

JUL 2009 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Shiny New Things
here are some exciting developments in the programming
world at the moment. C++0x should perhaps be top of
the list, for this publication anyway, but the ACCU is

about much more than C and C++ these days. Python 3.0
is still quite a recent release, and newer languages like F#,
D and Groovy are gaining popularity, to name but four of the
armies of programming languages in use.

It’s interesting to note that Bjarne Stroustrup considers C++0x
to be a ‘new language’ to some extent, although its design is
deliberately setting out to be compatible with C++ as we know it
today (http://www.research.att.com/~bs/C++0xFAQ.html#think).
With such an enormous back-catalogue of code, that’s quite an
undertaking.
It’s been almost a decade since C# was first released to the
development community, and work is now underway for version
4.0. Some years ago I attended a conference at which the then
new .Net and C# were the stars of the stage. I overheard
someone talking to Don Box, of COM renown (and many other
things, of course, but I hope he won’t mind me forever
associating his name with ‘Essential COM’ – which is indeed
essential to any developer working with COM). The questioner
wondered if .Net had just made all COM and native C++ irrelevant
(quite pleased at the prospect I think). Don was definitely sceptical of the idea that all the
COM and C++ would vanish overnight.
The interesting thing about so-called ‘legacy’ languages – and I include C and C++ in that
collection, simply because that is a commonly-held perception – is the depth and breadth
of experience a large number of people have with using them. They are ‘legacy’ because
they are successful, and being successful they have lessons to teach us, even if we’re using
shiny and (relatively) new languages and technologies today.
The state-of-the-art in software development is at least in part about applying the lessons
already learned in the ‘old’ to the ‘new’.

 T
Volume 21 Issue 3
July 2009

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Frances Buontempo,
Pete Goodliffe, Paul Grenyer,
Matthew Jones, Alan Lenton,
Chris Oldwood, Roger Orr,
Seb Rose, Matthew Wilson

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

http://www.research.att.com/~bs/C++0xFAQ.html#think

2 | | JUL 2009

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
18 Insirational (p)articles

Frances Buontempo
introduces Paul Grenyer’s
inspiration

19 Code Critique Competition
This issue’s competition
and the results from last
time.

25 Jeff Sutherland: Agile
Software Development in
the Enterprise
Chris Oldwood grapples
with Jeff Sutherland and
Scrum.

26 Desert Island Books
Paul Grenyer introduces
Gail Ollis.

28 My 2009 ACCU Conference
Chris Oldwood shares his
experiences.

REGULARS
30 Bookcase

The latest roundup of
ACCU book reviews.

32 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 21.4: 1st August 2009
C Vu 21.5: 1st October 2009

Overload 93: 1st September 2009
Overload 94: 1st November 2009

FEATURES
3 Hunting the Snark (Part 3)

Alan Lenton looks at the process from the hot seat.

4 Improving Code by Removing It
Pete Goodliffe makes code better by making it smaller.

5 Misconceptions About TDD
Matthew Jones dispels his concerns.

7 Getting REKURSIV
Seb Rose reminisces about object-oriented hardware.

10 Out of Memory
Roger Orr tackles some ‘out of memory’ problems.

14 Safe and Efficient Error Information
Matthew Wilson investigates.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

JUL 2009 | | 3{cvu}

Hunting the Snark (Part 3)
Alan Lenton looks at the process from the hot seat.

The interview
he room was square, with no windows, and a whiteboard on one wall.
The air conditioner made a distracting thrumming noise, but failed to
noticeably cool the atmosphere. In the middle was a table with two

men sitting on the far side from the door. Facing them was a single, empty,
hard and uncomfortable looking chair. As the candidate entered the room
the older of the two men rose and extended his hand. ‘I’d like to welcome
you here today’, he said, ‘My name is Grey, and this is my colleague, Mr
Brown. We will be assessing your technical skills.’ Mr Brown smiled a
sardonic smile.
The candidate shook the proffered hand and sat gingerly on the edge of
the chair, wondering why it was de rigueur to wear uncomfortable suits at
interviews. The interviewer smiled a plastic smile and carefully placed his
hands flat on the table. ‘Well I think we might as well start’, he said, ‘my
apologies for keeping you waiting.’
There was a moment’s silence, but the candidate failed to say that it wasn’t
a problem. Mr Brown made a note in the ‘teamwork’ section of his note
pad. ‘Now’, he began, ‘for the first part of this practical driving test, I’d
like you to explain exactly how you would perform a three point turn. We
would like you to be sure to cover all aspects of multi-tasking your eyes,
both arms and your feet. If you feel the need to describe
a parallelogram of forces acting on the car then please
feel free to use the white board. The marker is a bit dried
up, but I’m sure you can overcome that small problem.’
His companion smiled wolfishly.
The candidate cleared his throat nervously and started,
‘Well, first of all I would move my eyes to look in the
rear view mirror...’
As the interview proceeded the questions became more
difficult. It became clear from his interjections that Mr
Brown was a would-be Stirling Moss, probably the test
centre’s guru. All his little additions to Mr Grey’s questions seem designed
to show how clever Mr Brown was, and conversely, how little the
candidate knew. Every time the candidate stumbled over his description
of the action taken, Mr Brown made a note on his pad, most of which was,
by this time, covered with psychologically revealing doodles.
‘At this stage, I would move my left hand onto the gear lever, and shift it
back into reverse by pressing down hard and moving it all the way over to
the right before pulling it toward the back. At the same time my right
foot...’ The candidate was going through a description of parallel parking
when Mr Brown said sharply, ‘Stop!’. The candidate stopped abruptly, his
train of thought interrupted.
Mr Brown leaned on to the table, giving a very good impression of a
predator moving in for the kill. ‘Your passenger chooses this moment to
reach across and press the cigar lighter in, in preparation for lighting up a
cigarette. What would you do?’ The candidate thought rapidly,
recognising this as a variant on the teamwork test question in his ‘Driving
Test for Dummies’ book. Fortunately, he had mugged up on the question
the previous night, and was able to give the politically correct answer to
the effect that smoking was bad for the health, the dangers of secondary
(and, for a bonus point, tertiary) smoking, the cost to the Health Service
(figures to an accuracy of 0.1 of a penny), and its effect on average life
expectancy. This, noted the candidate, should be explained to the
passenger.
The interrogator looked faintly disappointed and leaned back in his chair.
As he did so he asked, in a suspiciously casual voice, ‘By the way, as you

are parking you notice a manhole in
the road. Do you happen to know why
manhole covers are round?’ The
candidate blinked. ‘Where I come
from they’re square.’
Mr Brown looked fazed for the first
t ime in the in terview, and the
candidate mentally chalked himself
up a much needed point. Mr Grey
smiled faintly at his colleague’s
discomfort and indicated that the
candidate should continue with his
description of parallel parking.
The interview wound on, seeming
interminable. Eventually, Mr Grey
said, ‘Well that seems to cover most of the issues, including exceptions,
which my colleague added into a previous question by having a child run
out in front of you. We only have one item left on the list. As you have
probably realized, most of the questions so far can be considered to be high
level driving problems, so we would now like to get an idea of whether
you understand what is happening when you ‘hit the metal’ at we say in

the trade.’ He gestures to Mr Brown, whose resulting
smile would have done Torquemada proud (Figure 1).
With a flourish Mr Brown produces a featureless
cylinder of greyish-silvery metal, about a foot long, and
perhaps three inches in diameter. He places it upright in
the exact middle of the table. There is a pause. A drop of
sweat trickles down the candidate’s face, but to brush it
away would indicate nervousness and a sure fail. Clearly
enjoying himself, Mr Brown allows the silence to stretch
on for a few more moments before clearing his throat
noisily.

‘You see before you’, Mr Brown clearly has a taste for histrionics, ‘a
cylinder of metal, made from an alloy of...’ he drones on for several
minutes about the physical and chemical properties of the metal. He stops
suddenly , wincing with an expression of pain – obviously Mr Grey has
kicked him under the table. ‘But I digress’, he continues, somewhat
superfluously. ‘What I want is for you to explain how you would machine
this into a piston for a 1600cc family saloon. You have access to all the
modern metal working machines – lathes, millers, shapers, annealing
facilities, etc. However, none of them are numerically controlled, so you
will have to do it manually.’ As an afterthought he adds, ‘We call this the
assembler test...’
Well, there you have it, as promised, but in the form of a little parable. I’m
sure I don’t really need to belabour the point.
That’s all I’m doing on interviews for the time being, but in the event of
there being vociferous demands from the readership of this magnificent
magazine (actually a vague indication of interest from a single reader will
suffice, I’m not proud), then I will return to producing a regular column.

T

ALAN LENTON
Alan is a programmer, a sociologist, a games designer, a
wargamer, writer of a weekly tech news and analysis
column, and an ocassional writer of short stories (see
http://www.ibgames.com/alan/crystalfalls/index.html if
you like horror). None of these skills seem to be
appreciated by putative employers...

Figure 1

the candidate
mentally

chalked himself
up a much

needed point

Professionalism in Programming # 56
Improve Code by Removing It
Pete Goodliffe makes code better by making it smaller.

ess is more. It’s quite a trite little maxim, but sometimes it really is true.
One of the most exciting improvements I’ve made to a codebase over
the last few weeks is to remove vast chunks of it. Let me tell you, it’s

a good feeling.

Code indulgence
We were working as a small agile software development team. We’d been
constructing a large software project following the hallowed Extreme
Programming tenets, including YAGNI. That is, You Aren’t Gonna Need
It – don’t write code that you don’t need. Even if it is going to be needed
in future versions, wait for that future version to add it. Don’t do it now if
you don’t need it yet.

It sounds like eminently sensible advice. And we’d all bought in to it.
But human nature being what it is, we inevitably fell short in a few places.
At one point, I observed that the product was taking too long to execute
certain tasks – simple tasks that should have been near instantaneous. This
was because they had been over-implemented; festooned with extra bells
and whistles that were not required, but at the time had seemed like a good
idea.
So I simplified the code, improved the product performance, and reduced
the level of global code entropy simply by removing the offending features
from the codebase. Helpfully, my unit tests told me that I hadn’t broken
anything else during the operation.
A simple and thoroughly satisfying experience.
So why did the unnecessary code end up there in the first place? Why did
one programmer feel the need to write extra code, and how did it get past
review or the pairing process? Almost certainly the programmers’
indulging their own personal vices. Something like:

It was a fun bit of extra stuff, and the programmer wanted to write
it. (Hint: Write code because it adds value, not because it amuses
you.)
Someone thought that it might be needed in the future, so felt it was
best to code it now. (Hint: That isn’t YAGNI. If you don’t need it
right now, don’t write it right now.)
It didn’t appear to be that big an ‘extra’, so it was easier to
implement it rather than go back to the customer to see whether it
was really required. (Hint: It always takes longer to write and to
maintain extra code. And the customer is actually quite
approachable. A small extra bit of code snowballs over time to a
large piece of work that needs maintenance.)
The programmer invented extra requirements that were not
documented in the story that justified the extra feature. The

requirement was actually bogus. (Hint: Programmers do not set
system requirements; the customer does.)

Now, we had a well-understood lean development process, very good
developers, and procedural checks in place to avoid this kind of thing. And
unnecessary extra code still snuck in. That’s quite a surprise, isn’t it?

It’s not bad, it’s inevitable
Even if you can avoid adding unnecessary new features, dead pieces of
code will still spring up naturally during your software development. Don’t
be embarrassed about it! They come from a number of unavoidable
accidental sources, including:

Features are removed from an application’s user interface, but the
back-end support code is left in. It’s never called again. Instant code
necrosis. Often it’s not removed ‘because we might need it in the
future, and it’s not going to hurt anyone left there...’
Data types or classes that are no longer being used are rarely
removed. It’s not easy to tell that you’re removing the last reference
to a type when working in a separate part of the project.
Legacy product features are never removed. The users no longer
want them and will never use them again, but it’s just not the done
thing to reduce an application’s functionality! We incur perpetual
product testing overhead for features that will never be used again.
The maintenance of code over its lifetime causes sections of a
function to not be executable. Loops may never iterate because code
added above them negates an invariant, or conditional code blocks
are never entered. The older a codebase gets, the more of this we see.
Wizard-generated UI code provides hooks that are frequently never
used. If a developer accidentally double-clicks on a control, the
wizard adds backend code, but the programmer never goes
anywhere near the implementation. It’s more work to remove these
kinds of auto-generated code blocks than to simply ignore them and
pretend that they don’t exist.
Many function return values are never used. We all know that it’s
morally reprehensible to ignore a function’s error code, and we
would never do that, would we? But many functions are written to
do something and return a result that someone might find useful. Or
might not. It’s not an error code, just a small factoid. Why go
through extra effort to calculate the return value, and write tests for
it, if no one ever uses it?
Much ‘debug’ code is necrotic. A lot of support code is not needed
once the initial implementation has been completed. It’s not unusual
to see reams of inactive diagnostic printouts and invariant checks,
testing hook points and the like, that will never be used again but
clutter up the code and make maintenance harder.

So what?
Does this really matter? Surely we should just accept that dead code is
inevitable, and not worry about it too much if the project still works.
What’s the cost of unnecessary code?

It is a simple fact of life that dead code, like any other code, requires
requires maintenance over time, and any unit tests also need to be
updated accordingly. It costs time and money.

L

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@goodliffe.net

dead pieces of code will still spring
up naturally during your software
development

Programmers do not set system
requirements; the customer does
4 | | JUL 2009{cvu}

Improve Code by Removing It (continued)
Extra code also makes it harder to learn the project, requires
extra understanding and navigating.
Classes with one million methods that may, or may not, be
used are impenetrable and only encourage sloppy use rather
than careful programming.

Dead code won’t kill you, but it will make your life harder than it needs
to be.
How can you find dead code? The best approach is to pay attention whilst
working in the codebase. Be responsible for your actions, and ensure that
you always clean up after your work. However, code reviews do help to
highlight dead code. And if you’re serious about rooting out unused code
sections, there are some great code coverage tools that will show you
exactly where the problems are.
There is no harm in removing dead code. It’s not like you’re throwing it
away. Whenever you realise that you need an old feature again, it can easily
be fetched from your source control system.
There is a counter argument to that simple (and true) view, though: How
will a new recruit know that the removed code is available in source control
if they don’t know that it existed in the first place? What’s going to stop

them writing their own (buggy or incomplete) version instead? This is a
valid concern. But similarly, what would stop them re-writing their own
version if they simply didn’t notice the code fragment was located
elsewhere?

Conclusion
Dead code happens in even the best codebases. The larger the project, the
more dead code you’ll have. It’s not a sign of failure. But not doing
something about it when you find dead code is a sign of failure. When you
discover code that is not being used, or find a code path that cannot be
executed, remove that unnecessary code.
When writing a new piece of code, don’t creep the specification. Don’t add
‘minor’ features that you think are interesting, but no one has asked for.
They’ll be easy enough to add later, if they are required. Even if it seems
like a good idea. Don’t do it.

Dead code won’t kill you, but it will make
your life harder than it needs to be
Misconceptions about TDD
Matthew Jones dispels his concerns.

his article started out as a question posed on accu-general [1] about
TDD and the intrusion of testability into class design. As I had hoped,
the question generated a number of interesting replies which were

well worth writing up.
It is a bit of a personal account, but we’re not all experts in TDD so I hope
that in summarising the discussion, anyone in a similar situation will learn
something. It is now obvious that I was suffering from a number of
misconceptions which were swiftly corrected by the responses from the
list. It is likely that these misconceptions are common.

The background to the problem is that I am trying to encourage my
software team to fully adopt TDD. In the process of writing some
guidelines to help them, I was trying to get to grips with TDD, design for
testability, and test coverage. We had just held a meeting to discuss this,
and I had explained how I thought that TDD would naturally lead to 100%
code coverage because no code is written unless a test calls it into
existence. We incorrectly inferred that, taken to its logical conclusion,
TDD meant all methods had to be public to be tested. This was obviously
wrong, so I sought a higher authority.
Here is my original question:

I’m trying to sort out design for test, and the scope of TDD, with my
SWteam:

TDD implies every method of every class is tested.

Without allowing the test harness to intrude (e.g. friend classes
etc)

this means all methods must be public so they can be called by the test
harness.

There are certainly cases where (e.g.) an important algorithm is
encapsulated (i.e. private), but really ought to be tested.

If important methods remain private, you can only test them
through other methods, which may prevent passing a full range
of parameters etc.

i.e. more of a black box test.

This seems to go against encapsulation, and almost makes protected
and private redudandant.

In a recent discussion, I suggested that methods that would be private,
but are public for testability, should be grouped under a suitable
comment.

It was suggested that we have a "test_public:" macro which is
public for tests and private for ‘deliverable’ code, to enforce the approach
and stop people taking short cuts and using should-be-private methods.
These shortcuts might not happen now, but years down the line when
the original team is no longer maintaining the code. It seems reasonable
but goes against my intuition.

There are a number of points, so I shall summarise the responses
accordingly.

TDD implies every method of every class is tested
This is the faulty premise which led me into drawing the other conclusions.
By treating this almost as dogma we led ourselves into a number of cul-
de-sacs.

T

MATTHEW JONES
Matthew started programming with BBC Basic, and then
learned C on a summer job between school and VI form.
He has been programming professionally for over 15
years, having moved on to C++, and usually works on
large embedded systems. He can be contacted at
m@badcrumble.net

It is now obvious that I was suffering
from a number of misconceptions
JUL 2009 | | 5{cvu}

TDD implies that every line of code is tested, not that there is a test for
every line of code. This is a very important distinction, and I failed to see
it. By concentrating on one outcome of TDD, test coverage, I had forgotten
about the bigger picture: that TDD shapes the overall design. High (but not
necessarily full) test coverage is a beneficial side effect.
TDD causes the public interface of a class to be brought into existence,
but says nothing about the implementation behind it. If the implementation
makes use of private methods, the unit tests know nothing of this and
therefore they should not try to tunnel through and access private methods
directly. Private really is private.
TDD forces you to consider the design of a class as you write it. Because
the unit tests are written before the ‘rest of the world’ exists (the world that
the class will fit into later on), it also forces you to provide a framework
for testing the class in isolation right now. Typically this will mean
isolating the rest of the world behind interface classes.

All methods must be public so they can be unit tested
This is a gross intrusion of testing into the design. As I said in the original
question it goes against encapsulation, not to mention intuition. This point
is really the (incorrect) logical conclusion drawn from the other three
assertions, but was second in the original list, so is second here. The
discussion of the other points also address this one.
If we were to make all methods public for testability, then yes we would
probably be able to achieve higher test coverage. However, we would have
then reversed one of the fundamental principles of TDD: the development
is now leading to tests. We have chosen to write a method that would have
been private, then made it public, then written tests. Once the tests exist
they justify the existence of the method to an outside observer. There is no
way to spot that the method might, for example, be redundant. We also lose
the knowledge that the method is an outcome of the design, not a
requirement, and is therefore of secondary importance compared to the
‘true’ public interface.
Resorting to conditional compilation would be even uglier. It is widely
considered to be A Bad Thing to test code that is different to what is
delivered. In this case the only difference is in the access specifier of a
number of methods, but once conditional compilation is accepted, it can
be the start of more serious rot.

Important private methods really ought to be public
so they are tested
A number of people pointed out that [2] describes a number of techniques
that could be used to solve this problem. One is to make the method
protected and virtual, then access it for testing through a derived class. The
derived class only exists in the test context.
Another is to separate the code into a new class, with its own unit tests.
An instance of this new class can then be passed to the original class and
treated as a safe, tested, entity. If this relationship were to be reduced to
an interface class we could move to using mock objects for test. If the
design evolves, this separation would also allow use of the STRATEGY
pattern [3], if the motivation arose (i.e. substituting different algorithms at
run time).
In these cases TDD is doing its job more subtly: the testing considerations
are driving us to alter the design by breaking up something that is irritating
and ‘doesn’t fit’ into something clearer and probably simpler. And it will
almost certainly be easier to understand. The requirement for testability
leads us to better design.
Testing private methods through the public interface leads to limited back
box testing
It should be obvious by now that unit tests might not reach into some dark
corners of private methods, and we shouldn’t tie ourselves in knots trying
to remedy this. If you can’t test part of a private method, then it is not being
exercised by the public interface, and its very existence is questionable.
After all, if you remove it, no tests will fail, and therefore from the TDD
point of view it doesn’t need to exist in the first place.

100% code coverage is a separate goal from 100% TDD. It usually requires
concerted effort to even get close to 100% code coverage. If we think we
need it we should first ask ourselves whether it is really worth it. In most
cases it is enough to ‘just’ have a well tested, well designed, and adaptable
code base. And that is before even considering the exact meaning of ‘code
coverage’, which is a whole subject unto itself, and outside the scope of
this article.

Conclusions
I quickly realised that I had confused TDD, which leads to black box testing
through the public interface, with high test coverage which usually requires
a white box approach. I had concentrated too much on the ‘T’ and forgotten
about the ‘DD’.
The responses went beyond simply answering the original questions and
provided good background to the whole subject of TDD. It is interesting
that although at no point was ‘legacy’ mentioned, a number of responses
recommended [2]. Another good recommendation was [4].

References
[1] http://accu.org/index.php/mailinglists accu-general, Mon, 9 Mar

2009, thread entitled ‘Design for TDD testability’.
[2] Working Effectively with Legacy Code, Michael Feathers.
[3] Design Patterns: Elements of Reusable Object-Oriented Software,

Gamma, Helm, Johnson and Vlissides
[4] Test-Driven Development By Example, Kent Beck.

Acknowledgements
Thank you to all the participants in the accu-general discussion, for both
answering my question quickly and constructively, and providing the rich
vein I mined for this article. In particular, I have used comments from
Balog Pal, Bill Somerville, David Sykes, Jon Jagger, and Michael
Feathers.
{cvu}
6 | | JUL 2009

Getting REKURSIV
Seb Rose reminisces about object-oriented hardware.

ames Clerk Maxwell was one of the 19th century’s greatest physicists,
developing a theory of electromagnetism that has been called the
‘second great unification in physics’. If, at some time during his life, a

stray time machine had deposited him in the nether regions of the
eponymously named Edinburgh University building, he may well have
died of starvation negotiating the maze of twisty little corridors (all alike)
[9] in search of food or an exit. It didn’t. He survived his time at Edinburgh
and eventually died in Cambridge in 1879 of abdominal cancer – which
only goes to show he should have remained in Edinburgh.
This tale is not about James Clerk Maxwell. It is not about physics. It is
certainly not about the design of buildings, cancer or time travel. It may
not even be about Edinburgh University. But it does start in the basement
of the JCMB in the distant past of 1987 – when the internet was young,
memory was scarce and foolish adventurers still dared to do bold (and
foolish) things.
It was a sunny day and I was completing my long forgotten final year
dissertation on a qwerty terminal in the basement of the JCMB. As a
diversion I decided to check my e-mail, a novelty back then, in the slight
hope that there would be something interesting in my inbox. There was.
It was a brief message from a recent graduate, Ian Elsley, to everyone in
the computer science department looking for someone interested in joining
a team in Glasgow as a ‘Firmware Engineer’. I replied, out of boredom or
desperation, I can no longer remember which, asking for an explanation
of what a firmware engineer was. The die was cast.
A couple of weeks later I was taken out for a drink by short, Glaswegian
academic by the name of David Harland. He explained that my ignorance
of all things firm was not important. Apparently, being a CS graduate from
Edinburgh was sufficient for his purposes. He himself had been an
astronomer and noticed, while working nights in the St Andrews
observatory that the computer programmers were working somewhere a
lot warmer. His powers of abstract thought meant that a move to CS or
Maths was more or less inevitable, and CS had the edge because the area
he became interested in didn’t have a lot of literature at the time (and
because he didn’t understand mathematics). So he published prolifically
and designed a language called ‘Lingo’ which is described as being ‘based
on the Smalltalk language with Algol-like extensions’ [1].
Academics design programming languages. It’s what they do. Normally
it’s a fairly safe exercise, because it never leaves the department and no
one wastes any time or money on it. This time however, at least one
butterfly must have flapped its wings. Linn, a manufacturer of high-end
hi-fi had employed an itinerant Australian researcher by the name of John
Wainwright to look into automation of their new warehouse at Eaglesham,
near Glasgow. His beady eye fell upon David, who was a lecturer at
Glasgow University, and he asked him to join the team. Characteristically,
David refused. Equally characteristically, after sufficient badgering, he
repented and joined the team as the resident boffin.
At this point I should explain that Linn was (and is) run and owned by Ivor
Tiefenbrum, a colourful Glaswegian engineer, entrepreneur and sailor. His
unswerving dedication to audiophilic quality has ensured Linn’s continued
survival, but his idiosyncratic approach to business does not always serve
him so well. Linn had outgrown their somewhat dilapidated premises on
Drakemire Drive in Castlemilk (one of the less salubrious suburbs of
Glasgow) and he had built a modernistic edifice at the much more up
market Eaglesham, south of the city. His dream was to have a fully
automated warehouse, where computer controlled machines would glide
silently to retrieve parts for the production line. A gleaming embodiment
of all that Linn stood for.

Also at Linn was Bruno Beloff
who had a summer job there while
he completed his AI degree at
Edinburgh. Robin Popplestone,
his professor, had a robotics
research contract with Linn (he
was designing a six-axis robot
wrist they thought they might
need for making speakers) and
took him along for a v is i t .
Ironically, Ivor decided to dump
Robin’s project, but hired Bruno
to building a controller for their
record-cutting lathe. This turn
around didn’t help Bruno’s
academic career, but while he was
in fourth year, Linn offered him a
full-time job. ‘I was too lazy to
look elsewhere, so I took it’ is how
Bruno remembers it.
David and Bruno started building a prototype for an object-oriented
machine out of standard components. ‘One day we booked a flight to
Southampton to give a seminar about it, but the plane journey ended in
Birmingham (or thereabouts) and we were given train tickets to complete
the trip. But the train drove into a yard and remained there for several hours.
In whiling away the time, we started to sketch out how the logic could be re-
partitioned into a set of custom chips – and on returning to Linn we talked
Ivor into financing their design and production. So you see, when all is said
and done, the Rekursiv is British Rail’s fault!’ is David’s way of shifting the
blame.
Ivor is not one to be daunted by impossible odds, unknowable costs or
personal doubt. He set up a separate company, Linn Smart Computing, to
develop the technology, installed his brother, Marcus, as the managing
director and David as the Technical Director. He invested a large chunk
of Linn’s money in the venture and somewhere along the way shamed the
Department of Trade and Industry into backing it with £10 million of the
taxpayers’ money [2]. Let the work commence!
The architecture was named REKURSIV. The chips were called:

OBJEKT – for memory management
LOGIK – the micro-sequencer
NUMERIK – the data manipulator

These names are all trade marked by Linn, and some of them have
subsequently resurfaced as Linn audio products.
There is a book (Figure 1) describing the architecture [3], which has been
described by its author as ‘best used as a door stop.’ I think the best bit is
the hypothetical discussion between a RISC proponent and an EISC
(Extended Instruction Set Computer) proponent that includes
exclamations such as ‘That is pure conjecture!’ and ‘Rubbish!’ Needless
to say, the EISC man wins the day and the obvious conclusion is to build

J Figure 1

SEB ROSE
Seb is a software contractor in some of the most hostile
working environments, including banks, pension
providers and manufacturers. He works with whatever
technology is prescribed by the client – mainly C++, .NET
and Java. Recently he realised a lifelong ambition and
became a tractor owner.
JUL 2009 | | 7{cvu}

an object oriented machine. The rest of the book
describes the reasoning behind the project in detail and
having perused it again recently I can say that it
certainly was an interesting research project. David’s
view today is that ‘trying to make it a commercial
product was naive.’ [4]
The thing about the REKURSIV was that users could
program different instruction sets. James Lothian, who
was worked at Edinburgh University microcoding the
Prolog instruction set describes it as being ‘a really
interesting and unusual design: the main memory was
in effect a persistent object store, with every object
having its type, size and position in memory known in
hardware, so that (for example) the hardware could
prevent you from ‘running off’ the end of an array and
corrupting surrounding memory. Paging of objects into
and out of main memory was handled by the host
machine (generally a Sun 3), and was completely
transparent, even at the microcode level. This meant
that you could write arbitrarily complex algorithms in
microcode, even recursive ones, hence the machine's
name. Every object had a unique identifier (a 40-bit
number), and the MMU chip would translate that into the
object's store address (if it was in main memory). Since
only the MMU knew the object's address, an object could be moved around
in memory without having to update references to it (since they were in terms
of its object number); this made garbage-collection particularly
straightforward.’ [5]
Now let’s meet the rest of the team:
First in was Ian Elsley, the top graduate from Edinburgh University’s class
of ’86. Linn needed a UNIX guy to run the development effort. Bruno knew
Ian. Ian ‘did’ UNIX. Sweet [6]. To convince Ian to join, Bruno ‘produced
some crazy figures … that showed that in five years, the Rekursiv project
would be bigger than DEC.’ [10]
Next was Hugh Stabler, a friend of Ian’s from (have you guessed yet?)
Edinburgh. Hugh was an old school hacker, who had gone to University
as a mature student. He could code the socks off anyone I’ve ever worked
with and was a nice guy to boot. He was newly married with a young
family, and pretty much just got on with the job (which in his case was
knocking up a C compiler for the new chipset).
And then there was me. I soon found out that in this particular organisation
a firmware engineer’s job was to implement an assembler and emulator
for the chipset. The chipset was being delivered on a board for a Sun
Workstation, and the resulting emulator, hand crafted in X10, was duly
released as SEB: ‘Software Emulation of the Board’. (Figure 3) I should

point out that apart from some BASIC programs I’d written for estate
agents in Twickenham, I’d never written any commercial software. I’d
never worked in UNIX. I’d never developed on a windowed platform. I
was useless, but no one seemed to notice. And the software seemed to work
[5]. After that I went on to micro-code the C instruction set, so I really did
become a firmware engineer.
Meanwhile, Bruno was designing the chipset. He’d done a short course at
LSI Logic (which lasted a whole day including a long lunch break), and
was doing as well as could be expected, but needed some help. I called up
an ex flatmate of mine from (can you tell where, yet?) Edinburgh, Duncan
McIntyre, who had just graduated as an Electronic Engineer, and along he
came. He took one look at Bruno’s designs and immediately asked: ‘where
are the reset lines?’ There weren’t any. It was ‘too late’ to change the
designs significantly, but they managed to fit a single reset line in to the
program counter, enabling the chipset to be bootstrapped just in case we
ever got that far.
Bruno and Duncan went on to share a flat together, and spent a fair amount
of time at the LSI labs in Livingstone. Bruno remembers ‘our extreme bad
behaviour at LSI Logic in Livingston, where we poured breakfast cereal into
each other’s booths, smashed up keyboards, electrical fittings, and Duncan
nearly broke the manager’s jaw by slamming a door on him.’ When David
visited, he took great delight in ‘locking up’ the logic of the manager’s

mobile phone, which in those days was a thing the size of a
brick, but the guy couldn’t complain because Linn was
paying his commission.
To complete the technical team, a ‘real’ hardware engineer
was hired via an employment agency. Brian Drummond,
who was still working at Linn the last time I checked, could
have come straight out of Dilbert. He walked out of a
meeting once and was later seen in his office pacing up and
down, yelling, ‘I must learn to communicate better!’ out
loud to himself. Another time, he got so frustrated he started
banging his head on the wall so hard that he dented the
plasterboard. Duncan found a large piece of polystyrene
packing material, wrote ‘BANG HEAD HERE’ on it, and
stuck it to the wall.
You might have got the impression that the REKURSIV
team was geek meets nerd with a touch of dysfunction. You
might be right, but like all successful (?) geek/nerd teams we
had our mother. Kirstine Lambie was there before I arrived
and stayed long after I left. She may still be in Glasgow, for

Figure 2
Fi

gu
re

 3
8 | | JUL 2009{cvu}

all I know, and I remember the firm common sense with which she
organised the office.
In fact, Kirstine was the only sensible thing that I remember.
There were mad rumours of huge venture capital deals that never
materialised (which finally came to an end when Black Monday put
Britain’s economy into freefall.)

There were the mad cars. David had just learnt to drive and bought a
Porsche as his first car. Bruno got himself a Lancia Delta Integrale, which
he kept driving into the back of people at roundabouts.
And there was paranoia a-plenty. ‘There was the time when Bruno’s car
was broken into and the chip plans stolen. Someone shot the window out
with a low velocity gun; looking back it does seem very odd,’ says Ian. ‘Dave
and I ended up meeting Bruno half way between Edinburgh and Glasgow
to give him another car and the three of us talked in the back of a land rover
with the engine running because someone had the idea that we couldn’t be
recorded that way.’ [10]
A lot of time and money had been invested in the project, and the Linn
warehouse still wasn’t up and running. Black Monday was having a huge
effect and Linn was running short of money, so David and Bruno were
dispatched to various places to drum up custom. They weren’t particularly
successful, but seemed to have a good time. Bruno again ‘Dave was the
only person in Linn to hire a horse on a company credit card. Good on him.
He took it for a weekend tour of Yosemite Park in California when he was
supposed to be visiting computer companies in Silicon Valley. He came
back, and said he could make it do anything it wanted.’
‘Meanwhile I picked up a hitch-hiker in Santa Cruz and ended up, several
days later, in a weird situation in the woods with her husband who, I
eventually became convinced, was going to kill me. My ensuing departure
eventually got me stopped by the California Highway Patrol. Somehow, I
convinced them that I was not, in fact, extremely drunk. How, I still don’t
know.’ [2]
‘To be fair,’ adds David, ‘we did see IBM while we were over there – we
passed it on the freeway at 55 miles per hour but did not feel the need to
stop.’
‘It wasn’t IBM. It was Hitachi’, says Bruno. ‘David turned to me, grinned and
said, “We saw Hitachi, but they didn’t express an interest.”’
I stayed at Linn for a whole 8 months, before heading into the wilds of
northwest Scotland, and the project progressed happily without me.
Around 20 boards were sold, but now no one seems to know where any of
them are. Eric Smith thought that he’d found one in a surplus store in
Colorado [7], but he later told me in a private e-mail that after further
research he’d decided he hadn’t.
Linn now had a product that they didn’t understand and no one seemed to
want. It had been built to compete with VAX’s, but was seriously
outgunned by Sun SPARC stations and even PCs. Linn had finally
overreached its finances and the project was clearly at risk, but the final
straw was a Linn delivery driver called Shug. He reversed into David’s
Porsche and Ivor unwisely decided that, since the incident had happened
on private ground, Linn weren’t responsible and wouldn’t pay for the
repairs. David quit and ‘chucked all that I had in the way of bits and bobs
of hardware into the Forth and Clyde Canal.’ [8] I seem to remember
hearing that all the backup media went the same way.

Ian still thinks we were onto something: ‘The idea behind the Rekursiv was
fabulous. Strongly typed hardware with a microcodable virtual machine that
could be configured to pretty much any environment simulating any
machine. That last part was why Hugh was brought in to show that it could
even run a conventional high level language. When strongly typed object
oriented languages were running in memory it was astonishingly fast for the
time. But people were so locked into ‘clock speeds’ that they couldn’t get

their heads round a totally variable clock cycle, set by the
microcode.’ [9]
In the end, we didn’t contribute to the sum of human knowledge
in the way that James Clerk Maxwell did. Anything we
achieved was, at best, compost in which other endeavours

found sustenance. But the whole experience, at least from my point of
view, pays tribute to the labyrinthine depths of the JCMB where, if you
checked your e-mail at the right time, you might find an emerald the size
of a Plover’s egg [10].

Where are they now?
David Harland lives in Glasgow and writes about the space
program: http://homepage.ntlworld.com/dave.harland/My_Books/
Bruno Beloff lives in Brighton and runs ClassCalendar.biz:
www.classcalendar.biz
Ian Elsley lives in Honduras and teaches diving
Hugh Stabler was last seen in the Forest of Dean and latterly worked
for Xerox. Present whereabouts unknown
Duncan McIntyre lives in Twickenham and is CTO of
reviewcentre.com
Brian Drummond may well still live near Glasgow and work at Linn
Kirstine Lambie lives in Bordeaux and teaches English
I live near Edinburgh and work for IBM

References
[1] http://web.archive.org/web/20070607082132/http://

www.erg.abdn.ac.uk/research/projects/lingo.html
[2] Bruno’s version is ‘We got into what was effectively the end of the

Alvey Programme. I went with David to the office at Millbank Tower in
London. The main man was there. He didn’t understand anything
about what we were trying to do. Then David punted the idea that the
Japanese were trying to do something very similar, and from that
moment the deal was done.’ Personal e-mail 29 May 2009

[3] REKURSIV – Object Oriented Computer Architecture – Harland – 0-
7458-0396-2

[4] David goes on to add: ‘sometimes I feel that I should write a book
which really explains the principle of abstraction as it should apply to
the design of programming languages, but whenever this feeling
arises I lay down until it goes away!’ – Personal e-mail 31 March 2009

[5] Much later, after I’d left, they found that it ‘wasn’t well enough
behaved to run with the X10/X11 protocol converter’ – http://
www.brouhaha.com/~eric/retrocomputing/rekursiv/rekursiv.txt

[6] Ian ended up sharing an office with David, which wasn’t a good idea.
When David disagreed with Ian he used to joke ‘I think it’s time for
your annual decrement.’

[7] http://www.brouhaha.com/~eric/retrocomputing/rekursiv/
[8] Personal e-mail 31 March 2009
[9] Personal e-mail 31 May 2009
[10 http://www.ir.bbn.com/~bschwart/adventure.html

Linn now had a product that they didn’t
understand and no one seemed to want
JUL 2009 | | 9{cvu}

Out of Memory
Roger Orr has been tracking down some ‘out of

memory’ problems.

was inspired to write this article by some recent problems with
programs failing because they ran out of memory. Understanding the
problems proved a little tricky and the ‘standard’ tools used were

slightly misleading.

The problem
Memory is one of the main resources needed by a computer program, but
unfortunately it can be more difficult to deal with than some other resource
types. There are three main reasons for this:
Firstly, there are typically lots of requests for
memory. Modern programming styles allocate
large numbers of dynamic objects from the
heap and it is common to count the number of
memory allocations in thousands, if not
millions. Contrast this with file handles, for
example, where a typical program might only
open a handful of files. Techniques that involve
manually tracking each individual resource
may be viable for some types but are rarely effective for memory use.
Secondly, all memory in use looks much the same; if you examine program
memory it is normally hard to identify what a particular memory location
is being used for and where a particular byte was allocated. Indeed, just
finding the boundaries between memory allocated in separate allocation
requests is often a hard problem. Again, most resource types do not have
this problem; the identifier and contents of the resource usually help with
both getting the use of the resource and finding its original allocation, and
the boundary of the resource (file handle, TCP/IP connection, etc) is clear.
Finally, behind the scenes, memory is complicated. We’re used to dealing
with this complication with other resource types and expect to deal with
different failure modes. For example, failing to connect to a URL in Java
will raise an IOException but the actual runtime type of the exception
could be a MalformedURLException, a ProtocolException, a
SocketException, an UnknownHostException, etc. This range of
exception types helps to differentiate between the various underlying
causes for the failure and hence resolve the cause of the error. Not so with
memory (at least in the environments I know well) – memory allocation
failures all look pretty much the same.
For example, the man page for malloc on many systems says: ‘If there is
an error, returns a NULL pointer and set errno to ENOMEM.’ Some systems
add EAGAIN as an additional value, but this focuses on whether it’s worth
retrying, not on why the error happened.
There are a number of tools available on most development systems that
provide automated memory tracking. This typically adds some runtime
overhead and/or uses additional memory when it is being used, but does
provide a great deal of help with the first two points (tracking the large
number of individual memory allocations). In my experience there’s less
help with understanding the complexity of memory allocation in cases
where this is contributing to the memory issue.

What might out of memory mean?
But surely, you might think, ‘out of memory’ only has one cause – there’s
no memory left? Alas it isn’t that simple, but to understand why not we
have to expand a little on memory management.

Application

In most high level languages the application programmers allocate the bulk
of their memory implicitly. For example when adding two strings together

the runtime library takes care of allocating the
memory for the new concatenated string; the
runtime library is also responsible for
deallocating the memory when the string is no
longer required, perhaps using deterministic
deallocation when the object goes out of scope
or with the help of a garbage collector.
However, either explicitly or behind the scenes,
the address of the allocated memory is needed.
In most desktop architectures the address is a

simple number; in some architectures a more complicated structure,
perhaps involving a segment and an offset, may be used. Whatever the
actual scheme though, these addresses have a finite range of values.
This provides the first, and most fundamental, limit to the amount of
memory your process can allocate. The allocation may fail simply because
there are no valid addresses left unused in the address space of the process.
So, for a typical 32bit process on Windows, valid addresses range from
0x00010000 to 0x7FFEFFFF [1]. If a process is using that entire range then
it won’t be able to allocate any more memory and even purchasing another
gigabyte of RAM won’t help.
Additionally, for common operating systems (where code and data share
the same address space) the range of available addresses is further
restricted by any program code that is loaded into memory. Many
environments also support code modules (DLLs or sharable libraries)
which are often loaded at a variety of addresses in memory and further
fragment the range of available addresses.
Other memory allocations may also come out of the same address range.
For example, stack space for the main process and any additional threads,
the address range for memory mapped files or shared memory regions, and
in some operating systems areas of the address space are reserved for
interprocess communication or access to hardware components.

Runtime library

Within the runtime library the memory allocator will request memory from
the operating system to fulfil the allocation requests made to it. Since
operating system requests are usually quite expensive the runtime is often
implemented by allocating big segments from the operating system and
sub-allocating this memory to satisfy application requests.
There can be three main problems with such allocators.
Firstly, the allocator itself usually returns memory aligned to a suitable
address for all operations – perhaps aligned to an 8 or 16 byte boundary –
and also needs memory internally to manage the allocated memory. This
can produce a large total overhead if your application makes many small
requests. For example, consider the simple C++ program in Listing 1.
When I ran this program on my desktop machine it returned the value
89,134,808. But I’ve got much more memory than that on my machine!

I

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

you might think, ‘out of
memory’ only has one

cause – there’s no
memory left
10 | | JUL 2009{cvu}

The problem is with the overhead of the memory allocator and my example
program is a ‘worst case’ where the overhead dwarfs the size of each
allocation. Application programmers who allocate many small objects
typically find alternative strategies to reduce this overhead; these may
include using a pooled allocator or dealing with arrays of objects rather
than individual ones.
In the second case memory can get fragmented –
where the allocation and deallocation pattern of the
application leads to small gaps between the memory
cells remaining in use. Again, depending on
memory usage, these small gaps can add up to a
sizable amount of wasted memory. This problem is
fairly well explored and most memory allocation
implementations adopt a variety of schemes to try
and reduce the amount of fragmentation. Languages that use garbage
collection have an additional trick in that the collector may choose to
reduce fragmentation by compacting memory that remains allocated
during a garbage collection.
Finally you may be using multiple memory allocators (for example, a
mixed-language program or one using modules each with their own
allocator). Each allocator is holding some memory internally that is not in
use but has not been returned to the operating system and a request for
memory using one allocator may fail because the other allocators have all
the available memory in use. This is a difficult problem to solve and causes
some headaches for browser writers (among others) trying to support Java
virtual machines, Flash plugins, scripting engines and ‘normal’ HTML
rendering all running inside the same process.

Operating system

Looking at the requests made to the operating system these may fail for
multiple reasons. Firstly there may be limits set for each process, including
how much memory allocation it is allowed, and so the request may be
denied when such a limit is reached. Then the operating system’s own
memory manager may have restrictions on the addresses returned, possibly
based on the natural page size of the hardware architecture.
On 32-bit windows, for example, the VirtualAlloc call returns
memory addresses aligned to a 64K boundary. This provides yet another
restriction on the number of OS allocations that can be successful.
Consider the simple C program for Windows in Listing 2.
When I execute this on my desktop machine I get this result:

 C:>VirtualAllocateOneByte
 Allocated 32664 bytes.
 Last error code 8

Error code 8 is ERROR_NOT_ENOUGH_MEMORY – so I’ve run out of
memory after allocating less than 32Kb!! What I’ve actually run out of is
addresses that are on a 64K boundary.
Finally, we may actually be out of physical memory. Every byte of
physical memory might be in use by some process, device drive or the OS
itself. However most operating systems support ‘memory overcommit’
where more memory can be allocated than the machine physically
supports. The ‘extra’ memory is provided by swapping memory out to disk
and transparently re-mapping the physical memory addresses freed up to
other addresses in the same, or another, application.
So even if we are out of physical memory we might still get something back

from an allocation request to the operating system.
The OS may swap some existing data out to disk and
give us the memory so freed up. Or the OS might
reserve some space in the swap file and return us an
address range that will only be swapped in when it
is accessed. Different operating systems make
different decisions on how liberal they are at this
point. Each operating system seems to have its own

preferred approach and many provide configurable choices!
Windows takes a conservative approach and only returns memory if it
either really has the memory or it has successfully reserved space in the
swap file; when you hit the swap space limits the allocation fails. This is
a conservative policy and means the swap file expands to be bigger than
may be strictly necessary but on the positive side you can’t get a process
failure when you later try to write to the allocated memory. Solaris also
uses a conservative (‘eager’) approach by default but this can be
configured (see the vm_swap_eager attribute). Linux takes a more
liberal approach (The operating system that likes to say ‘Yes’) and by
default returns allocated memory with only a quick check for ‘obvious’
overcommitment. This has the advantage that the swap space usage is less
but the disadvantage that a subsequent attempt to actually use the memory
may fail because there is no room to expand the swap space. Later versions
of Linux prov ide some kernel conf igura t ion se t t ings (see
vm.overcommit_memory and vm.overcommit_ratio) that allow
you to configure the behaviour. You may (or may not) find this extract
from the relevant man pages reassuring: ‘Depending on the percentage you
use, in most situations this means a process will not be killed while accessing
pages but will receive errors on memory allocation as appropriate.’
Lastly, many operating systems allow the user to reserve spaces in the
address range and commit and free individual pages in the range as
required. Many operating systems also use this technique to manage the
stack – the stack is created in an address range of the maximum stack size
but marked as ‘reserved’ and actual pages of memory are only committed
to the stack as it grows. This ‘lazy allocation’ avoids up-front use of
megabytes of memory for simple programs that have a shallow stack.

Putting it all together
For a memory allocation to fail any one of a number things may fail. First
off we may not have an available address range in our address space for
the allocated memory – both size and alignment may be important here.
We may have inadequate resources for the runtime allocator and any
housekeeping it needs. We may have exceeded some allocation quota, or
lack a suitable target for an allocation from the operating system or finally
we may have run out of free physical memory or disk space.
In the problem cases that inspired the article the limiting factor was the
address space, but for slightly different reasons in each case.
In one case the application used a number of vectors internally and, after
some analysis, we discovered that the out of memory problem occurred
when a large vector had an additional item added. This extra item hit the
current capacity of the vector and so required a re-allocation of the
underlying memory buffer. The buffer was 100 Mb in size and the vector

#include <windows.h>
#include <stdio.h>

int main()
{
 int count = 0;
 while (VirtualAlloc(0, 1, MEM_COMMIT,
 PAGE_READWRITE))
 {
 ++count;
 }
 printf(
 "Allocated %i bytes.\nLast error code %li\n",
 count, GetLastError());
}

Li
st

in
g

2

Linux . . . the
operating system

that likes to say ‘Yes’

#include <new>
int main() {
 int count = 0;
 while (new(std::nothrow) char)
 ++count;
 return count;
}

Li
st

in
g

1

JUL 2009 | | 11{cvu}

class used had a simple doubling algorithm when resizing which meant a
request was made for 200 Mb of contiguous memory for the new buffer.
This request failed because there was no single free section in the address
range that was this large. The application failed with an out of memory
error although it had only allocated 800 Mb or so of memory and was
running on a machine with 4 Gb of physical memory.
This was on Windows and I failed (then) to find a standard tool that helped
analyse this problem. The debugger Windbg from Microsoft Debugging
Tools for Windows came close with its !vadump command but this
simply prints the details of each memory region allocation by the operating
system to the process and I wanted to find the largest contiguous free
region. Eventually I wrote a quick tool that scanned the address range and
reported the size of the largest free memory region; implementation of a
derivative of this tool is described below.
One solution to this problem is to replace the vector (that requires a single
memory range) with a container that allocates in chunks, such as the deque.
Another solution is to preset the capacity of the vector to the final allocation
size, but this is hard to do in general! In our case we changed the resize
algorithm for large vectors to avoid the doubling and hence reduce the need
for such large allocations.
In a different case we had a message switching application written in Java
running on a 32bit JVM on Solaris. The application would generate out of
memory errors even though tools such as ‘top’ showed our application was
using less than 2 Gb of memory (out of a possible limit over well over 3Gb)
and we had many gigabytes of free physical memory on the machine.
The fundamental problem here also turned out to be running out of address
space – our application was creating a pair of threads for each connection
it was managing and each thread was reserving a stack of 1 MB. The
threads all had a shallow call depth, so in fact only the first 8 Kb of each
stack was actually being committed, the rest of each stack was just left as
reserved address space. By the time you have a thousand threads in the
program that means nearly 1 Gb of address space reserved and hence not
available for other allocations.
There were three possible solutions we explored here. The first solution
was to reduce the number of threads, but this proved hard in our case
because the threads were being created by a third party library that we were
not able to change. We explored reducing the size of the thread stack, but
failed to find a mechanism that allowed us to do so (in some cases operating
system APIs provide the feature, but higher level abstractions may not
expose it to application code).
The eventual solution we went for in this case was to run in a 64 bit virtual
machine. This slightly increased the actual amount of allocated memory
used but enormously increased the available address range. The 1 Gb of
reserved space drops from one quarter of the whole range in a 32bit
program to a tiny fraction of the available 64 bit address range.
However, we found in this case too a lack of standard tools that provided
diagnostics for the ‘out of addressability’ problem. In this case we

eventually looked at the data from the /proc pseudo-filesystem and used
some scripting to identify the reserved memory ranges.

A useful (Windows) tool
Earlier this year SysInternals [2] released vmmap, which is a Windows tool
that provides a nice graphical view of the address space for a process and
also provides the summary (totals and largest address ranges in various
categories). I suspect this tool was written because running out of
addressability is becoming more of an issue for other programmers too.
(Figure 1)

Under the covers
I thought it would be instructive to provide source code (Listing 3) for a
program which prints the address ranges for a Windows process in a
similar fashion to vmmap.
The program expects a list of process IDs on the command line and simply
prints the virtual address map, and a summary line, for each one.
The a lgor i thm obta ins the use r -mode address range f rom
GetSystemInfo a nd i t e r a t e s t h rough t he r ange u s ing
VirtualQueryEx() to get the memory information for each address
block. Once the complete range has been read the details for each block
and t he summary i s p ro duced (No te t ha t t he
MEMORY_BASIC_INFORMATION structure holds additional information
that this simple program does not display).
Here is some sample output from this program in action:
 C:>virtmap 1812
 Processing: 1812
 8K at 00010000 committed
 56K at 00012000 free
 4K at 00020000 committed
 60K at 00021000 free
 240K at 00030000 reserved
 ...
 4K at 7FFDF000 committed
 4K at 7FFE0000 committed
 60K at 7FFE1000 reserved
 Committed: 10Mb, reserved: 6Mb, free: 2031Mb
 (biggest: 1607Mb)

Fi
gu

re
 1

#include <windows.h>
#include <iostream>
#include <iomanip>
#include <iterator>
#include <string>
#include <vector>
// This class holds the virtual memory map for a
// process
class VirtMap
{
public:
 VirtMap();
 int VirtMap::process(HANDLE hProcess);
 void printOn(std::ostream& os) const;
private:
 void add(
 MEMORY_BASIC_INFORMATION const & mb);
 std::vector<MEMORY_BASIC_INFORMATION> m_info;
 ULONG m_commit;
 ULONG m_reserve;
 ULONG m_free;
 ULONG m_biggest;
};
// Stream a memory map
std::ostream & operator<<(std::ostream & os,
 VirtMap const & virtMap)

Listing 3
12 | | JUL 2009{cvu}

JUL 2009 | | 13{cvu}

 else if (mb.State & MEM_COMMIT)
 {
 m_commit += mb.RegionSize;
 }
}
// Print the memory map
void VirtMap::printOn(std::ostream& os) const
{
static const ULONG megabyte = 1024L * 1024L;

 std::copy(m_info.begin(), m_info.end(),
 std::ostream_iterator<
 MEMORY_BASIC_INFORMATION>(os, "\n"));
 os <<
 "Committed: " << m_commit / megabyte << "Mb"
 ", reserved: " << m_reserve / megabyte
 << "Mb" ", free: " << m_free / megabyte
 << "Mb" " (biggest: " << m_biggest / megabyte
 << "Mb)";
}
int main(int argc, char **argv)
{
 int ret = 0;
 for (int idx = 1; idx != argc; ++idx)
 {
 int const pid = atoi(argv[idx]);
 HANDLE const hProcess = OpenProcess(
 PROCESS_QUERY_INFORMATION, FALSE, pid);
 if (hProcess == 0)
 {
 ret = ::GetLastError();
 std::cerr << "Unable to open process "
 << pid << ", error: " << ret
 << std::endl;
 break;
 }
 else
 {
 std::cout << "Processing: " << pid
 << std::endl;
 VirtMap virtMap;
 ret = virtMap.process(hProcess);
 CloseHandle(hProcess);
 if (ret != 0)
 break;
 std::cout << virtMap << std::endl;
 }
 }
 return ret;
}

{
 virtMap.printOn(os);
 return os;
}
// Stream a memory block
std::ostream & operator<<(std::ostream &os,
 MEMORY_BASIC_INFORMATION const & mb)
{
 os << std::setw(8) << mb.RegionSize / 1024 <<
 "K at " << mb.BaseAddress;
 switch(mb.State)
 {
 case MEM_COMMIT: os << " committed"; break;
 case MEM_FREE: os << " free"; break;
 case MEM_RESERVE: os << " reserved"; break;
 }
 return os;
}
// Class VirtMap implementation
VirtMap::VirtMap()
: m_commit(0)
, m_reserve(0)
, m_free(0)
, m_biggest(0)
{
}
// Handle a single process
int VirtMap::process(HANDLE hProcess)
{
 int ret(0);
 SYSTEM_INFO SystemInfo;
 GetSystemInfo(&SystemInfo);
 PVOID baseAddress(
 SystemInfo.lpMinimumApplicationAddress);
 while (baseAddress <
 SystemInfo.lpMaximumApplicationAddress)
 {
 MEMORY_BASIC_INFORMATION mb = { 0 };
 if (! VirtualQueryEx(hProcess, baseAddress,
 &mb, sizeof(mb)))
 {
 int ret = ::GetLastError();
 std::cerr << "Cannot query memory at: "
 << baseAddress << ": " << ret
 << std::endl;
 break;
 }
 add(mb);
 baseAddress = (PCHAR)mb.BaseAddress
 + mb.RegionSize;
 }
 return ret;
}
// Add an item to the memory map
void VirtMap::add(
 MEMORY_BASIC_INFORMATION const & mb)
{
 m_info.push_back(mb);
 if (mb.State & MEM_FREE)
 {
 m_free += mb.RegionSize;
 if (m_biggest < mb.RegionSize)
 m_biggest = mb.RegionSize;
 }
 else if (mb.State & MEM_RESERVE)
 {
 m_reserve += mb.RegionSize;
 }

Li
st

in
g

3
(c

on
t’d

) Listing 3 (cont’d)

Conclusion
As we reach the end of the road for 32 bit operating systems memory once
again has become a scarce resource – but this time round it is usually not
physical memory that we’re short of but managing to get enough address
space in our processes to access the memory we need.
I hope this overview of some of the complexity of memory management
will give people some help with identifying the cause of ‘out of memory’
problems.

Notes and resources
[1] Newer Windows versions support the /3GB switch which potentially

adds an extra gigabyte of addressability to a process.
See http://www.microsoft.com/whdc/system/platform/server/PAE/
PAEmem.mspx for more details.

[2] See http://technet.microsoft.com/en-us/sysinternals/

Safe and Efficient Error Information
Matthew Wilson investigates.

n STLSoft [1] user approached me recently, enquiring about the
stlsoft::error_desc component (see sidebar) and
Microsoft’s so-called ‘safe string’ library [2]. The component – it’s

a class, but usually used as a function – takes an error code, and elicits the
equivalent string form (via strerror()), for insertion into an error
report statement, as in:

 int code = ENOENT;

 std::cerr << "error: "
 << stlsoft::error_desc(code) << std::endl;

 ff::fmtln(std::cerr, "error: {0}",
 stlsoft::error_desc(code));

Why this is advantageous over invoking strerror() directly will be
discussed later in the article.
The user’s enquiry was whether the component should be implemented in
terms of strerror_s() in contexts where the safe string library is
available and active. I actually thought I’d already done this work, but
finding I was wrong set about doing so; it’s now available from 1.9.84
onwards. In making the changes I had cause to wonder about the safety of
strerror(). This article looks at reasons why it might not be safe, and
examines different ways of providing string error information. It then
describes a simple technique for doing so, which, while neither rocket-
science nor panacea, is safe, efficient, and guaranteed to be fail-free
(because it’s done at compile-time). The technique is equally applicable
to C and C++ libraries, but I will present it as if the library is written in C,
and consumed by C and C++.

Safety
The strerror() function is declared as follows:
 char* strerror(int errnum);

The C standard (7.21.6.2) describes it as follows. (The numbers are mine.)
1 The strerror function maps the number in errnum to a

message string.

2 Typically, the values for errnum come from errno, but
strerror shall map any value of type int to a message.

3 The implementation shall behave as if no library function calls
the strerror function.

4 The strerror function returns a pointer to the string, the
contents of which are locale-specific.

5 The array pointed to shall not be modified by the program, but
may be overwritten by a subsequent call to the strerror
function.

If we were to set aside condition 4, then it would be extremely easy to
satisfy all the others, along the lines of Listing 1 (a locale-ignorant
implementation of strerror()).
As you can see, there are no runtime state changes at all. Every string
already exists, placed in a constant segment in the program by the
compiler, and loaded into memory as part of static initialisation [3], so
there’s no chance of any allocation failure. In supporting condition 4,
however, the program must be able to change the associations between
error codes and the strings returned. It is possible to envisage a static
implementation whereby a switch-based lookup-function such as that
shown in Listing 1 would be defined for each locale, as in Listing 2
(pseudo-code for a locale-aware strerror()).
Obviously such a scheme would depend on all possible locales being
known at the t ime of creation of the given standard l ibrary
implementation’s writing. I don’t know whether this is even possible, but

A

MATTHEW WILSON
Matthew is a software development consultant for Synesis
Software who helps clients to build high-performance
software that does not break, and an author of articles and
books that attempt to do the same. He can be contacted at
stlsoft@gmail.com.

This class has a very simple interface, reflecting its simple,
immutable nature as the string form of an error:

// in namespace stlsoft
template <typename C>
class basic_error_desc
{
public:
 explicit basic_error_desc(int err);
 ~basic_error_desc() throw();
 C const* c_str() const throw();
 size_t length() const throw(); // also size()
};

typedef basic_error_desc<char> error_desc_a;
typedef basic_error_desc<wchar_t> error_desc_w;
typedef basic_error_desc<char> error_desc;

The interface also includes definitions of the string access shims [5,
3] to enable it to be inserted into FastFormat [6, 7] and Pantheios [8]
statements, as shown in the examples.

char const* c_str_data_a(error_desc_a const& ed);
size_t c_str_len_a(error_desc_a const& ed);
char const* c_str_ptr_a(error_desc_a const& ed);
wchar_t const* c_str_data_w(
 error_desc_w const& ed);
template <typename C>
C const* c_str_data(
 basic_error_desc<C> const& ed);
. . . // etc.

The stlsoft::error_desc interface

char* strerror(int errnum)
{
 switch(errnum)
 {
 case ENOMEM:
 return "out of memory";
 case EBADF:
 return "bad file descriptor";
 . . . /* all the other standard codes */
 default:
 return "unknown error";
 }
}

Li
st

in
g

1

14 | | JUL 2009{cvu}

it’s probably not desirable as the resulting program size would be
impacted. Whatever the ins and outs, it’s easy to foresee that more dynamic
abilities may be required. Hence condition 4.
Given the need to load locale-specific error strings dynamically, the
standard allows for pretty much any implementation, from one as fixed as
that shown above to one that has a single buffer and loads the required
string from some external resource upon each call. Hence condition 5.
The impact of this is two-fold: thread-safety and multiple calls per
statement. Obviously, if a given implementation of strerror() does
have a single result buffer then if two threads are calling it at the same time
there is a likelihood of erroneous results being obtained. Ideally, an
implementation will implement strerror() to be thread-safe, using
thread-specific storage [4, 3].
Even in the case where each thread is provided with its own storage, it is
possible for strerror() to produce erroneous results. Consider the
following seemingly correct code:

 printf("ENOMEM=%s, EBADF=%s", strerror(ENOMEM),
 strerror(EBADF));

Whether this produces the expected result or gives two apparently identical
error strings for the different errors is entirely implementation-dependent.
The original purpose of stlsoft::error_desc was to obviate this
second problem (with the assumption that the first was not an issue). Thus,
the following code has no undefined behaviour:

 ff::fmtln(std::cerr, "ENOMEM={0}, EBADF={1}"
 , stlsoft::error_desc(ENOMEM)
 , stlsoft::error_desc(EBADF));

strerror_r() and strerror_s()

Some platforms provide the non-standard strerror_r() function as
safe alternative, with the following signature:
 int strerror_r(int errnum, char *buff,
 size_t cchBuff);

Microsoft’s new so-called ‘safe string’ library provides the roughly
equivalent strerror_s(), which has the slightly different form:
 int strerror_s(char *buff, size_t cchBuff,
 int errnum);

Each takes an error code, a pointer to a buffer to receive the error string,
and a buffer size (in characters). Use of either function obviates both
problems with strerror(). That’s good news.
However, there are several downsides:

1. Neither are standard (nor particularly ubiquitous)
2. They’re far less convenient to use, leading to significant reductions

in transparency
3. If you don’t pass in a sufficiently large buffer, you’re not informed

how large it should have been. In fact, with strerror_s(), you
don’t even get told that you’ve provided too-little space! In either
case you’re forced to code up a guess loop

We can illustrate the second downside. Compare the example in Listing
3, showing the different amount of code that must be written to report an
error.
That’s one line of code, and one statement, for strerror(); seven lines,
two variables and three statements for strerror_s(). Given that code
reliability has a significantly relation to expressiveness, something’s
smelling a bit squiffy here.
Furthermore, the strerror_s() was not really correct. Oh, sure, we’re
very unlikely to find an error code string that has more than 1000
characters. But it’s not impossible. So a full and correct implementation
would actually look more like Listing 4.
Who wants to see such muck in their application code? If a façade such as
stlsoft::error_desc (see sidebar) was not already available, having
to use either of these ‘safer’ monstrosities would be a substantial
motivation for its creation. The new version of stlsoft::error_desc
encapsulates such an auto_buffer-based guess loop, where it cannot
intrude on the transparency of client code.

Library errors
Let’s now turn our attention away from strerror() and its troubled kin,
and look at a simple technique that I use in several standard libraries for
eliciting error strings in a safe and efficient way. First, let’s look at a use
case that illustrates why we might be concerned with the performance of
error→string conversions, as well as correctness.
The Pantheios logging API library uses string access shims [5, 3] to elicit
the string forms of arguments. Wherever possible it elicits the length of
the a rgumen t ’ s s t r i ng fo rm d i r e c t l y , e . g . i t i nvoke s
std::string::size(). When dealing with strerror()’s result –
and that obtained from strerror_r()/strerror_s(), for that matter
– strlen() must be invoked. In the case where the strings are being
obtained from literals, known at compile-time, this is a pointless waste of
cycles.
The technique I use in several of my libraries avoids this wasted effort, by
defining strings as literals, and keeping a record of the string pointer and

// (a) via strerror()
ff::fmtln(std::cerr,
 "could not open file {0}: {1}", file,
 strerror(errno));

// (b) via strerror_s()
char buff[1001];
if(0 != strerror_s(buff,
 STLSOFT_NUM_ELEMENTS(buff), errno))
{
 const char backup[] = "unknown error";
 strncpy_s(buff, STLSOFT_NUM_ELEMENTS(buff),
 backup, STLSOFT_NUM_ELEMENTS(backup) -1);
}
ff::fmtln(std::cerr,
 "could not open file {0}: {1}", file, buff);

Li
st

in
g

3

char* _strerror_English(int errnum);
char* _strerror_French(int errnum);

char* strerror(int errnum)
{
 locale_id_t lid = getlocale();
 switch(lid)
 {
 case "French":
 return _strerror_French(errnum);
 . . . /* and all other cases */
 default:
 /* deliberate fall through */
 case "English":
 return _strerror_English(errnum);
 }

Li
st

in
g

2

If you don’t pass in a sufficiently
large buffer, you’re not informed

how large it should have been
JUL 2009 | | 15{cvu}

the length in a statically-defined data structure. To see how this is done,
let’s postulate a fictional library AcmeLib, whose API looks like the
Listing 5.

The simple but slow way to implement this would be as shown in Listing 6:
But we don’t have to waste the fact that the compiler knows all about the
literals. We can capture this information at compile-time, rather than
calculating it at runtime, every time. First we need a data structure.
Assuming that AcmeLib deals only in multibyte-character types, we can
define AcmeLibRcString_t_ (Listing 7), and a function to perform
lookups on arrays of it. (FYI, the use of trailing underscore is my personal,
standards-adhering, affectation to denote that a particular symbol is
component-internal, rather than part of an API. Feel free to copy/ignore
as you choose.)
This function attempts to find the entry matching the code, and returns its
pointer (return value) and the length (out parameter). If no matching entry
is found, it uses the default string. Note that two searches are performed.
The first will work if the range of codes is contiguous and starts at 0 (and
the entry array is ordered in the same way); since most error code
enumerations (or integer constants, otherwise) do this, it’s a worthwhile
optimisation. If that fails, then a linear search is carried out.

With this worker function, only a couple more things are required. First,
we need to define the array of structures, which depends on the definition
of a couple of macros (Listing 8).
Now you should be able to see how the technique is able to preserve the
knowledge about the code s t r ing lengths . Each use of the
SEVERITY_STR_DECL() macro defines the code string and defines a
static instance of AcmeLibRcString_t_ which associates the code, the
string and the string length. This is all done at compile time, so there’re
no runtime issues, and everything is already available when it is called.
The one criticism I make every time I use this technique is that there’s a
v i o l a t i on o f DRY SPOT [9 ,3] i n t he f ac t t ha t t he
SEVERITY_STR_DECL() and SEVERITY_STR_ENTRY() must
correspond one to one. I always think of doing a bit of extra pre-processor
smarts and defining them as two-parameter macro invocations in a separate
f i l e , a nd t hen i nc lud i ng t ha t f i l e t w ice w i th in
AcmeLib_LookupErrorStringA_(), surrounded by appropriate pre-
processor modifications to ensure that the end result is the same.
Something along the lines of Listing 9.
That I haven’t is down to the painful differences in behaviour with relative
inclusion paths between different compilers rather than just pure
sloppiness. (Well that’s my story and I’m sticking to it!) And thorough
unit-testing helps prevent mistakes. But you should consider doing it 100%
DRY.

/* AcmeLib.h */
enum ACMELIB_RC
{
 ACMELIB_RC_SUCCESS = 0,
 ACMELIB_RC_ERROR,
 . . .
 /* insert new values *before* this */
 ACMELIB_RC_max_value
};

int AcmeLib_doStuff(char const* whatStuff);

char const* AcmeLib_getRcStringPtr(
 ACMELIB_RC rc);
size_t AcmeLib_getRcStringLen(ACMELIB_RC rc);

#ifdef __cplusplus
namespace stlsoft
{
 /* Shims allow insertion of ACMELIB_RC codes
 * into FastFormat, Pantheios, etc.
 */
 inline char const* c_str_data_a(ACMELIB_RC rc)
 {
 return AcmeLib_getRcStringPtr(rc);
 }
 inline size_t c_str_len_a(ACMELIB_RC rc)
 {
 return AcmeLib_getRcStringLen(rc);
 }
}
#endif /* __cplusplus */

Li
st

in
g

5

char const* AcmeLib_getRcStringPtr(ACMELIB_RC rc)
{
 switch(rc)
 {
 case ACMELIB_RC_SUCCESS:
 return "operation completed successfully";
 case ACMELIB_RC_ERROR:
 return "operation failed";
 default:
 return "unknown error";
 }
}
size_t AcmeLib_getRcStringLen(ACMELIB_RC rc)
{
 return strlen(AcmeLib_getRcStringPtr(rc));
}

Listing 6

// (b) via strerror_s(), correctly
int errnum = errno; // Remember here, in case
 // overwritten
stlsoft::auto_buffer<char, 128> buff(128);
for(;; buff.resize(buff.size() * 2))
{
 if(0 != strerror_s(buff, buff.size(), errno))
 {
 ff::fmtln(
 std::cerr, "could not open file {0}: {1}",
 file, "unknown error");
 break;
 }
 else
 {
 if(::strlen(buff.data()) == buff.size() - 1)
 {
 // Might not be all of string, so loop
 }
 else
 {
 ff::fmtln(
 std::cerr,
 "could not open file {0}: {1}",
 file, buff.data());
 break;
 }
 }
}

Li
st

in
g

4

the painful differences in behaviour
with relative inclusion paths
between different compilers
16 | | JUL 2009{cvu}

Anyway, we’re not actually there yet. The final action is to implement the
AcmeLib API functions in terms of these facilities (see Listing 10).
Whether we are asking for string or string length, we get a straight lookup
into a static table (or a linear search, at worst, if you've chosen to mal-order
your enumerators). No other functions are involved, including strlen(),
so this has the added advantage of total modularity to go with the absence
of wasted cycles.
It may appear at first blush that this is just an exercise in premature
optimisation. Well, it certainly has an aspect of optimisation. But it’s also
a matter of moving processing back a stage in the cycle, namely into
compilation rather than runtime. This is almost always a good thing. In this
case, because the strings are effectively hard-wired into the program,
‘created’ (or, more properly, loaded) during static initialisation [3], they
cannot fail to be present when needed by any executing code, even code
that’s executing (in the dynamic initialisation phase [3]) before main().
So, for libraries such as FastFormat [6, 7] and Pantheios [8] that ensure
availability to all (C++) compilation units by coupling reference-counted
APIs [3] with Schwarz counters [10, 3] – a technique that probably
warrants another article in itself – having the error codes available via this
technique is essential.

struct AcmeLibRcString_t_
{
 int code;
 char const* str;
 size_t len;
};

static char const* AcmeLib_LookupCodeA_(
 int code
, AcmeLibRcString_t_ const** mappings
, size_t numMappings
, size_t* len
)
{
 static const defaultString = "unknown error";
 /* Use Null Object (Variable) pattern here for
 * len, so do not need to check elsewhere. */
 size_t len_;
 if(NULL == len)
 {
 len = &len_;
 }
 /* Checked, indexed search. */
 if(code >= 0 &&
 code < ACMELIB_RC_max_value)
 {
 if(code == mappings[code]->code)
 {
 return (*len = mappings[code]->len,
 mappings[code]->str);
 }
 }
 /* Linear search. Should only be needed if
 * order in AcmeLib_LookupErrorStringA_()
 * messed up. */
 { size_t i; for(i = 0; i != numMappings; ++i)
 {
 if(code == mappings[i]->code)
 {
 return (*len = mappings[i]->len,
 mappings[i]->str);
 }
 }}
 return (*len = NUM_ELEMENTS(defaultString) - 1,
 defaultString);
}

Li
st

in
g

7

char const* AcmeLib_getErrorString(ACMELIB_RC
code)
{
 return AcmeLib_LookupErrorStringA_((int)code,
 NULL);
}

size_t AcmeLib_getErrorStringLength(
 ACMELIB_RC code)
{
 size_t len;
 AcmeLib_LookupErrorStringA_((int)code, &len);
 return len;
}

Listing 10

#define NUM_ELEMENTS(x) (sizeof(x) /
sizeof(0[x]))

#define SEVERITY_STR_DECL(rc, desc) \
 static const char s_str##rc[] = desc; \
 static const AcmeLibRcString_t_ s_rct##rc = \
 { rc, s_str##rc, NUM_ELEMENTS(s_str##rc) - 1 }

#define SEVERITY_STR_ENTRY(rc) \
 &s_rct##rc

static char const* AcmeLib_LookupErrorStringA_(
 int error, size_t* len)
{
 SEVERITY_STR_DECL(ACMELIB_RC_SUCCESS,
 "operation completed successfully");
 SEVERITY_STR_DECL(ACMELIB_RC_ERROR ,
 "operation failed");

 static const AcmeLibRcString_t_* s_strings[] =
 {
 SEVERITY_STR_ENTRY(ACMELIB_RC_SUCCESS),
 SEVERITY_STR_ENTRY(ACMELIB_RC_ERROR),
 };

 return AcmeLib_LookupCodeA_(error, s_strings,
 NUM_ELEMENTS(s_strings), len);
}

Listing 8

/* in rcdefs.h: */
ACMELIB_DEFINE_RC(ACMELIB_RC_SUCCESS,
 "operation completed successfully")
ACMELIB_DEFINE_RC(ACMELIB_RC_ERROR,
 "operation failed")

#undef ACMELIB_DEFINE_RC

/* in original file: */
static char const* AcmeLib_LookupErrorStringA_(
 int error, size_t* len)
{
#define ACMELIB_DEFINE_RC(
 c, s) SEVERITY_STR_DECL(c, s);
#include "rcdefs.h"

 static const AcmeLibRcString_t_* s_strings[] =
 {
#define ACMELIB_DEFINE_RC(
 c, s) SEVERITY_STR_ENTRY(c),
#include "rcdefs.h"
 };
 . . .

Listing 9
JUL 2009 | | 17{cvu}

18 | | JUL 2009{cvu}

Inspirational (P)articles
Frances Buontempo introduces Paul Grenyer’s inspiration.

n CVu May 2009, I shared the inspiration created by reading an interview
with Donald Knuth. I want this to become a regular feature because I
passionately believe sharing positive experiences causes ripples, as
though the inspiration spark permeates through the ether and hits

surrounding people. Terry Pratchett has written about such inspiration
particles in various books, hence the title of this series.

Today, Paul Grenyer would like to share the pleasure and delight of writing
software using unfamiliar libraries just working straight away. If you have a
story to share of a recent uplifting or encouraging moment, please send it
to frances.buontempo@gmail.com.

Tomcat Servlet with Spring Timer
I recently had a requirement to write a service, in Java, that monitors a
directory and when new files with the correctly formatted name appear,
send them to another system. All fairly simple stuff. There are many
different ways of writing Java services, but we use Tomcat quite heavily,
so rather than investigate another way, I decided to write a Tomcat servlet
to act as the service.
I started off by extending GenericServlet and overriding the init and
destroy methods to write log messages to standard out. Then I wrote the
appropriate web.xml to tell Tomcat about the servlet and wrapped it all
up in a war file (basically a zip file with a Tomcat specific directory layout)
and deployed it to my local Tomcat installation. I finally checked the logs
and found the log messages I’d put in the code. Not bad going for twenty
minutes work and my first Tomcat servlet written from scratch.

We’ve been gradually learning about Spring recently and I remembered
reading that Spring had timers that would be perfect for polling the
directory for files. So I integrated Spring into my servlet, repackaged and
redeployed it and then checked the logs to make sure the Spring application
context had fired up correctly. It had.
Next I created a Ticker class by implementing the Java TimerTask
interface and implementing the run method to write "Tick" to standard
out. I then registered the class as a Spring bean and created a Spring
ScheduledTimerTask, set the tick interval to one second and created
an anonymous TimerFactoryBean. Making the TimerFactoryBean
anonymous causes it to be instantiated when the Spring context is started,
rather than waiting for an explicit instantiation from code somewhere. So,
what should happen is that the ticker starts as soon as the application starts.
Sure enough as soon as I repackaged and deployed, "Tick" was written
to standard out every second.
It occurred to me that the class extending GenericServlet was
redundant. So, not expecting it to work, I removed the class from the servlet
and web.xml entirely and repackaged and redeployed. That’s when I had
my real ‘Whoah! That’s really neat!’ moment. To my amazement and joy
the ticker started again and kept ticking every second. I already knew
Spring and Tomcat worked well together, but having Tomcat start the
Spring context without needing a servlet class is pure genius.
It may seem like such a small and simple thing, but creating my first Java
service and Spring timer and having them work together in a very simple
way was a real revelation for me.

I

Listing 1
Listing1

Finally, though much less generally important, such ultimate modularity
– not even depending on the C standard library – is not usually significant,
but with very small self-contained C libraries it can be. And it certainly
does no harm to your portability.

Localisation?
The elephant in this particular living room is, of course, that the technique
suggests that there is only one human-language string representation of the
error codes. That may be the case where you’re developing for an in-house
product, or one aimed at only one nationality.
It may also be the case if you don’t plan on propagating such low-level
errors to any users, only storing them in logs. (Although it smacks of
Anglophone arrogance, of course, it’s still likely that many/most of the
programmers of your product will be able to read the English error
messages.)
If neither of these assumptions hold true, then you need to consider
internationalising your error code strings. The problem here is that as soon
as you allow things to be dynamic, you get into the possibility of failures
to load/allocate, and the difficulty of knowing the code string size a priori
(and therefore efficiently). In this case, prefer to code up dynamic error
code to string translation functionality, but have it fallback to statically
defined (using the above technique) English strings. This enables you to

fulfil the requirements of, say, your application logging whether or not the
locale-specific strings are present and can be loaded.
Implementing such a fail-soft mechanism is beyond the scope imposed by
the remaining space of this article. Interested readers may be stimulated
to write further on the matter …

References
[1] The STLSoft libraries; http://stlsoft.org/
[2] http://msdn.microsoft.com/en-us/library/8ef0s5kh(VS.80).aspx
[3] Imperfect C++: Practical Solutions for Real Life Programming,

Matthew Wilson, Addison-Wesley, 2004
[4] Programming with POSIX Threads, David R. Butenhof, Addison-

Wesley, 1997
[5] Extended STL, volume 1: Collections and Iterators, Matthew

Wilson, Addison-Wesley, 2007
[6] ‘An Introduction to FastFormat, part 1: The State of the Art’,

Matthew Wilson, Overload 89, February 2009
[7] ‘An Introduction to FastFormat, part 2: Custom Argument and Sink

Types’, Matthew Wilson, Overload 91, April 2009
[8] The Pantheios logging API library; http://pantheios.org/
[9] The Pragmatic Programmer, Dave Thomas and Andy Hunt,

Addison-Wesley, 2000
[10] C++ Gems, Stanley Lippman (ed.), Cambridge University Press,

1998

Safe and Efficient Error Information (continued)

Code Critique Competition 57
Set and collated by Roger Orr.

lease note that participation in this competition is open to all members,
whether novice or expert. Readers are also encouraged to comment
on published entries, and to supply their own possible code samples
for the competition (in any common programming language) to

scc@accu.org.

Last issue’s code
Can someone please help me to understand why the following trivial C
program crashes?

Note: You may answer the question in C, or convert the program to C++
(with justification).
Last issue’s code is shown in Listing 1.

Critiques

Bingfeng Zhao <Bingfeng.Zhao@ca.com>

First, we must clear what the type of Deck is. The definition of it is:
 typedef Card Deck[52];

So Deck is an array of 52 Cards. Then, why does the following code crash?
 void LoadDeck(Deck * myDeck)
 {
 int i = 0;
 for(; i < 51; i++)
 {
 myDeck[i]->suit = i % 4;
 myDeck[i]->value = i % 13;
 }
 }

Here, the type of myDeck is a pointer to an array of 52 Cards. Then, what
does myDeck[i] mean?
Here, we take myDeck as a pointer to an array, it’s valid in C if the pointer
is really the address the first element of an array. Unfortunately, here it’s
not! myDeck is a pointer to an array of 52 Cards, so myDeck[i] means
the ith element of an array of array of 52 cards. This is definitely an error.
The fix is simple, instead of

 myDeck[i]->suit = i % 4;
 myDeck[i]->value = i % 13;

use

 (*myDeck)[i].suit = (Suit)(i % 4);
 (*myDeck)[i].value = i % 13;

Of course, we need to also update PrintDeck().

Ian Bruntlett <ianbruntlett@hotmail.com>
[Ed: Ian’s entry annotated the code directly.]

Change LoadDeck argument from Deck * to Card *, fix missing last
element and index by card:

 void LoadDeck(Card * pFirstCard)
 {
 int i = 0;
 for(; i < 52; i++)
 {
 pFirstCard[i].suit = i % 4;
 pFirstCard[i].value = i % 13;
 }
 }

P

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk

Listing 1
Listing1

#include <stdio.h>
#include <string.h>

typedef enum {
 Hearts,
 Diamonds,
 Clubs,
 Spades
} Suit;

typedef struct Card
{
 Suit suit;
 int value;
} Card;

typedef Card Deck[52];

void LoadDeck(Deck * myDeck)
{
 int i = 0;
 for(; i < 51; i++)
 {
 myDeck[i]->suit = i % 4;
 myDeck[i]->value = i % 13;
 }
}

void PrintDeck(Deck * myDeck)
{
 int i = 0;
 for(;i < 52; i++)
 {
 printf("Card %d %d\n", myDeck[i]->suit,
 myDeck[i]->value);
 }
}

int main()
{
 Deck myDeck;
 memset(&myDeck,0,sizeof(Deck));
 LoadDeck(&myDeck);
 PrintDeck(&myDeck);
 return 0;
}

Li
st

in
g

1

JUL 2009 | | 19{cvu}

Change PrintDeck argument from Deck * to Card *:

 void PrintDeck(Card * pFirstCard)
 {
 int i = 0;
 for(;i < 52; i++)
 {
 printf("Card %d %d\n", pFirstCard[i].suit,
 pFirstCard[i].value);
 }
 }

Then change the calls to LoadDeck and PrintDeck to take argument of
type "(Card *) &myDeck".

Carl Bateman <CarlBateman@hotmail.com>
‘Can someone please help me to understand why the following trivial C
program crashes?’

Almost certainly... while we’re waiting, here’s what I found after playing
around with the code in Visual Studio.
In the function void LoadDeck(Deck * myDeck), myDeck is a
pointer to a Deck, Deck is typedef’ed as Card[52]. myDeck[i]
accesses the ith element from the base address of myDeck... So, the
problem is that, in this case, an element is a Deck, which is 52 times greater
that a Card. So after the first loop iteration the code is trying to access
beyond the end of the array.
I found several solutions for this:

1. Rather than indexing myDeck, index what it points to:
 (*myDeck)[i].suit = i % 4;

which works because the pointee of *myDeck is a Card, so the ith
element is of the right size.

2. The previous method does away with the -> operator, if you have a
particular attachment to this syntax

 ((*myDeck) + i)->suit = i % 4;

works... because we’re using pointer arithmetic rather than array
indexing and so are accessing a pointer to a Card.

3. Rewrite the function to take a pointer to Card

 void LoadDeck(Card * myDeck)
 {
 int i = 0;
 for(; i < 51; i++)
 {
 myDeck[i].suit = i % 4;

This cuts down on the brackets.
The same applies to PrintDeck, which also incorrectly iterates beyond
the end of the array [Ed: it is the other way round – LoadDeck is wrong].
It should be
 for(;i < 51; i++)

rather than
 for(;i < 52; i++)

To avoid this sort of inconsistency, consider using macros or consts instead
of magic numbers.
eg
 #define ARRAY_SIZE 52
 #define LAST_ARRAY_ELEMENT 51

or
 const int array_size = 52;
 const int last_array_element = array_size - 1;

Since, the OP asked for help with a C program, I’d no more re-write it in
C++ than I would in Pascal... ;)

Nevin ":-]" Liber <nevin@eviloverlord.com>

There are three bugs in the code:
1. Both LoadDeck() and PrintDeck() are passed pointers to a

Deck. However, the expression myDeck[i] treats them as if they
were a Deck array, which is wrong (a Deck is a Card array, which
might be why the student may have gotten confused).
(*myDeck)[i] will access an individual Card within the Deck.

2. LoadDeck() only initialized the first 51 elements of the Deck.
3. In LoadDeck(), one cannot initialize an element of type Suit with

an int (I can’t remember if C enforces this, but C++ certainly does)
[Ed: assigning an int is legal in C but not C++].

Incorporating those fixes:
 void LoadDeck(Deck * myDeck)
 {
 int i = 0;
 for(; i < 52; i++)
 {
 (*myDeck)[i].suit = (Suit)(i % 4);
 (*myDeck)[i].value = i % 13;
 }
 }

 void PrintDeck(Deck * myDeck)
 {
 int i = 0;
 for(;i < 52; i++)
 {
 printf("Card %d %d\n", (*myDeck)[i].suit,
 (*myDeck)[i].value);
 }
 }

Note: while LoadDeck() now initializes myDeck correctly, it does it in
a funky way that I believe was unintentional. It works because 4 (the
number of suits) and 13 (the number of ranks) are relatively prime (have
no common factors besides 1), so the combination of i%4 and i%13 will
never both have the same result in any contiguous set of 4*13==52
iterations.
Now, I would rewrite this in C++, for the following reasons:

1. Strong typing. A Deck should really contain a Card array, not be
one. Also, once it is a type, it can enforce the invariant that the cards
are initialized to a standard deck of playing cards.

2. Better output and debugging. Once we have strong typing, we can
write stream inserters for all of the value types (Suit, Rank, Card,
Deck), which helps with debugging.

First, start by expanding on Suit:
 inline std::ostream& operator<<(
 std::ostream& ostream, Suit const& suit)
 {
 switch (suit)
 {
 case Hearts: return ostream << "Hearts";
 case Diamonds: return ostream << "Diamonds";
 case Clubs: return ostream << "Clubs";
 case Spades: return ostream << "Spades";
 }

 return ostream << "Suit("
 << static_cast<int>(suit) << ')';
 }

If the suit is valid, we get the correct textual representation. If it is invalid,
we still get to see the number that is stored.
20 | | JUL 2009{cvu}

We now make a type for Rank and do a similar thing:
 enum Rank
 {
 Ace,
 Two,
 // ...
 Queen,
 King
 };

 inline std::ostream& operator<<(
 std::ostream& ostream, Rank const& rank)
 {
 switch (rank)
 {
 case Ace: return ostream << "Ace";
 case Two: return ostream << "Two";
 // ...
 case Queen: return ostream << "Queen";
 case King: return ostream << "King";
 }

 return ostream << "Rank("
 << static_cast<int>(rank) << ')';
 }

Note: It is kind of funky for Two have a value of 1, Three have a value
of 2, etc. For an application involving a deck of cards, this is not
unreasonable, although we would normally put the enum inside a
namespace, struct/class, or change the label names. For simplicity,
just leave this as is.
Card is a pretty simple struct:
 struct Card
 {
 Card() {}
 Card(Rank const& rank, Suit const& suit)
 : suit(suit), rank(rank) {}
 friend std::ostream& operator<<(
 std::ostream& ostream, Card const& card)
 { return ostream << card.rank
 << " of " << card.suit; }
 Suit suit;
 Rank rank;
 };

The Card::Card() default constructor is necessary for the next class,
Deck, because Deck first default initializes the Card array, then
overwrites each card with the correct value.
 struct Deck
 {
 Deck()
 {
 for (size_t c = 0; 52 != c; ++c)
 cards[c] = Card(
 static_cast<Rank>(c % 13),
 static_cast<Suit>(c % 4));
 }

 friend std::ostream& operator<<
 (std::ostream& ostream, Deck const& deck)
 {
 std::copy(deck.cards, deck.cards + 52,
 std::ostream_iterator<Card>
 (ostream, "\n"));
 return ostream;
 }
 Card cards[52];
 };

LoadDeck() is pretty simple (and is only necessary if someone wants to
reset the order of cards in the Deck):

 inline void LoadDeck(Deck& myDeck)
 { myDeck = Deck(); }
 Similarly, PrintDeck() is pretty trivial, as the
 stream inserter does all the work:
 inline void PrintDeck(Deck const& myDeck)
 { std::cout << myDeck; }

Finally, fix up main(). We now pass myDeck by reference, not by
pointer. Also, we need to remove the call to memset(); while not strictly
necessary even in the original program, it would do the wrong thing in this
C++ version (under most implementations by overwriting the initialized
cards with the Ace of Hearts).
 int main()
 {
 Deck myDeck;
 LoadDeck(myDeck);
 PrintDeck(myDeck);
 return 0;
 }

Balog Pal <pasa@lib.hu>

This code is a good example of how ‘error-correcting eye’ works. :) At first
read it looked okay except for having 51 in iteration limit, so I wonder if
the attached text was ‘it looks like it’s working’; it could even pass a review
on those grounds.
The fortunate crash asks for a closer look, and investigation, until you say:
‘Wait, you have Deck *, not Card *, and apply an index to that!’
immediately followed with ‘but then how does this thing compile?’ Only
then realizing, that -> is used instead of '.' that masks the bug.
myDeck[i]->suit should really be (*myDeck)[i].suit to follow
the original intent. And the original form thinks we passed an array of 52
decks to operate on. And the -> operator applied to type Card[52]
unfortunately works, as we have no real arrays in C just some magic syntax,
that works well in most cases, and misfires like this in others. The compiler
simply replaces the array with a pointer to its first element, and -> operates
fine on that. LoadDeck would set the first card of 52 passed decks instead
of setting 52 cards of a single deck. Good reason for crash.
I believe the main question is about this riddle, not about writing a really
solid card-game, so let’s keep the correction to C and as close to the
original as possible.
The trivial approach is certainly to change Deck * to Card * in function
signatures, and pass myDeck without &. Though fixing the immediate
problem I’d classify that as a step backwards. And exploiting the
dangerous magic we just recently got burnt with. Having an abstraction
for ‘deck’ and treating it like an object as we see in main is a good thing,
and makes the code way more literary [so literary it even looks correct as
mentioned first ;-]
So we keep Deck and its usage, and get rid of the danger source: using the
C-array in that raw form. In a C++ solution it would be replaced entirely,
but C is C, so we live with the available tools. Instead of making deck
just typedef of the array, let’s make it a genuine object with that content:
 typedef struct Deck
 {
 Card cards[52];
 } Deck;

This shall remove most of the problems related to deck, &deck, *deck,
deck[i], deck., or deck->, a typo here will be caught by the compiler
correctly. It also serves as a better abstraction: if some more information
emerges, we just add more fields to the structure without a need to change
any code. It also makes it possible to pass Deck by value if we like to –
and doing so will work as the code is read. No surprises that the black magic
really passed a pointer anyway.
JUL 2009 | | 21{cvu}

Then to make the program work with the change, we replace
myDeck[i]-> instances (I counted 4) with myDeck->cards[i]. And
after also correcting 51 to 52, the program is functional.
Certainly this 52 stands out as a magic number, have 3 copies that should
be changed in sync, and already caused a bug – it works for now but leaves
a trap. One solution is to use sizeof() in the iterations, leaving just a
single instance. Too bad it would be a bug, it only works as long as Card
is 1 byte... What we really meant is the count of array. It is possible to
obtain, but not in a nice way. But even then, we have a half-baked solution,
as changing the value in one place. So instead we introduce constants for
those elements in the first place, and use those everywhere:
 #include <stdio.h>
 #include <string.h>

 typedef enum {
 Hearts,
 Diamonds,
 Clubs,
 Spades
 /* , maxSuit */
 } Suit;

 typedef struct Card
 {
 Suit suit;
 int value;
 } Card;

 enum
 {
 maxSuit = 4,
 maxValue = 13,
 maxCard = maxSuit * maxValue
 };

 typedef struct Deck
 {
 Card cards[maxCard];
 } Deck;

 void LoadDeck(Deck * myDeck)
 {
 int i = 0;
 for(; i < maxCard; ++i)
 {
 myDeck->cards[i].suit = i % maxSuit;
 myDeck->cards[i].value = i % maxValue;
 }
 }

 void PrintDeck(const Deck * myDeck)
 {
 int i = 0;
 for(;i < maxCard; ++i)
 {
 printf("Card %d %d\n",
 myDeck->cards[i].suit,
 myDeck->cards[i].value);
 }
 }

 int main()
 {
 Deck myDeck;
 memset(&myDeck,0,sizeof(Deck));
 LoadDeck(&myDeck);
 PrintDeck(&myDeck);
 return 0;
 }

Defined that way you can simply reconfigure for a 32-card deck, changing
maxValue to 8. With Suit we still have slight redundancy if the bound
is separate from its defining enum – but the max can be put there. In my
code I generally have a max_ in the enumerated lists that is known to be
a special value, just outside the expected range – but without knowing that
it could be confused as a real item.
Constants are made into enum because C has no good genuine support.
Originally #define was used for the purpose but that should be avoided.
enum creates good replacement for integer literals, with quite the same
attributes. It has no name itself, flagging its only purpose.
A thing that may stand out is using memset on the object. In C++ that is
certainly a no-no, and we would use constructors. In C it is common to
memset structure content or allocate them with calloc. It is no problem
as long as all the members have a fitting binary representation, or are
initialized before use. Here, with the fixed bound we overwrite all the items
anyway, so memset is redundant, but it could serve well in the future.
One more important change I did was adding const in PrintDeck. Any
function that has no business to change the state shall receive only const
objects. It helps much in reading and understanding the code to make it
correct.

Vince Milner <vinnymilner@yahoo.co.uk>

The heart of the problem with this program is confusion around the
dereferencing of the myDeck parameter in the LoadDeck and the
PrintDeck functions.
The myDeck parameter is of type: "pointer to Deck" i.e. "pointer
to array of 52 Cards". To obtain the suit of a particular Card, the
program uses:
 myDeck[i]->suit

Although it is intended that 'i' index the Cards contained in the array
pointed to by myDeck, what actually happens is that myDeck[i], being
equivalent to *(myDeck + i), actually steps i times the size of Deck
(i.e. i times the size of an array of 52 Cards).
Since myDeck[i] is of type "array of 52 Cards", it is converted
(by the ‘usual unary conversions’) to type "pointer to Card" pointing
to the first Card in the array. Hence it is syntactically valid to write
 myDeck[i]->suit

(although for i > 0, this will, of course, point to an illegal address).
To correct this, we first need to dereference myDeck, before indexing the
Deck array and accessing suit:
 (*myDeck)[i].suit

An alternative is to define Deck as a struct:
 typedef struct {
 Card cards[52];
 } Deck;

allowing us to do:
 myDeck->cards[i].suit

which is clearer (if slightly longer) and avoids the previous confusion.

Other issues with the program are that:
the for loop in LoadDeck ends one Card short of the end of the
Deck,
the call to memset is superfluous since LoadDeck immediately
resets all the values
the 'Card' in 'struct Card' is redundant in a typedef of this
form
ints are assigned to type Suit, better to use an array to map them

The final corrected program is as follows:
22 | | JUL 2009{cvu}

 #include <stdio.h>

 typedef enum {
 Hearts=0,
 Diamonds=1,
 Clubs=2,
 Spades=3
 } Suit;

 const Suit suits [] =
 { Hearts, Diamonds, Clubs, Spades };

 typedef struct {
 Suit suit;
 int value;
 } Card;

 typedef struct
 {
 Card cards[52];
 } Deck;

 void LoadDeck(Deck * myDeck) {
 int i = 0;
 for(; i < 52; i++) {
 myDeck->cards[i].suit = suits[i % 4];
 myDeck->cards[i].value = i % 13;
 }
 }

 void PrintDeck(Deck * myDeck) {
 int i = 0;
 for(;i < 52; i++) {
 printf("Card %d %d\n",
 myDeck->cards[i].suit,
 myDeck->cards[i].value);
 }
 }

 int main() {
 Deck myDeck;
 LoadDeck(&myDeck);
 PrintDeck(&myDeck);
 return 0;
 }

Joe Wood <joew@aleph.org.uk>

For such a short program it manages to raise many issues. Some of which
are really context dependent, and we cannot know the best approach. It
seems unlikely that anyone would just want to load a deck of cards and
display the resultant deck.
Some basic questions arise:

Is there only one deck of cards (a singleton)? Are multiple uses
going to be close together. i.e. would a simple array of decks
suffice?
Is Deck going to be extended (inherited from) to provide different
types of hands, for example a single deck or a bridge hand?
Should Deck be able to distinguish between the face of a card and
its value, for example an ace in pontoon?
Should we just display the integer values of the enums or should
they be converted to more user friendly strings, for example ‘1’ or
‘ace’?

Mending the supplied code

The main problem with the code as presented is when the pointer is
dereferenced. As it stands the expression myDeck[i]->suit is
accessing the ith myDeck array rather than the ith element of the myDeck
array. Pictorially this is much clearer.

In Figure 1 we access the top few bytes [1] of the ith deck in an array of
decks, not the intended outcome. In Figure 2 we access only a single deck
in the ith position, the intended outcome.

So the desired code should be (*myDeck)[i].suit or probably better
myDeck[i].suit provided we change the parameter [2] of LoadDeck
and PrintDeck to 'Deck myDeck' since Deck is a simple array and
passed by address anyway.
This change needs to be propagated around the code in the obvious manner.
There are a few other minor problems:

There is some confusion on the number of cards in the deck, better
to introduce a macro, CARDS_IN_PACK, and define deck using
typedef card deck[CARDS_IN_PACK];, and remove all
references to 51/52.
As written, LoadDeck and PrintDeck are only used locally and
they should therefore be declared static. This clearly indicates that
they are not used outside this file and may allow better code
optimisation.
Why are we calling memset, just to immediately overwrite the
result in the next line? It is good to initialise variables, but this seems
a little odd. A call to a C++ style constructor would be much better,
but not possible in C.

Now we must address enums, they may appear to offer type safety, but this
is entirely bogus, even in C++ [Ed: not entirely]. We can still write
suit=200 or suit=-1 or even worse suit=suit+Spades. Ada would
chuck the three assignments out, and with good cause.
In summary we have the following 2 declarations,
 #define CARDS_IN_PACK (52)
 typedef Card Deck[CARDS_IN_PACK];
 // Deck is an array of Cards

and the three routines become:

 static void LoadDeck (Deck mydeck)
 {
 int i = 0;
 for(; i < CARDS_IN_PACK; i++)
 {
 mydeck[i].suit = i % 4;
 mydeck[i].value = i % 13;
 }
 }

 static void PrintDeck (const Deck mydeck)
 {
 int i = 0;
 for(; i < CARDS_IN_PACK ; i++)

Figure 1
Figure 2
JUL 2009 | | 23{cvu}

 {
 printf("Card %d %d\n",
 mydeck[i].suit, mydeck[i].value);
 }
 }

 int main ()
 {
 Deck myDeck;
 LoadDeck(myDeck);
 PrintDeck(myDeck);
 return 0;
 }

A C++ solution???

The start of a possible C++ solution is presented below.
 class Card
 {
 public:
 enum Suit {
 Hearts,
 Diamonds,
 Clubs,
 Spades
 };

 friend std::ostream & operator<<(std::ostream
 &, const Card &);
 Card (const Suit & s, const int & v) {
 _suit = s;
 _value = v;
 }

 Card() {
 _suit = Hearts;
 _value = 0;
 }

 private:
 Suit _suit;
 int _value;
 };

 std::ostream & operator<<
 (std::ostream & os, const Card & c){
 os << "Card " << c._suit << " " << c._value;
 return os;
 }

Suit is unsafe as we have discussed before, and value is worse. There
is no way to represent ace or king for example. What would a value of -1
indicate, or a value of 200? We assume that value is supposed to run from
1 .. 10 plus jack, queen and king but there is no way to ensure this.
Card should almost certainly be equipped with a copy constructor and
an assignment operator because in any real card game there would be a
need to move cards around in a deck.

 class Deck
 {
 public:
 Deck()
 : _deck()
 {}

 void LoadDeck () {
 _deck.resize(52);

 for (size_t i=0; i != _deck.size(); ++i) {
 _deck[i] = Card(Card::Suit(i%4), i%13);
 }
 }
 void PrintDeck () const {
 for (size_t i=0; i != _deck.size(); ++i) {
 std::cout << _deck[i] << std::endl;
 }
 }

 private:
 typedef std::vector<Card> deck;
 deck _deck;
 };

and finally the main function is simply
 int main()
 {
 Deck myDeck;
 myDeck.LoadDeck();
 myDeck.PrintDeck();
 return 0;
 }

C++ version can be improved in a number of ways. Proper assignment
operators for Card and Deck. Improve Deck to allow different number
of cards, and cards to have different values. Probably, make Deck a
suitable base class for inheritance. But that is for a future exercise.

Commentary

I picked this code because the typedef hid the fault. Use of typedef is
often recommended to make code clearer and easier to change. This
fragment illustrates a nasty interaction with raw arrays and a case where
the usual advice backfired!
Although the C++ code for this has some advantages, I am not quite
persuaded that these are enough to change the code from C. A lot would
depend on the context in which the programmer was working.

The Winner of CC 57
I liked Joe’s pictures; I thought they were a good way of explaining what
was the problem with the code. Understanding this particular problem is
tricky, especially for relatively new C programmers.
The entrants picked various ways to resolve the primary issue; to my mind
any solution leaving the typedef unchanged was likely to cause future
problems. The problems caused by decaying arrays to pointers are best
avoided completely rather than just papered over! I think the most elegant
simple solution was to create a struct containing the array of Cards as
both Pal and Vince did.
I also liked the use of the suits array by Vince to avoid implicitly
converting an integer into a Suit so on balance I have decided to award
him this issue’s prize.

Code Critique 58
(Submissions to scc@accu.org by Aug 1st)
Can someone please help me to understand why the program below
(Listing 2) crashes? I tried to fix it by using strncat but it still doesn’t work.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly
helps overseas members who typically get the
magazine much later than members in the UK and
Europe.
24 | | JUL 2009{cvu}

JUL 2009 | | 25{cvu}

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 char * home_path = NULL;
 char * fullpath = NULL;
 char * fullfile_directory = NULL;
 char buffer[225];
 FILE *f;
 FILE *readfile;

 home_path = getenv("HOME");
 fullfile_directory = strncat(home_path,
 "/snapshot.html", 255-1);
 printf("Searching: %s\n", getenv("HOME"),
 fullfile_directory, 255-1);
 readfile = fopen(fullfile_directory, "r");
 while (!feof(readfile))
 {

Li
st

in
g

2 if (readfile != NULL)
 {
 f = fopen("/tmp/output.log", "a+");
 fgets(buffer, 256, readfile);
 if (strstr(buffer, "<title>"))
 {
 printf("Extracting title\n");
 fprintf(f, "title: %s", buffer);
 }
 else if(strstr(buffer, "<h1>"))
 {
 printf("Extracting heading\n");
 fprintf(f, "Heading: %s", buffer);
 }
 }
 }
 fclose(f);
 fclose(readfile);
 return 0;
}

Listing 2 (cont’d)

Code Critique Competition (continued)

Jeff Sutherland: Agile Software Development
in the Enterprise

Chris Oldwood grapples with Jeff Sutherland and Scrum.

he May 2009 talk at the ACCU London branch was given by Jeff
Sutherland, the co-creator of Scrum. This was a hugely popular talk
hosted at the JP Morgan premises allowing a greater number of

attendees, but even so a waiting list was needed. I was one of the 70 or so
people lucky enough to get a place.
As the title suggests the talk was aimed squarely at those people who work
in larger organisations or distributed teams, perhaps where they are a little
more sceptical about the scalability of agile development practices. The
blurb on the ACCU web site also describes ‘extraordinary financial
returns’ in case anyone needed a further carrot to listen to one of the
founders of the Agile Alliance.
Jeff started with a brief introduction to what Agile Development is, along
with a look at the core values from the Agile Manifesto and some of the
other Agile Methods such as eXtreme Programming. However, rather than
just listing XP as another methodology, he actively promoted the use of
the XP technical disciplines such as TDD and Pair Programming. This was
highlighted further in a later slide that discussed a more symbiotic
relationship between Scrum and XP.
He swiftly moved on to the meat of Scrum and spent some time discussing
Velocity and how it is achieved. The key factors appeared to be having a
skilled Product Owner that drives the 'Ready' queue to ensure the
developers are sufficiently productive, and the features being ‘Done’ at a
level accepted by the business. The first point rose the question of what
exactly is meant by ‘Ready’ and how you find someone who is skilled
enough in the business to prepare items for developer consumption – which
in the Investment Banking world probably means a trader. However, they
don’t come cheap, but Jeff’s argument is that they would be worth their
weight in gold as they are the lynchpin. This somewhat surprising answer
became perfect fodder for the pub discussions later. The second point about

items only being considered ‘Done’ when they pass the business
acceptance tests, was driven home by a study that showed that 1 hour of
immediate testing, when postponed, would grow to become 23 hours of
testing later.
After another brief history lesson on how Scrum was invented, Jeff started
to go through some case studies to show where they had achieved Hyper-
productivity and in the case of one client where that had translated into a
significant growth in revenue – 8 times. Along the way we learnt that 65%
of requirements change and amusingly that 63% of features are unused,
not that any correlation was suggested mind you. The subject then turned
to how Scrum scales to large teams with thousands of developers and how
even an un-coached team can increase its velocity by 35%, but a coached
team can achieve an increase of 200 to 400%. Another favoured sound bite
was ‘Never outsource to waterfall teams’.
The final two case studies were about failed projects and were used to show
how Distributed Scrum not only scales, but was also able to turn the
projects around. Although the choice of ‘Lines of Code’ was not greeted
as the best metric for rating productivity (which Jeff agreed with), it did
show where the project fortunes changed. Both studies were also analysed
using ‘Function Points per Developer/Month’ to compare the real projects
with the expected velocity according to a previous smaller study which
compared Scrum to Waterfall (17.8 vs. 2.0) – they both came in a shade
over 15.
Not unsurprisingly there were a barrage of questions from the attendees
and not nearly enough time to answer them all. The only recourse was to
seek out a watering hole and discuss the somewhat compelling statistical
information further over a few beers. Somehow we lost focus and before
long a quest was on to find out if Brian Blessed had ever been in Star Trek...

T

Desert Island Books
Paul Grenyer introduces Gail Ollis.

his is the first time I’ve struggled to find a story to write about the
member featured in a Desert Island books edition. I’ve chatted with –
and even met – Gail on a few occasions, for some reason my mind was

completely blank (sorry Gail!). So I asked her if there was someone who
could help me out and Gail responded with:

Hmm, I’d say that you emailing me with a sexist joke on the basis that
my ACCU-General postings seemed to imply a sense of humour gives
us a bit of history! And I seem to recall that you were wearing the
‘drunken, womanizing menace’ T-shirt on the first occasion we met in
real life. I think you were also one of the two people (Allan Kelly being
the other) responsible for me presenting at conference for the first time
– it hadn’t crossed my mind until you both asked if I was thinking of doing
it. I’ve no idea if it was prompted by something specific I’d said on the
list or just the general air of brilliance in my postings that accompanied
that of having a sense of humour!!

None of this of course sounds like me, so it couldn’t possibly be true....oh
alright then! It’s all true.

Gail Ollis
These days I study psychology instead of writing code – a consequence of
having asked myself ‘WHY did they do that?!’ one time too many when
faced with the decisions of my software colleagues. A desert island doesn’t
offer much opportunity for studying human behaviour (beyond finding out
what happens to a garrulous, sociable personality suddenly subjected to
complete isolation!) so it’s really not a good time for me to become a
castaway. On the other hand, perhaps it’s a really good chance to review
the literature that has been influential in my belief that there really is a
better way.

Programmers’ bibles

That puts The Pragmatic Programmer [1] at the very
top of my list. Apart from anything else, it’s an old
friend which always seems to know what I think but
expresses it much better. Contemplating his desert
island, Allan Kelly mentioned his slow progress
through Gödel, Escher, Bach (a book that’s still on my
‘to read’ pile). On my desert island list, The
Pragmatic Programmer is the book that took some
time to read. This seems a little bizarre, since it’s a wonderfully
approachable book, but it took me two attempts to finish it. When I first
tried, I was in the throes of a death march project that was getting things
wrong on just about every principle described in the book. The material
was all too easy to understand; every wise word was illustrated by a painful
counter-example in my own working life. Perhaps its emotional impact is
a useful tool for auditing – the number of times you put your head into your
despairing hands is a pretty good guide to how far your organisation has
to go! I fared much better on the second attempt and finished it feeling that
every programmer should read it. There’s plenty of quite specific good
advice in it, but the philosophy behind all of it is epitomised by the book’s
first two tips: ‘Care About Your Craft’ and ‘Think! About Your Work’.

My second choice is Peopleware [2]. Where Pragmatic
Programmer explains principles that guide the everyday
decisions programmers need to make, Peopleware
discusses the environment in which they can do that to
the best of their abilities. By way of example, here’s a
quick rant. I once worked for a company which insisted
that external calls were answered within three rings (for
all the talk of ‘internal customers’, apparently these
didn’t warrant the same treatment!) This mandate

extended
not just to
the phone
on your desk but any
in the vicinity whose
owner wasn’t present. It was
pretty frustrating to field calls
without the information to do so
usefully, but it was also frustrating for the poor callers; they’d have had a
much better service from a prompt and well-informed response to a
voicemail message. And instead of endlessly breaking precious flow, the
company would have had a more productive workforce. As DeMarco and
Lister put it, ‘people who are charged with getting work done must have
some peace and quiet to do it in’. Rant over; Peopleware, meanwhile,
manages to put across this and many other insightful messages without
ranting at all!
Because it’s another rich source of sound advice, my
next choice is Agile Software Development [3]. This
book, like others with ‘agile’ in their title, is
sometimes perceived as being applicable only to
projects that are ‘doing agile’. Having worked in an
environment that ran for garlic and holy water
whenever anyone mentioned the a-word, I can’t
comment on how helpful it might be for agile-specific
issues. Nonetheless it contains plenty of ideas that
apply more generally, inside agile projects or outside them. Take
information radiators, which ‘display information in a place where
passersby can see it’. Or how about the idea that ‘automated regression
tests improve both the system design quality and the programmers’ quality
of life’? Sadly there are many workplaces where this is not perceived as a
statement of the obvious. Like so much of this book, it’s widely applicable
and much-needed advice. If my desert island resources extend to pen &
paper maybe I can devote some of my copious spare time to editing this
book down to common principles so that we can persuade the most agile-
sceptic audience to read and benefit from Cockburn’s Software
Development (the expurgated version).
My final software book is another ‘agile’ one whose
title risks alienating the audience that arguably needs
it most. Organizational Patterns of Agile Software
Development [4], like Cockburn’s book, does indeed
include some patterns that clearly fit in the agile mould,
but also many more that could usefully be employed
more widely. In fact this book is particularly good (and
somewhat unusual) in helping readers identify
measures to benefit them in their own, unique
circumstances; every pattern begins with a statement of the context in
which it applies. The book also counsels ‘apply one pattern at a time, and
if it doesn’t feel right, back out’. It’s therefore bound to bring me happy
memories of my ‘Santa Claus and Other Methodologies’ presentation at
ACCU 2008 (summarised in CVu 20.6); the contextual approach of the
patterns fits right in with my crucial question – ‘What problem are you
trying to solve?’ (which still holds the record for the biggest text I have
ever used on a slide) – and the advice for applying them is far from a ‘one
size fits all’ prescription.

Other books

My own desire to solve problems has taken me from software development
to studying psychology and its application to the issues of software

T

26 | | JUL 2009{cvu}

development. Being on the island is a good opportunity to continue my
studies without distraction, and although it won’t offer much scope for
research (‘Tell me, parrots, why did you use magic numbers in this
squawking function?’) there’s plenty of time to think about how

psychological principles relate to the problems
described in my chosen books and formulate research
proposals for when I am, I hope, eventually rescued.
To do this I’ll need psychology literature as well as the
software development books so I’m going to have to
cheat on the book allowance, but I’ll settle for just one
extra: Psychology: The Science of Mind and
Behaviour [5]. It’s a wonderful reference book, so
comprehensive that I shall have to be very careful, in

the absence of health care, not to drop it on my foot, and so readable that
I won’t regret the choice.
A psychological angle was, of course, present in my 2007 conference talk
about what to expect when you try to introduce new ideas. I related the
styles of reaction that you may encounter to characters from the Winnie-
the-Pooh stories (most surprising finding: exuberant Tiggers can actually
hamper your efforts), so perhaps my ‘novel’ should be one of those.
They’re rather thin books, though, and since I’m only allowed five I want
to get my money’s worth with weightier tomes. Being on the desert island
will be something of an emotional rollercoaster, so it’s fitting that my
fiction book should be the only one that has made me cry AND laugh out
loud. Going Gently [6] is the life story of Kate, who is ‘enriched by the
product of three fine sons, only one of whom was a murderer’. To say that
Kate is an old woman on her death bed risks making the story sound
maudlin or plain depressing, but it is neither. Its spirit is much more that
of the aphorism one of my friends uses in signing off his
email: ‘Life should not be a journey to the grave with the
intention of arriving safely in an attractive and well
preserved body, but rather to skid in sideways, chocolate
in one hand, body thoroughly used up, totally worn out
and screaming ‘WOO HOO what a ride!’’ (source
unknown). It’s rare to find funny and poignant together,
rarer still for it to succeed in both; this book achieves it
memorably.

Music

What about music? There has to be music. I suppose the isolation may give
me the perfect opportunity to practice Bridge Over Troubled Water and
see if I can learn to sing it without squeaking on the top note, but I’d go
mad if my own efforts were all the music I had.
Choosing just a couple of CDs seems more of an ordeal than being stranded
on the desert island. If I had a collection with a dominant theme maybe I
could pick some outstanding examples, but its one consistent feature is
diversity, if that isn’t a contradiction in terms. I was made acutely aware
of this when an adult student in a basic IT class where I help out as a
volunteer asked me what sort of music I like. ‘Lots of different things’, I
said, and started listing a few that came to mind: ‘Beatles, Eno, Gorillaz...’

– his evident amusement (or was it bemusement?) at the last of these was
quite entertaining, up to the moment he gave his response: ‘it’s unusual
for someone your age to be interested in Gorillaz!’ Wounding though the
implication of being ‘past it’ might be, I was more struck by the word
‘interested’. It seems to imply that I know something more about them, but
in fact for most of the many artists in my collection I neither know nor care
much about anything but the music. Among the rare exceptions are the
Beatles (a teenage obsession – and since I am feeling a bit old after the
Gorillaz incident I should add that the Beatles had long since disbanded
when I ‘discovered’ them!) and Brian Eno (an interesting guy who could
– and indeed did – hold his own on Question Time). These two are
represented in the list of albums I return to again and again, which must
be a good recommendation for them claiming their place in my tiny
driftwood CD rack.
So Sergeant Pepper’s Lonely Hearts Club Band has to go in. It’s not
necessarily because I think it’s the Beatles’ best – once I’d have given that
title to The Beatles, commonly known as ‘The White Album’, without
hesitation, and these days I wouldn’t even consider ‘what’s their best
album?’ a meaningful question. Sergeant Pepper is included because it
contains a lot of old friends I can sing along with. A few of the island’s
curious wildlife attending my lonely karaoke sessions on the beach are the
only audience I’d ever countenance.
As for which Eno to take, I have a dilemma and may find that all my options
get washed away by the waves before I have time to choose which to save.
My first thought, before I even contemplated artists, was to wonder
whether to choose something complex – plenty to keep it interesting over
repeated listening – or something that blends in, as desirable and
unremarked as the air we breathe and therefore not a choice I’d ever tire
of. Brian Eno can provide either of these.
Music For Films has been part of my soundtrack since I first heard it at
the age of eighteen. You’ve almost certainly heard some of it, whether or
not you recognise the title; it’s often used on TV. But just because it’s
normally in the background, don’t make the mistake of thinking it’s bland.
It bears being in the foreground... but its hypnotic quality is such that
listening to it attentively is much harder than slipping into reverie.
By complete contrast, add David Byrne to the picture and you get My Life
in the Bush of Ghosts. This extraordinary synthesis of recorded speech and
music almost defies explanation. Certainly I can’t begin to do it justice,
and my clumsy efforts risk making it sound unappealing. It is moving,
sometimes disturbing music – and with so much ‘going on’ that it would
help to keep my mind occupied. Lacking the musical vocabulary to
describe it more fully gives me a good excuse simply to recommend that
you hear it for yourself.
Perhaps I should start keeping them together in the same jewel case so that
I can take both Eno albums, but if I get caught trying to cheat the system
I will have to rescue Music For Films. There’s enough in the books to
occupy my mind, so I can afford to take the music that will soothe it. With
no-one to talk to but the parrots, I think I’ll need it.

References
[1] Hunt, A. & Thomas, D. (1999) The Pragmatic Programmer,

Addison-Wesley, ISBN 020161622X
[2] DeMarco, T. & Lister, T. (1999) Peopleware: Productive Projects

and Teams (2nd ed.), Dorset House, ISBN 0-932633-43-9
[3] Cockburn, A. (2002) Agile Software Development (2nd ed.),

Addison-Wesley, ISBN 0-321-48275-1
[4] Coplien, J. & Harrison, N. (2005) Organizational Patterns of Agile

Software Development, Pearson Prentice Hall, ISBN 0-13-14670-9
[5] Gross, R. (2005) Psychology: The Science of Mind and Behaviour

(5th ed.), Hodder Education, ISBN 978-0-340-90098-7
[6] Nobbs, D. (2001) Going Gently, Arrow Books, ISBN 978-

0099414650.

Next issue: Anna-Jayne Metcalfe.

Desert Island Disks is one of BBC Radio 4’s most popular and enduring
programmes:
 http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml
The format is simple: each week a guest is invited to choose the eight
records they would take with them to a desert island.
I’ve been thinking for a while that it would be entertaining to get ACCU
members to choose their Desert Island Books. The format will be slightly
different from the Radio 4 show. Members will choose about 5 books,
one of which must be a novel, and up to two albums. The programming
books must have made a big impact on their programming life or be
ones that they would take to a desert island. The inclusion of a novel and
a couple of albums will also help us to learn a little more about the
person. The ACCU has some amazing personalities and I’m sure we
only scratch the surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?
JUL 2009 | | 27{cvu}

My 2009 ACCU Conference
Chris Oldwood shares his experiences.

his was my second ACCU conference – my first being 2008. Last year
I was somewhat star struck as many of the authors of the books on
my desk were there. Of course they were all very accessible,

especially in the bar after hours. This year it didn’t take nearly as long to
slip into the routine of walking up to random people and chatting with them
over 1 or 5 beers. I also vowed not to stay up until dawn every night and
instead make every keynote – I almost succeeded. Another change for me
was to focus less on the technology and more on the ‘message’, which as
it turned out was pretty hard to miss in some cases...
I got into the swing of things pretty quickly by arriving on the Monday
night and taking the pre-conference session on Tuesday by Alisdair
Meredith about C++ 0X. I have been loosely following the proposals for
the next C++ standard on various blogs, but it still felt good to have a
leading figure talk you through the proposals, and how
they interact, such as R-Value references and move
semantics. As expected he covered the new Memory
Model and threading features in reasonable depth,
illustrating how the Double-Checked Lock Pattern
would be implemented correctly. The middle part of the
day covered some of the more settled features like
unique_ptr, initialiser lists, variadic macros and
templates and then he devoted a significant amount of
time towards the end to Concepts – the other big new feature. I was doing
well, but I’m afraid he lost me when it got to discussing Axioms, luckily
there’s still plenty of time to digest all this before it becomes a reality.
Wednesday was the start of the conference proper and the opening keynote
was from Robert ‘Uncle Bob’ Martin about Software Craftsmanship. This
was an interesting and insightful piece about how we have attempted to
cast ourselves as scientists or engineers or architects and consequently
have ended up drawing some pretty poor analogies that has helped neither
us nor our customers. This also laid a nice backdrop for Nicolai’s keynote
which was due at the end the day.
F# is a new language joining the .Net family and one whose blog I have
followed out of curiosity, so I chose Oliver Sturm’s ‘Functional
Programming in F#’ as my first session. After double-checking with him
first about how ‘heavy’ it was going to be, I was pleased to see that he
covered much of the language’s background to set a context for its use.
Using the interactive interpreter he walked us through some F# basics, but
its foibles as a statically-typed .Net language looked apparent to those that
were perhaps used to other more flexible FP languages, so he didn’t get
time to cover some of the more advanced features.
I followed lunch with Roger Orr talking about Refactoring in the Real
World. The ‘RW’ suffix was important as this hugely over-subscribed
session took on a workshop style as the attendees were all too keen to share
their experiences. Roger used rock climbing safety, i.e. only moving one
limb at a time as his analogy to drive home the importance of small steps
and the use of version control. As someone just starting to do this formally
it was useful to see how to avoid refactoring everything in sight when you
come to an old codebase that has seen a lot of action.

Michael Feathers and Steve Freeman filled my afternoon with a workshop
about Programming Paradigms. They took a simple problem and got four
teams of people to solve it using different programming paradigms –
Procedural, OO, Functional and Rules Based. The teams would then rotate
and implement a new feature using a different paradigm. The paradigms
were compared and Steve showed various implementations using Java to
illustrate how a multi-paradigm language could be used. This session was
also hugely popular and even though I was only a bystander I still found
it thought provoking.
This year saw the day finishing with a keynote as well, and it was Nicolai
Josuttis who delivered a scathing comment on the lack of quality being
applied in the industry due to the marketing drones calling the shots. The
large dose of irony that accompanied his examples did not cloud the

underlying message which is perhaps more apparent in
large corporations than smaller software houses. It
certainly generated a fair bit of discussion in the bar
later.
Thursday’s keynote was delivered by Linda Rising on
the level of abstraction required to make patterns work
successfully. She pointed out the dangers of being too
specific to one problem domain – namely that other
people will fail to see the similarities and discard them

or create a new, but very similar pattern, when in reality they should have
created a higher-order pattern that encompasses both. I found her account
of the POLP conferences shepherding process and writers’ workshop, and
how that differs from the usual conference format, particularly interesting.
I decided to go with Phil Nash’s introduction to Objective-C after the
coffee break as I had seen snippets of example Objective-C code in
magazines and thought the syntax was weird, but as Phil quickly showed
(after a brief OO language history lesson), it isn’t really that strange and I
was quite taken with many aspects of it until he started to describe the
reference counting. Unfortunately time got the better of him, but
nonetheless he appeared to cover most of the key language features, and
also its reliance on conventions, which appears to be a big aspect. It was
a good introduction that has certainly grabbed my attention.
Lunch was again spent outside enjoying the sun. It almost seemed a shame
to have to come back inside, but I did for Hubert Matthews talk on
Modelling Archetypes. This was, much to my surprise, probably the most
enjoyable talk I went to because Hubert managed to bring into a focus a
number of questions I had floating around my head about lightweight
modelling in general. He introduced a number of entity types to represent
certain key concepts like transactions and roles and then proceeded to give
them a colour. He showed some example models and went on to explain
how the various entities naturally fit together, with the colours making it
much easier to see the structure of the model, and more importantly, to see
potential problems.
A short coffee break and it was back for more C++, with a session from
Andrei Alexandrescu about replacing the Iterator concept with Ranges.
His talks are always entertaining as he tries to get a little audience
participation going and you know that he’s going to hit you with something
cool! He didn’t disappoint as he showed that the iterator concept in C++
has limitations that make implementing certain algorithms or containers
difficult or impossible. His solution was to replace the discrete pair of
begin/end iterators with a Range concept, which not only encapsulated that
behaviour but also vastly simplifies others such as reverse iterators. Once
again Andrei makes everything look so simple and leaves you wondering
why no one thought of it before.

T

Listing 1
Listing1

What were they
fighting for? Tabs
vs. Spaces? Vi vs.
Emacs? Honour?

CHRIS OLDWOOD
Chris started out as a bedroom coder in the 80s,
writing assember on 8-bit micros. These days it’s C++
on Windows in big plush corporate offices. He is also
the commentator for the Godmanchester Gala Day
Duck Race.
28 | | JUL 2009{cvu}

Another new addition for ACCU 2009 was in store after the sessions – a
series of Lightning Talks. These were short (5 minute) presentations from
anyone about anything. A fair selection of topics were covered in the first
9 talks, such as: Seb Rose giving a quick description of the Rational Jazz
Server, Didier Verna comparing the finer points of Lisp, Jazz and Aikido
and Mark Bartosik discussing debugging Windows applications.
Thursday night’s drinking had an extra twist this year as Steve Love and
Richard Harris decided to do a spot of fencing in the hotel car park! They
had proper kit and everything – not just a couple of broom handles and
duffle coats. But, what were they fighting for? Tabs vs. Spaces? Vi vs.
Emacs? Honour?
Due to an over-indulgence of Leffe I managed to miss Friday’s keynote
and instead started the day with a session on Portable Code from Steve
Love. He took a much wider look at what it means to write ‘portable code’
by starting with the more obvious issues around OS’s and tool-chains, but
then introducing Testing as another ‘platform’ along with external services
and even developers’ differing abilities. Steve’s message about how hard
it is to write truly portable code was pretty clear, but by following industry
best practices where possible, we can make our code malleable enough to
easily cope with whatever ‘platform’ we need to write for.
Another pleasant lunch outside in the sun was followed by the second talk
from Andrei Alexandrescu – this time about Cranking Policies Up. This
was based on a Scott Meyers article, called ‘Enforcing Code Feature
Requirements in C++’, that heavily used Template Meta-programming to
attribute features to code, such as ‘thread-safe’ or ‘portable’ so that feature
incompatible code could be flagged at compile time. Andrei’s focus was
on showing why the C++ language, as it stands today, does not make the
technique scalable. It also gave him the chance to give the D language
another plug, by pointing out where it was superior.
My last session for the day was from John Lakos about Designing Good
Components, Interfaces and Contracts. In true Lakos fashion, he had some
470 slides (less than last year though!) to cover in just 90 minutes. He gave
a whirlwind tour of Physical Design – as defined in his book – and then
went on to discuss contracts, in particular how and when to define
behaviour and when to leave behaviour undefined, perhaps using
defensive programming to highlight when UB has been invoked.
Unfortunately, given the ambitious size of the talk it overran and he had
little time to spend on the final section about the different forms of
inheritance.
I just managed to squeeze a quick pint in before the second set of Lightning
Talks. Once again we had another 9 presentations, this time kicked off by
‘Caring Will Only Cause You Pain’ by Peter Hammond which beautifully
continued the theme Nicolai addressed days ago in the evening keynote
about the death of quality. A bit later Olve Maudal continued the onslaught
by using the analogy that you wouldn’t want to work in a messy kitchen,
so why do it with your codebase? And later still Mark Dalgarno also
tackled Nicolai’s topic of cut-n-paste coding by discussing Code Clones.
In between were other talks about Git, Scala, crime, character encodings
and the Google web toolkit.
The Conference Dinner that evening was another good opportunity to
continue stepping outside my ‘comfort zone’ and just talk to random
people. The principle is that the speaker gets to stay put and the attendees

switch tables after each course, and with Giovanni controlling
proceedings, no one is going to argue when it comes time to switch tables.
I managed to speak to a whole bunch of new people and talk to some
speakers whose talks I missed because of the annoying physical limitation
of only being in one place at a time.
Allan Kelly kicked off the final day with a keynote that looked into the
management of software development. Using Fred Brooks’ comment on
the quality of people being more important, he introduced 9 principles
(although it was 10 really as it was 0-based!) for better management. These
principles tackled balancing workload, relationships, quality and risk
which hopefully will lead to both happy customers and developers.
Although aimed more towards managers, he did pronounce that ‘Managers
are not Aliens’ and try to get developers to be more aware of their
managers’ needs. He also managed to finish with the most blatant book
plug of the conference (I think it was called Changing Software
Development: Learning to become Agile).
After copious amounts of coffee to aid recovery from the night before I
decided to join Klaus Marquardt’s workshop called ‘Patterns for Versions,
Releases and Compatibility’. Whilst giving his introduction he produced
a large ball of wool which seemed a little odd, until we found out that we
were going to discuss and list the various aspects of our current project’s
release cycle, attaching them to the wool to create a washing line, of sorts,
that describes the process. We then got to go around the room and see how
other people in other domains tackle releases and put love-hearts or
lightning bolts on any practices we particularly liked or loathed. There was
a good cross section of application domains to ensure this session had the
diversity it needed.
My final session of the conference was spent with the bare-footed Pete
Goodliffe discussing Legacy Code and how we can learn to live with it.
This was a talk about what legacy code is, how do we go about
understanding what it does and then how can we change it without
breaking anything else and hopefully improving it at the same time. The
majority of the talk was about the ‘understanding’ aspect as he initially
covered the wider picture such as the build process, documentation,
customers, testing etc to show that the context of the code is often bigger
than just the raw lines of source code. Pete then focused on how to ‘map’
the software to get a feel for its structure, by looking at interfaces,
dependencies, file layout etc. The final section on modifying the code
concentrated on testing practices, but also touched on other improvements
such as cleaning up old comments. He finished by walking through a code
change with the aid of frogs! I found Pete’s session nicely put some of the
recent books I’d read (such as Michael Feathers) into a bigger context.
The sessions – the bit you pay for – are worth every penny in their own
right, but they’re not the only reason for coming to the ACCU conference.
The other reason is networking, or more simply, meeting other likeminded
individuals. Every lunch time and evening in the bar once again proved a
goldmine as I met new people and got to talk to a few of the speakers in a
more informal setting. The great thing is that you know everyone in that
bar (well, those under 90 at any rate) is there for the same reason – drinking
beer and talking about programming stuff and probably even the real world
every now and then. I know it’s only my second year, but it lost none of
the magic I experienced last year.

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines.
We need articles at all levels of software development experience; you don’t have to write about rocket science or
brain surgery.

What do you have to contribute?
What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
JUL 2009 | | 29{cvu}

Agile Testing: A Practical Guide for
Testers and Agile Teams
By Lisa Crispin and Janet
Gregory, published by Addison
Wesley, ISBN: 978-
0321534460, 576 pages

Reviewed by Paul Grenyer

Recommended
This book is pretty much
what it says on the tin and
that’s a good thing. Behind all the usual Shiny
Happy People Having Fun stuff you usually get
in books from the Agile community is some
sound, well expressed advice. This isn’t just a
book for Agile testers. There’s a lot of good
practical information that all testers should
learn. It’s a difficult balance to achieve, but I
think the use of the word Agile may put off a lot
of people who should really be reading this
book.
As well as the general practical testing advice
the book also covers a lot of fundamental Agile
stuff. It sets out some Agile testing principals
and discusses the problems a lot of teams have
when transitioning to Agile. It’s all been written
before, but never from a testers perspective, but
to be honest it’s not that different from the
developer perspective.
The book is very hung up on the idea that
developers in Agile teams, and indeed testers in
or joining Agile teams have difficulty seeing
how testers fit in as developers are doing unit
testing and therefore the code is supposedly
already tested. Personally I feel that anyone who
doesn’t understand that not everything can be
unit tested and see that ‘independent’ testers are

vital is probably in the wrong job. The book
made me view our own tester, who does not
come from a programming background, in a
totally different way. Instead of seeing him as
someone who just carries out the manual user
interface tests, I now see him as an integrated
member of the team who needs to take part when
requirements are gathered and should also be
writing integration and end-to-end tests as well
as maintaining continuous integration. The
necessary training has now commenced.
Most of the Agile discussion is at the beginning
of the book. The practical stuff comes later and
is quite detailed, including most of the sorts of
testing, including automated GUI testing, that
should be carried out.
I think this book will make most people think
differently about testing in a good way.
Recommended.

The CERT C Secure Coding Standard
By Robert C Seacord,
published by Addison Wesley,
ISBN: 978-0321563217, 720
pages

Reviewed by Balog Pál

Recommended, if ...
There is another review of
this book, written by Derek
M Jones, in the May 2009
CVu. If you consider to buy or read this book,
please read that review first. Derek classified the
book as ‘Not recommended’, with fair
explanation. And the facts he list are true.

Yet, the interpretation of the facts can be
different. The book is on a very serious topic –
problems that cause software problems,
especially ‘security vulnerabilities’, that
manifest in the world in spreading malware, data
loss, data theft, with the monetary impact
measured in $ billions yearly. The rules and
guidelines in the book, if put into practice could
decrease these kind of defects much. While
indeed many guidelines can be called
‘platitudes’, still they are not followed, and in
2009 the software is still full of those banal
problems. Among them, those pesky format
strings still create ‘hack-me’ engines, despite the
many texts about them and specific warning
built in the compiler...
This book is not very good for you, if:

You are on starter level, or did not read
some other morality guides and guideline
books. You need a fair amount of
background, or to follow all the listed
references.
You work on a system that is not (mostly)
written in C99. If your system is C++,
many of the listed problems apply, but the
solutions are very different. Wait for the
C++ version, that is under way; you can
use the material on the web. If your
system is C90, you’ll need adjustments (or
follow the suggestion to go C99).
 - You’re short on budget. The material is
on the web for free access, you can buy
books not available.

This book is good for you if you have a C project
with problems, and you’re responsible for
making it better. Especially if you have to create
or manage the guidelines, the process, allocate
resources. It can save you very much time,
providing much preprocessed material. I very
much liked the idea that every item has an ID,
and the exceptions too. When put to work, it can
streamline reviews and corrections, just using
those. Also the calculating of ‘priority’ and
‘level’ that includes the estimated cost of
cleanup.
For each item there is also a good list of
references, covering both theory and the actual
vulnerabilities encountered in the world. Derek
noticed the severity and impact values are too
subjective. As I see this is not subjective, but the
source of the book – it was created mostly from
‘security vulnerabilities’ observed. That is
certainly a subset of all possible problems. And
each real system has its own environment.
If the guidelines are put to use, that should not
be a problem, as the adopter can substitute the

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
30 | | JUL 2009{cvu}

relevant values, along with selecting items from
this book and elsewhere.
The book is also a good read for seniors who
know most of the problems, but can find a
couple they were no aware of yet. And possibly
find some manifestations in the codebase. You
can do it on the web too. That is well maintained,
so if you spot a problem, just leave a comment,
it may trigger update overnight.
So as summary this book is not perfect, is not a
silver bullet, also will not replace knowledge
and thinking of good engineers – but can be used
to good effect if one wishes, and nets a fair value.

Effective Use of Microsoft Enterprise
Library – Building Blocks for Creating
Enterprise Applications and Services
By Len Fenster, published by
Pearson Education, ISBN: 978-
0321334213, 736 pages

Reviewed by Omar Bashir

Not recommended
This is one of the
two books in the
market explaining in detail
the functionality provided
by and the use of Microsoft Enterprise Library.
Even though this book was published in 2006, it
was already significantly outdated then as it only
targets the Enterprise Library version for the
.Net Framework 1.1 whereas the .Net
Framework 2.0 and a corresponding version of
the Enterprise Library had already been
released. The latest version of the .Net
Framework is 3.5 which is being widely used in
production environments. The latest version of
the Library (4.1) was released in October 2008
containing more application blocks than those
described in this book. Although, the book still
covers certain application blocks that provide
considerable functionality in many enterprise
applications and services, but as discussed later,
there have been significant modifications in
those application blocks since the release of the
.Net Framework 2.0.
Application blocks are resuable, extensible and
configurable source code components that have
been developed and released by Microsoft’s
Patterns and Practices Team. These application
blocks provide considerable functionality in
certain common aspects of applications like
configuration management, cache management,
data access, exception handling, logging and
security. These application blocks can be
extended to alter or enhance the functionality
they provide to fulfil specific requirements of
various applications. Furthermore, new
application blocks can be developed and
included to provide functionality that the
Enterprise Library does not provide by default.
The book has an elaborate preface but does not
have an introduction chapter. This can be
considered as a drawback as readers may
generally omit or only casually read through the
preface. Parts of the preface could have been

used as contents of an introduction chapter
which may have also explained the procedure to
install the library as the library is not bundled
with any of Microsoft’s development tools. In
addition, an introduction chapter may have
introduced various tools that assist in
developing software using this Library (e.g., the
configuration management tool).
The book contains examples in both C# and
VB.Net. The author starts demonstrating the use
of the Library quite early in the first chapter.
However, it was a bit annoying to try these
examples directly from the book as they do not
include the specification of the namespaces of
various classes being used. References to be
included in projects using various Enterprise
Library application blocks were also not
provided. Other information that can be very
useful to developers but was not provided
include the assemblies that contain the
functionality of corresponding application
blocks. All this had to be ascertained
experimentally with some inconvenience.
The author seems keener to explain ways to
extend the Enterprise Library than to use the
existing functionality. Readers generally have to
go a considerable distance within chapters
before being able to write simple programs to
exercise the existing functionality of these
application blocks. As mentioned above,
examples are snippets rather than complete
programs requiring considerable effort on the
part of novice developers to get them working.
The final chapter of the book attempts to explain
development of new application blocks. Initial
few sections of this chapter explain core block
functions, pluggable providers and the use of
factories in decoupling the two within an
application block. The chapter demonstrates the
development of an application block (Data
Mapper) that is not provided with the Enterprise
Library. However, the author seems to have
rushed through the example resulting in the
explanation of the implementation not being
very clear.
The book has three appendices. Appendix A
explains the use of the Data Mapper Application
Block described in the final chapter in the
manner similar to other application blocks
explained earlier. Appendix B provides
information on creating a .Net managed data
provider to retrieve and store data in XML files.
Appendix C explains changes between the
version of Enterprise Library for .Net
Framework 1.1 and that for .Net Framework 2.0.
Configuration Application Block has been
deprecated as similar features are provided in
the System.Configuration namespace of the .Net
Framework. Configuration helper classes have
been added to facilitate working with the
System.Configuration namespace.
Considerable enhancements have been made to
instrumentation. Logging Application Block
has been simplified and takes advantage of the
functionality provided by System.Diagnostics.
Similarly the Data Access Application Block

has also been simplified and is better integrated
with ADO.Net. Finally, with the Security
Application Block, authentication, role
management and profile management have been
deprecated as they are part of the .Net
Framework.
The author has a clear writing style and provides
good explanation of various concepts without
being too verbose. The book appears to have
been targeted primarily at users with some
experience of the previous version of the Library
as, in addition to omitting necessary information
mentioned above, it explains in detail the
enhancements in application blocks from their
previous versions. For graphical representation,
the author primarily relies on class diagrams
representing only the static structure of the
software. There are very few graphical
architectural descriptions and hardly any
sequence or interaction diagrams specifying the
dynamics of the software used in the examples.
A few of the latter could have significantly
enhanced the understanding of the software
discussed by the author.
Because Microsoft has significantly enhanced
the Enterprise Library since this book was
published, the contents of the book are heavily
outdated and, therefore, it is not recommended.
Developers intending to use the Enterprise
Library can get useful and up to date information
with examples from the documentation that is
installed with the installation of Library.

Groovy and Grails Recipies
By Bashar Abdul-Jawad,
published by Apress, ISBN:
978-1-4302-1600-1, 297 pages

Reviewed by Alan Griffiths

Groovy is one of a number
of ‘dynamic languages’ that
have become popular
recently. Groovy is
reminiscent of Smalltalk in
that the object model allows object types to be
modified as the program runs and its use of
closures. Its other distinguishing feature is a
flexible mapping into the Java JVM that allows
existing Java libraries to be accessed via several
convenient syntaxes. Java code can also invoke
Groovy allowing an application to use the more
suitable language for various parts of a project.
Grails is, as the name suggests, a web framework
inspired by Ruby-on-Rails. I’ve not used either
of these for significant projects, but they both
appear to address a lot of the tedium of managing
user access and session control that I
experienced using JSP nearly a decade ago (so
some progress is being made in the industry).
This book doesn’t take the usual didactic
approach to teaching a programming language.
It assumes a level of competence from the reader
and comprises an enormous number of worked
examples or ‘recipes’. These focus on showing
how accessing various technologies can be
accessed easily from a Groovy program. The
Grails framework is the technology treated in
JUL 2009 | | 31{cvu}

32 | | JUL 2009

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Jez Higgins
chair@accu.org

My thanks to those of you able
to attend this year’s AGM. On
behalf of the officers and
committee I would like to thank you for electing
or reelecting us, and for the confidence you
place in us. One significant change this year say
Allan Kelly standing down as Publications
Officer, with Roger Orr being elected to the post.
In the past, Allan has said the role of
Publications Officer involved long periods of
nothing punctuated by the occasional crisis. He
may have changed his opinion over the last year,
as while searching for a new editor for CVu we
also changed the publications schedule as well.
Allan’s put in a great deal of work for ACCU
over the past several years and particularly in the
last year, and I’d like to thank him that and for
the help he’s given me as Chair. Roger is, of
course, a long standing member of ACCU,
regular conference speaker, and the man behind
compiling the Code Critique. I’m glad to have
him on board.
The AGM takes place, of course, during the
ACCU Conference. The year’s conference was,
again, a great success. At a time when
commercial conferences seem to be scaling back
or even closing up completely, the ACCU
Conference continues to be strong and
successful. Last autumn, the conference
committee was buried in a virtual avalanche of
submissions. Those submissions translated in a
strong conference programme, that attracted a
more-or-less sell-out crowd. The conference

committee made some innovations in the
programme, introducing the lightening talks for
example, and, in Susan Greenfield, bringing in a
speaker from well outside what might be
considered our normal orbit. Risky perhaps, but
what a reward. Giovanni Asproni, the
conference chair, and his committee of Astrid
Byro, Francis Glassborow, Alan Lenton, Ewan
Milne, Roger Orr, Tim Penhey, and James
Slaughter deserve hearty congratulations for a
terrific job. Many thanks, chaps. I’d say ‘Now
get on with next year’s’, except that I know
discussions are already under way, with
additional plans being laid for a one day
conference this autumn. Keep an eye on accu-
general and the website for news on that. I’m
looking forward to it already.

Membership
Mick Brooks
accumembership@accu.org

Since I prepared the AGM
reports we’ve welcomed 25 new
members to ACCU, while 20
have left, for an overall increase of 5 leaving a
paying membership of 763. I suspect this churn
is representative for this time of year, thanks to
new memberships for late conference bookings
and the expiry of memberships for those that
joined for the conference last year but choose not
to renew.
It came up in discussion at the AGM that,
although we do have an ever increasing number
of members from around the world, there’s a
large core based in and around a few cities:
Oxford, Cambridge, London. I think this

clustering tells, amongst other things, of how the
ACCU membership has grown: through the
personal contacts of existing members.
Feedback suggests it’s not necessarily the direct
approach (‘Why don’t you join ACCU?’) that
works best, but simply using ACCU to help out
where it’s useful. If someone’s looking for a
book on a subject, point them at a review or two
on the website. Keep an ear out for what your
colleagues are working on – is there a journal
article that could be relevant?
As ever, send any questions or suggestions about
membership and renewals to me at
accumembership@accu.org.

Publicity
David Carter-Hitchin
ads@accu.org

Membership numbers are
dropping and we need to do
something about it, and
urgently. For this reason I have
stepped up efforts to get leaflets out to all
libraries in the country, wherever possible.
These can be displayed on notice boards, be put
into the societies and clubs listings and also
placed at reception for people to take away. The
time required to help with this project is very
small: You go to your library and see out many
leaflets are required for the whole county (most
libraries offer a scheme to distribute the leaflets
for you), tell me the number, receive leaflets,
give leaflets to library. Easy. If you haven’t
already done so, please send me an e-mail at
publicity@accu.org if you are able to help.

greatest depth – the Grails related recipes take up
most of the second half of the book.
Taken in large doses the persistent claims that
‘Groovy is great because you can do this like
this’ can be a bit wearing, but that is less of an
issue if the book is used as a reference.
There are a lot of tasks for which Groovy is a
suitable language – allowing a lot of
programmer productivity and this is clearly
demonstrated by some comparisons with Java.
The recipes in this book provide an easy source
of examples for using a wide range of
technologies. (This does require the reader to
have the knowledge to decide what to use and
how it fits into the application.)

Bookcase (continued)

	Shiny New Things
	Hunting the Snark (Part 3)
	Improve Code by Removing It
	Misconceptions about TDD
	Getting REKURSIV
	Out of Memory
	Safe and Efficient Error Information
	Inspirational (P)articles
	Code Critique Competition 57
	Jeff Sutherland: Agile Software Development in the Enterprise
	Desert Island Books
	My 2009 ACCU Conference
	View From The Chair
	Membership
	Publicity

