

NOV 2009 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Reflections on Learning
ike many other people, I first learned programming in
BASIC, on a Sinclair ZX81. In fact, it started out a
bit like pair programming. The ZX81 belonged to

my friend and we would type in listings from some of
the popular personal computing magazines of the time.
One would dictate the code, the other would type it in.
The ‘dictation’ part doesn’t necessarily fit the pair
programming practice, but part of the process was that the
typos made by the person at the keyboard might be more
easily spotted by the one reading from the printed page.
Back then we paid no heed to ‘good practice’, we just typed it
in and occasionally changed things to see what would happen.
It wouldn’t be for some time until I encountered procedural,
then modular, then object oriented, generic, and functional
programming. These things all have their own good
practices, even if you use one or two languages for all of
them. There are subtleties which, as a lone programmer, it
would have taken forever just to find out about. That’s
where pair programming, and communities like ACCU fit in.
The ways we learn from each other shape the ways we think.
Having variety here helps us to distinguish good practice from common, but
questionable, practice. There is no substitute for experience; we learn from our
mistakes, and sometimes it brings us insight to question what we had previously
taken for good practice.
I hope I haven’t fulfilled Edsger Dijkstra’s assertion that it’s impossible to teach
good programming practice to students with prior exposure to BASIC! (‘How do
we tell truths that might hurt?’ (EWD498), 1975). That said, I think I am still
learning good programming practice, and at least I was never taught COBOL...

 L
Volume 21 Issue 5
November 2009

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Ian Bruntlett, Frances
Buontempo, Pete Goodliffe,
Paul Grenyer, Richard Harris,
Andrew Holmes, Derek Jones,
Roger Orr, Bjarne Stroustrup

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | SEP 2009

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
28 Code Critique #60

The winner of last week’s
competition.

36 Desert Island Books
Paul Grenyer maroons
Frances Buontempo.

37 Insirational (p)articles
Frances Buontempo
introduces Andrew
Holme’s inspiration.

REGULARS
38 Bookcase

The latest roundup of
ACCU book reviews.

40 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 21.5: 1st October 2009
C Vu 21.6: 1st December 2009

Overload 94: 1st November 2009
Overload 95: 1st January 2010

FEATURES
3 Respect the Software Release Process

Pete Goodlliffe implores us to take the ‘last step’ carefully.

4 Java Dependency Management with Ivy (Part 2)
Paul Grenyer looks at Ivy in more depth.

10 Charming the Snake
Steve Love makes his Python programs more modular.

14 Deciding Between IF and SWITCH When Writing Code
Derek Jones analyses some programmers’ habits.

20 Beyond Pipelining Programmes in Linux
Unearthed Arcana (Part 1): Ian Bruntlett uncovers the
back-tick.

21 What is C++0x?
Bjarne Stroustrup concludes his tour of C++0x.

26 A Game of Cards with Baron Munchharris
Baron Muncharris suggests a game of cards.

27 On a Game of Dice
A student analyses Baron Muncharris’ dice problem.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Professionalism in Programming # 58
Respect the Software Release Process
Pete Goodliffe implores us to take the ‘last step’ carefully.

reating a software release is an incredibly important step in your
software development process, and not one that should only be
thought about at the last minute. On more than one recent occasion

I have run into silly, perfectly avoidable problems that were caused by
other developers’ lackadaisical approach to the construction of software
releases.
Many of these were caused by the sloppy habit of creating a ‘release’ of a
local working directory, rather than from a clean checkout. (Hint: this is
not a real software release, it’s a ‘build’ of your code, you need a lot more
process to create a proper release.)
For example:

An external software release was made from a developer’s local
working directory. The developer hadn’t checked the state of his
checked-out code thoroughly. The directory contained uncommitted
source file changes. The ‘release’ was made anyway, and when
there were problems reported with it we had no record of exactly
what went into that build. Once we knew it had been built like this,
no-one had faith in the quality of the release at all.
An external software release was made from a local directory that
wasn’t up-to-date. The developer hadn’t updated to the HEAD of the
Subversion repository. So it was missing one feature, and some bug
fixes. But the developer tagged the HEAD of the repository as the
‘release point’, and then claimed he’d built that version. The built
code begged to differ. When people noticed that the code didn’t
contain fixes that were marked in the bug tracker, the developer tried
to deny responsibility. (Bonus question: how did it get released at
all, without thorough testing?)

I mean, come on! It’s not that hard, is it?
Well, actually: yes it is. Creating a serious high-quality software release
is actually a lot more work than just hitting ‘build’ in your IDE and
shipping whatever comes out. If you are not prepared to put in this extra
work then you should not be creating releases.
Harsh. But fair.

Part of the process
Most people write software for the benefit of others as well as themselves.
So it has to get into the hands of your ‘users’ somehow. Whether you end
up rolling a software installer shipped on a CD, a downloadable installer
bundle, a zipfile of source code, or deploying the software on a live web
server, this is the important process of creating a software release.
The software release process is a critical part of your software development
regimen, just as important as design, coding, debugging, and testing. To
be effective your release process must be:

simple
repeatable
reliable

Get it wrong, and you will be storing up some potentially nasty problems
for your future self. When you construct a release you must:

Ensure that you can get the exact same code that built it back again
from your source control system. (You do use source control, don’t
you?) This is the only concrete way to prove which bugs were and
were not fixed in that release. Then when you have to fix a critical
bug in version 1.02 of a product that’s five years old, you can do so.

Record exactly how it was built (including the compiler
optimisation settings, target CPU configuration, etc.). These
features may subtly affect how well your code runs, and whether
certain bugs manifest themselves.
Capture the build log for future reference.

A cog in the machine
The bare outline of a good release process is:

Agree that it’s time to spin a new release. A formal release is treated
differently to a developer’s test build, and should never come from
an existing working directory.
Agree what the ‘name’ of the release is (e.g. ‘5.06 Beta1’ or ‘1.2
Release Candidate’).
Determine exactly what code will constitute this release. In most
formal release processes, you will already be working on a release
branch in your source control system, so it’s the state of that branch
right now. You should rarely release code directly from your source
control system’s mainline (i.e. trunk or master) of code
development. A release branch is a stable snapshot of the code that
allows you to continue development on the trunk. You can merge in
the good, stable, known fixes from the mainline into the release
branch once they are proven. This maintains the integrity of the
release codebase whilst allowing other new work to continue on the
mainline.
Tag the code in source control to record what is going into the
release. The tag name must reflect the release name.
Check out a virgin copy of the entire codebase at that tag. Never use
an existing checkout. You may have uncommitted local changes that
change the build. Always tag then checkout the tag. This will avoid
many potential problems.
Build the software. This step must not involve hand-editing any files
at all, otherwise you do not have a versioned record of exactly the
code you built.
Ideally, the build should be automated: a single button press, or a
single script invocation. Checking the mechanics of the build into
source control with the code records unambiguously how the code
was constructed. Automation reduces the potential for human error
in the release process.
Package the code (create an installer image, CD ISO images, etc.).
This step should also be automated for the same reason.
Always test the newly constructed release. Yes, you tested the code
already to ensure it was time to release, but now you should test this
‘release’ version to ensure it is of suitable release quality.
Construct a set of ‘Release notes’ describing how the release differs
from the previous release: the new features and the bugs that have
been fixed.
Store the generated artefacts and the build log for future reference.
Test the release! There should be an initial smoke-test to ensure that
the installers work OK (on all supported deployment platforms) and

C

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net
NOV 2009 | | 3{cvu}

Respect the Software Release Process (continued)
that the software appears to run and function correctly. Then
perform whatever testing is appropriate for this type of release.
Internal test releases may be run through test scripts by in-house
testers. Beta releases may be released to selected external testers.
Release candidates should pass suitable final regression checks. A
software release should not be distributed until it has been checked.
Deploy the release. Perhaps this involves putting the installer on
your website, sending out memos or press releases to people who
need to know. Update release servers as appropriate.

Release early and often
One of the worst release process sins is to think about this stuff only as
you reach the end of a project, when you finally need to perform a public
software release.
We’ve seen that the ideal release process is entirely automated. The
automated build and release plumbing should be established early on in
the development process. It should then be used often (daily, if not more

frequently) to prove that it works, and that it is robust. This will also help
to highlight and eliminate any nefarious presumptions in the code about
the installation environment (hard coded paths, presumptions about the
computer’s installed libraries, capabilities, etc.).
Starting the software release process early in the development effort gives
you plenty of time to iron out wrinkles and flaws so that when you are in
the run-up to a real public release you can focus on the important task of
making your software work, rather than the tedious mechanics of how to
ship it.

And there’s more...
I’ll admit I’ve passed over these points fairly quickly. This is a large topic
tied intimately with configuration management, source control, testing
procedures, software product management, and the like. If you have any
part in releasing a software product you really must understand and respect
the sanctity of the software release process.
Java Dependency Management with Ivy
Paul Grenyer looks into Ivy to help with Java dependencies.

n Part I [1] of ‘Java Dependency Management with Ivy’, I looked at
basic Ivy [2] usage and configuration using Ant [3] and the Ivy
Eclipse [4] plugin, IvyDE [5]. I demonstrated how Ivy can be used to

download modules (dependencies) from a repository, such as the Maven
Repository [6] and cache them locally, negating the need to check them
into a source control system.
However there are some scenarios where the Maven repository is not
suitable:

1. Your development team may not have direct access to the Maven
repository or you want to prevent each module from being
downloaded more than once.

2. You may want to restrict or specify the modules your development
team has access to.

3. You want to use libraries such as Microsoft’s SQL Server JDBC
driver [7] or your own proprietary JARs that are not hosted in the
Maven repository.

Ivy and IvyDE can be easily configured to look at custom repositories. In
this article I will discuss a way of setting up a local public repository and
a shared repository, and how to reference them from Ivy and IvyDE.
In my previous article I also explained the difference between a repository
and a cache. As I am going to look at repositories in a little more detail it
is worth repeating the distinction. A cache is usually local. When you do
a build, Ivy checks the cache to see if you already have the required
modules. If you do, it uses them, otherwise it looks in one or more
repositories for them and downloads them. Repositories can be local, but
tend to be remote on the internet or on a central server in an organisation.
Maven is a repository and stores a large number of modules.

Ivy repositories
As described by the Ivy ’Adjusting Default Settings’ documentation[8],
Ivy uses three kinds of repositories:

Public – a public repository in which most modules, and especially
third party modules, can be found

Shared – a repository which is shared between all the members of a
team and hosts proprietary modules
Local – a repository which is private to the user and hosts modules
specific to them.

The documentation goes into more depth, but basically by default the
Public repository is the Maven Repository, the Shared repository is a
directory called shared in the user’s home directory and the Local
repository is in a folder called local in the user’s home directory. The
Shared repository is intended to be shared by the development team and
would usually, but not by default, be hosted on an internal server. The local
repository is private to each user and hosted on their local machine.
By default, Ivy first checks the Local repository, then the Shared repository
and finally the Public repository. This can be changed as described in the
documentation. If for some reason you are unable or do not want to access
the Maven repository directly, a shared repository can be set up to proxy
the Maven repository and be used as the public repository. How to set this
up is documented on the Ivy website under ‘Building a Repository’ [9],
but the documentation lacks detail, so I’ll describe it in more detail here.

Glossary of terms
Some of the terms used in the Ivy documentation and the various XML
files are not as intuitive as they could be. Particularly the difference
between a module and an artifact. To try and make this article a little easier
to understand I’m including a brief glossary of terms below. More detailed
explanations can be found on the Ivy ‘Terminology’ page [11].

I

PAUL GRENYER
An active ACCU member since 2000, Paul is the founder
of the Mentored Developers. Having worked in industries
as diverse as direct mail, mobile phones and finance,
Paul now works for a small company in Norwich writing
Java. He can be contacted at paul.grenyer@gmail.com
4 | | NOV 2009{cvu}

Hosting a repository
A repository can be a few things, including a shared drive or a webserver.
Setting up a webserver to host repositories negates the need for sharing
drives, which has got to be a good thing. Any webserver that can serve files
can be used. My personal preference is for Apache [11]. After installing
Apache create a directory called Ivy in the htdocs directory. This is the
location for your repositories and can be accessed as http://myserver/ivy.

Creating a public repository
A locally hosted public repository holds the required subset of modules
from external repositories such as the Maven repository. The
ivy:install task is used to download the required modules and install
them in the local public repository. It requires source and destination
resolvers which are usually specified in a settings file (Listing 1).
The ibiblio resolver is for the Maven repository. The destination
resolver, public-repo-resolver , describes the location
(${dest.dir}), path ([organisation]/[module]/[type]s) and
file format ([artifact]-[revision].[ext]) the modules will be
written to for the local public repository.
commons-lang [12] is a good example of a module in the Maven
repository that can be easily installed in a local public repository
(Listing 2).
dest.dir specifies the location of the public repository and the
ivy:settings target specifies the location of the settings file. Creating

a repository using ivy:install resolves all modules to the local cache.
This can cause problems when using the Ivy Ant client or IvyDE later on,
so it’s best to clean it out before and after the install using the
ivy:cleancache task. However, if you are trying to resolve a number
of dependencies for a module, as you’ll see with Hibernate shortly, it is
worth commenting ivy:cleancache out so that modules are only
downloaded once.
The ivy:install target is given the settings id so it can find the settings
file, the organisation, name and revision of the module and the source and
destination resolvers. overwrite instructs the task to overwrite any
previous installations of the module, haltonwrite instructs the task to
overwrite any previous installations of the module, haltonfailure
stops the install process if there is an error and transitive tells
ivy:install to download and install all of the modules dependencies.
Running build.xml downloads and caches commons-lang locally and
then installs it in the public repository. If you look in the Ivy directory in
Apache’s htdocs directory you will see a new directory called public.
Inside public you will find the structure shown in Listing 3.
The ivy-2.0.xml file describes the module and its artifacts. commons-
lang-2.0.jar is obviously the commons-lang JAR, the .md5 files
contain a checksum that can be used to verify the modules once they are
downloaded and the .sha1 files contain a hash function that can be used
for secure download.
At this point commons-lang is installed in the local public repository and
ready to use, but before I describe how to configure the Ivy client to use
it, I am going to look at a more complex example.
commons-lang is a very simple module without any dependencies. More
complex modules, such as Hibernate [13] are dependant on a number of
other modules and these should also be installed in the local public
repository. Fortunately this is what the transitive attribute is for:

Term Description

Organisation An organisation is either a company, an individual, or
simply any group of people that produces software. The Ivy
‘organisation’ is very similar to the Maven POM ‘groupId’.

Module A module is a self-contained, reusable unit of software
that, as a whole unit, follows a revision control scheme. Ivy
is only concerned about the module deliverables known as
artifacts, and the module descriptor that declares them.

Module
Descriptor

A module descriptor is a generic way of identifying what
describes a module: the identifier (organisation, module
name, branch and revision), the published artifacts,
possible configurations and their dependencies.
The most common module descriptors in Ivy are Ivy Files,
xml files with an Ivy specific syntax, and usually called
ivy.xml.

Artifact An artifact is a single file ready for delivery with the
publication of a module revision, as a product of
development.
Compressed package formats are often preferred because
they are easier to manage, transfer and store. For the
same reasons, only one or a few artifacts per module are
commonly used. However, artifacts can be of any file type
and any number of them can be declared in a single
module.

Revision A unique revision number or version name is assigned to
each delivered unique state of a module. Ivy can help in
generating revision numbers for module delivery and
publishing revisions to repositories, but other aspects of
revision control, especially source versioning, must be
managed with a separate version control system.
Therefore, to Ivy, a revision always corresponds to a
delivered version of a module.

<!-- public-repo-settings.xml -->
<ivysettings>
 <resolvers>
 <ibiblio name="ibiblio" m2compatible="true" />
 <filesystem name="public-repo-resolver">
 <artifact pattern="${dest.dir}/
 [organisation]/[module]/[type]s/
 [artifact]-[revision].[ext]"/>
 </filesystem>
 </resolvers>
</ivysettings>

Li
st

in
g

1

commons-lang
 commons-lang
 ivys
 ivy-2.0.xml
 ivy-2.0.xml.md5
 ivy-2.0.xml.sha1
 jars
 commons-lang-2.0.jar
 commons-lang-2.0.jar.md5
 commons-lang-2.0.jar.sha1

Listing 3

<!-- build.xml -->
<project default="create-public-repo"
 xmlns:ivy="antlib:org.apache.ivy.ant">
 <target name = "create-public-repo" >
 <property name="dest.dir"
 value="C:/.../htdocs/ivy/public" />
 <ivy:settings id="repo.settings"
 file="public-repo-settings.xml"/>
 <ivy:cleancache/>

 <ivy:install settingsRef="repo.settings"
 organisation="commons-lang"
 module="commons-lang"
 revision="2.0"
 from="ibiblio"
 to="dest-resolver"
 overwrite = "true"
 haltonfailure = "yes"
 transitive="true"/>

 <ivy:cleancache/>
 </target>
</project>

Listing 2
NOV 2009 | | 5{cvu}

 <ivy:install settingsRef="repo.settings"
 organisation="org.hibernate"
 module="hibernate"
 revision="3.2.5.ga"
 from="ibiblio"
 to="dest-resolver"
 overwrite = "true"
 haltonfailure = "yes"
 transitive="true"/>

Unfortunately, due to the badly configured Maven repository some of the
modules fail to install. This is where the Ivy documentation really falls
down as it suggests that you should ‘...download those artifacts manually,
and copy them to your destination repository to complete the installation’.
You could do that, but there are a couple of other things to try first. The
failing modules are:

commons-attributes.commons-attributes-compiler-2.1
javax.security.jacc-1.0
javax.transaction.jta-1.0.1B

commons-attributes.commons-attributes-compiler-2.1
can be installed, simply by specifying an ivy:install task for it:

 <ivy:install settingsRef="repo.settings"
 organisation="commons-attributes"
 module="commons-attributes-compiler"
 revision="2.1"
 from="ibiblio"
 to="dest-resolver"
 overwrite = "true"
 haltonfailure = "yes"/>

U n fo r t u na t e l y , b o t h javax.security.jacc-1.0 and
javax.transaction.1.0.1B are too badly configured in Maven to
be resolved like this, so they have to be downloaded manually, but they
can be installed using ivy:install, complete with Ivy XML files,
rather than just being copied into the public repository.
F i r s t t he javax.security.jacc-1.0 and
javax.transaction.jta-1.0.1B JARs need to be downloaded,
r enamed a s javax.security.jacc-1.0.jar and
javax.transaction.jta-1.0.1B.jar respectively and put into a
temporary location (e.g. C:\Temp\repo-src). Then a new resolver
needs to be added to the Ivy settings file to enable ivy:install to locate
the JARs (see Listing 4).
Then a src.dir property needs to be created in build.xml and set to
C:/Temp/repo-src and then ivy:install tasks can be created for
javax.security.jacc-1.0 and javax.transaction.jta-
1.0.1B (Listing 5).

With the ivy:install tasks for commons-attributes.commons-
attributes-compiler-2.1, javax.security.jacc-1.0 and
javax.transaction.jta-1.0.1B added along with the task for
org.hibernate.hibernate-3.2.5.ga , Hibernate can be
successfully installed in the public repository by running build.xml.

Configuring Ivy to use a local public repository
To demonstrate the use of the local public repository I am going to use the
example from ‘Java Dependency Management with Ivy – Part I’:
 import org.apache.commons.lang.WordUtils;
 public class IvyAnt
 {
 public static void main(String[] args)
 {
 final String msg = "hello, world!";
 System.out.println(
 WordUtils.capitalizeFully(msg));
 }
 }

As you can see this code uses the WordUtils class from commons-lang
to capitalise a string. The Ivy file is shown in Listing 6 and will download
commons-lang from the Maven repository by default.
To get Ivy to request commons-lang from your local public repository
you need to override its default ivysettings.xml file and provide your
own. The default ivysettings.xml file is included in Ivy’s JAR file
and looks like Listing 7.
Briefly, here the public, shared and local repository resolver configuration
files are specified as well as files that describe the order in which they
should be used. A more detailed description is provided in the ‘Adjusting
Default Settings’ documentation.

<!-- public-repo-settings.xml -->
<ivysettings>
 <resolvers>
 <ibiblio name="ibiblio" m2compatible="true" />
 <filesystem name="dest-resolver">
 <artifact pattern="${dest.dir}/
 [organisation]/[module]/[type]s/
 [artifact]-[revision].[ext]"/>
 </filesystem>
 <filesystem name="local-resolver">
 <artifact pattern="${src.dir}/
 [organisation].[artifact]-[revision].
 [ext]"/>
 </filesystem>
 </resolvers>
</ivysettings>

Li
st

in
g

4

<!-- ivy.xml -->
<?xml version="1.0" encoding="ISO-8859-1"?>
<ivy-module version="2.0" xmlns:xsi=
 "http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://ant.
 apache.org/ivy/schemas/ivy.xsd">
 <info organisation="Purple Tube"
 module="IvyAnt" status="integration"/>
 <dependencies>
 <dependency org="commons-lang"
 name="commons-lang"
 rev="2.0"
 conf="default"/>
 </dependencies>
</ivy-module>

Listing 6

<ivy:install settingsRef="repo.settings"
 organisation="javax.security"
 module="jacc"
 revision="1.0"
 from="local-resolver"
 to="dest-resolver"
 overwrite = "true"
 haltonfailure = "yes"/>

<ivy:install settingsRef="repo.settings"
 organisation="javax.transaction"
 module="jta"
 revision="1.0.1B"
 from="local-resolver"
 to="dest-resolver"
 overwrite = "true"
 haltonfailure = "yes"/>

Listing 6
6 | | NOV 2009{cvu}

To override the ivysettings.xml from the Ivy JAR, create a file called
ivysettings.xml in the same place as ivy.xml and copy the xml in
Listing 7 into it. The settings file will be automatically picked up by the
Ivy Ant task, but you’ll need to tell IvyDE about it by:

1. Right clicking on ‘ivy.xml [*]’ and selecting properties.

2. Going to the Main tab and ticking ‘Enable project specific settings’.
3. Entering the path to project:///ivy-settings.xml into the

Ivy settings path.
4. Clicking Ok.

Next you need a file telling Ivy how to find dependencies in the local public
repository (Listing 8).
The XML in Listing 8 specifies a new url resolver that can be added to
Ivy’s settings. The artifact tag tells Ivy where to look for the dependency
(http://myserver/ivy/public) and what format the name of the
JAR and the Ivy file will be in. In this case [organisation] relates to
the org attribute of the Ivy dependency XML tag, [artifact] and
[module] relate to the name attribute, [revision] relates to the rev
attribute and [ext] defaults to jar.
The XML in Listing 8 needs to go into another file called something like
ivy-purple-settings.xml and can then either go together with
ivy.xml and ivysettings.xml or, more sensibly I think, into the ivy
directory in the Apache htdocs directory of the repository. Either way
you need to modify ivysettings.xml so Ivy can find it (Listing 9 or
Listing 10).
With these files in place Ivy and IvyDE will now be able to find commons-
lang in the local public repository and download it to the cache.

Setting up a shared repository
There is no need to set up a shared repository unless you have something
to put in it. You could, if you wanted to, use your public repository as the
shared repository. However, I think it is good to keep third party and
proprietary modules separate. You may even want to keep them on
separate servers, or create a shared repository and continue to use the
Maven repository as your public repository. Ivy gives you lots of options!
The Microsoft SQL Server JDBC driver is a good example of a library that
is not hosted in the Maven Repository and should therefore be put in a
shared repository. At the time of writing Hibernate 3.3.2 is another good
example. However, writing client code to demonstrate the use of either is
quite verbose, so I am going to use a custom JAR instead.
My custom JAR, net.purpletube.goodmusic-0.1.jar contains
a single class (see Listing 11) that is also dependent on the WordUtils
class from the Apache commons-lang library. Therefore any client that
uses the FavoriteAlbum class will have dependencies on both
net.purpletube.goodmusic-0.1.jar and commons-
lang.jar. net.purpletube.goodmusic-0.1.jar is not, of
course, in the Maven Repository or the local public repository, but
commons-lang.jar is. Therefore net.purpletube.goodmusic-
0.1.jar should be published to a shared repository, with a dependency
on commons-lang.jar, but commons-lang.jar should not.
Before net.purpletube.goodmusic-0.1.jar can be published, it
needs an Ivy file to describe it and its dependent modules, as shown in
Listing 12. This XML specifies the organisation, name and version of the
module, the artifacts (JARs in this case) to be published and the
dependency on commons-lang.

<ivysettings>
 <settings defaultResolver="default"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-public.xml"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-shared.xml"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-local.xml"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-main-chain.xml"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-default-chain.xml"/>
</ivysettings>

Li
st

in
g

7

<!-- ivysettings-purple-public.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ivysettings>
<ivysettings>
 <resolvers>
 <url name="public">
 <artifact pattern="http://myserver/ivy/public/
 [organisation]/[module]/[type]s/[artifact]-
 [revision].[ext]" />
 <ivy pattern="http://myserver/ivy/public/
 [organisation]/[module]/ivys/ivy-
 [revision].xml"/>
 </url>
 </resolvers>
</ivysettings>

Li
st

in
g

8

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ivysettings>
<ivysettings>
 <settings defaultResolver="default"/>
 <include url="ivysettings-purple-public.xml"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-shared.xml"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-local.xml"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-main-chain.xml"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-default-chain.xml"/>
</ivysettings>

Li
st

in
g

9

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ivysettings>
<ivysettings>
 <settings defaultResolver="default"/>
 <include url="http://localhost/ivy/ivysettings-
 purple-public.xml"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-shared.xml"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-local.xml"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-main-chain.xml"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-default-chain.xml"/>
</ivysettings>

Li
st

in
g

10

package net.purpletube.goodmusic;
import org.apache.commons.lang.WordUtils;
public class FavoriteAlbum
{
 public String getTitle()
 {
 return "ROMULOUS";
 }
 public String getArtist()
 {
 return WordUtils.capitalizeFully("EX DEO");
 }
}

Listing 11
NOV 2009 | | 7{cvu}

ivy:install and ivy:publish can both be used to create a shared
repository. ivy:install is easier to use, so I’ll describe it here. As with
installing the local public repository, you need a source resolver and a
destination resolver in another settings file (Listing 13).
As with the local public repository, local-resolver describes the file
n ame fo rm a t ([organisation].[artifact]-
[revision].[ext]) and location (${src.dir}) of modules to be
installed. The dest-resolver describes the location (${dest.dir}),
path ([organisation]/[module]/[type]s) and file format
([artifact]-[revision].[ext]) the modules will be written to.
The install task is configured as shown in Listing 14.
As with the public repository ivy:install task, src.dir specifies the
location of the dependency to install to the shared repository, dest.dir

specifies the location of the shared repository and the ivy:settings
target specifies the location of the settings file. The ivy:install target
is given the settings id so it can find the settings file, the organisation,
module and revision of the dependency and the source and destination
resolvers. overwrite instructs the task to overwrite any previous
installations of the dependency and haltonfailure stops the install
process if there is an error. You’ll notice that transitive is missing, this
is because we don’t want common-lang installed to the shared repository.
To install net.purpletube.goodmusic-0.1.jar, simply copy it
and net.purpletube.goodmusic-0.1.xml to C:\Temp\repo-
src and run the Ant script. If you look in the Ivy directory in Apache’s
htdocs directory you will see a new directory called shared. Inside
there you will find the following structure, just like in the public repository:
 net.purpletube
 goodmusic
 ivys
 ivy-0.1.xml
 ivy-0.1.xml.md5
 ivy-0.1.xml.sha1
 jars
 goodmusic-0.1.jar
 goodmusic-0.1.jar.md5
 goodmusic-0.1.jar.sha1

The ivy-0.1.xml file describes the dependency. goodmusic-
0.1.jar is obviously the net.purpletube.goodmusic JAR, the
.md5 files contain a checksum that can be used to verify the module once
it is downloaded and the .sha1 files contain a hash function that can be
used for secure download.
The shared repository is now set up, installed and ready to use.

Configuring Ivy to use a shared repository
To demonstrate the use of the shared repository we need a piece of client
code that uses the FavoriteAlbum class (Listing 15) and the appropriate
Ivy file (Listing 16).
Note that only net.purpletube.goodmusic-0.1.jar is specified.
To get commons-lang-2.0.jar, we’re relying on the fact that the

<target name = "create-shared-repo" >
 <property name="dest.dir"
 value="C:/.../htdocs/ivy/shared" />
 <property name="src.dir"
 value="C:/Temp/repo-src" />
 <ivy:settings id="repo.settings"
 file="shared-repo-settings.xml"/>
 <ivy:cleancache/>
 <ivy:install settingsRef="repo.settings"
 organisation="net.purpletube"
 module="goodmusic"
 revision="0.1"
 from="local-resolver"
 to="dest-resolver"
 overwrite = "true"
 haltonfailure = "yes"/>
 <ivy:cleancache/>
</target>

Li
st

in
g

14

<!-- net.purpletube.goodmusic-0.1.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<ivy-module version="2.0">
 <info organisation="net.purpletube"
 module="goodmusic" revision="0.1"/>
 <publications>
 <artifact name="goodmusic" type="jar"
 ext="jar" conf="default"/>
 </publications>
 <dependencies>
 <dependency org="commons-lang"
 name="commons-lang"
 rev="2.0"
 conf="default"/>
 </dependencies>
</ivy-module>

Li
st

in
g

12

<!-- ivysettings-repo.xml -->
<ivysettings>
 <resolvers>
 <filesystem name="local-resolver">
 <artifact pattern="${src.dir}/
 [organisation].[artifact]-[revision].
 [ext]"/>
 <ivy pattern="${src.dir}/[organisation].
 [module]-[revision].xml"/>
 </filesystem>
 <filesystem name="dest-resolver">
 <artifact pattern="${dest.dir}/
 [organisation]/[module]/[type]s/
 [artifact]-[revision].[ext]"/>
 </filesystem>
 </resolvers>
</ivysettings>

Li
st

in
g

13

import net.purpletube.goodmusic.FavoriteAlbum;
public class GoodMusicClient
{
 public static void main(String[] args)
 {
 final FavoriteAlbum
 fav = new FavoriteAlbum();
 final StringBuilder
 buf = new StringBuilder(fav.getTitle());
 buf.append(" by ");
 buf.append(fav.getArtist());
 System.out.println(buf);
 }
}

Listing 15

<ivy-module version="2.0"
 xmlns:xsi=
 "http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation=
 "http://ant.apache.org/ivy/schemas/ivy.xsd">
 <info organisation="purpletube.net"
 module="IvyAnt" status="integration"/>
 <dependencies>
 <dependency org="net.purpletube"
 name="goodmusic"
 rev="0.1"
 conf="default"/>
 </dependencies>
</ivy-module>

Listing 16
8 | | NOV 2009{cvu}

shared repository knows that net.purpletube.goodmusic.jar
depends on it.
As with the local public repository you need a file telling Ivy how to find
dependencies in the shared repository (Listing 17).
Put this alongside public-repo-settings.xml in the ivy directory
in the Apache htdocs d i r ec to ry . Then mod i fy the loca l
ivysettings.xml file to use the public-repo-settings.xml
rather than the default shared repository (Listing 18).
With these files in place Ivy and IvyDE will now be able to find
net.purpletube.goodmusic-0.1.jar in the shared repository and
d o wn l o a d i t t o t he c a c he . I t w i l l a l so s ee t ha t
net.purpletube.goodmusic-0.1.jar depends on commons-lang
and that it is not in the shared repository, so will download it from the local
pubic repository.
Running GoodMusicClient will write ROMULOUS by Ex Deo [14]
to the console, proving that, although not straightforward, creating Ivy
repositories is quite easy to do.

Acknowledgements
Thank you to Shawn Castrianni, Geoff Clitheroe, Joshua Tharp and Tom
Widmer of the Ivy Users list for helping me when I could not see the wood
for the trees, and Jez Higgins and Steve Love for review and direction.

References
[1] Grenyer, Paul ‘Java Dependency Management with Ivy – Part1’,

CVu 21-4, September 2009.
[2] ‘Ivy, The Agile Dependency Manager’: http://ant.apache.org/ivy/
[3] Ant: http://ant.apache.org/
[4] Eclipse IDE: http://www.eclipse.org/
[5] Ivy Eclipse Plugin: http://ant.apache.org/ivy/ivyde/
[6] Maven Repository: http://mvnrepository.com/
[7] Microsoft SQL Server JDBC Driver: http://msdn.microsoft.com/en-

us/data/aa937724.aspx
[8] ‘Adjusting Default Settings’: http://ant.apache.org/ivy/history/2.1.0-

rc1/tutorial/defaultconf.html
[9] ‘Building a Repository’: http://ant.apache.org/ivy/history/latest-

milestone/tutorial/build-repository.html
[10] ‘Ivy Terminology’: http://ant.apache.org/ivy/history/latest-

milestone/terminology.html
[11] Apache Webserver: http://httpd.apache.org/
[12] Apache commons-dbcp Library: http://commons.apache.org/lang/
[13] Hibernate: https://www.hibernate.org/
[14] Ex Deo: http://www.myspace.com/exdeo

The first part of Java Dependency Management with Ivy was easy to
write as using the Ivy clients is easy. The only complication I had was a
new version of Ivy and IvyDE coming out while I was writing it! Creating
a repository and getting to grips with the terminology and Ivy’s poor
documentation is quite demanding. It’s not that Ivy doesn’t have
documentation, in fact it has quite a lot, it’s just that it’s so badly written
with lots of assumption and very little detail.
This is the third version of this article. The first version described how to
set up a very simple shared repository, without using ivy:install
and then I intended to adjust it for dependencies of the modules installed
in it. That turned out to be confusing, so I adjusted it to use
ivy:install and handled the dependencies of the modules from the
start.
Then I sent it over to Mr Jez Higgins for a read and he pointed out that
he would like to know how to set up an alternative public repository. Due
to bugs in the Maven Repository, configuring this is not straight forward.
The Ivy documentation touches on this, but doesn’t really address it
properly or give a proper solution. So in this third version I look at
creating an alternative public repository that doubles as a shared
repository for your own modules.

Writing the article

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ivysettings>
<ivysettings>
 <settings defaultResolver="default"/>
 <include url="http://myserver/ivy/ivysettings-
 purple-public.xml"/>
 <include url="http://myserver/ivy/ivysettings-
 purple-shared.xml"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-local.xml"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-main-chain.xml"/>
 <include url="${ivy.default.settings.dir}/
 ivysettings-default-chain.xml"/>
</ivysettings>

Listing 18

<!-- shared-repo-settings.xml -->
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ivysettings>
<ivysettings>
 <resolvers>
 <url name="shared">
 <artifact pattern="http://myserver/ivy/
 shared/[organisation]/[module]/[type]s/
 [artifact]-[revision].[ext]" />
 <ivy pattern="http://myserver/ivy/shared/
 [organisation]/[module]/ivys/ivy-
 [revision].xml"/>
 </url>
 </resolvers>
</ivysettings>

Listing 17
NOV 2009 | | 9{cvu}

Charming the Snake
Steve Love makes his Python programmes more modular.

fter quite a while of just ‘playing around’ with Python, and getting
small programs working, I decided it was time to do the thing
properly and understand how more significant projects fit together.

This article is about how Python modules and packages work, how the
various import statements behave, and how all of this relates to structuring
significantly sized projects. An important part of any project is the part
marked ‘unit tests’, and I want to explore how to fit those tests neatly into
your structure without compromising it, while still making the most of
being able to fake or mock features appropriately.
I’m certainly no Pythonista, merely an interested hobbyist really, and I’m
sure my background in C++ and C# development projects shows, so much
of what I describe here is about my journey towards getting it working.
I’d certainly be very interested to learn how I’ve done it wrong! Correct
me at cvu@accu.org – of course.
I won’t be assuming much Python knowledge, although being basically
familiar with the syntax of Python programs will be helpful. On the other
hand, this isn’t a Python tutorial, either, although I’ll try and explain most
Python terms as I go.
I used Python 2.6 [1] for the examples
here; I don’t think there is very much
version-specific code, but some
changes may be needed for older
i ns t a l l a t i on s (i n pa r t i cu l a r ,
string_thing.format() is new
in 2.6).

Bits of Python
The basic unit of a Python program is the python file, which contains a
script. This program may be broken down as lines of executable code,
functions and classes. The declaration of a class or function is considered
executable code, so every Python script is executable to the processor. Of
course, it may not be especially useful if the contents of the function or
class are never invoked! Listing 1 shows a very simple Python program.
If you run this from a command line, you can supply arguments, and name
takes up the first one, or the program provides a default for the variable
name.
Even in such a simple example, we see the need and use for Python
modules external to our program. In this case the sys module contains
argv (amongst other things) which is used to get basic access to arguments
passed to the program. By contrast, len is a standard function (the standard
library is imported automatically), and print is a built-in keyword [2] like
if and import, so neither require further imports or qualification.
As I mentioned, function declarations are executable code too. In fact the
code inside a function is only checked for basic syntax – that it parses. It
is only when the function is invoked that its correctness is verified:

 def nonsense():
 this.compiles(but, wont, run)

Attempting to call this function will result in various errors at runtime
(this isn’t defined, neither are but, wont or run), but

syntactically it’s valid. The interpreter simply adds the name of the
function to its collection of callable objects in the current namespace when
it sees the def nonsense(): line.
Class declarations are handled slightly differently; generally, classes
contain data and methods, but instance data is not declared as part of the
class – it’s declared in the special __init__ member function. A class’s
member function (or method) declarations behave like other function
declarations. Code that isn’t a method declaration gets invoked as part of

the class declaration, and creates
class-scoped objects:

 class rubbish(object):
 def putOut(self):
 so.what()
 i = 10

The i object above is a class object
(unbound to a specific instance, so a

bit like static in C++ and C#), and putOut is a method. So, this class
is fine until putOut is called on an instance of rubbish, which will result
in similar errors to the example above.

Modules and packages
As we’ve already seen with the sys module, you can save your scripts
away and re-use them in other programs. This is just a matter of saving
the file so that you can refer to it later in an import statement; the name
of the file (minus the extension) is the name of the module, which forms
its own namespace. Declarations in that module, therefore, need to be
qualified with the namespace name. Hence, sys.argv. A different form
of the import statement allows use of the names without qualification:
 from sys import argv

allows argv to be used without the sys prefix. This form also allows
multiple names to be imported from the module in one go:
 from sys import argv, exit, path

Python looks for modules in specific locations: the current directory (as
indicated by the main program module), and the Python search path [3],
in that order. Therefore, naming a module that clashes with a system
module is a Bad Idea™ because your module will be loaded and used in
preference to the system one.
One way of avoiding this particular problem is to group modules into
packages. A package is a container of modules in the same way that a file-
system directory is a container of files. A package is a directory, with a
special file, __init__.py, which indicates that the modules within that
directory are to be treated collectively as a package. This file can be empty,
or may contain initialisation code if you wish.
The import statement ‘runs’ the module if it’s the first time it’s been
imported into the program. This means executing all of the top-level

A import sys

name = "world"
if len(sys.argv) > 1:
 name = sys.argv[1]
greeting = "Hello, {0}".format(name)
print(greeting)

Listing 1

STEVE LOVE
Steve Love is an independent developer constantly
searching for new ways to be more productive without
endangering his inherent laziness. He can be contacted at
steve@arventech.com

The declaration of a class or
function is considered executable

code, so every Python script is
executable to the processor
10 | | NOV 2009{cvu}

statements in the file, so, for example, importing the example program
above would cause “Hello, world” to be printed to the output console. The
contents of __init__.py for a package behave in the same way when
importing the package. More commonly, a module will contain class and
function declarations, so executing them brings the names into the current
scope.
It’s possible to check if a module is being run as a program or imported as
a module by checking its name, made available through the __name__
global identifier. If this identifier is set to __main__, then the module is
being run, as shown below.
 if __name__ == '__main__':
 do(stuff)

If it’s the module name, then the module is being imported.

Camouflage
So what does the incantation import name mean? The name part in this
case always identifies a module or a package. The identifier name is
brought into scope, and its contents (either modules, functions, classes or
objects, depending on whether it’s a module or a package) can be
referenced by preceding their names with the module or package name.
What about from module import name? In this case, name could be
a function, object, class, module or package. It is, in fact, just a name of
something. How it gets interpreted will determine whether it is valid or not.
For example, if name is a module and you attempt to use it like this:
 thing = name()

you’ll get an error, because name is not callable. Importantly, the
difference between these two forms means that the former brings the
module or package name into scope, the latter only the final name:
 import sys
 from os.path import walk

Here, the contents of sys must be prefixed thus: sys.argv. The name
walk has been imported into scope, but neither os nor path have been
brought into scope as names. walk must therefore be used unqualified.
We’ll skip over the from module import * version, since it’s frowned
upon, and doesn’t always do what you expect [4]. In fact, we’re in enough
trouble already because the other two versions might not, either...
For example, given a package called store, and a module called db, these
two imports are almost equivalent:
 import store.db
 # ...
 from store import db

In either case, the name db is in scope. In the former, it must be referred
to as store.db, in the latter, just db is fine.
Suppose however, you have a module called store in the current
directory, defining a class called db. In this instance, the first call will fail
(no such module db), and the second will import the class name into the
current scope. Now suppose you also have a package called store which
contains a module called db:
 src/
 store/
 __init__.py
 db.py
 myprog.py
 store.py

What do the above import statements mean now? Well, the rules are quite
specific; packages are always preferred to modules, so the module db is
imported, not the class db.

The nearest bite
One last thing then. Watch closely because this is important. Consider the
following directory tree:

 src/
 store/
 __init__.py
 db.py
 test/
 __init__.py
 runtest.py
 prog.py

Suppose that prog.py (the main python program) contains from test
import runtest and that runtest.py contains from store
import db.
This works fine if you run prog.py, because the Python interpreter’s path
looks in the current directory as determined by the running module. If you
execute runtest.py directly, the store package cannot be found
because it appears in none of the current namespaces.
Now suppose that you have two packages with the same name at different
levels in the directory structure:
 src/
 store/
 __init__.py
 db.py
 test/
 store/
 __init__.py
 db.py
 runtest.py
 prog.py

Running runtest.py directly now is fine, because it finds a suitable db
module in a suitable store package within its namespace. What about
running prog.py, which imports runtest?

The imported runtest module no longer finds the top-level store
package, because there’s a nearer one, right there. So test.store.db
gets imported instead. Recall what I said earlier about hiding system
modules? Well the same rule applies to your own modules, too.
One way of getting around this issue is by putting your modules and
packages in the Python path or one of the standard module locations. I’m
not suggesting you don’t do this, but I find it easier to locate my source
code when it’s all in one place; modifying the path so that modules can be
found is arguably harder than structuring your projects so that they just
work. We’ll look at this in a bit more detail in the later section about mock
and fake objects. Of course, if you’re authoring modules to be shared
across many applications, then putting them in one of the standard places
makes sense.
Be careful how you name your packages and modules, and where you put
them, and be sure you’re always getting what you expect.

def Worker(callable, x):
 callable(x)

def Print(x):
 print(x)

def Ignore(x):
 pass

a = Print
b = Print
Worker(a, 10)
Worker(b, "foo")
Worker(Ignore, "foo")

Listing 2

I find it easier to locate my source
code when it’s all in one place
NOV 2009 | | 11{cvu}

The difference between a duck
Python is a dynamically typed language. In essence this means you don’t
have to name the type of your variables, they are deduced by the interpreter.
Using such types is straightforward – if you try to do something that is not
supported by the type (e.g. call a method) you get an error. Python
programmers sometimes call this Duck Typing – if it walks, quacks and
swims like a duck, it’s probably a duck. The ‘probably’ is important when
it comes to substitutability and fake objects used in testing. It’s not just
about types, either; Python has the notion of a ‘callable’, which can be
called like a function [5]. A variable can be assigned to a function and the
function called through that variable, so in Listing 2, a and b are callable
in the same way that each of the functions defined are.
One point about the expected interface is that it needs only to be sufficient.
In statically typed languages where a common interface definition is used,
the derived tpes need to implement all of the interface. In a dynamically
typed environment, only those parts of the interface that get used in context
are required. C++ template aficionados will be familiar with this
technique, since template mechanism provides precisely the same kind of
duck-typing present in Python.

Dynamic typing goes further than this. If you don’t need to create an
instance of a class, or refer directly to a function, i.e. you've had an instance
or a callable respectively given to you, then you do not need to import the
module it came from.
Consider this simple example:
 def search(root, walker, output):
 for path, dirs, files in walker.walk(root):
 output.send(files)

Here, our function is using what looks very much like the system function
os.walk, and some other class with a send method that accepts a list of
strings. For the sake of the argument, let’s say it’s a class called comms in
a module called network. If we’d named these two things directly in the
code, we would also have to import their modules, tying this code to those
specific implementations. As it is, the calling code can pass in walker and
output, and the code will work provided they exhibit the correct
interface.

Making a mockery of it
Python’s unit testing facilities are pretty easy to use, and I won’t go into
a great deal of detail here. The standard tools that come with Python are
in the unittest module, and follow a similar pattern to xUnit tools in
other languages. Listing 3 has a simple example.
This test program can be run directly from the command line [6]. Note that
the test methods are all prefixed with test which allows the automatic
test discovery mechanism to work. Recall the section on picking the most
local module or package name now, because this determines where the
modules application and fakes.db are found. There is a (simple)
helper function countItems(), whcih is used by the test(s).

If the above example is in a project root level file, then fakes (possibly
a module, possibly a package) also needs to be at the same location, or in
the Python path, to be found. Similarly, myapp.app looks like a class
found in a module called myapp in a package called application.
 src/
 application/
 __init__.py
 myapp.py
 fakes/
 __init__.py
 db.py
 program.py
 test.py

Having all tests in one file might be OK if they are relatively few. Similarly,
having a package of fake objects might be OK from the root if the main
program only consists of a single program file. However, larger projects
rarely look like this. Listing 4 is perhaps more conceivable.
Now it starts to look cluttered and difficult to separate tests from
application code. Apart from naming conventions, that is.
The testutilities module might contain helper functions only used
by the tests, such as the countItems() function used above. Where such
functions are shared across more than one test module, putting those helper
functions in one place can be useful. Of course, helper functions that are
only used by a single TestCase object should probably reside in the same
module as that object.
Some restructuring – and careful attention to naming – can help a great
deal. (Listing 5.)
A test module – tests.py – is still required at the top-level. In order for
the tests to be able to import modules and packages from the main

from application import myapp
import fakes.db
import unittest

def countItems(db):
 #presume db.items is iterable only
 return len([i for i in db.items])

class applicationTest(unittest.TestCase):
 def setUp(self):
 self.db = fakes.db.store()
 def tearDown(self):
 self.db.close()

 def testOpen(self):
 app = myapp.app(self.db)
 self.assertTrue(self.db.isOpen)
 self.assertEqual(1, app.countConnections())
 self.assertEqual(10, countItems(self.db))

if __name__ == '__main__':
 unittest.main()

Li
st

in
g

3

src/
 application/
 __init __ .py
 myapp . py
 comms/
 __init __ .py
 3ghandler . py
 loopbackhandler . py
 fakes/
 __init __ .py
 comms. py
 store . py
 store/
 __init __ .py
 db. py
 ui/
 __init __ .py
 mainwin . py
 commselectdlg . py
 program . py
 testapp . py
 testcomms . py
 teststore .py
 testutilities .py

Li
st

in
g

4

In a dynamically typed environment,
only those parts of the interface that

get used in context are required
12 | | NOV 2009{cvu}

application level, a separate test harness is needed, which just imports the
test modules. Despite this (small) nit, I think this structure is much easier
to understand. Most noticeably, the fakes package is now located with
the tests, and all tests are together. The top-level tests.py program
simply imports the necessary test modules, and runs them. E.g.
 import unittest
 from tests.testapp import applicationTest
 from tests.testcomms import commsTest
 from tests.teststore import storetest

 if __name__ == '__main__':
 unittest.main()

For a straightforward test-harness this isn’t bad. We still have to name the
test classes so that the mechanics of unittest.main() will work
without extra information, but that can be made more sophisticated and
‘discover’ tests for you [7].
The testapp.py module might contain similar code to the example in
Listing 3, but without the line containing unittest.main() – I hope
it’s clear now that this will not work with our new project layout. Of course,
the shared.testutilities module would now need to be imported.
The contents of the myapp.py module might conceivably be like this:
 class app(object):
 def __init__(store):
 self.__store = store
 self.__store.open()
 self.__countConnections = 1

 def countConnections(self):
 return self.__countConnections

Notably, it does not import the store package, or the db module within
it. Clients of the app class (in this example, the testapp module, and the
Python program itself in program.py) will need to import a class which
conforms to the interface expected by app, and pass it in to its initialiser.

Which brings us finally to the fake store class. It’s nothing very
sophisticated (Listing 6).
This implements just enough of the db interface to allow the tests to run.
Presumably, the complete production interface is much richer.

Round up
An important – even vital – part of any development environment is its
ability to manage significant projects’ components and the dependencies
between them. Python has excellent facilities for breaking large projects
up into manageable pieces and gives you, the programmer, great flexibility
in how you choose to structure your code.
The system of modules and packages employed by Python makes it easy
to break your application into components. Dynamic ‘duck’ typing makes
dependency management straightforward, too, since you often do not need
to hard-wire the packages and modules required by different parts of the
code; provided the component can be passed as a parameter, then as long
as its interface is as expected by the code that uses it, all will be well.
This flexibility comes with responsibility too; responsibility to your fellow
programmers, and people who read your code (with the usual caveat that
it’ll probably be you some time hence!), to structure your projects so they
are easy to follow, and don’t do unexpected things. Clear code is about
much more than the actual syntax and internal structure. Project structure
is key to making your code clear, maintainable, and flexible.

Acknowledgements
Many thanks to Frances Buontempo, Pete Goodliffe, Roger Orr and Ric
Parkin for their suggestions and corrections.

References
[1] www.python.org
[2] The print statement becomes a built-in function in Python 3.0
[3] The PYTHONPATH system variable defines what this is
[4] http://www.python.org/doc/essays/pages.html See ‘Importing *

From a Package’
[5] Classes can define a __call__ method which allows an instance to

be called like a function
[6] The main function of unittest has a lot of mechanics to discover

properly-named test functions.
[7] See the Python documentation on TestLoader objects

class store(object):
 def open(self):
 self.open = True
 return True
 def close(self):
 self.open = False
 return True

 @property
 def isOpen(self):
 return self.open

 @property
 def items(self):
 return range(10)

Listing 6

src/
 application/
 __init __ .py
 myapp . py
 comms/
 __init __ .py
 3ghandler . py
 loopbackhandler . py
 store/
 __init __ .py
 db. py
 ui/
 __init __ .py
 mainwin . py
 commselectdlg . py
 tests/
 __init __ .py
 fakes/
 __init __ .py
 comms. py
 store .py
 shared/
 __init __ .py
 testutilities .py
 testapp . py
 testcomms . py
 teststore .py
 program . py
 tests .py

Li
st

in
g

5

The system of modules and
packages employed by Python

makes it easy to break your
application into components
NOV 2009 | | 13{cvu}

Deciding Between IF and SWITCH When
Writing Code

Derek Jones analyses some programmers’ habits.

hen writing software a common requirement is for the execution of
some sequence of statements to depend on a variable having a
particular value. Programming languages provide various constructs

to support this requirement, e.g., the if-statement (which often supports
checking against a single value) and the switch-statement (which supports
the checking against a set of values). Measurements show that
approximately every fifth statement is a selection statement.
This article investigates the possible factors that influence developers in
their choice of selection statement, i.e., when deciding whether to use an
if-statement or a switch-statement to implement some desired
functionality. Two sources of data are analysed: measurements of existing
code and the results of an experiment carried out at the 2009 ACCU
conference.
This article has two parts, the first (this one) discusses measurements of
if and switch statement usage in C source code, looking for differences
in usage patterns; while a second one analyses the results of an experiment
that asked subjects to write code whose behaviour depended on a variable
that could take multiple values.
Language support for a switch-statement is unnecessary in the sense that
it is always possible to write a sequence of if-statements that achieves the
same effect. Reasons for supporting a switch-statement include ease of
compiler optimizations [1] (i.e., for two equivalent sets of selection
statements significantly less compiler implementation effort is needed to
generate good quality code) and the belief that use of the switch form
requires less developer effort and in some circumstances is less error prone.
As an example the following code (referred to as an if-else-if sequence,
the expression appearing between parenthesis is the controlling expression
and var is the tested-expression) where C_1 and C_2 are compile time
constants:
 if (var == C_1)
 stmt_seq_1;
 else if (var == C_2)
 stmt_seq_2;

could be written as (provided none of the blocks in the above sequence
contained a break statement; an else appearing in the second if-
statement would be mapped to a default):
 switch (var)
 {
 case C_1: stmt_seq_1;
 break;
 case C_2: stmt_seq_2;
 break;
 }

Common constraints on the use of the switch-statements include: the value
must be known at translation time and that the value be representable as
an integer type. Languages that do not have one or more of these
constraints include PERL (using the Switch module) where the value
need not be constant and can have any type for which equality is defined,
and C# supports the use of string literals in case-labels.

Here we will limit ourselves to the situation where case-label values must
be constant and representable in an integer type. Languages that have these
constraints include Java, C and C++.

Application, algorithmic and evolutionary factors
The runtime execution decision represented by an if and switch
statement is a consequence of an application or algorithmic requirement.
An example of an application requirement is the handling of user input
generated by the selection of an item from a list of options displayed by a
program. An example of an algorithmic requirement is checking whether
a value is within the bounds supported by the algorithm.
Almost no information is available on the break down between application
and algorithmic requirements. Work on the Model C Implementation
provides one data point for the break-down of applications vs. algorithmic
if-statement usage. Every if-statement was tagged as being either as an
application requirement (i.e., a requirement specified in the C Standard)
or an algorithmic requirement [2]. Of the 4,329 if-statements (excluding
the contents of the support library directories) 54.3% were tagged as
applications requirements. This implementation differed from most
compilers in that it performed no optimizations and so is likely to
underestimate the percentage of if-statements attributable to algorithmic
requirements. No break down by controlling expressions involving
equality tests against constants was reported.
At a particular point in the code factors such as the number of conditionally
executed statement sequences, the number and kind of values tested and
the amount of code that depends on the decision made are likely to be
outside the immediate control of the developer writing the code. The
developer simply gets to decide how to write the code.
As it is being written code evolves and code that is part of an application
that is used often evolves over a longer period than it took to originally
write. The factors driving a developer’s decision making process may be
different between initial development and maintenance. During initial
development, a switch-statement might be chosen if the author anticipates
that the code will soon be updated to include additional sequences of
conditionally executed statements. During maintenance, statements will
be added and removed and the remaining code may be left untouched or
affect the kind of code that is added. For instance, when extra if-statements
are added to an existing if-else-if sequence, is the combined code
refactored as a switch-statement; or when case-labeled statements are
removed from a switch-statement, is the code rewritten as an if-else-if
sequence?
Some coding guidelines recommend that default and else always be
used, the intent being to catch unanticipated out-of-bounds conditions.

Factors influencing developer choice

The following list are some of the factors that might influence a
developer’s decision on whether to use an if or switch statement:

Cognitive biases. Does a developer carry out enough analysis before
writing code to have a reasonable idea of what is involved, then use
this information to decide which selection statement is most
appropriate, or does a developer use fast and frugal heuristics [3], or
is the choice more stream-of-consciousness driven?
Specific possibilities include:

W

DEREK JONES
Derek used to write compilers that translated what people wrote. These
days he analyses code to try and work out what they intended to write.
Derek can be contacted at derek@knosof.co.uk
14 | | NOV 2009{cvu}

laziness, such as not investing the effort needed to accurately
estimate the likely structure of the code being written or the
perceived physical effort needed to write the code, e.g., amount
of typing.
unwillingness to change a course of action that has been
embarked upon (i.e., a developer starts using an if-statement,
because that is the common case, and continues to use it after
discovering that multiple tests are involved).
the current frame of mind. This might result in one kind of
statement being used because it is written immediately after
having written the same kind of statement, i.e., an if-statement
will be preferred after another if-statement and a switch-
statement preferred after or within a switch-statement.
existing practices on the use of selection statements, i.e., what is
commonly seen in source. For instance, while it is not incorrect
to use a switch-statement where a single if-statement would
suffice, based on existing practice such usage might be
considered unnatural by developers. The opposite situation
where a series of if-else-if-statements are used where a switch-
statement could have been used is perhaps not viewed with the
same degree of surprise.

Developer expectations on the number of conditional arms expected
to occur in the final code. Perhaps the probability of switch-
statement being preferred increases as the number of arms expected
increases.
Developers are often driven by a desire to write efficient code and
they have beliefs about whether a compiler is likely to generate
higher quality code for one construct compared to another. The
perceived runtime overhead of the expression being compared
against may cause an increase in the probability of a switch-
statement being preferred as this perceived overhead increases.
Developer expectations on the number of different values that are
likely to be compared against within the controlling expression of
each conditional arm (e.g., three comparisons are needed for an arm
that is executed if its tested-expression equals 4, 5 or 6).
Perhaps the probability of switch-statement being preferred
increases as the number of comparisons that are expected to be made
increases.
Developer expectations on the number of statements likely to be
present in the conditionally executed arms.

Analysis of existing source
Measurements of if and switch statement usage in existing source can
provide evidence about whether certain factors are likely to influence
developer choice. This subsection discusses measurements of various
kinds of if and switch statement usage in the visible form of a number
of large C programs (e.g., gcc, idsoftware, linux, netscape, openafs,
openMotif and postgresql).
The primary tool used to make these measurements was Coccinelle[4].
This tool converts the visible form of C source to an abstract syntax tree
and provides a mechanism to specify patterns that match against this
representation. The following is an extract from a pattern that matches a
sequence of if-else-if statements, storing information on the position (line
and column) of various constructs; other parts of this pattern write out the
matched expressions E_1 and E_2 and their locations.
 expression E_1, E_2;
 statement S_1, S_2, S_3;
 position p_1, p_2, p_3, p_4;
 @@
 if@p_1 (E_1)
 S_1
 else@p_3 if@p_2 (E_2)
 S_2@p_4
 else
 S_3

Conditional preprocessing directives, e.g., #if/#endif, are a significant
source of problems for tools attempting to parse the visible source.
Coccinelle is able to parse source containing these directives provided the
conditional arms contain complete statements, declarations or expressions
(measurements have shown this to be the majority of instances [5]). The
version of Coccinelle used (0.1.10) internally handles conditional
compilation directives in a way that causes some patterns to ignore
selection statements containing such directives. The patterns used to
measure statement counts (see Figure 5) are the only ones known to be
affected by this behaviour.

if-statement characteristics
This subsection describes the process used to extract information about if-
statement sequences that could be mapped to an equivalent switch-
statement.

Constants

Most of the usage patterns being searched for require the controlling
expression to contain one or more equality tests against a constant value.
Symbolic names are often used to denote constant values in the visible
source, these symbolic names might be defined as macros or enumeration
constants. Macro names do not usually contain lower-case letters[5] and
Coccinelle supports the matching of identifiers that don’t contain any
lower-case letters as a constant.
To validate the accuracy of constant detection, two sets of Coccinelle
patterns were written: one requiring that at least one operand be a constant
and the other having no such requirement. Comparing the output of the
constant and non-constant pattern (7,727 non-constant occurrences for if-
else-if and 2,742 occurrences for if-if, if-if is defined below), the constant
pattern matched 77% (if-else-if) and 82% (if-if) of all possible matches.
A manual check of the non-constant cases showed that while some were
constant, but not treated as such because their name included lower-case
letters, the number was sufficiently small that they could be ignored.
NULL usually denotes the null pointer constant, which is not a valid value
in a case-label. Any if-statement sequence whose tested-expression was
compared against this symbolic value was excluded from these
measurements. In practice if-statement sequences containing this constant
generally only occurred for sequences that involved a single tested-
expression, see Figure 3.

Partial sequences

An if-else-if sequence may contain within it a subsequence that has the
characteristics required for it to be mappable to a switch-statement. For
instance in the following:
 if (var == C_1)
 stmt_seq_1;
 else if (var == C_2)
 stmt_seq_2;
 else if (expr_1 != non_constant)
 stmt_seq_3;

the first two controlling expressions have the desired characteristics, but
the third does not. Could this sequence be reordered so that the two
expressions with the desired characteristics appeared last and so could be
mapped to a switch-statement? Answering this question for most if-else-
if sequences requires resources not available on this project and such
subsequences were not included in the measurements reported here.
Only those if-else-if sequences whose controlling expressions all have the
desired characteristics or those where the appropriate controlling
expressions occurred last were included in the measurements reported
here.
An if-if sequence differs from an if-else-if sequence in that replacing one
of its subsequences by a switch-statement will not effect the control flow
of any if-statements that appear immediately before or after it. The right
plot of Figure 2 includes any mappable if-if subsequence, while the left
NOV 2009 | | 15{cvu}

plot does not count an if-if sequence if it is immediately preceded or
followed by a non-mappable if-statement.

if-else-if sequences

The process used to extract if-else-if sequences that are mappable to a
switch-statement was as follows:

1. The controlling expressions in all if-else-if sequences were
extracted. For instance, the three expressions expr_1, expr_2 and
expr_3 would be extracted from the following code:

 if (expr_1)
 stmt_seq_1;
 else
 if (expr_2)
 stmt_seq_2;
 else
 if (expr_3)
 stmt_seq_3;

2. Those controlling expressions in each sequence that all had one of
the forms: equality test against a constant, a series of such equality
tests combined using the logical-OR operator or a between operation
implemented using relational operators and the logical-AND
operator (combinations such as the constant appearing on the left-
hand side and other ways of expressing between were checked for)
were extracted. These expressions map to case-labels as shown in
Figure 1, where expr’s token sequence is identical in every
expression within the sequence (e.g., the expressions x+y and y+x
were considered to be different).

Testing whether an expression having an unsigned type is less than some
small constant is effectively a between operation. There was not sufficient
time to measure this usage.

if-if sequences

A sequence of if-statements of the form (referred to as an if-if sequence
here):
 if (x == 1)
 stmt_1;
 if (x == 2)
 stmt_2;

is equivalent to:
 if (x == 1)
 stmt_1;
 else if (x == 2)
 stmt_2;

if the value of x is not changed by the execution of stmt_1, or the last
statement of stmt_1 is a return statement.
This equivalence also holds when any statements appearing between the
two if-statements can be moved to before or after the sequence without
changing the external behavior of the program. An optimistic search (the
simplifying assumptions made are likely to overestimate the number of
occurrences) for if-statements separated by short sequences of unrelated
statements found a small number of possible instances. The number found
is sufficiently small that it can be ignored without significantly effecting
the results.
It was not practical to fully analyse the consequences of executing stmt_1
to deduce whether it resulted in the value of x being modified. The number
of occurrences of if-if sequences based on the following three levels of
analysis measured, see Figure 2.

1. assuming that stmt_1 does not modify the value of x.
2. detecting some of those operations that could result in the value of

x being modified (e.g., assignment, having its address taken, pre/
post increment); any called functions were not analysed to deduce

their effect on x.
3. treating any occurrence of x in stmt_1 as a

modification of its value.
The compound statement associated with the first if-
statement of an otherwise mappable sequence ended with
a break statement in 1% of occurrences. The percentage
of return statements appearing in this context was 5%
for if-else-if sequences and 36% for if-if.

Number of if-if sequences of a given length at three levels of analysis. The left plot only includes those if-if sequences where all of the if-statements
are mappable to a switch-statement. The right plot includes any if-if sequences that is a subsequence of a longer, mappable, if-if sequence. In the
case of a two if-statement if-if sequence, taking the no checking measurements as representing 100%, the percentage of uses where the block
associated with the first if-statement does not contain any of the (checked) operations that modify the tested-expression is 75%/84% (left plot/right
plot); the percentage of such sequences where the first block does not contain an instance of the tested-expression is 65%/75%.

Number of control expressions

O
cc

ur
re

nc
es

2 3 4 5

1

10

100

1000

Δ No checking

• Is not modified

Does not occur

•
Δ

•
Δ

•Δ

•Δ

•

Δ

•

Δ

Number of control expressions

2 3 4 5

1

10

100

1000

Δ No checking

• Is not modified

Does not occur

•Δ

•
Δ

•Δ

•Δ

•Δ

•

Δ

Fi
gu

re
 2

expr == constant ⇒ case constant:

expr == constant_1 || expr == constant_2 ⇒ case constant_1:
 case_constant_2:

expr >= min_const && expr <= max_const ⇒ case min_const:
 case ...
 case max_const:

Fi
gu

re
 1
16 | | NOV 2009{cvu}

switch-statement characteristics
The following is an example of the structure of Coccinelle patterns used
to extract information on switch-statement usage (a separate pattern
matched code where the last case-labels in a switch-statement were not
followed in a jump-statement):
 expression E_1, E_2;
 position p_1, p_2, p_3;
 @@
 switch (E_1)@p_1
 {
 case ...:@p_2
 ...
 (
 break;@p_3
 |
 continue;@p_3
 |
 return;@p_3
 |
 return E_2;@p_3
)
 }

This pattern matches any sequence of code, within a switch-statement, that
starts with a case-label and ends with a break, continue or return
statement.
Any case-labeled statements that fall through to the following case-labeled
statement are treated as-if they consisted of the statements associated with
the fallen-into case-labels. Falling through to another sequence of
statements is sufficiently rare that its effect on these measurements can be
ignored.

default and final else
Use of default in a switch-statement is equivalent to a final else in an
if-else-if sequence and the two constructs should be counted in the same
way.
A default-label is sometimes prefixed to the same statement sequence as
one or more case-labels; in the source benchmarks measured for this paper
5.7% of all defaults were so prefixed [5]. This usage can occur through
code evolution or a desire to explicitly map every named requirement in
a specification to source code (this is sometimes handled via a comment).
An example of this usage is:
 case MEM_FAIL:
 case DISC_FAIL:
 default: return ERR_CODE;

The nearest if-else-if sequence equivalent to the above code would be for
the final controlling expression to perform equality tests on the case-label
values and for the statement sequence in both of the conditional arms it
controls to be the same. There are 25 instances where both arms of the final
if-statement in a if-else contain the same statement sequence; a small
number that has no significant affect on the measurement results.

Threats to validity
It is inevitable that the way in which selection statements are used will vary
and some method of calculating the likely variation is needed if
measurements of different constructs are to be compared in a meaningful
way. For some of the measurements it was not possible to derive any
statistical model and so no statistically meaningful comparisons can be
made about the results obtained for those constructs.
Developers may make different decisions when writing new code
compared to when modifying existing code. The C source measured for
this study has been actively worked on for many years and during this time
its selection statements are likely to have evolved. It is not possible to
separate out any differences in this decision process for the measurements
reported here (the experiment described in part 2 asked developers to write
new code).

The only source code measured was written in C. To what extent is it
possible to claim that the findings apply to code written in other languages?
While there are no obvious reasons why the usage patterns found in C
should not also occur in other languages, there is no reason why they
should. Measurements of source written in other languages would help put
this issue to rest.
The following are characteristics of the tool used, Coccinelle, and the
patterns used that might be affected by these characteristics, i.e., the
measurements might not be as accurate as expected

the patterns used to measure selection statement arm length only
counted statements, i.e., they did not include support for the
presence of declarations, consequently any selection statement
containing declarations in its conditional arm was not counted. It is
known that approximately 10% of locally defined objects are
defined in nested scopes [5], but the distribution of these definitions
(i.e., whether the probability of them occurring increases as the
number of statements in a block increases) is not known.
the release of Coccinelle used (0.1.10) does not always match
constructs containing conditional preprocessor directives. This
affects the measurement of the number of statements contained
within selection statements, resulting in those containing such
directives being ignored.
parsing C using incomplete information on identifiers (perhaps
because the appropriate headers have not be processed) does not
always succeed. Work has been done to reduce parse failures in
Coccinelle when processing the Linux source. Parse failures will
result in the associated construct being excluded from the matching
process. The extent to which parse failures will skew the
measurements, as opposed to uniformly reducing the number of
matched constructs is not known.

Results
The measured source contains 29 times as many if-statements as switch-
statements. Of the 384,749 if-statements measured 9.6% are contained
within an if-else-if sequence and 15.9% of these sequences are mappable
to a switch-statement. The corresponding values for the if-if sequence are
29.4% and 2.5% respectively.
There were 13,152 switch-statements measured and these contained a total
of 63,395 case labels. A default label appeared in 49% of switch
statements.
While the percentage of all if-statements that include an else arm is 22%,
the percentage of if-else-if sequences having a final else arm averages
out at around 50% and the final if-statement in an if-if sequence contains
an else arm in around 20% of occurrences (this percentage rapidly drops
as the sequence length increases).

Cognitive issues
Typing effort What is the difference in the amount of typing that needs to be
done to create equivalent if and switch statements? In the following
example underscores are used to denote characters that would appear in
both forms of selection statement.
Comparing:
 if (____ == __)

 else if (expr == __)

with the equivalent switch-statement:
 switch (____)
 {
 case __: _______
 break;
 case __: _______
 break;
 }
NOV 2009 | | 17{cvu}

approximately twice as many non-whitespace characters occur in the
switch-statement and depending on layout conventions there are also
likely to be more than twice as many whitespace characters. The non-
whitespace character ratio only comes down on the side of the switch-
statement when a break is not needed, i.e., a return or continue
statement terminates most of the labeled statement sequences.

Effects of local context

When writing code to what extent does the last choice of selection
statement made by a developer affect the probability that the same choice
will be made next time a selection statement is written?
There was insufficient time available to perform the local context source
measurements that could help provide an answer to this question.

Number of conditional arms in construct

How does the number of conditional arms in an if-else-if or if-if sequence
compare with the number of case-labeled statement sequences that can be
jumped to in a switch-statement?
The differences between the left and right plots in Figure 3 are caused by
contributions from else and default. In the case of an if-if sequence
the else can only appear on the final if-statement and a default-label be
mixed with case-labels on the same statement sequence.
In Figure 3 the solid lines are a least-squares fit of the data to an exponential
function; [6] switch fitted over the range 3 to 11, if-else-if fitted over 1
to 7 and if-if fitted over 2 to 7 give the following respective equations (with
x being the number of conditional arms; rounded to two decimal digits):

 switch ∝ e3.92-0.16x (1)
 if else if ∝ e4.96-0.58x (2)
 if if ∝ e3.97-0.52x (3)

These measurements suggest that the use of if-statement sequences
decreases at approximately a fixed rate as the length of the sequence
increases, with switch-statements taking up most of the slack for sequences
of three or more.
The number of conditional arms that need to be written is likely to be
controlled by factors that a developer has no influence over. The dotted
line in Figure 3 is a fit of the sum of all selection statements containing a
given number of conditional arms, the equation is given by:
 all ∝ e4.35-0.22x

Expression runtime overhead

Function calls are generally perceived as having a high runtime overhead.
Minimizing the number of function calls that need to be evaluated by the
controlling expressions of a sequence of if-statements can be achieved
either by assigning the result to a temporary variable that is then compared
in each controlling expression or by using a switch-statement.
The percentage of all if-statement controlling expression containing a
function call is 14% [5]. As Table 1 shows, the percentage of function calls
in the selection statement sequences of interest in this paper is much lower.
The percentage of function calls in switch-statement controlling
expressions is higher than mappable if-else-if and if-if sequences. You
author was not able to find a reasonable model that enabled the statistical
significance of this difference to be estimated.

For those expressions that do not include a function call the number of
operators that need to be evaluated at runtime is one possible measure of
perceived runtime overhead. <tableref href="control_comp"> shows that
approximately 90% of tested-expressions do not contain any unary or
binary operators; this figure drops to 60-70% if the -> operator is counted.
The extent to which developers regard -> as an operator that can have a
non-trivial runtime overhead, compared to other object access expressions
is not known.

It is tempting to observe that the number of operators in switch-statement
and if-else-if sequence controlling expressions is very similar when the ->

Number of conditional arms

O
cc

ur
re

nc
es

1 5 10

1

10

100

1000

10000

100000

switch statement
Δ if-else-if sequence

• if-if sequence

Δ•
Δ

• Δ

• Δ

• Δ

• Δ

•
Δ

•
Δ
• Δ

•
Δ

•

Number of controlling expressions

1 5 10

switch statement
Δ if-else-if sequence

• if-if sequence

Δ•

Δ
•

Δ
• Δ

• Δ
• Δ

• Δ
• Δ• Δ

•
Δ
•

The left plot is of occurrences of if-else-if, if-if (uncertainty about which sequence a single if-statement, without an else-arm, belonged to was resolved
by including it in both sequences) and switch-statements having the given number of conditional arms. The right plot is the number of controlling
expressions in a if-else-if and if-if sequence and the number of case-labeled statement sequences (i.e., it excludes the effect of any default) in a
switch-statement. The solid lines are a least-squares fit of the data to an exponential function. The dotted line is a fit to the sum of all sequences
having a given number of arms.

Function calls appearing in the tested-expression of a controlling
expression, as a percentage of the total number of occurrences of the
associated selection statement.

Selection statement Percentage containing function calls

switch 2.30%

if-else-if 0.47%

if-if 0.88%

The percentage of tested-expressions containing the given number of
operators listed selection statement (all binary operators and unary
excluding sizeof and casts). The second number in each column
includes the -> operator in the total.

Selection statement 0 1 2

switch 89.3/59.7 8.7/35.1 1.9/4.5

if-else-if 89.8/67.3 9.3/29.9 0.9/2.7

if-if 85.9/70.8 13.5/26.2 0.5/3.0

Table 1
Fi

gu
re

 3
Table 2
18 | | NOV 2009{cvu}

operator is excluded, but that when this operator is counted the most similar
pairing is if-else-if and if-if. However, without a model of behaviour it is
not possible to say anything statistically significant.

Number of equality tests controlling conditional arms

A controlling expression may map to multiple case-labels. For instance,
each equality test in an expression containing one or more logical-OR
operators is mapped to a separate case-label and a between operation
implemented using a logical-AND operator and relational operators to
compare against values within a range is mapped to the corresponding
range of case-labels.
Take as an example the controlling expressions present in an if-if sequence.
If each controlling expression is independent of the others, then the
probability of two equality tests, for instance, occurring in any of these
expressions is constant and thus given a large sample the distribution of
two equality tests has a binomial distribution. The same argument can be
applied to other numbers of equality tests and other kinds of sequence.

For each measurement point in Figure 4 the associated error bars span the
square-root of the variance of that point (assuming a binomial distribution,
for a normal distribution the length of this span is known as the standard
deviation). The error bars overlap suggesting that the apparent difference
in percentage of equality tests in each kind of sequence is not statistically
significant.

Number of statements in conditional arm

How much code appears in the conditional arms of if-else-if, if-if
sequences and case-labeled statement sequences?
Most of the Coccinelle patterns output line number information. This
information can be used to calculate the difference in visible source lines
between adjacent if-statement controlling expressions and between the last
case labeling a given statement sequence and the final statement that
caused the flow of control to leave the switch-statement. Those line
number difference measurements appears in the left plot of Figure 5.
An example of line number difference is provided by the first if-else-if
code fragment given in the introduction, where the difference between
controlling expressions is 2; the distances in the first switch-statement
example are both 1.
Because of the variety of different ways in which if-else-if, if-if and case-
labeled statements can be visually laid out, line number differences may
not be a consistent measure of the quantity of code present in the various
language constructs.
The right plot of Figure 5 is based on counting statements. The Coccinelle
patterns used did not count statements within nested blocks. This means,
for instance, that a for-loop was counted as a single statement and any
statements nested within its associated block did not contribute towards
the total statement count.
The patterns used counted code containing a maximum of five statements
and consumed over a day of cpu time; it was felt that measuring more
statements was unlikely to change the pattern of usage seen in Figure 5. It
is estimated that had longer sequences been counted the actual percentage
of shorter sequences would have been around 20% lower..
Within a case-labeled statement sequence any terminating break
statement is not included in the total statement count for that sequence.
However, if the sequence is terminated by a return statement this
statement is counted towards the total statement count for the sequence.
The two plots in Figure 5 suggest that if-else-if, if-if and case-labeled arms
are very similar both in the visual number of lines and the number of top-
level statements they contain.

Percentage of equality tests performed in the control expressions of
if-else-if (97% had one) and if-if sequences (95% had one), and the
number of case labels appearing together on the same statement
(88% had one; any default label was not counted). Error bars are for
a binomial distribution.

Number of equality tests

Pe
rc

en
ta

ge
 o

cc
ur

re
nc

e

1 2 3 4

0.1

1

10

100 switch statements

Δ if-if

• if-else-if

•Δ

•
Δ

•

Δ

•

Δ

Two methods of measuring the length of a conditionally executed arm are plotted.

The left plot is based on the difference in visible source line number between consecutive if tokens in an if-else-if and if-if sequence, and
between a case token and the break, return or continue that terminates that arm.

The right plot is based on the number of top-level statements, that is statements contained within any nested block are not counted. Sequences
containing more than five statements were not counted, resulting an overestimation of the actual percentage of shorter sequences.

Line difference

Pe
rc

en
ta

ge
 o

cc
ur

re
nc

e

0 1 2 3 4 5 10

20

40

60

if-else-if
Δ case
• if-if

Δ •Δ

•
Δ

•Δ
•Δ •

Δ •Δ •Δ •Δ •Δ •Δ •Δ

Number of statements

0 1 2 3 4 5 10

20

40

60

if-else-if
Δ case
• if-if

Δ

•Δ

•
Δ

•Δ
•Δ •Δ
NOV 2009 | | 19{cvu}

Deciding Between IF and SWITCH When Writing Code (continued)

Listing 1

Beyond Pipelining Programs in Linux
Unearthed Arcana (Part 1): Ian Bruntlett uncovers the

back-tick.

f you’re reading this, you’re probably used to the command line. You
can write individual programs and join them together using the |
symbol.. For instance if you want to look at a directory’s contents a page

at a time, you would use a command like ls | less
Before I get into detail, I will introduce three commands.

1. which – follow the PATH environment variable and show which
directory a command belongs to – e.g. which ls on my system
results in /usr/bin/less

2. strings – looks at a file (typically a binary file) and outputs
anything that looks like a text string.

3. file – looks at a file and report what kind of file it is. Example:
ian@Rutherford:~/c$ file /usr/bin/perl
/usr/bin/perl: ELF 32-bit LSB executable, Intel
80386, version 1 (SYSV), for GNU/Linux 2.6.8,
dynamically linked (uses shared libs), stripped

However, there is another way to add files together. Using the backtick
operator (`), you can run a particular program (e.g. which) and put its
output into the command line of the program you’re interested in.

So, taking the above commands, we can use them together for some
interesting things.

strings `which ls` lists the strings embedded in the ls
program.
file `which perl` describes what kind of file perl is without
the typist having to know where on the path. Example:
ian@Rutherford:~/c$ file `which perl`

/usr/bin/perl: ELF 32-bit LSB executable, Intel
80386, version 1 (SYSV), for GNU/Linux 2.6.8,
dynamically linked (uses shared libs), stripped

I

IAN BRUNTLETT
On and off, Ian has been programming for some years.
He is a volunteer system administrator for a mental health
charity called Contact (www.contactmorpeth.org.uk). As
part of his work, Ian has compiled a free Software Toolkit
(http://contactmorpeth/wikispaces.com/SoftwareToolkit).
Discussion
Some of the measured characteristics where a notable difference was seen
between if and switch statement usage include:

Figure 5 suggests the number of conditional arms in the construct
and/or the number of controlling expressions/case-labeled statement
sequences have a large effect on the likelihood of a particular kind
of selection statement being used. It is not possible to separate out
the relative contributions of the number of controlling expressions
and number of conditionally executed arms with the data available.
the use of function calls in the tested-expression, see Table 1.

The characteristics that appear to have the largest effect on selection
statement usage are the number of conditional arms in the construct and/
or the number of controlling expressions/case-labeled statement
sequences. The second part of this paper describes an experiment that
asked subjects to write code based on specifications that involved different
numbers of control expressions.

Further reading
A good introduction, at an undergraduate level, to the various algorithms
people are thought to use when making decisions is provided by: The
Adaptive Decision Maker by John W. Payne, James R. Bettman and Eric
J. Bettman, published by Cambridge University Press; ISBN 0-521-
42526-3.

Acknowledgements
The author wishes to thank everybody who volunteered their time to take
part in the experiments and ACCU for making a slot available in which to
run the experiment.
Thanks to Julia Lawall for suggestions on improving the Coccinelle
patterns used for these measurements and responding very promptly to bug
reports; also thanks to Yoann Padioleau for support using Coccinelle.

Notes and references
[1] G. Gigerenzer, P. M. Todd, and The ABC Research Group. Simple

Heuristics That Make Us Smart. Oxford University Press, 1999.
[2] D. M. Jones. ‘Who guards the guardians?’ www.knosof.co.uk/

whoguard.html, 1992.
[3] D. M. Jones. The new C Standard: An economic and cultural

commentary. Knowledge Software, Ltd, 2005.
[4] Y. Padioleau, J. L. Lawall, R. R. Hansen, and G. Muller.

‘Documenting and automating collateral evolutions in linux device
drivers’. In Proceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008, pages 247–260, Mar. 2008.

[5] G.-R. Uh and D. B. Whalley. ‘Effectively exploiting indirect jumps’.
Software–Practice and Experience, 29(12):1061–1101, Oct. 1999.

[6] This data could have been fitted just as well with a power-law.
Without a model describing developer behaviour it is not possible to
distinguish a power-law from an exponential function and the latter
was used to keep out the baggage that usually accompanies the
former.
20 | | NOV 2009{cvu}

www.contactmorpeth.org.uk
http://contactmorpeth/wikispaces.com/SoftwareToolkit

What is C++0x?
Bjarne Stroustrup concludes his tour of C++0x.

The first part of this series looked at changes to the core language of C++.
This installment examines some of the library changes that build on those
improvements.

his paper illustrates the power of C++ through some simple examples
of C++0x code presented in the context of their role in C++. My aim
is to give an idea of the breath of the facilities and an understanding

of the aims of C++, rather than offering an in-depth understanding of any
individual feature. The list of language features and standard library
facilities described is too long mention here, but a major theme is the role
of features as building blocks for elegant and efficient software, especially
software infrastructure components. The emphasis is on C++’s facilities
for building lightweight abstractions.

Concurrency and memory model
Concurrency has been the next big thing for about 50 years, but
concurrency is no longer just for people with multi-million dollar
equipment budgets. For example, my cell phone (programmed in C++ of
course) is a multi-core. We don’t just have to be able to do concurrent
programming in C++ (as we have ‘forever’), we need a standard for doing
so and help to get concurrent code general and portable. Unfortunately,
there is not just one model for concurrency and just one way of writing
concurrent code, so standardization implies serious design choices.
Concurrency occurs at several levels in a system, the lowest level visible
to software is the level of individual memory accesses. With multiple
processors (‘cores’) sharing a memory hierarchy of caches, this can get
quite ‘interesting’. This is the level addressed by the memory model. The
next level up is the systems level where computations are represented by
tasks. Above that can be general or application-specific models of
concurrency and parallel computation.
The general approach of C++0x is to specify the memory model, to provide
primitive operations for dealing with concurrency, and to provide language
guarantees so that concurrency mechanisms, such as threads, can be
provided as libraries. The aim is to enable support for a variety of models
of concurrency, rather than building one particular one into the language.

The memory model

The memory model is a treaty between the machine architects and the
compiler writers to ensure that most programmers do not have to think
about the details of modern computer hardware. Without a memory model,
few things related to threading, locking, and lock-free programming would
make sense.
The key guarantee is: Two threads of execution can update and access
separate memory locations without interfering with each other. To see why
that guarantee is non-trivial, consider:
 // thread 1:
 char c;
 c = 1;
 int x = c;
 // thread 2:
 char b;
 b = 1;
 int y = b;

For greater realism, I could have used separate compilation (within each
thread) to ensure that the compiler/optimizer won’t simply ignore c and b
and directly initialize x and y with 1. What are the possible values of x
and y? According to C++0x, the only correct answer is the obvious one:
1 and 1. The reason that’s interesting is that if you take a conventional good

pre-concurrency C or C++ compiler, the possible answers are 0 and 0, 1
and 0, 0 and 1, and 1 and 1. This has been observed ‘in the wild’. How?
A linker might allocate c and b in the same word – nothing in the C or
C++ 1990s standards says otherwise. In that, C and C++ resemble all
languages not designed with real concurrent hardware in mind. However,
most modern processors cannot read or write a single character, it must
read or write a whole word, so the assignment to c really is ‘read the word
containing c, replace the c part, and write the word back again’. Since the
assignment to b is similarly implemented, there are plenty of opportunities
for the two threads to clobber each other even though the threads do not
(according to their source text) share data!
So naturally, C++0x guarantees that such problems do not occur for
‘separate memory locations’. In this example, b and c will (if necessary
on a given machine) be allocated in different words. Note that different
bitfields within a single word are not considered separate memory
locations, so don’t share structs with bitfields among threads without some
form of locking. Apart from that caveat, the C++ memory model is simply
‘as everyone would expect’.
Fortunately, we have already adapted to modern times and every current
C++ compiler (that I know of) gives the one right answer and has done so
for years. After all, C++ has been used for serious systems programming
of concurrent systems ‘forever’.

Threads, locks, and atomics

In my opinion, letting a bunch of threads loose in a shared address space
and adding a few locks to try to ensure that the threads don’t stump on each
other is just about the worst possible way of managing concurrency.
Unfortunately, it is also by far the most common model and deeply
embedded in modern systems. To remain a systems programming
language, C++ must support that style of programming, and support it well,
so C++0x does. If you know Posix threads or boost threads, you have a
first-order approximation of what C++0x offers at the most basic level. To
simplify the use of this fundamental (and flawed) model of concurrency,
C++0x also offers

thread local storage (identified by the keyword thread_local)
mutexes
locks
conditions variables
a set of atomic types for lock-free programming and the
implementation of other concurrency facilities
a notion of fine grain time duration

In my opinion lock-free programming is a necessity, but should be reserved
for people who find juggling naked sharp swords too tame [1]. Importantly,
the whole language and standard library has been re-specified (down to the
last memory read or write) so that the effects of concurrency are well-
specified – though of course not well defined: the result of a data race is
not and should not be well defined (it should be prevented by the library
or applications programmer).
As luck would have it, Anthony Williams has a paper ‘Multi-threading in
C++0x’ in the current issue of Overload [2], so I don’t have

T

BJARNE STROUSTRUP
Bjarne Stroustrup designed and implemented the C++
programming language. He can be contacted at
www.research.att.com/~bs
NOV 2009 | | 21{cvu}

to go into details. Instead, I will give an example of a way for the
programmer to rise above the messy threads-plus-lock level of concurrent
programming (Listing 1).
This is a very simple-minded use of concurrency (note the ‘magic
number’), but note the absence of explicit threads, locks, buffers, etc. The
type of the f-variables are determined by the return type of the standard-
library function async() which called a future. If necessary, get()
on a future waits for a std::thread to finish. Here, it is async()’s
job to spawn threads as needed and the future’s job to join() the
appropriate threads (i.e., wait for the completion of threads). ‘Simple’
is the most important aspect of the async()/future design; futures
can also be used with threads in general, but don’t even think of using
async() to launch tasks that do I/O, manipulate mutexes, or in other ways
interact with other tasks. The idea behind async() is the same as the idea
behind the range-for statement: Provide a simple way to handle the
simplest, rather common, case and leave the more complex examples to
the fully general mechanism.
Please note that future and async() is just one example of how to write
concurrent programs above the messy threads-plus-lock level. I hope to see
many libraries supporting a variety of models, some of which might
become candidates for C++1x. Unlike every other feature presented here,
async() has not yet been voted into C++0x . That’s expected to happen
in October, but no man’s life, liberty, or programming language is safe
while the committee is in session (apologies to Mark Twain).

Standard library improvements
At the outset of the work on C++0x, I stated my ideal as ‘being careful,
deliberate, conservative and skeptic’ about language extensions, but
‘opportunistic and ambitious’ about new standard libraries [3]. At first
glance, the opposite happened, but when you count pages in the standard
you find that the language sections grew by about 27% and the library
sections by about 100%, so maybe it would be wrong to complain too

loudly about lack of new standard library components. The most obvious
improvements to the standard library are the added library components:

Concurrency ABI:
thread

mutexes, locks, atomic types,
simple asynchronous value exchange: unique_future,
shared_future, and promise
simple asynchronous launcher: async()

Containers:
Hashed containers: unordered_map, unordered_multimap,
unordered_set, unordered_multiset
Fixed sized array: array
Singly-linked list: forward_list

Regular expressions: regex
Random numbers
Time utilities: duration and time_point
Compile-time rational arithmetic: ratio
Resource management pointers: unique_ptr, shared_ptr, and
weak_ptr

Utility components: bind(), function, tuple
Metaprogramming and type traits
Garbage collection ABI

Whatever project you do, one or more of these libraries should help. As
usual for C++, the standard libraries tend to be utility components rather
than complete solutions to end-user problems. That makes them more
widely useful.
Another set of library improvements are ‘below the surface’ in that they
are improvements to existing library components rather than new
components. For example, the C++0x vector is more flexible and more
efficient than the C++98 vector. As usual, the standard library is the first
test of new language features: If a language feature can’t be used to
improve the standard library, what is it good for?

More containers

So, C++0x gets hash tables (unordered_map, etc.), a singly-linked list
(forward_list), and a fixed-sized container (array). What’s the big
deal and why the funny names? The ‘big deal’ is simply that we have
standard versions, available in every C++0x implementation (and in major
C++ implementations today), rather than having to build, borrow, or buy
our own. That’s what standardization is supposed to do for us. Also, since
‘everybody’ has written their own version (proving that the new
components are widely useful), the standard could not use the ‘obvious’
names: there were simply too many incompatible hash_maps and slists
‘out there’, so new names had to be found: ‘unordered’ indicates that you
can’t iterate over an unordered_map in a predictable order defined by
<; an unordered_map uses a hash function rather than a comparison to
organize elements. Similarly, it is a defining characteristic of a
forward_list (a singly linked list) that you can iterate through it
forwards (using a forward iterator), but not (in any realistic way)
backwards.
The most important point about forward_list is that it is more compact
(and has slightly more efficient operations) than list (a doubly-linked
list): An empty forward_list is one word and a link has only a one-
word overhead. There is no size() operation, so the implementation
doesn’t have to keep track of the size in an extra word or (absurdly) count
the number of elements each time you innocently ask.
The point of unordered_map and its cousins is runtime performance.
With a good hash function, lookup is amortized O(1) as compared to map’s
O(log(N)), which isn’t bad for smaller containers. Yes, the committee
cares about performance.
Built-in arrays have two major problems: They implicitly ‘decay’ to
pointers at the slightest provocation and once that has happened their size

template<class T, class V> struct Accum {
// function object type for computing sums
 T* b;
 T* e;
 V val;
 Accum(T* bb, T* ee, const V& v) : b{bb}, e{ee},
 val{vv} {}
 V operator() () {
 return std::accumulate(b,e,val); }
};

void comp(vector<double>& v)
// spawn many tasks if v is large enough
{
 if (v.size()<10000) return std::accumulate(
 v.begin(),v.end(),0.0);

 auto f0 {
 async(Accum{v.data(),
 v.data()+v.size()/4,
 0.0})};
 auto f1 {
 async(Accum{v.data()+v.size()/4,
 v.data()+v.size()/2, 0.0})};
 auto f2 {
 async(Accum{v.data()+v.size()/2,
 v.data()+v.size()*3/4], 0.0})};
 auto f3 {
 async(Accum{v.data()+v.size()*3/4,
 v.data()+v.size(), 0.0})};

 return f0.get()+f1.get()+f2.get()+f3.get();
}

Li
st

in
g

1

22 | | NOV 2009{cvu}

is ‘lost’ and must be ‘managed’ by the programmer. A huge fraction of C
and C++ bugs have this as their root cause. The standard-library array is
most of what the built-in array is without those two problems. Consider:
array<int,6> a { 1, 2, 3 };
a[3] { 4 };
int x { a[5] }; // x becomes 0 because default
 // elements are zero initialized
int* p1 { a }; // error: std::array doesn't
 // implicitly convert to a pointer
int* p2 { a.data() };// ok: get pointer to first
 // element

Unfortunately you cannot deduce the length of an array from an
initializer list:
 array<int> a3 { 1, 2, 3 };
 // error: size unknown/missing

That’s about the only real advantage left for built-in arrays over
std::array.
The standard array’s features make it attractive for embedded systems
programming (and similar constrained, performance-critical, or safety-
critical tasks). It is a sequence container so it provides the usual member
types and functions (just like vector). In particular, std::array knows
its end() and size() so that ‘buffer overflow’ and other out-of-range
access problems are easily avoided. Consider Listing 2.
Incidentally, have you ever been annoyed by having to write things like
typename C::const_iterator? In C++0x, the compiler can deduce
the return type of a simple function from its return-statement, so you can
simplify:

template<class C, class V> [] sum(const C& a,
 V val)
{
 return find(a.begin(),a.end(),val);
}

You can read [] as ‘function’; [] is a new notation to explicitly state that
a function is being declared.

Better containers
I suspect that the new containers will attract the most attention, but the
‘minor improvements’ to the existing containers (and other standard
library components) are likely to be the more important.

Initializer lists

The most visible improvement is the use of initializer-list constructors to
allow a container to take an initializer list as its argument:

vector vs = { "Hello", ", ", "World!", "\n" };
for (auto s : vs) cout << s;

This is shorter, clearer, and potentially more efficient than building the
vector up element by element. It gets particularly interesting when used
for nested structures:
 vector<pair<string,Phone_number>> phone_book= {
 { "Donald Duck", 2015551234 },
 { "Mike Doonesbury", 9794566089 },
 { "Kell Dewclaw", 1123581321 }
 };

As an added benefit, we get the protection from narrowing from the { }-
notation, so that if any of those integer values do not fit into
Phone_number’s representation of them (say, a 32-bit int), the example
won’t compile.

Move operators

Containers now have move constructors and move assignments (in
addition to the traditional copy operations). The most important
implication of this is that we can efficiently return a container from a
function:
vector<int> make_random(int n)
{
 vector<int> ref(n);
 for(auto x& : ref) x = rand_int();
 // some random number generator
 return ref;
}

vector<int> v = make_random(10000);
for (auto x : make_random(1000000))
 cout << x << '\n';

The point here is that – despite appearances – no vector is copied. In
C++98, this make_random() is a performance problem waiting to
happen; in C++0x it is an elegant direct solution to a classic problem,
Consider the usual workarounds: Try to rewrite make_random() to
return a free-store-allocated vector and you have to deal with memory
management. Rewrite make_random() to pass the vector to be filled
as an argument and you have far less obvious code (plus an added
opportunity for making an error).

Improved push operations

My favourite container operation is push_back() that allows a container
to grow gracefully:
 vector<pair<string,int>> vp;
 string s;
 int i;
 while(cin>>s>>i) vp.push_back({s,i});

This will construct a pair<string,int> out of s and i and move it
into vp. Note: ‘move’ not ‘copy’. There is a push_back version that takes
an rvalue reference argument so that we can take advantage of string’s
move constructor. Note also the use of the unified initializer syntax to
avoid verbosity.

Emplace operations

The push_back() using a move constructor is far more efficient than the
traditional copy-based one in important cases, but in extreme cases we can
go further. Why copy/move anything? Why not make space in the vector
and then construct the desired value in that space? Operations that do that
are called ‘emplace’ (meaning ‘putting in place’). For example
emplace_back():
 vector<pair<string,int>> vp;
 string s;
 int i;
 while(cin>>s>>i) vp.emplace_back(s,i);

An emplace function takes a variadic template (see the C++0xFAQ, [6])
argument and uses that to construct an object of the desired type in place.

Listing 4

template<class C, class V> typename
 C::const_iterator find(const C& a, V val)
{
 return find(a.begin(),a.end(),val);
}

array<int,10> a10;
array<double,1000> a1000;
vector<int> v;
// ...
auto answer = find(a10,42);
auto cold = find(a1000,-274.15);
if (find(v,666)==v.end()) cout << "See no evil";

Li
st

in
g

2

NOV 2009 | | 23{cvu}

Whether the emplace_back() really is more efficient than the
push_back() depends on types involved and the implementation (of the
library and of variadic templates). In this case, there doesn’t seem to be a
performance difference. As ever, if you think it might matter, measure.
Otherwise, choose based on aesthetics: vp.push_back({s,i}) or
vp.emplace_back(s,i). For now, I prefer the push_back() version
because I can see that an object is being composed, but that might change
over time. For new facilities, it is not immediately obvious which styles
and which combinations will be the more effective and more maintainable.

Scoped allocators

Containers can now hold ‘real allocation objects’ (with state) and use those
to control nested/scoped allocation (e.g. allocation of elements in a
container). A rather sneaky problem can occur when using containers and
user-defined allocators: Should an element’s free-store allocated sub-
objects be in the same allocation area as its container? For example, if you
use Your_allocator for Your_string to allocate its elements and I
use My_allocator to allocate elements of My_vector then which
a l l oca t o r shou l d be u sed fo r s t r i ng e l em en t s i n
My_vector<Your_string>? The solution is to tell a container when
to pass an allocator to an element. For example, assuming that I have an
allocator My_alloc and I want a vector that uses My_alloc for both
the vector element and string element allocations. First, I must make
a version of string that accepts My_alloc objects:
 using xstring = basic_string<
 // a string with my allocator
 char,
 char_traits<char>,
 My_alloc<char>
 >;

This use of using is new in C++0x. It is basically a variant of typedef
that allows us to define an alias with the name being defined coming up
front where we can see it.
Next, I must make a version of vector that accepts those xstrings,
accepts a My_alloc object, and passes that object on to the xstring:
 using svec = vector<
 // a string with a scoped allocator
 xstring,
 scoped_allocator_adaptor<My_alloc<xstring>>
 >;

T h e s t a n da rd l i b r a r y ‘ a d a p t o r ’ (‘ w r a p pe r t y p e ’)
scoped_allocator_adaptor is used to indicate that xstring also
should use My_alloc. Note that the adaptor can (trivially) convert
My_alloc<xstring> to the My_alloc<char> that xstring needs.
Finally, we can make a vector of xstrings that uses an allocator of type
My_alloc<xstring>:
 svec v {
 scoped_allocator_adaptor(
 My_alloc<xstring>{my_arena1})
 };

Now v is a vector of strings using My_alloc to allocate memory for
both strings and characters in strings.
Why would anyone go to all that bother with allocation? Well, if you have
millions of objects and hard real-time requirements on your performance,
you can get rather keen on the cost of allocation and deallocation and
concerned about the locality of objects. In such cases, having objects and
their subobjects in one place can be essential – for example, you may
dramatically improve performance by simply ‘blowing away’ a whole
allocation arena by a single cheap operation rather than deleting the objects
one by one.

Resource management pointers

Resource management is an important part of every non-trivial program.
Destructors and the techniques relying on them (notably RAII) are key to
most resource management strategies. C++0x adds a garbage collection

ABI to our toolset, but that must not be seen as a panacea: The question is
how to combine destructor based management of general resources (such
as locks, file handles, etc.) with the simple collection of unreferenced
objects. This involves non-trivial challenges: for example, destructor-
based reasoning is essentially local, scoped, and typed whereas garbage
collection is based on non-local reasoning with little use of types (beyond
knowing where the pointers are).
Since the mid 1980s, C++ programmers have used counted pointers of
various forms to bridge that gap. Indeed, reference-counted objects were
the original version of garbage collection (in Lisp) and are still the standard
in several languages. They are supported by the standard library
shared_ptr which provides shared ownership and weak_ptr which
can be used to address the nasty problems that circular references causes
for reference-counted pointers. All shared_ptrs for an object share
responsibility for the object and the object is deleted when its last
shared_ptr is destroyed. The simplest example simply provides
exception safety:
void f()
{
 X* p = new X;
 shared_ptr<X> sp(new X);
 if (i<99) throw Z(); // maybe throw an exception
 delete p;
 // sp’s destructor implicitly deletes sp’s object
}

Here the object pointed to by p is leaked if an exception is thrown, but the
object pointed to by sp is not. However, I am in general suspicious about
‘shared ownership’ which is far too often simply a sign of weak design and
made necessary by a lack of understanding of a system. Consider a
common use of a shared_ptr:
 shared_ptr<X> make_X(int i)
 {
 // check i, etc.
 return shared_ptr<X>(new X(i));
 }

 void f(int i)
 {
 vector<shared_ptr<X>> v;
 v.push_back(make_X(i));
 v.push_back(make_X(j));
 // …
 }

Here we use shared_ptr for three things:
Getting a large object out of a function without copying
Passing an object from place to place by passing a pointer to it
without worrying who eventually needs to destroy it
Having an owner of the object at all times so that the code is
exception-safe (using RAII).

However, we didn’t actually share that object in any real sense, we just
passed it along in a reasonably efficient and exception-safe manner. The
shared_ptr implementation keeps a use count to keep track of which is
the last shared_ptr to an object. If we looked carefully, we’d see that
the use count bob up and down between 1 and 2 as the object is passed
along before the count finally goes to 0. If we moved the pointer around
instead of making copies, the count would always be 1 until its object
finally needed to be destroyed. That is, we didn’t need that count! What
we saw has been called ‘false sharing’.
C++0x provides a better alternative to shared_ptr for the many
examples where no true sharing is needed, unique_ptr:

The unique_ptr (defined in <memory>) provides the semantics
of strict ownership.

owns the object it holds a pointer to
can be moved but not copied
24 | | NOV 2009{cvu}

stores a pointer to an object and deletes that object when it is
itself destroyed (such as when leaving block scope).

The uses of unique_ptr include
providing exception safety for dynamically allocated memory,
passing ownership of dynamically allocated memory to a
function,
returning dynamically allocated memory from a function.
storing pointers in containers

‘what auto_ptr should have been’ (but that we couldn’t write in
C++98)

Obviously, unique_ptr relies critically on rvalue references and move
semantics. We can rewrite the shared_ptr examples above using
unique_ptr. For example:
 unique_ptr<X> make_X(int i)
 {
 // check i, etc.
 return unique_ptr<X>(new X(i));
 }

 void f(int i)
 {
 vector<unique_ptr<X>> v;
 v.push_back(make_X(i));
 v.push_back(make_X(j));
 // …
 }

The logic is inherently simpler and a unique_ptr is represented by a
simple built-in pointer and the overhead of using one compared to a built-
in pointer are miniscule. In particular, unique_ptr does not offer any
form of dynamic checking and requires no auxiliary data structures. That
can be important in a concurrent system where updating the count for a
shared pointer can be relatively costly.

Regular expressions

The absence of a standard regular expression library for C++ has led many
to believe that they have to use a ‘scripting language’ to get effective text
manipulation. This impression is further enhanced because that a lack of
standard also confounds teaching. Since C++0x finally does provide a
regular expression library (a derivative of the boost::regex library),
this is now changing. In a sense it has already changed because I use regex
to illustrate text manipulation in my new programming textbook [4]. I
think regex is likely to become the most important new library in terms
of direct impact on users – the rest of the new library components have
more of the flavor of foundation libraries. To give a taste of the style of
the regex library, let’s define and print a pattern:
 regex pat (R"[\w{2}\s*\d{5}(-\d{4})?]");
 // ZIP code pattern XXddddd-dddd and variants
 cout << "pattern: " << pat << '\n';

People who have used regular expressions in just about any language will
find \w{2}\s*\d{5}(-\d{4})? familiar. It specifies a pattern starting
with two letters \w{2} optionally followed by some space \s* followed
by five digits \d{5} and optionally followed by a dash and four digits
-h\d{4}. If you have not seen regular expressions before, this may be a
good time to learn about them. I can of course recommend my book, but
there is no shortage of regular expression tutorials on the web, including
the one for boost::regex [5].
People who have used regular expressions in C or C++ notice something
strange about that pattern: it is not littered with extra backslashes to
conform to the usual string literal rules. A string literal preceded by R and
bracketed by a [] pair is a raw string literal. If you prefer, you can of course
use a ‘good old string literal’: "\\w{2}\\s*\\d{5}(-\\d{4})?"
rather than R"[\w{2}\s*\d{5}(-\d{4})?]", but for more complex
patterns the escaping can become ‘quite interesting’. The raw string literals
were introduced primarily to counteract problems experienced with using

escape characters in applications with lots of literal strings, such as text
processing using regular expressions. The "[…]" bracketing is there to
allow plain double quotes in a raw strung. If you want a]" in a raw string
you can have that too, but you’ll have to look up the detailed rules for raw
string bracketing (e.g. in the C++0x FAQ).
The simplest way of using a pattern is to search for it in a stream:
 int lineno = 0;
 string line; // input buffer
 while (getline(in,line)) {
 ++lineno;
 smatch matches; // matched strings go here
 if (regex_search(line, matches, pat))
 // search for pat in line
 cout << lineno << ": " << matches[0] << '\n';
 }

The regex_search(line, matches, pat) searches the line for
anything that matches the regular expression stored in pat and if it finds
any matches, it stores them in matches. Naturally, if no match was found,
regex_search(line, matches, pat) returns false.
The matches variable is of type smatch. The ‘s’ stands for ‘sub’.
Basically, a smatch is a vector of sub-matches. The first element, here
matches[0], is the complete match.

So what does this all add up to?
C++0x feels like a new language – just as C++98 felt like a new language
relative to earlier C++. In particular, C++0x does not feel like a new layer
of features on top of an older layer or a random collection of tools thrown
together in a bag. Why not? It is important to articulate why that is or many
might miss something important, just as many were so hung up on OOP
that they missed the point of generic programming in C++98. Of course
C++ is a general purpose programming language in the sense that it is
Turing complete and not restricted to any particular execution
environment. But what, specifically, is it good for? Unfortunately, I do not
have a snazzy new buzzword that succinctly represents what is unique
about C++. However, let me try:

C++ is a language for building software infrastructure.
C++ is a language for applications with large systems programming
parts.
C++ is a language for building and using libraries.
C++ is a language for resource-constrained systems.
C++ is a language for efficiently expressing abstractions.
C++ is a language for general and efficient algorithms.
C++ is a language for general and compact data structures.
C++ is a lightweight abstraction language.

In particular, it is all of those. In my mind, the first ‘building software
infrastructure’ points to C++’s unique strengths and the last ‘lightweight
abstraction’ covers the essential reasons for that.
It is important to find simple, accurate, and comprehensible ways to
characterize C++0x. The alternative is to submit to inaccurate and hostile
characterizations, often presenting C++ roughly as it was in 1985. But
whichever way we describe C++0x, it is still everything C++ ever was –
and more. Importantly, I don’t think that ‘more’ is achieved at the cost of
greater surface complexity: Generalization and new features can save
programmers from heading into ‘dark corners’.
C++0x is not a proprietary language closely integrated with a huge
development and execution infrastructure. Instead, C++ offers a ‘tool kit’
(‘building block’) approach that can deliver greater flexibility, superior
portability, and a greater range of application areas and platforms. And –
of course and essentially – C++ offers stability over decades.

Acknowledgements
The credit for C++0x goes to the people who worked on it. That primarily
means the members of WG21. It would not be sensible to list all who
NOV 2009 | | 25{cvu}

A Game of Cards with Baron Muncharris
Baron Muncharris suggests a game of cards.

reetings Sir R-----! I must declare that it is a most remarkable
coincidence to meet with you again in this establishment! Do I take
it that you might again be tempted by a small wager to sweeten your

wine?
Splendid! Let me recount the rules of a rather inventive card game played,
with a little too much enthusiasm if you ask my opinion, by the mole men
of Under Mongolia.
Regard this deck of cards from which I have ejected the jokers, knaves and
nobles, leaving just the number cards. Each of these shall stand for its face
value and, after the fashion of book-keepers, the black cards, that is to say
the clubs and the spades, shall be considered positive and the red cards,
namely the diamonds and the hearts, shall be considered negative.
By way of demonstration, the 5 of clubs shall stand for +5 and the 5 of
hearts for -5 whereas the 3 of spades shall stand for +3 and the 3 of
diamonds for -3 etc. It is a simple scheme that any child not dropped over-
many times upon its head could grasp.
Another example you say? Oh, very well; the 7 of hearts shall stand for -7.
Now that I have described this in such excruciating detail that the average
parakeet should understand it well enough to explain it to his
grandchildren, I shall describe the nature of play.
What’s that you ask? What shall the ace of spades stand for? It shall stand
for +1 and I, sirrah, shall stand for no further interruption!
I shall deal us each 5 cards; mine face down and yours face up. Of yours,
you must select 3 and lay them in an orderly row before me. I shall
subsequently lay a row of 3 cards of my own face up beneath yours. We
must then multiply the pair of numbers in each column and add together
the 3 numbers thus produced. My goal shall be to contrive to play such
cards that this sum is as close to zero as possible.
For example if you were to play 3♦, 4♠ and 2♣ and I were to riposte
with 2♠, 3♥ and 9♣ then I should have a perfect score of zero since:

and -6+-12+18=0.

We shall immediately thereafter play a second hand in which you shall take
upon my role and I yours. If, after this, my score is closer to zero than yours
then I shall have the round. Likewise, if your score is the closer to zero
then you shall have it. In the event that our scores are equally close to zero
then the round shall be deemed a draw.
After some numerous rounds agreed upon in advance, he who has the most
rounds shall be declared the winner and shall claim the stake.
When I explained these rules to my student – and I shudder at even this
meagre hint of familiarity – acquaintance, he started babbling incoherently
about some fellow named Victor, who was evidently once trapped in some
small space in a tiger’s domain, and the bearing of his predicament upon
the rights of angels.
I assure you that I can speak with authority on these subjects on account
of my considerable experience of both.
Of the former, I have some several times found it necessary to duel entire
ambushes of tigers, most recently armed with naught but a gilded toothpick
for a sword and a pocket kerchief for a cape; an escapade that has been
widely reported in the press and that will not therefore bear another telling.
Of the latter, I have been introduced socially to not a few celestial courtiers
and must confess that, in my lustier youth, I seduced more than one of their
number; being of noble blood, I am restrained from elaboration.
Despite such excellent credentials, I cannot begin to fathom what possible
relationship he supposed might exist between the one topic and the other,
or for that matter, between either and this remarkable game!
I can only deduce that the louse-ridden sot is back on the gin, and that it
has robbed him of his rather pedestrian powers of reason.
See here, I have dealt you your hand; 6♦, 2♣, 5♠, 4♥, 3♣.
Choose your 3 cards with a care to increase to the utmost your chance of
taking the round whilst I call for more wine!

3♦ 4♠ 2♣
2♠ 3♥ 9♣
-6 -12 18

G

What is C++0x? (continued)

RICHARD HARRIS
Richard Harris has been a professional programmer since 1996. He has a
background in Artificial Intelligence and numerical computing and is
currently employed writing software for financial regulation.
contributed here, but have a look at the references in my C++0x FAQ:
There, I take care to list names. Thanks to Niels Dekker, Steve Love,
Alisdair Meredith, and Roger Orr for finding bugs in early drafts of this
paper and to Anthony Williams for saving me from describing threads and
locks.

References
[1] Damian Dechev and Bjarne Stroustrup: ‘Reliable and Efficient

Concurrent Synchronization for Embedded Real-Time Software.’
Proc. 3rd IEEE International Conference on Space Mission
Challenges for Information Technology (IEEE SMC-IT). July 2009.
http://www.research.att.com/~bs/smc_it2009.pdf

[2] Anthony Williams: ‘Multi-threading in C++0x.’ Overload 93;
October 2009.

[3] Bjarne Stroustrup: ‘Possible Directions of C++0x.’ ACCU keynote
2002. Note: No C++0x does not provide all I asked for then, but
that’s a different story.

[4] Bjarne Stroustrup: Programming: Principles and Practice using
C++. Addison-Wesley. 2008.

[5] John Maddock: Boost.Regex documentation http://www.boost.org/
doc/libs/1_40_0/libs/regex/doc/html/index.html

[6] Bjarne Stroustrup: ‘C++0x FAQ’. www.research.att.com/~bs/
C++0xFAQ.html . Note: this FAQ contains references to the original
proposals, thus acknowledging their authors.
26 | | NOV 2009{cvu}

NOV 2009 | | 27{cvu}

On a Game of Dice
A student analyses Baron Muncharris’ Dice problem.

ou will no doubt recall that the game involved rolling a die some
number of times and receiving a sum of coin equal to the number of
spots at each roll. Furthermore, in the event that a roll should show

just 1 spot that the accumulated pot should thereafter be halved.
Had Sir R----- asked my counsel before playing the Baron’s game I should
have advised him to take the first bet and shun the second.
In reckoning the fair stake for any such game it is illuminating to consider
the expected size of one’s pot after any given round with the die.
Let us assume that after the n-1’th roll of the die, one has amassed a pot
of xn-1. One should expect to hold E(xn) upon having completed the
following n’th roll, where

Taking this to its limit, one has

where the capital sigma stands for the sum of the terms on its right over
the values of i from the lower to the upper.

The final sum is a geometric series and is consequently compelled to equal

The expectation is therefore transformed to

For a game of 10 dice, this equates to a pot of approximately 23.82, and
is thus worth playing for a stake of 23¾. But no matter how many dice may
be rolled, the expected winnings cannot reach 41 and hence the second
game is not one a man well versed in reckoning should willingly enter.
Monsieur L----- [1] suggested an interesting change to the rules in which
the player might elect to cease playing if he so desires. If that player is a
sensible man, he should do so only if he expects to be worse off after the
next roll of the die, implying that he should quit the game if and only if

or equivalently

Hence, he should bow out as soon as the pot exceeds 41, which is perhaps
not so very surprising since this is, after all, the greatest expected
conclusion to any such game.
And what should be a fair stake for such a game?
The formula that yields the expected size of the pot after a roll of the die
is now

Alas, whilst this is evidently not a complicated formula, it no longer
represents a straight line and is consequently beyond my power to
extrapolate to a tidy conclusion.
Nevertheless, one can be certain that the stake will be higher under these
new rules since if the pot ever exceeds 41 one can be sure that it shall not
subsequently be reduced.
Moreover, since the expected winnings from a game of 10 dice are a fair
bit less than that stopping point, the stake should not be expected to be very
much greater than that of the original game. Indeed, after some careful
calculation, I found it to exceed the original by a shade over 3 parts in 800
of a coin.
What it should be for a 100 dice game, I shall leave to a more patient
calculator.

Notes
[1] With thanks to Louis Lavery for the suggestion.

Y

E xn() 1
6
--- 1

2
---× xn 1– 1+()× 1

6
--- xn 1– 2+()× 1

6
--- xn 1– 3+()× …+ + +=

1
6
--- 5

1
2
---xn 1– 20

1
2
---+⎝ ⎠

⎛ ⎞×=

11
12
------xn 1–

41
12
------+=

11
12
------ 11

12
------xn 2–

41
12
------+⎝ ⎠

⎛ ⎞ 41
12
------+=

11
12
------⎝ ⎠
⎛ ⎞

2
xn 2–

11
12
------ 41

12
------× 41

12
------+ +=

11
12
------⎝ ⎠
⎛ ⎞

2 11
12
------xn 3–

41
12
------+⎝ ⎠

⎛ ⎞ 11
12
------ 41

12
------× 41

12
------+ +=

E xn() 41
12
------ 11

12
------⎝ ⎠
⎛ ⎞

n i–
×

i 1=

n

∑=

41
12
------ 11

12
------⎝ ⎠
⎛ ⎞

n 1–
× 12

11
------⎝ ⎠
⎛ ⎞

i

i 0=

n 1–

∑×=

12
11
------⎝ ⎠
⎛ ⎞

i

i 0=

n 1–

∑
1 12

11
------⎝ ⎠
⎛ ⎞–

1 12
11
------–

n

=

12
11
------⎝ ⎠
⎛ ⎞

n
1–

12
11
------ 1–

-----------------------=

11 12
11
------⎝ ⎠
⎛ ⎞

n
1–⎝ ⎠

⎛ ⎞=

E xn() 41 11
12
------⎝ ⎠
⎛ ⎞

n
× 12

11
------⎝ ⎠
⎛ ⎞

n
1–⎝ ⎠

⎛ ⎞×=

41 1 11
12
------⎝ ⎠
⎛ ⎞

n
–⎝ ⎠

⎛ ⎞×=

E xn() xn 1–<

11
12
------xn 1–

41
12
------+ xn 1–<

41
12
------ 1

12
------xn 1–<

xn 1– 41>

E xn()
11
12
------xn 1–

41
12
------+ xn 1– 41≤

xn 1– xn 1– 41>⎩
⎪
⎨
⎪
⎧

=

Desert Island Books
Paul Grenyer maroons Frances Buontempo.

here do I start with Frances Buontempo? The beginning is probably
the best place. I think I first became aware of her on accu-general
and somehow it came to light that she was living and working in

Leeds and had a liking for alternative music. Having spent several years
studying and working in Leeds, I sent her an email asking if she’d like to come
along to the Wendy House[1] the next time I was going and she said she
would.

Before I had a chance to get to Leeds, the ACCU conference came around
(must have been 2006) and I remember walking into one of the rooms at
the Randolf and seeing an uncomfortable looking person trying to hide in
the corner (although she still claims she wasn’t trying to hide!). We’ve been
friends since and after lots of interviews at various investment banks,
sometimes for the same position, Frances was offered a position at BarCap
and a couple of weeks later I was offered one at Lehmans.

I got married and moved away from London a year later, but we’re still
friends, bump into each other at various ACCU events, sometimes Wendy
House (although it’s been a while) and the Bloodstock Metal Festival[2] each
year.

Frances Buontempo
A desert island you say? Music? I demand Tin
Omen by Skinny Puppy – the words are
delicious nonsense. And Killing Joke, by
Killing Joke – their second eponymous album.
But I want some KMFDM as well. And
something I can sing along to, maybe Ian Dury.
And there must be Laibach. Oh, just two
albums? OK, Jesus Christ Superstar by Laibach
and something by J.S.Bach. Or Front Line
Assembly. No I can’t decide. That’s far too hard.
Books? Let’s get this straight – five books? One a novel, and four
programming books. Great. I presume I am allowed the Bible and the

complete works of Shakespeare? Good show. Now,
I’ve been trying to read Anathem by Neal Stephenson
for a while now. I was delighted by his Baroque
trilogy, and I’d be tempted to buy that, but I suspect
you might not allow three one thousand or so page
books to count as a single choice. They had a
beautiful mix of the history of science, mathematics
and finance entwined with tales of pirates and
adventures on the high seas. Watching accurate, well
researched details of the fights over notation of the
calculus between Leibniz and Newton unfold was a

delight. Of course, Newton’s involvement introduces us to coinage,
alchemy and the founding of the Bank of England. And therefore, of
course, more pirates. The historical details are lovingly presented. As a
mathematician, I love novels that contain such under-told treasures. There
are so many other mathematically inspired stories. Abbott’s Flatland,
obviously. Is his middle name really Abbott? Who calls their child Edwin
Abbott Abbott? But I digress. Mathematical story books. Oh, and films too,
such as Cube[3] and Pi[4]. Genius. Don’t forget Rudy Rucker[5]. Oh now
look – I am in danger of buying more books now. ‘Alma is swept away into
a higher world of mathematician cockroaches and cone shells bent upon
using our world as an experimental set-up for deciding an arcane point of
metamathematics.’ (Mathematicians in Love by Rudy Rucker).
Botherations. I must read that. So anyway, I won’t take any of those books.
I’ll take Anathem since I haven’t finished reading it yet.
Now to the non-fiction. I’ve never read Knuth’s The Art of Computer
Programming. The box set does count as one book, right? I would love

the time to sit down
and read through the
whole thing, and yet I
regularly come across elegant

algorithms that
are attributed to Knuth. I’ve never read Stroustrup’s
The Design and Evolution of C++ either, which I
suspect would be a pleasure to read, having talked to
others who have.
Now, I suspect you wanted me to tell you why I had
chosen a book based on having actually read it. So,
time to consider some books I have read. I started
reading Douglas Hofstader’s Fluid Concepts and
Creative Analogies: Computer Models of the
Fundamental Mechanisms of Thought a while ago.
Hofstader has a particular take on human thought,

consciousness and freewill. He conflicts with Roger Penrose on this, which
has led to several other interesting books. I personally think they are both
incorrect. Nonetheless, aside from the underlying
philosophical viewpoint on thought, the Fluid
Concepts book contains many puzzles and shows
how to program a computer to start solving them. It
also explores language use. Several of you will have
read his Gödel Escher Bach: An Eternal Golden
Braid. This is a far less technical book than Fluid
Concepts, and also a delight. It introduced a couple
of translations of Lewis Carroll’s ‘Jabberwocky’.
The idea of translating a nonsense poem is extremely interesting. It has the
appeal of many pure mathematics problems: abstraction, generalisation
and a degree of rank stupidity, giving rise to further interesting ideas. Fluid
Concepts formalises some of these approaches and would inspire me to
write several programs. So I hope you allow me pen and paper to jot down
ideas as I read. I never finished reading it, because I want to devote time
to exploring the ideas it raises. A desert island holiday would certainly
come in handy.
OK, that’s three books I’ve never read. Well, two I’ve never read and one
I started reading. Perhaps I should select one book I have read as my final
choice. I currently have Meyers’ More Effective C++, Vandervoorde and
Josuttis’ C++ Templates, Gamma et al’s Design Patterns, and Hull’s
Options, Futures and other Derivatives on my desk at work. They are all
excellent books – though I find Hull has a lack of balance, swinging from
in-depth explanations of the addition and multiplication aspects of pricing
some financial products to gigantic hand waviness
over the more complicated mathematics. The other
books are brilliant and all C++ programmers have
read them. Or will do at some point. However, those
can stay on my desk. How difficult. There are so
many good books out there. I am tempted by Teuvo
Kohonen’s Self-Organising Maps, and by Marvin
Lee Minsky and Seymour Papert’s Perceptrons, and
by Thom Mitchell’s Machine Learning. These three
books are classics on artificial intelligence. All three
were clearly written and a pleasure to read. Perceptrons is frequently cited
as demonstrating that you cannot model XOR (exclusive or) with a single
perceptron (a simple node in an early neural network). This promoted

W

28 | | NOV 2009{cvu}

Inspirational (P)articles
Frances Buontempo introduces Andrew Holmes’ inspiration.

uring an ACCU London social, those present were on the verge on
sinking into despair and cynicism, but Andrew Holmes managed to lift
the tone by remembering that computing machines are cool and can

be the source of great joy. He shares with us details about a marvelous
machine that made him smile.

The original HP 12C financial calculator, introduced in 1981, is HP’s best
selling product.

It uses Reverse Polish notation input, which is way faster than algebraic
mode on other calculators. The stack is made up of four registers and you
can swap the top two and rotate the stack. It’s also much faster and more
convenient than a spreadsheet for simple stuff.

It’s also got a cool, 80s retro look.

I’ve just bought the 2003 updated version, since it’s one of only two models
of calculator that can be used on the Chartered Financial Analyst exams.

Very cool toy and actually carefully designed to solve a problem well.

D

Desert Island Books (continued)
much further work and led to far more powerful neural networks.
However, I read the book from cover to cover and XOR is not mentioned
once. It’s remarkable to note how rumours circulate even in academic
work. However, back to my final book choice. It has to be Proofs from the
Book by Martin Aigner and Günter M. Ziegler. This book collects together
various magnificent mathematical proofs, inspired by Paul Erdos’ claim
that God keeps a book of the most elegant proofs. He is reputed to have
said ‘You don’t have to believe in God, but you should believe in the book’.
It has simpler proofs, such as showing e is irrational, to more-brain aching
combinatorics problems. Some theorems are proved in more than one way,
because sometimes many beautiful proofs of the same thing are possible.
What makes a proof elegant? In some ways, the same things that make an
algorithm or program elegant. Seeing something that is a neat trick, works,
is clear to read, even though you may have to concentrate to follow how
it works, is exciting and inspiring. I could spend hours re-reading some of
the proofs.

References
[1] The Wendy House, http://www.thewendyhouse.org/
[2] Bloodstock, http://www.bloodstock.uk.com/
[3] Cube, http://en.wikipedia.org/wiki/Cube_(film)
[4] Pi, http://en.wikipedia.org/wiki/Pi_(film)
[5] Rudy Rucker, http://www.cs.sjsu.edu/faculty/rucker/works.htm

Next issue: Allison Lloyd

For those of you who were looking forward to Michael Feathers’ Desert
Island Books, despite approaching me at the conference and exchanging
a couple of emails, Michael is currently eluding me. I shall keep trying to
track him down and hopefully he’ll be featured in a later edition.

Desert Island Disks is one of Radio 4’s most popular and enduring
programmes. The format is simple: each week a guest is invited to
choose the eight records they would take with them to a desert island
(http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml).
The format of ‘Desert Island Books’ is slightly different from the Radio 4
show. You choose about five books, one of which must be a novel, and
up to two albums. Some people even throw in the odd film. Quite a few
ACCUers have chosen their Desert Island Books to date and there are
plenty more to go.
The rules aren’t too strict but the programming books must have made
a big impact on your programming life or be ones that you would take to
a desert island. The inclusion of a novel and a couple of albums helps
us to learn a little more about you. The ACCU has some amazing
personalities and Desert Island Books has proved we only scratch the
surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?
NOV 2009 | | 29{cvu}

Code Critique Competition 60
Set and collated by Roger Orr.

lease note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment
on published entries, and to supply their own possible code samples

for the competit ion (in any common programming language) to
scc@accu.org.

Last issue’s code
Can someone please help me to understand why the following program
crashes? I tried to fix it by using strncat but it still doesn’t work.

Last issue’s code is shown in Listing 1.

Critiques

Damien Ruscoe <Damien.Ruscoe@imgtec.com>

Allow me to introduce my solution to this problem by first telling you a little
about myself. After many, many years of being a hobbyist developer I have
recently started my first software development role. The company have
strong belief in the quality of software that is produced and follow
development using the TDD methodology. This was my first insight into the
automated testing domain of which I myself am becoming a firm advocate.
Upon analysing the dec to hex problem I found myself slipping back into
old habits and allowing my eyes to traverse the execution thread for a
sample piece of data I plucked from thin air. Upon realising my irresistible
haste to get stuck in I decided to do the thing I love to do and wrote some
code to execute the algorithm automatically.
I set about creating a test harness. It was difficult. The algorithm firstly
converts the decimal value into a sequence of hex characters and then
outputs this data to the standard output leaving the option for creating a
test to compare an expected result to the actual result. This is not what the
function name suggests it does, surely a more appropriate name would be
PrintHex or PrintHexFromDec?
After decomposing the algorithm to reflect the function name, I wrote a
suite of tests to execute the algorithm. Within seconds of execution I was
presented with a list of errors contained with the algorithm. Amongst
others one error was instantly caught my attention:
 Assertion Failure: expected: 0 but got:

Ahh, an all too common error prevalent in many applications; a corner case
that your application may heavily depend, in which case the error is usually
identified very quickly, or more often than not your application uses less
frequently, is overlooked and is left as a ticking time bomb waiting to
detonate in production code.
Using a while loop for the conversion does not allow the execution thread
to enter the loop if the initial data is zero. An alteration to a do-while loop
removes this bug and the test remains to ensure the same error is not
duplicated during future modifications.
 Assertion Failure: expected: 1 but got: ?

What is that cheeky chappy doing there when 1 was expected? It is time I
roll up my sleeves and get deep into manually reading the code to
understand where this little fellow was born. That’s right, at this point I
have only briefly read the algorithm enough to understand some of its
semantic properties and how I can interact with it as opposed to trying to
understand how it is doing it. I have already established a list of errors and
corrected one of them. That is quite an impressive feat don’t you agree?
The tests also highlight that most, if not all, numeric character
representations are not being converted correctly. I want to find the area of
the code that handles this behaviour. The numeric conversion, located in the
default branch of the switch statement, is simply not converting a number
to ASCII correctly a simple modification and I run my tests yet again.
 cStack.push ((char) (storeNum + (int) '0'))

All my tests are now passing and hence I have definite proof that the
algorithm is behaving as expected: the code works! This obviously is a good

P

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

Listing 1
Listing1

#include <stdio.h>
#include <iostream>
#include <stack>
using namespace std;
stack<char> cStack;
void decToHex(int num){
 int showNum = num;
 int storeNum;
 while(num != 0){
 storeNum = num % 16;
 switch(storeNum){
 case 10:
 cStack.push('A');
 break;
 case 11:
 cStack.push('B');
 break;
 case 12:
 cStack.push('C');
 break;
 case 13:
 cStack.push('D');
 break;
 case 14:
 cStack.push('E');
 break;
 case 15:
 cStack.push('F');
 break;
 default:
 cStack.push((char)storeNum);
 break;
 }
 num = num / 16;
 }
 cout << showNum << " in hexadecimal is ";
 while(!cStack.empty()){
 cout << cStack.top();
 cStack.pop();
 }
}
int main(int argc, char ** argv)
{
 // test it
 int integer;
 cin >> integer;
 decToHex(integer);
}

Li
st

in
g

1

30 | | NOV 2009{cvu}

place to be and I can begin the critique the code as I can manipulate the
structure while being reassured by the tests, that no bugs have been created.
The algorithm appears to iterate over increasing powers of the hex base,
16, and creating a character representation and pushing this onto a
(global?) stack. The large switch statement is looking subtlety redundant
as the majority of branches have similar behaviour although is acting with
different data; namely the characters A though F. This has a fowl smell [cf
Martin Fowler] of code duplication. The numeric data conversion
alternatively has a more algorithmic implementation of identifying the
character to push onto the stack. Like the numeric conversion the character
conversion is a linear isomorphic map onto the ASCII char set and so can
be reduced to:
 cStack.push (storeNum -10 +(int) 'A')

The switch now only contains 2 branches which, if memory serves, is an
if-else construct.
Time to scratch this itch, this stack: What is its purpose and why is it
declared in global namespace? The name cStack is not the most helpful
prompt at discovering its purpose; this is unfortunately distributed over the
algorithm described implicitly by the way in which the stack is being used.
Its purpose is to reverse the order of the hex representation characters as
the representation is created from least to the most significant digit. I agree
that the characters should be create in this order as the converted digits are
then disposed from the conversion decimal and using the stack is a
wonderful exploitation of one of our most faithful data structures,
although, wouldn’t it be just a little simpler in this case to prepend the
character to the hex representation string?
The author of this code has obviously paid attention during his computer
science days although this may be a case of an over-engineered solution.
Replacing the stack for a string I was able to delete the global stack
definition. I do hope no other system was relying on that definition but you
can never be too sure with global data. The author may have been sick on
that day of school.
Almost done, I have working code containing no code duplication. The
remaining work is to be concentrated on making the algorithm easier to
read aiding other developers to critique this code. I have replaced the magic
number 16 with a clearer HEX_BASE definition and similarly DEC_BASE
for the magic number 10 I myself am guilty of introducing. BTW, that
annoying redundant variable named showNum was deleted with such ease
and joy that I was oblivious of documenting that activity.
Oh ’eck! I’ve completely overlooked negative numbers. Again, if I include
another set of test data I will allow the test suite to indicate if the algorithm
is behaving in a predictable way. What test do I write, or rephrasing, what
result do I expect from Hex(-10). I have to think about this before any
coding is done. For the moment I will assume that -A is expected
 Assertion Failure: expected: -1 but got: /
 Assertion Failure: expected: -A but got: /0

Something is misbehaving. It took me a moment to realise but I eventually
discovered I was overlooking a fundamental mathematical property. That
is the modulus function has the property -n < mod(n) < n and not 0 < mod(n)
< n. This was subsequently affecting the mapping to hex character. An
exploit of the strong C type system I overloaded the function to accept both
signed and unsigned int types explicitly and separately. As I already have
proof that my hex conversion works for positive numbers the simplest
solution is to test for negativity within the signed overload and dispatch
correctly to the unsigned overload. My tests now execute successfully.
I have established an extensive set of test data to exercise over the
algorithm which, to my belief, covers all corner cases of the potential
pitfalls. The final code is listed below which contains language constructs
that may not be to everybody's personal taste. Although the code is an
implementation detail of the function name and coding style comes second
to both working code (successful tests) and simplification by removing
code duplication.
#include <iostream>
#include <string>

using namespace std;
const int DEC_BASE = 10;
const int HEX_BASE = 16;
const string Hex(unsigned int num)
{
 unsigned int temp_digit;
 string result;
 do {
 temp_digit = num % HEX_BASE;
 temp_digit += temp_digit < DEC_BASE ?
 (int) '0' : // 0-9 char
 (int) 'A' -DEC_BASE; // A-F char
 result = (char)temp_digit + result;
 } while (num /= HEX_BASE);
 return result;
}
const string Hex(int num)
{
 if (num < 0)
 return "-" + Hex (abs(num));
 return Hex ((unsigned int)num);
}
void PrintHex (int num)
{
 cout << Hex(num);
}
void assertEqual (const string& expected,
 const std::string& input)
{
 cout << ".";
 if (input != expected)
 cout << "Assertion Failure:"
 << " expected: " << expected
 << " but got: " << input << endl;
}
struct hex_test
{
 int input;
 string expected;
 void assert ()
 {
 assertEqual (expected, Hex(input));
 }
}
hex_test_data [] = {
 {0,"0"}, {16,"10"}, {-0,"0"}, {-16,"-10"},
 {1,"1"}, {17,"11"}, {-1,"-1"}, {-17,"-11"},
 //...
 {15,"F"}, {31,"1F"}, {-15,"-F"}, {-31,"-1F"},
 { 32, "20" }, { 253, "FD" },
 { 41, "29" }, { 254, "FE" },
 { 42, "2A" }, { 255, "FF" },
 { 47, "2F" }, { 256, "100" },
 { 257, "101" },
 { 159, "9F" }, { 258, "102" },
 { 160, "A0" }, { 265, "109" },
 { 169, "A9" }, { 266, "10A" },
 { 170, "AA" }, { 267, "10B" },
 { 175, "AF" },
};
int main (int&, char**)
{
 int test_count = sizeof(hex_test_data)
 / sizeof(hex_test_data[0]);
 for (int i=0; i<tests_count; ++i)
 hex_test_data[i].assert();
}

If you find that any part of the algorithm is not clear enough for yourself
to read you are more than welcome to make any modifications you feel it
NOV 2009 | | 31{cvu}

needs. The compiler and test suite will check for any syntax or semantic
bugs introduced during any amendments.

Martin Moene < m.j.moene@eld.physics.LeidenUniv.nl>

Initially, I thought I’d talk to Roger to learn more about what the decimal
to hexadecimal converter should be able to do and – no less important –
what not[1]. Maybe that’s not a usual practice in this competition, maybe
it’s just ‘not done’. Anyway, I didn’t.
One of the things that isn’t immediately clear is if the conversion should
handle negative numbers and if so, in what way. What does show through
the implementation though, is an interactive decimal to hexadecimal
converter that does not provide additional formatting and does not handle
negative numbers. Actually, it only handles a subset of N1.
On to the code at hand. To begin with, the decimal to hexadecimal
conversion fails for values where the result of the modulo 16 division
(value % 16) is in the range 0..9. In the switch’s default case, the value of
the numbers 0..9 are used as-is, whereas they should be converted to the
characters '0'..'9'. The single hexadecimal-digit conversion that
enumerates values 11 to 15 can easily be replaced with a compact
algorithmic approach and subsequently the whole single-figure conversion
can be extracted[2] to a separate function such as:
 inline char to_char(const int x)
 {
 return static_cast<char>(
 x <= 9 ? '0' + x : 'A'-10 + x);
 }

The function’s name does not hint at the hexadecimal notation, and that's
not without reason. When I use the hexadecimal notation, it often is when
programming hardware registers whose bits represent operations such as
select ADC number x, or clear FIFO. It can be helpful to see the value of
those bits separately, that is in binary notation. It may well be that we can
present the numbers in hexadecimal (base 16) as well as binary (base 2)
notation with very little extra effort.
On my Palm Zire 72 I use Ding Zhaojie’s Megatops BinCalc[3] . It has a
nice equal opportunity[4] user interface for the binary input-output.
Presented an example how easy
visual programming is, I can’t help
to ask: Ah, can I also grab and
move the needle and read the
corresponding decimal value on
the knob? But I digress...
What then are the things that raise
our eyebrows or that we can’t
resist to comment on? There are quite a few:

omit the C header file stdio.h, this is a C++ program that uses
iostreams
there’s also no need for stdio.h at all in the current program
variable cStack can be declared locally in function decToHex()
make the conversion reusable by separating conversion and output
this also makes it easier to test[5]
showNum can be declared const
variable storeNum can be defined at its first use in the while loop
literal 16 should be replaced by a constant such as base and defined
as const int base = 16
prefer to declare decToHex()’s argument const int num
and define int todo = num and use it as todo /= base in the
computation
a C++-style cast should be used in the default case, not a C-style cast
the /= operator can be used instead of = and / separately
the conversion function accepts signed numbers but it does not
handle negative numbers properly

it would be useful for example to show -1 as FFFF (the number of
Fs depend on sizeof(int))
it took me some time to realise that decToHex(0) is a special case
of error: it generates no output at all[6]
this can be corrected by replacing the while loop with a do-while
loop
the program lacks error handling

Given what we know now, I suggest using the following adapted main
function:
#include <string> // std::string
#include <iostream> // std::cout, cerr
int to_int(std::string text)
{
 return atoi(text.c_str());
}
int main(int argc, char* argv[])
{
 const int default_base = 16;
 try
 {
 const int base =
 (argc > 1) ? to_int(argv[1])
 : default_base;
 report(std::cout, "cout",
 read(std::cin , "cin"), base);
 }
 catch (std::exception const& e)
 {
 std::cerr << e.what() << std::endl;
 return EXIT_FAILURE;
 }
 return EXIT_SUCCESS;
}

Note that the program accepts the base to present the number in as the
program’s first argument. It also contains the try-catch skeleton to handle
errors. Implementation of various other ideas to make the program 'more
wonderful' are left to the reader:

accept a list of bases to present the number in
accept input also in binary, octal and hexadecimal notation
provide help via a commandline option such as -h or -help

The supporting input-output functions include checks on the streams and
they report bad luck by throwing an exception with an informative
message.
const std::string progname = "decToBase";
int read(std::istream& is, std::string name)
{
 int integer = 0;
 is >> integer;
 if (!is)
 {
 throw std::runtime_error(
 progname +
 ": cannot read number from stream '"
 + name + "'");
 }
 return integer;
}
void report(std::ostream& os,
 std::string name,
 const int x, const int base)
{
 os << x <<" in base '" << base << "' "
 "is '" << to_string(x, base) << "'"
 << std::endl;
 if (!os)
 {
32 | | NOV 2009{cvu}

 throw std::runtime_error(
 progname +
 ": cannot not write to stream '" +
 name + "'");
 }
}

The new prototype of the conversion function is:
 std::string to_string(const int x,
 const int base);

What I like about the converter’s original implementation is its use of
std::stack, well actually I like its use of a container from the C++
standard library. In the following implementation, I’ve continued this
approach.
std::string to_string(const int x,
 const int base = 10)
{
 REQUIRE(base >= 2);
 REQUIRE(base <= 36);
 unsigned int ux(x);
 unsigned int ubase(base);
 std::string result;
 do
 {
 result.insert(
 0, // position
 1, // count
 to_char(ux % ubase)
);
 }
 while((ux /= ubase) > 0);
 return result;
}

Indeed, std::string is a container, be it a rather awkward one. Kevlin
Henney wrote several interesting articles on the container aspect of
std::string[7]. He also argues that using high-level (generic)
programming constructs are part of a modern approach to teaching
C++[8].
A simple yet effective signed-to-unsigned transformation enables us to
present negative numbers. Represented unsigned, an originally negative
number can be treated as its corresponding bit pattern. To prevent signed-
unsigned mismatch in the computations, these also use base as an unsigned
number[9]. To make the signed-unsigned transformation more explicit
than it is now, a static_cast<unsigned int>() can be used.
Using the requested number-base in two computations is all that’s needed
to present the converted number in base 2 with a highest figure of '1' up
to and including base 36 with a highest figure of 'Z'. Zero will convert
properly now, with the while loop replaced by a do-while loop with the
extracted to_char() function. The loop still collects the figures from
least to most significant and puts them one by one at the front of the string
as they’re computed.
In the original while loop the test and the advance operations are rather far
apart. Contrast this with the do-while loop that combines them into a single
expression. I would have used a for loop hadn’t the loop required to be
executed at least once. However I slightly prefer the do-while over the
following for loop that contains zero as a special-case.
std::string result(0 == ux ? "0" : "");
for(; ux > 0; ux /= base)
{
 result.insert(
 0, // position
 1, // count
 to_char(ux % base)
);
}

And here are the results:

prompt>decToBase.exe
123
123 in base '16' is '7B'
prompt>decToBase.exe 2
123
123 in base '2' is '1111011'
prompt>decToBase.exe
-1
-1 in base '16' is 'FFFFFFFF'

Initially, before I revisited std::string and found a usable insert
method, I worked out another solution that I like to share.
#include <iterator> // std::inserter
#include <vector> // std::vector<>
#include <string> // std::string
template< typename range, typename output >
output rcopy(range const& source, output sink)
{
 return std::copy(
 source.rbegin(), source.rend(), sink);
}
std::string to_string(const int x,
 const int base = 10)
{
 REQUIRE(base >= 2);
 REQUIRE(base <= 36);
 unsigned int ux(x);
 unsigned int ubase(base);
 std::vector<char> reversed;
 do
 {
 reversed.push_back(to_char(ux % ubase));
 }
 while((ux /= ubase) > 0);
 std::string result;
 rcopy(reversed, std::back_inserter(result));
 return result;
}

The std::stack container is replaced with the more general
std::vector. As a result, the std::copy algorithm can be used to
insert the collected figures in a std::string in reverse order, by
employing reverse iterators on the vector named reversed. The idea to
condense the copy operation as shown is taken from Software As Read, by
Jon Jagger[10].
Other solutions spring to mind, for example using a string stream.
#include <iomanip> // std::hex
#include <sstream> // std::stringstream
std::string to_hex(const int x)
{
 std::stringstream oss;
 oss << std::hex << x;
 return oss.str();
}

Yet another uses the C function _ltoa().
std::string to_string(const int x,
 const int base)
{
 REQUIRE(base >= 2);
 REQUIRE(base <= 36);
 char buf[8 * sizeof(x) + 1];
 return _ltoa(x, buf, base);
}

What are your expectations? Recall the exception handling in main() and
imagine you enter a base on the commandline that is outside the valid range
of 2-36 and request a conversion. The conversion function receives a base
that it cannot handle in a constructive way. This is a situation that should
not happen and thus it is a programming error[11].
NOV 2009 | | 33{cvu}

Here is macro REQUIRE’s job: throw an exception if the stated
requirements, or preconditions[12] base >= 2 and base <= 36 are not
true, as it occurs in[13]:
 prompt>decToBase.exe 1
 123
 decToBase.cpp(60): expected 'base >= 2'

Note that a user entering an invalid base in fact represents an
environmental error, that is, an error that is not unexpected to happen. It
is the program that should prevent the invalid base to reach the conversion
function that is known to be unable to handle it[14]. Contrast this with a
programming error that leads to the same situation: that is not expected to
happen.
Macro REQUIRE is defined as follows.
#include <stdexcept> // std::runtime_exception
#define REQUIRE(expr) \
 if (!(expr)) \
 { \
 throw std::runtime_error(\
 to_string(__FILE__) + \
 "(" + to_string(__LINE__) + \
 "): expected '" + #expr + "'"); \
 }

Macro REQUIRE uses two conversion shims[15], one of which is the
already familiar number-to-string converter. The story recurses.
std::string to_string(std::string text)
{
 return text;
}
std::string to_string(const int x
 /*, const int base = 10 */)
{
 // guess what
}

The choice of the parameter type of the first to_string() may come as
a surprise. However, with std::string as its parameter type, the
function can also be used with arguments that are convertible to that type,
such as __FILE__’s type char*.
What’s left of the original program? One line: there where one comes to
provide his or her input:
 std::cin >> integer;

Especially in this context I like the word integer.
Notes and references
[1] Don Wells. ‘The Customer is Always Available’, http://

www.extremeprogramming.org/rules/customer.html
[2] Martin Fowler. Refactoring: Improving the Design of Existing Code,

http://martinfowler.com/books.html#refactoring
[3] Ding Zhaojie. Megatops BinCalc 1.0.3 (for PC and Palm), http://

bincalc.googlepages.com/
[4] Leogo: An Equal Opportunity User Interface for Programming,

section 2.1 Equal Opportunity Interfaces, http://
www.cosc.canterbury.ac.nz/andrew.cockburn/papers/jour_leo.pdf

[5] Kevlin Henney. Put to the test, http://www.curbralan.com/papers/
PutToTheTest.pdf

[6] Indeed, I should have created a unit test right at the start.
[7a] Kevlin Henney. Stringing Things Along, http://www.curbralan.com/

papers/StringingThingsAlong.pdf
[7b] Kevlin Henney. Highly Strung, http://www.curbralan.com/papers/

HighlyStrung.pdf
[7c] Kevlin Henney. The Next Best String, http://www.curbralan.com/

papers/TheNextBestString.pdf
[8] Kevlin Henney. The miseducation of C++, http://www.two-

sdg.demon.co.uk/curbralan/papers/TheMiseducationOfC++.pdf
[9] Prefer to reserve unsigned types for types that represent bit patterns

or flags; to reduce occurrences of signed-unsigned mismatch, prefer
signed types for numbers even if these numbers are non-negative

only. See Google C++ Style Guide, Integer Types, http://google-
styleguide.googlecode.com/svn/trunk/cppguide.xml#Integer_Types

[10] Jon Jagger. Software As Read, http://www.jaggersoft.com/pubs/
SoftwareAsRead.htm

[11] Eiffel Software. Building bug-free O-O software: An Introduction to
Design by Contract™, http://www.eiffel.com/developers/
design_by_contract_in_detail.html

[12] A precondition violation is an unexpected error for the implementor,
but not for the user. A postcondition violation is an unexpected error
for the user if the precondition was valid on entry, but not for the
implementor.

[13] I used literals in the precondition test, so they show up as 2 and 36 in
the error message, not as BASE_MIN and BASE_MAX.

[14] To illustrate the precondition violation, I omitted base =
checked_base(...) from main().

[15] M. D. Wilson. ‘Shims – A Definition’, http://www.synesis.com.au/
resources/articles/cpp/shims.pdf

Joe Wood <joew@aleph.org.uk>
Preliminaries

Before we get too involved in the code, it is worth spending a short while
looking at the problem. The main function, decToHex, finds the
hexadecimal string representation of a number. Just to start us off, lets drop
talk of hexadecimal and stick to plain decimal which we all grew up with.
For this discussion we must distinguish between the number 513 and the
string "513" which is a representation of the number. We will put string
representations in quotes for clarity.
The basic approach used in the code is to take an initial number, N, and an
empty stack (string "") and to find the least significant part of N by taking
the modulus in the required base. For example 513 modulo 10 yields 3 and
so "3" is pushed onto the empty stack giving "3". It should be stressed that
"3" is just a symbol to represent the number 3, it could be "c" (say).
However, we must have unique symbols to represent each of the elements
in base. Next we divide 513 by 10 yielding 51. Since 51 is not 0, we process
the 51 as above. After a couple more iterations as above we get N equals
0 and the stack/string "315", which is clearly back to front, but a simple
string reversal fixes that problem. Table 1 clarifies the calculations.
Note that "513" is a short hand for 5 x 10^2 + 1 x 10^1 + 3 x 10^0 = 513

The above discussion has been somewhat laboured, but it is useful to do
so for two reasons. Firstly, this representation of numbers highlights the
brilliant evolution of Indian and Arabian mathematics, try multiplying in
Roman Numerals. Secondly, exactly the same algorithm works for
hexadecimals (base 16). In this case we have Table 2, for example.
Note that "201" base 16 is a short hand for 2 x 16^2 + 0 x 16^1 + 1 x 10^0
= 513 decimal.

So the function decToHex is really a special case of decToBase.
Code issues

There are a number of issues with the current code, as follows (in no
particular order)

The original line (default part of switch), cStack.push(
(char)storeNum);, does not do as intended. It should push the

N String N%10 Symbol (N%10) New String N / 10

513 "" 3 "3" "3" 51

51 "3" 1 "1" "31" 5

5 "31" 5 "5" "315" 0

0 "315"

N String N%16 Symbol (N%16) New String N / 16

513 "" 1 "1" "1" 32

32 "1" 0 "0" "10" 2

2 "10" 2 "2" "102" 0

0 "102"
34 | | NOV 2009{cvu}

string representation of storeNum onto the stack. In fact it pushes
the numeric value of storeNum onto the stack.
cStack is never initialised and indeed is shared by multiple users
of decToHex; making decToHex neither re-entrant nor suitable for
a multi-threaded environment. Both problems are solved by
declaring cStack inside decToHex.
decToHex uses a separate case clause for each number over 10, this
makes the code longer and more complex and hence harder to test
and maintain.
decToHex directly prints out the result, making it less generally
useful then returning the string representation.
decToHex produces no output for an input of zero.
decToHex only processes non-negative numbers and so we should
limit the input domain accordingly.

Discussion

There are two basic options for converting a (small) number to its
corresponding string representation, either via a look-up table or via
calculation.
In the first case, we initialise the table with the required symbols and just
index into the table (in pseudo-code)
 const string symbol ("0123456789abcdef");
 …
 const char letter = symbol (storeNum);

This is very general, as we can change the character representation in
symbol as required. But we must check that the initial string is correct! It
might be a tad slower than the second method.
In the second case, we observe that in ASCII and its supersets the
characters "0" .. "9" and the characters "a" .. "z" ("f") are both contiguous
subsets with one single discontinuity, so we can just calculate the require
letter (in pseudo-code)
 const char letter = (storeNum < 10
 ? '0' + storeNum : 'a' + storeNum - 10);

This is probably quicker than the first method, but is less general and must
not be used on an EBCDIC system for large bases.
Both are valid and both work. Which you prefer is largely a matter of
personal taste and trade-offs between speed, maintainability, readability
and intended throughput. You pays your money and makes your choice.
The original implementation uses a stack to store the individual character
representations, which are then read back to form the correct result, in
effect we just reverse the stored strings. Given that string has push_back
(append) and supports reverse, we will use string in place of stack.
A possible solution

Below is one possible solution. This is done using namespace std, purely
for space reasons.
static const string symbols("0123456789abcdef");
string decToBase (int base, unsigned int num)
{
 // Initialise an empty string as the result
 string result ("");
 if (base < 1 || base > 16) {
 throw domain_error("Illegal base value");
 }
 // Loop over the num and find the remainder when
 // we divide by 16 and convert the remainder to
 // base 16. Then we divide the current value of
 // num by 16. Stop when we get to zero.
 // Note: putting the test at the end
 // ensures that we handle an input of 0 correctly
 do {
 // Find the modulus to base 16
 const char storeNum = char (num % base) ;
 // Append character representation to result
 // Note: We know that the modulus must be
 // between 0 and 15

 result += symbols [storeNum] ;
 // Calculate next part
 num = num / base;
 }
 while (num != 0) ;
 // BUT a smart person will observe that result
 // is back to front, so reverse the result
 reverse (result.begin(), result.end());
 return result;
}
// Given the input number, num,
// return its hexadecimal string representation
string decToHex (int num)
{
 return decToBase (16, num);
}
// Add some infrastructure for testing
typedef map<unsigned int, string> results_type;
static results_type mk_results (void) {
 results_type results ;
 results[0] = "0"; results[1] = "1";
 results[2] = "2"; results[3] = "3";
 results[4] = "4"; results[5] = "5";
 results[6] = "6"; results[7] = "7";
 results[8] = "8"; results[9] = "9";
 results[10] = "a"; results[11] = "b";
 results[12] = "c"; results[13] = "d";
 results[14] = "e"; results[15] = "f";
 results[16] = "10"; results[511] = "1ff";
 results[512] = "200"; results[513] = "201";
 results[522] = "20a";
 results[INT_MAX] = "7fffffff";
 results[UINT_MAX] = "ffffffff";
 return results;
}
static void basic_tests (void) {
 const results_type tests (mk_results());
 results_type::const_iterator it;
 bool passed = true ;
 for (it = tests.begin() ; it != tests.end();
 it++) {
 const int test = (*it).first ;
 const string expected = (*it).second;
 const string result = decToHex (test);
 if (result != expected) {
 passed = false;
 cout << "Warning: Test failed, decToHex("
 << test << ") yielded " << result
 << " expected " << expected
 << endl;
 }
 }
 if (passed) {
 cout << "Good basic tests passed, over to"
 " you" << endl;
 } else {
 cout << "Warning: At least one basic test"
 " failed" << endl;
 }
}
// Main routine
int main (int argc, char* argv[])
{
 basic_tests();
 // test it
 while (true) {
 int dec_int;
 cout << "Please enter a decimal number ";
 cin >> dec_int;
 if (!cin.good()) {
 throw runtime_error(
NOV 2009 | | 35{cvu}

 "Error detected on input stream");
 }
 if (dec_int < 0) {
 break;
 }
 cout << dec_int << " in hexadecimal is "
 << decToHex (dec_int) << endl;
 }
 return 0;
}

Nevin Liber <nevin@eviloverlord.com>

The basic algorithm is, for each 4-bit nybble from least significant to most
significant, append the corresponding printable character to a string. When
done, reverse the string.
As written, there are three bugs in the program:

Bug #1: 4-bit nybbles are being converted from their internal value
(what the author calls ‘decimal’, but that is really a misnomer) to a
corresponding printable hexadecimal character using the system
encoding (ASCII, EBCDIC, etc.)
For the nybbles 0 through 9, the encoding is not 0 through 0 but
rather '0' through '9'. '0' converted to an ASCII encoding would have
a value of 48, converted to EBCDIC would be 240, etc.
While I know that both ASCII & EBCDIC are contiguous with
respect to the encodings of '0' through '9', I don't actually need to
make that assumption in this program. At this point, I'll just add 10
more case statements (and show a more elegant solution later; first
get it working, then improve the style), and eliminate the default
case statement (since it is not necessary).
Bug #2: It doesn’t work for 0, as the entire conversion is skipped.
Whenever possible, I prefer code which doesn't have a bunch of
special cases, as I find it easier to reason about the purpose and
correctness of that code. For this problem, I noticed that it will
correctly process 0 if it goes through the loop at least one time (and
for all other numbers it will go through the loop at least one time
anyway), and I can get this behavior by changing the while { /*
... */ }; loop to a do { /* ... */ } while (/* ...
*/); loop.
Bug #3: It doesn’t work for negative numbers. In C++, division
rounds towards 0, which surprisingly may involve rounding up
(example: -1 / 16 == 0) and the modulus operator involving any
negative numbers has a sign that is implementation-defined.
To quote the 2003 C++ Standard section 5.6 Multiplicative
Operators:
"If the second operand of / or % is zero the behavior is undefined;
otherwise (a/b)*b + a%b is equal to a. If both operands are
nonnegative then the remainder is nonnegative; if not, the sign of the
remainder is implementation-defined."
This is not the behaviour we want. The fix for this is to internally use
unsigned types.

Putting it all together:
// Added cases 0..9
// Changed while (...) {} to do {} while (...)
// (so num == 0 works) Changed int to unsigned (so
// negative numbers work)
void decToHex(int showNum){
 unsigned num = showNum;
 unsigned storeNum;
 do {
 storeNum = num % 16;
 switch(storeNum){
 case 0:
 cStack.push('0');
 break;
 case 1:

 cStack.push('1');
 break;
 // ...
 case 14:
 cStack.push('E');
 break;
 case 15:
 cStack.push('F');
 break;
 }
 num = num / 16;
 } while (num != 0);
 cout << showNum << " in hexadecimal is ";
 while(!cStack.empty()){
 cout << cStack.top();
 cStack.pop();
 }
}

Now that it is working, we can make improvements.
Side note: if all we cared about is making it work, we could just use the
conversion routine that comes with the stream library, as in:
 void decToHex(int showNum)
 { cout << dec << showNum << " in hexadecimal is "
 << hex << uppercase << showNum; }

and call it a day. However, the algorithm as implemented is certainly worth
looking at and improving.
Improvement #1: cStack. Besides being a global, it is a very slow and
inefficient way to reverse a string. Internally it uses a deque, which means
memory allocations are going on behind the scenes. We can do better.
Instead of using a stack to reverse the string, let us just build a (C-style)
string from right to left and output it (which works left to right) when we
are done.
How big should the array holding the C-style string be? We need one
output character for every 4 bits (nybble) in the source number. This comes
out to ceiling of the number of bits in an unsigned int divided by 4; in other
words, rounding the result up to the next integer.
In integer math, the way to calculate that is by adding 3 (the denominator
- 1) to the numerator before performing the division by 4. We also need
space for the null-terminator. The resulting calculation (consume 4 bits
of input for each character output, plus the null-terminator):
 (sizeof(unsigned) * CHAR_BIT + (4 - 1)) / 4 + 1

Note: this implementation is independent of the number of bits in
CHAR_BIT (which is found in the header <climits>).
Improvement #2: Replacing the switch statement. The switch statement
is converting a number from 0 to 15 to a corresponding character encoding.
We can do that directly by using an array. In addition, a string literal is a
succinct way of initializing that array. Note: while it is possible to use
the string literal directly, I'll need it in an array variable for the last thing
I want to do to this algorithm.
The resulting implementation is:
void decToHex(int showNum)
{
 static const char encoding[] =
 "0123456789ABCDEF";
 char cString[(sizeof(unsigned) * CHAR_BIT +
 3) / 4 + 1];
 // just past the end of cString
 char* converted(cString + sizeof(cString));
 // null terminate the string
 *--converted = '\0';
 *--converted = '\0';
// Build the cString in reverse order
 unsigned num(showNum);
 do { *--converted = encoding[num % base]; }
 while (num /= base);
36 | | NOV 2009{cvu}

 cout << showNum << " in base 10 (signed) is "
 << converted << " in base " << base
 << " (unsigned)";
}

Commentary
The original code did have a number of problems – both in terms of actual
bugs but also in terms of poor design. I think between them the entrants
covered the code in great detail.
As is common with the format of this code critique column, a precise
definition of the problem being solved was missing. So Martin’s opening
remark (‘Initially, I thought I’d talk to Roger to learn more …’) was a very
good place to start.
The four entrants made different decisions about what the program ought
to do with negative numbers – who knows which was correct? Perhaps
this might have been a chance to discuss how to help the writer of the code
learn to anticipate this sort of question earlier.
My view is that this is a bad function to write yourself – unless there are
very strong reasons I’d suggest using the streaming operators as the
resultant code is then ‘obviously correct’. Additionally, the decision about
what to do with negative numbers then becomes simply a choice of using
int or unsigned int.

The Winner of CC 59
It was very hard to pick a winner this time round; all four entrants did a
good job of providing a critique of the code. I liked Damien’s treatment
using a test driven style and Joe’s explanation with pictures of what was

going on. Nevin’s solution demonstrated a more optimised solution which
is portable across different architectures.
On balance I’ve decided to award the prize to Martin, for a combination
of the main solution and the other alternative ways that he presented to
solve the problem.
As usual, thank you to all those who entered the competition.

Code Critique 60
(Submissions to scc@accu.org by Dec 1st)
I’m trying to write a simple high precision integer class, using an array of
chars as the representation. I’ve started, but have problems with my tests
– the second output is wrong. I also want to be able to stream a bignum as
a string, but I can’t – any ideas?

The code is in Listing 2. You can also get the current problem from the
accu-general mail list (next entry is posted around the last issue’s deadline)
or from the ACCU website (http://www.accu.org/journals/). This
particularly helps overseas members who typically get the magazine much
later than members in the UK and Europe.

-- bignum.h --
#include <string>
#include <vector>

class bignum
{
public:
 bignum(int i = 0);

 operator std::string();

 bignum & operator +=(bignum const & rhs);
private:
 std::vector<char> value_;
};

-- bignum.cpp --
#include "bignum.h"

#include <algorithm>
#include <iostream>
#include <sstream>

bignum::bignum(int i)
{
 value_.push_back(i & 0xff);
 while (i & 0xffffff00 != 0)
 {
 i >>= 8;
 value_.push_back(i & 0xff);
 }
}

bignum::operator std::string()
{
 std::ostringstream oss;
 for (int idx = 0; idx < value_.size();
 idx++)

Li
st

in
g

2

 {
 int v = value_[value_.size() - idx - 1];
 oss << std::hex << v;
 }
 return oss.str();
}

bignum & bignum::operator +=(
 bignum const & rhs)
{
 value_.resize(std::max(value_.size(),
 rhs.value_.size()));
 char carry = 0;
 int idx = 0;
 for (; idx < std::min(value_.size(),
 rhs.value_.size()); idx++)
 {
 value_[idx] += rhs.value_[idx] + carry;
 carry = value_[idx] < rhs.value_[idx];
 }
 for (; idx < value_.size(); ++idx)
 {
 value_[idx] += carry;
 carry = value_[idx] < carry;
 }
 if (carry)
 value_.push_back(1);
 return *this;
}

-- test.cpp --
#include "bignum.h"
using namespace std;
int main()
{
 bignum b(0x1234567);
 b += 1;
 // won't compile: cout << b << endl;
 cout << b.operator std::string() << endl;
 b += 0x234;
 cout << b.operator std::string() << endl;
}

Listing 2 (cont’d)
NOV 2009 | | 37{cvu}

http://www.accu.org/journals/

FORTRAN 77: A Structured, Disciplined
Style Based on 1977 American
National Standard FORTRAN and
Compatible with WATFOR, WATFIV,
WATFIV-S, and M77 FORTRAN Compilers
By Gordon B. Davis and Thomas R. Hoffmann,
published by McGraw-Hill, 2nd edition, copyright
1983, ISBN 007Y662622

Reviewed by Colin Paul Gloster

As I have become involved with porting legacy
FORTRAN 77 code, the appearance of the
words ‘Structured’ and ‘Disciplined’ in the title
caused me to hope that this would be a relatively
good book, considering the inherent drawback
of the language involved. Unfortunately my
optimism was too... optimistic. I was not so
naive at the beginning as to hope that the co-
authors would overcome the deficiencies of
FORTRAN 77 (for example, the maximum
identifier length is still six characters long in
FORTRAN 77), but I hoped that it would be
more blatant in its reservations concerning
error-prone parts of the language and actually
encourage fairly good practice for its time.
Though early parts of the book contain
acceptable advice, better programming
techniques should have been introduced much
earlier (so as to be mentally absorbed by
repetition throughout the book), examples
include the late introduction of functions on
Page 237; and symbolic names were used for
constants throughout the book, but these
symbolic names were for FORTRAN variables
instead of FORTRAN constants and it was only
in the last chapter that it was shown how to use
the language to enforce constancy with the

PARAMETER keyword. Much worse, promotion
of error-prone techniques (examples include not
bothering with explicitly declaring the datatypes
used; and the COMMON keyword for placing
variables in the same memory location) and
dangerously incomplete descriptions of major
parts of the language prevent any
recommendation to use this book, despite some
good tips. The main dangerously incomplete
description is the lack of a warning that
FORTRAN compilers accept mismatches
between formal parameters and actual
parameters, which in the year 2008 is still a
common problem with FORTRAN.
In 2007, looking at the Usenet newsgroup
news:comp.lang.fortran was more productive in
discovering major extant flaws in Fortran than
reading this book. However, newer Fortran
standards have added more problems than those
restricted to FORTRAN 77. I learnt from this
book of the bizarre addition in FORTRAN 77 of
a rule making whitespace in an identifier
irrelevant, but that is mild in relation to newer
examples of how the language becomes worse.
Otherwise better languages rely on libraries or
work-arounds for some of the in-built
mathematical capabilities of FORTRAN which
boasts non-integer exponents and a COMPLEX
data type. Of the four books which I have read
from cover to coverwith substantial FORTRAN
in them (two books on numerical methods and
two books on FORTRAN programming), this
one has by far the most coverage and usage of
the COMPLEX data type. How much? Barely
more than a paragraph. However, an in-built

COMPLEX data type mattered to one FORTRAN
programmer I once met at a conference.
The first apparent syntactic influence of
FORTRAN 77 (as opposed to earlier
FORTRAN versions) on another language
seems to be the adoption of the colon for an array
range in MATLAB. Though using a colon in a
range was copied from FORTRAN 77, it was in
turn copied from ALGOL, which may have
copied it from somewhere else for all I know.
(Did you know that ALGOL 68 was not the last
version of ALGOL? A newer version was
published after FORTRAN 77. Some people do
not know when to give up.)
This edition of the book is dated 1983, and the
first edition was dated 1978 and was also
supposedly on FORTRAN 77. However, the
aforementioned issue with the PARAMETER
keyword is a piece of evidence that FORTRAN
77 was not the primary educational theme
throughout the 1983 edition so I doubt that the
1978 edition differed in this regard. Too much
was written with a FORTRAN 66 mindset, with
some FORTRAN 77 enhancement tacked on
before it went to print.
In the preface, the style of programming taught
in the book was misleadingly described as
‘structured’ and leading to ‘well-designed’
programs. Such immodest boasts have been
made for many things throughout the history of
computers, though you may need to substitute
the word ‘structured’ for another word in other
decades. Instances of code replication
encouraging unmaintainable messes when
scaled up abound in this book such as on pages
74; 79; 101; 107; 256; and 358, for example
Listing 1 appears on page 107 which reminded
me of a more recent book with a giant case
statement every branch of which contained
nothing except identically copied and pasted
instructions. That was a book by the overrated
Grady Booch on software ‘engineering’ with
‘object-oriented techniques’ to address the
‘software crisis’..

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

IF((HRSWRK .LT. 0.0) .OR. (HRSWRK .GT. 60.0)) THEN
 PRINT *, 'ERROR IN INPUT DATA'
 GOTO 101
 ELSIF((WGRATE .LT. 0.0) .OR. (WGRATE .GT. 10.0)) THEN
 PRINT *, 'ERROR IN INPUT DATA'
 GOTO 101
 ELSIF((DEDUC .LT. 0.0) .OR. (DEDUC .GT. 35.0)) THEN
 PRINT *, 'ERROR IN INPUT DATA'
 GOTO 101
ENDIF

Li
st

in
g

1

If you read something in
C Vu that you particularly
enjoyed, you disagreed
with or that has just made

you think, why not put pen to paper (or finger
to keyboard) and tell us about it?
38 | | NOV 2009{cvu}

Computer Algorithms:
Introduction to Design &
Analysis
By Sara Baase and Allen Van Gelder,
published by Addison Wesley, 3rd
edition, 2000, 675 pages

Introduction to Algorithms
By Thomas H. Cormen, Charles E. Leiserson and
Ronald L. Rivest, published by The MIT Press, (C)
1990, 18th printing, 1997, 990 pages

Algorithms: A Functional
Programming Approach
By Fethi Rabhi and Guy Lapalme,
published by Addison-Wesley, 2nd
edition, 1999, 232 pages

Reviewed by Colin Paul Gloster.

Computer Algorithms: Introduction to Design &
Analysis and Introduction to Algorithms are
normal textbooks on general-purpose
algorithms for a wide variety of problems.
Algorithms: A Functional Programming
Approach is also a general-purpose book, but the
choice of Haskell and the small page count
(arising from fewer topics and shallow coverage
instead of any supposed advantage of Haskell)
make it obviously different at a first glance.
However, a surprising difference which became
apparent after I started reading it is that Rabhi
and Lapalme concentrated on space complexity
instead of time complexity. Bearing that major
drawback in mind, it is a fairly good book,
though it is yet another unconvincing attempt at
functional advocacy, and it is overpriced.
As for the other two books, they are big as books
on algorithms should be. More algorithms are
covered (or at least mentioned) in Introduction
to Algorithms, but there are more details in
Computer Algorithms: Introduction to Design &
Analysis for the algorithms covered therein.
(Fewer problems are covered in Algorithms in

C++: Parts 1-4: Fundamentals; Data
Structures; Sorting; and Searching by Robert
Sedgewick and Christopher J. Van Wyk, but at
even greater depth.)
Cormen et al. used pseudocode with various
mathematical symbols such as arrows which are
not on normal keyboards (unless old APL
keyboards are more common than I thought),
whereas Baase et al. used a pseudo-language
based on what used to be Java. Their
preconditions and postconditions in Javadoc
comments indicate that Eiffel would have been
better but Java’s marketing was not mentioned
as one of the factors contributing to the choice
to use Java. A lot more recursion and fewer
overwriting assignments were used than in other
imperative programs, but not to an extent
qualifying as functional programming.
Sometimes they used zero-based indexing,
sometimes they used one-based indexing: Ada
would have been better than Java.
Baase et al. suggested ‘Accelerated Heapsort
may become the sorting method of choice’ but I
do not believe that this has happened. They
waited until Page 650 to warn ‘With currently
available compilers, a program written in Java
runs more slowly than a program written in C’.
They recommended converting exceptions into
errors because handling exceptions would be
necessary but handling errors are merely
optional.
The books under review are not particularly
biased towards a specific application domain,
but Introduction to Algorithms has a few
examples of how algorithms are useful for
electronic engineering and it also has a chapter
on arithmetic hardware.
The books under review mainly deal with
sequential algorithms for tractable problems.
The chapter by Baase and Van Gelder on parallel
algorithms conveyed the point that the relative
merits of algorithms changes if they are to be run

on uniprocessors or multiprocessors better than
the other books. Instead of plainly revealing
important points in the bodies of the chapters,
Cormen et al. left too much to exercises. Their
chapter on dynamic programming is better than
the one by Baase and Van Gelder.
These books are fairly old so smoothed analysis
is not in them.
Only a very small selection of numerical
methods is presented in these books, but
Introduction to Algorithms and Computer
Algorithms: Introduction to Design & Analysis
are much closer to the state of the art on
multiplying
dense matrices
than every book
dedicated to
numerics which I
have read.

The following bookshops actively support
ACCU (offering a post free service to UK
members – if you ever have a problem with
this, please let me know – I can only act on
problems that you tell me about). We hope
that you will give preference to them. If a
bookshop in your area is willing to display
ACCU publicity material or otherwise
support ACCU, please let us know so they
can be added to the list

Holborn Books Ltd
(020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford
(01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
NOV 2009 | | 39{cvu}

40 | | NOV 2009

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Jez Higgins
chair@accu.org

Loud, energetic, chaotic? If you
have kids, do they match that
description? No? Lucky you.
Mine do. Since they were big enough to walk in
a reasonably competent way, my kids, currently
9 and 6, have been keen on sport. Since we live
in the middle of a thumping great city, there are
a wealth of sporting opportunities available
more or less on our doorstep, which we take fair
advantage of. As a parent, there are two main
ways to engage in your kids’ sports clubs. One
common choice is acting as little more than a
taxi service – deliver child, take child home
again, fill the gap inbetween reading the paper/
Cosmo/email/paperback. Slightly less popular is
actually engaging – simply knowing the coach’s

name is a start, watching the match/training
session/etc, learning a bit more about the sport
(my kids don’t do football), going to see a high-
level game or two (and generally quite cheap),
learning when the team/squad/etc have done
well or badly, and so on. I’d recommend
engaging, because it’s bags more fun.
Last weekend, I was gently manhandled into
considering becoming Chair of the junior
section of my kids’ hockey club. I wasn’t
surprised, although I did fleetingly think ‘no
good deed ..’. The various advantages of my
taking the position were laid out. I’m not an
insider because I’m not a member of the senior
club. I have a long term interest because if they
both carry on playing hockey I could spent two
hours on the astroturf every Sunday for the next
ten or eleven years, and so on. On the plus side,
the meetings aren’t particularly frequent and I

wouldn’t have to take up the position until April
next year. So I’m considering.
Next April coincides with my stepping down
from my position here as ACCU Chair. Happily
we won’t need to ‘suggest’ people into the role,
as a candidate has expressed an interest in
standing. If you are interested, or even merely
inclined towards, getting involved in running the
organisation, you don’t have to wait for the
AGM to roll around. The mentored developer
programmes, for instance, are driven by
people’s interest, as are the local groups. Even
the conference, on which Giovanni and the
conference committee to expend a great deal of
time and energy, would amount to nothing were
it not for those who propose sessions and those
who attend them. That may seem a little
obvious, but it is worth repeating. Engage, it’s
more fun.

Erratum
The article ‘Interpreting Custom
Unix Shell Scripts in C’ by Ian
Bruntlett in the September issue of
CVu should have inc luded a
program l i s t ing , wh ich
unfortunately got left out during
editing. Here it is, including some
minor changes suggested by the
readership of ACCU-General.

// hashbang.c

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main (int argc, char *argv[])
{
 char buffer[100];

 // handle parameters
 printf("Hello World from %s with %d arguments\n", argv[0], argc);
 printf("argv[0] interpreter name\n"
 "argv[1] shell script name\n"
 "argv[2] etc - shell script arguments\n"
);

 int i=0;
 for (i=0; i<argc; ++i)
 {
 printf ("Interpreter : %d arg is %s\n", i, argv[i]);
 }

 // read interpreter commands
 if (argc < 2)
 {
 printf("Interpreter : Insufficient parameters to interpreter\n");
 return EXIT_FAILURE;
 }

 FILE *fpScript = fopen(argv[1], "r");
 if (fpScript == NULL)
 {
 printf("Interpreter : unable to open script file %s\n", argv[1]);
 return EXIT_FAILURE;
 }

 while (fgets(buffer, 100, fpScript) != NULL)
 {
 printf("SCRIPT LINE : %s", buffer);
 }

 return EXIT_SUCCESS;
}

	Reflections on Learning
	Respect the Software Release Process
	Java Dependency Management with Ivy
	Charming the Snake
	Deciding Between IF and SWITCH When Writing Code
	Beyond Pipelining Programs in Linux
	What is C++0x?
	A Game of Cards with Baron Muncharris
	On a Game of Dice
	Desert Island Books
	Inspirational (P)articles
	Code Critique Competition 60
	Bookcase
	Erratum
	View From The Chair

