

JAN 2010 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Tales From the Other Side
ood grief! 2010 and I’d barely got used to it being
2009! Anyway, a very Happy New Year to you all,
I hope we’ve enough in this issue to stir the brain

cells after any recent festivities that might have
occurred.
At the time of writing this, I’m preparing to leave one job
and start another almost immediately afterward, with just
one as-ever-too-short weekend betwixt. All of which
means my professional life is a muddle of rushed
explanatory telephone conversations, meetings and, oh yes,
writing documents that should’ve been written ages ago!
Handing over the work of months or years to different people
can be a distressing and sobering activity. You’d like to pass
information on in a way you’d like to receive it; I’m sure
many of us have been on the receiving end of such rushed
documentation and vague meetings, leaving us in every
possible doubt about what – if anything – we’ve learned
from the experience. And then, having to do all the
groundwork again, only to ultimately have to pass it on to
someone else...
Just deciding on which bits are important enough to document, and
correspondingly, which are not, can make a great deal of difference between
useful documentation and unintelligible nonsense.
There are striking parallels here to writing and reading code; you pick up
someone else’s code, which they presumably thought was brilliant, and can make
neither head nor tail of it. Resorting at last to making the comments visible, you
discover that they’re not much help either. Finally, you go trawling through the
archives of the version control system to find the culprit...eventually discovering
the awful truth: not only does the person in question work nearby (either still or
again), you know them rather well...

 G
Volume 21 Issue 6
January 2010

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Giovanni Asproni, Frances
Buontempo, Pete Goodliffe,
Paul Greyner, Richard Harris,
Jon Jagger, Derek Jones,
Alan Lenton, Alison Lloyd,
Roger Orr, Joe Wood

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | JAN 2010

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
22 Another year, another great

ACCU conference is coming!
Giovanni Asproni gives us
a taste of things to come.

23 Desert Island Books
Paul Grenyer maroons
Alison Lloyd.

24 ACCU London
James Lyndsay:
Anticipating Surprises (or
How to Find Problems
and Persuade People
You’ve Avoided Them).

25 ACCU Security 2009

26 Code Critique #61
The winner of last week’s
competition.

REGULARS
32 Bookcase

The latest roundup of
ACCU book reviews.

36 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 22.1: 1st February 2010
C Vu 22.2: 1st April 2010

Overload 96: 1st March 2010
Overload 97: 1st May 2010

FEATURES
3 Hunting the Snark (Part 5)

Alan Lenton investigates engineering in software.

4 A Brief Introduction to F#
Joe Wood shares his experiences with a new .Net
functional language.

9 Data Access Layer Design for Java Enterprise Applications
Paul Grenyer explores a more object-oriented way of
working with databases.

15 Deciding Between IF and SWITCH When Writing Code (Part 2)
Derek Jones concludes his study of programmers’ habits.

19 A Game of Skill
Baron Muncharris sets a challenge.

20 On a Game of Cards
A student performs an analysis.

20 AYE Conference Report
Jon Jagger gives a report of his experience at the AYE
Conference.

21 Live to Love to Learn
Pete Goodliffe begins a journey of self-improvement.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Hunting the Snark (Part 5)
Alan Lenton investigates engineering in software.

mm – somehow I got overlooked last issue (such things are the story
of my life...). However, those of you with long memories will recall
that in the issue before last I started looking at the question of

whether ‘software engineering’ is a true branch of engineering, and if not,
why not. In that article we looked at contributions on this from the BCS
(more of an assertion than any justification), Tom Demarco, and Chuck
Connell. In this article I want to look at a piece from Koni Buhrer [0]
Buhrer argues that the difference between a craft and engineering is that
craft is based on trial and error, while engineering is based on a set of first
principles (usually the laws of physics) from which all knowledge in the
discipline can be derived. Note that this does not involve any concept of
‘maturity’ (however you want to define that). I would suggest, contrary
to the views of the BCS, that maturity is probably necessary for a move
from a craft to engineer, but it is far from a sufficient requirement.
Buhrer takes a hard line on the issue of software as engineering. Not only
does he believe that current software development is a craft and not
engineering, he is of the view that software development will never be an
engineering discipline! As he points out, although we have rules and
methods for how we go about software development (think ‘best
practices’) they are not rules derived from first principles, they are
something that has come out of collective experimentation.
Let me give you an example. If you give a qualified civil engineer fresh
out of college a building to design, the result may well look like something
that was ripped out of the Maginot line, but it won’t fall down, and the
engineer will be able to prove that it won’t fall down from first, physical,
principles. A more experienced engineer would probably design
something more elegant, and probably more economic to build, but they
too would be able to prove that it wouldn’t fall down [1].
Contrast that with even an experienced programmer. How many people do
you know who can prove, from some sort of first principles, not using tests,
that a program of modest complexity will work as intended?
The interesting thing about Buhrer’s paper is that he has an explanation
for why software development is so different and so much more difficult.
If you look at engineering processes, there are basically two stages – design
and manufacture. Buhrer’s thesis is that software development is design,
and that the manufacture is the running of the compiler and linker. I suspect
that this idea was developed in an enterprise development environment,
and would need some re-working for shrink wrap.

None-the-less, the idea gives some intriguing answers to a number of
common problems in software development. Take for instance the
difficulty in providing a detailed work breakdown and schedule for
software development, in the way you can for, say building a skyscraper.
To quote Buhrer, ‘Because software implementation is the equivalent of
skyscraper design (i.e., the creation of the blueprints for a skyscraper) and
not skyscraper construction. Design work is naturally less amenable to
planning than construction work – which is true for skyscrapers as well as
for software – because the scope and complexity of the end product are
discovered only in the course of the design work’.

It also explains the lack of economies of scale in software programs. I’m
sure my readers will be only too well aware that if you increase the required

size of a program by (say) ten times, it costs way more than ten times to
produce. That’s because, in engineering, the economies of scale come from
the economies in the manufacturing cost, not the design stages, which will,
probably, take proportionally longer!
Furthermore, the construction is where most of the cost is in engineering
– building the skyscraper costs far more than designing the skyscraper, and
so the cost benefits of scale are realised in the building (manufacturing),
not the design.

It is interesting to speculate whether civil engineering would have emerged
from craft if it had been possible to press a button on a blueprint and have
the building appear within a few hours at no cost, and facilities to dispose
of it at the press of a button! Without the need to have to prove the design
before the bulk of the upfront costs were committed, would civil
engineering have developed, or would the craft have just proceeded down
the route of design, construct, test, demolish, tweak design, construct...
Buhrer’s paper goes further, and tries to provide, with much less success,
the idea of some first principles. Unfortunately, the exposition is left to a
part two of the article, which I have been unable to trace, so I guess it may
never have been developed or published.
OK. So why is all this important?
It’s important because the bulk of the scientific breakthroughs in the last
20 years have been enabled by the rise of cheap computing power. At the
same time, software development appears to be little further advanced than
that of a medieval craft guild state. That, rightly, concerns its practitioners
[2].
At the same time as we are struggling to understand the basis of our
discipline, powerful forces are moving to place limits on our activities.
Governments are not happy with us. Spectacular failures of government
contracts (mostly their own fault, but what government would admit that),
combined with the fact that software development is a very portable skill,
making it easy to pack and leave the country, is providing the impetus for
registration and regulation of commercial programmers. It seems likely
that my generation will be the last of the self-taught programmers.
On the bright side, while commercial programming may become tied up
in regulation, it will be difficult to completely stop ‘amateur’
programming. After all as long as open source software exists, all you need
is a general purpose computer, an editor and a compiler to write your own
programs! And if you break the program, it’s not as though you have to
buy ones and zeros from the shop to fix it...
I think we are on the cusp of something big which will determine the way
in which our profession will develop for many years to come.
Programming is now not something separate from society, if it ever was,
it genuinely is becoming ubiquitous, and we can no longer shelter behind
geekiness. We can either set our own course, which means we need

H

ALAN LENTON
Alan is a programmer, a sociologist, a games designer, a
wargamer, writer of a weekly tech news and analysis
column, and an ocassional writer of short stories (see
http://www.ibgames.com/alan/crystalfalls/index.html if
you like horror). None of these skills seem to be
appreciated by putative employers...

commercial programming may
become tied up in regulation

craft is based on trial and error,
while engineering is based on a set
of first principles
JAN 2010 | | 3{cvu}

A Brief Introduction to F#
Joe Wood shares his experiences with a new .Net

functional language.

[1] is a new multi-paradigm programming language (with a strong
functional programming leaning) developed at Microsoft Research in
Cambridge under the leadership of Don Syme for the .NET

environment. This is not intended to be a tutorial on F#, merely something
to whet your interest and point you in the direction of more comprehensive
material.
Before we begin, I should point out that I am a neither an F# aficionado
nor a functional programming wizard, barely an apprentice. All of my
professional programming has been in mainstream imperative languages
of the ALGOL tradition. My doctoral project used pop-11 [2] which is
basically Lisp and Forth meet the ALGOL style languages, so this is a
learning experience for us all.

Why would you be interested in F#?
It is a good question. It takes time and effort to study a new language and
the pay back may not be quick. There are two separate answers to this
question.
The basic answer is that it expands our knowledge and gives us new ways
of looking at things and therefore provides new insights to our everyday
problems.
More specifically, F# is a multi-paradigm language derived from Ocaml,
which supports functional programming, object-oriented programming
and plain old imperative programming. It is strongly typed, but the
compiler can and does deduce most of the types. Strict functional
programming means that there are no side effects and hence it is ‘easier’
to partition into independent pieces to run on separate cores in multi-core
chips, [1 (chap. 13)]. F# will be supported by Visual Studio 2010 as a first-
class language, but its status in Visual Studio Express is less certain.
F# is primarily a compiled language, but also provides an interactive
interpreter which is useful for rapid proto-typing. In Visual Studio you can
invoke the interpreter on highlighted code fragments using alt-enter.

Functional programming?

If you have never come across functional programming languages it is
reasonable to ask: what is it all about? In imperative languages the focus
is on data and how to manipulate it, in a blow by blow manner. For
example, suppose you want to find the sum of some data, a C style solution
is:

 int sum (const int * data, const size_t len) {
 int total = 0;
 for (size_t i=0; i<len; i++) {
 total += *(data+i) ;
 }
 return total ;
 }

The important points are that we have to keep track of our position in data
and that total keeps changing. In contrast a possible F# solution is (no
you have not fallen asleep, we have still to cover basic syntax):
 let rec sum data =
 match data with
 | [] -> 0
 | x :: xs -> x + sum xs

In this case the stack keeps track of our position in data and none of the
variables change. It is also worth noting that there is no explicit type
information in sight, the compiler can infer it all (how is another story).
What the above fails to highlight is that functional programming permits/
encourages functions as parameters to functions, higher-order functions,
which in turn leads to expressive elegance.
Let me inject a personal note at this stage. I first learnt BASIC at school
(yes, I know Dijkstra’s views) and then the usual suspects in the ALGOL
tradition with passing nods at a few others along the way. I have great
difficulty giving up mutable variables altogether and the idea that all code
should be side effect free is, to put it mildly, counter intuitive. The world
has state, and that state changes. Input/output is a pretty big side effect. In
an effort to get around side effects, computer scientists came up with
monads, and with much syntactic sugar I can almost swallow one.
Fortunately, F# hides many of its monads (called workflows in F#),
permits mutable variables and supports a functional programming style.
At last a functional language I can use that has the same general
performance characteristics as other imperative languages.

F
‘E

JOE WOOD
Joe Wood wrote his first computer program almost 35 years ago, and sepnt
his career developing software for a variety of large real-time systems. One
day he might know how to write software, but strongly suspects that people
problems trump technical issues all the time. He can be contacted at
jawood@iee.org
Hunting the Snark (Part 5) (continued)
genuine discussion, or we can abdicate and let others decide what we are
to become in the future.

References
[0] http://download.boulder.ibm.com/ibmdl/pub/software/dw/

rationaledge/dec00/FromCrafttoScienceDec00.pdf
[1] Actually, trial and error is not completely dead in engineering. Many

years ago when I was studying physics and engineering at university,
I used to travel home by train. The train went past a very large power
station, and in a field next to it was a collection of unused cooling
towers in various stages of collapse.

I later met an engineer who had worked on those towers. He
explained that the equations governing cooling towers were too
complex to be solved (this is in the days when computers were big
and expensive), and so the companies who designed cooling towers
had built a set of towers with successively thinner walls until they got
to the stage where the tower collapsed, to find the limits empirically.
Today, of course we would solve those equations on a computer, but
even in those days they knew how to prove the towers were safe,
even if they couldn’t solve the equations to actually prove they were
safe.

[2] We are not alone! The social sciences have been undergoing a similar
struggle to find a basis for their discipline for even longer.
4 | | JAN 2010{cvu}

It is worth mentioning that there is no hard and fast definition of pure
functional programming, and F# is able to support a spectrum of functional
programming styles; from ‘thou shalt not use any side effects’ to ‘whatever
works for you’. In fact, F#’s internal version of sum uses mutable
variables, no recursion, and would look at home in any object-oriented
code.

Getting F#
All the examples in this article have been written using Visual Studio 2010
Beta 1 with F# (free trial). There is also the compatible May 2009 CTP F#
for use with Visual Studio 2008. F# also runs under Linux using mono,
but without IDE support.

Basic syntax
Having, hopefully, convinced you to look at F#, we had better cover some
of the basic syntax. Let’s start with the ever popular Hello World:
 printfn "Hello, world"

printfn invokes a basic print routine printf, which supports
arguments like C’s printf, and adds a trailing newline. Unlike C, the
arguments to printf are type checked by the compiler. "Hello,
world" is a string constant.

Function definitions

More interesting is a function to say hello to an individual, e.g.:
 let hello name = printfn "Hello, %s" name

This defines a function, hello, which takes a single string argument
name. The function calls printfn with two arguments, a string constant
and the function parameter name. Notice that there are no parentheses
anywhere, and no commas between the arguments to printfn. To invoke
hello we say for example:
 hello "Luke"

Unfortunately, there is a catch. When you call .NET libraries you have to
add the parentheses and the commas between arguments. Some functional
languages do not require any parentheses with nested function calls, but
F# does.
F# determines the signature of hello to be string → unit. The →
identifies hello as a function. The overall signature tells us that hello
is a function that takes a single string argument and does not return a
result (unit), i.e. void in C. If we wrote hello 5, the compiler would
complain that 5 (an int) is not a string.
If we tweak the definition of hello, by replacing the format parameter
%s with %A, the signature of hello becomes 'a → unit. The 'a
indicates a generic parameter. In this case we can happily say hello 5,
and we will see 5 printed out, as expected.

Basic bindings

Introducing variables is just as simple:
 let star_wars_hero = "Luke Skywalker"

binds the string "Luke Skywalker" to star_wars_hero. This
binding is immutable. Mutable variables can be introduced using:
 let mutable top_artist = "Britney Spears"

and updated by:
 top_artist <- "Robbie Williams"

You cannot change the type of the variable once determined. The right
hand side is an expression and can be arbitrarily complex.
The let statement can also be used to perform limited pattern matching.
Full pattern matching is beyond the scope of this introductory article.

Compound data types

The simple data types in F# are based on underlying .NET types. Beyond
the simple data types, F# has the usual compound types, e.g. arrays,
records, lists, tuples and maps, and access to the .NET collection types.

Not all compound F# types (e.g. lists) have an equivalent .NET type,
because the type semantics are different. There are library functions to
convert between different representations when necessary.
Lists are used extensively in functional languages. In F# lists are
immutable. Like C++ and Java, F# lists are homogeneous. Lists are written
in the form [1;2;3;4;5] or equivalently [1..5]. Every list (except the
empty list) has a head (the top element) and a tail (another list) of all the
other elements. A single element list [42] has a head of 42 and the tail is
the empty list []. If we want to add a new element to the front of a list,
we can use 42 :: alist. You can add a list to the end of a list using
the syntax alist @ blist.
The following expressions are all equivalent:

 [1..5]
 1 :: [2..5]
 1 :: 2 :: 3 :: 4 :: 5 :: []
 [1..4] @ [5]
 [1..3] @ [4;5]

:: is basically just a shorthand for the List.Cons function, e.g.:
hd :: tl is equivalent to List.Cons (hd, tl)
In a similar way @ is just a shorthand for List.append, e.g.:
alist @ blist is equivalent to List.append alist blist
However we cannot use List.Cons or List.append or @ in pattern
matching.
You can access the elements of a list by index notation, e.g. alist.[4].
The . in the previous expression was not a mistake, the F# team are hoping
to resolve this unusual syntax at some future date. In general any class can
have index properties which are accessed by the .property[nth] style
syntax. A special case is the property called Item which does not need
the symbol Item in the index notation.
alist.[4] is a shorthand for List.nth alist 4
All F# lists are internally stored as pairs, the actual list element and a
pointer to the next element. Hence looking for an element other than the
head means chasing down a list of pointers, and hence expressions
involving @ or .[nth] should be avoided as they are computational
expensive.
Tuples are ordered (fixed size) sets of heterogeneous data-types. For
example (101, "Dalmatians") is a 2-tuple (aka a pair) of type int
* string. The only way to access the individual elements of a tuple is
either by pattern matching or by specific library functions. For example:
 let mktuple x y = (x, y)
 let t = mktuple 101 "Dalmatians"

Then we can use pattern matching to access the elements of t, using:
 let (a, b) = t

and hey presto we have a = 101 and b = "Dalmatians". In the
special case of a pair the library functions fst and snd extract the first
and second elements respectively.
Please be aware that a function which takes two arguments is completely
different from a ‘similar’ function that takes a 2-tuple as the single
argument, i.e.:
 let add_2arg x y = x + y
 // standard 2 argument function

has signature int → int → int , and
 let add_2tuple (x, y) = x + y
 // single 2-tuple function

has the signature int * int → int.

End of line comments are introduced by // and in-line comments are
bracketed by (* and *). XML documentation can be added by the special
comment symbol ///, however the details on using such documentation
comments are still sketchy.
JAN 2010 | | 5{cvu}

Lambda functions

In a functional language, Lambda (anonymous) functions are common.
The lambda function to increment an integer is just:
 (fun x -> x + 1)

So to increment 42, we could use the expression:
 (fun x -> x + 1) 42

which would produce 43, as expected. In such a situation there would be
little point in using a Lambda function.
List.map is a function that takes two arguments, viz.: firstly a function
to be applied to each member of the second argument which is a List. For
example to increment all the elements of the list [1..5], we could write:
 let incr x = x + 1
 List.map incr [1..5]

Alternatively, using Lambda functions we could use:
 List.map (fun x -> x+1) [1..5]

In functional programming there are many higher order functions like
List.map that take a function as an argument. Lambda functions provide
a way to write ‘short’ anonymous functions as arguments to these higher
order functions.
It is possible to never use a Lambda function in F#, and just define every
function before its use. In practice, using Lambda functions is common in
any functional language, it is part of the linguistic style. Behind the scenes
most functional language compilers convert a ‘normal’ let function
binding into a let value binding and an anonymous function, e.g.:
 let incr x = x + 1

is compiled as
 let incr = (fun x -> x + 1)

sum in detail

We have how covered sufficient syntax to take a more detailed look at sum.
Recall that sum is defined by (the line numbers are for ease of reference):
 let rec sum data = // 1
 match data with // 2
 | [] -> 0 // 3
 | x :: xs -> x + sum xs // 4

The only new syntax on line 1 is rec, which declares data to be a
recursive function. Indentation is important, as it denotes scope (like
python).
match (line 2) starts a pattern match expression, matching data against the
empty list ([]) or a non-empty list (x::xs). If the list is non-empty, then
the head is bound to the local variable x and the tail is bound to the local
variable xs.
Line 3 is the base case of the recursion and simply says that an empty list
has a sum of 0.
Line 4 handles the general recursive case and says that the sum of a non
empty list is the contents of the head (x) plus the sum of the tail of the list
(xs).
You will notice that sum has no return statement, and has two exit points,
i.e. lines 3 and 4. Multiple exit points are common in functional languages.
Its one good reason for keeping functions short. There is a return
statement in F#, but it is used only in asynchronous workflows.
A great beauty of such recursive definitions is that they are often
‘obviously’ true. Familiarity with mathematical induction is beneficial in
seeing why.
We could rewrite the function’s body (lines 2–4) using an if-then
statement:
 if data = [] then // 5
 0 // 6
 else // 7
 data.Head + sum data.Tail // 8

Line 8 could be replaced by the following two lines:
 let hd::tl = data // 9, compiler warning
 hd + sum2 tl // 10

The binding in line 9 uses pattern matching to assign values to hd and
tl, so that hd is the head of a list and tl the tail such that hd::tl equals
data. This produces a compiler warning because the pattern match is not
exhaustive, i.e. data could be empty.
Which version (recursive or iterative) and sub-version (pattern matching
or if-then) of sum you prefer is, in most practical situations, a matter of
personal taste. The recursive version could cause stack overflow for
smaller sizes of data then the iterative version. However, this is unlikely
to be problem in normal usage, and the use of an auxiliary function
generally works for larger data sets. For example:
 let sum data =
 let rec loop acc data =
 match data with
 | [] -> acc
 | x :: xs -> loop (acc + x) xs
 loop 0 data

Will not cause a stack overflow because of tail call optimisation, i.e.
instead of pushing successive call frames onto the stack, a direct jump is
made.
Of course in practice we would use List.sum to compute the sum of a list.
Informal testing would suggest that the recursive pattern matching version
is the fastest. Using an if-then statement is about four times slower.
Surprisingly, List.sum was slower than the fastest recursive version.
Please bear in mind that this is a beta version of F#, and all the normal
caveats on testing apply. The tests consisted of summing a list of 6,000
numbers, repeated 10,000 times and taking the average (max and min
discarded) of 10 runs (see Figure 1).

Some real F# code
We looked at a few snippets of F#, but it is high time we looked at a longer
example. In the September issue of CVu [3], Roger set puzzle 59,
concerning decimal to hexadecimal (hex) converter. I submitted a critique
[4] for this code. However, I though it was worth looking at an F# version.
For space reasons you’ll have to look back at your copy of November's
CVu for the full C++ code.
The basic problem was to convert an unsigned (decimal) integer into its
equivalent hex string. It is apparent that converting a decimal integer into
a hex string is a special case of converting a decimal integer into a based
string. So we shall start there (see Listing 1).
Now we can use partial application (creating a ‘new’ function from an
existing function by ‘freezing’ one or more arguments) to quickly write
decToHex:
 // Given the input number, num, return its
 // hexadecimal string representation
 let decToHex = decToBase 16

That’s the basic code for the problem. We still need a main program and
a test harness.
Let’s start by defining some test data. This is just a simple map (aka hash-
table or dictionary) – see Listing 2.
Define basic_tests as a function to test our code above. map is a
generic function found in most collections that applies the given function

Function Time (ms)

List.sum 4,090

Recursive pattern matching 2,264

Recursive if-then test 9,555

Recursive if-then test with embedded let 8,100

Figure 1
6 | | JAN 2010{cvu}

to each element of the collection and returns another collection with one
element for each element in the original collection. For example:
 List.map (fun x -> x*x) [1..5]

returns [2;4;9;16;25], i.e. each element incremented by one. fold is
like map, but it threads a value through the calculation on each element of
the collection returning the final value. For example:
 List.fold (fun state x -> state+x) 0 [1..5]

returns 15, i.e. the sum of the numbers 1..5. We use Map.fold to keep
a cumulate check on the state of our tests. We test each element of
mk_results in turn, with an initial state of true (passed) – see Listing 3.
Now we need a function to get an integer from the user to allow for other
inputs not tested in basic_tests. This is declared as recursive because
if we do not get an integer we will call the function again. This is a standard

functional programming while loop. We must tell the compiler that prompt
is a string, so that it can resolve the overloaded Write function (Listing 4).
Finally we come to the main routine (Listing 5), invoked by running:
 main ()

let decToBase radix num =
 // decToBase is a function which takes two arguments, radix and num. Cannot use base as the name of
 // the first parameter as it is a reserved word in F#, so use radix instead
 let symbols = "0123456789abcdef" // symbols is the table for mapping decimal digits to characters

 // Test if radix is within the valid range, note we can use “||” in place of “or” but the
 // latter improves readability
 if (radix < 2) or (radix > 16) then
 // If invalid condition just raise an exception sprintf just prints into a string
 invalidArg "radix" (sprintf "Illegal value '%i' for radix" radix)
 // This is roughly the equivalent of raise (new System.ArgumentOutOfRangeException(
 // "Illegal radix value"))

 // Test that num is non-negative
 if num < 0 then
 invalidArg "num" "Input values must be non-negative"

 // Now we create an inner function, getBaseDigits, that converts the input number, n, into a list
 // of characters. Note: Must test for zero before calling this function. Note: This function
 // prepends the latest char onto the list and therefore the final list is in the correct order
 // Loop over the num and find the remainder when we divide by radix and convert the remainder to
 // base radix. Then we divide the current value of num by radix. Stop when we get to zero.
 let rec getBaseDigits str n =
 if n > 0 then
 let c = symbols.[n % radix]
 getBaseDigits (c :: str) (n / radix)
 else
 str

 // Convert num to list of radix digits, note the check for 0 to satisfy getBaseDigits
 let digitList n =
 match n with
 | 0 -> ['0']
 | _ -> getBaseDigits [] n

 // and finally do all the work and convert to a string
 new string (List.to_array (digitList n))

let mk_results =
 Map [(0, "0"); (1, "1");
 (2, "2"); (3, "3");
 (4, "4"); (5, "5");
 (6, "6"); (7, "7");
 (8, "8"); (9, "9");
 (10, "a"); (11, "b");
 (12, "c"); (13, "d");
 (14, "e"); (15, "f");
 (16, "10"); (511,"1ff");
 (512,"200"); (513,"201");
 (522,"20a");
 (System.Int32.MaxValue, "7fffffff");
]

Listing 1
Li

st
in

g
2

let basic_tests () =
 let passed =
 Map.fold (
 // Loop over all the expected results and
 // check that we get no errors, keep a
 // cumulative pass/fail flag
 fun state num expected ->
 // Evaluate current number
 let result = decToHex num
 let pass = (result = expected)
 if not pass then
 printfn "Warning: Test failed,
 decToHex(%i) yielded %s expected %s"
 num result expected
 // return cumulative result
 pass && state
) true mk_results
 // Print overall test result
 if passed then
 printfn "Good basic tests passed, over to
you"
 else
 printfn "Warning: At least one basic test
failed"

Listing 3
JAN 2010 | | 7{cvu}

Parallel computation
That has been a rather quick sprint over some F# code. However, you might
think – not unreasonably – ‘interesting, but it’s just another language’. To
some extent it is the functional mindset behind the code that is more
interesting than the final code, and we cannot capture that in print.
Let’s try to up the interest a little. Recall map and fold in basic_tests,
which sequentially processed a collection. We can write a parallel
extension to map as follows (based on [5])
 module Map =
 let pmap f (m:Map<'Key,'T>) =
 seq { for a in m ->
 async { return (a.Key, f a.Key a.Value) } }
 |> Async.Parallel
 |> Async.RunSynchronously
 |> Map.of_array

The |> (pipeline symbol) takes the result from the previous function’s
execution and piplines it to the next function.
We can then observe that in basic_tests, the main fold could be
broken into two parts, a parallel run of each individual test and then a
‘collect the result’ phase. The parallel map phase now becomes:
 let ptest results =
 Map.pmap (fun num expected ->
 let result = decToHex num
 let pass = (result = expected)
 // return a triple
 (pass, expected, result)
) results

The sequential fold part becomes:
 let fold results =
 Map.fold (fun state num v ->
 // decode the result from the pmap anonymous
 // function back into a triple
 let (pass,expected,result) = v
 if not pass then
 printfn "Warning: Test failed, decToHex(%i)
 yielded %s expected %s"
 num result expected
 state && pass
) true results

You may be concerned that there is no obvious type information about the
triple beyond structural equivalence. This stems from C and C#’s lack of
name equivalence. We could create a class to handle this, but I’ll leave that
as an exercise for the reader to think about.
We can then rewrite basic_tests as:
 let basic_tests2 () =
 let passed =
 mk_results |> Map.pmap |> fold
 if passed then
 printfn "Good basic tests passed, over to you"
 else
 printfn "Warning: At least one basic test
 failed"

Of course, in this simple case it is not worth doing. But one can easily
imagine that with computationally expensive tests on a multi-core machine
it would be a great speed up. Please bear in mind that there is always some
overhead in splitting a problem up and re-combining the results. When in
doubt do your own speed tests. However, not everybody has the same kit,
so what may be sensible on a brand new turbo charged multi-core beast
might be best avoided on an old uni-core system. The good news is that
pmap is built on top of .NET libraries which are intended to make the best
use of available resources.

Summary and conclusion
F# is a usable functional programming language with support for OO and
imperative style programming. A new language will not solve your
software problems, but different styles of programming will make you
look at problems in new ways and that will give you new insights into your
problems.

Acknowledgement
I am most grateful to Steve Love for proof reading the original and asking
questions which made the article more comprehensible.

References
[1] Syme, D., Granicz, A., Cisternino, A. (2007). Expert F#, Apress
[2] pop-11. (2009). In Wikipedia, The Free Encyclopedia. Retrieved

12:08, October 16, 2009, from http://en.wikipedia.org/w/index.
php?title=POP-11&oldid=312842936

[3] Orr, R., et al (2009) ‘Code Critique Competition 59’, CVu, 21.4
[4] Orr, R., et al (2009) ‘Code Critique Competition 60’, CVu, 21.5
[5] F_Sharp_Programming. (2009). In Wikibooks. Retrieved 12:28,

October 16, 2009, from http://en.wikibooks.org/wiki/
F_Sharp_Programming

Further reading
Below are a few web sites (in no particular order) that might prove useful.
http://msdn.microsoft.com/en-us/fsharp/default.aspx. Microsoft F#

Developer Centre (official) web site.
http://cs.hubfs.net. Main community centre for F# developers, frequented

by some of Microsoft’s F# team.

let main =
 basic_tests ()
 // test it We must put the () after mainloop to
 // ensure that it is treated as a function
 let rec mainLoop () =
 let dec_int =
 getInteger "Please enter a decimal number "
 if dec_int >= 0 then
 printfn "%i in hexadecimal is %s" dec_int
 (decToHex dec_int)
 mainLoop ()
 mainLoop

Listing 5

let rec getInteger (prompt : string) =
 System.Console.Write (prompt)
 let str = System.Console.ReadLine ()
 // Try to convert input string into an integer.
 // Note: Use of two variables and that the
 // output from TryParse is placed in result
 // without requiring any mutable variables or
 // refs.
 let success, result = System.Int32.TryParse (
 str)
 if not success then
 // Conversion failure, prompt and try again
 System.Console.WriteLine ("You must enter a
 number, please try again, -1 to stop")
 getInteger prompt
 else
 // All OK just return the result

 result

Listing 4
8 | | JAN 2010{cvu}

message URL http://msdn.microsoft.com/en-us/fsharp/default.aspx
http://cs.hubfs.net
http://en.wikibooks.org/wiki/F_Sharp_Programming
http://en.wikibooks.org/wiki/F_Sharp_Programming
http://en.wikipedia.org/w/index.php?title=POP-11&oldid=312842936
http://en.wikipedia.org/w/index.php?title=POP-11&oldid=312842936

Data Access Layer Design for Java Enterprise
Applications

Paul Grenyer explores a more object-oriented way of working
with databases.

ava Database Connectivity (JDBC) can used to persist Java objects to
databases. However JDBC is verbose and difficult to use cleanly and
therefore is not really suitable for enterprise scale applications. In this

article I will demonstrate how to replace JDBC persistence code with an
Object Resource Mapper to reduce its verbosity and complexity and then,
through the use of the appropriate patterns, show how you might design a
more complete data access layer for a Java enterprise application.

The domain model
In order to demonstrate the design of an Enterprise Application Data
Access Layer I am going to develop a solution to manage users and their
roles (authorities) for the Spring Security database tables as described in
Spring in Action [1]:

Spring Security expects two tables. The Users table holds a list of users
consisting of a user name, password and flag to indicate whether or not
the user is enabled. It has a one-to-many relationship with the
Authorities table which holds the list of roles, stored as strings, each
user has. Although Spring Security does not specify this to be enforced, it
is sensible to use the username column as a primary key in the Users
table and as a foreign key in the Authorities table (see Listing 1).
A Java abstraction of a Spring Security user might look something like
Listing 2.
A User object has a user name, password, enabled flag and a list of roles.
It has a constructor which initialises all of the fields, bar the roles, a method
for adding individual roles and the appropriate getter for all fields.

The User class is the main object in our domain model.

Persisting objects with JDBC

Once a User object is instantiated with a user name, password, enabled
status and a list of roles it is relatively straight forward, although verbose,
to persist the object using JDBC (see Listing 3).
The save method makes a few assumptions:

1. The JDBC Connection object, con, is initialised before and
cleaned up after the method call by other code.

J

‘E

PAUL GRENYER
An active ACCU member since 2000, Paul is the founder
of the Mentored Developers. Having worked in industries
as diverse as direct mail, mobile phones and finance,
Paul now works for a small company in Norwich writing
Java. He can be contacted at paul.grenyer@gmail.com

CREATE TABLE [dbo].[Users]
(
 [username] [varchar](50) NOT NULL UNIQUE,
 [password] [varchar](50) ,
 [enabled] [bit] NOT NULL,
 CONSTRAINT Pk_Users PRIMARY KEY CLUSTERED
 ([username] ASC)
 ON [PRIMARY];

CREATE TABLE [dbo].[Authorities]
(
 [username] [varchar](50) NOT NULL,
 [authority] [varchar](50) NOT NULL,
 CONSTRAINT Pk_Authorities
 PRIMARY KEY CLUSTERED ([username],
 [authority] ASC),
 CONSTRAINT Fk_Authorities_User FOREIGN KEY
 ([username])
 REFERENCES [Users] ([username]),
 ON [PRIMARY];

Li
st

in
g

1

public class User
{
 private String username;
 private String password;
 private boolean enabled;
 private List<String> auths
 = new ArrayList<String>();

 public User(String username, String password,
 boolean enabled)
 {
 this.username = username;
 this.password = password;
 this.enabled = enabled;
 }
 public void addAuth(String auth)
 {
 auths.add(auth);
 }
 public String getUsername()
 {
 return username;
 }
 public String getPassword()
 {
 return password;
 }
 public boolean isEnabled()
 {
 return enabled;
 }
 public List<String> getAuths()
 {
 return auths;
 }
}

Listing 2
JAN 2010 | | 9{cvu}

2. The PreparedStatment objects can wait around to be cleaned up
when the con object is cleaned up.

3. The stored procedures spSaveUser, spDeleteAuthorities
and spSaveAuthority (see Listing 4) exist in the default
database specified when the con object is initialised.

For more details on JDBC resource handling see ‘Boiler Plating Database
Resource Cleanup (Part I)’ [2].
The save method takes the JDBC connection out of automatic commit
mode, so that all the database operations occur within a transaction. The
finally block at the end ensures that the connection is put back into
automatic commit mode regardless of whether the operations succeeded
or not. This, as I’ll explain in the moment, is because the User table and
the Authorities tables are updated separately and the changes should
only be committed if both updates are successful.
The User table is updated first by getting the user name, password and
enabled status from the User object and passing them to the spSaveUser
stored procedure. The spDeleteAuthorities stored procedure is then
used to remove all of the existing roles for the user from the
Authorities table and finally the spSaveAuthority stored
procedure is used in a loop to write the new roles to the table.
The load method, which is only slightly less verbose than the save
method, is used to instantiate a User object from the database (Listing 5).
This load method makes the same assumptions as the save method, plus
the existence of the spGetUser and spGetAuthorities stored
procedures. There is no need for any transaction handling as the database
is only being read.
The spGetUser stored procedure is used to get the user name, password
and enabled status from the Users table if an entry for the specified user
name exists. If it does then the spGetAuthorities stored procedure is
used to get the user’s roles and insert them into the User object.
On the surface the save and load methods look like simple, serviceable
JDBC code, but in reality they are unnecessarily verbose and potentially
difficult to maintain. An alternative is to use an Object Resource Mapper
(ORM).

Object resource mapper

Using an ORM, such as Hibernate [3], can greatly reduce the amount of
persistence code required. For example the save method could be reduced
to Listing 6.

public static void save(
 User user, Connection con) throws SQLException
{
 try
 {
 con.setAutoCommit(false);
 final PreparedStatement userDetails
 = con.prepareStatement(
 "{call [dbo].spSaveUser(?,?,?)}");
 final PreparedStatement deleteAuthorities
 = con.prepareStatement(
 "{call [dbo].spDeleteAuthorities(?)}");
 final PreparedStatement saveAuthority
 = con.prepareStatement(
 "{call [dbo].spSaveAuthority(?,?)}");
 userDetails.setString(1, user.getUsername());
 userDetails.setString(2, user.getPassword());
 userDetails.setBoolean(3, user.isEnabled());
 userDetails.execute();
 deleteAuthorities.setString(
 1, user.getUsername());
 deleteAuthorities.execute();
 saveAuthority.setString(1,
 user.getUsername());

 for(String auth : user.getAuths())
 {
 saveAuthority.setString(2,auth);
 saveAuthority.execute();
 }
 con.commit();
 }
 finally
 {
 con.setAutoCommit(true);
 }
}

Li
st

in
g

3

CREATE PROC [dbo].spSaveUser
 (@username [varchar](50),
 @password [varchar](50),
 @enabled [bit])
AS
IF EXISTS(SELECT [username] FROM [dbo].[Users]
 WHERE [username] = @username)
UPDATE [dbo].[Users] SET [password] = @password,
 [enabled] = @enabled
 WHERE [username] = @username
ELSE
 INSERT INTO [dbo].[Users] (
 [username],[password],[enabled])
VALUES(@username,@password,@enabled)

CREATE PROC [dbo].spDeleteAuthorities
 (@username varchar(50))
AS
 DELETE FROM Authorities WHERE [username]
 = @username;

CREATE PROC [dbo].spSaveAuthority
 (@username varchar(50),
 @authority varchar(50))
AS
 INSERT INTO Authorities
([username],[authority])
 VALUES (@username,@authority);

Li
st

in
g

4

public static User load(String username,
 Connection con) throws SQLException
{
 final PreparedStatement getUser
 = con.prepareStatement(
 "{call [dbo].spGetUser(?)}");
 final PreparedStatement getAuthorities
 = con.prepareStatement(
 "{call [dbo].spGetAuthorities(?)}");
 getUser.setString(1, username);
 getAuthorities.setString(1, username);
 ResultSet rs = getUser.executeQuery();
 User user = null;
 if (rs.next())
 {
 user = new User(rs.getString(1),
 rs.getString(2), rs.getBoolean(3));
 rs = getAuthorities.executeQuery();
 while(rs.next())
 {
 user.addAuth(rs.getString(1));
 }
 }
 return user;
}

Listing 5
10 | | JAN 2010{cvu}

Of course there is slightly more to it than I have shown here, but I’ll get
to that shortly. The SessionFactory object passed into the method,
among other things, manages connections to the database, which are
served up as Session objects via the openSession method. The
Hibernate notion of a session is
somewhere be twe en a
connection and a transaction.
Ses s ions mus t be c lo sed
regardless of success or failure
and the most sensible place to do
this is in a finally block. A
transaction is started by calling
beginTransaction on a Session
object and committed by calling commit on
the returned Transaction object. An
object is persisted to the database by passing
it to the saveOrUpdate method. If a row
in the database with the same user name as
the User object already exists it is updated,
if one does not exist it is created.
As you can see there is no need to update the
user and their roles separately, Hibernate
takes care of all of that for you. There is also
no need to write SQL or call stored
procedures unless you want to, Hibernate
does all that for you too. We’ll see how after
we’ve looked at the load method (Listing
7).
The load method works in much the same
way as the save method, except instead of

calling saveOrUpdate to persist an object it calls get to retrieve an
object. The get method needs to know the type of the object it is retrieving
and the object;s ID, in this case username. The returned object is then
cast to the correct type (hopefully generics will appear in a later version
and there’ll be no need for the cast).
All of this relies on a properly configured SessionFactory object.
Hibernate uses its own Configuration object which itself can be
configured in lots of different ways, to create SessionFactory objects.
The most straight forward way to configure it is with a hibernate.
properties file and a Hibernate XML mapping file:
final SessionFactory sessions = new Configuration()
 .addClass(User.class)
 .buildSessionFactory();

Unless specified otherwise the configuration object looks for the
hibernate.properties file in the classpath. A basic hibernate.
properties file for a Microsoft SQL Server database looks something
like Listing 8.
The connection url, username, password and driver are all self explanatory
and the same as used by JDBC. The setting that is new is the dialect.
Hibernate needs to know what sort of database it is connecting to so that
it can generate the appropriate SQL and take advantage of any
customisations. The dialect is set by specifying one of a number of
different dialect objects supplied by Hibernate. It is also possible to write
custom dialect objects for any database not supported.
The Configuration object also needs to know about the classes you
want to persist to the database. Again there are lots of different ways to do
this, but the simplest is to have a Hibernate XML Mapping file for each
class along side it in the package. Using the addClass method to tell the
Configuration object about the User class tells it to look for User.
hbm.xml in classpath:/uk/co/marauder/dataaccesslayer/
model. User.hbm.xml looks like Listing 9.
Hibernate XML mapping files are very easy to understand. As you can see
the Java User class is mapped to the Users database table. All Hibernate
persistable objects need an ID, which is specified by the ID tag. In this case
username is used as the ID and is mapped to the username column in
the Users table. Hibernate will use the name attribute to work out what
the getter on the User object is called, in this case getUsername. The
generator tag is used to specify if and how Hibernate should generate
the ID for objects being saved for the first time. In this case we want to
specify the ID ourselves, so the generator type is assigned and the ID

hibernate.connection.url=jdbc:sqlserver://localhost;DatabaseName=DataAccessLayer
hibernate.connection.username=user
hibernate.connection.password=secret
hibernate.connection.driver_class=com.microsoft.sqlserver.jdbc.SQLServerDriver
hibernate.dialect = org.hibernate.dialect.SQLServerDialect

Listing 8

<?xml version="1.0"?>
<!DOCTYPE
 hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
 <class name="uk.co.marauder.dataaccesslayer.model.User" table="Users">
 <id name="username" column="username">
 <generator class="assigned"/>
 </id>
 <property name = "password" column = "password"/>
 <property name = "enabled" column = "enabled"/>
 <bag name="auths" table="Authorities" lazy="false">
 <key column="username" />
 <element type="java.lang.String" column="authority"/>
 </bag>
 </class>
</hibernate-mapping>

Listing 9

public static void save(User user,
 SessionFactory sessions)
{
 final Session session = sessions.openSession();
 final Transaction tx
 = session.beginTransaction();
 try
 {
 session.saveOrUpdate(user);
 tx.commit();
 }
 finally
 {
 session.close();
 }
}

Li
st

in
g

6

public static User load(String username,
 SessionFactory sessions)
{
 final Session session = sessions.openSession();
 final Transaction tx
 = session.beginTransaction();
 User user = null;
 try
 {
 user = (User) session.get(
 User.class, username);
 tx.commit();
 }
 finally
 {
 session.close();
 }
 return user;
}

Li
st

in
g

7

JAN 2010 | | 11{cvu}

is given to the User object before it is persisted. The property tag is
used to map the other fields to table columns. The bag tag tells Hibernate
that the User class has a list of strings that should be written to the
authority column in the Authorities table and that the foreign key
relating them to the User object is username.
Obviously this is quite a simple mapping. Hibernate is capable or much
more complicated object relationships including inheritance. Hibernate
XML mapping files are not the only way to tell Hibernate about the classes
you want to persist. Hibernate also provides some annotations, but I prefer
to keep domain objects decoupled from the persistence mechanism as
much as possible.
We’re almost there. Unfortunately Hibernate needs a default constructor
and won’t use User’s current constructor. When loading objects it default
constructs them and uses setters to initialise them. User doesn’t have
setters so they need to be added (Listing 10).
Hibernate is quite clever, it can find and call the constructors and methods
it needs by reflection, even if they are private. So if it is undesirable for
your domain objects to have a default constructor or particular methods
that are needed by Hibernate they can be made private.
This is all that is needed for a fairly significant reduction in the amount of
code that is needed. It also reduces the the amount of exception handling.
However, it is possible to reduce it even further using the Spring
Framework’s [4] HibernateTemplate class (Listing 11).
HibernateTemplate takes care of getting and releasing Hibernate
sessions and some of the transaction handling. It would normally be
initialised with a DataSource in the Spring runtime’s application
context, but if you’re not using Spring’s application context it can be
initialised with a SessionFactory:
final SessionFactory sessions = new Configuration()
 .addClass(User.class)
 .buildSessionFactory();
final HibernateTemplate hibernateTemplate
 = new HibernateTemplate(sessions);

I have demonstrated how the load and save methods for the User object
can be reduced from several lines of code for a JDBC solution, down to a
single line each with an ORM solution. Even with the Hibernate XML
mapping file this is a significant reduction in code and complexity.
However, this is not enough for a real Enterprise Application Data Access
Layer.

Data mappers, registries and managers
The load and save methods separate the concern of persisting a User
object from the object itself, and that is a good thing. However the user of
the methods still knows they are persisting to a database and the
mechanism used to persist to the database as they have to provide the
app rop r i a t e Connection , SessionFactory o r
HibernateTemplate object. Worse still, when writing a unit test that
wants to simulate persisting data to the database those very same
Connection, SessionFactory or HibernateTemplate objects
must be stubbed out. This is not a trivial exercise as each has many methods
and acts as a factory for other objects that must also be stubbed.
Fortunately Martin Fowler solves this problem with two patterns from his
Patterns of Enterprise Application Architecture [5] book. The DATA
MAPPER, which moves data between objects and the database while
keeping them independent of each other and the mapper itself and the
REGISTRY, which is a well known object that other objects can use to find
common objects and services.
The Data Mapper is an object that you can ask to load, save or perform
some other sort of persistence operation on an object. In practice creating
a Data Mapper for the User class is slightly more than refactoring the
load and save methods into an class (Listing 12).
The UserHibernateDataMapper c l a s s i s spec i f i c t o
HibernateTemplate, but similar classes could be written for a straight
forward JDBC Connection or for a Hibernate SessionFactory. Once
created and initialised with a HibernateTemplate the object can be
passed around as needed and used to persist User objects without the user
being aware of the implementation.

public class User
{
 private String username;
 private String password;
 private boolean enabled;
 private List<String> auths
 = new ArrayList<String>();
 @SuppressWarnings("unused")
 private User()
 {}
 ...
 @SuppressWarnings("unused")
 private void setUsername(String username)
 {
 this.username = username;
 }
 @SuppressWarnings("unused")
 private void setPassword(String password)
 {
 this.password = password;
 }
 @SuppressWarnings("unused")
 private void setEnabled(boolean enabled)
 {
 this.enabled = enabled;
 }
 @SuppressWarnings("unused")
 private void setAuths(List<String> auths)
 {
 this.auths = auths;
 }
}

Li
st

in
g

10

public static void save(User user,
 HibernateTemplate hibernateTemplate)
{
 hibernateTemplate.saveOrUpdate(user);
}
public static User load(String username,
 HibernateTemplate hibernateTemplate)
{
 return (User) hibernateTemplate.get(
 User.class, username);
}

Listing 11

public class UserHibernateDataMapper
{
 private final HibernateTemplate
 hibernateTemplate;
 public UserHibernateDataMapper(
 HibernateTemplate hibernateTemplate)
 {
 this.hibernateTemplate = hibernateTemplate;
 }
 public void save(User user)
 {
 hibernateTemplate.saveOrUpdate(user);
 }
 public User load(String username)
 {
 return (User) hibernateTemplate.get(
 User.class, username);
 }
}

Listing 12
12 | | JAN 2010{cvu}

Spring also provides a helper class for Data Mappers called
HibernateDaoSupport which, among other things, provides
accessors for the HibernateTemplate (Listing 13).
For unit testing, data mappers that talk directly to a database need to be
easily interchangeable with the equivalent mock objects. Mock objects are
simulated objects that mimic the behaviour of real objects.

The easiest way to make the real data mappers and the mock data mappers
interchangeable is for them both to implement the same interface. This is
achieved by Extracting the Interface [6] of the real data mapper and then
creating a mock implementation (Listing 14).
Of course you can have as many implementations of the interface as you
want, so you could have a Hibernate implementation, a JDBC
implementation and a mock implementation for use in different systems
if you wanted too.
Each data mapper only needs to be created once. You could create and
destroy them when they are needed, but then the underlying JDBC or
Hibernate object would need to be passed around instead and the user
would no longer be abstracted from the particular data access
implementation being used. However, passing individual data mappers to
everywhere they are needed can be tedious and it is much easier to pass
around a single object that can be asked for the required data mapper.
Martin Fowler’s REGISTRY pattern describes one such object. Just to
remind you, the Registry is a well known object that other objects can
use to find common objects and services. Patterns describe solutions to
problems, not implementations. Therefore the registry used to store and
retrieve data mappers can be very different to the example Fowler suggests.
The implementation I have chosen is this:
 public interface DMRegistry
 {
 <T> T get(Class<T> interfaceType,
 Class<?> object);
 }

Having a registry interface makes the interchanging of different
implementations of registries easier and the passing round of registries less
coupled. For example you might have a JDBC data mapper registry, a

public class UserHibernateDataMapper extends
 HibernateDaoSupport
{
 public UserHibernateDataMapper(
 HibernateTemplate hibernateTemplate)
 {
 setHibernateTemplate(hibernateTemplate);
 }
 public void save(User user)
 {
 getHibernateTemplate().saveOrUpdate(user);
 }
 public User load(String username)
 {
 return (User) getHibernateTemplate().get(
 User.class, username);
 }
}

Li
st

in
g

13

public interface UserDataMapper
{
 void save(User user);
 User load(String username);
}
public class UserHibernateDataMapper
 extends HibernateDaoSupport
 implements UserDataMapper
{
 public UserHibernateDataMapper(
 HibernateTemplate hibernateTemplate)
 {
 setHibernateTemplate(hibernateTemplate);
 }
 @Override
 public void save(User user)
 {
 getHibernateTemplate().saveOrUpdate(user);
 }
 @Override
 public User load(String username)
 {
 return (User) getHibernateTemplate().get(
 User.class, username);
 }
}
public class MockUserDataMapper
 implements UserDataMapper
{
 private Map<String,User> users
 = new HashMap<String,User>();
 @Override
 public User load(String username)
 {
 return users.get(username);
 }
 @Override
 public void save(User user)
 {
 users.put(user.getUsername(), user);
 }
}

Li
st

in
g

14
JAN 2010 | | 13{cvu}

Hibernate data mapper registry and a mock data mapper registry. If your
code using the data mappers takes a DMRegistry you can easily change
the implementation just by passing the required registry to it. (Listing 15.)
AbstractDMRegistry is an abstract class that holds the common
implementation for all data mapper registries. All data mappers are
identified by the type of the object they map. The add method is used to
map the object type to a data mapper instance. The get method takes the
expected interface for the data mapper and the object type, looks it up and
returns the appropriate data mapper. If a data mapper for the supplied
object type is not present an exception is thrown.
Finally you need a specific implementation of the data mapper registry. A
HibernateTemplate implementation might look like this:
 public class HibernateTemplateDMRegistry
 extends AbstractDMRegistry
 {
 public HibernateTemplateDMRegistry(
 HibernateTemplate hibernateTemplate)
 {
 add(User.class,new UserHibernateDataMapper(
 hibernateTemplate));
 }
 }

The data mapper for the User object is created using a supplied
HibernateTemplate, in the constructor and added to the registry. Any
number of data mappers can be added to and accessed from the registry.
Other implementations of a registry would be very similar, but instantiate
different data mappers. A HibernateTemplateDMRegistry is
instantiated like this:
 final DMRegistry registry
 = new HibernateTemplateDMRegistry(
 hibernateTemplate);

and used like this:
 final UserHibernateDataMapper mapper
 = registry.get(UserHibernateDataMapper.class,
 User.class);
 mapper.save(user);
 final User newUser
 = mapper.load(user.getUsername());

Once the data mapper has been retrieved from the registry it is simple to
use, but the code to retrieve it is verbose and could end up being repeated

throughout your code. One way to get around this is to use a Facade [7] to
‘manage’ the object being persisted (Listing 16).
The UserManager uses a reference to data mapper registry to obtain the
data mapper for the User object and uses it to save and load User objects.
A UserManager can be passed around instead of a data mapper registry
and reduce the verbosity and repetition of code without loosing any of the
flexibility and does not care what sort of data mapper registry it has been
passed. More operations can be added to managers easily and if an
operation becomes more complicated and, for example, requires multiple
data mapper calls the manager becomes the ideal place to add things like
encompassing transactions.

Finally
I have shown how to reduce the verbosity and complexity of JDBC
persistence code using an ORM. I have also shown how a data access layer
could be written that is suitable for an enterprise application. It allows
simple interchanging of different database persistence implementations,
including a mock object implementation to aid automated unit testing.
By using the basic form of the Spring Security database I have
demonstrated very simple use of an ORM and object managers. ORMs can
be used to persist far more complicated object relationships and managers
used to do far more. Although it is only the tip of the iceberg this article
should give a firm grounding for more complex enterprise application data
access layers.

References
[1] Spring in Action by Craig Walls, Ryan Breidenbach, Manning

Publications; 2 edition ISBN: 978-1933988139
[2] ‘Boiler Plating Database Resource Cleanup – Part I’ by Paul

Grenyer, http://www.marauder-consulting.co.uk/
Boiler_Plating_Database_Resource_Cleanup_-_Part_I.pdf

[3] Hibernate: https://www.hibernate.org/
[4] Spring Framework: http://www.springsource.org/
[5] Patterns of Enterprise Application Architecture by Martin Fowler,

Addison Wesley ISBN: 978-0321127426
[6] Refactoring: Improving the Design of Existing Code by Martin

Fowler, Addison Wesley, ISBN: 978-0201485677
[7] Design patterns : elements of reusable object-oriented software by

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
Addison Wesley, ISBN: 978-0201633610

Li
st

in
g

16

public abstract class AbstractDMRegistry
 implements DMRegistry
{
 private final Map<Class<?>, Object> map
 = new HashMap<Class<?>, Object>();
 public <T> void add(final Class<?> objectType,
 final T dataMapper)
 {
 map.put(objectType, dataMapper);
 }
 @Override
 public <T> T get(Class<T> interfaceType,
 Class<?> object)
 {
 final T dataMapper = interfaceType.cast(
 map.get(object));
 if(dataMapper == null)
 {
 throw new IllegalStateException(object
 " not found in registry "
 + getClass().getName());
 }
 return dataMapper;
 }
}

Li
st

in
g

15 public class UserManager
{
 private final DMRegistry registry;

 public UserManager(DMRegistry registry)
 {
 this.registry = registry;
 }
 private UserHibernateDataMapper getMapper()
 {
 return registry.get(
 UserHibernateDataMapper.class,User.class);
 }
 public void save(User user)
 {
 getMapper().save(user);
 }
 public User load(String username)
 {
 return getMapper().load(username);
 }
}

Listing 16
14 | | JAN 2010{cvu}

Deciding Between IF and SWITCH When
Writing Code (Part 2)

Derek Jones concludes his study of programmers’ habits.

his article is the second of two
that investigates the possible
fac to r s i n f l uenc ing

developers in their choice of
selection statement, i.e., deciding
whether to use an if-statement or a
switch-statement to implement
some desired functionality. Two
sources of data are analysed: the
f i r s t a r t i c l e [2] a na ly sed
measurements of existing code and
this second one discusses the
results of an experiment carried out
at the 2009 ACCU conference.
The source code measurements in
the first article showed that the
switch-statement rapidly becomes
the selection statement of choice as
the number conditionally executed
statement sequences increases; see
F i gu r e 1 . T h e 2 00 9 A C C U
experiment asked subjects to write
various function definitions whose specification each involved behaviour
that depended on one variable that could take on various values.
Previous experience has shown that when asked to solve one simple
problem developers often quickly fall into using a fixed pattern when
answering. One of the aims of the ACCU experiments is for them to reflect
actual work practices (to be ecologically valid is the technical
terminology). In an attempt to prevent subjects following a pattern of
answers that they would not follow in a work related environment each
problem was split into two independent sub-problems.

The hypothesis

The experimental problem contained two independent subproblems and
separate hypothesis derived for each subproblem.

1. Recognition of function call sequence order. Subjects are more
likely to correctly recall the sequence of a previously seen sequence
of function calls if the names of those functions follow a commonly
occurring pattern, e.g., alphabetic/numeric order or having a
(hopefully) recognizable order such as the sequence start-process-
end. The details are discussed below.

2. if/switch statement choice. The decision on whether to use an if
or switch statement is strongly affected by the number of
conditional arms expected to appear in the final code. A secondary
hypothesis is also tested:

Experienced developers will be aware that code written today
frequently has to be modified in the near future because of
changes to requirements or other parts of the code base. A
developer’s expectation of future changes to code that is being
written now may also be a factor in the choice of selection
statement.
To test this hypothesis problems were designed to either involve
quantities that subjects were thought likely to consider as being
open-ended (living space related information was used e.g.,

trees in a garden) or to involve quantities thought likely to be
considered to be closed by subjects (human body related
information was used e.g., number of fingers on a hand). The
details are discussed below.

The differences between the left and right plots in Figure 1 are caused by
contributions from else and default. In the case of an if-if sequence
the else can only appear on the final if-statement and a default-label
cannot be mixed with case-labels on the same statement sequence. The
solid lines are a least-squares fit of the data to an exponential function.

Experimental setup
The experiment was run by your author during a 40 minute lunch time
session at the 2009 ACCU conference (www.accu.org) held in Oxford,
UK; between 275 and 325 professional developers attend this conference
every year. Subjects were given a brief introduction to the experiment,
during which they filled in background information about themselves, and
then spent 27 minutes answering problems. All subjects volunteered their
time and were anonymous.
The problem format was very similar in form to several previous ACCU
experiments [1].

The problem

Figure 2 is an excerpt of the text instructions given to subjects (your author
went through these instructions and the associated example once
everybody had settled down in the room, prior to them answering any
problem).

T

DEREK JONES
Derek used to write compilers that translated what people wrote. These
days he analyses code to try and work out what they intended to write.
Derek can be contacted at derek@knosof.co.uk

Figure 1

The left plot is of occurrences of if-else-if, if-if (uncertainty about which sequence a single if-statement, without an
else-arm, belonged to was resolved by including it in both sequences) and switch-statements having the given
number of conditional arms. The right plot is the number of controlling expressions in a if-else-if and if-if sequence
and the number of case-labelled statement sequences (i.e., it excludes the effect of any default) in a switch-
statement. The solid lines are a least-squares fit of the data to an exponential function. The dotted line is a fit to
the sum of all sequences having a given number of arms.
JAN 2010 | | 15{cvu}

www.accu.org

Background to problem generation

The problems and associated page layout were automatically generated
using various awk scripts to generate troff, which in turn generated
postscript. The source code of the scripts is available from the experiment’s
web page.[3]

Sequence of function calls

The names of the functions used for each sequence of three function calls
was generated as follows:

A total of 30 different sets of three function names was created. In
seventeen of these sets the names were English words having the
property that it was possible to place the names in an ordered

relationship that many English speakers were thought likely to
recognise, e.g., toe, foot, leg. Four of the sets contained English
words having no obvious ordering relationship between them (e.g.,
morning, collide, gutter), five of the sets contained unrelated
nonword-like sequences of letters (e.g., cgy, pdl, kxr) and four of the
sets contained unrelated word-like sequences of letters (e.g., esak,
dard, sule). The complete list of names used is available from the
experiment’s web page.[3]
For each subject, the sequence of functional calls used in a problem
was created by randomly selecting a previously unselected, set of
three function names. The ordering of the names was randomised
and this sequence was printed. The list of four possible answers was

 1 void set_variable(int company)
 2 {
 3
 4
 5 if (company == 1)
 6 X = "Intel";
 7 else if (company == 20)
 8 y = "Motorola";
 9 else if (company == 33)
10 W = "IBM";
11 else if (company == 41)
12 p = "Sun";
13
14 }

void set_variable(int company)
{
 switch(company)
 {
 case 1: X = "Intel";
 break;
 case 20: y = "Motorola";
 break;
 case 33: W = "IBM";
 break;
 case 41: p = "Sun";
 break
 }
}

Figure 2

What you have to do

This is not a race and there are no prizes for providing answers to all questions. Please work at a rate you might go at while reading source code. The
task consists of remembering the sequence of three function calls and recalling this sequence later The function calls appear on one side of the sheet
of paper and your response needs to be given on the other side of the same sheet of paper.

1. Read the function call sequence like you would when carefully reading lines of code in a function definition.
2. Turn the sheet of paper over. Please do NOT look at the function calls you have just read again, i.e., once a page has been turned it stays turned.
3. To create a time delay between reading the sequence of function calls and having to recall the sequence you are asked to write some code to

assign a value to some variable. You do not know where these variables are defined, it may be in some other compilation unit, or locally within
the current function.
The function set_variable has one parameter and this can have any of the numeric values listed above the function skeleton, to the left.
The value to be assigned to a particular variable appear to the right of the input value to which they apply.
Only one function has to be written for each problem.
The code can be written in a language of your choice (it would simplify subsequent analysis if either C, C++, Java, Pascal or C# were used).
The values and variables either involve parts of the human body or relate to a person’s home.

4. Once you have written the code you are now asked to recall the sequence of function calls seen on the previous page.
if you remember the sequence circle the appropriate list,
if you feel that, in a real life code comprehension situation, you would reread the original function call sequence, circle the refer back
column on the right.

If you do complete all the questions do NOT go back and correct any of your previous answers.

 1 op_1();
 2
 3 op_2();
 4
 5 op_3();

 1 -> X = "Intel";
 20 -> y = "Motorola";
 33 -> W = "IBM";
 41 -> p = "Sun";

Two of the ways in which the appropriate assignment might be performed

 op_2(); op_3(); op_1(); op_2();
 op_1(); op_1(); op_2(); op_3(); refer back
 op_3(); op_2(); op_3(); op_1();
16 | | JAN 2010{cvu}

generated by creating three other unique random orderings of the
names, each differing from the printed sequence, and printing out
the four possible answers in a randomly selected order (refer back
was added as a fifth possible answer).

Specification of function definition

The coding part of the problem answer sheets seen by subjects had two
parts:

a list of value/assignment pairs. When the function parameter had a
given value a specified assignment was required to be executed.
The problem description did not specify any information on the kind
of source statements to use.
a function definition template within which enough white-space was
provided for subjects to write their answer. The function took a
single parameter whose name was intended to generate a particular
semantic association in the subject’s mind.

 23 -> K=0;
 46 -> R=1;
 4 -> N=2;

 1 void set_variable(int num_ears_pierced)
 2 {
 3
 4 // Sufficient vertical white space here to
 // write code
 5
 6 }

It was decided that the number of conditions contained in each problem
specification be either 3, 4 or 5. The detailed information present in
Figure 1 was not available when this decision was made, otherwise
problem specifications containing 2 conditions would also have been
included.
Semantic information on the kind of operation being performed by the
function was indicated via the name of the parameter variable being tested
against and the numeric or string literal being assigned. For instance, the
variable name num_garden_sheds is intended to convey to subjects that it
holds a value representing a number of garden sheds (another possible
interpretation is the number of garden sheds for sale or visible from some
vantage point; both are open-ended in that the number of sheds is unlikely
to be thought to be limited in real life to the range given in the problem),
and requiring the assignment of one of the three strings ‘two handed’, ‘one
handed’ and ‘hands free’ is intended to convey that the function involved
humans using their hands (a closed set in the sense that humans have a
maximum of two hands).
A total of 30 different possible variables and associated values were
created. Half of these variables had names intended to indicate something
involving the human body (the closed set) and the other half had names
relating to human habitation (the open set). The ordering of the list of 30
possible variables was randomised for each subject.
The extent to which subjects considered it likely that the range of values
held by a variable having a given name will change at a future date was
found by asking them, at the end of the experiment: “For each of the
problems you answered please specify what you think the likelihood is,
on a scale of 1 to 10, that at some future date additional items will be added
to the list of possible parameter values. 1 means extremely unlikely while
10 means inevitable.” (the list of questions appeared in the same order as
the list of problems they encountered).
The identifier used in each assignment statement was randomly chosen
from a set of single letter identifier names and the order in which the
assignment statements (for each problem) was listed was also randomized.
The complete list of names and corresponding literal values used, along
with subjects’ evaluation of the likelihood of additional values being added
is available from the experiment’s web page. [3]

Threats to validity
For the results of this experiment to have some applicability to actual
developer performance (i.e., to be ecological valid) it is important that
subjects work through problems at a rate similar to that which they would
process source code in a work environment. Subjects were told that they
are not in a race and that they should work at the rate at which they would
normally process code. However, developers are often competitive and
experience from previous experiments has shown that some subjects
ignore the work rate instruction and attempt to answer all of the problems
in the time available. To deter such nonwork-like behaviour during this
experiment the problem pack contained significantly more problems than
subjects were likely to be able to answer in the available time (and this was
pointed out to subjects during the introduction).
If subjects are asked to repeatedly write the same kind of coding construct
situation they may not behave in the same way as when involved in having
to use a variety of different constructs. In the ACCU experimental context
it would not be practical to ask subjects to write lots of different kinds of
code. Within the constraints of the ACCU experiment it was only practical
to use two independent subproblems and it is hoped that this would be
sufficient to prevent subjects rapidly falling into a nonwork-like fixed
pattern of behaviour.
The structure of the problem used follows a pattern that is often
encountered when trying to comprehend source code: see information (and
remember some of it), perform some other task and then perform a task
that requires making use of the previously seen information. In this
experiment the three activities were: remember some coding information,
write some unrelated code and finally recognize the previously
remembered information.
It is possible that when answering a series of problems having the same
overall structure subjects may decide to use the same coding technique for
each problem, making their answers unrepresentative of what they would
have written outside of the context of this experiment.
The if/switch problem involved a component that relied on subjects
making a semantic association with the name of a variable and making use
of that information. An experiment that uses semantics as the control
variable depends on subjects recognizing the appropriate semantic content
in the problem being answered. If the anticipated semantic effect does not
appear in the results one explanation is that subjects failed to extract the
implied semantic information, another is that subjects extracted different
information from that intended by the experimenter; a subject’s failure to
make use of the intended semantic information is also an explanation.

Subject strategies and motivations

Talking with subjects who have taken part in previous ACCU experiments
uncovered that they had used a variety of strategies to remember
information in remember/recall problems and had problem completion
motivations that had not been anticipated. The analysis of the threats to
validity of these experiments[1] discussed the question of whether subjects
traded off cognitive effort on one subproblem in order to perform better
on another subproblem, or carried out some other conscious combination
of effort allocation between subproblems. To learn about strategies used
during this experiment, after ‘time’ was called on problem answering,
subjects were asked to list any strategies they had used (two sheets inside
the back page of the handout had been formatted for this purpose).

Results
It was hoped that at least 30 people (on the day 12) would volunteer to take
part in the experiment and it was estimated that each subject would be able
to answer 20 problem sets (on the day 16.6 sd 4.1; a total of 199 answers)
in 20–30 minutes (on the day 27 minutes).
The average amount of time taken to answer a complete problem was 97.6
seconds. No information is available on the amount of time invested in
trying to remember information, answering the coding subproblem, and
then thinking about the answer to the sub-problem (i.e., the effort break
down for individual components of the problem).
JAN 2010 | | 17{cvu}

The average professional experience of the subjects was 12 years (standard
deviation 7.4).

if/switch choice

All but one subject primarily always used either an if-else statement (2
subjects) or a switch-statement (9 subjects; a few subjects answered one
question using an if-statement). One subject used an if-else statement when
the specification contained three conditions and a switch-statement when
the specification contained more than three conditions.
Based on the measurements used to plot Figure .1, with three conditional
arms the probability of a switch-statement being used is 73% (the value
with four conditional arms is 89%). The likelihood that 11 out of 12
subjects will primarily always use a switch-statement is very low.
The pattern of usage seen in the experiment answers would not generate
the relative frequency of occurrences seen in the source code
measurements. Possible reasons for this experimental behaviour include:

The relative frequencies seen in Figure .1 are caused by something
other than developers basing their choice of if/switch statement
usage on the number of conditional arms.
In an attempt to improve their performance in the remember/
recognise subproblem subjects decided to always give either an if-
statement or a switch-statement answer (i.e., they assumed that by
not making a separate choice for each answer they were more likely
to correctly answer the function sequence subproblem).

After time was called on answering problems subjects were asked to:
‘Please list any strategies you used when writing the code’.
Strategies listed included: ‘Always the same’, ‘Dumb way, because little
info (followed example)’, ‘do not analyse context’ and ‘Minimise amount of
writing’. The subject who used a mixed if/switch strategy wrote: ‘3 items
or less -> if-else chain, more items -> switch case’.
Subjects used two orders for testing the parameter against the various
numeric values listed in the problem specification:

The two subjects who primarily used if-else tested the numeric
literals in the order in which they appeared in the specification. The
subject who only used if-else in the three conditional arm problems
sorted the numeric values and tested them in this order.
Seven of the nine subjects who primarily used switch tested the
numeric literals in the order in which they appeared in the
specification, the other two subjects plus the subject who used an if-
else in the three conditional arm problems sorted the numeric values
and tested them in this order.

Recognition performance

Subjects saw a sequence of three function calls and later had to either select
one out of four sequences or select refer back. One of the four sequences
was the same as that seen earlier, so there a random answer had a 25%
chance of being correct.
Of the 199 problems answered by the 12 subjects 84.9% were correct,
12.6% were refer back and 2.5% incorrect (in all 5 incorrect cases the first
function name in the answer sequence was correct).
All of the incorrect answers were given by just 25% of the subjects; this
is not statistically significant because of the very small number of incorrect
answers involved.
The refer back answer was not given by 58% of subjects, but was given
quiet a few times (mean 31.5% of answers) by 33% of the subjects. There
are several possible explanations for some subjects giving many refer back
answers, including:

Self-knowledge, or metacognition, is something that enables a
person to evaluate the accuracy of the memories they have. Perhaps
these subjects have poor metacognitive abilities (i.e., they
underestimated the accuracy of their memories and might have been
correct had they risked giving an answer),
these subjects were very cautious, or risk averse, people,

these subjects exhibited poor short term memory performance
during the experiment (which may be due to being tired or having a
low short term memory capacity).

After time was called on answering problems subjects were asked to:
‘Please list any strategies you used to remember the sequence of items’
Strategies commonly listed by subjects for remembering a sequence of
function definitions included: noting if the items were in alphabetic order,
reverse alphabetic order, logical order and noticing when the initials
formed an acronym they knew. These strategies implied that subjects were
not remembering the names of the functions but some pattern that could
be used to later recognise which sequence to circle (for their answer). This
method of operation works because subjects were only asked to remember
one sequence at a time, something that is not that common in a software
development environment.

Conclusion
The results did not produce any evidence that significantly supported the
hypothesis concerning developer choice of if/switch statements or that
a known ordering relation between a sequence of functions names aided
later recognition of that sequence.
Subject made so few mistakes in the function sequence recognition
problem that it is not possible to reliably detect any patterns in the mistakes
made. It is difficult to know how to structure a recognition problem that
would generate a sufficient number of subject mistakes while maintaining
a reasonable degree of ecological validity.
The memory problem could have been structured as a recall problem (i.e.,
ask subjects to write down the sequence of names without being given any
external clues; when writing software developers have to recall the
appropriate sequence to call functions and when reading existing source
spot when a sequence of calls is incorrect). This experiment was not based
on recall because it was thought, prior to the experiment, that this would
require too much cognitive effort from subjects who might then give many
refer back answers. All but one subject used the same coding construct for
all if/switch problem answers. This behaviour may have been an artifact
of the experimental situation. Future experiments investigating if/
switch decision making might like to include problems containing two
conditional arms. When describing the problem to subjects and telling
them what they are being asked to do it might be worthwhile stressing that
they should give the if/switch part of the experiment equal weighting
and not use a coding strategy aimed at improving their performance on
other parts of the problem.

Further reading
For a readable introduction to human memory see Essentials of Human
Memory by Alan D. Baddeley; a more advanced introduction is given in
Learning and Memory by John R. Anderson. An undergraduate level
discussion of some of the techniques people use to solve everyday
problems is provided by Simple Heuristics That Make Us Smart by Gerd
Gigerenzer and Peter M. Todd. An excellent introduction to many of the
cognitive issues that software developers encounter is given in Thinking,
Problem Solving, Cognition by Richard E. Mayer.

Acknowledgements

The author wishes to thank everybody who volunteered their time to take
part in the experiments and ACCU for making a slot available, in which
to run the experiment, at the 2009 conference.

References
1 D. M. Jones ‘Developer beliefs about binary operator precedence’,

C Vu, 18(4):14–21, Aug. 2006.
2 D. M. Jones ‘Deciding between if and switch when writing code’,

C Vu, 21(5):14–20, Nov 2009.
3 D. M. Jones ‘Experimental data and scripts for deciding between if

and switch’, http://www.knosof.co.uk/cbook/accu09.html, 2009
18 | | JAN 2010{cvu}

A Game of Skill
Baron Muncharris sets a challenge.

ir R-----! It seems that Madame Fortune has once again willed that
our paths cross in this fine hostelry. Come join me in raising a glass
in honour of her divine wisdom.

Might you be willing to pit your wits and your purse against mine in a game
of skill?
Excellent! I should not have expected a Gentleman of such high standing
as your good self to shy from some sport.
I learnt the game banqueting in Valhalla after I was slain protecting the
Empress of Russia from a particularly ardent suitor. Needless to say, the
rogue fared worse than I, but that is a tale for another evening.
The game was invented by Odin as a peaceable means to settle disputes
between Valkyries after an especially boisterous banquet in which his great
hall was very nearly reduced to rubble during an argument over whether
it was proper to serve mead or ale during the cheese course.
It has since become quite the popular after dinner entertainment amongst
the more genteel guests at his banquets, as I’m sure you will appreciate
once I explain to you its play.
Here, I have lain before you 9 cards

A♥ 2♥ 3♥ A♠ 2♠ 3♠ A♣ 2♣ 3♣

We shall take turns drawing cards from this stock and contrive to build a
trick of three cards of the same suit or of the same face value.
You shall draw first and have the advantage of being allowed to take three
cards that all differ in both suit and face value as a trick, provided that they
include the very first card you draw.
For example, if the first card you draw is 2♣, then the following three
tricks are amongst those that might win the game for you

If you can press your advantage and build a trick before I, you shall have
the game and a coin from my purse. If however I build a trick first, or if
the stock of cards is exhausted, then I shall have the game and likewise a
coin of yours.
Upon hearing these rules, that disreputable student acquaintance of mine
became somewhat agitated and started wittering on about tactics and the
eyes of Morpheus.
Quite what comment the Regent of the land of dreams might make upon
the tactics of this game is beyond my reckoning. On the several occasions
I have met that noble Lord it proved quite impossible to rouse him from
his royal slumber for more than a few words of conversation in every hour.
I am at a loss as to how one might keep him lucid for sufficient duration
to play this excellent game.
I can only assume that the miserable cur has been adding Morpheus’
tinctures to his wine and that they have addled his already meagre faculties.
So! Take another glass of port and tell me whether you fancy your chances!
(Listing 1 is checking whether the last card in a hand forms a winning
trick.)

A♥ 2♣ 3♠
A♠ 2♠ 3♠
A♥ A♣ A♠

S struct card
{
 enum suit_type{clubs, spades, hearts,
 diamonds};
 suit_type suit;
 unsigned char value;
}

bool
match_suit(const card &a. const card &b,
 const card &c)
{
 return a.suit == b.suit && b.suit == c.suit;
}

bool
match_value(const card &a. const card &b,
 const card &c)
{
 return a.value == b.value &&
 b.value == c.value;
}

bool
mismatch_all(const card &a. const card &b,
 const card &c)
{
 return a.suit !=b.suit && b.suit !=c.suit
 && c.suit !=a.suit && a.value!=b.value &&
 b.value!=c.value && c.value!=a.value;
}

bool
winning_hand(const std::vector<card> &hand,
 bool allow_mixed)
{
 if(hand.size()<3UL) return false;
 const size_t k = hand.size()-1UL;
 for(size_t j=1UL;i!=k;++j)
 {
 if(allow_mixed && mismatch_all(hand[0],
 hand[j], hand[k]))
 {
 return true;
 }

 for(size_t i=0UL;i!=j;++i)
 {
 if(match_suit (hand[i], hand[j],
 hand[k]) || match_value(hand[i],
 hand[j], hand[k]))
 {
 return true;
 }
 }
 }
 return false;
}

Listing 1
JAN 2010 | | 19{cvu}

On a Game of Cards
A student performs an analysis.

ecall that the rules of the Baron’s card game required that all but the
number cards were discarded from the deck and that the remaining
cards were given their face value with the proviso that black cards

were to be considered positive and red cards negative. The play consisted
of choosing 3 cards against which the Baron should then lay 3 of his own.
The products of these 3 pairs of cards were then added together and, if the
result had been zero, the Baron would have scored a point.
In the hand described, Sir R----- had received the cards 6♦, 2♣, 5♠, 4♥,
3♣.
When the Baron explained these rules to me I immediately recognised that
it was essentially equivalent to reasoning about a vector space over an
integer domain; specifically, about seeking a vector lying at a precise right
angle to that represented by the cards lain down by the first player. Indeed,
I said as much, but I fear that he may have misunderstood.
I must say that I found this a most ingenious puzzle since such problems
are generally extremely resistant to the reckoning of men.
If we assume that Sir R----- played cards a, b and c from his hand and that
the Baron responded with x, y and z then the result should have been

a × x + b × y + c × z
Of course, the Baron’s aim was that this sum should equate to zero, namely
that

a × x + b × y + c × z = 0

which, upon rearranging the terms, yields

To minimise the chance that the Baron could have succeeded, I should have
advised Sir R----- to choose such cards that x should have the least
opportunity to take an integral value. To this end, I believe that it would
have been most advisable to have chosen a such that it had the fewest
common factors with the remaining pair, whatever they might have been;
under this assumption 5♠ would clearly have been the best candidate.
Having so chosen, the Baron could thus have only scored a point if the sum
of the remaining pair were a multiple of 5 and furthermore that the result
of the above formula were less than or equal to 10. To minimise the range
of numbers achievable with that sum it would have been sensible to choose
the remaining 2 cards such that they have as many of their factors in
common as possible; in this case either 2♣ and 4♥, 2♣ and 6♦ or 3♣
and 6♦.
Of these 3 choices, the last yields the greatest likelihood of large sums that
one might expect result in integers greater than 10.
Whilst my reckoning has not been of sufficient rigor to qualify as proof, I
should be most surprised if Sir R----- had contrived to play cards more
likely to spoil the Baron’s chances than 3♣, 5♠ and 6♦

R x b y× c z×+
a

-----------------------------–=
20 | | JAN 2010{cvu}

AYE Conference Report
Jon Jagger gives a report of his experience at the

AYE Conference.

he AYE (Amplify Your Effectiveness) conference was started by
Jerry (Gerald) Weinberg about 10 years ago. Jerry was there but sadly
he’s very ill so only time will tell how many more he’ll be able to

attend. The conference is designed for people working in the software
industry but aims to increase their effectiveness by increasing awareness
at the personal and team levels.
This year’s conference was held at the Embassy Suites hotel in Phoenix
Arizona on Nov 9th, 10th, and 11th. The weather was hot and sunny as
you’d expect in a desert city. The hotel is clean and spacious and air
conditioned, the rooms likewise, and the staff friendly and helpful. It has
a large heated outdoor pool with an accompanying jacuzzi, a spacious
veranda area and an open-tent area for eating outdoors.
I’ve read that Jerry started the conference to win a bet he made whilst
attending another conference he was not impressed with. It’s therefore not

too surprising that anything remotely resembling a PowerPoint
presentation is banned and always has been. Instead the conference
emphasizes simulation and experience.
The website at http://www.ayeconference.com/ contains a wiki full of
material spanning many years and is well worth a look if you are interested.
Each participant’s name badge revealed their Myers Briggs personality
type (you are asked to do an online test before you arrive). This provided
an interesting topic of conversation but was only very lightly used during
the scheduled sessions. Many of the sessions were role-play type games,
typically organized into teams.
The conference is limited to 80 participants on a first come first served
basis. $300 reserved a space and the total cost depended on how early you
paid in full (reserve later and it’s dearer). Paying at the earliest opportunity
meant another $900 to pay. Plenty of drink and snacks are provided
together with a buffet-style midday meal. On top of this the hotel room
costs about $100 a night which includes an excellent breakfast. Add to this
an evening meal and the flight.
The conference felt a lot like a non-technical version of the ACCU
conference. It had a very relaxed atmosphere and yet at the same time was
quite intense at times. I really enjoyed it and found it a very valuable
experience. I met lots of great people and plan to attend next year.

T

JON JAGGER
Jon Jagger is a self-employed software coach-
consultant-trainer-mentor-programmer who works on a
no-win no-fee basis. He likes the technical aspects of
software development but mostly enjoys working with
people. He can be contacted at jon@jaggersoft.com

http://www.ayeconference.com/

JAN 2010 | | 21{cvu}

Live to Love to Learn
Pete Goodliffe begins a journey of self-improvement.

Learning without thought is labour lost;
thought without learning is perilous.

~ Confucius
rogramming is a creative, intuitive process. I, like many other
programmers, like to think of it as an artistic pursuit; one of working
a medium to produce something of utility and beauty. But all too

often the commercial reality of coding is something more akin to being
placed in a meat grinder, until every last ounce of coding prowess and
motivation has been sucked from your soul.
Nonetheless, programming is an exciting and dynamic field to work in.
One of the main reasons is that there is always something new to learn.
Rarely are programmers forced to run around in circles performing the
same repeated task for years and years, only discovering new ways to
develop RSI and failing eyesight. We continually face the unknown: new
problems, new situations, new teams, new technologies, or some
combination of these. True, some programming jobs face more excitement
than others, more of the unknown than others, and garner more techie
thrills. But if you’re going to be stuck in an office sat behind a desk, you
may as well keep your mind occupied.
We are continually challenged to learn, to increase our skills and our
capabilities. If you feel like you’re stagnating in your career, one of the
most practical steps you can take to get out of the rut is to take the effort
to learn something new. On purpose.
Now, some people are naturally better at absorbing new information and
‘getting up to speed’ more rapidly than others. They are better at taking
on new concepts and relating new concepts to gather a greater
understanding. That’s natural. But it’s something we can all improve at.
You need to take charge of your learning.

Check point
Ask yourself now whether learning is something that you think about
consciously as a programmer. Is it something you consider as one of your
programming skills? Do you actively try to learn things? Do you willingly
put yourself into areas of the unknown? Or do you try to stick to what you
know best, looking for an easy life?
Are you motivated as a programmer to find out new information and
improve yourself? Do you relish learning? Or is it something of an
inconvenience?
Do you want to improve as a programmer? I suspect that in this regard I’m
preaching to the converted in this article. An ACCU member reading CVu
clearly wants to widen their knowledge. Well done, give yourself a pat on
the back! The simple fact is this: if you want to improve as a programmer,
you need to be a skilled and seasoned learner. And you need to learn to
enjoy it.
So let’s think about the what, why and how...

Why learn?
Sometimes you have no choice but to learn; you are faced with a new task
and you know nothing about the technology or the problem domain.
You’ve got to get up to speed, and fast. Often the killer problem is that
you have no time to do this in, and have to make a work estimate or deliver
the first bit of functionality before you’d even have time to gather the
vaguest overview of the topic.
The programmer’s lot is not a happy one.

But even when you’re coasting – working on reserve knowledge, with no
need for new information – it’s important to keep the grey cells ticking over
and absorb new knowledge. One important reason is to simply cultivate a
good learning habit; to maintain your ability to absorb information.
Continually learning also helps to shape your programming attitude; to
prevent you from believing that you’re an expert! No one likes a know-it-
all, after all.
There are plenty of other good reasons to develop yourself by learning.
Your motivation might be to keep yourself fresh, to sharpen your existing
skills, or simply to satisfy your natural curiosity. Or the reason might be
more mercenary: to strengthen your employability, or allow you to
manoeuvre into a programming field you’re more interested in.
If you don’t keep up a habit of continual learning you will go stale. You’ll
stagnate. The technological world will pass you by.
This demonstrates a simple learning maxim: Learning. You’ve either got
to, or you ought to.

What to learn?
There’s a whole world of things you could attempt to pick up. So what
should you look at? Donald Rumsfeld summed up this conundrum in a
particularly apt way when he made an infamous White House press
conference: As we know, there are known knowns; there are things we know
we know. We also know there are known unknowns; that is to say, we know
there are some things we do not know. But there are also unknown
unknowns – the ones we don’t know we don’t know.
So what do you pick? Clearly not something you know you know (although
learning a topic more deeply, or attempting to consolidate your knowledge
on a topic is a valuable task). Instead should you choose something that
you know you don’t know, or first learn about what you don’t know in order
to chose what to learn? That might make your brain bleed. Thanks a bunch,
Rumsfeld.
Perhaps the list below will help. If you are learning for ‘fun and personal
profit’ rather than your job leading you to a specific topic, you might
consider:

Learn a new technology. For programmers this is the obvious
choice. We’re fascinated by the different ways we can make
electrons dance, and there’s a wide field here to mine.
You might choose to find out about a new programming language;
there is no shortage of new and interesting languages being
developed, there are many widely-used languages that you could
learn to gain employability-enhancing skills, and there are many
interesting existing languages. Consider looking at a language that
promotes a different paradigm to your current languages to learn
new ways to approach and solve problems – perhaps a functional
programming language like Haskell would be a good choice. In their
classic 1999 book, the Programmatic Programmers recommended
learning one new language every year [1]. It’s good advice. You
don’t have to become an expert, but do get beyond "Hello, World!"
You could instead choose to learn a new library or application
framework; perhaps an interesting low-level utility or a snazzy new

P

Professionalism in Programming # 59

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net

22 | | JAN 2010{cvu}

Another year, another great ACCU
conference is coming!

Giovanni Asproni gives us a taste of things to come.

fter the great success of ACCU 2009, which had roughly the same
number of attendees of 2008 at a time were other conferences were
closing for business, we had quite a challenge ahead. We wanted to

organize a 2010 conference that was at least as good as, and hopefully
better than, the 2009. Of course, we don’t know if we have managed to
achieve that just yet. However, I think that the programme we have created
is a step in the right direction.
Selecting the programme for the conference is never an easy task, and
when the number of proposal is very big – we had a total of 164 to select
from, which is much more than the previous record set in 2009 – and the
average quality is very good, the job of the committee becomes particularly
difficult. Therefore, to make things a bit easier for us, and to make the most
of the high quality proposals we received, we decided to add five more 90
minute slots, increasing the number from 55 to 60 and making the Saturday
90 minutes longer.
Some highlights include:

A special track on software testing introduced by a pre-conference
tutorial and a keynote both by James Bach

A keynote and a Certified Scrum Master course by Jeff Sutherland,
co-inventor of Scrum and one of the original signatories of the Agile
Manifesto, held at the same time of the other pre-conference
tutorials with a £100 discount on its standard price for ACCU
members and conference attendees
A keynote by Dan North, Agile development expert
A keynote by Russel Winder, who doesn’t really need an
introduction to the ACCU crowd
A pre-conference tutorial on the D programming language by the
two creators, Walter Bright and Andrei Alexandrescu

And there is more! Just have a look at the conference web-site
http://www.accu.org/conference to read the full programme and discover
the roster of top-notch speakers.
I almost forgot. The booking price is the same as in 2009!
I’m looking forward to seeing you there.

A

Listing 1
Listing1

high-level UI toolkit. After all, you can never have enough UI
toolkits.
Or learn a new software tool. You should never underestimate the
usefulness of learning new tools that will make your work more
productive and/or more enjoyable. Learn how to use a new text
editor, or IDE. Learn a new documentation tool or a test framework.
Learn a new build system, an issue tracking system, a source control
system (indulge yourself in the new distributed version control
craze that all the cool kids are going on about), a new operating
system, and so on.
Even if you are not going to use the new technology immediately in
your ‘day job’, learning about it will almost certainly help you to use
your existing technology in better ways, and will help you to
evaluate new technologies when the need arises.
Learn new technical skills. You might want to learn how to more
effectively read code, or write technical documentation. You could
learn how to manage a software team and climb the greasy career
ladder.
Learn how to work with people. Yes, this is tediously ‘touchy-
feely’ for most code monkeys. But it can be an incredibly interesting
field, and very useful. You could look at sociology, or study some
management texts. This kind of information will help you to become
a much more capable team worker, and will enable you to lead teams
into directions that you think they should go in, rather than suffer in
silence. It will help you to understand how people are
communicating to you, and how to communicate effectively with
them. You’ll discover how to understand your customer better, and
filter their requirements.
Learn a new problem domain. Maybe you always wanted to write
mathematical modelling software, or do audio DSP work. Without
any experience or knowledge you’d be unlikely to fall into a job in
a new sphere, so give yourself a head start and begin to learn about
it. Then work out how to get practical, demonstrable experience.

Learn how to learn. Seriously! Perhaps you could invest your time
into finding out some new learning techniques that will help you
absorb knowledge more effectively. Do you find there’s a constant
barrage of information you need to tap in to, and it just seems to flow
past you? Investigate ways to seek out, consume, and absorb
knowledge. There’s a whole lot more to this than I can cover in these
C Vu articles, after all! Consider learning and practising new skills
such as mind mapping and speed reading.
Learn something completely different. Or, more interestingly,
you may prefer to choose something completely left-field with no
relevance to your day job, and no obvious software applicability.
Learn a new foreign language, a musical instrument, a new branch
of science, art or philosophy. Hey, even spirituality. Far from being
a pointless waste of time, or a distracting personal hobby, doing this
will open your world view wider. If you’re willing to look for the
interesting themes and techniques you will certainly find that it
helps to inform the way you program.

Above all, pick something that interests you. Pick something that will
benefit you (the act of learning in itself is a benefit, but choosing something
because it will give you fresh usable skills, broadens your insight, or brings
you pleasure is a good thing). You will be investing a significant amount
of time, so invest wisely!

Next time
Having considered valuable things to invest your time in learning, we’ll
look at good learning techniques and how to sharpen our on-the-job
information gathering skills. I hope that you find this diversion into a ‘soft
skill’ programming topic, rather than my traditional technical ground,
useful, interesting, and most importantly: motivating.

References
[1] The Pragmatic Programmer. Andrew Hunt and David Thomas.

Published by Addison-Wesley, Oct 1999. ISBN: 020161622X

Live to Love to Learn (continued)

Desert Island Books
Paul Grenyer maroons Alison Lloyd.

’ve been aware of Alison Lloyd on ACCU general for several years, but
although I’m sure we both contributed to same of the same threads I don’t
think we really chatted directly until one year I decided I wanted an MP3

player with a digital radio and I was wondering if I could get a discount from
the company she worked for. It turns out I couldn’t, but I did learn what an
excellent sense of humour Alison has!

Alison Lloyd
My first thought when asked to nominate some books I’d take to a desert
island was to go for something like Recognition and harvesting of edible
plants on tropical islands, or that well-known favourite, Coconuts and
sand: 50 recipes for shampoo. However, once the format had been slightly
more carefully explained, my collection came out as follows:

The C Programming Language

by Brian Kernighan and Dennis Ritchie, ISBN-10:
0131103628, ISBN-13: 978-0131103627
I’m a C programmer by trade, and this is the single
reference book I refer to the most. Although C has some
drawbacks, and is a bit dated by modern standards, I still
find it elegant and a pleasure to use, particularly for the
systems-level embedded work I do. It is unforgiving of
mistakes and often produces somewhat cryptic code; nevertheless, a
language whose entire structure and standard library can be described in
274 pages, that is almost universal in the platforms that support it, appeals
to me. This is the seminal reference.

The Art Of Electronics

By Paul Horowitz and Winfield Hill , ISBN-10:
0521689171, ISBN-13: 978-0521689175
Originally written in the early 1980s, I first encountered
Horowitz & Hill at university. This is one of the few
textbooks that has stayed with me since then, through
several moves and continents. As my interests have always
been somewhere between software and hardware, this book
provides an excellent reference, starting from the very basic and working
up. It is written in a clear, understandable fashion, and although intended
as a textbook (complete with exercises), it has information on pretty much
everything to do with electronics. Of particular interest are the collections
of ‘Bad Circuits’ – finding one’s latest idea for an elegant solution to some
minor problem already demolished is probably character building.
The Art Of Electronics was revised in 1989, so it is a little dated in places.
That said, the fundamentals of electronics haven’t really changed – recent
advances have made many things easier and more convenient – so it’s still
a useful book to have handy.

Principles Of Helicopter Flight

By Jean-Pierre Harrison, ISBN-10: 0-9638491-0-7
Sadly out of print, Harrison’s book predates the much-better known work
by W. J. Wagtendonk of the same name. It is aimed at the student helicopter
pilot, but describes all the aerodynamics behind rotary-wing flight. It is
written in an engaging style, and doesn’t assume any prior aviation
knowledge (although some basic maths and physics is useful). Helicopters
are amazingly complicated machines, leading to some extremely
interesting aerodynamics; Harrison manages to take something that should
be dry and very mathematical and render it in a simple, easy-to-follow way,

so that one
finds oneself drawn in;
I tend to pick this book
up when I have a few idle
moments, then find that hours have
passed.
Principles Of Helicopter Flight is difficult to get hold of these days,
although copies do surface in the usual secondhand book sources from time
to time. There was a move afoot to reprint the book, but I’m not sure that
ever came to anything.

Programming in Python 3

By Mark Summerfield, ISBN-10: 0137129297, ISBN-
13: 978-0137129294
While not perhaps something I’d choose as a seminal
work, I’m part-way through this book now. If nothing
else, I’d hate to leave the book unfinished; whatever its
faults, it is a pretty decent reference, and I’m enjoying
Python. Unfortunately, it turns out that the main problem
I’m likely to be solving with Python in the near future requires Python 2.x,
so this may be a source of some frustration.
I really struggled to choose a single novel, so I stretched the definition a
bit to include novel-sized items:

HTC Universal Smartphone

With solar charger, and 2GB SD card, containing most of Baen’s back
catalogue.
For those who’ve not run into them before, Baen are an American
publisher, specialising in military scifi, but with good sidelines in hard
science fiction and fantasy, as well as some esoteric stuff. Everything they
publish in paper format is also made available in electronic form, with the
latest books being sold via their website. US$15 gets you everything
published in a given month (usually around 5 books); they also make many
books and series available for free download.
The Universal has excellent functionality, and includes MS Reader as
standard in most builds. It has a decent size screen with good brightness,
and a conveniently-placed navigation rocker. I just love having a large
library that’s small enough (just!) to fit in my pocket – it means you always
have something to do in those idle moments between other things. In
addition, there are some quite good sudoku programs, and if all else fails,
one can always use it to request a lift home (having had the foresight to be
shipwrecked on a 3G-equipped island, of course).

Mr Pietersen & The Guys by The Mr Pietersen Band

The Mr Pietersen Band is an old-style Cape Town jazz band, consisting
of banjo, cello base, sax and accordion. Having grown up in the Western
Cape region of South Africa, this is music from my childhood and beyond,
stretching back to the District 6 days. Completely instrumental, this music
speaks to me of how people never lost hope, even through all the struggles
of Apartheid and its aftermath. Life in South Africa is often quite difficult,
even now, but people still manage to keep an amazingly good sense of
humour.

I

JAN 2010 | | 23{cvu}

ACCU London
James Lyndsay: Anticipating Surprises (or How to Find

Problems and Persuade People You’ve Avoided Them).

ames Lyndsay talked to ACCU London about testing. He started by
bursting a balloon, and making those of a nervous disposition jump.
This wasn’t a surprise. We all expected it to happen, because he was

armed with a large pin. Next James demonstrated three ‘bugs’ or surprises
– one in a camera that left black bands around the edges of a picture when
you zoomed in, another with a screen shot tool that made his screen go
black when he tried to select a context sensitive menu, making it very
difficult to bring in other apps into focus, for example his talk, and finally
misinformation on the ACCU London webpage which had claimed the
November talk would be happening in July. Fortunately the
misinformation had been amended before the talk, so about 15 people
turned up including some new faces.
James talked briefly about the difference between the requirements and
behaviour of a system. The bugs are where these mismatch – the aim is to
maximise the intersection of requirements and what’s delivered. We then
spent time testing a system – we were presented with an app which had
four coloured buttons to press, and a few bug reports. For example ‘If I
press all four buttons it crashes’. So, some people tried pressing all four
buttons – and it didn’t crash. Other people got it to crash on their machines
when they pressed four buttons. Others got it to crash by only pressing three
buttons. Other people got it to crash by randomly pressing loads and loads

of button in various orders and lost track of what they’d done. The exercise
reminded us that sometimes state matters – what order did you do things
in can make a difference. Bugs reports may tell you something it is
necessary to cause the surprise, but that might not be sufficient. The
audience postulated various explanations for what might be causing the
crash – but most focussed on state. James ’fessed up in the end – the time
between pressing just two different buttons caused the crash. As a tester
you need to think laterally. Looking at the code can help you see potential
problems. Unit tests will stop potential problems. However, there are many
ways things can cause surprises – it takes a combination of tools,
experience and creativity to find these. Testing is a creative and fun activity
that deserves respect.
The talk presented many ideas about how to approach testing. As a final
resort there’s always Elisabeth Hendrickson’s excellent Test Heuristic
Chea t Mug ava i l ab l e f rom h t t p : / /www.ca fep re s s . co . uk /
testobsessed.101092273. You can find more details at http://
testobsessed.com/
Further information on the interactive sessions is available at:
http://www.workroom-productions.com/black_box_machines.html

Frances Buontempo

J

Desert Island Books (continued)
The Wall by Pink Floyd

I inherited my liking for Pink Floyd from my father,
who actually managed to see them in concert, way
back when. Multi-layered and scary, The Wall is
perhaps the best-known Pink Floyd album, certainly
with many of the ‘standard’ Floyd tracks. It may be
clichéd, but it’s still an album I keep coming back
to; other Pink Floyd albums may be better polished and more mature, but
the wall is still one of my all-time favourite albums.

Next issue: Terje Slettebø

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to
choose the eight records they would take with them to a desert island
(http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).
The format of ‘Desert Island Books’ is slightly different from the Radio 4
show. You choose about five books, one of which must be a novel, and
up to two albums. Some people even throw in the odd film. Quite a few
ACCUers have chosen their Desert Island Books to date and there are
plenty more to go.
The rules aren’t too strict but the programming books must have made
a big impact on your programming life or be ones that you would take to
a desert island. The inclusion of a novel and a couple of albums helps
us to learn a little more about you. The ACCU has some amazing
personalities and Desert Island Books has proved we only scratch the
surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?
24 | | JAN 2010{cvu}

JAN 2010 | | 25{cvu}

ACCU Security 2009
CCU Security 2009 was held on 7th November at Bletchley Park,
home of the legendary World War II code breakers, and the site at
which the world’s first digital computer went operational. Subtitled

Yesterday, Today, and Tomorrow it featured three invited speakers. Tony
Sale, who established the first musuems in Bletchley Park in 1994,
described how human operator errors enabled the Bletchley Park
codebreakers to decipher vital German messages from both battlefield
Enigma machines and the German High Command Lorenz cipher
machines. Simon Singh talked about how he constructed the encrypted
messages for the Cipher Challenge included in his history of cryptography
The Code Book, and how the winners eventually cracked them. Phil
Zimmerman, creator of PGP, discussed his new secure Voice-over-IP
protocol ZRTP.
Bletchley Park is now a museum run by the Bletchley Park Trust. The Trust
was formed in 1994, but wasn’t able to secure control of the Park until
1999. By 2004, the Park was open to the public every day as a museum.
The Trust was surviving, but only just. The site had been essentially
unmaintained since the war and the buildings were in a desperate state of
disrepair. In November 2008, a grant from English Heritage enabled vital
repairs to be carried out. Milton Keynes Council went to a public vote over
providing funding and the response was strongly in favour. The Trust has
come a long way, but its finances still quiver on a knife-edge. ACCU held
fund raising activities at the 2009 Spring Conference. Security 2009,
organised by Astrid Byro Osborn and the conference committee, was held
specifically to raise further funds. The event was a virtual sell-out, and
raised over £5,250 for Bletchley Park Trust.

Ralph McArdell
Part of the activities for the conference was a guided tour around the
grounds of Bletchley Park including a look at the re-built Colossus – a
hugely impressive feat and machine – and a tour of the computing museum.
Both of these have moved since my previous visit a couple of years ago,
when they were in temporary accommodation.
The computing museum exhibits in particular have changed for the better.
On my first visit they were in a single hut all mixed up and not many were
working. On the second only a few of the pieces were exhibited next to
the tea room by the entrance. This time the museum had moved to more
permanent accommodation and included a nice display of the smaller
micro computing machines all arranged in cabinets or – for some –
available to use. There were many comments anong our group along the
lines of ‘I remember these’ as old friends were spotted amongst the
displays.

Our group then moved
on to another couple of
rooms where the larger
o l d ma ch in es wer e
displayed – the most
obvious was an ICL
beast previously used by
Tarmac with quite a few
of the large ‘spin dryer’
disk drives whirring
away. Other exhibits of
note were a couple of
really huge displays
showing a i r t r a f f i c
control type data and a
re a l l y o l d a nd
in te res t ing look ing
valve based beast being
restored. Unfortunately
I wandered by too late
and missed most of what
was said explaining
what this machine was
and how it worked –
bother! I looked around
fo r P r i me mi n i
computers as I had worked with these quite a lot in the 80s. I eventually
found an anonymous Prime machine sitting next to a more interesting
looking Cray of some sort in a room containing machines that had yet to
be investigated.
I must go back for another look some time...

A

Tony Sale with a replica of the Collosus Mk II that he built.

Simon Singh shows off his Engima machine.

How many modern 2TB disks could you fit
in the space one of these occupies?

Code Critique Competition 61
Set and collated by Roger Orr.

lease note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment
on published entries, and to supply their own possible code samples

for the competit ion (in any common programming language) to
scc@accu.org. A book prize is awarded to the winning entry.

Last issue’s code
I’m trying to write a simple high precision integer class, using an array of
chars as the representation. I’ve started, but have problems with my tests
– the second output is wrong. I also want to be able to stream a bignum as
a string, but I can’t – any ideas?

Last issue’s code is shown in Listing 1.

Critiques

John Bytheway <jbytheway@gmail.com>
Interface

Before delving into the implementation or tests for this code I think it’s
important to focus on the interface implied by bignum.h. Right now there
are only three things supported: creating bignums from ints, converting
them to strings, and adding them together. Minimalist, but enough to be
interesting.
The most worrying piece of the header is the internal representation: just
a std::vector<char>. Not part of the interface, but it has a worrying
implication: With nothing but this to go on it’s going to be very hard to

represent negative numbers. After the variety of
solutions to the negative number problem in CC 59 I don’t want to second-
guess the author of this code. I will assume that this class is only for non-
negative numbers.
With this in mind, what constructors should bignum offer? Offering only
the int constructor could lead to surprising behaviour when a larger
integer is passed. It will be silently truncated. Better to take the largest
possible type. In C++03 this means
 bignum(unsigned long = 0);

but that also could lead to surprising behaviour when a negative value is
passed; we don’t want them silently changed to positive numbers, so we
should include
 bignum(long);

Unfortunately having both these constructors will cause ambiguity when
initializing from smaller integer types. To avoid that we need to retain the
existing constructor and add one more
 bignum(unsigned int);

P

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

Listing 1
Listing1
26 | | JAN 2010{cvu}

ACCU Security 2009 (continued)

Ewan Milne
My (all too brief) career as an Enigma operator
The centrepiece of Simon Singh’s talk was a demonstration of his own
original Enigma machine. I was called up to help illustrate the symmetry
of the Enigma cipher. Simon typed a two character message (‘OK’), then
reset the cogs to allow me to type in the coded message. The expected
result, of course, was to see the lamps light up under ‘O’ and ‘K’ as the
message was deciphered.

The actual result, of course, of my gingerly pushing the first key was...
nothing at all. Well, this was a live demo, after all. After a second, more
careful round of settings adjustment, the message was succesfully decoded
with my role relegated to observer. And so I gained just a little sympathy
for the hapless Enigma operators, whose errors had amused Tony so much
during his talk.

Old ICL mainframes. Close up front panel of a Bombe.

Photographs courtesy of Anna-Jayne Metcalfe.

Note that all these constructors are introducing implicit conversions from
builtin types to bignum. I think that this is appropriate, but there is still
opportunity for surprises (such as implicit conversion from floating point
types).
Next up is operator std::string(). Implicit conversion to string seems
much more risky, and peeking ahead at test.cpp it looks like it only
exists to make output streaming of bignums work. But (as the author has
observed) that won’t work, and we’ll need to introduce an output streaming
operator
 #include <iosfwd>
 std::ostream& operator<<(std::ostream&,
 bignum const&);

I would probably replace the conversion to string with an explicit member
function that converted to a specified base, but again I’ll give the author
the benefit of the doubt and assume that implicit conversion is needed (not
to mention the fact that converting to most bases involves implementing
division). But one thing that must change is that the conversion operator
should be qualified const.
At this point the interface is still missing a lot, most obviously comparison
operators, more arithmetic operators, and some way to convert a string to
a bignum. More subtly, the implementation is such that this class is
expensive to copy, so it should have an overload of swap and an assignment
operator taking its argument by value to allow copy-elision on assignment
from rvalues.

We'll ignore all of that too.
Test

Next I turn my attention to test.cpp. Things are not good here. To begin
with, it doesn’t compile without an additional #include <iostream>
for std::cout.
But what about the cryptic comment about cout << b << endl? Indeed
that doesn’t compile (without my additions to bignum.h above). Why
not? Because the overload of operator<<, though it is in scope (because
namespace std has been pulled in) will not be found because it is a
function template, and template argument deduction does not take into
account implicit conversion operators. Nevertheless, it is not necessary to
resort to explicitly calling the conversion operator; an explicit conversion
or static_cast will do the trick:
 cout << std::string(b) << endl;

But better still is to introduce an output streaming operator for bignum
(as I mentioned above) and then the simple cout << b will work fine.
Diverting to bignum.cpp briefly to implement that streaming operator
in in the simplest possible way
 std::ostream& operator<<(std::ostream& o,
 bignum const& b)
 {
 o << std::string(b);
 return o;
 }

(ignoring a multitude of formatting questions: should this operator respect
the stream properties with respect to base, padding, etc.?) it’s now possible
to compile a version of test.cpp unpolluted by calls to operator
std::string().

-- bignum.h --
#include <string>
#include <vector>
class bignum
{
public:
 bignum(int i = 0);
 operator std::string();
 bignum & operator +=(bignum const & rhs);
private:
 std::vector<char> value_;
};

-- bignum.cpp --
#include "bignum.h"

#include <algorithm>
#include <iostream>
#include <sstream>

bignum::bignum(int i)
{
 value_.push_back(i & 0xff);
 while (i & 0xffffff00 != 0)
 {
 i >>= 8;
 value_.push_back(i & 0xff);
 }
}

bignum::operator std::string()
{
 std::ostringstream oss;
 for (int idx = 0; idx < value_.size();
 idx++)
 {
 int v = value_[value_.size() - idx - 1];
 oss << std::hex << v;
 }
 return oss.str();
}

Li
st

in
g

1 bignum & bignum::operator +=(
 bignum const & rhs)
{
 value_.resize(std::max(value_.size(),
 rhs.value_.size()));
 char carry = 0;
 int idx = 0;
 for (; idx < std::min(value_.size(),
 rhs.value_.size()); idx++)
 {
 value_[idx] += rhs.value_[idx] + carry;
 carry = value_[idx] < rhs.value_[idx];
 }
 for (; idx < value_.size(); ++idx)
 {
 value_[idx] += carry;
 carry = value_[idx] < carry;
 }
 if (carry)
 value_.push_back(1);
 return *this;
}

-- test.cpp --
#include "bignum.h"
using namespace std;
int main()
{
 bignum b(0x1234567);
 b += 1;
 // won't compile: cout << b << endl;
 cout << b.operator std::string() << endl;
 b += 0x234;
 cout << b.operator std::string() << endl;
}

Listing 1 (cont’d)
JAN 2010 | | 27{cvu}

Running it reveals problems (surprise, surprise!), but it’s not clear where
in the implementation these problems are. A more detailed set of tests
should tease these issues apart.
#include "bignum.h"
#include <iostream>
#include <cstdlib>
#include <limits>

using namespace std;

template<typename T>
void check_fails_to_construct(T i)
{
 try {
 bignum b(i);
 cout << "FAIL: bignum("<<i<<") constructed"
 "when it shouldn't" << endl;
 } catch (...) {}
 }
void check_conversion(bignum const& b,
 std::string const& v)
{
 if (std::string(b) != v)
 cout << "FAIL: " << b <<" != " << v << endl;
}
void check_sum(bignum const& b1,
 bignum const& b2, std::string const& v)
{
 // Check sum both ways round (addition is
 // commutative)
 bignum r1(b1);
 r1 += b2;
 if (std::string(r1) != v)
 cout << "FAIL: " << b1 << "+" << b2
 << " == " << r1 << " != " << v << endl;
 bignum r2(b2);
 r2 += b1;
 if (std::string(r2) != v)
 cout << "FAIL: " << b2 << "+" << b1
 << " == " << r2 << " != " << v << endl;
}
int main()
{
 check_fails_to_construct(-1);
 check_fails_to_construct<signed char>(-1);
 check_fails_to_construct<short>(-1);
 check_fails_to_construct<long>(-1);
 check_fails_to_construct(std::numeric_limits
 <int>::min());
 check_fails_to_construct(std::numeric_limits
 <long>::min());
 // Check can be constructed from all int types
 bignum(static_cast<bool>(0));
 bignum(static_cast<char>(0));
 bignum(static_cast<signed char>(0));
 bignum(static_cast<unsigned char>(0));
 bignum(static_cast<short>(0));
 bignum(static_cast<unsigned short>(0));
 bignum(static_cast<int>(0));
 bignum(static_cast<unsigned int>(0));
 bignum(static_cast<long>(0));
 bignum(static_cast<unsigned long>(0));
 check_conversion(0, "0");
 check_conversion(1, "1");
 check_conversion(0x7f, "7f");
 check_conversion(0x80, "80");
 check_conversion(0xff, "ff");
 check_conversion(0x100, "100");
 check_conversion(0x10000, "10000");
 check_conversion(0xffffffff, "ffffffff");

 check_sum(0, 0, "0");
 check_sum(0, 1, "1");
 check_sum(1, 1, "2");
 check_sum(0xff, 0x1, "100");
 check_sum(0xffff, 0x1, "10000");
 check_sum(0xffffff, 0x1, "1000000");
 check_sum(0xffffffff, 0x1, "100000000");
 check_sum(0xffffffff, 0x10000, "10000ffff");
 check_sum(0x80, 0x80, "100");
 check_sum(0x8000, 0x8000, "10000");
 check_sum(0xff80, 0x10080, "20000");
 check_sum(0xff, 0xff, "1fe");
 check_sum(0xffff, 0xffff, "1fffe");
 check_sum(0x1234567, 1, "1234568");
 check_sum(0x1234568, 0x234, "123479c");
}

Note that the implicit conversion to std::string doesn’t work in
operator!= either, even though all the template arguments could be
deduced from the other argument. If anything, it looks like this conversion
operator will confuse by not working, rather than working unexpectedly.
Running these tests promptly chews up all of my memory in the bignum
constructor. Clearly it’s time to look at the guts of this code...
Implementation

The first problem in bignum.cpp is #include <iostream>. This is
defining far more than necessary, and may cause some performance
penalty at start-up time. #include <ostream> is sufficient.
It’s obvious from the constructor that the intended representation of the
integer is one-byte-per-char, least-significant-first in value_. To get a
unique representation requires some ruling about leading zero bytes (at the
end of value_). The existing constructor will always put at least one byte
in value_, and this might be convenient for the string conversion
(because of the awkward case of 0) but it will probably cause grief in
arithmetic operators, so I will impose the invariant value_.empty() ||
value_.back() != 0.
Now we have decided what the constructor should do, several issues are
evident:

When i == 0, it violates the invariant.
It assumes sizeof(int) == 4. If it is larger then the condition
of the while loop may fail to catch some large ints.
It assumes right-shifting an int introduces zero bits, which may not
be so (this caused the infinite loop in my tests).

Now is the time to switch from int to unsigned long, which solves
the last problem. A slight refactoring of the loop solves the other two:
 bignum::bignum(unsigned long i)
 {
 for (; i; i>>= 8)
 value_.push_back(i & 0xff);
 }

Someone following the letter of the standard might notice one remaining
problem with this: the conversion from unsigned long to char is
implementation-defined when char is signed and (i & 0xff) >
CHAR_MAX. In practice it will probably do the ‘right thing’ on almost every
platform, but this is just the first and most subtle of the problems of signed
chars in this code. Changing value_ to a std::vector<unsigned
char> resolves this issue. Moreover, the desired behaviour is still
guaranteed even if we delete the & 0xff above.
The other three constructors can be defined in terms of this one (with
potentially some modest performance cost caused by swapping vectors):
 #include <stdexcept>
 bignum::bignum(long i)
 {
 if (i < 0)
 throw std::invalid_argument(
 "negative bignums are not supported");
 bignum b(static_cast<unsigned long>(i));
28 | | JAN 2010{cvu}

 swap(value_, b.value_);
 }
 bignum::bignum(unsigned int i)
 {
 bignum b(static_cast<unsigned long>(i));
 swap(value_, b.value_);
 }
 bignum::bignum(int i)
 {
 bignum b(static_cast<long>(i));
 swap(value_, b.value_);
 }

With those changes most of the output tests are working right, but some
are still failing:
 FAIL: != 0
 FAIL: 10 != 100
 FAIL: 100 != 10000

It’s no surprise to see that 0 isn’t displaying properly since its
internalrepresentation has changed, but there’s clearly something else
broken too.
The conversion operator is constructing the output one byte at a time by
converting it to an int and using output streaming operators to a
std::ostringstream. The change to unsigned char has already
fixed the worst issue here: if char is signed then this code would output
negative ints in hex mode, causing a string of extraneous ff’s. The
remaining problems are:

The special case of 0.
When a byte is less than 0x10, it’s printed as 1 hex digit instead of 2.
std::hex is being sent with every byte when it is sufficient to send
it once.

I also don’t like the int-based indexing into the vector; better to use
iterators. Here’s an implementation that passes all the tests:
 #include <iomanip>
 bignum::operator std::string() const
 {
 std::ostringstream oss;
 if (value_.empty()) {
 oss << '0';
 } else {
 std::vector<unsigned char>::
 const_reverse_iterator byte
 = value_.rbegin();
 // Most significant byte printed unpadded
 oss << std::hex << std::setfill('0')
 << int(*byte);
 ++byte;
 // Remaining bytes padded to a width of 2
 for (; byte != value_.rend(); ++byte) {
 oss << std::setw(2) << int(*byte);
 }
 }
 return oss.str();
 }

Note that it is important to convert the unsigned chars to ints before
streaming them, because otherwise they’ll be rendered as chars rather
than hex integers.
Finally, we have the addition operator. Only two of the tests are failing (and
I confess I only added these tests after I saw the bug in the code):
 FAIL: ff80+10080 == 10000 != 20000
 FAIL: ffff+ffff == fffe != 1fffe

This is due to an error in the carry detection in the first for loop. It says
 value_[idx] += rhs.value_[idx] + carry;
 carry = value_[idx] < rhs.value_[idx];

when it should be
 value_[idx] += rhs.value_[idx] + carry;

 carry = value_[idx] < rhs.value_[idx] + carry;

The first version fails when carry == 1 and value_[idx] == 255.
In this case value_[idx] is changed by the first line to equal
rhs.value_[idx], so the second line doesn’t detect a carry when
clearly one has happened. Note that the new version only works because
the sum rhs.value_[idx] + carry is computed as an int (rather
than some kind of char), and thus can take the value 256.
With that change the tests all pass, but there’s still one bug and a couple
of optimizations that look sensible:

idx is only an int. If value_.size() > INT_MAX then it will
overflow (though this event is essentially impossible to achieve with
the existing interface).
idx should be a size_t, or the whole thing should be rewritten
using iterators.
The condition in the first for loop can be simplified. Thanks to the
resize we know that:
 value_.size() >= rhs.value_.size()
so there’s no need to call:
 std::min(value_.size(), rhs.value_.size()):
the result will be rhs.value_.size().
The second for loop can be cut short early if ever carry == 0.
This will for example make incrementing large numbers much
faster.

C++0x

This class is a good example of how things should change in the light of
C++0x. For example, we can:

Change unsigned char to std::uint8_t, which clarifies the
intent of the code.
Add a move constructor to avoid more expensive copies (a move
assignment operator is not needed if there is already an assignment
operator taking its argument by value).
Add constructors taking long long and unsigned long long
arguments.
Make the string conversion operator explicit, thus avoiding user
confusion when it fails in circumstances like the use in
operator<< or operator== (but gcc doesn’t support this C++0x
feature as of 4.4.1).

Furthermore, if six constructors are deemed too much code duplication,
they can be replaced by two (and the standard default constructor) using
the new type traits, at the price of making them less readable and moving
the implementations into the header.
With all of that, the header becomes:
 #include <string>
 #include <vector>
 #include <iosfwd>
 #include <cstdint>
 #include <type_traits>
 #include <stdexcept>
 class bignum
 {
 public:
 bignum() = default;
 // Constructor for unsigned types
 template<typename T>
 bignum(T i,
 typename std::enable_if<
 std::is_unsigned<T>::type::value,
 int>::type = 0) {
 for (; i; i>>= 8)
 value_.push_back(i & 0xff);
 }
 // Constructor for signed types
 template<typename T>
 bignum(T i,
JAN 2010 | | 29{cvu}

 typename std::enable_if<
 std::is_signed<T>::type::value, int
 >::type = 0) {
 if (i < 0)
 throw std::invalid_argument(
 "negative bignums are not supported");
 bignum b(static_cast<typename
 std::make_unsigned<T>::type>(i));
 swap(value_, b.value_);
 }
 // Move constructor
 bignum(bignum&& b)
 : value_(std::move(b.value_)) {}
 // Assignment operator (good for copies or
 // moves)
 bignum& operator=(bignum b) {
 swap(value_, b.value_);
 return *this;
 }
 operator std::string() const;
 bignum& operator+=(bignum const& rhs);
 private:
 std::vector<std::uint8_t> value_;
 };
 std::ostream& operator<<(std::ostream&,
 bignum const&);

All of the C++0x features used here are supported by gcc 4.4, and all the
tests still pass (although more should probably be added to exercise the
new features).
Conclusion

There was quite a lot to say about this code, and the hard work
(implementing multiplication, etc.) has yet to begin. I would advise the
author of this code in the strongest terms to abandon the effort to write a
bignum class, and use a pre-existing one instead. It should provide all the
necessary features and be much more reliable and faster than anything
homegrown.
Commentary

I think the most important remark in the critique above is the conclusion:
use a pre-existing class (if possible). The code demonstrates a very simple
interface to a big number class and I'm sure a user of the class would soon
discover the lack of many useful methods.
Using a pre-existing class leaves you more time to get on with the problem
the bignum class was designed to help with.

The Winner of CC 60
John provided a pretty exhaustive critique of the code and well deserves
the prize!

Code Critique 61

(Submissions to scc@accu.org by Feb 1st)
I am trying to write a simple two-way map to allow items to be addressed by
two different keys but I’m getting some odd behaviour. I’ve written a simple
test program and everything works fine except for the last line output – I
expect the last size to be 1 but I get 2. Can you help?

The code is in Listing 2. You can also get the current problem from the
accu-general mail list (next entry is posted around the last issue’s deadline)
or from the ACCU website (http://www.accu.org/journals/). This
particularly helps overseas members who typically get the magazine much
later than members in the UK and Europe.

Reflection on Code Critique 60

Martin Moene <m.j.moene@eld.physics.LeidenUniv.nl>

Proto-pattern: Machine-tested Program Text[1]
Context As an author you are drawing attention to certain properties of
software. You illustrate this with example code.
Problem Books and articles are proofread and corrected to prevent errors
in them as far as possible, however this does not guarantee error-free texts.
Errors in code examples must not occur as they may confuse a reader who
is not yet sufficiently familiar with the subject at hand. Unlike non-code
text, the software examples can be executed and tested for correct
behaviour mechanically.
Forces t.b.d.
Solution Test the example code with a unit test and present the tested code
in the article or book.
Positive Consequence Provided with error-free examples, your readers
may have an easier time to understand the point you are making.
Negative Consequence Some people may become less alert reading a text
when they cannot spot an occasional error.
Known Uses In The Practice of Programming, Kernighan and Pike write:
‘... We’ve tried hard to write our own code well and have tested it on a dozen
of systems directly from the machine-readable text.’ [2a]
In The C Programming Language, Kernighan and Ritchie write: ‘As
before, all examples have en tested directly from the text, which is in
machine readable form.’[2b]
In The AWK Programming Language, Aho, Kernighan, and Weinberger
write: ‘The examples have all been tested directly from the text, which is in
machine readable form.’ [2c]
Well, a clear pattern emerges here.
Related to this are texts created with a literal programming system
(http://en.wikipedia.org/wiki/Literate_programming), such as [2d] and
[2e].
Discussion I’m not sure if we may call this a proto-pattern or that it’s
merely a good practice forced into pattern form[3]. Although presented as
a stand-alone pattern, it could also be part of a pattern language for
authoring software articles. Maybe one even already exists, even though
I did not find one.
Notes and references
[1] Inspired by #include <iostream> missing from test.cpp; as

the author mentions shortcomings of the program’s output (‘the
second output is wrong’), it must have been created from a different
version than from the source code shown (or it must be that
<string> or <vector> of the compiler used by the author has the
side-effect of making std::cout available; MS VC8 does not do
that).

[2a] Brian W. Kernighan and Rob Pike. (1999). The Practice of
Programming. Addison-Wesley. p. xi.

[2b] Brian W. Kernighan and Dennis M. Ritchie. (1988). The C
Programming Language. Prentice Hall, second edition. p. ix.

[2c] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger.
(1988). The AWK Programming Language. Addison-Wesley. p. v.

[2d] Christopher W. Fraser and David R. Hanson. (1995). A Retargetable
C Compiler, Design and Implementation. The Benjamin/Cummings
Publishing Company, Inc.

[2e] Allen I. Holub. (1990). Compiler Design in C. Prentice Hall, second
edition.

[3] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. (2007).
Pattern Oriented Software Architecture: On Patterns and Pattern
Languages, Volume 5. John Wiley & Sons.
30 | | JAN 2010{cvu}

http://www.accu.org/journals/

twowaymap.h
#include <map>
template <typename T, typename U>
class twoway_map
{
public:
 typedef typename
 std::map<T,U>::size_type size_type;
 void insert(const T& key1, const T& key2,
 const U& value)
 {
 U & p = map1[key1] = value;
 map2[key2] = &p;
 }
 void erase1(const T& key1)
 {
 if (map1.find(key1) != map1.end())
 {
 for (typename std::map<T,U*>::iterator
 it = map2.begin();
 it != map2.end(); ++it)
 {
 if (it->second == &map1[key1])
 {
 map2.erase(it->first);
 map1.erase(key1);
 }
 }
 }
 }
 void erase2(const T& key2)
 {
 if (map2.find(key2) != map2.end())
 {
 for (typename std::map<T,U>::iterator
 it = map1.begin();
 it != map1.end(); ++it)
 {
 if (&it->second == map2[key2])
 {
 map1.erase(it->first);
 map2.erase(key2);
 }
 }
 }
 }
 U& at1(const T& key1)
 {
 return map1[key1];
 }

Li
st

in
g

2 U& at2(const T& key2)
 {
 return *map2[key2];
 }
 size_type size() const
 {
 return map1.size();
 }
private:
 std::map<T,U> map1;
 std::map<T,U*> map2;
};
test.cpp
#include "twowaymap.h"
#include <string>
#include <iostream>
struct colour
{
 colour() {}
 colour(int r, int g, int b)
 {
 rgb = r << 16 | g << 8 | b;
 }
 operator int() { return rgb; }
 int rgb;
};
using std::cout;
using std::endl;
int main()
{
 twoway_map<std::string, colour> m;
 m.insert("Red", "Rouge", colour(255,0,0));
 m.insert("Green", "Vert", colour(0,255,0));
 m.insert("Blue", "Bleu", colour(0,0,255));
 cout << "size: " << m.size() << endl;
 cout << std::hex << m.at1("Red") << endl;
 cout << std::hex << m.at2("Vert") << endl;
 cout << std::hex << m.at1("Blue") << endl;
 m.erase2("Bleu");
 cout << "size: " << m.size() << endl;
 m.erase1("Blue");
 cout << "size: " << m.size() << endl;
 m.erase1("Red");
 cout << "size: " << m.size() << endl;
}

Listing 2 (cont’d)

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
JAN 2010 | | 31{cvu}

{cvu}

Agile

Agile Development with
ICONIX process
By Doug Rosenberg, Matt Stephens
and Mark Collins-Cope, published
by Apress (2005), 261 pages, ISBN:
978-59059-464-3

Reviewed by Derek Graham

Many people with be familiar with two of the
authors of this book from their earlier critique of
XP – Extreme Programming Refactored. I was
looking forward to this book because of the
subject matter and the book’s subtitle: People,
Process and Pragmatism. The back cover also
mentions that it follows a real life project from
requirements to actual code and a working
application.
The book’s stated aim is to cut through what it
portrays as the hype of agile development and
offer advice on finding a compromise between
agile techniques and a what it calls ‘disciplined’
approaches. The book is well laid out, has clear
diagrams and has lots of sections where each of
the authors get to ‘discuss’ their individual take
on a practice or technique and offer their own
advice and insight.
We start with a couple of chapters which
introduce agile and the author’s ideas of what
makes for a good software process. Once this is
out of the way, they quickly move onto
something called the ICONIX software process
and this is where the book started to lose some
credibility for me. In the days when Rational
introduced their own RUP (Rational Unified

Process), the ICONIX process was featured in
articles by Doug Rosenberg as being the best bits
of RUP and UML and some extra modelling
techniques. Now it seems that because agile is
flavour of the month, ICONIX is actually the
best bits of agile, with UML and some other
modelling techniques. Quite a bit of the book is
therefore devoted to extolling the virtues of this
process and why a subset of UML and agile
techniques is what you should be adopting.
Later chapters introduce the mapping
application and discuss the high level
requirements and how they should be modelled.
The authors do a good job of describing the
prototype design with UML diagrams and
snippets of C#, showing how the design changes
through various versions and how the changes
are incorporated release planning and iterative
development. Most of this is done from the use
case level and working downwards into
sequence diagrams and class diagrams before
showing small pieces of source code. Despite
being a book about agile, TDD is left out of the
process and put into a chapter at the end of the
book where it is covered in a very superficial
way as a ‘Vanilla’ TDD process. This is
immediately followed up with a chapter on
doing TDD the ICONIX way.
Overall, I think this has been a very creditable,
brave effort to portray some real life aspects of
an agile project but can’t help feeling it loses
something in being a ‘special’ sort of agile. In
my opinion it would have been even better
sticking with a more widely accepted process
and devoting more of the book to illustrating the
techniques in greater depth. All together I found

it not very inspiring and think that the
intermediate developers that this book is aimed
at may find better agile texts elsewhere.

Agile Software
Development, 2nd edition
By Alistair Cockburn, published by
Addison Wesley (2006), 504 pages,
ISBN: 978-321-48275-4

Reviewed by Gail Ollis

If you have read my Desert Island Books you
won’t be surprised to learn that this book, one of
my selections, comes highly recommended. It
speaks to me because it emphasises the very
human characteristics that make psychology
every bit as crucial to software development as
technology. Actually, I’d contend that the issues
affecting projects are at least 95%
psychological, but if you haven’t read the book
yet you might feel that this overstates it. Let’s
just agree that human behaviour is an important
factor; reading Cockburn helps to underline why
I feel so strongly about it.
The need for communication is a very human
issue that affects any software beyond that
which you write on your own for fun; there’s no
problem to solve when it’s just you and a beer
(or mug of coffee, or other programming
beverage of your choice). Code is pretty
unambiguous; the computer will do what you
told it, however much it may sometimes seem
otherwise. Expressing your ideas using natural
language, to another unpredictable human rather
than a machine, is a different and difficult matter
which Cockburn devotes his first four chapters
to exploring. After describing this problem of
‘managing the incompleteness of
communications’, he develops it further by
comparing the nature of software development
to a team co-operative game requiring invention
and communication. The characteristics of
individuals and those of teams are both
significant factors in such a game, so each of
these has its own chapter. The issues addressed
in this first half of the book apply beyond the
domain of software development, but being
generalisable doesn’t mean there is a lack of
specific and practical advice to tackle them. My
personal favourite is the ‘information radiator’
(a display of information positioned where
passers-by will see it); an idea as simple as it is
effective, of value regardless of whether your
project is Agile and even regardless of whether
it’s Software Development.
I strongly believe that it is essential to know
what problem you are trying to solve before

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
32 | | JAN 2010

applying any measures to address it. The first
four chapters are an excellent way of answering
this question for anyone thinking of applying a
methodology measure, and so provide the ideal
context for the following chapter on analysing,
designing and refining methodologies.
However, the book is designed to cater for a
wide range of readers. I don’t think any reader
engaged in the world of software development
(or indeed other collaborative enterprises) could
fail to benefit from reading these quite general
early chapters, whether or not the later chapters
interest them, but readers who have already
understood these problems can easily pick up
the book from chapter 4 to review the specific
principles they need to keep in mind when
choosing a methodology. Equally, they can go
straight to chapters 5 or 6 if they are looking for
information about agile methodologies in
general or the Crystal family of methodologies
in particular.
This book is now in its second edition. Like me,
many of you will have read it in its first edition;
Cockburn has spared us the frustration of trying
to find out what’s new by leaving all the original
chapters intact except for corrections. The
evolution of his ideas since the first edition is
instead laid out in a chapter n.1 for every
chapter, and these are kindly marked with grey
tabs on the page edge so that flicking through the
book to find them is made very easy. Like so
many of the ideas in this book, this is a simple
yet effective solution to a common frustration.
The ‘evolution’ chapters do not contradict the
content of the originals – if they did, there
wouldn’t be an advantage to this approach!
Rather, they bring things up to date with the
current state of the craft in light of the events
over the intervening years. Thus by far the
largest update is for the chapter on agile
principles. It answers many persistent questions
about practical aspects of the agile model and
how it fits with others. It also has to dedicate
nearly 20 pages to debunking pervasive myths
that have developed about agile over the years –
a sad sign, perhaps, that ‘agile’ has achieved
greater penetration as marketable rhetoric than
as a genuine implementations of the core
principles that make it work.
This excellent book provides guidance rather
than dogma, explaining what you might choose
to do and why you would choose to do it and
positively encouraging teams to ask themselves
these questions. It describes agile as ‘an attitude,
not a formula’ and not only fosters that attitude,
but provides some pragmatic tools for putting it
into practice.

Agile Project
Management: Creating
Innovative Products, 2nd
Edition
By Jim Highsmith, published by
Addison Wesley (2009), 432 p ages,
ISBN: 978-0321658395

Reviewed by Allan Kelly

The fact that a book reaches a second edition is
always a good sign. Jim Highsmith’s Agile
Project Management book was first published in
2004, and according to the bibliographic
information in the second edition this one is
published in 2010. Given that it reached the
ACCU in mid-2009 there is obviously some
schedule padding going on.
I must confess I never read the first edition so I
can’t comment on whether this edition is vastly
improved or even changed. What I can say is that
it is worth reading if you are involved with the
management of Agile projects or just want to get
beyond the iterations and TDD side of things.
Whether because management was ignored
(XP), was seen as unnecessary (Scrum) or
simply because Agile as we know it is heavily
developer centric, the role of management in
Agile development has not received enough
attention. This book sets about putting
management back on the Agile table. Highsmith
is equally dismissive both of those who believe
self-organization means no management, and
those who are overly hierarchal and wedded to
command and control style of management.
Within Agile, and Scrum specifically, a lot of the
talk about self-organizing teams has left the
management out in the cold. Highsmith
addresses this directly. He rebalances the
argument explaining why organization – and
therefore management – is needed to so that self-
organizing teams can be effective. It doesn’t
happen by accident.
His solution is (drum roll): Leadership. Agile
teams, he says, need to be lead to delivery.
Whether you are a manager, a leader, developer
or someone else who needs to get an Agile team
to delivery you will find good information here.
You will also find chapters on Governance,
Scaling up Agile, distributed teams and define
price/time/requirements projects.
Overall the book it is a bit long and Highsmith
does wander a bit. Rather than sticking to his
main point he does seem to take diversions.
Although he usually returns to his point the
diversions add length. Some of the typesetting
could be better, his side boxes, diagrams and
exhibits often use a smaller font than the rest of
the text which makes them more difficult to read
and funny looking.
Another disappointment is that he doesn’t make
more of the difference between in-house
(corporate IT) development and software
products. He is more aware of this than most
authors but moves between the two a little too
easily. For an otherwise comprehensive book
this could have been looked at in more depth.
But then, the book is sub-titled ‘Creating
Innovative Products’ so perhaps this wasn’t his
main concern.
These are minor reservations and I highly
recommend this book to anyone who is trying to
understand where managers add value in Agile
work.

iPhone

iPhone Cool Projects
By Gary Bennet et al, published by
Apress (2009), 209 pages, ISBN:
978-1-4302-2357-3

Reviewed by Pete Goodliffe

Recommended
iPhone programming is one of the current ‘hot
topics’ and we’re seeing an increasing number
of books published on this topic. This one is a
bit of a mixed bag.
This is not an introductory tome; it requires
significant prior understanding of the iPhone
toolset and development environment. Instead,
the book presents a number of complete fully-
working iPhone applications covering various
core iPhone technologies. It fits into a series of
other Apress iPhone titles. Not having seem the
other books, I can’t say how well it complements
the other titles in the series.
The book is effectively a collection essays by
many authors, one per chapter, all ‘experts’ at
various aspects of iPhone development. Some of
them have produced very successful iPhone
applications.
The topics covered are: simple game
programming, peer-to-peer networking, multi
threaded applications, creating multi-touch
interfaces, physics and 2D animation libraries,
audio streaming, and creating a location-aware
application with navigation-based UI. There are
no topics covered that you can’t fathom
relatively easily from the free Apple
documentation and a bit of careful thought.
However the useful piece of the jigsaw is seeing
how other developers have already learnt iPhone
OS and solved the common problems.
The production quality of the book is high. It has
been very well presented, in full colour
throughout, with many iPhone and Xcode
screenshots. On the whole, the writing is good.
Some chapters appear to have been better proof
read than others.
Perhaps the most useful part of the book is the
availability of the source code for all the sample
applications (from the publisher’s website), so
you can run and take apart the projects at your
leisure. There is no bundled CD, and I’m more
than happy with that.
As with many such multi-authored books, some
chapters are better than others. Each chapter is
relatively short, and they all basically provide an
overview of their topic – enough to pique your
interest, but not enough to answer any serious
questions. For some topics this works better than
others.
Highlights are the first game-writing chapter,
the multi-touch interface chapters, and the
location-based application chapter. These
present useful information about how to write a
‘real’ iPhone application. I felt let down by the
threading chapter which presents a fairly glib
JAN 2010 | | 33{cvu}

and un-thorough overview of the perils of
writing threaded apps. The networking chapter
is a very simplistic introduction; nothing it says
is wrong, but to write your own serious
networked application you’d really need to
know a lot more about network technologies.
If you’re an experienced programmer who
wants a casual introduction to some more meaty
iPhone projects than you’ve seen in the
introductory tests, this book may be interesting
for you. It’s easy to read, fast paced, and pretty.

iPhone Games Projects
By PJ Cabera, published by Apress
(2009), 258 pages, ISBN: 978-
1430219682

Reviewed by Pete Goodliffe

Verdict: OK
This is the second book I’ve reviewed in this
Apress iPhone series (the first being iPhone
Cool Projects). The book has many of the
characteristics of the first: it is full-colour
throughout, contains clear writing, beautiful
presentation, and relatively good copy editing. It
hangs together about as well as the other book,
too, which is ‘mostly’.
It is a series of 8 distinct essays by different
‘experts’ (a relative term on such a new
platform) iPhone game developers. The tone and
approach of each chapter is therefore different.
The collection of topics covered is OK, but
doesn’t spread over the entire broad spectrum of
game topics: there are TWO essays on
networking, TWO essays on optimisation, one
on multi-platform development (interesting in
an ‘iPhone’ book), one on writing a design
document, and a walkthough of a simple board
game.
There are many more topics that might have
been interesting chapters to have in this type of
book: a 3D graphics primer, when/how to select
a third party games engine, considerations for
getting your game noticed in the app store, and
more.
There are some recurring themes: a few authors
suggest prefering C over Objective-C (for
obvious reasons). There is some discussion of
why C is ‘better’ than C++ which is (to a C++
programmer) unbalanced, and misleading.
As ever, the source code to each project is
available from the Apress website. The quality
of some of the code is quite variable.
If you want to write an iPhone game this book
might be an interesting read, but I wouldn’t
suggest that every iPhone game programmer
HAS to buy it. Some sections of it have far more
value than others. In fact, I think overall you’d
get more milage from the iPhone Cool Projects
book since it covers a broader range of topics.
I’m left feeling that the two books rolled into one
would probably have been a better product. And
I’m still not convinced that the title is even
gramatically correct.

Miscellaneous

UML Distilled, 3rd Edition
By Martin Fowler, published by
Addison Wesley (2003), 208 pages,
ISBN: 978-0321193681

Reviewed by Chris Oldwood

I originally bought a book on
UML back in 1998 after someone downloaded
a demo version of the Select CASE tool. I
thought UML was really going to take off as it
seemed to provide a comprehensive language
for describing software systems. Fast forward 10
years and my experience hasn’t changed
radically since those first doodles – most other
developers still don’t seem to use any sort of
modelling, either as a documentation or design
tool. Consequently I have always struggled
when putting together various diagrams as I’ve
never know whether I’m doing it right: too much
detail or too little, aggregation or association,
stereotype or parameterised type ...
UML Distilled, for me, answers many of those
questions. As Fowler describes right from the
start, some people do use UML as a blueprint to
guide construction, but he, along with many
others only use it mostly for sketching. This sets
the tone for the rest book as he focuses on those
aspects of the language that provide the most
bang-for-buck when using UML in this way.
However at each juncture, should you want to
know more, he points you in the direction of the
necessary resources; in this way the book would
also act as a good introduction to the material.
Whereas my previous book walked through the
UML in a waterfall-esque fashion covering
requirements then static structure through to
deployment; Fowler guides you based on his use
cases [pun intended]. This means he covers
Class Diagrams first; in fact he discusses object,
package and deployment diagrams before
getting to Use Cases. Admittedly Deployment
Diagrams do only get 2 pages, but they aren’t
exactly the most complicated topic to digest.
When he does finally tackle Use Cases I found
it reassuring to find him pointing out that the real
value is in the Use Case text – the diagrams often
provide little additional benefit.
State Machine and Activity Diagrams then get
10 or so pages each, with the latter getting
extensive coverage because of its new lease of
life in UML 2.0, and it has certainly piqued my
interest due to its ability to illustrate parallel
workflows. He then goes on to briefly cover the
various other diagram types, such as the
renamed Communication Diagrams (previously
known as Collaboration Diagrams), Component
Diagrams, Timing Diagrams etc. I was a little
disappointed he didn’t spend more time on
Communication and Component Diagrams (he
suggests that people generally prefer Sequence
Diagrams to the former) as they both looked
promising.

Although the book tips the scales at less than 200
pages, he still manages to cover the history of
UML, a section on development methodologies,
and an appendix to summarise the key changes
from 1.0 through to 2.0.

An Introduction to
Programming with C++,
4th Edition
By Diane Zak, published by Course
Technology (2005), 605 pages,
ISBN: 9780619217112

Reviewed by Giuseppe Vacanti

I start writing this review a few months before
the scheduled release of the sixth edition of this
book, this review covering the fourth edition
from 2005.
This is not a book I have liked a lot. First of all
the title troubles me, but this is probably due to
my not being a native: I thought the book would
be an introduction to C++, whereas it turns out
to be an introduction to programming, where
C++ plays the role any other programming
language could have played.
There is no mention of the Standard Template
Library, for instance, and therefore there is no
mention of vector, and the only arrays we see are
the plain C-style arrays. Given the almost 600
large format pages, one could have expected a
bit more. We do encounter the transform
algorithm and strings, however, although the
transform algorithm is introduced rather
empirically to convert a string to upper case
without mentioning the word iterator.
The book begins by explaining what a computer
is, and how its main components are connected
to one another. It goes on to explain the problem-
solving process, how to break a problem down
to arrive to an algorithm, and finally how to start
coding this algorithm in C++. The pace is slow,
each section or chapter ends with many
questions and problems with answers.
We move through control structures, flow
charts, input and output, and functions, and close
to the end of the book we reach strings, where
things start getting C++-ish. The book ends with
a chapter on classes, but we run out of pages
before we can understand how classes can be
used to achieve a greater level of abstraction.
The book is not challenging in any way, and this
is perhaps the author’s intent: everything is
spelled out and numerous exercises bring all the
points home. From this point of view the book
could be interesting for somebody who has
never come close to programming before. The
book is complemented by a web-based ‘Testing
Center’ that the reader can get access to through
the access code provided with the book. My
version also came with Microsoft Visual C++
.net 2003 student edition, and it can be used to
compile the test programs that can accompany
the book and can be downloaded from the
Testing Center.
In summary, this is a book for extreme
beginners. It has no obvious flaws, but I found
34 | | JAN 2010{cvu}

it not challenging in any way, and for this very
reason I would not recommend it.

Pro Git
By Scott Chacon, published by
Apress, 265 pages, ISBN:
978-1430218333

Reviewed by Pete
Goodliffe

Highly Recommended
It’s not often I start a book review with glowing
praise. This time, I will: if you use the git version
control system, or are thinking of using git in the
future, get this book. It’s excellent.
Pro Git available online from http://
www.progit.org (or git clone the book’s source
from http://github.com/progit). This means that
you can read it for free before considering a
purchase. Indeed, that’s where I started.
However, I highly recommend the dead tree
version. Apress’ production quality is excellent
and the paper copy is definitely a valuable thing
to have.
The book is an excellent introduction to using
git; it’s perfect for newbies, and a good reference
for existing users. It starts from first priniciples.
That is, it describes what git is, and what a
distributed version control system is. It briefly
introduces version control in general, but that is
really prerequiste information.
The text is well paced, and very clearly written.
The examples are well chosen and the coverage
of git’s facilities is broad.
The author starts with installing/configuring git
and outlines the basic git principles. He covers
basic operations (check in, clone, viewing logs,
tagging). Then he moves onto git’s crowning
glory: branching and merging. This potentially
tricky topic is covered very well.
The book also covers running a git server,
sensible workflows to tame distributed
collaboration, useful/advanced git facilities
(stashing, amending history, binary searches,
subtree merging, client- and server-side hooks),
and using git with other version control systems.
In particular, there is good coverage of using git
as a more advanced subversion client.
The final chapter is particularly useful: a great
overview of git internals. This sounds relatively
pointless when you’ve covered most git usage
already. However, this is a great chapter – the
author explains what’s going on under the
covers in such a way that you gain a much better
insight into how all the high-level git operations
work.

The Old New Thing
By Raymond Chen, published by
Addison Wesley (2007), 560
pages, ISBN: 978-0321440303

Reviewed by Chris Oldwood

Highly recommended for
Windows programmers

The first blog I discovered, and still read each
day, is ‘The Old New Thing’ by Raymond Chen.
He also writes a column called Windows
Confidential which fills the final page in
Microsoft’s TechNet magazine. His book, which
follows the name of his blog, is essentially a
print version of more of the same – interesting
historical facts and ‘inside’ information,
surrounding the development of the Windows
OS. There is a heavy bias towards GUI related
issues as he works in the Windows Shell team,
but there is also plenty of other low-level
information such as in ‘Understanding the
consequences of WAIT_ABANDONED’ which is
relevant to any Windows programmer.
An operating system as old as Windows, which
has had to transition from the 16-bit real world
of DOS, through to multiple 32-bit platforms
and then on to 64-bits is going to have more than
just a few warts. On the face of it some of the
APIs and behaviour may not make an awful lot
of sense in today’s largely 32-bit world and the
obvious reaction of some detractors would be to
blame it on poor design. The truth is often far
murkier and frequently involves some nasty
hangover from the 16-bit days – the entire
sections devoted to GlobalAlloc() and
GetWindowText() cover this ground
thoroughly.
Microsoft takes backwards compatibility very
seriously, and whether you agree or not with
their sentiments, this book will show you some
of the hurdles that need to be straddled for this
to happen. For instance Raymond shows you 5
ways that developers can screw up
implementing something at simple as
QueryInterface(). He also describes badly
implemented version checks and code that
patches the OS, breaking it in the process.
Couple this with the legal requirement of not
being able to physically patch someone else’s
broken code and it’s going to induce some
creative (and entertaining) engineering.
There is another aspect to the book which I
found puts software development into a new
light, and that is the economies of scale that
affect a company the size of Microsoft. To them
a 1-in-a-million bug affects a significant number
of customers, and they often have more beta
testers than many products have actual
customers. This can have particularly humorous
outcomes such as in ‘Windows brings out the
Rorschach test in everyone’ where he describes
how various innocent images have managed to
offend some users.
Although much of the grunge would be of more
interest to developers coding to the C based API,
there is still plenty of sound advice for those who
live in the .Net world, and even some that
transcends all OS’s such as ‘A cache with a bad
policy is another name for a memory leak’. If I
had to give my own definition of Schadenfreude
it would probably contain a reference to this
book.

Coders at Work
By Peter Seibel, published by Apress (2009), 632
pages, ISBN: 978-1430219484

Reviewed by Adam Petersen

Highly Recommended
Wow! This is an amazing book.
I’ve been looking
forward to Coders at
Work since Peter
published the first
names on his blog two
years ago. Given Peter’s
track-record , I knew he would do a terrific job,
yet I’m positively surprised. Coders at Work is
a book that I recommend, without any
reservation, to anyone interested in
programming or aspiring to become a
programmer. It’s that good.
The basic idea of interviewing legendary and
influential programmers has been tried out
before, recently in Masterminds of
Programming (a book that unfortunately didn’t
live up to its promise). What sets Coders at Work
apart from previous attempts is the quality of the
interviews. Reading the book, it’s obvious that
Peter Seibel put a tremendous amount of effort
into the preparations of the interviews. Peter
knows the questions to ask each interviewee
which results in deep and interesting
discussions. Another sign that he succeeded are
the heated discussions that emerged in the
blogosphere immediately following the
publication of the book. Because this book
makes it clear that not even the experts can agree
upon languages, type-systems, and
methodologies.
Considering the interview subjects, it’s an
interesting mix. Some of the highlights for me
were Joe Armstrong, Simon Peyton Jones, Peter
Norvig, and Donald Knuth. And even if I’ve
read several interviews with these people, in
some cases visited talks given by them, Peter’s
interviews bring out a lot of interesting ideas and
distilled programming wisdom that were new to
me. Further, it was quite relieving to read about
the low-tech approach to programming that
most of them seem to share: debug through
print-statements and a non-IDE approach.
Coders at Work is a book to read and think
carefully about. What can I learn from the
subjects? In what way do my approach to
programming differ? For better or worse? No
matter what, this book will help you improve.
Along the way, enjoy Peter’s writing and the
highly interesting interviews.
JAN 2010 | | 35{cvu}

36 | | JAN 2010

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Jez Higgins
chair@accu.org

@t = (
"5468652079656172206a75737420676f6e652077",
"6173206120707265747479207465727269666963",
"207965617220666f7220414343552e2020546865",
"20537072696e6720436f6e666572656e63652077",
"617320616e6f7468657220677265617420737563",
"636573732c206173207761732074686520417574",
"756d6e20536563757269747920436f6e66657265",
"6e63652e202052696320616e6420537465766520",
"686176652070757420746f67657468657220736f",
"6d6520746572726966696320697373756573206f",
"66204f7665726c6f616420616e64204356752e20",
"204f766572206f6e20616363752d67656e657261",
"6c20746865726520776173206120677265617420",
"6465616c206f66206c6976656c79206469736375",
"7373696f6e2028616e6420736f6d65206f662069",
"7420776173206576656e2075736566756c292e20",
"205468616e6b20796f7520746f2065766572796f",
"6e652c20616e642074686174276c6c2062652065",
"766572792041434355206d656d6265722c207768",
"6f20636f6e747269627574656420696e20776861",
"746576657220776179206f766572207468652070",
"61737420796561722e20",
);

foreach $t (@t) { print grep($_=pack("c",

 hex($_)),unpack("A2"x 20,$t)); }

Free tickets to SharePoint Techology
and Enterprise Software Development

Conferences
We have two free three day passports to the 2010 Spring SharePoint Technology Conference to give away to ACCU
members. The conference is 10-12 February in San Francisco. We also have two free passports for the Enterprise
Software Development Conference in San Mateo on March 1–3. The passports cover all sessions, receptions, and
materials.

More information on the conferences is available at http://sptechcon.com/ and http://www.go-esdc.com/

Apply by email to ads@accu.org with your name, membership number, address, phonenumber, and company affiliation
(needed for conference registration). The closing date for the SharePoint TC is midnight GMT 20 January, and for the
ESDC is midnight 27 January. The winners will be notified on the 21 January and 28 January respectively.

Erratum
In the last issue of CVu (21.5) Paul Grenyer’s article ‘Java
Dependency Management with Ivy’ should have been
labelled as ‘Part 2’. Part 1 was in the prior edition (21.4).

	Tales From the Other Side
	A Brief Introduction to F#
	Hunting the Snark (Part 5)
	Data Access Layer Design for Java Enterprise Applications
	Deciding Between IF and SWITCH When Writing Code (Part 2)
	A Game of Skill
	On a Game of Cards
	AYE Conference Report
	Live to Love to Learn
	Another year, another great ACCU conference is coming!
	Desert Island Books
	ACCU London
	ACCU Security 2009
	Code Critique Competition 61
	Bookcase
	View From The Chair
	Free tickets to SharePoint Techology and Enterprise Software Development Conferences

