that’s the case, I might
borrow some of their books (Knuth’s The Art of Programming comes to
mind...), so that I can bring some other ones, instead...
The choices will be based partly on ‘This is an important book for me’,
and ‘This is a book/series I’ve never got around to reading (fully)’ (because
it’s so large, or requires in-depth study and contemplation).
Assuming I’ve got a (solar powered?) laptop with me, and/or have a remote
hope of getting back to ‘civilisation’ some time, some of the books may
then be computer-related.
Such lists also tend to reflect one’s current interests, as when thinking of
this, I chose books that I’d like to bring, as if I was going
to be stranded on that island tomorrow...
The first book I’d like to bring is Elements of
Programming by Alexander Stepanov and Paul
McJones. I sense this is an important book (and a study
group for it has recently been started at the ‘C++Next’
site [1]). It’s not an easy book; it requires study and
contemplation, but such is the case for most of the
valuable things in life. This is one of the few books that
contribute to putting our field on a firm mathematical/

scientific foundation, so that software development one
day may arise as a true engineering discipline...
To really get the full advantage of that book, I think I’ll
be needing another book that I’ve recently acquired:
Abstract Algebra by W. E. Deskins. This appears to be
an accessible, yet comprehensible introduction to the
interesting field of abstract algebra, a field that until
recently I didn’t know had any connection with generic
programming, but where it seems that this may be

connected to taking generic programming to the next level.
That’s two books I haven’t yet read, but where I’ve started reading both,
and so far, they are very promising. Definitely desert-island material...
Let’s then move to a book I consider a classic, one which I have read, which
is Multi-Paradigm Design for C++ by Jim Coplien. This is one of the first
and few books that address the concept of multi-paradigm software
development, in a systematic way. Moreover, it applies this to the C++
language. Having read this book, you’ll hardly look at the language the
same way, again. It’s been many years since I’ve read this one, and I’d
really appreciate getting into it, again, so that one’s in (despite the rather
tough limit of four non-novel books).
Some runners-up include Generative Programming by Krzysztof
Czarnecki and Ulrich W. Eisenecker. This is a rather ‘heavy’ book, and it

add re s se s
quite a bit of the
same issues as Coplien’s
book, and, unlike Coplien’s
book, having read it once, I
don’t really feel like reading it again
(at least not this time).
Another great book is The Cluetrain Manifesto by Rick Levine,
Christopher Locke, Doc Searls and David Weinberger. This is one of the
best books I’ve read, which tells the important story of what is really
happening in our networked world, devoid of any hype. If it hadn’t been
for that I’ve read it twice, so I know it almost by heart (and due to the limit
of five books) it would have been included. The authors are not ‘hippies’
removed from reality: These are hard-core business people having had
positions like VP of marketing at major companies. One of my favourite
quotes is: ‘We’re immune to advertising. Just forget it.’
These people tell it like it is, and reading the book gave me a similar
experience as when I read Kent Beck’s Extreme Programming Explained
in 2001: Finally, someone who tells it like it is...
For a similar reason (having read a lot of ‘agile’ and ‘lean’ books since
then), agile/lean books are not on my list for the desert island.
There’s still room for one more technical book. The Science of
Programming by David Gries (thanks to Hubert Matthews for
recommending this book, many years ago) is a clear candidate. I sense this
is also a great book, but it requires quite a bit of in-depth study and
contemplation, so I’ve only started reading it. A desert island would be a
perfect place to go deeply into this one. That the foreword is written by
Edsger W. Dijkstra is quite telling...
This is a tough call, as another book I’d like to (re)read is: Domain-Driven
Design by Eric Evans, which is also one of the best books I’ve read.
However, given the tough constraints on technical books for the desert
island, and that I’ve already read Domain-Driven Design, Gries is in, and
Evans is out.
Now for the novel... After all this hard-core technical stuff, it would be nice
with a novel or two to balance things...
The More Than Complete Hitchhiker’s Guide to the Galaxy would be an
obvious candidate for me (and it cleverly includes four of the five books
in the Hitchhiker ‘trilogy’, so it could count as one book in this context...).
However, given that I’ve already read it twice, it’ll have
to face some competition...
It may not count as a novel, but it’s not a technical book,
either, and that is The Timeless Way of Building by
Christopher Alexander (by many regarded as the father
of the patterns movement, and the book that really
started it all), which is, again, one of the best books I’ve
read (these books are great in different ways...), and it
would certainly be a pleasure to read it again...
Moreover, a while ago, I bought Christopher
Alexander’s Magnum Opus: The Nature of Order (four books), which I
haven’t even started reading, and which would have been perfect for a
desert island stranding... Yet, my non-novel book quota is already full (and
this is not even one book), so I’d reluctantly leave these behind...
Regarding architecture and buildings, How Buildings Learn by Steward
Brand is another book I’ve appreciated, but it’s rather more limited in

A

Linux and the Unix
Philosophy
By Mike Gancarz, published by
Digital Press, ISBN: 1-
55558-273-7

Reviewed by Ian
Bruntlett

Highly recommended
This book should have been sub-titled
‘Anagathics for programs and data’ (anagathics
are medicines which inhibit aging).
I find that when I disagree with parts of this book
that either the disagreement is caused by 1)
misunderstanding some of the text or 2) where
I would opt for optimisation, the book would opt

Bookcase
The latest roundup of

book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)
34 | | MAR 2010{cvu}

scope than Alexander’s book (The Timeless Way of Building), so it’s not
considered further here.
One of my favourite books of all time is Richard Bach’s: Jonathan
Livingston Seagull, which definitely is a good candidate for a novel to
bring... However, it’s quite short (it can be read in one sitting, more or less),
which is a great thing, but perhaps not so great for a potentially very long
stay at a desert island...
For the novel, or non-technical book, I’d like to include something that
goes beyond ‘mere’ technical stuff, something that talks about life, itself,
about personal development... Something that I could ponder on those long
nights at the desert island...

For this, I’d like to include some spiritual/philosophical
stuff from either Richard Bach or Peter Russell (and I’d
hope that Paul would be lenient in letting it pass as a
‘novel’...). I’ve recently bought several books by Peter
Russell, and his background with a Ph.D. in theoretical
physics, as well as his ‘spiritual journey’, gives him a
quite interesting background (something missing in
most ‘pseudo-scientific’ books in this genre). He’s
written several interesting-looking books, including
Waking Up in Time: Finding Inner Peace in Times of
Accelerating Change and From Science to God, and

based on what I’ve read of him before, such as Passing Thoughts, a booklet
he published many years ago (now partially available on the Internet),
these are probably both good.

Given that I only can bring one more book (although it’s not really a novel),
I’d like to choose From Science to God.
If I can’t bring that one, it would be some other ‘spiritual’ book, such as
Bhagavad Gita, The Prophet or Jonathan Livingston Seagull. It would be
a difficult choice...
Two albums... This is even tougher than the choice of books... To be
honest, I don’t have two (or even one) album that stands out to such a
degree that they are obvious candidates to bring. It’s more the case of a
series of albums that I’d like to bring.
My taste in music is perhaps more mainstream
than my choice of novels... I guess it can be
described as pop/rock/ambient. Artists I
appreciate include Celine Dion, Sandra (Cretu),
Enigma, Deep Forest, etc. Once I start thinking
about my CDs, the choice becomes difficult...
For those long days at the island, I’d like to
bring something that speaks to my heart...
Savage Garden’s Affirmations is surprisingly
good, and can move you to tears... Then there
are instrumental masterpieces (IMO) like Delerium’s Karma... However,
given that I may be alone on the island, I’d like to bring something with a
human voice...
Perhaps surprisingly, I’ve come to that I’d like to bring Lene Marlin’s
Playing My Game, and perhaps even more surprising is that I’d like to
bring her next album, Another Day as my second choice... Lene Marlin has
a delightful, intimate voice, which goes straight to your heart... I’d have
liked to have brought all three of her first albums, but I know Paul won’t
allow it...
That’s it: My five books and two albums. Now it’s just a matter of
preparing to get stranded...
P.S. This time, the prolonged ‘dispute’ about what’s the best Pink Floyd
album was not continued...!
A few books on complexity, self-organisation and emergence (which may
well turn out to be some of the most important sciences of the 21st
century...) would also be very desirable, but my quota is full, and I’d
already have plenty to study and contemplate...

References
[1] http://www.cpp-next.com/

Next issue: Pete Goodliffe

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to
choose the eight records they would take with them to a desert island
(http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).
The format of ‘Desert Island Books’ is slightly different from the Radio 4
show. You choose about five books, one of which must be a novel, and
up to two albums. Some people even throw in the odd film. Quite a few
ACCUers have chosen their Desert Island Books to date and there are
plenty more to go.
The rules aren’t too strict but the programming books must have made
a big impact on your programming life or be ones that you would take to
a desert island. The inclusion of a novel and a couple of albums helps
us to learn a little more about you. The ACCU has some amazing
personalities and Desert Island Books has proved we only scratch the
surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?

Desert Island Books (continued)

for flexibility or longevity. To quote the book
‘That which is cheap and effective is more useful
that that which is big and expensive’. This book
states that you should always store data in text
files and that programs should act as filters with
well defined interfaces.
There are a lot of pre-written Linux/Unix
commands that are filters (take an input stream
– stdin, process/filter text and send it to an
output stream – stdout). Lots of applications
can be written as shell scripts processing data
that is text based far cheaper than a conventional
monolithic program. The pre-existing
commands mean that becoming a proficient
programmer is tougher on these platforms than
other platforms. However, the effort is worth it.
According to this book, the ‘Unix’ way of things
consists of up to three layers: 1) The UI layer
which in turn sits on top of 2) The application
layer which sits on top of 3) The small programs
layer which implements the guts of the system.
This means as a user you can opt to use a GUI
or the command line/schell script to automate
your intentions. This also means as a
programmer you can change any of the three
layers without having to change the other two
layers for example if your GUI falls out of
favour, you can replace the UI layer with new
code.
The Three Systems rule is covered here. The
First System gets built and either dies or it gets
developed into the Second System with the
knowledge that it will get replaced by the Third
(final) System.
As a semi-final recommendation, here are the
key tenets stated by this book:

Small is beautiful
Make each program do one thing well
Build a prototype as soon as possible
Choose portability over efficiency
Store data in flat text files
Use software leverage to your advantage
Use shell scripts to increase leverage and
portability
Avoid captive user interfaces
Make every program a filter

Finally – this book is an engaging read that
should be read by all Linux/Unix software
developers.

Concurrent
Programming on
Windows
By Joe Duffy, published by
Addison Wesley, ISBN: 978-
0321434821

Reviewed by Anthony Williams

This is one of the thicker books on my
bookshelf, with a whopping 958 pages, and with
good reason – it is a comprehensive guide to
both the Win32 and .NET multithreading APIs
on Windows.
As well as explaining in detail how to use the
various functions and classes, Joe goes into
some detail explining the basics of concurrency
and why things are done a particular way. This
covers everything from the basics of the x86
memory model and how that affects the
visibility and synchronization of data between
processors, to the thread scheduling model for
Windows.
There is in-depth coverage of all the
synchronization primitives, as well as the
Windows thread pool support, and
asynchronous I/O. The comprehensive coverage
of the .NET Parallel Extensions has been
relegated to an appendix, as the library was only
available as a preview at time of writing, but
there’s more than enough material in the main
part of the book on the main .NET library.
Joe hasn’t just covered the APIs either – there’s
a good discussion of various programming
models for concurrency, such as data parallelism
and task parallelism, a section on lock free
programming, as well as sample
implementations of data structures that are safe
for concurrent access from multiple threads
This is an indispensible book for anyone
wishing to use the native APIs when writing
multithreaded programming on Windows.

Pro Hadoop
By Jason Venner, published by
Apress, ISBN 978-1-4302-1942-2

Reviewed by Alan Lenton

For a start, I have to say, this
book didn’t exactly inspire me
to rush out and play with
Hadoop. Then there is the real
problem. For all that it came out in
2009, the book is based on
Cloudera’s 0.18.3 version of Hadoop, while the

current version is 0.20.1. As I understand it there
are radical changes to the API in the 0.20.x
versions. And the final killer, for me, at least,
was the fact that a substantial number of pages
throughout the book are devoted to regurgitating
code, tables of machine settings, copies of
initialisations files, and masses of extracts from
output and log files. It even has pictures of test
output in Eclipse!
I was left with the feeling that the author had a
much slimmer volume in mind, but was forced
to bulk it out to a set number of pages with a vast
amount of mono-spaced font material. There
may well be something more inspiring
struggling to get out.
In all honesty, I can’t recommend this book as
it stands. I would suggest that unless you have a
burning need to understand Hadoop instantly,
you wait for the second editions of the current
Hadoop books to come out. If you do need
instant material, then you need to find a real
bookshop (i.e., not Amazon), browse through
and compare the three books that seem to be
available on Hadoop, and pick the one that most
suits you.
Not recommended.

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
MAR 2010 | | 35{cvu}

36 | | MAR 2010

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Jez Higgins
chair@accu.org

In an indicative example of my occasionally chaotic
approach to planning and deadlines, I’ve been mentally
preparing to write my last View From The Chair. A last
minute review of the copy dates shows that unless the
new Chair is escorted from the AGM on the 17 of April and has their feet
held to the fire until they’ve written something, I’ve got one more to go.
I can’t really complain, though, because it’s one of the few obligations
of being Chair. Many aspects of the organisation run themselves. Take
accu-general, for instance, which is almost entirely constructive and
polite, if occasionally given to a pun too far. There is work involved in
running ACCU though, and the bulk of it is done by Alan, Stewart, Mick,
and Tony, respectively our Secretary, Treasurer, Membership Secretary,
and Web Editor, and by the journal editors, currently Steve and Ric. I’m
hugely grateful for their time and their quiet efficiency over the past
several years.
ACCU’s big event, the Conference, doesn’t appear out of nowhere, of
course. When I took over from Ewan as ACCU Chair, we formalised the
position of Conference Chair. Ewan, and now Giovanni, together with
their Conference committees have worked long and hard to continue the
tradition of formidably good programmes. This year’s programme is,
once again, ridiculously good, including keynotes by Jeff Sutherland,
James Bach, Dan North, and Russel Winder. I’m also excited that Robert
Martin is coming back – Uncle Bob gave me a hug last year and it was
great.
The AGM is, of course, held during the Conference. My understanding
is that the conference was originally created to give people something
else to do while attending the AGM. As a means of bringing a large
chunk of the membership together in one place, you have to say it’s
proved wildly succesful. You don’t have to attend the Conference to
attend the AGM, though, so do please come along if you can. While the
administrative functions of the organisation are important, getting
together with your fellow members, putting faces to names, making and
renewing friendships, is even more so.

The 22nd AGM
Notice is hereby given that the 22nd Annual General Meeting of
The C Users' Group (UK) publicly known as ACCU will be held
at 13:00 on Saturday 17th April 2010 at the Oxford Barceló Hotel,
(formerly the Oxford Paramount Hotel), Godstow Road, Oxford
OX2 8AL, United Kingdom.

Current Agenda

1 Apologies for absence
2 Minutes of the 21st Annual General Meeting
3 Annual reports of the officers
4 Accounts for the year ending 31st December 2009
5 Election of Auditor
6 Election of Officers and Committee
7 Other motions for which notice has been given.
8 Any other Annual General Meeting Business (to be

notified to the Chair prior to the commencement of the
Meeting).

The attention of attendees under a Corporate Membership is
drawn to Rule 7.8 of the Constitution:

'... Voting by Corporate bodies is limited to a maximum of four
individuals from that body. The identities of Corporate voting
and non-voting individuals must be made known to the Chair
before commencing the business of the Meeting. All individuals
present under a Corporate Membership have speaking rights.'

Also, all members should note rules 7.5:
'Notices of Motion, duly proposed and seconded, must be
lodged with the Secretary at least 14 days prior to the General
Meeting.'

and 7.6:
'Nominations for Officers and Committee members, duly
proposed, seconded and accepted, shall be lodged with the
Secretary at least 14 days prior to the General Meeting.'

and 7.7:
'In addition to written nominations for a position, nominations
may be taken from the floor at the General Meeting. In the event
of there being more nominations than there are positions to fill,
candidates shall be elected by simple majority of those
Members present and voting. The presiding Member shall have
a casting vote.'

For historical and logistical reasons, the date and venue is that of
the last day of the ACCU Spring Conference. Please note that you
do not need to be attending the conference to attend the AGM.
(For more information about the conference, please see the web
page at http://accu.org/conference.)

More details, including any more motions, will be announced
later. A full list of motions and electoral candidates will be
supplied at the meeting itself.

Alan Bellingham
Secretary, ACCU

	By Convention
	Live to Love to Learn (Part 2)
	Of Lag, Throughput and Jitter
	Continuous Integration for One
	Code Formatting in C++
	A Game of Strategy
	On A Game of Skill
	Assert Yourself
	Developing Web Applications with the Google Web Toolkit
	More About Bash
	Inspirational (P)articles
	Code Critique Competition 62
	Desert Island Books
	Bookcase
	The 22nd AGM
	View From The Chair

