

SEP 2009 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

ACCU Archaeology
he call for participation at the ACCU Conference 2010 came
in to my inbox a short while ago. It was followed fairly
closely by the announcement of the one-day

conference at Bletchley Park, inspired by the legendary
Enigma code-breakers.
I first joined ACCU around the time of the last ACCU
Autumn Conference – actually called the Java and C/C++
(JaCC) Conference, held at the Oxford Union in September
1999. I didn’t attend, but a bit of hunting brought me the
session details. The old Russian ACCU mirror site still has some
references, which you can find at http://www.accu.informika.ru.
The schedule, as far as programming languages went, was
predominantly C++, with Java and C fighting a close second. It
would be a couple of years until C# and Python began to make an
appearance. In 2001, JaCC became the ACCU Spring
Conference, which is now just the ACCU Conference.
That the ACCU has diversified from its origins in C and C++
is a great thing, driven by its members: what they want to hear
about at the conferences, and read about in the journals. The 2009
Autumn Conference at Bletchley Park is an excellent example of
that, having been driven and organised entirely by members
Astrid Byro and Alan Lenton. The world of computer software development (which
is, after all, what most if not all of us are about) is a rich and varied thing. No one of
us can know about all of it, but collectively, as an organisation, the members of the
ACCU represent a huge amount of knowledge in one area or another.
If there’s something you’d like to see in the journals (CVu or Overload), then let us
know. Even better, write it, and share it with everyone. Many articles are written by
experts, but yet more are written by non-experts who want to share their experiences
and pass on what they’ve learned.
And if there’s something you want to hear about at the conference, then submit a
proposal; there’s no better way of learning about a thing than giving a presentation
on it.
This is your magazine, the conference is your conference, and the ACCU is your
organisation. It is, in the end, what you make of it. ‘By Programmers, For
Programmers’..

 T
Volume 21 Issue 4
September 2009

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Ian Bruntlett, Pete Goodliffe,
Paul Grenyer, Richard Harris,
Alan Lenton, Roger Orr,
Linda Rising, Bjarne Stroustrup

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | SEP 2009

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
16 Desert Island Books

Paul Grenyer introduces
Jon Jagger.

18 Code Critique #59
The winner of last week’s
competition.

26 Insirational (p)articles
Frances Buontempo
introduces Linda Rising’s
inspiration.

26 ACCU Security – Yesterday,
Today and Tomorrow
ACCU announce a 1-day
conference at Bletchley
Park.

REGULARS
27 Bookcase

The latest roundup of
ACCU book reviews.

28 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 21.5: 1st October 2009
C Vu 21.6: 1st December 2009

Overload 94: 1st November 2009
Overload 95: 1st January 2010

FEATURES
3 Don’t Ignore That Error!

Pete Goodlliffe never fails to manage failure.

4 Java Dependency Management with Ivy
Paul Grenyer looks into Ivy to help with Java
dependencies.

7 Hunting the Snark (Part 4)
Alan Lenton investigates engineering in software.

8 What is C++0x?
Bjarne Stroustrup examines some of the changes to the
C++ language for C++0x.

14 Interpreting Custom Unix Shell Scripts in C
Ian Bruntlett learns how to write an interpreter for a
custom script language.

15 A Game of Dice
Baron Muncharris sets a challenge.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

SEP 2009 | | 3{cvu}

Don’t Ignore That Error!
Pete Goodliffe never fails to manage failure.

ettle yourself down for an apocryphal bedtime story. A
programmer’s parable, if you will...
I was walking down the street one evening to meet some friends in a
bar. We hadn’t shared a beer in some time and I was looking forward
to seeing them again. In my haste, I wasn’t looking where I was going.
I tripped over the edge of a curb and ended up flat on my face. Well,
it serves me right for not paying attention, I guess.

It hurt my leg, but I was in a hurry to meet my friends. So I pulled
myself up and carried on. As I walked further the pain was getting
worse. Although I’d initially dismissed it as shock, I rapidly realised
there was something wrong.

But, I hurried on to the bar regardless. I was in agony by the time I
arrived. I didn’t have a great night out, because I was terribly
distracted. In the morning I went to the doctor and found out I’d
fractured my shinbone. Had I stopped when I felt the pain, I’d’ve
prevented a lot of extra damage that I caused by walking on it.
Probably the worst morning after of my life.

Too many programmers write code like my disastrous
night out.
Error, what error? It won’t be serious. Honestly. I can
ignore it. This is not a winning strategy for solid code. In
fact, it’s just plain laziness. (The bad sort.) No matter how
unlikely you think an error is in your code, you should
always check for it, and always handle it. Every time. If you
don’t, you’re not saving time, you’re storing up potential
problems for the future.

The mechanism
We report errors in our code in a number of ways, including:

Return codes. A function returns a value. Some of which mean ‘it
didn’t work’. Error return codes are far too easy to ignore. You
won’t see anything in the code to highlight the problem. Indeed, it’s
become standard practice to ignore some standard C functions’
return values. How often do you check the return value from
printf?
errno This is a curious C language aberration, a separate global
variable set to signal error. It’s easy to ignore, hard to use, and leads
to all sorts of nasty problems – for example, what happens when you
have multiple threads calling the same function?

Exceptions are a more structured language-supported way of
signalling and handling errors. And you can’t possibly ignore them.
Or can you? I’ve seen lots of code like this:

 try {
 /// ...do something...
 }
 catch (...) {} // ignore errors

The saving grace of this awful construct is that it highlights the fact you’re
doing something morally dubious.

The madness
Not handling errors leads to:

Brittle code, full of hard-to-find crashes.
Insecure code. Crackers often exploit poor error handling to break
into software systems.

Bad structure. If there are errors from your code
that are tedious to deal with continually, you have
probably have a bad interface. Express it better, so
the errors are not so onerous.

Just as you should check all potential errors in your code,
you must expose all potentially erroneous conditions in
your interfaces. Do not hide them, and pretend that your
services will always work.

Programmers must be made aware of programmatic errors. Users must be
made aware of usage errors.
It’s not good enough to log an error (somewhere), and hope that a diligent
operator will notice an error and do something about it one day. Who
knows about the log? Who checks the log? Who is likely to do anything
about it? If program termination is not an option, ensure that problems are
flagged up in an unobtrusive, but obvious and non-ignorable manner.

The mitigation
Why don’t we check for errors? There are a number of common excuses.
Which of these do you agree with? How you would you counter each of
them?

Error handling clutters up the flow of the code, making it harder to
read, and harder to spot the ‘normal’ flow of execution.
It’s extra work and I have a deadline looming.
I know that this function call will never return an error (printf
always works, malloc always returns new memory, and if it fails
we have bigger problems...)
It’s only a toy program, and needn’t be written to a production-
worthy level.

Conclusion
This is a very short article. It could be much, much longer. But doing so
would be an error. The message is simple: Do. Not. Ignore. Errors.
Ever.

S

Professionalism in Programming # 57

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net

Why don’t we
check for

errors?

Java Dependency Management with Ivy
Paul Grenyer looks into Ivy to help with Java dependencies.

long with the rich enterprise libraries that come as part of the
language, one of the biggest advantages of Java is the vast number
of third party libraries available. For example if you are writing an

enterprise web application, GWT [1], Spring [2] and Hibernate [3] provide
a framework with a huge amount of pre-existing functionality.
The size and number of dependencies grows as your application grows.
GWT and Spring alone, without their dependencies, are more than 7MB.
The ideal place to put dependencies is in a source control repository as
part of your project so that when you or your continuous integration server
check out the project for the first time all the dependencies are there. Then
you don't have to go and get them and store them locally in a location that
is agreed by the entire development team.
Storing the dependencies for a single project in a source control repository
isn't too bad, provided there is plenty of room on the source control server..
However, if you have more than one project using the same or similar sets
of dependencies the amount of space taken up in the source control
repository starts to get a bit ridiculous. And then when a new version of a
library comes out and you upgrade, even more space is wasted as the
differences between binary jars cannot be detected, so the entire jar must
be replaced.

Solutions to dependency storage
There are a number of ways to solve the problem of dependencies taking
up too much space in a source control repository.
You could check your dependencies into a single place in the repository,
which does mean they're still taking up some space, and then use a link
(e.g. svn externals [4]) to each project so that when the project is checked
out the dependencies are checked out as well. Although this would work
well it can be a pain to set-up and maintain, especially if you link to
individual jars.
Maven [5] allows you to specify which dependencies you need and
automatically downloads them for you when you check your project out.
This means you do not have to check your dependencies into your source
control system, just maintain a configuration file. The drawbacks are that
you're restricted to the third party libraries available via Maven and you
have to buy into the whole Maven project layout and configuration.
Ivy [6] provides the dependency management features of Maven, without
the need to buy into any particular project layout. The default locations to
download dependencies from are the Maven repositories, but you can also
specify other locations and set-up your own own local repositories. Ivy
creates a local cache and retrieves dependencies from it every time a
project is checked out or another dependency is added.
Ivy represents the best solution as you don't need to store any dependencies
in your source control system and you're not restricted to a particular
project layout. In this article I am going describe how to use Ivy to manage
dependencies for a Java project using Ant [7] and the IvyDE [8] plugin for
Eclipse [9].

Using Ivy with Ant
To use Ivy with Ant, download the latest release of Ivy from the Ivy
website, extract the Ivy jar file (at time of writing: ivy-2.1.0-
rc2.jar) and either:

copy it to Ant's lib directory (ANT_HOME\lib)
copy it to another directory and use an Ant taskdef task to
reference it (Listing 1)

The easiest way to demonstrate using Ivy with Ant is with a simple
application that has a single dependency (Listing 2).
This application uses the apache.commons.lang library to correctly
title-case a simple message. The basic Ant script (build.xml) for an
application like this is as in Listing 3.
It only does two things:

1. Creates a bin folder for the compiled class files.
2. Attempts to compile java files into class files.

A ‘E

PAUL GRENYER
An active ACCU member since 2000, Paul is the founder
of the Mentored Developers. Having worked in industries
as diverse as direct mail, mobile phones and finance,
Paul now works for a small company in Norwich writing
Java. He can be contacted at paul.grenyer@gmail.com

<path id="ivy.lib" >
 <pathelement location =
 "thirdparty\ivy\ivy-2.1.0-rc2.jar"/>
 </path>

<taskdef uri="antlib:fr.jayasoft.ivy.ant"
 resource="fr/jayasoft/ivy/ant/antlib.xml"
 classpathref="ivy.lib"/

Listing 1

import org.apache.commons.lang.WordUtils;

public class IvyAnt
{
 public static void main(String[] args)
 {
 final String msg = "hello, world!";
 System.out.println(
 WordUtils.capitalizeFully(msg));
 }
}

Listing 2

<project name = "IvyAnt" basedir="."
 default = "compile" >
 <property name = "src.dir"
 value="${basedir}/src" />
 <property name = "bin.dir"
 value="${basedir}/bin" />

 <target name = "init">
 <mkdir dir = "${bin.dir}"/>
 </target>

 <target name = "compile" depends= "init">
 <javac srcdir="${src.dir}"
 destdir="${bin.dir}" fork="true">
 </javac>
 </target>
</project>

Listing 3
4 | | SEP 2009{cvu}

If run from the command line it fails as it cannot find the jar file for
apache.commons.lang. Enter Ivy!
To get Ivy to download and cache dependencies for us, we need to tell it
where to get them from. This is the purpose of the ivy.xml file
(Listing 4).
The Ivy Quick Start Guide [10] describes the format of the ivy.xml very
well, but in summary the info tag is used to give information about the
module for which we are defining dependencies. In the dependencies
section, the org and name attributes define the organization and module
name of the dependency. The rev attribute is used to specify the revision
of the module you depend on. Dependencies can be looked up in the Maven
repository [11]. Once found, the Maven POM (Project Object Model – an
XML representation of a Maven project held in a file), for example:

 <dependency>
 <groupId>commons-lang</groupId>
 <artifactId>commons-lang</artifactId>
 <version>2.0</version>
 </dependency>

can be converted to an Ivy dependency. Use the groupId as
organization, the artifactId as name, and the version as rev.
Put the ivy.xml file in the same directory as your Ant build.xml. To
get Ant to use Ivy and resolve dependencies the Ivy namespace and the
Ivy retrieve task need to be added (Listing 5).
R u nn i n g build.xml aga in w i l l down l oa d and cache
apache.commons.lang and its dependencies, but the build will still
fail. Ignore the warning about a missing Ivy settings file for the time being.
The settings file is only used if you want to use settings other than the
default. The rest of the message is telling you that Ivy is downloading the
required libraries and caching them. The default cache location is a

directory called .ivy2/cache below the user’s home directory. The
location Ivy uses as the user’s home can be changed by setting the
ivy.default.ivy.user.dir property in the build.xml file.
You should also see that a new directory called lib has been created,
which contains the apache.commons.lang jar files. The location and
name of this directory can be changed by setting the ivy.lib.dir Ant
property. Even if you use the default ivy.lib.dir value, you must
declare it as a property in build.xml so that the Java compiler knows
where to find the jars.
Even though Ivy has downloaded and cached the dependency and even
copied it to a local location within the project, the Java compiler needs to
know where to look for the jar files. This is achieved by setting up a path
id and using it as the Java compiler’s class path (Listing 6).
When you run the Ant script again you will see that Ivy recognises that it
already has the dependencies cached, so it does not download them again.
Writing the Ant task to run the application is very simple also. All you need
is a path id so that java can find the compiled class files and jar files and
a java task (Listing 7).
Running Ant one last time will give the output "Hello, World!".
As your application grows all you need to do is search for the dependencies
you need in mvnrepository.com, add them to ivy.xml and run Ant
to retrieve them. Some dependencies, such as the Microsoft SQL Server
driver for Java are not in the Maven repository and it is advantageous to
set-up a local repository to host these types of dependencies. I’ll describe
how to do this in a later article.
It’s worth making sure you are clear on the difference between a cache and
a repository. A cache is usually local. When you do a build, Ivy checks
the cache to see if you already have the required dependencies. If you do,
it uses them, otherwise it looks in the repository for them and downloads
them. Repositories can be local, but tend to be remote on the internet or
on a central server in an organisation. Maven is a repository and stores a
large number of libraries.

Using Ivy with Eclipse
Ivy is great if you’re using Ant and the command line, but what if you do
most of your development in Eclipse and you do not want to use Ant?
IvyDe is a new and relatively immature plugin. It will resolve and add the
dependencies declared in an ivy.xml file to the classpath of your Eclipse

<?xml version="1.0" encoding="UTF-8"?>
<ivy-module version="2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
 instance" xsi:noNamespaceSchemaLocation=
 "http://ant.apache.org/ivy/schemas/ivy.xsd">

 <info organisation="purpletube.net"
 module="IvyAnt" status="integration"/>
 <dependencies>
 <dependency org="commons-lang"
 name="commons-lang" rev="2.0"/>
 </dependencies>
</ivy-module>

Li
st

in
g

4 <project name = "IvyAnt" basedir="."
 default = "compile"
 xmlns:ivy="antlib:org.apache.ivy.ant">
 <property name = "src.dir"
 value="${basedir}/src" />
 <property name = "bin.dir"
 value="${basedir}/bin" />
 <property name = "ivy.lib.dir"
 value="${basedir}/lib" />

 <path id="lib.path.id">
 <fileset dir="${ivy.lib.dir}" />
 </path>

 <target name = "init">
 <mkdir dir = "${bin.dir}"/>
 <ivy:retrieve />
 </target>

 <target name = "compile" depends= "init">
 <javac srcdir="${src.dir}"
 destdir="${bin.dir}" fork="true">
 <classpath refid = "lib.path.id"/>
 </javac>
 </target>
</project>

Listing 6

<project name = "IvyAnt" basedir="."
 default = "compile"
 xmlns:ivy="antlib:org.apache.ivy.ant">

 <property name = "src.dir"
 value="${basedir}/src" />
 <property name = "bin.dir"
 value="${basedir}/bin" />

 <target name = "init">
 <mkdir dir = "${bin.dir}"/>
 <ivy:retrieve />
 </target>

 <target name = "compile" depends= "init">
 <javac srcdir="${src.dir}"
 destdir="${bin.dir}" fork="true">
 </javac>
 </target>
</project>

Li
st

in
g

5

SEP 2009 | | 5{cvu}

project. It is also an editor for ivy.xml files with auto completion. The
download instructions are the same as for most Eclipse plugins and are
given on the IvyDE website [12].
As with Ivy itself, the easiest way to demonstrate the use of IvyDE with
Eclipse is with a simple application that has a single dependency:
 import org.apache.commons.lang.WordUtils;
 public class IvyEclipse
 {
 public static void main(String[] args)
 {
 final String msg = "hello, world!";
 System.out.println(
 WordUtils.capitalizeFully(msg));
 }
 }

If you create a Java project called IvyEclipse and add the class above,
Eclipse should complain that it cannot resolve the import org.apache
or WordUtils. The solution is to add an ivy.xml file. To do this:

1. Right click on the project and go to New→Other
2. Expand IvyDE and select Ivy File.
3. Click Next
4. Click the Browser button next to the container edit box and select

the project.
5. Enter an organisation (e.g. Purple Tube) and use the project name as

the Module.
6. Click Finish.

You should be presented with the following ivy.xml file (Listing 8).
Add the dependencies from the ivy.xml in the Ant example above and
save (Listing 9).
To get Ivy to resolve the dependencies, right click on the ivy.xml file
and select Add Ivy Library. Just click Finish on the IvyDE Managed

Libraries dialog box for the time being. Then a new element will appear
in the project tree called ivy.xml [*] and the project errors will be resolved.
Expand the element to see that org.apache.common.lang is being
referenced in the Ivy cache.
Unlike Ivy, IvyDE does not copy the dependencies to the project. If you
require this behaviour, for example if you need to copy dependent jar files
to a web application’s WAR directory, you need to use IvyDE in
conjunction with Ivy and Ant and set the ivy.lib.dir property
appropriately. Ivy Ant tasks and IvyDE will happily share the same
ivy.xml.
When you modify ivy.xml and save it or check the project out of a
source control system, IvyDE should resolve automatically. However, if
it does not, right click on ivy.xml [*] and select Resolve.

Conclusion
Ivy itself is a well featured, immediately useful tool. It has allowed my
team to significantly reduce the amount of space used in our subversion
repository, while remaining in complete control of our dependencies. In
this article I have only scratched the surface of what it can do. I am
intending to explore its capabilities further in future articles.
IvyDE still feels very new and needs some work. It is mostly a
convenience, replacing the need to run ant to resolve dependencies. I am
hoping it’s going to come along soon. For now I am tempted to start trying
to add features myself.

References
[1] Google Web Tool Kit:
[2] Spring Framework: http://www.springsource.org/
[3] Hibernate Object Resource Mapper: https://www.hibernate.org/
[4] Svn Externals: http://svnbook.red-bean.com/en/1.0/ch07s03.html
[5] Maven Software Project Management: http://maven.apache.org/
[6] Ivy, The Agile Dependency Manager: http://ant.apache.org/ivy/
[7] Ant: http://ant.apache.org/
[8] Ivy Eclipse Plugin: http://ant.apache.org/ivy/ivyde/
[9] Eclipse IDE: http://www.eclipse.org/
[10] Ivy Quick Start Guide: http://ant.apache.org/ivy/history/2.1.0-rc1/

tutorial/start.html
[11] Maven Repository: http://mvnrepository.com/
[12] IvyDE Download Instructions: http://ant.apache.org/ivy/ivyde/

download.cgi

<project name = "IvyAnt" basedir="."
 default = "run"
 xmlns:ivy="antlib:org.apache.ivy.ant">
 <property name = "src.dir"
 value="${basedir}/src" />
 <property name = "bin.dir"
 value="${basedir}/bin" />
 <property name = "ivy.lib.dir"
 value="${basedir}\lib" />

 <path id="lib.path.id">
 <fileset dir="${ivy.lib.dir}" />
 </path>
 <path id="run.path.id">
 <path refid="lib.path.id" />
 <path location="${bin.dir}" />
 </path>

 <target name = "init">
 <mkdir dir = "${bin.dir}"/>
 <ivy:retrieve />
 </target>
 <target name = "compile" depends= "init">
 <javac srcdir="${src.dir}"
 destdir="${bin.dir}" fork="true">
 <classpath refid = "lib.path.id"/>
 </javac>
 </target>
 <target name = "run" depends= "compile">
 <java classpathref="run.path.id"
 classname="IvyAnt"/>
 </target>
</project>

Li
st

in
g

7 <?xml version="1.0" encoding="ISO-8859-1"?>
<ivy-module version="2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
 instance" xsi:noNamespaceSchemaLocation=
 "http://ant.apache.org/ivy/schemas/ivy.xsd">
 <info
 organisation="Purple Tube"
 module="IvyAnt"
 status="integration">
 </info>
</ivy-module>

Listing 8

<ivy-module version="1.0">
 <info organisation="Purple Tube"
 module="IvyEclipse" status="integration"/>
 <dependencies>
 <dependency org="commons-lang"
 name="commons-lang" rev="2.0"
 conf="default"/>
 </dependencies>
</ivy-module>

Listing 9
6 | | SEP 2009{cvu}

SEP 2009 | | 7{cvu}

Hunting the Snark (Part 4)
Alan Lenton investigates engineering in software.

Manager: ‘I want some serious answers. How long will this program take
to make?’

Programmer:‘45 seconds give or take 5 seconds.’

Manager: ‘Don’t be ridiculous!’

nd yet it’s actually true. Before I justify this statement, lets step back
a bit and take a wider look at what provoked this somewhat
contentious idea.

I was perusing the ACCU General mailing list, as one does, when someone
asked whether people thought software engineering was a true branch of
engineering. The question flowed out of a discussion on what the use of
membership of the British Computer Society (BCS) was. There was quite
a lot of discussion on the issue – hotly debated different views and the usual
multiple branches off into different topics. One of the great things about
ACCU general is that you never know who is going to hijack your thread
and take it somewhere you never thought of. (Hi, Paul!)
This got me thinking and doing a bit of research on the web. The first thing
I had a look at was the latest 44 page magnum opus entitled Engineering
Values in IT from the BCS, Royal Academy of Engineering, and the
Institution of Engineering and Technology [1]. Predictably, the report’s
conclusions fell into the programming is now mature, therefore it should
be a profession, and we should have its practitioners required to have
professional chartered status.
To quote from the document summary:

The concerns of this report relate to the area of IT dealing with the
development of software-based IT systems. This area of IT has
benefited greatly from the input of engineering methods and skills. It is
the argument of this report that IT systems engineering has now reached
the point of maturity where it is a codified discipline that must be
recognised as a required capability for system developers. Like all
branches of engineering, IT systems engineering has a basis in scientific
theory.

I think they should give a citation to the Wizard of Oz who first pointed
out that you don’t need a brain, you only need a diploma... [2]
The problem is that, among other things, the idea that the ‘maturity’ of a
discipline is a sufficient condition for declaring it a profession requiring

t he me mbe rsh ip o f a
professional body to practise is
unproven. The scientific basis
of software engineering is also
a matter of opinion. I posted to
ACCU General, pointing out
t ha t t he eng i ne e r ing
discip l ines are based on
physical laws, and asking what
physical laws programming
was based on. No one came up
with an answer. Neither did
the BCS et al document.
So what else is out there?
Well, as it happens, the well
respected Tom DeMarco,
inventor of the term software
engineering, has recently
written a redux on this very
issue. In a short and pithy piece
i n Vi ewpo in t s en t i t l e d

‘Software Engineering: An idea whose time has come and gone?’ [3]. It’s
only two pages, but it takes a sharp look at his 1982 book on software
metrics [4], and comes to the conclusion that he was wrong. Wrong
because you can’t measure everything, and wrong because you can control
what you can’t measure. Though, of course, it’s more difficult!
Interestingly, he points out that it makes excellent sense to engineer
software, but that isn’t what ‘software engineering’ has come to mean. He
also looks at controlling software in terms of its Return on Investment
(RoI). To use his example, consider two projects. Project A will eventually
cost about a million dollars and produce value of around $1.1 million.
Project B will eventually cost about one million dollars and will eventually
produce value of around $50 million. Clearly the most important thing for
project A is controlling the costs, or it will make a loss. The most important
thing for project B is making sure that it realises its potential!
Actually, the real question we need to ask is, ‘Why on earth are we wasting
time on so many projects like project A that only produce marginal value?’
Moving on, the next piece of interesting writing on the topic I found was
a paper by Chuck Connell in Dr.Dobbs, entitled ‘Software Engineering !=
Computer Science’ [5]. I guess the title says it all. Connell draws a line.
Below it are things like complexity, algorithms, cryptography, network
analysis, and queuing theory. This he refers to as ‘clean’, meaning that they
are formal mathematical entities which can be proven.
Above the line, which he refers to as the ‘bright line’, are things like design
patterns, architectural style, estimation, portability, testability, and
maintainability (I would also add usability to his list). These parts he argues
are inherently messy, and the reason is that they involve humans. He
proposes a thesis – Connell’s Thesis: Software engineering will never be
a rigorous discipline with proven results, because it involves human
activity.
Hmm. I’m not convinced. Are regular engineers not human? Do humans
not use the product of the engineering discipline? Connell is, in my view
definitely on to something, but, I don’t think his conclusions are correct.
(Read his paper, it’s only three pages, easy to read and well argued. You
may feel I’m doing him an injustice.)
He’s clearly correct that software engineering falls into two categories
though – a computing-science base and ‘the rest’. But why is that? We will
pursue this question further in the next issue.

References
[1] http://www.raeng.org.uk/news/publications/list/reports/

Engineering_values_in_IT.pdf
[2] http://www.filmsite.org/wiza5.html
[3] http://www2.computer.org/cms/Computer.org/ComputingNow/

homepage/2009/0709/rW_SO_Viewpoints.pdf
[4] Controlling Software Projects: Management, Measurement, and

Estimation by Tom DeMarco (Prentice Hall/Yourdon Press, 1982)
[5] http://www.ddj.com/architect/217701907

A

ALAN LENTON
Alan is a programmer, a sociologist, a games designer, a
wargamer, writer of a weekly tech news and analysis
column, and an ocassional writer of short stories (see
http://www.ibgames.com/alan/crystalfalls/index.html if
you like horror). None of these skills seem to be
appreciated by putative employers...

http://www.raeng.org.uk/news/publications/list/reports/Engineering_values_in_IT.pdf
http://www.raeng.org.uk/news/publications/list/reports/Engineering_values_in_IT.pdf
http://www.filmsite.org/wiza5.html
http://www2.computer.org/cms/Computer.org/ComputingNow/homepage/2009/0709/rW_SO_Viewpoints.pdf
http://www2.computer.org/cms/Computer.org/ComputingNow/homepage/2009/0709/rW_SO_Viewpoints.pdf
http://www.ddj.com/architect/217701907

What is C++0x?
Bjarne Stroustrup examines some of the changes to the

C++ language for C++0x.

This paper has been split into two for publication in CVu. In this first
installment, Bjarne Stroustrup examines some of the changes to the core
language of C++ for the up-coming C++0x Standard.

his paper illustrates the power of C++ through some simple examples
of C++0x code presented in the context of their role in C++. My aim
is to give an idea of the breadth of the facilities and an understanding

of the aims of C++, rather than offering an in-depth understanding of any
individual feature. The list of language features and standard library
facilities described is too long to mention here, but a major theme is the
role of features as building blocks for elegant and efficient software,
especially software infrastructure components. The emphasis is on C++’s
facilities for building lightweight abstractions.

Introduction
What is C++0x? I don’t mean ‘How does C++0x differ from C++98?’ I
mean what kind of language is C++0x? What kinds of programming are
C++0x good for? In fact, I could drop the ‘0x’ right here and attack the
fundamental question directly: What is C++? Or, if you feel pedantic,
‘What will C++ be once we have the facilities offered by the upcoming
standard?’ This is not an innocent ‘just philosophical’ question. Consider
how many programmers have been harmed by believing that ‘C++ is an
object-oriented language’ and ‘religiously’ built all code into huge class
hierarchies, missing out on simpler, more modular approaches and on
generic programming. Of course C++ also supports OOP, but a simple
label – especially if supported by doctrinaire teaching – can do harm by
overly narrowing a programmer’s view of what can be considered
reasonable code.
I will discuss the ‘what is?’ question in the context of C++0x, the upcoming
revision of the ISO C++ standard. The examples will emphasize what’s
new in C++0x, but the ‘commentary’ will emphasize their place in the
general C++ design philosophy. Despite ‘x’ in ‘C++0x’ becoming
hexadecimal, I’ll use the present tense because most features described are
already available for exploratory or experimental use (if not necessarily
all in the same implementation). Also, for the benefit of people with an
allergy to philosophy, I will discuss ideas and facilities in the context of
concrete code examples.
The rest of this paper is organized like this:

Simplifying simple tasks
Initialization
Support for low-level programming
Tools for writing classes
Concurrency
The sum of the language extensions
Standard library components
So, what does this add up to?

That is, I roughly proceed from the simple to the complex. If you want more
examples, more details, and/or more precision, see my online C++0x FAQ
[1], which contains references to the actual proposals with the names of
the people who did most of the work and to the draft standard itself [2].

Simplifying simple tasks
Much of what there is to like and dislike about a programming language
are minor details; the kind of minor design decisions, omissions, and
mistakes that escape academic attention. For C++0x, quite a bit of attention
has been paid to ‘removing embarrassments’ found in C++98 and
simplifying and generalizing rules for the use of the language and standard
library.

Deducing a type, etc.

Consider:
 cout << sqrt(2);

Obviously, this should work, but it does not in C++98: The compiler
couldn’t decide which of the several overloads of sqrt() to pick. Now
it can (there are now sufficient overloads to get a right answer), but what
if you want the value ‘right here’ and not as an argument to an overloaded
function or a template?
 auto x = sqrt(2);

By using auto instead of a specific type, you tell the compiler that the type
of x is the type of its initializer. In this case, that happens to be double.
In many templates, auto can save you from over-specification and in
some cases auto saves you from writing some long-winded type:
 for (
 auto p = v.begin(); p!=v.end(); ++p) cout <<*p;

Say that v was a vector<list<double,Myallocator<double>>>
and that a suitable definition of operator<<() for lists was available.
In this case, I saved myself from writing something like
 for (
 vector<list<double,
 Myallocator<double>>>::iterator p = v.begin();
 p!=v.end();
 ++p)
 cout <<*p;

I consider that improvement significant – even more so for a reader and a
maintainer than for the original programmer.
auto is the oldest improvement in C++0x: I first implemented it in C with
Classes in the winter of 1983/84, but was forced to take it out because of
the obvious(?) C incompatibility. Please also note that I did not say
vector< list< double, Myallocator<double> > >. We can
now do without those annoying extra spaces.
Such ‘trivial improvements’ can matter disproportionally. A tiny stone in
a boot can spoil a whole day and a tiny irregularity in a language can make
a programmer’s day miserable. However, a programmer cannot simply
remove a language irregularity – at best it can be hidden behind an interface
until a standards committee gets around to the problem.

Range for loop

Let’s step up one level from the minute to the small. Why did we play
around with iterators to print the elements in that vector? We need the

T

BJARNE STROUSTRUP
Bjarne Stroustrup designed and implemented the C++
programming language. He can be contacted at
www.research.att.com/~bs
8 | | SEP 2009{cvu}

generality offered by iterators for many important loops, but in most cases,
we don’t care about details, we just want to do something to each element,
so we can say:
 for (auto x : v) cout << x;

That’s not just shorter, but also a more precise specification of what we
do. If we wanted to access neighboring elements, iterate backwards, or
whatever, we can do so (using the familiar and general for loop), but with
this ‘range for loop’ we know that nothing complicated happens in the loop
body as soon as we see the header of the for-statement.
This range-for loop works for all ranges; that is, for every data structure
that has a beginning and an end so that you can iterate through it in the
conventional way. So it works for std::vector, std::list,
std::array, built-in arrays, etc.
Note the use of auto in that loop; I did not have to mention v’s type. That’s
good because in generic programs that type can be very hard to express.
Consider:
 template<class C> print_all(const C& v)
 {
 for (const auto& x : v) cout << x;
 }

This can be called with any ‘container’ or ‘range’ providing a begin()
and an end(). Since C was declared const and I don’t know the size of
the elements, I decorated auto with const and &.

Initialization

Trying to make rules more general and to minimize spurious typing has a
long tradition in C++ and most other languages. I suspect it is a never-
ending task, but of course the desire for uniformity of rules and simple
notation is not restricted to trivial examples. In particular, every
irregularity is a source of complexity, added learning time, and bugs (when
you make the wrong choice among alternatives). Irregularity also becomes
a barrier to generic programming, which critically depends on identical
notation for a set of types. One area where uniformity and generality is
seriously lacking in C++98 is initialization. There is a bewildering variety
of syntaxes ({…}, (…), =…, or default), semantics (e.g., copy or construct),
and applicability (can I use a {…} initializer for new? for a vector? Can
I use a (…) initializer for a local variable?). Some of this irregularity goes
all the way back to the early days of C, but C++0x manages to unify and
generalize all of these mechanisms: You can use {…} initialization
everywhere. For example, see Listing 1.
What could be simpler than initializing an int? Yet, we see surprises and
irregularities. This gets much more interesting when we consider
aggregates and containers:

 int a[] = { 1, 2, 3 };
 S s = { 1, 2, 3 }; // ok, maybe
 std::vector<int> v1 = { 1, 2, 3 }; // new in C++0x
 std::vector<int> v2 { 1, 2, 3 }; // new in C++0x

It always bothered me that we couldn’t handle v1 in C++. That violated
the principle that user-defined and built-in types should receive equivalent
support (so why does my favorite container, vector, get worse support
than the perennial problem, array?). It also violated the principle that
fundamental operations should receive direct support (what’s more
fundamental than initialization?).

When does S s = { 1, 2, 3 }; actually work? It works in C++98
iff S is a struct (or an array) with at least three members that can be
initialized by an int and iff S does not declare a constructor. That answer
is too long and depends on too many details about S. In C++0x, the answer
boils down to ‘iff S can be initialized by three integers’. In particular, that
answer does not depend on how that initialization is done (e.g. constructors
or not). Also, the answer does not depend on exactly what kind of variable
is being initialized. Consider Listing 2.
Why didn’t I just say void f1(int[])? Well, compatibility is hard to
deal with. That [] ‘decays’ to * so unfortunately void f1(int[]) is
just another way of saying void f1(int*) and we can’t initialize a
pointer with a list. Array decay is the root of much evil.
I don’t have the time or space to go into details, but I hope you get the idea
that something pretty dramatic is going on here: We are not just adding
yet another mechanism for initialization, C++0x provides a single uniform
mechanism for initializing objects of all types. For every type X, and
wherever an initialization with a value v makes sense, we can say X{v}
and the resulting object of type X will have the same value in all cases. For
example:
 X x{v};
 X* p = new X{v};
 auto x2 = X{v}; // explicit conversion
 void f(X);
 f(X{v});
 f({v});
 struct C : X {
 C() : X{v}, a{v} { }
 X a;
 // …
 };

Have fun imagining how to do that using C++98 for all types you can think
of (note that X might be a container, v might be a list of values or empty).
One of my favorites is where X is a char* and v is 7.

Support for low-level programming
There is a school of thought that all programming these days is ‘web
services’ and that ‘efficiency’ ceased to matter decades ago. If that’s your
world, the lower reaches of C++ are unlikely to be of much interest.
However, most computers these days are embedded, processors are not
getting any faster (in fact many are getting slower as multi-cores become
the norm), and all those web-services and high-level applications have to

be supported by efficient and compact
infrastructure components. So, C++0x has
facilities to make C++ a better language for
low-level systems programming (and for
programming aiming for efficiency in
general).
At the bottom of everything in a computer is
memory. Working directly with physical
memory is unpleasant and error prone. In fact,
if it wasn’t for the C++0x memory model

int v1 = 7;
int v2(7);
int v3 = { 7 }; // yes that’s legal C and C++98
int v4 {7}; // new for C++0x: initialize v4 with 7

int x1; // default x1 becomes 0 (unless x1 is a local variable)
int x2(); // oops a function declaration
int x3 = {}; // new for C++0x: give x3 the default int value (0)
int x4{}; // new for C++0x: give x4 the default int value (0)

Li
st

in
g

1

int a[] = { 1, 2, 3 };
void f1(const int(&)[]); // reference to array
f1({1,2,3}); // new in C++0x
p1 = new a[]{1,2,3}; // new in C++0x

S s = { 1, 2, 3 }; // ok, maybe
void f2(S);
f2({1,2,3}); // new in C++0x
p2 = new S {1,2,3}; // new in C++0x

std::vector<int> v2 { 1, 2, 3 }; // new in C++0x
void f3(std::vector<int>);
f3({ 1, 2, 3 }); // new in C++0x
p3 = new std::vector{1,2,3}; // new in C++0x

Listing 2
SEP 2009 | | 9{cvu}

(covered in Part 2) it would be impossible for humans to write code at the
traditional ‘C language level’. Here I’m concerned about how to get from
the world of ints, arrays, and pointers to the first level of abstraction.

Plain old data and layout

Consider
 struct S1 {
 int a, b;
 };

 struct S2 {
 S2(int aa, int bb) : a{aa}, b{bb} { }
 S2() { } // leave a and b uninitialized
 int a,b;
 };

S1 and S2 are ‘standard-layout classes’ with nice guarantees for layout,
objects can be copied by memcpy() and shared with C code. They can
even be initialized by the same {…} initializer syntax. In C++98, that
wasn’t so. They required different initialization syntaxes and only S1 had
the nice guarantees, but S2 simply wasn’t a POD (the C++98 term for
‘guaranteed well-behaved layout’).
Obviously, this improvement shouldn’t be oversold as ‘major’, but
constructors are really nice to have and you could already define ordinary
member functions for a POD. This can make a difference when you are
close to the hardware and/or need to interoperate with C or Fortran code.
For example, complex<double> is a standard-layout class in C++0x,
but it wasn’t in C++98.

Unions

Like structs, C++98 unions had restrictions that made them hard to use
together with the abstraction mechanisms, making low-level programming
unnecessarily tedious. In particular, if a class had a constructor, a
destructor, or a user-defined copy operation, it could not be a member of
a union. Now, I’m no great fan of unions because of their misuses in
higher-level software, but since we have them in the language and need
them for some ‘close to the Iron’ tasks, the restrictions on them should
reflect reality. In particular, there is no problem with a member having a
destructor; the real problem is that if it has one it must be invoked iff it is
the member used when the union is destroyed (iff the union is ever
destroyed). So the C++0x rules for a union are:

No virtual functions (as ever)
No references (as ever)
No bases (as ever)
If a union has a member with a user-defined constructor, copy, or
destructor then that special function is ‘deleted;’ that is, it cannot be
used for an object of the union type.

This implies that we can have a complex<double> as a union member.
It also implies that if we want to have members with user-defined copy
operations and destructors, we have to implement some kind of variant
type (or be very careful about how we use the objects of the unions or the
compiler will catch us). For example, see Listing 3.
I’m still not a great fan of unions. It often takes too much cleverness to use
them right. However, I don’t doubt that they have their uses and C++0x
serves their users better than C++98.
Did you notice the enum class notation above? An enum class is an
enum where the enumerators have class scope and where there is no
implicit conversion to int. I used a class enum (a ‘strongly typed
enum’) here, so that I could use tag names without worrying about name.
Also, note the use of Tag::, in C++0x we can qualify an enumerator with
the name of its enumeration for clarity or disambiguation.

General constant expressions

Compile-time evaluation can be a major saver of run time and space.
C++98 offers support for some pretty fancy template meta-programming.

However, the basic constant expression evaluation facilities are somewhat
impoverished: We can do only integer arithmetic, cannot use user-defined
types, and can’t even call a function. C++0x takes care of that by a
mechanism called constexpr:

We can use floating-point in constant expressions
We can call simple functions (‘constexpr functions’) in constant
expressions
We can use simple user-defined types (‘literal types’) in constant
expressions
We can request that an expression must be evaluated at compile time

For example, see Listing 4.
Here constexpr says that the function must be of a simple form so that
it can be evaluated at compile time when given constant expressions as
arguments. That ‘simple form’ is a single return statement, so we don’t do
loops or declare variables in a constexpr function, but since we do have
recursion the sky is the limit. For example, I have seen a very useful integer
square root constexpr function.

class Widget { // 3 alternative implementations
 // represented as a union
private:
 enum class Tag { point, number, text } type;
 // discriminant
 union { // compact representation
 point p; // point has constructor
 int i;
 string s; // string has default constructor,
 // copy operations, and destructor
 };
 // ...
 widget& operator=(const widget& w)
 // necessary because of the string
 // union member
 {
 if (type==Tag::text && w.type==Tag::text) {
 s = w.s; // usual string assignment
 return *this;
 }
 if (type==Tag::text) s.~string();
 // destroy (explicitly!)
 switch (type=w.type) {
 case Tag::point: p = w.p; break;
 // normal copy
 case Tag::number: i = w.i; break;
 case Tag::text:new(&s)(w.s); break;
 // placement new
 }
 return *this;
 }
};

Listing 3

enum Flags { good=0, fail=1, bad=2, eof=4 };

constexpr int operator|(Flags f1, Flags f2) {
 return Flags(f1|f2); }

void f(Flags x)
{
 switch (x) {
 case bad: /* ... */ break;
 case eof: /* ... */ break;
 case bad|eof: /* ... */ break;
 default: /* ... */ break;
 }
}

Listing 4
10 | | SEP 2009{cvu}

In addition to being able to evaluate expressions at compile time, we want
to be able to require expressions to be evaluated at compile time;
constexpr in front of a variable definition does that (and implies const)
– see Listing 5.
Typically we want the compile-time evaluation guarantee for one of two
reasons:

For values we want to use in constant expressions (e.g. case labels,
template arguments, or array bounds)
For variables in namespace scope that we don’t want run-time
initialized (e.g. because we want to place them in read-only storage).

This also works for objects for which the constructors are simple enough
to be constexpr and expressions involving such objects (Listing 6).
Who needs this? Why isn’t ‘good old const’ good enough? Or
conversely, as one academic in all seriousness asked, ‘Why don’t you just
provide a full compile-time interpreter?’ I think the answers to the first two
questions are interesting and relate to general principles. Think: what do
people do when they have only ‘good old const’? They hit the limits of
const and proceed to use macros for examples like the Flags one. In other
words, they fall back on typeless programming and the most error-prone
abstraction mechanism we know. The result is bugs. Similarly, in the

absence of compile-time user-defined types, people revert to a pre-classes
style of programming which obscures the logic of what they are doing.
Again, the result is bugs.
I observed two other phenomena:

Some people were willing to go to extremes of cleverness to
simulate compile-time expression evaluation: Template
instantiation is Turing complete, but you do have to write rather
‘interesting’ code to take advantage of that in many cases. Like most
workarounds, it’s much more work (for programmers and
compilers) than a specific language feature and with the complexity
comes bugs and learning time.
Some people (mostly in the embedded systems industry) have little
patience with Turing completeness or clever programming
techniques. On the other hand, they have a serious need to use ROM,
so special-purpose, proprietary facilities start to appear.

The constexpr design is interesting in that it addresses some serious
performance and correctness needs by doing nothing but selectively easing
restrictions. There is not a single new semantic rule here: it simply allows
more of C++ to be used at compile time.

Narrowing

Maybe you noticed that I used {} initialization consistently. Maybe, you
also thought that I was uglifying code and was over-enamored by a novel
feature? That happens, of course, but I don’t think that is the case here.
Consider:

 int x1 = 64000;
 int x2 { 64000 };

We can have a nice friendly discussion about the
aesthetics of those two definitions and you might
even point out that the {} version requires one
more keystroke than the = one. However, there
is one significant difference between those two
forms that makes me choose {}. The {} version
doesn’t allow narrowing and I failed to tell you

that the two definitions were written for a machine with 16-bit ints. That
means that the value of x1 could be very surprising, whereas the definition
of x2 causes a compile-time error.
When you use {} initializers, no narrowing conversions are allowed:

No narrowing integral conversions (e.g., no int-to-char
conversion)
No floating-to-integral conversions (e.g. no double-to-int or
double-to-bool conversion)
When an initializer is a constant expression the actual value is
checked, rather than the type (e.g. char c {'x'}; is ok because
'x' fits in a char)

This directly addresses a source of nasty errors that has persisted since the
dawn of C.

Tools for writing classes
Most of what is good, efficient, and effective about C++ involves
designing, implementing, and using classes. Thus, anything that is good
for classes is good for C++ programmers. People often look for ‘major
features’ and ‘solutions’, but I think of language features as building

blocks: If you have the right set of building blocks, you can
apply them in combination to provide ‘solutions’. In
particular, we need simple and powerful ‘building blocks’ to
provide general or application-specific abstractions in the
form of classes and libraries. Thus, ‘little features’ that are
unimportant in themselves may have a major impact as one of
a set of interrelated features. When designed well, the sum is
indeed greater than the parts. Here, I will just give three
examples: initializer-list constructors, inheriting constructors,
and move semantics.

Initializer list constructors

How did we manage to get a std::vector to accept a list of elements
as its initializer? For example:
 vector<int> v0 {}; // no elements
 vector<int> v1 { 1 }; // one element
 vector<int> v2 { 1,2 }; // two elements
 vector<int> v3 { 1,2,3}; // three elements
 vector<int> v4 { 1, 2, 3, 4, 5, a, b, c, d, x+y,
 y*z, f(1,d) }; // many elements

That’s done by providing vector with an ‘initializer-list constructor’
(Listing 7).
Whenever the compiler sees a {…} initializer for a vector, it invokes the
initializer constructor (only if type checking succeeds, of course). The
initializer_list class is known to the compiler and whenever we

constexpr int x1 = bad|eof; // ok
void f(Flags f3)
{
 constexpr int x2 = bad|f3; // error: can't evaluate at compile time
 const int x3 = bad|f3; // ok: but evaluated at run time
 // …
}

Li
st

in
g

5

struct Point {
 int x,y;
 constexpr Point(int xx, int yy) : x{xx}, y{yy} { }
};
constexpr Point origo { 0,0 };
constexpr int z { origo.x };
constexpr Point a[] { Point{0,0}, Point{1,1}, Point{2,2} };
constexpr int x { a[1].x }; // x becomes 1

Li
st

in
g

6

template<class T> class vector {
 vector(std::initializer_list a)
 // initializer-list constructor
 {
 reserve(a.size());
 uninitialized_copy(v.begin(),v.end(),
 a.begin());
 }
 // …
};

Listing 7
SEP 2009 | | 11{cvu}

write a {…} list that list will (if possible) be represented as an
initializer_list and passed to the user’s code. For example:
 void f(int,initializer_list<int>,int);
 f(1,{1,2,3,4,5},1);

Of course it is nice to have a simple and type safe replacement for the
stdargs macros, but the serious point here is that C++ is moving closer
to its stated ideal of uniform support of built-in types and user-defined
types [3]. In C++98, we could not build a container (e.g., vector) that
was as convenient to use as a built-in array; now we can.

Inheriting constructors

In C++98, we can derive a class from another, inheriting the members.
Unfortunately, we can’t inherit the constructors because if a derived class
adds members needing construction or virtual functions (requiring a
different virtual function table) then its base constructors are simply
wrong. This restriction – like most restrictions – can be a real bother; that
is, the restriction is a barrier to elegant and effective use of the language.
My favorite example is a range checked vector (see Listing 8).
The solution, to provide an explicit way of ‘lifting up’ constructors from
the base, is identical to the way we (even in C++98) bring functions from
a base class into the overload set of a derived class (Listing 9).
Thus, this language extension is really a generalization and will in most
contexts simplify the learning of use of C++. Note also the use of the {…}
initialization mechanism in that last example: Of the alternatives, only
f(complex<double>) can be initialized with a pair of doubles, so the
{…} notation is unambiguous.

Move semantics

Consider
 template<class T> void swap(T& a, T& b)
 {
 T tmp = a; // copy a into tmp
 a = b; // copy b into b
 b = tmp; // copy tmp into b
 }

But I didn’t want to copy anything, I wanted to swap! Why do I have to
make three copies? What if T is something big and expensive to copy? This
is a simple and not unrealistic example of the problem with copy: After
each copy operation, we have two copies of the copied value and often
that’s not really what we wanted because we never again use the original.
We need a way of saying that we just want to move a value!

In C++0x, we can define ‘move constructors’ and ‘move assignments’ to
move rather than copy their argument:
 template<class T> class vector {
 // ...
 vector(const vector&); // copy constructor
 vector(vector&&); // move constructor
 vector& operator=(const vector&);
 // copy assignment
 vector& operator=(vector&&);// move assignment
 };

The && means ‘rvalue reference’. An rvalue reference is a reference that
can bind to an rvalue. The point about an rvalue here is that we may assume
that it will never be used again after we are finished with it. The obvious
implementation is for the vector move constructor therefore to grab the
representation of its source and to leave its source as the empty vector.
That is often far more efficient than making a copy. When there is a choice,
that is, if we try to initialize or assign from an rvalue, the move constructor
(or move assignment) is preferred over the copy constructor (or copy
assignment). For example, see Listing 10.
Obviously (once you become used to thinking about moves), no vector
is copied in this example. If you have ever wanted to efficiently return a
large object from a function without messing with free store management,
you see the point.
So what about swap()? The C++0x standard library provides:
 template<class T>
 void swap(T& a, T& b) // "perfect swap" (almost)
 {
 T tmp = std::move(a);
 a = std::move(b);
 b = std::move(tmp);
 }

The standard library function move(x) means ‘you may treat x as an
rvalue’. Rvalue references can also be used to provide perfect forwarding:
A template function std::forward() supports that. Consider a ‘factory
function’ that given an argument has to create an object of a type and return
a unique_ptr to the created object:
 template <class T,
 class A1> std::unique_ptr<T> factory(A1&& a1)
 {
 return std::unique_ptr<T>{
 new T{std::forward<A1>{a1}}};
 }
 unique_ptr p1 { factory<vector<string>>{100}) }

A unique_ptr is a standard-library ‘smart pointer’ that can be used to
represent exclusive ownership; it is a superior alternative to
std::shared_ptr in many (most?) cases.
One way to look at rvalue references is that C++ had a pressing need to
support move semantics: Getting large values out of functions was at best
inelegant or inefficient, transferring ownership by using shared pointers
was logically wrong, and some forms of generic programming cause
people to write a lot of forwarding functions that in principle implies zero
run-time costs but in reality were expensive. Sometimes move vs. copy is
a simple optimization and sometimes it is a key design decision, so a design

template<class T> class Vec : public
std::vector<T> {
public:
 using vector<T>::vector;
 // use the constructors from the base class
 T& operator[](size_type i) {
 return this->at(i); }
 const T& operator[](size_type i) const {
 return this->at(i); }
};

Li
st

in
g

8

struct B {
 void f(int);
 void f(double);
};
struct D : B {
 using B::f; // “import” f()s from B
 void f(complex<double>);// add an f() to the
 // overload set
};
D x;
x.f(1); // B::f(int);
x.f({1.3,3.14}); // D::f(complex<double>);

Li
st

in
g

9

vector<int> make_rand(int s)
{
 vector<int> res(s);
 for (auto& x : res) x = rand_int();
 return res;
}
vector<int> v { make_rand(10000) };
void print_rand(int s)
{
 for (auto x : make_rand(s)) cout << x << '\n';
}

Listing 10
12 | | SEP 2009{cvu}

must support both. The result was rvalue references, which supports the
name binding rules that allows us to define std::move() ,
std::forward(), and the rules for copy and move constructors and
assignments.

User-defined literals

For each built-in type we have corresponding literals:
 'a' '\n' // char
 1 345 // int
 345u // unsigned
 1.2f // float
 1.2 12.345e-7 // double
 "Hello, world!" // C-style string

However, C++98 does not offer an equivalent mechanism for user-defined
types:
 1+2i // complex
 "Really!"s // std::string
 103F 39.5c // Temperature
 123.4567891234df // decimal floating point
 123s // seconds
 101010111000101b // binary
 1234567890123456789012345678901234567890x
 // extended-precision

Not providing literals for user-defined types is clear violation of the
principle that user-defined and built-in types should receive equivalent
support. I don’t see how C++ could have survived without user-defined
literals! Well, I do: inlined constructors are a pretty good substitute and
constexpr constructors would be even better, but why not simply give
people the notation they ask for?
C++0x supports ‘user-defined literals’ through the notion of literal
operators that map literals with a given suffix into a desired type. For
example, see Listing 11.
Note the use of constexpr to enable compile-time evaluation;
complex<double> is a literal type. The syntax is operator"" to say
that a literal operator is being defined followed by the name of the function,
which is the suffix to be recognized. Given those literal operators, we can
write:
 template<class T> void f(const T&);
 f("Hello"); // pass pointer to char*
 f("Hello"s); // pass (5-character)
 // std::string object
 f("Hello\n"s); // pass (6-character)
 // std::string object
 auto z = 2+3.14i; // 2+complex<double>(0,3.14)

The basic (implementation) idea is that after parsing what could be a literal,
the compiler always checks for a suffix. The user-defined literal
mechanism simply allows the user to specify a new suffix and what is to
be done with the literal before it. It is not possible to redefine the meaning
of a built-in literal suffix or invent new syntax for literals. In this, user-
defined literals are identical to user-defined operators.
A literal operator can request to get its (preceding) literal passed ‘cooked’
(with the value it would have had if the new suffix hadn’t been defined)
or ‘raw’ (the string of characters exactly as typed).

To get an ‘uncooked’ string, simply request a const char* argument:
 Bignum operator"" x(const char* p)
 {
 return Bignum(p);
 }
 void f(Bignum);
 f(1234567890123456789012345678901234567890x);

Here the C-style string
 "1234567890123456789012345678901234567890"
is passed to operator"" x(). Note that we did not have to explicitly
put those digits into a string, though we could have:
 f("1234567890123456789012345678901234567890"x);

Note that ‘literal’ does not mean ‘efficient’ or ‘compile-time evaluated’.
If you need run-time performance, you can design for that, but ‘user-
defined literals’ is – in the best C++ tradition – a very general mechanism.

The sum of language extensions
When you add it all up, C++0x offers are many new language facilities.
The C++0x FAQ lists them:

__cplusplus
alignments
attributes
atomic operations
auto (type deduction from initializer)
C99 features
enum class (scoped and strongly typed enums)
copying and rethrowing exceptions
constant expressions (generalized and guaranteed; constexpr)
decltype
default template parameters for functions
defaulted and deleted functions (control of defaults)
delegating constructors
Dynamic Initialization and Destruction with Concurrency
explicit conversion operators
extended friend syntax
extended integer types
extern templates
for statement; see range for statement
generalized SFINAE rules
in-class member initializers
inherited constructors
initializer lists (uniform and general initialization)
lambdas
local classes as template arguments
long long integers (at least 64 bits)
memory model
move semantics; see rvalue references
Namespace Associations (Strong using)
Preventing narrowing
null pointer (nullptr)
PODs (generalized)
range for statement
raw string literals
right-angle brackets
rvalue references
static (compile-time) assertions (static_assert)

constexpr complex<double> operator"" i(
 long double d) // imaginary literal
{
 return {0,d}; // complex is a literal type
}
std::string operator "" s(const char* p,
 size_t n) // std::string literal
{
 return string{p,n};// requires free store
 // allocation
}

Li
st

in
g

11
SEP 2009 | | 13{cvu}

Interpreting Custom Unix Shell Scripts in C
Ian Bruntlett learns how to write an interpreter for a

custom script language.

ssuming you are a Unix/Linux user, you will have stumbled across
scripts that look like a compiled command but, on further
investigation have, as the first line in the file a line beginning with

#! followed by the name of an interpreter. Something like this:
 #!/usr/bin/python
 print "Example Python Script : Hello World"

I stored the above 2 lines of code in a file called pyhello and had to set
its permissions as ‘OK to execute’ with the command chmod +x
pyhello – then I ran it with ./pyhello and it displayed the text:
 ian@Rutherford:~/c$./pyhello
 Example Python Script : Hello World

That's interesting so far – script language writers can now have their
languages used to create script files. What’s involved? – 1) the script
language itself and 2) a script program that begins with #! and the filename
of the script. What if we decide to write our own script language (say...
Forth :). How do we get #! support?
After some experimentation, I created a file, hashbang.c. It turns out
that everything happens in the parameters passed to the program – in this
case argc and argv[]. Listing 1 is an example of a script language
reacting to #!.
 OK, so now we have a script language of sorts (all it does is display the
script file passed to it), how do we run it from a script file. Here is an
example stored in the file runme

 #!/home/ian/c/a.out
 echo first line of text excluding hashbang
 one
 two
 three
 ian@Rutherford

The first line should be set to the executable file to act as an interpreter.
This is what I got when I ran the script file runme:
 SCRIPT LINE : #!/home/ian/c/a.out
 SCRIPT LINE : echo first line of text excluding
 hashbang
 SCRIPT LINE : one
 SCRIPT LINE : two
 SCRIPT LINE : three

Well, that’s that. I’m hoping to write a Forth interpreter in C++ and so I
might write some more articles along the way.

A

What is C++0x? (continued)

IAN BRUNTLETT
On and off, Ian has been programming for some years.
He is a volunteer system administrator for a mental health
charity called Contact (www.contactmorpeth.org.uk). As
part of his work, Ian has compiled a free Software Toolkit
(http://contactmorpeth/wikispaces.com/SoftwareToolkit).
suffix return type syntax (extended function declaration syntax)
template alias
template typedef; see template alias
thread-local storage (thread_local)
unicode characters
Uniform initialization syntax and semantics
unions (generalized)
user-defined literals
variadic templates

Fortunately most are minor and much work has been spent to ensure that
they work in combination. The sum is greater than its parts.
Like inheriting constructors, some of the new features address fairly
specific and localized problems (e.g. raw literals for simpler expression of
regular expressions, nullptr for people who are upset by 0 as the
notation for the null pointer, and enum classes for stronger type-checked
enumerations with scoped enumerators). Other features, like general and
uniform initialization, aim to support more general programming
techniques (e.g. decltype, variadic templates, and template aliases for
the support of generic programming). The most ambitious new support for
generic programming, concepts, didn’t make it into C++0x (see [4]).
When exploring those new features (my C++0x FAQ is a good starting
point), I encourage you to focus on how they work in conjunction with old
and new language features and libraries. I think of these language features
as ‘building bricks’ (my home town is about an hour’s drive from the Lego
factory) and few make much sense when considered in isolation.

Acknowledgements
The credit for C++0x goes to the people who worked on it. That primarily
means the members of WG21. It would not be sensible to list all who
contributed here, but have a look at the references in my C++0x FAQ:
There, I take care to list names. Thanks to Steve Love, Alisdair Meredith,
and Roger Orr for finding bugs in early drafts of this paper.

Notes and references
[1] Bjarne Stroustrup: C++0x FAQ. www.research.att.com/~bs/

C++0xFAQ.html
[2] Pete Becker (editor): Working Draft, Standard for Programming

Language C++. [N2914=09-0104] 2009-06-22. Note: The working
paper gets revised after each standards meeting.

[3] Bjarne Stroustrup: The Design and Evolution of C++. Addison-
Wesley. 1994.

[4] Bjarne Stroustrup: ‘The C++0x “Remove concepts” Decision’. Dr.
Dobbs; July 2009. http://www.ddj.com/cpp/218600111 and
Overload 92; August 2009.

[5] Bjarne Stroustrup: ‘Concepts and the future of C++’ interview by
Danny Kalev for DevX. 2009. http://www.devx.com/cplus/Article/
42448.

In the next issue, Bjarne looks at the new features for supporting
concurrency and regular expressions, and how the changes to the C++
Standard Library make use of the new language features to make
programming in C++ simpler and more effective than ever.
14 | | SEP 2009{cvu}

http://www.devx.com/cplus/Article/42448
http://www.devx.com/cplus/Article/42448
www.research.att.com/~bs/C++0xFAQ.html
www.research.att.com/~bs/C++0xFAQ.html
www.contactmorpeth.org.uk
http://contactmorpeth/wikispaces.com/SoftwareToolkit

SEP 2009 | | 15{cvu}

A Game of Dice
Baron Muncharris sets a challenge.

reetings Sir R-----! Sit down and
take a glass of this rather fine
brandy. Now I know that you are

a gentleman who finds that a small wager
aids tremendously in the appreciation of
fine liquor, so let me tell you about a
splendid dice game that I learned from the
King of the Moon.

It was upon the occasion of my triumphant
victory over the invading forces from the
moons of Mars. Prospects had been bleak
since although, as is well known, Moon men
are supreme swordsmen, the invasion took
place during the night after the celebration of
the King’s jubilee and they were, to a man,
abed suffering vivid nightmares owing to an
excessive consumption of cheese.

So it was that, armed with nothing but my
trusty rapier, a good stock of wine and a
ha’penny’s worth of pepper, I set upon the
invading hoard.

But I digress.

As reward for my comprehensive victory the
King offered me a number of bottles of
Moon wine equal to my score in his
ingenious dice game, the rules of which I
shall recount forthwith.

I began the game with a score of zero and
was directed to roll a die some numerous
times. After each roll I was to add the die’s
score to mine own, but in the event that I
rolled a 1, I was to subsequently halve my
current score. Upon completion of the game,
I was instructed to report to the cellar-
master to collect my bounty.

Rather than play for that most fortifying of
spirits – for I have unfortunately exhausted
said bounty – I propose that we should play
for coin. I shall shortly inform you of the
number of dice that you must roll and the
stake that I shall require from you to enter
the contest. It is for you to determine
whether or not it takes your fancy!

I have been informed by a student of the
recently discovered theory of wager that it is
possible to determine with certainty the
expected winnings of any such game, but as
he is of common stock, he is almost certainly
not to be trusted.

I propose that we play two rounds of this
splendid game of chance.

To commence, I suggest a game of 10 dice
for a stake of 23¾. Is this to your
satisfaction?

To conclude, I suggest a game of 100 dice
for a stake of 41. Is this to your liking?

Now be a good fellow and pass the brandy!

Listing 1 is a C++ implementation of the game.

G

size_t
roll()
{
 return size_t(6.0 * double(rand())/
 (double(RAND_MAX)+1.0)) + 1;
}

double
play(const size_t n)
{
 double pot = 0.0;
 for(size_t i=0;i!=n;++i)
 {
 const size_t spots = roll();
 pot += double(spots);
 if(spots==1) pot /= 2.0;
 }
 return pot;
}

Li
st

in
g

1

Desert Island Books
Paul Grenyer introduces Jon Jagger.

’ve been doing this series for ten months now and every person has been
brilliant. Jon’s Desert Island Books is the longest yet and, I have to admit,
the one I’ve enjoyed the most so far. As I know I’ve said to many people,

and maybe even in a previous Desert Island Books, this series isn’t really
about books, it’s about people and Jon has demonstrated that admirably.
I’ve known Jon for a few years and I had no idea he liked fishing!

For me, Jon has always been up there with Kevlin as the best of the best of
us. He not only understands how to write software, but he understands the
people that write it and processes. I’ve known him ‘on-list’ pretty much since
I joined the ACCU and I first met him in person, like so many others, in the
corner of the Dirty Duck in Stratford upon Avon at almost the same time as
the famous Phil Hibbs incident. At the conference the following year Jon had
a slight problem remembering exactly who I was, but as you can tell I’m not
holding a grudge. I’ve bumped into Jon at a couple of C++ panel meetings
also.

Jon has helped me out on numerous occasions, was the reason I bought
The Mythical Man Month and even took Aeryn with him into a Formula 1
team. If only it could have been Williams!

Jon Jagger
I’ll start with my two albums. I considered choosing an album of my own.
Not stuff I personally composed or sang. Heaven forbid. I couldn’t sing in
tune if my life depended on it. I mean a compilation of singles from
different artists. I bought loads and loads of proper vinyl singles as a boy.
The singles I could list. In fact I think I will. Pad it out a bit... What comes
to mind.... Early OMD stuff such as ‘Electricity’. ‘This is the day’ by The
The. What a cracking single that is. ‘Echo Beach’ by Martha and the
Muffins. I liked a lot of the mod stuff too. ‘Poison Ivy’ by the Lambrettas
was a favourite. Pretty much anything from early Dexys Midnight
Runners. Everything by David Bowie. Recently, at my daughter’s school
concert a very talented fifth form girl played the piano and sang ‘True
Colours’ by Cyndi Lauper, which reminded me what a great song that is.
Another favourite from later on was ‘Jeans Not Happening’ by The Pale
Fountains. I bought plenty of singles from previous decades too. Del
Shannon, The Isley Brothers, Roy Orbison. ‘The House of the Rising Sun’
by the Animals. That would definitely be on the compilation album. How
many singles could you fit on a compilation CD? A hundred easily. We
may be here some time... Lots by the Beach Boys. Louis Armstrong’s ‘We
Have All the Time in the World’ (recorded for the James Bond film – On
Her Majesty’s Secret Service – in one take. He died shortly afterwards).
In short I like most things with a good tune where I have a reasonable
chance of discerning the lyrics by listening (the
exception being Kevin Rowland from Dexys). But I
decided that would be cheating. So I’ve mentioned it
so I can discount it but at least it gets mentioned. That
seems to be a standard tactic employed by previous
Desert Island visitors. Instead I’ve opted for two
regular albums instead. My first is Ziggy Stardust
and the Spiders from Mars by David Bowie. I just
love this album. All of this album. Every single track. Every second of
every track. It’s hard to explain why you love an album and I can’t really

explain it. Perhaps its not something you should
even try to explain. How can you explain how you
feel about an album you love and know intimately?
Other than to say you love it. And know it
intimately. So I’ll leave it at that. The second album
would have to be the aptly titled OK COMPUTER
by Radiohead. You’ll no doubt be familiar with the
haunting ‘No Surprises’, which is from this album.

Or maybe
Karma
Po l i ce –
‘Arrest this girl, her
Hitler hairdo is making
me feel ill, and we have
crashed her party’. What a great
lyric. But neither of these is my
favourite. My favourite is all 6 minutes and 23 seconds of ‘Paranoid
Android’. I tweeted that I was listening to this about a week ago! In fact
I’ve been fishing for the last two days on the River Wye so I haven’t heard
it for a while (I never take anything electrical with me when fishing – that
would just not be right) so excuse me while I listen to it again for a
moment... Rain down on me...from a great height...God loves his
children...yeah...
So on to some books. Five books. I’m going to try and make choices that
haven’t been made by previous visitors.
The first is World Class Match Fishing [1], which I confidently predict no
one will have heard of, let alone read. Fishing is similar to developing
software in that both involve large amounts of invisibility. But even so,
unless you are keen on freshwater fishing (as I am) I don’t recommend it.
To explain a little (there is a point honest), match fishing is where a group
of fisherman compete against each other to see who can catch the most fish
(by weight) in a fixed interval of time (usually 10am–3pm when they’re
the hardest to catch). Small stretches of a river (or pond/lake) are numbered
and marked and the anglers draw a number to determine where to fish. Fish,
like people, do not spread themselves out evenly. Quite the opposite.
Consequently the vast majority of numbers (they’re called swims or pegs)
have no chance of winning. It’s crazy really. (What has an IQ of 100?
Answer 100 match fisherman!) Swims are split into sections; in a match
of 60 anglers there might be 5 sections of 12 and there are smaller cash
prizes for winning your section (it helps to maintain interest since, as I said,
most swims have zero chance of winning). The best anglers will regularly
win their sections. Kevin Ashurst was an exceptional fisherman once
winning the World Championships. In this book he explains, often in great
detail, the thinking behind his tactics and strategies when trying to win. I
love it for the unselfish explanation of his secrets but mostly for the insight
into his clarity of thought. Good thinking is pretty rare but he had it in
abundance. There are some lovely examples of the Lean principle of
removing waste. To give you one example – on a river you can sometimes
beat everyone in your section even if they are ‘better’ fishermen than you
simply by making sure your float is in the water longer than theirs! How
can you do that? One way is simply to slow the float down (that way you
spend less time retrieving your float or casting it back out – times when
you definitely won’t catch a fish).
For a novel I’ll pick the last one I read that I could not put down once I’d
started: The Northern Lights [2]. A wonderful book, the first in His Dark
Materials trilogy, it’s a hypnotic mix of fantasy and
reality where the fantasy is a grown-up fantasy
weaving a rich picture of a parallel but definitely
alternate universe with wonderful flights of
imagination. The author says he prefers not to
explain the meaning of what he writes instead letting
the reader draw their own more personal meaning. I
guess that means I shouldn’t really explain the
meaning I draw from it either since it would spoil
your enjoyment if you decide to read it. Let’s just say
that the trilogy has a fairly strong and obvious atheist

I

16 | | SEP 2009{cvu}

aspect to it. Hitch Hikers Guide to the Galaxy [3] was
a close second for the novel but I’ve read that so
many times my copy is falling apart.
For my third book I’m going to pick something closer
to home. The Secrets of Consulting [4]. I have a lot
of books by Jerry Weinberg. His most famous is
p r ob a b l y The P sycho l ogy o f Compu te r
Programming [5], but some parts of that haven’t
aged particularly well. He writes that he regrets using
the word psychology in its title since he is not, nor
has he ever been, a psychologist. Perhaps he doesn’t

have a certificate or official qualification, but it’s
clear he has a great understanding of people, of the
systems they are involved in, and in consulting – the
art of influencing people at their request. This is my
favourite Weinberg book by quite some margin and,
reading between the lines, I think it is his too. I recall
Kent Beck once saying he was greatly influenced by
it. It’s stuffed full of advice under the banner of
consulting, but in truth much of the book has a much
broader application. A lot of the book is about
change, which is pretty universal. It’s also one of

those rare books that has quality in depth. The more
you read it, the more you see its hidden layers and
the deeper your understanding becomes. It’s well
written and the advice is summarised into numerous
pithy laws/aphorisms such as ‘The Fast Food
Fallacy’ (no difference plus no difference plus no
difference plus ... eventually equals a clear
difference, p.173). For a software example of that,
consider compiler warnings. A rare gem.
It seems a shame that Desert Island visitors can’t
choose a couple o f the i r

favourite films. Perhaps Paul could add it as a new
category. Meanwhile I’m going to have to cheat by
including a film screenplay as my fourth book. The
Life of Brian [6]. Most pythonistas agree this is their
finest film. The others are a bit patchy in places but
every scene of Brian is a sure fire rib tickler. It’s easy
forget the controversy it caused when it was released.

The back of the screenplay
contains some reviews and,
possibly uniquely, two are
dis t inc t ly unfavourable!
Entirely deliberate, of course. I like the New
Statesman’s review ‘Hurray for blasphemy’. And
let’s not forget the classic song ‘Always Look on the
Bright Side of Life’. That would be sage advice if
you were stranded on a desert island.

My last choice is proving difficult. Lots of worthy
books will miss out. Classics such as Programming
Pearls [7] and The Mythical Man Month [8]. I’ve
been reading a lot about Systems Thinking recently.
Systems Thinking essentially means non-linear
thinking. Human beings have evolved a very strong
association that cause and effect are simple and
linear; that cause and effect are local in space and
time. Unfortunately the world
of software is not as simple as
that. Developing software

takes time. Another phrase sometimes used in this
context is ‘dynamic complexity’ a term from The
Fifth Discipline [9], where Peter Senge draws a
useful distinction between detail complexity and
dynamic complexity. The excellent An Introduction
to General Systems Thinking [10] is recommended

and almost got the fifth spot,
but in the end I’ve plumped for
The Systems Bible [11]. This is a light hearted,
slightly tongue-in-cheek book with pithy summaries
in the forms of Laws and Principles. For example Le
Cha t e l i e r ’ s P r inc i p l e
‘Systems tend to oppose their
own proper function’. Another
one is called The Basic Axiom
of Systems-function ‘Big
systems either work on their
own or they don’t. If they don’t

you can’t make them.’ Very apt. It’s occasionally
laugh-out-loud funny too. Ro/Rs on page 47 for
example. Well worth considering if you want to edge
away from technical aspects of work for a while.

References
[1] Kevin Ashurst. (1977 Long out of print). World Class Match

Fishing, Cassell, ISBN 0304-297291.
[2] Phillip Pullman. (1995). The Northern Lights (The Golden Compass

in USA, Knopf), Scholastic, ISBN 043995178X
[3] Douglas Adams. (1979). The Hitch Hikers Guide to the Galaxy, Pan,

ISBN 0330258648
[4] Gerald Weinberg. (1985). The Secrets of Consulting, Dorset House,

ISBN 0932633013
[5] Gerald Weinberg. (1998). The Psychology of Computer

Programming: Silver Anniversary Edition, Dorset House, ISBN
0932633420

[6] Monty Python. (2001). The Life of Brian (screenplay), Metheun,
ISBN 0413741303

[7] Jon Bentley, (1989). Programming Pearls, Addison Wesley, ISBN
0201103311

[8] Fred Brooks (1985 2nd edition). The Mythical Man Month, Addison
Wesley, ISBN 0201835959

[9] Peter Senge (2006 2nd edition). The Fifth Discipline, Random
House, ISBN 1905211201

[10] Gerald Weinberg (2001). Introduction to General Systems Thinking
Silver anniversary edition, Dorset House, ISBN 0932633498

[11] John Gall (2002 3rd edition). The Systems Bible: The Beginner’s
Guide to Systems Large and Small , General Systemantics Press,
ISBN 0961825170

Next issue: Michael Feathers.

Desert Island Disks is one of BBC Radio 4’s most popular and enduring
programmes:
 http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml
The format is simple: each week a guest is invited to choose the eight
records they would take with them to a desert island.
I’ve been thinking for a while that it would be entertaining to get ACCU
members to choose their Desert Island Books. The format will be slightly
different from the Radio 4 show. Members will choose about 5 books,
one of which must be a novel, and up to two albums. The programming
books must have made a big impact on their programming life or be
ones that they would take to a desert island. The inclusion of a novel and
a couple of albums will also help us to learn a little more about the
person. The ACCU has some amazing personalities and I’m sure we
only scratch the surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?
SEP 2009 | | 17{cvu}

Code Critique Competition 59
Set and collated by Roger Orr.

lease note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment
on published entries, and to supply their own possible code samples
for the competition (in any common programming language) to

scc@accu.org.

Last issue’s code
Can someone please help me to understand why the following program
crashes? I tried to fix it by using strncat but it still doesn’t work.

Last issue’s code is shown in Listing 1.

Critiques

Ian Bruntlett <ian.bruntlett@googlemail.com>

One problem with the program is that the buffer size is sometimes passed
as 255, sometimes it is 225.
Change 1 introduced a buffer size that, with a single edit, can be updated
without breaking a lot of code that assumes what the buffer size is. This
change was supported by changes 3,4,6.
Change 5 was introduced to get the program to fail gracefully if the input
file is not present.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define BUFFSIZE 255 // 1

int main()
{
 char * home_path = NULL;
 char * fullpath = NULL;
 char * fullfile_directory = NULL;
 char buffer[BUFFSIZE]; // 2
 FILE *f;
 FILE *readfile;
 home_path = getenv("HOME");
 fullfile_directory = strncat(home_path,
 "/snapshot.html", BUFFSIZE-1); // 3
 printf("Searching: %s\n", getenv("HOME"),
 fullfile_directory, BUFFSIZE-1); // 4
 readfile = fopen(fullfile_directory, "r");

 if (readfile == NULL) // 5
 {
 printf ("Unable to open %s\n",
 fullfile_directory);
 return 1;
 }

 while (!feof(readfile))
 {
 if (readfile != NULL)
 {
 f = fopen("/tmp/output.log", "a+");
 fgets(buffer, BUFFSIZE, readfile); // 6
 if (strstr(buffer, "<title>"))
 {
 printf("Extracting title\n");
 fprintf(f, "title: %s", buffer);
 }
 else if(strstr(buffer, "<h1>"))
 {
 printf("Extracting heading\n");
 fprintf(f, "Heading: %s", buffer);
 }
 }
 }
 fclose(f);
 fclose(readfile);
 return 0;
}

P

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

Listing 1
Listing1

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 char * home_path = NULL;
 char * fullpath = NULL;
 char * fullfile_directory = NULL;
 char buffer[225];
 FILE *f;
 FILE *readfile;

 home_path = getenv("HOME");
 fullfile_directory = strncat(home_path,
 "/snapshot.html", 255-1);
 printf("Searching: %s\n", getenv("HOME"),
 fullfile_directory, 255-1);
 readfile = fopen(fullfile_directory, "r");
 while (!feof(readfile))
 {
 if (readfile != NULL)
 {
 f = fopen("/tmp/output.log", "a+");
 fgets(buffer, 256, readfile);
 if (strstr(buffer, "<title>"))
 {
 printf("Extracting title\n");
 fprintf(f, "title: %s", buffer);
 }
 else if(strstr(buffer, "<h1>"))
 {
 printf("Extracting heading\n");
 fprintf(f, "Heading: %s", buffer);
 }
 }
 }
 fclose(f);
 fclose(readfile);
 return 0;
}

Li
st

in
g

1

18 | | SEP 2009{cvu}

Pete Disdale <pete@papadelta.co.uk>

There really are so many problems with this piece of code that it’s difficult
to know quite where to start. But having said that, the main ones are (in
no particular order):

a lack of understanding of the difference between a char * and an
array of char (the main reason for the crash, I would say)
the absence of any error useful checking (or checking in the wrong
place)
opening and not closing a file, caused by
incorrect nesting of code blocks
errors caused by (probably) using ‘magic’ numbers for (I presume)
buffer sizes, and copy & paste editing with no check afterwards for
correct or appropriate function parameters.There being so many
‘inelegancies’ with this code, the best way I can think of critiquing
it is to reproduce the original code and add comments where
appropriate, and then to offer a version which, whilst far from
perfect addresses these problems and perhaps more importantly
does not crash. Well, not here anyway...

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 char * home_path = NULL;
 char * fullpath = NULL;

fullpath is never used, though would to my mind be a better choice than
fullfile_directory, though I’ve left it be.

 char * fullfile_directory = NULL;
 char buffer[225];

This looks like a typo for 255? One of the dangers in using ‘magic’
numbers mid-code.

 FILE *f;
 FILE *readfile;
 home_path = getenv("HOME");
 fullfile_directory = strncat(home_path,
 "/snapshot.html", 255-1);

This is a major problem. Not only is there no check for getenv()
returning NULL, but the pointer returned could be to a static buffer
anywhere. Appending to this is almost guaranteed to overwrite something
else important! And to make matters worse, strncat() will likely not
null-terminate the result. home_path needs to be copied to its own buffer,
which should be large enough to hold both home_path and "/
snapshot.html" plus the null terminator. This buffer could be an array
of size MAXPATH, or malloc()’d once the size is known. As for the 255-
1, ...

 printf("Searching: %s\n", getenv("HOME"),
 fullfile_directory, 255-1);

Looks like a ‘copy&paste from previous line’ error. There is a single %s
in the format, yet 3 parameters, and all it would (might) print is what had
already been assigned to home_path earlier.

 readfile = fopen(fullfile_directory, "r");

No check for fopen() failing here, yet readfile is used as valid in the
line immediately below...

 while (!feof(readfile))
 {
 if (readfile != NULL)

... and yet checked here, rather late in the day!
 {
 f = fopen("/tmp/output.log", "a+");

No check for fopen() failing here, but as important is that here is not the
place to fopen() the log file anyway: it will be fopen()’d anew for each
input line, and only the last instance is closed. The output log should be
opened once, before the read loop, and closed once afterwards. Or at the
very least, closed after each fopen(), inefficient though that would be.

 fgets(buffer, 256, readfile);

No check for gets() returning NULL, which it could do even if the
feof() allowed the loop to be entered. fgets() should ideally be the
loop control mechanism. Also, it is implicitly assumed that all input lines
will fit into the 256 byte buffer (254 chars plus a '\n' and a '\0'). If any lines
are longer than this, some mechanism must be employed to look for the
'\n' and thereby determine whether or not a complete line of input was read.

 if (strstr(buffer, "<title>"))
 {
 printf("Extracting title\n");
 fprintf(f, "title: %s", buffer);

No check for fprintf() succeeding/failing, both here and in the else
block below. Also strstr() is case-sensitive, which might or might not
be what is needed for snapshot.html

 }
 else if (strstr(buffer, "<h1>"))
 {
 printf("Extracting heading\n");
 fprintf(f, "Heading: %s", buffer);
 }
 }
 }
 fclose(f);

This fclose(f) is misplaced relative to its fopen() as noted above.
Also (nitpicking) the return value from fclose() is unchecked, though
at this point in program execution it’s moot what one might do about it.

 fclose(readfile);
 return 0;
}

Success? Perhaps the return code could better reflect the program’s exit
status?
And here is the alternative version:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define BUFLEN 256 /* or whatever... */
#define SNAPSHOT_FILE "snapshot.html"
#define LOG_FILE "/tmp/output.log"

/*
 * These might be overkill for the purposes of
 * the original programmer, but specified in
 * case error cause is required.
SEP 2009 | | 19{cvu}

 */
#define HOME_ERROR 1 /* HOME not found */
#define MEM_ERROR 2 /* malloc() error */
#define FOPEN_ERROR 3 /* fopen() error */
#define FREAD_ERROR 4 /* file read error */
#define FWRITE_ERROR 5 /* file write error */

/* function prototypes */
int main (void);

int main()
{
 char * home_path = NULL;
 char * fullpath = NULL;
 /* unused in original code */
 char * fullfile_directory = NULL;
 /* this is unused here */
 char buffer[BUFLEN];
 FILE *f;
 FILE *readfile;
 int rc = 0;
 /* return code, default to zero */

 home_path = getenv("HOME");
 if (home_path == NULL)
 {
 fprintf (stderr,
 "HOME not found in environment\n");
 exit (HOME_ERROR);
 }

 /*
 * allocate a buffer of the right size to
 * hold both home_path and SNAPSHOT_FILE.
 * The extra 2 bytes are for the '/'
 * separator and the terminating '\0'
 */
 fullpath = malloc (strlen (home_path)
 + strlen (SNAPSHOT_FILE)
 + 2);
 if (fullpath == NULL)
 {
 fprintf(stderr,
 "malloc(): out of memory\n");
 exit (MEM_ERROR);
 }

 /*
 * we could use strcpy() and strcat()
 * here, but since we know that fullpath
 * is large enough, sprintf() is safe.
 */
 sprintf (fullpath, "%s/%s",
 home_path, SNAPSHOT_FILE);

 readfile = fopen (fullpath, "r");
 if (readfile == NULL)
 {
 fprintf (stderr,
 "File '%s': not found\n", fullpath);
 exit (FOPEN_ERROR);
 }

 f = fopen (LOG_FILE, "a+"); /* append? */
 if (f == NULL)
 {
 fprintf (stderr,
 "File '%s': not found\n", LOG_FILE);
 fclose (readfile);
 exit (FOPEN_ERROR);
 }

 printf ("Searching: %s\n", fullpath);

 /*
 * This code makes the same assumption as
 * the original in that input lines are
 * assumed to fit into the 256 byte
 * buffer. Use fgets() as the loop
 * control.
 */
 while (fgets (buffer, sizeof(buffer),
 readfile) != NULL)
 {

 /*
 * Use the same case-sensitive search as
 * in the original code
 */
 if (strstr(buffer, "<title>") != NULL)
 {
 printf("Extracting title\n");
 fprintf(f, "Title: %s", buffer);
 }
 else if (strstr(buffer, "<h1>") != NULL)
 {
 printf("Extracting heading\n");
 fprintf(f, "Heading: %s", buffer);
 }

 /*check for and exit if file write error*/
 if ((rc = ferror(f)) != 0)
 break;
 }

 /* tidy up before returning */
 fclose(f);
 fclose(readfile);
 free (fullpath);

 return rc;
}

Balog Pal <pasa@lib.hu>

A fast scan of the code triggers many review comments (which are not
necessarily problems, but things to look at more deeply):

C90-style variable declarations up front
use of a fixed size buffer
magic number as size of buffer
result of getenv() not checked
result from getenv() captured as modifiable string ...
... which is then actually modified
strncat gets a divine length parameter
I’m sure could not tell the expected result of re-query "HOME" at
the printf point
more magic numbers in code + suspect the previous one could have
a typo
opening file without checking the result
using FILE*s that can be NULL
creating file with hardcoded name at a hardcoded dir that is likely
shared
fgets passed limit not related to the passed object
content of buffer passed to operations expecting 0-terminated string

Can any of those result in crash? Yeah, several of them on proper
conditions, there will be NULL access if HOME is not in the environment
or a file could not be opened; if the file has long lines, there will be a buffer
20 | | SEP 2009{cvu}

overrun. And up front I doubt the system allows unrestricted modification
of the environment in place.
Let’s see the first fuzzy point first, the business on modifying the env.
Googling ‘unix man getenv’ finds the page in first hit. The signature says
it returns char * (not const char *), and the text is silent about
modification. Though it states that returned value is NULL. Googling
‘getenv return string modify’ finds what we were about, to a CERT rule
[1] entitled ‘ENV30-C. Do not modify the string returned by getenv()’ with
good explanation why. And quoting the C standard that forbids the
modification. (I leave the trivia to others that explains the return type and
the fact this ruling text is left out of man pages – leaving the world
vulnerable to this kind of mistakes.)
So this alone is enough reason to crash the program, no matter if you use
strcat or strncat. In a general situation, strcat is a blacklisted
function with strong suggestion to use strncat or other safe alternatives.
So the idea of that fix was good. But not the implementation. For the ‘fixed’
str- functions the size parameter must get the size of the buffer. They
prevent the overrun by limiting the range of operation within that length.
So they work if you pass them the length of the buffer that is passed as the
‘target’. The code passes home-path and 255-1. Those do not relate. You
should have passed the length of buffer under home-path, not some random
value. Modification this way puts the program in even more danger – as
the original is likely flagged in warnings, while the latter is hard to
discover.
And if the problem was buffer overrun, in theory fixable by replacing
strcat to strncat, it would still not fix your program, just remove the
overrun. Suppose you did copy the result of getenv() to a local buffer,
and tried to add the filename part there, using the correct length to
strncat: the result of that is no longer an overrun, but a truncated string
that you will use in the next operations without discovering the problem.
If the following code got corrected to handle the ‘file not found’ cases,
probably the execution ends there most of the time, but another possibility
is it could find a file that has the truncated name. And will process that,
producing the result. Sounds like the surgeon executed someone else’s
operation on you...
Usually I create a fixed version of the code sample, this time I will not, as
I could not figure out the intent and there was no specification. Suppose it
opened the intended input and output files – after that it is like reading a
HTML file, but instead of parsing tags, it tries to read until newline,
without provision of long lines, and passes the line as heading or title by
finding a tag in it. AFAIK newlines can be spaced quite liberally in tagged
files, so this approach will hardly provide anything useful, even if there
were no arbitrary length limit. And with the limit it can completely skip
discovering the tags if they happen to be split.
The man page for fgets states it does produce a 0-terminated string, so
if passed an actually correct buffer length – my practice is to use
sizeof(***) as parameter – strstr can be used with defined result.
How defined meets expected is another question.
Normally all operations of file must have a check after it to see it
succeeded. Failure to open a file is common, it may sit there with the wrong
permissions or being locked, the path may be wrong, and many other
reasons, it is rude to dump core on those occasions. Write and close may
fail due to disk full, a good program not leave a partial/incorrect file
without any indication for the problem. All that makes code written in C
look like a messy jungle, commands turned to if()-s and 80% of code
handling errors. And correctly release all the resources on all the paths asks
for discipline and luck humans rarely have in practice.
So the better way is to use C++ and some wrapper class dealing with files
that use sticky bit or exceptions to flag errors. That keeps the code readable,
while errors can be dealt with at a separate place, also RAII helps to avoid
resource leaks. In C++ certainly the problem at the front becomes trivial
too, no need for calculating, asking memory, copying, just use
std::string (or any other string implementation of a used library) and
+ the filename part.

And if the problem was really tied to html I’m sure there are libraries
available that parse the whole file, verify it is correct, and allow locating
the sections, giving the proper content.
Note
[1] https://www.securecoding.cert.org/confluence/display/seccode/

ENV30-C.+Do+not+modify+the+string+returned+by+getenv
%28%29

Graham Patterson <grahamp@berkeley.edu>

We are not provided with much in the way of a supporting narrative with
this short program. All we are told is that a) it is not working, and that b)
the addition of strncat() did not help.
Taking a first pass through, it seems that the intent is clear. The program
is to read an HTML file and extract lines matching some criteria to the
console and a file. There are some interesting issues with file location and
overall design. It may be that the author is new to programming as well as
C. The first step is to rework the program enough to have it working as
intended but without divorcing it from the original. Then we can move on
to look at the limitations and possibilities for enhancement. As written, the
program appears to be intended for a Unix-like environment, based on the
path separators and the use of the HOME environment variable.
The variable declarations at the start of the main() function raise one
issue at first perusal. The declaration of buffer with a numeric dimension
is a prime source for error. This is better done with a symbolic definition,
which means either an old-fashioned #define or defining a const int
depending on the antiquity of the compiler.
The next item in the first pass over the code is the assignment of the
getenv() return to the home_path pointer. The string pointed to by the
return value of the getenv() function is not modifiable by design. The
home_path pointer is not declared const in any way, so this may be an
issue as we continue.
The call to strncat() is going to cause problems. This function appends
the second argument to the tail of the first argument up to a total length of
the third argument. The first argument is a pointer to a string that we have
already seen is not intended to be modified. The length argument is another
number. Since it is given as ‘255 - 1’, it implies a storage location of 255
characters less one for the trailing null. We do not have control of the length
of home_path, so this is a problem area. From the limited narrative
provided to accompany the code, it may be that strncat() was edited
in, but the variable usage was not reviewed to conform. There is some
support for this conjecture looking at the following printf() call, where
the format string does not use the fullfile_directory or numeric
parameters.
The main work of the program is done in a loop which processes the source
file one line at a time, and printing lines that match certain criteria to the
console and a file. The implementation has a couple of major problems
which need to be addressed. The feof() call returns the end of file status.
The fopen() call may not set this even if the file opened is of zero length.
So the loop could traverse once on an empty file.
Looking deeper into the loop we see a test for the successful opening of
the file. This is misplaced, and should follow the fopen() call. Then we
have the opening of the output file. A quick scan forward shows that this
file is not closed inside the loop, so it will be reopened for every line in
the source file. On many systems this will exhaust the number of file
handles available to the program. Plus it is a lot of work for no benefit.
Add to that, the file is opened for append at end of file (a+). This could be
disguised by the repeated fopen() call, but will have consequences if the
program operates as intended. Then we have the first actual read from the
source file, which may trigger the end of file condition.
This loop needs redesigning along the lines of Figure 1.
This scheme ensures that we only proceed with the next step if the files
are opened. The file close calls are at the correct level to be called only if
the file was opened successfully. Finally, by priming the input buffer
before commencing the main loop we ensure that an immediate end of file
SEP 2009 | | 21{cvu}

ttps://www.securecoding.cert.org/confluence/display/seccode/ENV30-C.+Do+not+modify+the+string+returned+by+getenv
%28%29
ttps://www.securecoding.cert.org/confluence/display/seccode/ENV30-C.+Do+not+modify+the+string+returned+by+getenv
%28%29

condition is handled correctly. Adding else clauses gives us some error
handling options.
A revised version is provided as Listing 2. This uses a pair of const int
declarations to abstract the hard-coded buffer sizes, which lead to a
probable typographical error (255 versus 225) and a possible overflow for
buffer[]. The fixed input and output file names have also been
abstracted to variables. All sizes have been corrected to use the variables.
The string returned by the getenv() call has been stored. I have also
included a simple check to confirm that the intended buffer is large enough.
The HOME environment variable does not typically return a long string,
but testing the reality costs little in effort. The file read loop follows the
pseudo-code outline already given, with basic error reporting.
The astute reader will have spotted several issues with the design. Without
a supporting narrative we can only comment. Hard coding filenames and
paths is uncommon. Using different files or locations would require an edit
and recompilation. On the other hand, unless command line arguments are
used, or some form of configuration file employed, this is not unreasonable
for a proof of concept piece. Having the source in the user’s home
directory, but the output in system /tmp is unusual. This is usually
system scratch space and is often flushed on a reboot.
Opening the file for append at end means that repeated execution will
extend the output file. A simple open for write might be a better fit to the
original author's intentions. The strncat() function has one quirk that
would have affected the original. It '\0' pads the destination to the length
requested. [Ed: this is the behaviour of strncpy.] In the original code this
would have exceeded the allocated space by a significant margin.
The act of opening a file does not necessarily set the end of file state, even
if it is of zero length. A read at end of file will, so the source file should
be read before entering the while loop. The original code could issue
multiple fopen() calls on the same file, and also issued fclose() at
the end irrespective of a successful open. Depending on the environment,
this could cause exhaustion of available file handles. The fclose() calls
are misleading as to the actual scope of the open files. No use is made of
the return from the fgets() or fprint() calls to check for errors on
the streams. The end of file occurrence is already covered, and it may be
argued that the issue of a read or write error is too much for a small
program.
Finally, the design does not make allowance for the real-world format of
HTML files. This design will not generalize. The tags detected are only
opening ones, and no removal of leading content is performed. Unless the
HTML source is structured one tag pair per line (which is possible, of
course), the output will not be clean or complete. Handling this eventuality
would require a more sophisticated design, and would definitely exceed
the scope of the original.
All in all, a lot in less than 50 lines. The suggested alternative code was
developed and tested using Xcode on OS X 10.4 for a Unix-like
environment.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 const int buffersize = 255;
 const int inputlimit = 254;
 const char * srcfile = "/snapshot.html";
 char home_path[buffersize];
 char * fullpath = NULL;
 char fullfile_directory[buffersize];
 char buffer[buffersize];
 char *outputfile = "/tmp/output.log";
 FILE *f;
 FILE *readfile;
 if(strlen(getenv("HOME"))
 < inputlimit - strlen(srcfile))
 {
 strcpy(fullfile_directory,
 getenv("HOME"));
 }
 else
 {
 exit(1);
 }
 strncat(fullfile_directory,
 srcfile, inputlimit);
 printf("Searching: %s\n",
 fullfile_directory);
 readfile = fopen(fullfile_directory, "r");

 if(readfile)
 {
 f = fopen(outputfile, "a+");
 if(f)
 {
 fgets(buffer, inputlimit, readfile);
 while (!feof(readfile))
 {
 if (strstr(buffer, "<title>"))
 {
 printf("Extracting title\n");
 fprintf(f, "title: %s", buffer);
 }
 else if(strstr(buffer, "<h1>"))
 {
 printf("Extracting heading\n");
 fprintf(f, "Heading: %s", buffer);
 }
 fgets(buffer, inputlimit, readfile);
 }
 fclose(f);
 }
 else
 {
 fprintf(stderr,
 "Unable to open output file '%s',\n",
 outputfile);
 }
 fclose(readfile);
 }
 else
 {
 fprintf(stderr,
 "Unable to open source file '%s'.\n",
 fullfile_directory);
 }
 return 0;
}

Li
st

in
g

2

Open the source file
If the open is successful,

Open the output file
If the open is successful,

Read the first source line
While not end of source file

Test the line and output as required
Read the next source line

End while
Close the output file

End if
Close the source file

End if

Figure 1
22 | | SEP 2009{cvu}

Joe Wood <joew@aleph.org.uk>

Derek sat down and Brian pushed a pint in his direction and said, ‘You’re
going to need that.’
Sounding more grumpy than he intended Derek said, ‘Joe?’
Brian smiled and said, ‘Who else comes to us with their programming
assignments?’
Joe was well known to the two post graduate students. He could be a pain
but was enthusiastic and keen to learn, and they both knew that everybody
had to start at the beginning. Besides Dr. Möbius had made it clear that
helping their fellow students would improve their skills, exactly how or
why was, in their opinion, less obvious.
‘OK,’ said Derek. ‘You had better show me the problem.’
Brian had already turned on his laptop, and said, ‘Well, it’s really quite
simple. The program opens a hard-coded HTML file in the user’s home
directory, and prints out any title or top level headings elements that it finds
therein.’
‘That’s OK, what about HTML structure and semantic rules?’ asked
Derek, wondering if this was going to turn into an HTML parser.
‘Slow down, it’s just a straight line-by-line text search and display
program. We find the required start tag (<title> or <h1>) in the line (if
any) and display the line,’ Brian said calmly, trying to keep Derek from
going off on some over-engineered solution.
Derek said haltingly, ‘No semantic processing, no checking for invalid
HTML, no looking for nested elements, no looking for the end of the
required elements?’
‘Absolutely not. It’s a simple text searching problem. But we do have to
record the found lines in a log file in /tmp.’ said Brian.
‘We can do that!’ said Derek warming to the new task. ‘So what exactly
is Joe’s problem?’
Brian showed him Joe’s code, and said, ‘Joe came to me because it keeps
crashing when he concatenates the two parts of the file name. Joe said he
originally tried strcat and replaced it with strncat. But the program
still crashes in the same place.’
Derek looked at the offending code and said, ‘Well of course it will crash,
home_path is a string pointer returned by getenv, and it points into the
environment list and must not be mucked about with.’
‘I remember, the environment list contains a table of name=value pairs,
so Joe is trying to write into what is effectively the OS’s private data.’
‘Exactly.’ said Derek. ‘Now, if we replace the offending lines with’

 home_path = getenv ("HOME");
 fullfile_directory =
 malloc (strlen(home_path) +
 strlen("/snapshot.html") + 1);
 strcpy (fullfile_directory, home_path);
 strcat(fullfile_directory, "/snapshot.html");

‘Then, we just copy the value returned by getenv, append the required
file and we can do what we like to that,’ said Derek.
‘Hold it, there are two problems,’ said Brian. ‘Firstly, getenv may fail,
especially if we made a typo in its argument. Secondly, and more generally,
what about error handling? We really should check the results of functions
like getenv and strcat.’
‘Right, we should test the values returned by library functions. However,
this is a student’s project and it is far from clear what we should do if a
function fails.’
‘OK,’ said Brain, ‘let’s just call error. I know, it is a gnu extension, but
it does provide a simple straightforward method for reporting errors and
quitting. So for example we can use.’

if (!home_path) {
 error (EXIT_FAILURE, errno,

 "Unable to determine home path");
}
fullfile_directory =
 malloc (strlen(home_path) +
 strlen("/snapshot.html") + 1);

Derek said, ‘We can do better than that. If we encapsulate the call to error
in a local procedure, test_status, and pass the condition to be tested
into that, then if we report an error it will just never return, like so.’

static void test_status(bool err_result,
 int errnum,
 const char *format, ...)
{
 if (err_result) {
 va_list args;
 va_start (args, format);
 error(EXIT_FAILURE, errnum, format, args);
 va_end (args);
 }
}

Brian though for a few moments and said, ‘In any case, there is subtle issue
with using strncat. strncat offers the safety value of only copying a
specified maximum number of characters, which can be useful, if the
source has no terminating null. The terminating null is then always added.
However, there is a catch. If the supplied length is larger than the supplied
source string, then the length is made up by appending extra nulls. This
could contribute a significant time penalty.’
Derek said, ‘We never use fullpath. So the first part of the solution
becomes.’

static char * cat_path (const char * part_1,
 const char * part_2)
{
 // Note: Although this procedure looks
 // lengthy and complicated, in fact because
 // of its use of memcpy, the compiler
 // produces some efficient code.

 // Get the lengths of the 2 part strings
 const size_t len_1 = strlen(part_1);
 const size_t len_2 = strlen(part_2);

 // Allocate space for full file name
 char * full_name = malloc (len_1 + len_2 + 1);

 // Check that allocation was ok
 test_status(!full_name, errno,
 "Cannot allocate memory for file name "
 "in cat_path");

 // Copy part_1 name into full_name
 memcpy (full_name, part_1, len_1);

 // Append part_2

 // Note: the additional byte is copied
 // to pick up the trailing null
 // from the part_2 string on the fly
 memcpy (full_name+len_1, part_2, len_2+1);

 return full_name;
}

int main ()
{
 const char * home_path = getenv ("HOME");
 test_status(!home_path, errno,
 "Unable to determine home path");
SEP 2009 | | 23{cvu}

 const char * fullfile_directory =
 cat_path (home_path, "/snapshot.html");

 // The printf should just have only two
 // arguments
 printf("Searching: %s\n",
 fullfile_directory);

 // File handle for output log file
 FILE * f;

 // File handle for reading from
 // fullfile_directory
 FILE * readfile;

[To be continued …]

Brian said, ‘How what about the file opening?’
Derek replied, ‘Well Joe even managed to get that wrong. First off he never
tested the return statuses. Secondly, the second argument to open the
output file only needs to be ‘a’ and not ‘a+’. Thirdly, and most
importantly, he opens multiple output files, one each time around the feof
loop, which causes the output to be written in reverse order.’
Brian smiled, ‘That’s quite impressive for two fopens. A better solution
would be.’

 readfile = fopen(fullfile_directory, "r");

 // Check input file was opened ok
 test_status(!readfile, errno,
 "Cannot open file %s for reading",
 fullfile_directory);

 // Just append to the file
 f = fopen ("/tmp/output.log", "a");

 // Check output log was opened ok
 test_status(!f, errno,
 "Cannot open file %s for writing",
 "tmp/output.log");

Brian said, ‘I would put both into small local procedures so that I need not
repeat the file name details, but it’s more a matter of personal style.’
Derek said, ‘And finally we get to the real business of reading the HTML
file. Something like.’

 char buffer [BUFFER_SIZE];

 // Main processing loop
 while (read_line(buffer, BUFFER_SIZE,
 readfile, fullfile_directory)) {
 look_for_token (buffer, "<title>",
 "Title", f);
 look_for_token (buffer, "<h1>",
 "Heading", f);
 }

 // Close opened files etc.
 fclose(f);
 fclose(readfile);

 // And exit normally
 return 0;
}

‘That tidies up several errors with the size of the input buffer.
buffer_size is a macro, say 256 bytes.’

Brian said, ‘Now, look_for_token is quite straight forward.’
static void look_for_token (
 const char * buffer,
 const char * token,
 const char * message,
 FILE * f)
{
 if (strcasestr (buffer, token)) {
 printf ("Extracting %s: \'%s\'\n",
 message, buffer);
 fprintf (f, "%s: %s\n",
 message, buffer);
 }
}

Derek said, ‘You know that strcasestr is another gnu extension, but
its quite easy to replicate. It’s just a case insensitive search. You do realise
that you have slightly changed the output text?’
‘Yes, but it does allow for future expansion.’
Brian said ‘Finally for read_line.’

static const char * read_line (
 char * buffer,
 size_t size,
 FILE * stream,
 const char * name)
{
 const char * input =
 fgets (buffer, size, stream);

 if (input == NULL) {

 // fgets returns NULL both on error and
 // eof, so we must test for eof before
 // assuming the worst
 if (!feof(stream)) {
 error(EXIT_FAILURE, errno,
 "Cannot read data from %s", name);
 }
 }

 return input;
}

Brian said, yawning, ‘Well, better test it with some sample HTML.’
‘Of course. Here’s some I prepared earlier.’
A few tests later. ‘Good. I think Joe owes us another round. What about
Dr. Möbius?’

Commentary
As most of the entries said, the code under critique is quite badly broken
and also the exact purpose of the program is non-intuitive.
My particular interest here is with strncat, which is a rather odd function
and curiously rather different from strncpy. Here is an extract from the
specification for this function in the C standard:
The strncat function appends not more than n characters (a null
character and characters that follow it are not appended) from the array
pointed to by s2 to the end of the string pointed to by s1. The initial character
of s2 overwrites the null character at the end of s1. A terminating null
character is always appended to the result. Thus, the maximum number of
characters that can end up in the ar ray po inted to by s1 is
strlen(s1)+n+1.

In my opinion this is a poor design. One easy assumption to make is that
the last parameter is the length of the target buffer – this matches the use
of the argument in strncpy and some other similar functions. Even
avoiding that error the user of strncat must calculate the amount of
space left in the target string, remembering to allow for the null terminator.
24 | | SEP 2009{cvu}

It is easy to get this wrong, and then strncat loses its buffer overrun
protection.
When combined with the behaviour of strncpy (which does not append
a null terminator when the source string is longer than the target buffer) it
is all too easy to overflow the target buffer.
The design also breaks a symmetry between strcpy and strcat; if the
destination buffer is empty, strcpy(dest, src) and strcat(dest,
src) have the same effect, but strncpy(dest, src, n) and
strncat(dest, src, n) have different effects.
Sticking to C makes it hard to avoid these errors; in C++ use of the standard
string class does all the buffer allocation behind the scenes.

The Winner of CC 58
It was very hard to choose a winner from the entrants this time – the
critiques covered most of the issues fairly comprehensively. There was
some disagreement about the precise semantics of strncat – which was
one of the points raised by the critique – and I don’t think anyone got it
right!
So the solutions deciding to allocate memory dynamically are probably the
safest way to go – although it is important to remember to free the resultant
string.
Overall I felt that Pete Disdale’s critique was the best by a short head, and
so he will receive the one-off prize for this issue of the Code Critique: a
family ticket to visit Bletchley Park.

Code Critique 59
(Submissions to scc@accu.org by Oct 1st)
I’m trying to write a decimal to hex converter but
it doesn’t quite work – can you help fix my code.

While you’re there, there a number of additional
comments you might wish to make.
The code listing is shown in Listing 3. You can
also get the current problem from the accu-
general mail list (next entry is posted around the
last issue’s deadline) or from the ACCU website
(ht tp: / /www.accu.org/ journals /) . This
particularly helps overseas members who typically get the magazine much
later than members in the UK and Europe.

#include <stdio.h>
#include <iostream>
#include <stack>
using namespace std;
stack<char> cStack;

void decToHex(int num){
 int showNum = num;
 int storeNum;

 while(num != 0){
 storeNum = num % 16;
 switch(storeNum){
 case 10:
 cStack.push('A');
 break;
 case 11:
 cStack.push('B');
 break;
 case 12:
 cStack.push('C');
 break;
 case 13:
 cStack.push('D');
 break;
 case 14:
 cStack.push('E');
 break;
 case 15:
 cStack.push('F');
 break;
 default:
 cStack.push((char)storeNum);
 break;
 }
 num = num / 16;
 }
 cout << showNum << " in hexadecimal is ";
 while(!cStack.empty()){
 cout << cStack.top();
 cStack.pop();
 }
}
int main(int argc, char ** argv)
{
 // test it
 int integer;
 cin >> integer;
 decToHex(integer);
}

Li
st

in
g

3

SEP 2009 | | 25{cvu}

http://www.accu.org/journals/

26 | | SEP 2009{cvu}

Inspirational (P)articles
Frances Buontempo introduces Linda Rising’s inspiration.

n CVu May 2009, I shared the inspiration created by reading an interview
with Donald Knuth. I want this to become a regular feature because I
passionately believe sharing positive experiences causes ripples, as
though the inspiration spark permeates through the ether and hits

surrounding people. Terry Pratchett has written about such inspiration
particles in various books, hence the title of this series.

Many thanks to Linda Rising for sharing this encouragement to step away
from the keyboard for moment.

If you have a story to share of a recent uplifting or encouraging moment,
please send it to frances.buontempo@gmail.com.

Agility at a personal level: Implications for daily life
choices
Our favourite drug (way ahead of nicotine and alcohol) is caffeine. It’s the
first thing we reach for in the morning. It allows us to be our perky best

and fell energized. But does it represent the best, the most agile way to
navigate our day?
Seredipity brought us coffee and tea just as factories appeared, heralding
the Industrial Revolution. Almost overnight, instead of waking with the
sun, we work to a SCHEDULE. We had to be on time and stay that way
throughout the working day, sleeping less and less over the years. Some
of this was good, of course. The lives of ordinary people improved. Boiling
water meant producing a safer drink.
Is it time to get off the treadmill we boarded at the start of the Industrial
Age? Is it time to question the myth that we are the best problem solvers
when we force it by working without stopping until we have readed our
goal (or we fall asleep over the keyboard)? How about some experiments
where some of us work in short cycles with breaks and enough time for
sleep and other interests? Sounds quite agile! I believe we might discover
the our creativity, productivity, and happiness soar!

I

Listing 1
Listing1

ACCU Security – Yesterday, Today,
and Tomorrow

ACCU announce a 1-day conference at Bletchley Park.

On November 7th 2009, ACCU will be holding a one day conference at
Bletchley Park, home of the legendary World War II ‘Engima’ code
breakers, and the site at which the world's first digital computer went
operational.
Confirmed speakers, in alphabetical order, include:

Tony Sale, lead on the working reconstruction of ‘Colossus’, the
world’s first digital computer. The original was used to break the
German ‘Lorenz’ code, and played a vital role in the run up to the
Allied invasion of Europe.
Simon Singh, author, journalist and TV producer, specialising in
science and mathematics, and the author of The Code Book, a history
of codes and code breaking from Ancient Egypt to the Internet.
Phil Zimmerman, the original creator of the PGP email encryption
package, which despite three years of government persecution
became the most widely used email encryption software in the
world.

The Conference will be held in the elegant Victorian Bletchley Park
Mansion, at the centre of Bletchley Park itself, allowing conference
attendees the opportunity to visit the exhibits on show at the National
Museum of Computing and the rest of Bletchley Park. Bletchley Park is
home to a number of unique artifacts, including the Colossus, the Bombe
(including the mock-up that featured in the film ‘Enigma’), original
Enigma machines, and a Lorenz coding machine.
The proceeds of the conference will go to the Bletchley Park Trust to help
with the upkeep of Bletchley Park. Conference rates have not, at time of
writing, been finalised but will be in the region of £95 per person.
More information and registration details are on the website at:
http://accu.org/index.php/conferences/accu_conference_2009_security.

Write for us!
C Vu and Overload rely on article contributions from members.
That’s you! Without articles there are no magazines. We need
articles at all levels of software development experience; you
don’t have to write about rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or
overload@accu.org

SEP 2009 | | 27{cvu}

Beginning Hibernate – From Beginner
To Professional
By Dave Minter and Jeff
Linwood, published by Apress,
ISBN: 978-1-59059-693-7, 317
pages

Reviewed by Andrew Marlow

Recommended with
reservations.
The contents appears at first glance to promise
coverage that will take the reader from novice to
professional. It starts with an introduction
(mentioning the purpose behind ORM tools),
configuring Hibernate, a simple application,
persistence lifecyle, mapping (both via mapping
files and via annotations), sessions and searches.
There are a number of appendices covering
advanced features (e.g. hand-rolled SQL,
invoking stored procedures), tools (Ant and
Eclipse), Spring, and upgrading from
Hibernate 2.
Although the table of contents looks promising,
appearances can be deceptive. The book does
not take the reader from novice to professional
in the way you would think. Instead of an initial
shallow overview that covers the essential topics
at a novice level, followed by covering the topics
in greater depth in later chapters, each topic is
covered completely before it moves onto the
next one. This does mean everything is covered,
and in enough depth to convey the level of
professional knowledge it promises. However, it
is very difficult for the novice. For example, the
first complete working program simply saves a

POJO. That program is not built on later, as you
might expect. The reader does not see how a
table is queried until chapter 9 (searches and
queries) which is two thirds of the way into the
book. This accounts for my recommendation but
with reservations.
The failure to cover all the fundamental
relational database tasks (create, read, update,
delete, transactions) at a novice level, and then
refine them in further chapters, is quite a failing.
It is not necessary for every book to take this
approach but it is particularly useful for a
database book to do so. You rarely perform just
one of these tasks in isolation. Hence, you would
expect it of a book that is subtitled ‘from novice
to professional’. This flawed approach shows in
several ways. For example, it is a long time
before enough knowledge is built up for the
reader to be able to create a realistic Hibernate
program at all. The examples focus on the
micro-detail leaving the reader in the dark for the
bigger picture. Also such detail can be
overwhelming for the beginner.
The division between the main text and the
appendices seems a bit strange. Why bother
having an appendix on moving from
Hibernate 2 to 3? Anyone who wants to move
from 2 to 3 will already have most of the
knowledge covered by the book and they would
not buy the book just for this appendix. Also,
why relegate Hibernate and Spring to an
appendix? These are often used together.
Generating the schema from the mapping files
get insufficient coverage in the main text. The

reader is only shown how to run the generation
from Ant in an appendix.
There is lots of example code, but the detail
obscures how Hibernate would be used at a
strategic level in a project. For example,
transactions are covered (in the sessions
chapter) but there are no examples of how a
business level operation that involves more than
one table would have to use a transaction to
ensure consistency (the @transacational
annotation is not covered either).
Having said all that, the book does contain alot
of useful information, and each idea is presented
in a reasonably clear and helpful way. Also, it
is succinct and avoids the distracting chatty style
that seems to be so common these days. I found
this book better than other Hibernate books I
have seen. However, a novice would probably
have to read the book twice to get the best from
it. This is because of they way it covers each
topic completely before moving to the next one
and also due to the succinct presentation.
I am waiting to see a better Hibernate book than
this one, but for the time being, this will have to
suffice as the best one I’ve seen. It would be even
better if it had a more accurate title, it is not
really suitable for beginners.

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops

28 | | JUL 2009

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Jez Higgins
chair@accu.org

It may surprise you to know
that, despite my position as
Chair, ACCU is not the only
organisation of which I am a member. I am also
a paid up member of a cyclists organisation,
Audax UK. AUK membership is open to any
cyclist, regardless of club or other affiliation,
who is ‘imbued with the spirit of long-distance
cycling’. They act as an umbrella for events
organised by members, run a mailing list, and
publish a magazine. I have discussed lifting a
feature from the Audax magazine with Steve.
Each issue has many pages of photos, but all the
photos are of AUKers, many of whom have
beards, riding their bikes. We could fill CVu
with photos of ACCUers, many of whom have
beards, at their desks.
‘Imbued with the spirit’ is a fantastic phrase.
You don’t actually have to do any long-distance
cycling, you have to think you might at some
indeterminate point. That had, indeed, been my
position for some time until, on the 21st of June,
I rode my first audax.
An audax is a long-distance bike ride. You’re
given a route card, with directions, and there are
a number of control points along the way. At the
control points you stop and get your card
stamped and your arrival time is recorded. The
controls are generally at cafes or pubs, so you
can stop and have a drink and a piece of cake too.
My day went something like this...
Arrive in good time for the 8 o’clock start. Many
people already there, greeting each other with ‘I
haven’t seen you since ...’, ‘How did you get on
at ...’, and so on. I don’t know anyone, although
I think I recognise a couple of names. Eat a
banana.
 Everyone crowds to the start. We’re off. Ride
for an hour and half to the first control. Have a
coffee, and fall into conversation with

another chap. We ride together to the next
control. We talk about bikes. I eat a banana.
At the next control, we fall into conversation
with some other chaps. We talk about bikes. We
ride out together to the third control. On the way,
I eat a banana.
Last control and everyone’s starting to flag a bit.
I have to be guided through ordering a sandwich.
We talk about the ride so far, and what’s left to
do. On the last stretch, I fall in with a couple of
chaps who, it turns out, live just round the corner
from me. Eat another banana.
204 kilometres and 10 hours or so later, I make
the finish (or arrivee in audax speak). I’m
hungry and tired. Not physically tired,
particularly, but mentally. My new ride-chums
are asking me if I’ve enjoyed myself, but I can
no longer form proper sentences. I head home,
determined to do it again.
It takes a little bit of imagination (and a few less
bananas), but my first experience at an ACCU
conference – JaCC 2000 – was very similar.
Arriving in a place full of people who already
seem to know each other, long periods of
concentration, interspersed with coffee and
biscuits, talking to people about what’s just go
on and what’s coming up, leaving completely
exhausted, but having had a bloody marvellous
time regardless of how ridiculous that might
have seemed at the beginning.

Membership
Mick Brooks
accumembership@accu.org

You’re reading this just after the
traditional membership renewal
period, August, is over. I’m writing it just as that
period begins, so I can’t tell you how it went. If
you’re an August member and are reading this,
then you managed to renew without problems.
If you didn’t, then you won’t be reading this, so
giving instructions

on how to renew seems somewhat futile.
However, it can’t hurt, especially since newer
members will have their renewal come up at
different times of the year.
The preferred way to renew is by logging in to
the website, then following the links named
‘Account’, then ‘ACCU Subscriptions’', and
then ‘Renew’, where you can pay by credit or
debit card. I’ll happily accept a cheque if you’d
prefer (email me for details). Some of you will
have arranged to pay by standing order, and
won’t have to do anything to ensure your
membership continues. If you’re not currently
paying by standing order drop me a line to find
out how to set one up. Less hassle for you, and
we even give you a discount.
In any case, now is a good time to log in to the
website and review your mailing address details
and contact preferences. If you have problems or
questions about renewals, or
anything else, then email me at
accumembership@accu.org.

Advertising
Seb Rose
ads@accu.org

This has been a bad year for advertising in
general and ACCU advertising in particular.
There has been a marked decline in new
enquiries and some of our existing advertisers
have decided not to renew. So... please alert your
employers, suppliers and customers to the
possibility of advertising on the ACCU website
and in the journals.

With regret we announce the death of Adrian
Leigh Gothard, who died on August 6th
following a long battle against illness. During
the 1990s, Adrian was a regular contributor
to CVu and spoke at the ACCU Forum on the
subject of embedded systems.

	ACCU Archaeology
	Don’t Ignore That Error!
	Java Dependency Management with Ivy
	Hunting the Snark (Part 4)
	What is C++0x?
	Interpreting Custom Unix Shell Scripts in C
	A Game of Dice
	Desert Island Books
	Code Critique Competition 59
	Inspirational (P)articles
	ACCU Security - Yesterday, Today, and Tomorrow
	Bookcase
	View From The Chair
	Membership
	Advertising

