

MAY 2009 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

A Passion For It
t seems like a long time ago that I was first introduced to
ACCU. Well, OK, it was a long time ago. Anyway,
it was my first gig as a programmer, with

memories of university still quite fresh in my mind,
and I thought I was pretty good at it. I’d joined a
small team of developers (I’m sure they all know who
they are) and it didn’t take them long to show me
exactly how little I really knew. Fortunately they were,
for the most part, quite gentle about it, and I, for my part,
knew that I could be ‘better’ than I was. Even more
fortunately, they all knew quite a lot – including how to join
the ACCU, and get help from the mailing lists, the journals,
and eventually, the conference.
My first conference was a very motivating experience,
where I was lucky enough to meet some people who all
shared a common goal – to be ‘better’. Even more than
that, it seemed that everyone who attended had a passion
for it, that it was why they were there. It’s not just about
the formal sessions, either, as illuminating and interesting
as they are. For me the most important aspect of the
conference is the opportunity to meet other people involved
with software development (not just developers) and, well, confer with them.
Now I still feel that I have a lot to learn – each conference I attend, each ACCU
magazine article I read, every thread on the ACCU mailing lists reaffirms this for
me – but I definitely feel that I am Better for being a member, and for
participating in the community that is ACCU. Some of you will have attended the
recent ACCU conference in Oxford. I hope that you, like me, feel ‘better’ for it.

 I
Volume 21 Issue2
May 2009

Features Editor
Steve Love
cvu@accu.org

Regulars Editor
Jez Higgins
jez@jezuk.co.uk

Contributors
Andrei Alexandrescu,
Frances Buontempo,
Pete Goodliffe, Paul Grenyer,
Jim Hague, Alan Lenton,
Steve Love, Ewan Milne,
Roger Orr, Seb Rose

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

STEVE LOVE
FEATURES EDITOR

2 | | MAY 2009

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
21 Code Critique Competition

This issue’s competition
and the results from last
time.

24 Desert Island Books
Paul Grenyer introduces
Ewan Milne.

25 Inspirational (p)articles
Frances Buontempo
invites you to share what
has inspired you recently.

25 G‘OO’d Behaviour
London meeting report.

REGULARS
26 Bookcase

The latest roundup of
ACCU book reviews.

28 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 21.3: 1st June 2009
C Vu 21.4: 1st August 2009

Overload 92: 1st July 2009
Overload 93: 1st September 2009

FEATURES
3 Java Inheritance vs Composition

Paul Grenyer investigates some design issues.

5 A Case for Code Reuse
Pete Goodliffe shows us a useful case of the mythical
‘code reuse’.

8 Inside a Distributed Version Control System
Jim Hague shows us what goes on.

13 The Case for D
Andrei Alexandrescu presents the evidence for a new
language.

19 Hunting the Snark (Part 2)
Alan Lenton continues his job hunt.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Java Inheritance vs Composition
Paul Grenyer investigates some design issues.

n my article ‘Boiler Plating Database Resource Clean Up Part II’ [1], I
discuss a way of writing JDBC boiler plate code using Execute Around
Method [2]. Part of the suggested solution is a customisable error

handling policy.
 public interface ErrorPolicy
 {
 void handleError(Exception ex);
 void handleCleanupError(Exception ex);
 }

The implementer of the ErrorPolicy interface is free to handle errors
in any way they choose (e.g. throw something, log something, ignore them,
etc.). A distinction is made between an error caused by using or creating
a JDBC object (Connection, Statement, ResultSet, etc.) and errors
caused by releasing or cleaning up a JDBC object. Classes that use or create
a JDBC object are required to implement the ErrorPolicyUser
interface, so that they can be passed the error policy:
 public interface ErrorPolicyUser
 {
 void setErrorPolicy(ErrorPolicy errorPolicy);
 }

Implementers of the ErrorPolicyUser interface are also free to do so
in anyway they wish.
The example boiler plate I designed has a number of providers. The
ConnectionProvider, for example, creates a JDBC Connection
object, passes it to a ConnectionUser and then cleans up the object. The
example in Listing 1 shows its usage.
As you can see, implementers of ConnectionUser must implement both
the use method, which uses the JDBC Connection and the
setErrorPolicy method as it extends ErrorPolicyUser. The
example in Listing 2 shows one possible implementation of
ConnectionUser.
This implementation has a single job to do, which is to execute an sql query
using the supplied Connection object. Resource clean up in Java is a
strange beast. Not only must it be carried out explicitly using finally
(no IDisposable/using or destructors here!) the action of actually
closing a resource can throw too. Therefore all sorts of error handling has
to be implemented.
The example in Listing 2 is slightly contrived as my boiler plate will also
take care of creating, executing and cleaning-up JDBC Statement
objects, however I wanted to demonstrate exactly how the error policy fits

in. As you can see, if an exception is thrown when creating or using the
Statement object, the exception is passed to the handleError method
of the exception policy. If there is an exception thrown on clean-up it is
pa s sed t o t he handleCleanupError m e t h o d . A
DefaultErrorPolicy is used by default, but the setErrorPolicy
method allows a custom error policy to be set. The setErrorPolicy
method’s sole function is to receive and store the custom error policy. The
reference that holds the error policy is also a member of the class.
The setErrorPolicy implementation and the ErrorPolicy
reference must be repeated in every c lass that implements
ErrorPolicyUser. That in itself isn’t a huge amount of code, but what
I object to is the unnecessary repetition.

I

PAUL GRENYER
An active ACCU member since 2000, Paul is the founder
of the Mentored Developers. Having worked in industries
as diverse as direct mail, mobile phones and finance,
Paul now works for a small company in Norwich writing
Java. He can be contacted at paul.grenyer@gmail.com

public class User implements ConnectionUser
{
 private ErrorPolicy errorPolicy =
 new DefaultErrorPolicy();
 @Override
 public void use(Connection con)
 {
 try
 {
 final Statement stmt =
 con.createStatement();
 try
 {
 stmt.execute(sql);
 }
 finally
 {
 try
 {
 stmt.close();
 }
 catch(SQLException ex)
 {
 errorPolicy.handleCleanupError(ex);
 }
 }
 }
 catch(SQLException ex)
 {
 errorPolicy.handleError(ex);
 }
 }
 @Override
 public void setErrorPolicy(
 ErrorPolicy errorPolicy)
 {
 this.errorPolicy = errorPolicy;
 }
}

Listing 2

final ConnectionProvider cp =
// Create a ConnectionProvider
 cp.provideTo(new ConnectionUser()
{
 @Override
 public void use(Connection con)
 {
 // use connection. }
 @Override
 public void setErrorPolicy(
 ErrorPolicy errorPolicy)
 {
 // store reference to error policy.
 }
});

Li
st

in
g

1

MAY 2009 | | 3{cvu}

The ‘modern’ Java way (I say ‘modern’ as I don’t think it has always been
this way) is to use composition in favour of inheritance. Java aside, this is
generally good practice. A composition based solution would look
something like Listing 3.
The composition solution is even more code in each ConnectionUser
implementation and you still have a member and a method whose
implementation must be repeated each time. The only advantage is that if
you change the default error policy to a different type you only have to
change it in one place. As, in most situations, the error policy will be set
via setErrorPolicy anyway, this is no advantage at all.
So what about an inheritance based solution? Well, that would look
something like Listing 4.

With the inheritance solution the only repeated code is extends
AbstractErrorPolicyUser. Everything else comes for free. Each
ConnectionUser implementation has less code and significantly less
repetition.

public class ErrorPolicyUserImpl implements
 ErrorPolicyUser
{
 private ErrorPolicy errorPolicy;
 public ErrorPolicy getErrorPolicy()
 {
 return errorPolicy;
 }
 @Override
 public void setErrorPolicy(
 ErrorPolicy errorPolicy)
 {
 this.errorPolicy = errorPolicy;
 }
}
public class User implements ConnectionUser
{
 private ErrorPolicyUserImpl errorPolicyUser
 = new ErrorPolicyUserImpl();
 @Override
 public void use(Connection con)
 {
 try
 {
 final Statement stmt =
 con.createStatement();
 try
 {
 stmt.execute(sql);
 }
 finally
 {
 try
 {
 stmt.close();
 }
 catch(SQLException ex)
 {
 errorPolicyUser.getErrorPolicy()
 .handleCleanupError(ex);
 }
 }
 }
 catch(SQLException ex)
 {
 errorPolicyUser.getErrorPolicy()
 .handleError(ex);
 }
 }
 @Override
 public void setErrorPolicy(
 ErrorPolicy errorPolicy)
 {
 errorPolicyUser.setErrorPolicy(errorPolicy);
 }
}

Li
st

in
g

3 public abstract class AbstractErrorPolicyUser
 implements ErrorPolicyUser
{
 private ErrorPolicy errorPolicy =
 new DefaultErrorPolicy();
 protected ErrorPolicy getErrorPolicy()
 {
 return errorPolicy;
 }
 @Override
 public void setErrorPolicy(
 ErrorPolicy errorPolicy)
 {
 this.errorPolicy = errorPolicy;
 }
}
public class User extends AbstractErrorPolicyUser
 implements ConnectionUser
{
 @Override
 public void use(Connection con)
 {
 try
 {
 final Statement stmt
 = con.createStatement();
 try
 {
 stmt.execute(sql);
 }
 finally
 {
 try
 {
 stmt.close();
 }
 catch(SQLException ex)
 {
 getErrorPolicy()
 .handleCleanupError(ex);
 }
 }
 }
 catch(SQLException ex)
 {
 getErrorPolicy().handleError(ex);
 }
 }
}

Listing 4

As stated in the main text, I see the lack of multiple inheritance in Java
as a drawback. However, this is not a view held by everyone as Steve
Love pointed out to me:

‘I don’t necessarily see it as a drawback as such – although it can be
a limitation. Single inheritance has implications for this kind of policy
inheritance (it’s not really is a, more a kind of Mixin) but the
argument goes that MI is so prone to error that causing extra typing
is worth it.’

This is of course very true, but like any language feature, multiple
inheritance is only dangerous if people don’t know how to use it
correctly.

Java Inheritance
4 | | MAY 2009{cvu}

Java Inheritance vs Composition (continued)

Professionalism in Programming # 55
The inheritance solution isn’t without its disadvantages though.
If you want to implement ConnectionUser as an anonymous class,
there is no way in Java to extend AbstractErrorPolicyUser and
implement ConnectionUser at the same time. One simple solution is
to have an intermediate class. (See Listing 5.)
Another drawback of Java is the lack of multiple inheritance (see sidebar).
So if an implementation of ConnectionUser was required to extend
ano ther c lass , tha t wou ld p reven t i t f rom a l so ex tend ing
AbstractErrorPolicyUser. Under these circumstances composition
should be used.

It is my opinion that, as with many blanket rules, it is wrong to follow
‘prefer composition to inheritance’ blindly and instead it should always be
considered judiciously. I believe that the examples above demonstrate this.
However, it cannot be ignored that if composition is generally preferred
to inheritance the coupling implicit with inheritance is reduced and the
single extended class permitted by Java is kept in reserve for when it is
really needed.

Acknowledgements
Thank you to Richard Dehnen, Thomas Hawton, Seweryn Habdank-
Wojewodzki and Steve Love for some very interesting and informative
discussion that inspired this article.

References
[1] ‘Boiler Plating Database Resource Clean Up Part 2’ by Paul Grenyer

http://www.marauder-consulting.co.uk/
Boiler_Plating_Database_Resource_Cleanup_-_Part_II.pdf

[2] ‘Execute Around Method – Another Tail of Two Patterns’ by Kevlin
Henney: http://www.two-sdg.demon.co.uk/curbralan/papers/
AnotherTaleOfTwoPatterns.pdf

it is wrong to follow ‘prefer
composition to inheritance’ blindly

public abstract class AbstractConnectionUser
 extends AbstractErrorPolicyUser
 implements ConnectionUser
{}
new AbstractConnectionUser()
{
 @Override
 public void use(Connection con)
 {
 // ..
 }
};

Listing 5
A Case for Code Reuse
Pete Goodliffe shows us a useful case of the mythical ‘code

reuse’.

e hear a lot about a mythical thing called ‘Code Reuse’. I’m not
sold on it.

Re-use case 1: Code copied out of one app is surgically placed into
another. Well, in my book that’s less code reuse and more like code re-
purposing. Or, less politely: cut-and-paste programming. It’s often evil;
tantamount to Code Piracy. Imagine a bunch of swashbuckling
programmers pillaging and hoarding software gems from rich codebases
around the seven software seas. Daring. But dangerous. It’s coding with
the bad hygiene of a salty seaman.
This kind of ‘reuse’ is a real killer when you’ve duplicated the same code
fragment 516 times in one project and then discover it’s got a bug. Having
said that, cut-and-paste between projects does get stuff done. There’s a lot
of it about and the world hasn’t come to a crashing end. Yet.
Cut-and-paste is a nasty business and no self-respecting programmer will
admit to this kind of code reuse.
Re-use case 2: Consider a code library designed for inclusion in multiple
projects. That’s neater than cut-and-paste programming. That’s
theologically sound programming. But that’s not code reuse. It’s code use.
The library was designed to be used like this from the very start.
See, I’m not sold on the whole code ‘reuse’ idea.
But I present here one genuine case for code reuse. I happen to like Re-
use case 3. It’s the best way to reuse code... Face it, almost all old code is

a pile of pants; your old code is probably not good enough to be put into
another application anyway, so don’t try. (It’s a miracle it worked anyway.)
However, you can reuse your old code: to learn how to build better code.

Re-use case 3: learning
We don’t tend to look back over our own old code that often. We’d rather
not think of the functional gremlins and typographical demons that lurk in
our ancient handiwork. You thought it was perfect when you wrote it – but
cast a critical eye over your old code and you’ll inevitably bring to light
all manner of code gotchas.
Programmers, as a breed, strive to move onwards: to learn new and
exciting techniques, to face fresh challenges, and to solve more interesting
problems. It’s natural. Considering the rapid turnover in the job market,
and the average duration of programming contracts, it’s hardly surprising
that very few software developers stick with the same codebase for a
prolonged period of time.
But what does this do to the code we produce? What kind of attitude does
it foster in our work? I maintain that exceptional programmers are

W

PETE GOODLIFFE
Pete Goodliffe is a software developer, columnist, speaker,
and author who never stays at the same place in the software
food chain. He has a passion for curry and doesn't wear
shoes.. Pete can be contacted at pete@goodliffe.net
MAY 2009 | | 5{cvu}

determined more by their attitude to the code they write and the way they
write it, than by the actual code itself.
So the average programmer tends not to maintain their own code for too
long. Rather than roll around in our own filth, we move on to new pastures
and roll around in someone else’s filth. Nice. Of course, it’s fun to
complain about other people’s poor code, but we easily forget how bad our
own work was.
But of course, you’d never intentionally
write bad code, would you?
Revisiting your old code can be an
enlightening experience. It’s like visiting
an old relative you don’t see very often.
You don’t know them as well as you
think. You’ve forgotten things about
them, about their funny quirks and
irritating ways. And you’re surprised at how they’ve changed since you
last saw them (perhaps, for the worst).
Looking back at old code you’ve produced, you might shudder for a
number of reasons...

Presentation
This is only really an issue for those languages which sanction ASCII-
based artistic interpretation. Indeed, I rather admire Java and C# (for
example) for having a de-facto standard presentation style. It avoids many
of the fractures over coding styles found predominantly in the C and C++
camps.
For example, some C++ programmers follow standard library layout:
 class standard_style
 {
 int variable_name;
 bool method_name();
 };

 and some have more Java-esque leanings:
 class JavaStyle
 {
 int variableName;
 bool methodName();
 };

I know over the years that my presentation style has changed wildly,
depending on the company I’m working for at the time.
As long as the style is employed consistently in your codebase, this is a
really trivial concern and nothing to be embarrassed about.

The state of the art
Most languages have rapidly developing built-in libraries. Over the last 13
years the Java libraries have grown from a few hundred helpful classes to
a veritable plethora of functionality. C# is a relative newcomer to the
development world, but over three major revisions its library has
burgeoned, and has grown a myriad of new facilities (including such
excitement as generics, anonymous methods, iterators, partial types, and
more).

Such evolution (which is especially rapid
early in a language’s development) can
un f o r t u n a t e l y r e n de r yo u r c o de
anachronistic. Anyone reading your code
for the first time might presume that you
didn’t understand the new language/
library features, when they simply did not

actually exist when the code was written.
For example, C#’s generics means that the code you’d have written in 2004
in Listing 1 would today be written as in Listing 2. There is a very similar
Java example with surprisingly similar class names! The state of the art
moves much faster than your code.
I had a similar case recently when returning to a C++ codebase. Some years
into its development, the Boost [1] libraries had been brought in. Several
classes throughout the codebase had been tracking values that could have
been out-of-date, so they had two variables, a boolean for validity, and a
stored value (see Listing 3). Done once, it’s a bit manual. Done all over
the codebase it’s a brittle structure that isn’t immediately obvious, and easy
to forget to check value’s validity before using it. However, once Boost
had been brought in, all this was made easier with boost::optional,

using System;
using System.Collections;

ArrayList list = new ArrayList(); // untyped
list.Add("Foo");
list.Add(Int(3)); // oops!

Li
st

in
g

1

using System;
using System.Collections.Generic;

public class ModernLists
{
 static void Main()
 {
 List<string> list = new List<string>();
 list.Add("Foo");
 list.Add("Bar");
 }
}

Li
st

in
g

2

class ValueCacheWithBoost
{
 boost::optional<int> value;
 void SetValue(int new_value)
 {
 value = new_value;
 }
 void UseValue()
 {
 DoSomething(value); // this does not
 // compile...
 // ... so you have to think about
 // whether value is valid
 if (value) DoSomething(*value)
 }
};

Listing 4

class ValueCache
{
 bool value_valid;
 int value;

 void ValueChanged(int new_value)
 {
 value_valid = true;
 value = new_value;
 }

void UseValue()
 {
 DoSomething(value);
 // oops! we forgot to check if it was valid
 // first!
 }
};

Listin
g

 3

Such evolution can
unfortunately render your code

anachronistic
6 | | MAY 2009{cvu}

which says exactly what it’s doing, and makes the code both safer, and
more obvious (see Listing 4).

Idioms
It’s perhaps most embarrassing to look back at old code, and see how un-
idiomatic it is. If you now know more of the correct idiom for the language
you’re working with then old code can look quite, quite wrong.
Some time ago, I worked with a team of C programmers moving (shuffling
slowly) towards the then brave new world of C++. One of their initial
additions to the new codebase was a max helper, as in Listing 5. (Do you
know why we have the brackets?)
After some time, someone revisited that early code, and knowing more
about C++, realised how bad it actually was, and re-wrote it in more
idiomatic C++, as in Listing 6. This actually fixed some very subtle lurking
bugs, as shown in the listing.

The original Listing 5 version also had another problem: the macro
clobbers a name in the C++ standard library, which leads onto the even
better solution in Listing 7: just use the std::max function that always
existed. It’s obvious in hindsight. That’s the kind of thing you’d cringe
about now, but had no idea about back in the day.

Design decisions
Did I really write that in Perl? Did I really use such a simplistic sorting
algorithm? Did I really write that by hand, rather than just using a built-in
library function?

Bugs
Perhaps this is the reason that drags you back to an old codebase.
Sometimes coming back with fresh eyes uncovers obvious problems that
you missed at the time.

Conclusion
Looking back over your old code is the best form of ‘code reuse’ I can think
of. It’s like a code review for yourself. It’s a valuable exercise to do;
perhaps you should take a quick tour through some of your old work. Do

you like the way you used to program? Does your old code shape up in
the modern world? (If it doesn’t look too different from today’s freshly
minted lines of source, does that mean that you haven’t learnt anything new
recently?)
So does this kind of thing matter? If your old code’s not perfect, should
you do anything about it? Should you go back and ‘fix’ the code? Probably
not – if it ain’t broke don’t fix it. Sometimes the code does not rot, unless
the world changes around it (compiler versions break your old code, or the
latest library version no longer lets you compile).
It’s important to understand how times have changed, how the
programming world has moved on, and how your personal skills have
improved over time. Old code not looking how you’d write it now is
actually a good thing: it shows that you have learnt and improved from
where you were. Perhaps you don’t have the opportunity to revise it now,
but knowing where you’ve come from helps to shape where you’re going
in your coding career.

Notes
[1] It’s an excellent library, I strongly suggest you take a look if you’re

a C++ programmer.

#define max(a,b) ((a)>(b)) ? (a) : (b)

void example()
{
 int a = 3, b = 10;
 int c = max(a, b);
}

Li
st

in
g

5

template <typename T>
inline max(const T &a, const T &b)
{
 // Look mum! No brackets needed!
 return a > b ? a : b;
}

void better_example()
{
 int a = 3, b = 10;

 // this would have failed using the macro
 // because ++a would be evaluated twice
 int c = max(++a, b);
}

Li
st

in
g

6

// don't declare any max function

void even_better_example()
{
 int a = 3, b = 10;
 int c = std::max(a,b);
}

Listing 7

Old code not looking how you’d write
it now is actually a good thing
MAY 2009 | | 7{cvu}

Inside a Distributed Version Control System
Jim Hague shows us what goes on.

rinton Lodge is a Youth Hostel that sits on an exposed hillside just
above the small hamlet of Grinton in Swaledale, in the Yorkshire
Dales National Park. A former Victorian shooting lodge, it now

welcomes walkers and other travellers from around the world.
Tonight, a Wednesday in mid-November, is not one of its busiest nights.
Kat, the duty staff member, tells me that there is a small corporate team-
building group in the annex. There’s no sign of them at present. Otherwise,
that portion of the world that has beaten a path to the door of this grand
building today consists of just me. And Kat goes home soon.
The November CVu, removed from its wrappers and read yesterday, lies
in my bag. Taunting me. Go on, it says, if you’re ever going to put finger
to keyboard in the name of CVu, well, tonight you are out of excuses.
Bugger.

Let’s look into Mercurial
If you’re at all interested in version control systems – and any software
developer not using one daily is a strange beast indeed – you’ll at least have
become vaguely aware in the last few years of the growing maturity of the
latest group of version control systems offering funky new stuff. These are
the distributed version control systems (DVCS). There is more to them
than just their headline attributes, being able to check history and do
checkins while disconnected from a central server, but these are damm
useful to start with.
When I first heard about DVCS, it wasn’t immediately obvious to me (to
put it mildly) how they would work. After years of using a centralised
version control system, I had a rough mental model of what went on. But
how do you cope without the central server forcing ordering onto the
changes?
Since then I’ve started using Mercurial (http://www.selenic.com/mercurial).
Mercurial is a DVCS. It’s one of three DVCSs that have gained significant
popularity in the last few years, the other two being Git (http://git-scm.com)
and Bazaar (http://bazaar-vcs.org/). I switched a significant work project
over to Mercurial (from Subversion) in mid-1997, because a customer site
required on-site work but could not allow access back to the company
VPN. I chose Mercurial for a variety of reasons, which I won’t bore you
with here. If you must know, see the box.
What I want to do in this article is give you an insight into how a DVCS
works. OK, so specifically I’m going to be talking about Mercurial, but
Git and Bazaar attack the problem in a similar way. But first I’d better give
you some idea of how you use Mercurial.

The 5 minute Mercurial overview
I think it unlikely that someone possessing the taste and discernment to be
reading CVu would not be familiar with at least one version control system.
So, while I want to give you a flavour of what it’s like to use, I’m not going
to hang about. If you’d like a proper introduction, or you don’t follow
something, I thoroughly recommend you consult the Mercurial book.
To start using Mercurial to keep track of a project:

 $ hg init
 $

This creates the repository root in the current directory.
Like CVS (http://www.nongnu.org/cvs/) with its CVS directory and
Subversion (http://subversion.tigris.org/) with its .svn directory,
Mercurial keeps its private data in a directory. Mercifully there is only one
of these, in the top level of your project. And rather than holding details
of where the actual repository is to be found, the .hg directory holds the
entire repository.
Next you need to specify the files you want Mercurial to track.
 $ echo "There was a gibbon one morning"
 > pome.txt
 $ hg add pome.txt
 $

As you might expect, this marks the files as to be added. And as you might
also expect, you need to commit to record the added files in the repository.
The commit comment can be supplied on the command line; if you don’t
supply a comment, you’ll be dropped into an editor to provide one.
There is a suggested format for these messages – a one line summary
followed by any more required detail on following lines. By default
Mercurial will only display the first line of commit messages when listing
changes. In these examples I’ll stick to terse messages, and I’ll enter them
from the command line.
 $ hg commit -m "My Pome" -u "Jim Hague
 <jim.hague@acm.org>"
 $

Mercurial records the user making the change as part of the change
information. It is usual to give your name and email address as I’ve done
here. You can imagine, though, that constantly having to repeat this is a
bit tedious, so you can set a default user name in a configuration file.
Mercurial keeps global, user and repository configurations, and it can go
in any of those.
As with Subversion, after further edits you see how your working copy
differs from the repository (Listing 1), and look through a log of changes
(Listing 2). There are some items here that need an explanation.

G

JIM HAGUE
Jim has coded (and the rest) for companies large and
small since the mid-80’s, but only discovered ACCU in
2002. Five years ago he somehow fell into working on
ATC systems and is still there. Email him at
jim.hague@acm.org

Implementability. I needed the system to work on Windows, Linux
and AIX. The latter was not one of the directly supported platforms
for any of the candidates. Git’s implementation uses a horde of tools.
Bazaar requires only Python, but required Python 2.4 while IBM
stubbornly still supplies only Python 2.3. Mercurial requires Python
2.3 or greater, and uses some C for speed.

Simplicity. My users used Subversion daily, but did not generally
have much experience with other VCS. From the command line,
Mercurial’s core operations will be familiar to a Subversion user. This
is also true of Bazaar, but was less true of Git. Git has improved in
this matter since then, but a Dr Winder of this parish tells me that it’s
still possible to seriously embarrass yourself. There was also a lack
of Windows support for Git at the time.

Speed. Mercurial is fast. In the same ballpark as Git. Bazaar wasn’t,
and although it has improved significantly, has, in my estimation,
added user complexity in the process, and at the time of writing is still
off the pace for some operations.

Documentation. At the time, Bryan O’Sullivan’s excellent Mercurial
book (http://hgbook.red-bean.com) was a clear winner for best
documentation.

OK, if you must know...
8 | | MAY 2009{cvu}

The changeset identifer is in fact two identifiers separated by a colon.
The first is the sequence number of the changeset in the repository, and is
directly comparable to the change number in a Subversion repository. The
second is a globally unique identifier for that change. As the change is
copied from one repository to another (this is a distributed system,
remember, even if we haven’t come to that bit yet), its sequence number
in any particular repository will change, but the global identifier will
always remain the same. tip is a Mercurial term. It means simply the most
recent change.
Want to rename a file?

 $ hg mv pome.txt poem.txt
 $ hg status
 A poem.txt
 R pome.txt
 $ hg commit -m "Rename my file"
 $

(The command to rename a file is actually hg rename, but Mercurial
saves Unix-trained fingers from typing embarrassment.)
At this point you may be wondering about directories. hg mkdir perhaps?
Well, no. Mercurial only tracks files. To be sure, the directory a file
occupies is tracked, but effectively only as a component of the file name.
This has the slightly unexpected result that you can’t record an empty
directory in your repository. (I tripped over this converting a work
Subversion repository. One possibility is to create a placeholder file in the
directory. In the event I created the directory (which receives build
products) as part of the build instead.)
Given this, and the status output above that suggests strongly that
Mercurial treats a rename as a copy followed by a delete, you may be
worried that Mercurial won’t cope at all well with rearranging your
repository. Relax. Mercurial does store the details of the rename as part of
the changeset, and copes very well with rearrangements. (The Mercurial
designers justify not dealing with directories as first class objects by
pointing out that provided you can correctly move files about in the tree,
the other reasons for tracking directories are uncommon and do not in their
opinion justify the considerable added complexity. So far I’ve found no
reason to doubt that judgement.)
Want to rewind the working copy to a previous revision? hg update
(Listing 3) updates the working files. In this case I’m specifying that I want

to go back to local changeset 1. I could also have typed -r
3d65e7a57890, or even -r 3d; when specifying the global change
identifier you only need to type enough digits to make it unique.
This is all very well, but it’s not exactly distributed, is it?
Copy an existing repository:

 elsewhere$ hg clone ssh://jim.home.net/Poem Jim-
 Poem
 updating working directory
 1 files updated, 0 files merged, 0 files removed,
 0 files unresolved

(You can access other repositories via the file system, over http or over
ssh – see Listing 4.)
hg clone is aptly named. It creates a new repository that contains exactly
the same changes as the source repository. You can make a clone just by
copying your project directory, if you’re confident nothing else will access
it during the copy. hg clone saves you this worry, and sets the default
push/pull location in the new repo to the cloned repo.
From that point, you use hg pull to collect changes from other places
into your repo (though note it does not by default update your working
copy), and, as you might guess, hg push shoves your changes into a
foreign repository. By default these will act on the repository you cloned
from, but you can specify any other repository.
More on those in a moment. First, though, I want to show you something
you can’t do in Subversion. Start with the repository with 4 changes we
just cloned. I want to focus on the first couple of lines, so I’ll wind the
working copy back to the point where only those lines exist:

 $ hg update -r 1
 1 files updated, 0 files merged, 1 files removed,
 0 files unresolved
 $

and make a change (Listing 5).
The alert among you will have sat up at that. Well done! Yes, there’s
something very worrying. How can I commit a change at an old point?

$ hg update -r 1
1 files updated, 0 files merged, 1 files removed,
0 files unresolved
$

Listing 3

$ hg status
M pome.txt
$ hg diff
diff -r 33596ef855c1 pome.txt
--- a/pome.txt Wed Apr 23 22:36:33 2008 +0100
+++ b/pome.txt Wed Apr 23 22:48:01 2008 +0100
@@ -1,1 +1,2 @@ There was a gibbon one morning
There was a gibbon one morning
+said "I think I will fly to the moon".
$ hg commit -m "A great second line"
$

Li
st

in
g

1

$ hg log
changeset: 1:3d65e7a57890
tag: tip
user: Jim Hague <jim.hague@acm.org>
date: Wed Apr 23 22:49:10 2008 +0100
summary: A great second line

changeset: 0:33596ef855c1
user: Jim Hague <jim.hague@acm.org>
date: Wed Apr 23 22:36:33 2008 +0100
summary: My Pome

$

Li
st

in
g

2

elsewhere$ cd Jim-Poem
elsewhere$ hg log
changeset: 3:a065eb26e6b9
tag: tip
user: Jim Hague <jim.hague@acm.org>
date: Thu Apr 24 18:52:31 2008 +0100
summary: Rename my file

changeset: 2:ff97668b7422
user: Jim Hague <jim.hague@acm.org>
date: Thu Apr 24 18:50:22 2008 +0100
summary: Finished first verse

changeset: 1:3d65e7a57890
user: Jim Hague <jim.hague@acm.org>
date: Wed Apr 23 22:49:10 2008 +0100
summary: A great second line

changeset: 0:33596ef855c1
user: Jim Hague <jim.hague@acm.org>
date: Wed Apr 23 22:36:33 2008 +0100
summary: My Pome

Listing 4
MAY 2009 | | 9{cvu}

If you try this in Subversion, it will complain mightily about your file being
out of date. But Mercurial just went ahead and did something. The Bazaar
experts among you will know that in Bazaar, if you use bzr revert -r
to bring the working copy to a past revision, make a change and commit,
then your latest version will be the past revision plus your change. Perhaps
that’s what Mercurial did?
No. What Mercurial did is central to Mercurial’s view of the world. You
took your working copy back to an old changeset, and then committed a

fresh change based at that changeset. Mercurial actually did just what you
asked it to do, no more and no less. Let’s see the initial evidence (Listing 6).
Time for some more Mercurial terminology. You can think of a head in
Mercurial as the most recent change on a branch. In Mercurial, a branch
is simply what happens when you commit a change that has as its parent
a change that already has a child. Mercurial has a standard extension hg
glog, which uses some ASCII art to show the current state (Listing 7).
hg view shows a nicer graphical view. (Though, being Tcl/Tk based, not
that much nicer.)
So the change is in there. It’s the latest change, and is simply on a different
branch to the other changes.
Almost invariably, you will want to bring everything back together and
merge the branches. A merge is a change that combines two heads back
into one. It prepares an updated working directory with the merged
contents of the two heads for you to review and, if satisfactory, commit.
(Listing 8.)

$ hg glog
@ changeset: 5:792ab970fc80
|\ tag: tip
| | parent: 4:267d32f158b3
| | parent: 3:a065eb26e6b9
| | user: Jim Hague <jim.hague@acm.org>
| | date: Thu Apr 24 19:29:53 2008 +0100
| | summary: Merge first line branch
| |
| o changeset: 4:267d32f158b3
| | parent: 1:3d65e7a57890
| | user: Jim Hague <jim.hague@acm.org>
| | date: Thu Apr 24 19:13:59 2008 +0100
| | summary: Better first two lines
| |
o | changeset: 3:a065eb26e6b9
| | user: Jim Hague <jim.hague@acm.org>
| | date: Thu Apr 24 18:52:31 2008 +0100
| | summary: Rename my file
| |
o | changeset: 2:ff97668b7422
|/ user: Jim Hague <jim.hague@acm.org>
| date: Thu Apr 24 18:50:22 2008 +0100
| summary: Finished first verse
|
o changeset: 1:3d65e7a57890
| user: Jim Hague <jim.hague@acm.org>
| date: Wed Apr 23 22:49:10 2008 +0100
| summary: A great second line
|
o changeset: 0:33596ef855c1
 user: Jim Hague <jim.hague@acm.org>
 date: Wed Apr 23 22:36:33 2008 +0100
 summary: My Pome

$

Listing 9

$ hg glog
@ changeset: 4:267d32f158b3
| tag: tip
| parent: 1:3d65e7a57890
| user: Jim Hague <jim.hague@acm.org>
| date: Thu Apr 24 19:13:59 2008 +0100
| summary: Better first two lines
|
| o changeset: 3:a065eb26e6b9
| | user: Jim Hague <jim.hague@acm.org>
| | date: Thu Apr 24 18:52:31 2008 +0100
| | summary: Rename my file
| |
| o changeset: 2:ff97668b7422
|/ user: Jim Hague <jim.hague@acm.org>
| date: Thu Apr 24 18:50:22 2008 +0100
| summary: Finished first verse
|
o changeset: 1:3d65e7a57890
| user: Jim Hague <jim.hague@acm.org>
| date: Wed Apr 23 22:49:10 2008 +0100
| summary: A great second line
|
o changeset: 0:33596ef855c1
 user: Jim Hague <jim.hague@acm.org>
 date: Wed Apr 23 22:36:33 2008 +0100
 summary: My Pome

$

Li
st

in
g

7

$ hg heads
changeset: 4:267d32f158b3
tag: tip
parent: 1:3d65e7a57890
user: Jim Hague <jim.hague@acm.org>
date: Thu Apr 24 19:13:59 2008 +0100
summary: Better first two lines

changeset: 3:a065eb26e6b9
user: Jim Hague <jim.hague@acm.org>
date: Thu Apr 24 18:52:31 2008 +0100
summary: Rename my file

$

Li
st

in
g

6

$ hg merge
merging pome.txt and poem.txt
0 files updated, 1 files merged, 0 files removed,
0 files unresolved
(branch merge, don’t forget to commit)
$ cat poem.txt
There was a baboon who one afternoon
said "I think I will fly to the sun".
So with two great palms strapped to his arms,
he started his takeoff run.
$ hg commit -m "Merge first line branch"
$

Listing 8

$ hg diff
diff -r 3d65e7a57890 pome.txt
--- a/pome.txt Wed Apr 23 22:49:10 2008 +0100
+++ b/pome.txt Thu Apr 24 19:13:14 2008 +0100
@@ -1,2 +1,2 @@ There was a gibbon one morning
-There was a gibbon one morning
-said "I think I will fly to the moon".
+There was a baboon who one afternoon
+said "I think I will fly to the sun".
$ hg commit -m "Better first two lines"
$

Li
st

in
g

5

10 | | MAY 2009{cvu}

Listing 9 is the ASCII art again
showing what just happened. Oh,
and notice in the above that
Mercurial has done the right thing
with regard to the rename.
So, our little branch change has
now been merged back, and we
have a single line of development
again. Notice that unlike the other changesets, changeset 5 has two parent
changesets, indicating it is a merge changeset. You can only merge two
branches in one operation; or putting it another way, a changeset can have
a maximum of two parents.
This behaviour is absolutely central to Mercurial’s philosophy. If a change
is committed that takes as its starting point a change that already has a
child, then a branch gets created. Working with Mercurial, branches get
created frequently, and equally frequently merged back. As befits any
frequent operation, both are easy to do.
You’re probably thinking at this point that this making a commit onto an
old version is a slightly strange thing to do, and you’d be right. But that’s
exactly what’s going to happen the moment you go distributed. Two
people working independently with their own repositories are going to
make commits based, typically, on the latest changes they happen to have
incorporated into their tree. To be Distributed, a DVCS has to deal with
this. Mercurial faces it head-on. When you pull changes into your repo (or
someone else pushes them), if any of the changes overlap – are both based
on the same base change – you get extra heads, and it’s up to you to let
these extra heads live or merge, as you please.
In practice this is more manageable then you might think. Consider a
typical Mercurial usage, where the ‘master’ repo sits on a known server,
and everyone pulls changes from the master and pushes their own efforts
to the master. By default Mercurial won’t let you push if the receiving repo
will gain an extra head as a result, so you typically pull (and do any required
merging) just before pushing. Subversion users will recognise this pattern.
Subversion won’t let you commit a change if your working copy is not at
the very latest revision, so the Subversion user will update, and merge if
necessary, just before committing.
What, then, about a branch in the conventional sense of ‘1.0 maintenance
branch’? Typically in Mercurial you’d handle this by keeping a separate
cloned repository for those changes. Cloning is fast, and if local, uses hard
links where possible on filesystems that support them, so isn’t necessarily
extravagant on disc space. You can, if you prefer, handle them all in a
single repo with ‘named branches’, but cloning is definitely simpler.
OK, so now you know the basics of using Mercurial. We can proceed to
looking at how this magic is achieved. In particular, where does this magic
globally unique identifier for a change come from?

Inside the Mercurial repo
The way Mercurial handles its repo is really quite simple.
That’s simple, as in ‘most things are simple once you know the answer’.
I found the explanation helpful, so this section attempts the 10,000ft
(FL100 if you prefer) view of Mercurial. (For the curious, Bryan
O’Sullivan’s excellent Mercurial book has a chapter on the subject, and
the Mercurial website has a fair amount of detail too.)
First remember that any file or component can only have one or two
parents. You can’t merge more than one other branch at once.
We start with the basic building block, which Mercurial calls a revlog. A
revlog is a thing that holds a file and all the changes in the file history. (For
any non-trivial file, this will actually be two files on the disc, a data file
and an index). The revlog stores the differences between successive
versions of the file, though it will periodically store a complete version of
the file instead of a difference, so that the content of any particular file
version can always be reconstructed without excessive effort.
Under the secret-squirrel Mercurial .hg directory at the top of your project
is a store which holds a revlog for each file in your project. So you have

the complete history of the project locally. No more round trips to the
server.
Both the differences between successive versions and the periodic
complete versions of a file are compressed before storing. This is
surprisingly effective at minimising the storage requirements of this entire
history of your project. I have a small Java project handy, comprising a
little over 300 source modules. There are 5 branches plus the mainline, and
some 1920 commits in all. A Subversion checkout of the current mainline
takes 51Mb. Converting the project to Mercurial yields a Mercurial
repository that takes 60Mb, so a little bigger. Remember, though, that the
Mercurial repository includes not just the working copy, but also the entire
history of the project.
Any point in the evolution of a revlog can be uniquely identified with a
nodeid. This is simply the SHA1 hash of the current file contents
concatenated with the nodeids of one or both parents of the current
revision. Note that this way, two file states are identical if and only if the
file contents are the same and the file has the same history.
Listing 10 shows a dump of a revlog index.
Note here that a file state can have two parents. If both the parent nodeids
are non-null, the file state has two parents, and the state is therefore the
result of a merge.
Let’s dump out a revlog at a particular revision:

 $ hg debugdata .hg/store/data/pome.txt.i 2
 There was a gibbon one morning
 said "I think I will fly to the moon".
 So with two great palms strapped to his arms,
 he started his takeoff run.
 $

The next component is the manifest. This is simply a list of all the files in
the project, together with their current nodeids. The manifest is a file, held
in a revlog. The nodeid of the manifest, therefore, identifies the project
filesystem at a particular point.

 $ hg debugdata .hg/store/00manifest.i 5
 poem.txt5168b1a5e2f44aa4e0f164e170820845183f50c8
 $

Finally we have the changeset. This is the atomic collection of changes to
a repository that leads to a new revision. The changeset info includes the
nodeid of the corresponding manifest, the timestamp and committer ID, a
list of changed files and a comment. The changeset also includes the nodeid
of the parent changeset, or the two parents if the change is a merge. The
changeset description is held in a revlog, the changelog.

 $ hg debugdata .hg/store/00changelog.i 5
 1ccc11b6f7308cc8fa1573c2f3811a4710c91e3e
 Jim Hague <jim.hague@acm.org>
 1209061793 -3600
 poem.txt
 pome.txt

 Merge first line branch
 $

$ hg debugindex .hg/store/data/pome.txt.i
 rev offset length base linkrev nodeid p1 p2
 0 0 32 0 0 6bbbd5d6cc53 000000000000 000000000000
 1 32 51 0 1 83d266583303 6bbbd5d6cc53 000000000000
 2 83 84 0 2 14a54ec34bb6 83d266583303 000000000000
 3 167 76 3 4 dc4df776b38b 83d266583303 000000000000
$

Listing 10
MAY 2009 | | 11{cvu}

The nodeid of the changeset, therefore, gives us a globally unique identifier
for any particular change. Changesets have a Subversion-like
incrementing change number, but it is peculiar to that repository. The
nodeid, however, is global.
One more detail remains to complete the picture. How do we get back from
a particular file change to find the responsible changeset? Each revlog
change has a linkrev entry that does just this.
So, now we have a repository with a history of the changes applied to that
repository. Each change has a unique identifier. If we find that change in
another repository, it means that at the point in the other repository we have
exactly the same state; the file contents and history are identical.
At this point we can see how pulling changes from another repository
works. Mercurial has to determine which changesets in the source
repository are missing in the target repository. To do this, for each head
in the source repo it has to find the most recent change in that head that is
already present in the target repo, and get any remaining changes after that
point. These changes are then copied over and applied.
The Mercurial revlog format has proved remarkably durable. Since the
first release of Mercurial in April 2005, there have been a total of 5 changes
to the file format. However, of those, all but one have been changes to the
handling of file names. The most recent change, in October 2008, and its
predecessor in December 2006, were both introduced purely to cope with
Windows specific issues. The one change that touched the datastructures
described above was in April 2006. The format introduced, RevLogNG,
changed only the details of index data held, not the overall design. The
chief Mercurial developer, Matt Mackall, notes that the code in present-
day Mercurial devoted to reading the old format comprises 28 lines of
Python. Compared with, say, the early tribulations of Subversion and the
switch from bdfs to fsfs, this is an impressive record.

Reflections on going distributed
It’s nearly traditional at this stage in an introduction to DVCS to
demonstrate several different workflow scanarios that you can build with
a DVCS. Which makes the important point that a DVCS can be adapted
to your workflow in a way that is at best unwieldy with a CVCS. I intend,
though, to break with tradition here.
By this stage, I hope you can see that distributing version control works
by introducing branches where development takes place in parallel.
Mercurial treats these branches as arising naturally from the commits made
and transferred between repositories. Both Git and Bazaar take a slightly
different viewpoint, and explicitly generate a fresh branch for work in a
particular repository. But in both cases the underlying principle of
identifying changes by a globally unique identifier and resolving parallel
development by merges between overlapping changes is the same. And all
three can be used in a truly distributed manner, with full history and the
ability to commit being available locally.
So instead of chatter on about workflows, I want instead to reflect on the
consequences all this has for that all-important question of whether a
DVCS is a suitable vehicle for your data.

The first is a minor and rather obvious point. If you want to store files that
are very large and which change often in your DVCS, then all the
compression in the world is unlikely to stop the storage requirements for
the full project history from becoming uncomfortably large, particularly
if the files are not very compressible to start with.
The second, and main, point is that there is an important question you need
to ask about your data. We’ve seen that a DVCS relies on branching and
merging to weave its magic. So take a close look at your data, and ask:
‘Will it merge?’
The subset of plain old text which comprises program source code requires
some human oversight, but will merge automatically well enough for the
process to be well within the bounds of the possible.
Unfortunately when we move further afield mergeability becomes a rarer
commodity. I nearly began the previous paragraph by stating that plain old
text will merge well enough. Then Doubt set in – what about XML? Or
BASE64 encoded content?
Of course, merge doesn’t necessarily have to be textual merge. I am told
that Word can be used to diff and merge two Word .doc files, a data format
notorious for its binary impenetrability. As long as some suitable merge
agent is available, and the DVCS can be configured to use it for data of a
particular type (Mercurial can have the merge and diff tools specified with
reference to the file extension on which they operate – I assume Bazaar
and Git are similar), then there is no bar to successful DVCS use.
Before this reliance on mergeability causes you to dismiss DVCS out of
hand, reflect. A CVCS can only handle non-mergeable data by acting as
a versioned file store; in other words, having as the only available merge
option the use of one or other of the merge candidates in its entireity. Useful
though a versioned file store can be, it cannot be considered a full-featured
version control system. By treating the offending unmergeable files as
external to the DVCS, or with careful workflow – disabling the distributed
and mergeable potentials – a DVCS can deal with these files, but only at
a cost of its distributedness or its version control system-ness. In this it
differs little from a CVCS.
So, for all data you want to version control, let your battle cry be: ‘Will it
merge?’
At this point, I have an urge to don lab coat and safety goggles and be
videoed attempting to mechanically merge data in a variety of different
formats. Frankly, this is unlikely to be as exciting as blending iPhones
(Ref: www.willitblend.com), but from a system development point of view
it’s rather more important. And, I think gives us a large clue as to one of
the reasons for the continuing popularity of Plain Old Text as a source code
representation mechanism.

Note
I’m no poet. The poem is, of course, Silly Old Baboon by the late, great,
Spike Milligan. From A Book of Milliganimals, Puffin, 1971.

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
12 | | MAY 2009{cvu}

The Case for D
Andrei Alexandrescu presents the evidence for a

new language.

et’s see why the D programming language is worth a serious look.
I’m not deluding myself that it’s an easy task to convince you. We
programmers are a strange bunch in the way we form and keep

language preferences. The knee-jerk reaction of a programmer when
eyeing a The XYZ Programming Language book on a bookstore shelf is
something like, ‘All right. I’ll give myself 30 seconds to find something I
don’t like about XYZ.’ Acquiring a programming language is a long and
arduous process, and long-term satisfaction is delayed and uncertain.
Trying to find quick reasons to avoid such an endeavor is a survival
instinct: the stakes are high and the investment is risky, so having the
ability to make a rapid negative decision early in the process can be a huge
relief.
That being said, learning and using a programming language can be a lot
of fun. By and large, coding in a language is fun if the language does a
satisfactory job at fulfilling the principles that the coder using it holds in
high esteem. Any misalignment would cause the programmer to regard the
language as, for example, sloppy and insecure or self-righteous and
tedious. A language can’t possibly fulfill everyone’s needs and taste at the
same time as many of them are contradictory, so it must carefully commit
to a few fundamental coordinates that put it on the landscape of
programming languages.
So what’s the deal with D? You might have heard of it already – the
language with a name like a pun taken a bit too far; annoyingly mentioned
now and then on newsgroups dedicated to other languages before the off
topic police reprimand the guilty; praised by an enthusiastic friend all too
often; or simply as the result of an idle online search à la ‘I bet some loser
on this big large Internet defined a language called D, let’s see... oh, look!’
This article is a very broad overview, so by necessity it uses concepts and
features without introducing them rigorously as long as they are reasonably
intuitive. It also has no bibliographical references, but it does mention all
the proper terms, and google.com can do wonders when asked the right
questions.
Let’s take a brief look at some of D’s fundamental features. Be warned that
many features or limitations come with qualifications that make their
boundaries fuzzy. So if you read something that doesn’t quite please you,
don’t let that bother you too much: the next sentence may contain a
redeeming addendum. For example, say you read “D has garbage
collection” and you get a familiar frozen chill up the spine that stops in the
cerebrum with the imperious command ‘touch the rabbit foot and stay
away.’ If you are patient, you’ll find out that D has constructors and
destructors with which you can implement deterministic lifetime of
objects.

But before getting into it
Before getting into the thick of things, there are a few things you should
know. First and foremost, if you kind of considered looking into D for
whatever reason, this time is not ‘as good as any,’ it’s in fact much better
than others if you’re looking for the edge given by early adoption. D has
been evolving at a breakneck pace but in relative silence, and a lot of
awesome things have been and are being done about it that are starting to
become known just about now – some literally in this very article. At the
time of this writing, the book The D Programming Language is one-third
complete and due to appear in a couple of months.
This state of transition as of now is putting yours truly in the unenviable
position of dealing with a moving target. I opted for writing an article that

ages nicely at the expense of being occasionally frustrating in that it
describes features that haven’t been implemented yet or are incompletely
implemented.
There are two major versions of the language, D1 and D2. This article
focuses on D2 exclusively. D1 is stable (will undergo no other changes but
bug fixes), and D2 is a major revision of the language that sacrificed some
backwards compatibility for the sake of doing things consistently right,
and for adding a few crucial features related to manycores and generic
programming. In the process, the language’s complexity has increased,
which is in fact a good indicator because no language in actual use has ever
gotten smaller. Even languages that started with the stated intent to be
‘small and beautiful’ inevitably grew with use. (Yes, even Lisp. Spare me.)
Although programmers dream of the idea of small, simple languages, when
they wake up they seem to only want more modeling power.
The official D compiler is available off digitalmars.com for free on major
desktop platforms (Windows, Mac, and Linux). Other implementations are
well underway, notably including a .NET port. There are also two essential
D libraries, the official one called Phobos, and an industrial-strength
library called Tango. Tango, designed for D1, is being ported to D2, and
Phobos (which was frustratingly small and quirky in its D1 iteration)
underwent major changes and additions to take full advantage of D2’s
capabilities. (There is, unsurprisingly, an amount of politics and bickering
about which library is better, but competition seems to spur both into being
as good as they can be.)
Last but definitely not least, the immensely popular Qt windowing library
has recently released a D binding (in alpha as of this writing). This is no
small news as Qt is a great (the best if you listen to the right people) library
for developing GUI applications portable to pretty much every OS with a
pulse. The D bindings for Qt fully take D into ‘the GUIth dimension’,
which completes the language’s offering quite spectacularly. Even better,
the development came shortly after Qt relaxed its license by adding LGPL
to the available licenses. This means that commercial applications can use
Qt without restrictions and without paying a licensing fee.

D fundamentals
D could be best described as a high-level systems programming language.
It encompasses features that are normally found in higher-level and even
scripting languages – such as a rapid edit-run cycle, garbage collection,
built-in hashtables, or a permission to omit many type declarations – but
also low-level features such as pointers, storage management in a manual
(à la C’s malloc/free) or semi-automatic (using constructors,
destructors, and a unique scope statement) manner, and generally the
same direct relationship with memory that C and C++ programmers know
and love. In fact, D can link and call C functions directly with no
intervening translation layer. The entire C standard library is directly
available to D programs. However, you’d very rarely feel compelled to go
that low because D’s own facilities are often more powerful, safer, and just

L

ANDREI ALEXANDRESCU
Andrei Alexandrescu has been in his last quarter of PhD
candidacy at the University of Washington for the last
three quarters. Finally figuring out that a dissertation is
needed to be let go, he wrote one. So he will finish Real
Soon Now, quite fit for the worst time ever to look for jobs.
His book, The D Programming Language, is out this year.
MAY 2009 | | 13{cvu}

as efficient. By and large, D makes a strong statement that
convenience and efficiency are not necessarily at odds.
D is multi-paradigm, meaning that it fosters writing code in
object-oriented, functional, generic, and procedural style
within a seamless and remarkably small package. The
following bite-sized sections give away some generalities
about D.

Hello, cheapshot
Let’s get that pesky syntax out of the way. So, without further ado:
 import std.stdio;
 void main()
 {
 writeln("Hello, world!");
 }

Syntax is like people’s outfits – rationally, we understand it shouldn’t
make much of a difference and that it’s shallow to care about it too much,
but on the other hand we can’t stop noticing it. (I remember the girl in red
from The Matrix to this day.) For many of us, D has much of the ‘next door’
familiar looks in that it adopted the C-style syntax also present in C++,
Java, and C#. (I assume you are familiar with one of these, so I don’t need
to explain that D has par for the course features such as integers, floating-
point numbers, arrays, iteration, and recursion.)
Speaking of other languages, please allow a cheapshot at the C and C++
versions of "Hello, world." The classic C version, as lifted straight from
the second edition of K&R, looks like this:
 #include <stdio.h>
 main()
 {
 printf("hello, world\n");
 }

and the equally classic C++ version is (note the added enthusiasm):
 #include <iostream>
 int main()
 {
 std::cout << "Hello, world!\n";
 }

Many comparisons of the popular first program written in various
languages revolve around code length and amount of information needed
to understand the sample. Let’s take a different route by discussing

correctness, namely: what happens if, for whatever reason, writing the
greeting to the standard output fails? Well, the C program ignores the error
because it doesn’t check the value returned by printf. To tell the truth,
it’s actually a bit worse; although on my system it compiles flag-free and
runs, C’s "hello world" returns an unpredictable number to the operating
system because it falls through the end of main. (For me, it always returns
13 on Ubuntu, which got me a little scared.) It turns out that the program
as written is not even correct under the C89 or C99 standards. After a bit
of searching, The Internet seems to agree that the right way to open the
hailing frequencies in C is:

 #include <stdio.h>
 int main()
 {
 printf("hello, world\n");
 return 0;
 }

which does little in the way of correctness because it replaces an
unpredictable return with one that always claims success, whether or not
printing succeeded.
The C++ program is guaranteed to return 0 from main if you forgot to
return, but also ignores the error because, um, at program start
std::cout.exceptions() is zero and nobody checks for
std::cout.bad() after the output. So both programs will claim success
even if they failed to print the message for whatever reason. The corrected
C and C++ versions of the global greet lose a little of their lip gloss:
 #include <stdio.h>
 int main()
 {
 return printf("hello, world\n") < 0;
 }

and
 #include <iostream>
 int main()
 {
 std::cout << "Hello, world!\n";
 return std::cout.bad();
 }

Further investigation reveals that the classic "hello, world" for other
languages such as Java (code omitted due to space limitations), J# (a
language completely, I mean completely unrelated to Java), or Perl, also
claim success in all cases. You’d almost think it’s a conspiracy, but
fortunately the likes of Python and C# come to the rescue by throwing an
exception.
How does the D version fare? Well, it doesn’t need any change: writeln
throws on failure, and an exception issued by main causes the exception’s
message to be printed to the standard error stream (if possible) and the
program to exit with a failure exit code. In short, the right thing is done
automatically. I wouldn’t have taken this cheapshot if it weren’t for two
reasons. One, it’s fun to imagine the street riots of millions of betrayed
programmers crying how their “Hello, world” program has been a sham.

(Picture the slogans: “Hello, world! Exit code 13. Coincidence?”
or “Hello, sheeple! Wake up!” etc.) Second, the example is not
isolated, but illustrative for a pervasive pattern – D attempts not
only to allow you to do the right thing, it systematically attempts
to make the right thing synonymous to the path of least resistance
whenever possible. And it turns out they can be synonymous
more often than one might think. (And before you fix my code,
void main() is legal D and does what you think it should.

Language lawyers who destroy noobs writing void main() instead of
int main() in C++ newsgroups would need to find another favorite
pastime if they switch to D.)
Heck, we planned to discuss syntax and ended up with semantics. Getting
back to syntax, there is one notable departure from C++, C#, and Java: D
uses T!(X, Y, Z) instead of T<X, Y, Z> (and T!(X) or simply T!X
for T<X>) to denote parameterized types, and for good reasons. The choice
of angular brackets, when clashing with the use of <, >, and >> as
arithmetic operands, has been a huge source of parsing problems for C++,
leading to a hecatomb of special rules and arbitrary disambiguations, not
to mention the world’s least known syntax object.template
fun<arg>(). If one of your C++ fellow coders has Superman-level
confidence, ask them what that syntax does and you’ll see Kryptonite at
work. Java and C# also adopted the angular brackets but wisely chose to
disallow arithmetic expressions as parameters, thus preemptively
crippling the option to ever add them later. D extends the traditional unary

Syntax is like people’s outfits – it’s shallow
to care about it too much, but on the other

hand we can’t stop noticing it

D systematically attempts to make the
right thing synonymous to the path of
least resistance
14 | | MAY 2009{cvu}

operator ! to binary uses and goes with the classic parentheses (which (I’m
sure) you always pair properly).

Compilation model
D’s unit of compilation, protection, and modularity is the file. The unit of
packaging is a directory. And that’s about as sophisticated as it goes.
There’s no pretense that the program source code would really feel better
in a super-duper database. This approach uses a ‘database’ tuned by the
best of us for a long time, integrating perfectly with version control,
backup, OS-grade protection, journaling, what have you, and also makes
for a low entry barrier for development as all you need is an editor and a
compiler. Speaking of which, specialized tool support is at this time scarce,
but you can find things like the emacs mode d-mode, the Eclipse plugin
Descent, the Linux debugger ZeroBugs, and the full IDE Poseidon.
Generating code is a classic two-stroke compile and link cycle, but that
happens considerably faster than in most similar environments, for two
reasons, no, three. One, the language’s grammar allows separate and
highly optimized lexing, parsing, and analysis steps. Two, you can easily
instruct the compiler to not generate many object files like most compilers
do, and instead construct everything in memory and
make only one linear commit to disk. Three, Walter
Bright, the creator and original implementor of D, is
an inveterate expert in optimization. This low
latency means you can use D as a heck of an
interpreter (the shebang notation is supported, too).
D has a true module system that supports separate
compilation and generates and uses module
summaries (highbrow speak for ‘header files’)
automatically from source, so you don’t need to
worry about maintaining redundant files separately,
unless you really wish to, in which case you can. Yep, that stops that nag
right in mid-sentence.

Memory model and manycores
Given that D can call C functions directly, it may seem that D builds
straight on C’s memory model. That might be good news if it weren’t for
the pink elephant in the room dangerously close to that Ming-dynasty vase:
manycores—massively parallel architectures that throw processing power
at you like it’s going out of style, if only you could use it. Manycores are
here, and C’s way of dealing with them is extremely pedestrian and error-
prone. Other procedural and object-oriented languages made only little
improvements, a state of affairs that marked a recrudescence of functional
languages that rely on immutability to elegantly sidestep many
parallelism-related problems.
Being a relative newcomer, D is in the enviable position of placing a much
more informed bet when it comes to threading. And D bets the farm on a
memory model that is in a certain way radically different from many
others. You see, old-school threads worked like this: you call a primitive
to start a new thread and the new thread instantly sees and can touch any
data in the program. Optionally and with obscure OS-dependent means, a
thread could also acquire the so-called thread-private data for its own use.
In short, memory is by default shared across all threads. This has caused
problems yesterday, and it makes today a living hell. Yesterday’s problems
were caused by the unwieldy nature of concurrent updates: it’s very hard
to properly track and synchronize things such that data stays in good shape
throughout. But people were putting up with it because the notion of shared
memory was a close model to the reality in hardware, and as such was
efficient when gotten right. Now is where we’re getting to the ‘living hell’
part – nowadays, memory is in fact increasingly less shared. Today’s
reality in hardware is that processors communicate with memory through
a deep memory hierarchy, a large part of which is private to each core! So
not only shared memory is hard to work with, it turns out to be quickly
becoming the slower way of doing things because it is increasingly
removed from physical reality.

While traditional languages were wrestling with all of these problems,
functional languages were favoring a principled position stemming from
mathematical purity: we’re not interested in modeling hardware, they said,
but we’d like to model true math. And math for the most part does not have
mutation and is time-invariant, which makes it an ideal candidate for
parallel computing. (Imagine the moment when one of those first
mathematicians-turned-programmers has heard about parallel computing
– they must have slapped their forehead: ‘Wait a minute!...’) It was well
noted in functional programming circles that such a computational model
does inherently favor out-of-order, parallel execution, but that potential
was more of a latent energy than a realized goal until recent times. Today,
it becomes increasingly clear that a functional, mutation-free style of
writing programs will be highly relevant for at least parts of a serious
application that wants to tap into parallel processing.
So where’s D positioning itself in all this? There’s one essential concept
forming the basis of D’s approach to parallelism:

Memory is thread-private by default, shared on demand.

In D, all memory is by default private to the thread using it; even unwitting
globals are allocated per-thread. When sharing is desired, objects can be

qualified with shared which means that they are
visible from several threads at once. Crucially, the
type system knows about shared data and limits
what can be done with it to ensure that proper
synchronization mechanisms are used throughout.
This model avoids very elegantly a host of thorny
problems related to synchronization of access in
default-shared threaded languages. In those
languages, the type system has no idea which data is
supposed to be shared and which isn’t so it often
relies on the honor system – the programmer is

trusted to annotate shared data appropriately. Then complicated rules
explain what happens in various scenarios involving unshared data, shared
annotated data, data that’s not annotated yet still shared, and combinations
of the above – in a very clear manner so all five people who can understand
them will understand them, and everybody calls it a day.
Support for manycores is a very active area of research and development,
and a good model has not been found yet. Starting with the solid foundation
of a default-private memory model, D is incrementally deploying
amenities that don’t lock its options: pure functions, lock-free primitives,
good old lock-based programming, message queues (planned), and more.
More advanced features such as ownership types are being discussed.

Immutability
So far so good, but what happened to all that waxing about the purity of
math, immutability, and functional-style code? D acknowledges the
crucial role that functional-style programming and immutability have for
solid parallel programs (and not only parallel, for that matter), so it defines
immutable as a qualifier for data that never, ever changes. At the same
time D also recognizes that mutation is often the best means to a goal, not
to mention the style of programming that is familiar to most of us. (If
you’re not among most of us: sorry, I meant ‘some of us.’) D’s answer is
rather interesting, as it encompasses mutable data and immutable data in
a seamless whole.
Why is immutable data awesome? Sharing immutable data across threads
never needs synchronization, and no synchronization is really the fastest
synchronization around. The trick is to make sure that read-only really
means read-only, otherwise all guarantees fall apart. To support that
important aspect of parallel programs, D provides an unparalleled (there
goes the lowest of all literary devices right there) support for functional
programming. Data adorned with the immutable qualifier provides a
strong static guarantee – a correctly typed program cannot change
immutable data. Moreover, immutability is deep – if you are in
immutable territory and follow a reference, you’ll always stay in
immutable territory. (Why? Otherwise, it all comes unglued as you think
you share immutable data but end up unwittingly sharing mutable data, in
which case we’re back to the complicated rules we wanted to avoid in the

Yesterday’s
problems were
caused by the

unwieldy nature of
concurrent updates
MAY 2009 | | 15{cvu}

first place.) Entire subgraphs of the interconnected objects in a program
can be ‘painted’ immutable with ease. The type system knows where
they are and allows free thread-sharing for them and also optimizes their
access more aggressively in single-threaded code, too.
Is D the first language to have proposed a default-private memory model?
Not at all. What sets D apart is that it has integrated default-private thread
memory with immutable and mutable data under one system. The
temptation is high to get into more detail about that, but let’s leave that for
another day and continue the overview.

Safety high on the list
Being a systems-level language, D allows extremely efficient and equally
dangerous constructs: it allows unmanaged pointers, manual memory
management, and casting that can break into pieces the most careful
design. However, D also has a simple mechanism to mark a module as
‘safe,’ and a corresponding compilation mode that forces memory safety.
Successfully compiling code under that subset of the language –
affectionately dubbed SafeD – does not guarantee you that your code is
p o r t a b l e , t h a t yo u u s e d o n l y s ou n d
programming practices, or that you don’t need
unit tes ts . SafeD is focussed only on
eliminating memory corruption possibilities.
Safe modules (or triggering safe compilation
mode) impose extra semantic checks that disallow at compilation time all
dangerous language features such as forging pointers or escaping
addresses of stack variables. In SafeD you cannot have memory
corruption. Safe modules should form the bulk of a large application,
whereas ‘system’ modules should be rare and far between, and also
undergo increased attention during code reviews. Plenty of good
applications can be written entirely in SafeD, but for something like a
memory allocator you’d have to get your hands greasy. And it’s great that
you don’t need to escape to a different language for certain parts of your
application. At the time of this writing, SafeD is not finished, but is an area
of active development.

Read my lips: no more axe
D is multi-paradigm, which is a pretentious way of saying that it doesn’t
have an axe to grind. D got the memo. Everything is not necessarily an
object, a function, a list, a hashtable, or the Tooth Fairy. It depends on you
what you make it. Programming in D can therefore feel liberating because
when you want to solve a problem you don’t need to spend time thinking
of ways to adapt it to your hammer (axe?) of choice. Now, truth be told,
freedom comes with responsibility: you now need to spend time figuring
out what design would best fit a given problem.
By refusing to commit to One True Way, D follows the tradition started
by C++, with the advantage that D provides more support for each
paradigm in turn, better integration between various paradigms, and
considerably less friction in following any and all of them. This is the
advantage of a good pupil; obviously D owes a lot to C++, as well as less
eclectic languages such as Java, Haskell, Eiffel, Javascript, Python, and
Lisp. (Actually most languages owe their diction to Lisp, some just don’t
admit it.)

Object-oriented features
In D you get structs and then you get classes. They share many
amenities but have different charters: structs are value types, whereas
classes are meant for dynamic polymorphism and are accessed solely by
reference. That way confusions, slicing-related bugs, and comments à la
// No! Do NOT inherit! do not exist. When you design a type, you
decide upfront whether it’ll be a monomorphic value or a polymorphic
reference. C++ famously allows defining ambiguous-gender types, but
their use is rare, error-prone, and objectionable enough to warrant simply
avoiding them by design.
D’s object-orientation offering is similar to Java’s and C#’s: single
inheritance of implementation, multiple inheritance of interface. In doing

so, D doesn’t go with the sour-grapes theory ‘Multiple Inheritance is Evil:
How an Amulet Can Help’. Instead, D simply acknowledges the difficulty
in making multiple inheritance of state work efficiently and in useful ways.
To provide most of the benefits of multiple inheritance at controllable cost,
D allows a type to use multiple subtyping like this:
 class WidgetBase { ... }
 class Gadget { ... }
 class Widget : WidgetBase, Interface1, Interface2
 {
 Gadget getGadget() { ... }
 alias getGadget this; // Widget subtypes
 // Gadget!
 }

The alias introduction works like this: whenever a Gadget is expected
but all you have is a Widget, the compiler calls getGadget and obtains
it. The call is entirely transparent, because if it weren’t, that wouldn’t be
subtyping; it would be something frustratingly close to it. (If you felt that
was an innuendo, it probably was.) Moreover, getGadget has complete
discretion over completing the task—it may return e.g. a sub-object of

this or a brand new object. You’d still need
to do some routing to intercept method calls if
you need to, which sounds like a lot of
boilerplate coding, but here’s where D’s
reflection and code generation abilities come to

fore (see below). The basic idea is that D allows you to subtype as you need
via alias this. You can even subtype int if you feel like it.
D has integrated other tried and true techniques from experience with
object orientation, such as an explicit override keyword to avoid
accidental overriding, direct support for signals and slots, and a technique
I can’t mention because it’s trademarked, so let’s call it contract
programming.

Functional programming
Quick, how do you define a functional-style Fibonacci function?
 uint fib(uint n)
 {
 return n < 2 ? n : fib(n -1) + fib(n -2);
 }

I confess to entertaining fantasies. One of these fantasies has it that I go
back in time and somehow eradicate this implementation of Fibonacci such
that no Computer Science teacher ever teaches it. (Next on the list are
bubble sort and the O(n log n)-space quicksort implementation. But fib
outdoes both by a large margin. Also, killing Hitler or Stalin is dicey as it
has hard-to-assess consequences, whereas killing fib is just good.) fib
takes exponential time to complete and as such promotes nothing but
ignorance of complexity and of the costs of computation, a ‘cute excuses
sloppy’ attitude, and SUV driving. You know how bad exponential is?
fib(10) and fib(20) take negligible time on my machine, whereas
fib(50) takes nineteen and a half minutes. In all likelihood, evaluating
fib(1000) will outlast humankind, which gives me solace because it’s
what we deserve if we continue teaching it.
Fine, so then what does a ‘green’ functional Fibonacci implementation
look like?
 uint fib(uint n)
 {
 uint iter(uint i, uint fib_1, uint fib_2)
 {
 return i == n
 ? fib_2
 : iter(i + 1, fib_1 + fib_2, fib_1);
 }
 return iter(0, 1, 0);
 }

The revised version takes negligible time to complete fib(50). The
implementation now takes O(n) time, and tail call optimization (which D
implements too) takes care of the space complexity. The problem is that

In SafeD you cannot have
memory corruption
16 | | MAY 2009{cvu}

the new fib kind of lost its glory. Essentially the revised implementation
maintains two state variables in the disguise of function parameters, so we
might as well come clean and write the straight loop that iter made
unnecessarily obscure:

 uint fib(uint n)
 {
 uint fib_1 = 1, fib_2 = 0;
 foreach (i; 0 .. n)
 {
 auto t = fib_1;
 fib_1 += fib_2;
 fib_2 = t;
 }
 return fib_2;
 }

but (shriek of horror) this is not functional anymore! Look at all that
disgusting mutation going on in the loop! One mistaken step, and we fell
all the way from the peaks of mathematical purity down to the
unsophisticatedness of the unwashed masses.
But if we sit for a minute and think of it, the iterative fib is not that
unwashed. If you think of it as a black box, fib always outputs the same
thing for a given input, and after all pure is what pure does. The fact that
it uses private state may make it less functional in letter, but not in spirit.
Pulling carefully on that thread, we reach a very interesting conclusion: as
long as the mutable state in a function is entirely transitory (i.e., allocated
on the stack) and private (i.e., not passed along by reference to functions
that may taint it), then the function can be considered pure.
And that’s how D defines functional purity: you can use mutation in the
implementation of a pure function, as long as it’s transitory and private.
You can then put pure in that function’s signature and the compiler will
compile it without a hitch:
 pure uint fib(uint n)
 {
 ... iterative implementation ...
 }

The way D relaxes purity is pretty cool because you’re getting the best of
both worlds: iron-clad functional purity guarantees, and comfortable
implementation when iteration is the preferred method. If that’s not cool,
I don’t know what is.
Last but not least, functional languages have another way of defining a
Fibonacci sequence: as a so-called infinite list. Instead of a function, you
define a lazy infinite list that gives you more Fibonacci numbers the more
you read from it. D offers a pretty cool way of defining such lazy lists. For
example, the code below outputs the first 50 Fibonacci numbers (you’d
need to import std.range):

 foreach (f; take(50,
 recurrence!("a[n-1] + a[n-2]")(0, 1)))
 {
 writeln(f);
 }

That’s not a one-liner, it’s a half-liner! The invocation of recurrence
means, c reate an inf in i te l i s t wi th the recurrence formula
a[n] = a[n-1] + a[n-2] starting with numbers 0 and 1. In all this
there is no dynamic memory allocation, no indirect function invocation,
and no non-renewable resources used. The code is pretty much equivalent

to the loop in the iterative implementation. To see how
that can be done, you may want to read through the
next section.

Generic programming
(You know the kind of caution you feel when you
want to describe to a friend a movie, a book, or some

music you really like but don’t want to spoil by overselling? That’s the kind
of caution I am feeling as I’m approaching the subject of generic
programming in D.) Generic programming has several definitions—even
the neutrality of the Wikipedia article on it is being disputed at the time of
this writing. Some people refer to generic programming as ‘programming
with parameterized types a.k.a. templates or generics’, whereas others
mean ‘expressing algorithms in the most generic form that preserves their
complexity guarantees’. I’ll discuss a bit of the former in this section, and
a bit of the latter in the next section.
D offers parameterized structs, classes, and functions with a simple
syntax, for example here’s a min function:
 auto min(T)(T a, T b) { return b < a ? b : a; }
 ...
 auto x = min(4, 5);

T would be a type parameter and a and b are regular function parameters.
The auto return type leaves it to the compiler to figure out what type min
returns. Here’s the embryo of a list:
 class List(T)
 {
 T value;
 List next;
 ...
 }
 ...
 List!int numbers;

The fun only starts here. There’s too much to tell in a short article to do
the subject justice, so the next few paragraphs offer ‘deltas’ – differences
from the languages with generics that you might already know.

Parameter kinds

Not only types are acceptable as generic parameters, but also numbers
(integral and floating-point), strings, compile-time values of struct type,
and aliases. An alias parameter is any symbolic entity in a program, which
can in turn refer to a value, a type, a function, or even a template. (That’s
how D elegantly sidesteps the infinite regression of template template
template ... parameters; just pass it as an alias.) Alias parameters are also
instrumental in defining lambda functions. Variable length parameter lists
are also allowed.

String manipulation

Passing strings to templates would be next to useless if there was no
meaningful static manipulation of strings. D offers full string manipulation
capabilities during compilation (concatenation, indexing, selecting a
substring, iterating, comparison. . .).

Code generation: the assembler of generic programming

Manipulating strings during compilation may be interesting, but is
confined to the data flatland. What takes things into space is the ability to
convert strings into code (by use of the mixin expression). Remember the
recurrence example? It passed the recurrence formula for Fibonacci
sequences into a library facility by means of a string. That facility in turn
converted the string into code and provided arguments to it. As another
example, Listing 1 shows how you sort ranges in D.
Code generation is very powerful because it allows implementing entire
features without a need for language-level support. For example, D lacks
bit fields, but the standard module std.bitmanip defines a facility
implementing them fully and efficiently.

that’s how D defines functional purity: you can
use mutation in the implementation of a pure
function, as long as it’s transitory and private
MAY 2009 | | 17{cvu}

18 | | MAY 2009{cvu}

Introspection

In a way, introspection (i.e., the ability to inspect a code entity) is the
complement of code generation because it looks at code instead of
generating it. It also offers support for code generation—for example,
introspection provides the information for generating a parsing function
for some enumerated value. At this time, introspection is only partially
supported. A better design has been blueprinted and the implementation
is ‘on the list’, so please stay tuned for more about that.

is and static if

Anyone who’s written a nontrivial C++ template knows both the
necessity and the encumbrances of (a) figuring out whether some
code ‘would compile’ and deciding what to do if yes vs. if not, and
(b) checking for Boolean conditions statically and compiling in
different code on each branch. In D, the Boolean compile-time
expression is(typeof(expr)) yields true if expr is a valid
expression, and false otherwise (without aborting compilation).
Also, static if looks pretty much like if, except it operates
during compilation on any valid D compile-time Boolean expression
(i.e., #if done right). I can easily say these two features alone slash the
complexity of generic code in half, and it filled me with chagrin that C++0x
includes neither.

But wait, there’s. . .well, you know

Generic programming is a vast play field, and although D covers it with a
surprisingly compact conceptual package, it would be hard to discuss
matters further without giving more involved information. D has more to
offer, such as customized error messages, constrained templates à la
C++0x concepts, tuples, a unique feature called local instantiation (crucial
for flexible and efficient lambdas), and, if you call within the next five
minutes, a knife that can cut through a frozen can of soda.

A word on the standard library
This subject is a bit sensitive politically because, as mentioned, there are
two full-fledged libraries that can be used with D, Phobos and Tango. I
only worked on the former so I will limit my comments to it.
For my money, ever since the STL appeared, the landscape of containers+
algorithms libraries has forever changed. It’s changed so much, in fact, that
every similar library developed after the STL but in ignorance of it runs
serious risks of looking goofy. (Consequently, a bit of advice I’d give a
programmer in any language is to understand the STL.) This is not because
STL would be a perfect library – it isn’t. It is inextricably tied to the
strengths and weaknesses of C++, for example it’s efficient but it has poor
support for higher-order programming. Its symbiosis with C++ also makes
it difficult for non-C++ programmers to understand the STL in abstract,
because it’s hard to see its essence through all the nuts and bolts.
Furthermore, STL has its own faults, for example its conceptual

framework fails to properly capture a host of containers and ways of
iterating them.
STL’s main merit was to reframe the entire question of what it means to
write a library of fundamental containers and algorithms, and to redefine
the process of writing one in wake of the answer. The question STL asked
was: ‘What’s the minimum an algorithm could ever ask from the topology
of the data it’s operating on?’ Surprisingly, most library implementers and
even some algorithm pundits were treating the topic without due rigor.
STL’s angle put it in stark contrast to a unifying interface view in which,
for example, it’s okay to unify indexed access in arrays and linked lists
because the topological aspect of performing it can be written off as just
an implementation detail. STL revealed the demerit of such an approach
because, for example, it’s disingenuous to implement as little as a linear
search by using a unifying interface (unless you enjoy waiting for quadratic
algorithms to terminate). These are well-known truths to anyone serious
in the least about algorithms, but somehow there was a disconnect between
understanding of algorithms and their most general implementations in a
programming language. Although I was conversant with algorithm
fundamentals, I can now say I had never really thought of what the pure,
quintessential, Platonic linear search is about until I first saw it in the STL
fifteen years ago.

That’s a roundabout way of saying that Phobos (places to look at in the
online documentation: std.algorithm and std.range) is a lot about
the STL. If you ask me, Phobos’ offering of algorithms is considerably
better than STL’s, and for two reasons. One, Phobos has the obvious
advantage of climbing on the shoulders of giants (not to mention the toes
of dwarfs). Two, it uses a superior language to its fullest.

Ranges are hot, iterators are not

Probably the most visible departure from the STL is that there are no
iterators in Phobos. The iterator abstraction is replaced with a range
abstraction that is just as efficient but offers vastly better encapsulation,

verifiability, and abstraction power. (If you think about it, none of
an iterator’s primitive operations are naturally checkable. That’s
just bizarre.) Code using ranges is as fast, safer, and terser than code
using iterators – no more for loop that’s too long to contain in one
line. In fact, thinking and coding with ranges is so much terser, new
idioms emerge that may be thinkable but are way too cumbersome
to carry through with iterators. For example, you might have
thought of a chain function that iterates two sequences one after

another. Very useful. But chain with iterators takes four iterators and
returns two, which makes it too ham-fisted to be of any use. In contrast,
chain with ranges takes two ranges and returns one. Furthermore, you
can use variadic arguments to have chain accept any number of ranges
– and all of a sudden, we can avail ourselves of a very useful function.
chain is actually implemented in the standard module std.range. As
an example, here’s how you can iterate through three arrays:
 int[] a, b, c;
 ...
 foreach (e; chain(a, b, c))
 {
 ... use e ...
 }

Note that the arrays are not concatenated! chain leaves them in place and
only crawls them in sequence. This means that you might think you could

// define an array of integers
auto arr = [1, 3, 5, 2];
// sort increasingly (default)
sort(arr);
// decreasingly, using a lambda
sort!((x, y) { return x > y; })(arr);
// decreasingly, using code generation;
// comparison is a string with conventional
// parameters a and b
sort!("a > b")(arr);

Li
st

in
g

1

ever since the STL appeared, the
landscape of containers+ algorithms
libraries has forever changed

a system-level language without the
agonizing pain, an application language

without the boredom, a principled
language without the attitude

The Case for D (continued)
change elements in the original arrays by means of chain, which is
entirely true. For example guess what this code does:

 sort(chain(a, b, c));

You’re right – the collective contents of the three arrays has been sorted,
and, without modifying the size of the arrays, the elements have been
efficiently arranged such that the smallest come in a and so on. This is just
a small example of the possibilities offered by ranges and range
combinators in conjunction with algorithms.

Laziness to infinity and beyond

STL algorithms (and many others) are eager: by the time they return,
they’ve finished their job. In contrast, Phobos uses lazy evaluation
whenever it makes sense. By doing so, Phobos acquires better composition
capabilities and the ability to operate with infinite ranges. For example,
consider the prototypical higher-order function map (popular in functional
programming circles, not to be confused with the homonym STL data
structure) that applies a given function to each element in a range. If map
were insisting to be eager, there’d be two problems. First, it would have
to allocate new space to store the result (e.g., a list or an array). Second, it
would have to consume the range in its entirety before returning control
to the caller. The first is an efficiency problem: memory allocation could
and should be avoided in many cases (for example, the caller wants to just
look at each result of map in turn). The second is a problem of principles:
eager map simply can’t deal with infinite ranges because it would loop
forever.

That’s why Phobos defines map to return a lazy range – it incrementally
makes progress as you consume elements from it. In contrast, the reduce
function (in a way a converse of map) is eager. Some functions need both
lazy and eager versions. For example, retro(r) returns a range that

iterates the given range r backwards, whereas reverse(r) reverses r
in place.

Conclusion
There would be more things to talk about even in an overview, such as unit
tests, UTF strings, compile-time function evaluation (a sort of D interpreter
running during compilation of a D program), dynamic closures, and many
others. But with any luck, your curiosity has been piqued. If you are
looking for a system-level language without the agonizing pain, an
application language without the boredom, a principled language without
the attitude, or – most importantly – a weighted combination thereof, then
D may be for you.
If you feel like asking further questions, write the author, or better yet, tune
to the Usenet server news.digitalmars.com and post to the digitalmars.d
newsgroup – the hub of a vibrant community.
Hunting the Snark (Part 2)
Alan Lenton continues his job hunt.

‘I can see what the candidate has done in the past from looking at
their CV. What I really want to know is what they are capable of

doing in the future.’
he above quote is from a CTO in a discussion I had with him on
interviewing techniques, after I started working for him. I think it goes
straight to the nub of the problem. Given the rapid change in

technologies in the IT business, past ‘performance’ is not always a sure
guide to future ability.
It seems to me that when it comes to job interviews we can identify the
following elements that need to be considered by the interviewers:

1. What do we want out of the interview?
2. Who is going to do the interview?
3. Advance preparation. What are we going to talk about with the

candidate that will elicit the information identified in item 1?
4. Environment: Is the interview going to be carried out in a working

environment? If not, what is the justification for the environment
chosen?

Interviewees need to consider their normal working practices, and how
they are going to translate those practices into something convincing in an
interview environment.

Finding a goal – preferably not an own goal
We’ll start with a look at the interviewing side of a job. The first question
is what do we want out of the interview? The answer is obvious. Somebody
to do the job. Unfortunately, that’s where most people leave it, perhaps
with a wave of the job advert, which is usually a boiler-plate shopping list
lifted from someone else’s advert.

T

ALAN LENTON
Alan is a programmer, a sociologist, a games designer, a
wargamer, writer of a weekly tech news and analysis
column, and an occasional writer of short stories. None of
these skills seem to be appreciated by putative
employers...
MAY 2009 | | 19{cvu}

If you don’t have a worked out, and focussed, view of what the job
involves, how you expect it to evolve, and what skills are going to be
needed both now and in the future, then your chances of finding someone
suitable are less than if you had made a random pick.

A nice bedside manner
The next question – who is going to be doing the interviewing? – is not
really very often considered. Usually people are just drafted in to make up
the panel, and left to get on with it.
Think about it though. Why are people from a profession notorious for its
lack of social skills allowed to carry out recruitment interviews? Their
decisions may well have a serious impact on the future of the business. And
why is no one ever given any training on how to carry out an interview?

A starter for ten...
OK – so we have assembled a (usually very homogenous) group of people
who are going to do the interview. Now comes the question of what to ask.
This is a thorny issue indeed. Are you looking for a specialist or for a
generalist? The questions will be completely different. How does your
shop work – what sort of questions will get you that sort of information?
Of course, you don’t actually have to ask questions at all. Some of the most
effective interviews I’ve been to had no questions per se, they were a series
of discussions based on my CV. The discussions covered the work I’d
done, how and why I made the decisions I did, and how I would use that
experience to solve related problems in other situations.
In general, there seem to be two ways to carry out an interview. Either you
can opt to find out what the candidate doesn’t know, or you can try to find
out what they do know. Given the huge scope of C++, and the varied
working practices, the chances of anyone, even Bjarne, knowing
everything are close to zero.
Obviously you need to know in general terms in what areas the candidate
has gaps in their experience. Having found a gap, all you really want to
know is whether the candidate has made any attempt to fill in the gap by
reading, discussion with co-workers, etc. That said, there is little point in
pursuing the details in this situation – it just ends up making the candidate
miserable and hesitant in answering questions about the things they do
understand.
If you do find that the candidate has a gap in their knowledge in an area
that you would have expected them to know, then the most important thing
is to find out why. They may, of course, have been lying on their CV, but
that isn’t always the case. It may well be that there are perfectly good
reasons why there is a gap. Perhaps, for instance, the way they design
programs is such that they have never needed that feature of the language.
I once went to an interview for a Qt programmer in which one of the
interviewers was totally focussed on the qmake tool (used to produce
intermediate files when using Qt libraries). I’ve never used the tool, though
I’ve been using Qt for several years. I use Qt’s Visual Studio plug-in which
handles everything via VS’s solution/project system.
By the end of the interview I was starting to get really fed up with the
mantra, ‘Let’s go back to qmake’. He spent so much time ‘proving’ that I
didn’t know much about qmake (something I explained right at the start),
that he never did find out what I knew about Qt programming.

The whiteboard as a weapon
And finally, what about the interview environment...
Let me start by asking a question. Would you expect someone to take the
practical driving test by explaining, using a whiteboard, how they would
cope with different situations? Details to include what they are doing with
their hands, feet, eyes and ears...
Of course you wouldn’t. But we do expect people to solve programming
problems without a computer in an interview.
Have you ever tried to drive while thinking what your feet are doing?
That’s very similar to the problems you pose when you ask a syntax

question sitting across a table in an interview. The candidate has probably
typed it into the computer thousands of times, automatically, and doesn’t
even think about it any more. It’s the computing equivalent of changing
gear in a manual car!

What do you really want?
Be careful what you ask for, you might just get it. You could easily end
up with someone who can do exactly what you want at this moment in time,
but is incapable of moving on to the things you want to do next year.
Probably the most difficult thing to find out is whether a candidate is able
to learn and move forward.
Many years ago I went for a job as a London bus driver. The ‘interview’
consisted of driving a double decker bus round London in the rush hour!
It went something like this: the instructor drove the bus for 10–15 minutes
and gave me a running commentary on what he was doing. We then
swapped over and I drove for 15 minutes (I’d never driven a bus before,
it was terrifying).
We pulled into the side of the road, and the instructor went through what
I’d done wrong (mostly not taking corners wide enough and bumping over
the pavement) and what was the best way to correct the problems. Then I
got back in the hot seat and drove around for another 20 minutes.
It was that last 20 minutes that was the test. I was being watched to see
how well I corrected the errors. The instructor already knew I could drive,
because I had a licence. What he wanted to know was could I be taught to
drive a bus. Fortunately for the programming world, although I passed that
test, my eyesight wasn’t up to their stringent standards, and I was turned
down. So I had to resort to the much less glamorous profession of
programming instead!
I don’t know what the equivalent of that test is for programming, I wish I
did, it would make life much easier, both for the interviewers and the
interviewees. There was an extended discussion on interviews on the accu-
general list recently which is worth reading and presents differing views
on the topic. I’d recommend a read of it should you end up having to act
as an interviewer (search the archives for the subject ‘Torturing
interviewees’ – yes, really).
Next issue I’ll take a look at this problem from the interviewee’s point of
view, but in the mean time I’ll leave you with the Cheshire Cat’s take on
things:

‘Would you tell me, please, which way I ought to go from here?’'
‘That depends a good deal on where you want to get to,’ said the Cat.

‘I don’t much care where –’ said Alice.
‘Then it doesn’t matter which way you go,’ said the Cat.

‘– so long as I get somewhere,’ Alice added as an explanation.
‘Oh, you’re sure to do that,’ said the Cat, ‘if you only walk long enough.’
From Alice in Wonderland, by Lewis Carrol
20 | | MAY 2009{cvu}

Code Critique Competition 57
Set and collated by Roger Orr.

lease note that participation in this competition is open to all
members, whether novice or expert. A book prize is awarded for the
best entry. Readers are also encouraged to comment on published

entries, and to supply their own possible code samples for the competition
(in any common programming language) to scc@accu.org.

Last issue’s code
I’m writing a simple hash-map and I’ve got a couple of questions. Firstly, why
does the line marked '1' in the header file need the word ‘typename’?
Secondly, my little test program doesn’t quite work – the last line of output
still shows the old value for ‘key2’.

P

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.demon.co.uk

Listing 1
Listing1

 entry e;
 e.key = key;
 e.value = value;
 bucket.push_back(e);
 }
 else
 {
 it->value = value;
 }
 }
}
template <class Key, class Value>
Value hashmap<Key, Value>::get(Key key)
{
 int hashval = hashfun(key);
 int thebucket = hashval % buckets.size();
 bucket = buckets[thebucket];
 it = std::find(bucket.begin(),
 bucket.end(), key);
 if (it == bucket.end())
 {
 return Value();
 }
 else
 {
 return it->value;
 }
}
template <class Key, class Value>
int hashmap<Key, Value>::hashfun(Key s)
{
 return std::accumulate(s.begin(),
 s.end(), 0);
}
// ---- hash.cpp -----
#include <iostream>
#include <string>
#include "hash.h"
int main()
{
 hashmap<std::string, std::string> test;
 test.set("key1", "value1");
 test.set("key2", "value2");
 std::cout << "key1 = "
 << test.get("key1") << std::endl;
 std::cout << "key2 = "
 << test.get("key2") << std::endl;
 std::cout << "key3 = "
 << test.get("key3") << std::endl;
 test.set("key2", "another_value2");
 std::cout << "key2 = "
 << test.get("key2") << std::endl;
}

Listing 1 (cont’d)

// ---- hash.h -----
#include <algorithm>
#include <list>
#include <numeric>
#include <vector>
template <class Key, class Value>
class hashmap
{
public:
 hashmap(int size = 10)
 : buckets(size) {}
 void set(Key key, Value value);
 Value get(Key key);
private:
 struct entry
 {
 Key key;
 Value value;
 bool operator==(Value key) const
 {
 return key == key;
 }
 };
 int hashfun(Key s);
 std::vector< std::list<entry> > buckets;
 std::list<entry> bucket;
 typename std::list<entry>::iterator it; // 1
};
template <class Key, class Value>
void hashmap<Key, Value>::set(Key key,
 Value value)
{
 int hashval = hashfun(key);
 int thebucket = hashval % buckets.size();
 bucket = buckets[thebucket];
 if (bucket.size() == 0)
 {
 entry e;
 e.key = key;
 e.value = value;
 buckets[thebucket].push_back(e);
 }
 else
 {
 it = std::find(bucket.begin(),
 bucket.end(), key);
 if (it == bucket.end())
 {

Li
st

in
g

1

MAY 2009 | | 21{cvu}

Critiques

David Pol <david@kalarelia.com>

First of all, why does the line marked '1' in the header file need the keyword
typename? It does need it because entry is a dependent name, that is, a
name that depends on a template parameter. The types referred to by
dependent names are called dependent types. In particular, a nested class
in a dependent class template is a dependent type, which is precisely what
we have in our code. And all dependent types need the keyword
typename before them, because the C++ parsing rules state that
dependent names should be parsed as non-types (even if that leads to a
syntax error). The typename keyword is a way of telling the compiler we
want the name that follows to be treated as a type.
Apparently, our code is failing when setting the value for a key that is
already stored in the hashmap. Let's start by debugging the process
whereby a new key-value pair is inserted into the hashmap (i.e., the code
that belongs to the hashmap<>::set() function).
 int hashval = hashfun(key);
 int thebucket = hashval % buckets.size();

This computes the hash value that corresponds to the given key, which is
then used to get an index into the std::vector<> of buckets. So far, so
good (implementation of hashmap<>::hashfun() is not ideal, though;
i t could be enhanced by pass ing a cus tom accumula tor to
std::accumulate() that performs a more sophisticated form of
hashing).
 bucket = buckets[thebucket];

The member variable bucket is declared as a std::list<entry>.
This line assigns to bucket a copy (a potentially expensive copy, by the
way!) of the std::list<entry> element located at index thebucket
in buckets. And, in the situation where bucket.size() > 0, we are
actually modifying this local copy, and not the original bucket. That’s the
main problem with this code: we never modify buckets.
In fact, the bucket member variable is not necessary at all. We can replace
it with a std::list<entry>& local to the hashmap<>::get() and
hashmap<>::set() functions. Reusing the same variable makes the
code less clear and concise, and adds unnecessary overhead to the
hashmap<> class. Exactly the same can be said about the it member
variable.
Although the current standard does not provide hash table-based
containers (something C++0x will fix, fortunately), several alternatives are
available, ranging from compiler-specific extensions (e.g. stdext
namespace in MVC++ or __gnu_cxx namespace in gcc) to portable
implementations of the next standard (e.g. Boost.Unordered). This is also
a good example of why making use of existing solid libraries is usually
the way to go; consider the code we get and the problems we avoid by using
Boost.Unordered:
 #include <iostream>
 #include <ostream>
 #include <string>
 #include <boost/unordered_map.hpp>
 int main()
 {
 boost::unordered_map
 <std::string, std::string> test;
 test["key1"] = "value1";
 test["key2"] = "value2";
 std::cout << "key1 = " << test["key1"]
 << std::endl;
 std::cout << "key2 = " << test["key2"]
 << std::endl;
 std::cout << "key3 = " << test["key3"]
 << std::endl;
 test["key2"] = "another_value2";
 std::cout << "key2 = " << test["key2"]
 << std::endl;
 }

Also, there are three points that are worth mentioning with regards to our
original code:

There is a bug in entry::operator==(). The type of the
parameter key should be Key, not Value. If we try to use a
hashmap<> that has different types for the keys and the values, we
will get a compilation error. Also, it’s good to use a const
reference for it to avoid unnecessary copying (the same goes for the
parameters in all the member functions of hashmap).
The header file does not make use of include guards to protect
against multiple inclusion.
The constructor for hashmap can be used an implicit conversion
function, which is generally undesired. We can mark it as
explicit to protect against such silent conversions.

Our final code for the hashmap, then, looks like this:

#ifndef HASH_MAP_INCLUDED_H
#define HASH_MAP_INCLUDED_H
#include <algorithm>
#include <list>
#include <numeric>
#include <vector>
#include <iostream>
template <class Key, class Value>
class hashmap
{
public:
 explicit hashmap(std::size_t size = 10)
 : buckets(size) {}
 void set(const Key& key,
 const Value& value);
 Value get(const Key& key);
private:
 struct entry
 {
 Key key;
 Value value;
 bool operator==(const Key& rhs) const
 {
 return key == rhs;
 }
 };
 int hashfun(const Key& s);
 std::vector<std::list<entry> > buckets;
};
template <class Key, class Value>
void hashmap<Key, Value>::set(const Key& key,
 const Value& value) {
 int hashval = hashfun(key);
 int thebucket = hashval % buckets.size();
 std::list<entry>& bucket
 = buckets[thebucket];
 if (bucket.size() == 0)
 {
 entry e;
 e.key = key;
 e.value = value;
 bucket.push_back(e);
 }
 else
 {
 typename std::list<entry>::iterator it
 = std::find(bucket.begin(),
 bucket.end(), key);
 if (it == bucket.end())
 {
 entry e;
 e.key = key;
 e.value = value;
22 | | MAY 2009{cvu}

 bucket.push_back(e);
 }
 else
 {
 it->value = value;
 }
 }
}
template <class Key, class Value>
Value hashmap<Key, Value>::get(const Key& key)
{
 int hashval = hashfun(key);
 int thebucket = hashval % buckets.size();
 std::list<entry>& bucket
 = buckets[thebucket];
 typename std::list<entry>::iterator it
 = std::find(bucket.begin(),
 bucket.end(), key);
 if (it == bucket.end())
 {
 return Value();
 }
 else
 {
 return it->value;
 }
}
template <class Key, class Value>

int hashmap<Key, Value>::hashfun(const Key& s)
{
 return std::accumulate(s.begin(),
 s.end(), 0);
}
#endif // HASH_MAP_INCLUDED_H

Commentary
The code looked to me like a case of premature generalisation. As David
pointed out, the equality operator of the hashmap::entry was
incorrectly defined to take an argument of the Value type although it
needed an argument of the Key type.
It is usually simpler for most programmers to write a non-templated class
first and then generalise it, if necessary, once it is working correctly. Doing
so also delays the need to use typename!
A couple of general points about the template header file. The first is that
the header file includes the implementation of the class as well as its
definition. Consequently there is more clutter in the header file so making
it more important to try and highlight the important items for the reader.
Additionally, as the implementation must be included this also means
additional header files are required which makes the resultant header file
more bigger and potentially slower to compile.
I would also want to draw attention to the hash function used. The
performance of hashed containers is critically dependent on the size of the
hash table and the implementation of the hash function. Simply getting the
code to compile and execute correctly is not enough – in the worst case a
hashed container can degenerate into a single linked list which is slower
to access than a standard map.
The main characteristic desired for the hash function is that it will avoid
collisions between inputs (that is where two different inputs generate the
same output). Consider this hash function when used, for instance, against
all two letter English words. There are 101 of these (depending on precisely
how you count them) but the algorithm used only produces 37 different
hash values ranging between 130 and 173. So if we picked a hash bucket
size of 100 every word would be in a bucket between 30 and 73 and the
other buckets would be empty.
Fortunately we can use the work of others – by using a third party hash
table or the unordered_map in TR1 (soon to be in C++0x) we can make
use of better hash functions that this one without needing to become an
expert in the topic ourselves.

The Winner of CC 56
Once again there was only one entrant, which is a shame – although I
suppose it does make the task of judging the entries easier.
I think David covered the ground well, and hopefully the putative writer
of the code would not only have had their problem solved but also have
gained a clearer understanding of templates.

Code Critique 57
(Submissions to scc@accu.org by June 1st)
Can someone please help me to understand why the following trivial C
program crashes?

Note: You may answer the question in C, or convert the program to C++
(with justification). The code is shown in Listing 2, and is based on a
posting to news://alt.comp.lang.learn.c-c++
You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the
ACCU website (http://www.accu.org/journals/).
This particularly helps overseas members who
typically get the magazine much later than members
in the UK and Europe.

#include <stdio.h>
#include <string.h>
typedef enum {
 Hearts,
 Diamonds,
 Clubs,
 Spades
} Suit;
typedef struct Card
{
 Suit suit;
 int value;
} Card;
typedef Card Deck[52];
void LoadDeck(Deck * myDeck)
{
 int i = 0;
 for(; i < 51; i++)
 {
 myDeck[i]->suit = i % 4;
 myDeck[i]->value = i % 13;
 }
}
void PrintDeck(Deck * myDeck)
{
 int i = 0;
 for(;i < 52; i++)
 {
 printf("Card %d %d\n", myDeck[i]->suit,
 myDeck[i]->value);
 }
}
int main()
{
 Deck myDeck;
 memset(&myDeck,0,sizeof(Deck));
 LoadDeck(&myDeck);
 PrintDeck(&myDeck);
 return 0;
}

Li
st

in
g

2

MAY 2009 | | 23{cvu}

Desert Island Books
Paul Grenyer introduces Ewan Milne.

wan is another of the strong and active characters I encountered on
accu-general, and went on to meet at a conference, soon after I joined
the ACCU. In his time Ewan has made an excellent job of both ACCU

and conference chairman. Whenever I think of Ewan I always remember the
night I met his wife at a conference dinner. I’ve never been allowed to forget
that, for some reason, the words “Ah! You must be Mrs Ewan”, like so many
other things, seemed like a good idea at the time...

Ewan Milne
So it turns out that there’s a pretty high correlation between ACCU
membership and getting lost at sea. We probably want to keep this quiet
lest all our travel insurance premiums go through the roof. A previous
castaway wondered if we are all stranded on the same island: I have
decided that we are, but one after the other. The plus point of this is that
my predecessors were all so excited on their rescue that they left their
books and records behind, which means that I have inherited a very
respectable technical library even before I make my choices. As payback
for my high-handedness, with so many classic texts already available for
my browsing pleasure, what other titles am I going to choose?

For my first choice, I’m going back to the very start of my
career. Although I had dabbled in home computing while
at school, it was when I first opened the pages of The C
Programming Language by Brian Kernighan and Dennis
Ritchie1 in my first year at uni that I really got it. Oddly,
while the preface says that the book ‘is not an introductory
programming manual; it assumes some familiarity with
basic programming concepts’, I recall this book fulfilling

pretty much that role. The clarity and precision with which the concepts
are presented means that not only is the language itself explained in an
admirably concise 228 pages, it also inspired in me a lasting passion for
programming. And I do believe this is the text that introduced "hello,
world" to the, err, world.
The elegance of K&R’s prose sets a standard that few
authors can match, and many technical books are at best
functional (that’s with a small ‘f’: I’ll get on to the other
sort in a minute). Occasionally a book comes along that
does really grab you, and for me one of the most
enjoyable to return to is The Pragmatic Programmer by
Andrew Hunt and David Thomas. There are several
books that cover similar ground, the overall craft of software design and
construction; many of them also of great merit. But this is the one that
stands out for me, because the underlying philosophy immediately struck
a chord.

My next choice is a book I haven’t read yet. In fact, I just
checked on Amazon and, at the time of writing, it is still
to be published in the UK. But a couple of months on a
desert island sounds like the ideal opportunity to devote
enough time to learning something new. A few survival
skills might be a more sensible option, but I’m going to
take the chance to properly learn a Functional language,

and so I’m taking a punt on Real World Haskell by Bryan O’Sullivan, John
Goerzen and Donald Stewart. Simon Peyton Jones gives it his seal of
approval (‘Best of all, this book will expand your mind’), and judging by
the table of contents, it covers monads in depth: a topic that Simon’s
keynote at last year’s conference, entertaining and illuminating as it was,
left somewhat unclear in my mind.
My last non-fiction selection is a change of pace, and a book I have enjoyed
browsing regularly for many years: Revolution In The Head by Ian

MacDonald.
One reason
for this choice
is to ease my music
selection, as this is an
extensive critical survey of the
recorded output of The Beatles. Every
single song released by the group is individually catalogued
and dissected in chronological order of its recording.
Although this is undeniably a book for Beatles obsessives,
it manages to avoid being either dryly academic [2] or
overly sycophantic. The Fabs musical output is discussed
within the context of the rapid social changes of the 1960s,
and the analysis is lively and insightful. MacDonald is not
afraid to point out the flaws in the Beatles canon, and his critiques of many
songs reveal subtleties that may easily be missed by the casual listener. In
the absence of any Beatles records, this will make a fine substitute.

Finally for reading material, a novel. I have never been big
on re-reading novels, but if stranded far from home on a dry,
dusty desert island, an old favourite to remind me of home
would be The Crow Road by Iain Banks. When I first read
this, I was of a similar age to the lead character – a student
returning home to Argyll and his extended and eccentric
family. It would be interesting to revisit it 15 years on. It

starts with one of the great opening lines in fiction – if a little self-conscious
(‘It was the day my grandmother exploded’), and develops from there into
an rambling exploration of dark family secrets, Scottishness, religion
versus atheism, and the perfect way to microwave a poppadom.
So now things get tough. Choosing two records to take with me is a real
struggle. Like many, I like to think that I have a varied, highly catholic
musical taste – but while it is true that the CD collection at home ranges
from world music to modern classical, with the odd diversion into jazz and
country, the truth is that the majority of the music I listen to is made by
pale skinny guys with guitars. And while I say is made, in general was
made would be more accurate – in the 1980s or earlier. Still, I was stumped
for some time, and had a seriously overlong short list until I imposed on
myself a limitation. If any band or artist had more than one album on the
list, they all had to go. So, much as it pained me, out went REM, Leonard
Cohen, The Waterboys, Tom Waits, The Triffids, Joy Division, Blue
Aeroplanes, David Bowie, The Smiths, The Go-Betweens, Neil Young
and Radiohead. And several others.

E

Desert Island Disks is one of BBC Radio 4’s most popular and enduring
programmes:
 http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml
The format is simple: each week a guest is invited to choose the eight
records they would take with them to a desert island.
I’ve been thinking for a while that it would be entertaining to get ACCU
members to choose their Desert Island Books. The format will be slightly
different from the Radio 4 show. Members will choose about 5 books,
one of which must be a novel, and up to two albums. The programming
books must have made a big impact on their programming life or be
ones that they would take to a desert island. The inclusion of a novel and
a couple of albums will also help us to learn a little more about the
person. The ACCU has some amazing personalities and I’m sure we
only scratch the surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?
24 | | MAY 2009{cvu}

Inspirational (P)articles
Frances Buontempo takes a positive view.

aving recently tended to sink into a sense of hopelessness and despair
after swapping software engineering and support war stories with
friends, acquaintances and random strangers, I decided I wanted to

snap out of it. I fell across an interview [1] with Knuth just in time. This
inspired me, and I want to start a series of short, inspiring articles. Please
feel free to submit your stories of encouragement and hope.
Knuth talked about many things in this interview, including TeX and how
many difficult problems he had to solve which didn’t become apparent
until he started coding it. He quotes George Forsythe, saying ‘People have
said you don’t understand something until you’ve taught it in a class. The
truth is you don’t really understand something until you’ve taught it to a
computer.’ He hadn’t realised how big the project was, or how long it
would take. He acknowledged the impossible task he had given two
graduate students to complete as a summer project. Somebody
acknowledging programming can be difficult cheered me up. It can be
difficult, but that’s where some of the fun comes in.
The inspiration came from midway through the interview. Knuth states, ‘I
checked the other day and found I wrote over 35 programs in January, and

28 or 29 in February. These are small programs, but I have a compulsion.
I love to write programs.’
I realised I hadn’t written a whole program in a very long time. I have added
new features to existing code and fixed bugs, and probably created a few
as well. I have experimented with small functions while trying to learn new
things. I have talked to people about design and algorithms. I have read
books and thought about writing code. But I hadn’t written a program. In
ages. Since then, I have tried to write one program a week: clearly not as
many as Knuth’s one or more day, but a start. These are usually small
things. For example, I am currently reading a book on machine learning,
so I am trying to code some of the algorithms it describes. And it is fun. I
love programming. I’d forgotten, but I remember now.

References
[0] Terry Pratchett, can’t recall which book(s)
[1] ACM Communications: Aug 2008 ‘Interview: Donald Knuth. A life’s
work interrupted’

H

Desert Island Books (continued)

G‘OO’d Behaviour
London Regional Meeting – 19th March 2009.

teve Love talked about OO design and development to a packed room
of twenty or so people, including some new faces. The subject was
inspired by a question from a colleague: Are there any recent books/

articles on good OO design, since the classic texts tend to be older, weighty
tomes, advocating RUP and a plethora of UML diagrams?
As a starting point, Steve suggested four principles: simplicity, roles and
responsibilities, equality and the value of values. Simplicity came first, as
it underpins all other considerations. Try to avoid complicated ways of
doing things. Try to avoid neat tricks. Try to make you code as clear as
possible. Next, considering the roles and responsibilities of your objects
leads to simplicity, less coupling and more clarity. Avoid having objects
or functions with multiple responsibilities. Don’t use inheritance

inappropriately. Remember the Liskov substitution principles. Consider
what makes two objects equal. Do they refer to the same place in memory?
Do they have the same state? Finally, disambiguate monomorphic and
polymorphic types. If an object is a value type, define it as a value type.
After the presentation, members of the audience threw in some other
suggestions. The extent to which the distinction between reference and
value types really mattered was considered. The importance of unit tests
and the impact of TDD was touched on, but the general feeling was this
differed from OO design, though supported the four bywords advocated
in the talk. Somehow we ended up discussing singletons, at which point a
halt was called to proceedings and we adjourned to a local tavern.

S

After this major cull, my first musical choice is Marquee Moon by
Television. Coming from the same New York scene that produced The
Ramones, Blondie and Talking Heads, this must have been the least punk-
like record ever released by a punk group. A 10 minute long title track,
lengthy guitar solos, all very seventies rawk. But the guitars are needle-
sharp, and the players the epitome of pale skinniness – when listening to
this album, it is hard to believe music can get any more thrilling.
I have to admit though, that the appeal of Marquee Moon is purely visceral;
it’s all about the sound rather than the songs. Despite the singer taking the
name Verlaine, the lyrics are hardly poetry. As a contrast, my final choice
is Nick Drake’s Fruit Tree, a collection filled with eloquent songwriting.
Now I have to admit that I’m bending my own self-imposed rule here, as
this is actually a box-set of Drake’s entire recorded output. But his career
was brief, so at a stretch I’m claiming it as a single choice. Drake released

three albums of brooding, melodic, folk-influenced pop in the late 1960s
and early 1970s which went almost entirely unnoticed at the time before
his early death in uncertain circumstances. His music has since been
rediscovered and become popular to the point where he is almost the
archetypal cult artist. But even without the mystique that has grown around
him, the remarkable thing is what a unique and fully formed talent he was.
Almost every song is a gem, and a delicate, melancholic mood is sustained
throughout. It is, perhaps, not the cheeriest choice to take along on a lonely
sojourn, but it is among the most beautiful music that I know, and so I can
think of no better companion to see me through until my rescuers arrive.
They are on their way, aren’t they?!?

Next issue: Gail Ollis picks her desert island books.
MAY 2009 | | 25{cvu}

Simply Rails 2.0
By Patrick Lenz, published by
Sitepoint, 472 pages, ISBN-13: 978-
0-98904552-0-5

Reviewed by Simon Sebright

Recommended with
reservations.
I read this book rather quickly, which was a good
sign; it is written in an easy style and well
presented. After some introductions, it takes the
form of developing single application, vaguely
amusingly called Shovell after the Diggit app.
The book is aimed at novice or someone looking
to move to Rails. This is an unfortunate
combination, as witnessed by the introduction to
OOP.
The introductions have the usual how to get
Ruby and Rails installed things, which cover the
main OSes adequately. Then there is a low point
in the book – an introduction to object-oriented
programming, particularly with Ruby. The
painful example of Cars and Types of Car is
used, which any experienced OO programmer
would cringe at.
Anyway, we get stuck into the first skeleton of
the Shovell app we create by about page 100. If
you have hung on till then, the development of
the app, describing Ruby’s full stack capabilities
is well explained. The features are explained
well with a good description of the key new
points the code illustrates.
We start off with a basic model and GUI, and
then move on to Web 2.0 things, including Ajax
and effects, and then on to security issues. I
particularly liked the attention to detail on the
testing capabilities of Rails. You can run unit

tests on the model, functional tests on
controllers, and full user-stories replaying the
interaction of a user through a complete use case
(e.g. log on, add a thing, edit the thing, log out).
At the end, there is a rather cursory chapter on
deploying to a production environment. I
haven’t actually done that yet, but feel it’ll be
more than the few steps outlined, particularly
getting access to the right parts of the system via
your hosting provider.
The RESTful system of URLs is well explained,
indeed the application is based on a REST
model. Unfortunately, I found a lot of the Rails
conventions are not actually explained, rather
they are simply taken for granted. This is fine,
as long as you don’t make a mistake in, for
example, the plurality of something when
creating a model or controller. It pays to take
care.
All in all, I enjoyed the book, and found myself
referencing it now and again whilst developing
my own ideas. However, there is a much more
comprehensive text from the Pragmatic
Programmers on Ruby on Rails, which I would
recommend over this one. Certainly if you are a
novice, it could be a good introduction to whet
your appetite, but it doesn’t contain any kind of
reference, which you will need to develop
anything of merit.

The CERT C Secure Coding Standard
By Robert C. Seacord, published by
Addison Wesley, 720 pages, ISBN:
0321563212

Reviewed by Derek M
Jones

Not recommended.

This book follows in a long
tradition of providing
recommendations to users of a
programming language on how
to write more reliable software. While the title
and contents use the word ‘security’, many of
the recommendations have the more general
audience of developers interested in writing
reliable software.
The 14 chapters are divided by language and
library topic (e.g., preprocessor, floating-point,
memory management, signals) and each chapter
contains around 10–20 or so recommendations
on that topic. Recommendations follow the
same format, containing one or more of the
following subsections: general discussion,
noncompliant code example, compliant
solution, exceptions, risk assessment and
references. The 612 pages include an extensive
index and code examples are the minimum
needed to illustrate an issue.
The material assumes that readers have a lot of
background knowledge. Each recommendation
jumps right in and talks about very specific
technical issues often with no background
explanation. While some recommendations are
labeled as being Microsoft Windows specific
most of the material is OS agnostic, although it
does make assumptions that best fit a desktop
environment (e.g., the int type is 32-bits).
The recommendations could be grouped by
where they came from. Many recommend
against using constructs or relying on behavior
that the C Standard specifies as being undefined,
implementation defined or unspecified, others
recommend doing things that could be
categorized as ‘good’ coding practices aimed at
avoiding a source of commonly encountered
programmer mistakes (e.g., ‘Do not reuse
variable names in subscopes’ and ‘Do not use
floating-point variables as loop counters’),
while others are platitudes (e.g., ‘Understand
how arrays work’ and ‘Take care when creating
format strings’).
I have been in the source code analysis business,
mostly involving C, for almost 20 years and in
many places I found I had to read the material
several times to understand the point that was
being made. The discussion often has little
narrative thread, jumping around between topics
and introducing topics unrelated to the issue at
hand. The wording of some recommendations
bears little resemblance to the actual coding
issue, e.g., ‘Do not apply operators expecting
one type to data of an incompatible type’ is the
recommendation wording used to describe the
problems that occur when a pointer is assigned
the address of an object having an incompatible
type and that pointer is then dereferenced to
obtain a value.
Platitudes can be ignored, but every time I
encountered one – I stopped counting at 20 – my
opinion of the recommendations dropped. But
overly generalised recommendations will result

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
26 | | MAY 2009{cvu}

in an unnecessary increase in costs if followed,
e.g., the recommendation ‘Do not
simultaneously open the same file multiple
times’ does not apply if all of the files
simultaneously open are for reading.
While it contains lots of recommendations it still
manages to miss some of the more commonly
encountered ones, not comparing floating point
values for equality being the most obvious
omission.
The ‘Risk Assessment’ subsection is a good idea
that seems to have been poorly implemented. No
information is given on how the likelihood of a
recommendation not being followed and the
severity of the consequences was calculated;
values appear to have been pulled out of the air.
From my own measurements of source code I
know that some of the likelihoods are incorrect.
Severity is very hard to judge, an uninitialise
variable may result in a coffee machine
occasionally failing to add/omit sugar or firing
a missile attached to an aircraft still in its hanger
(I know of a case where this happened).
This book is the paper edition of the information
available on the web site: https://www.
securecoding.cert.org/confluence/display/
seccode/CERT+C+Secure+Coding+Standard
I have bought paper versions of books whose
PDFs are freely available on the web. Is it worth
paying £38.99 for a paper copy of this web site
(which is actively updated)? Unless the paper
version contains lots of colour diagrams, 611
pages for £38.99 is a poor deal.
This book contains a significant amount of
material that still needs lots of work to make it
understandable to the non-expert programmer
and to fix the numerous small technical errors.
This book should really have been written to
accompany the web site, providing background
information and an overview of each of the
major topics. As a paper version of the web site
it is poor value for money and for material that
still needs lots of work.

Software Language Engineering:
Creating domain specific languages
using metamodels
By Anneke Kleppe, published by
Addison Wesley, 240 pages, ISBN:
0321553454

Reviewed by Derek M Jones

This is a Teddy bear book. Are
we sitting comfortably? Then I
shall begin. A long time ago in a far away place
a little girl, perhaps having a second childhood,
decided to study terribly hard for a very
important qualification. After staying up very
late and studying very very hard it was time to
write down everything she had learned.
This being a Teddy bear book our heroine did
not want to upset people by having original
thoughts or talking with messy things like
practical details. Recycling pearls of received
wisdom found in trusted 40 year old books (Fred
Brooks’ The Mythical Man-Month and that old

favorite the Dragon book) is so much more
comforting. Feeling adventurous our heroine
sprinkled some pearls found in Wikipedia, safe
in the knowledge that fact-challenged articles
could always be edited later.
Language and engineering are awfully long
words and perhaps some of Teddy’s friends
might get lost. Reworking and repeating
different chapters and sentences can be so
helpful to people who want to stay out of the
dark forest.
But a Pee aytch Dee is a terribly important
qualification and sometimes magical spells need
to be included to impress the men who have to
be impressed (‘... L is a metamodel those nodes
can represent elements that can be materialized
to the human senses ...’). Fear not dear reader,
the spells’ dark bold fonts are easy to see and
averting your eyes in their presence will not
cause you to get lost.
Time to go to bed.

Effective Java, 2nd Edition
By Joshua Block, published by
Prentice Hall, 384 pages, ISBN:
0321356683

Reviewed by John Lear

Highly recommended
The first edition of Effective
Java was published in 2001,
this, the second edition, refreshes the
original content and adds additional
detail to that present in the first edition.
As its name suggests, this book follows
the same format laid out by Scott Meyers in his
Effective C++ series. The intention of
mimicking such a well renowned series sets the
bar fairly high. Fortunately, this book does not
disappoint.
Split up into 11 main sections, with individual
items below this, the book covers everything
from general programming tips, through classes,
interfaces and generics and finishes up in the
more hard-core areas of concurrency and
serialisation. The main reason for the update has
been the addition of a section on Generics which
accounts for approximately one third of the new
material. The first edition, published in 2001,
could only cover language features up to Java
1.3. The remaining new additions are spread
throughout the remaining sections bolstering
their content.
I had started this review with the intention of
reading the book cover-to-cover, but as is often
the case, time pressure have meant that I
reverted to dipping in and out of the various
sections of the book. It is very easy to do this,
with each individual item largely self contained
and easily readable. What is also important in a
book like this is the quality of the index. This
book has a good, detailed index so it is easy to
find items that cover a particular issue. What I
also like about this book is the fact that it does
go into some detail on what the JVM is actually

doing where it is appropriate to the issue being
covered.
I have really enjoyed reading Effective Java and
have found the content universally useful when
ever I have picked it up be that for general
reading or if I have encountered a particular
issue in my work. If you are a Java developer you
should have this on your bookcase.

Clean Code
By Robert Martin, published by
Prentice Hall, 464 pages, ISBN:
0132350884

Reviewed by Seb Rose

Uncle Bob is one of the
keynotes at this year’s ACCU
conference, so I thought I’d have a look at his
latest book. It is subtitled ‘A Handbook of Agile
Software Craftmanship’, but like so many books
with the ‘A’ word in them these days, it is much
more widely applicable than that.
In many ways it covers similar gound to that
covered by Kent Beck’s Implementation
Patterns, but is much more thorough and useful.
However, this book also deals exclusively in
Java, sometimes becoming too Java-specific for
my tastes. The illustrations, provided by
Martin’s daughter, didn’t do it for me either.
The book is divided into three parts (The
Theory, Worked Examples, An Index of Smells
and Heuristics) and two appendices.
The first section comprises 13 chapters that deal
with writing Clean Code – code that’s easy to
read, easy to test and easy to change. He starts
at the beginning, with advice on naming
variables, methods, classes. Next is functions –
‘Keep them small. How small? Smaller than
that?’ And so on, through commenting,
formatting, data structures, error handling, unit
tests, class design and system design.
There is lots of good advice here. You may think
some of it is pointless, but then think about some
of the worst code you have ever looked at. Now
think about some of the worst code you have
ever written. You may already have learnt most,
or all, of the advice in this book, and you may
disagree with some of it, but it is bad advice that
makes you think again about your habits.
A few of these chapters are not written by Robert
Martin. A number of his colleagues contribute to
some of the chapters and not all of these are as
useful (or well written) as Bob’s. A particular
weak point for me was a chapter entitled
‘Systems’ (contributed by Dr. Kevin Dean
Wampler) that delved too deep into certain Java
libraries and techniques.
The Worked Examples are interesting and
useful, but I don’t believe his premise that by
working through them you will necessarily
absorb the theory. You must apply the principles
in practice to fully benefit from the book, but
following the Worked Examples is neither
necessary nor sufficient.
The chapter that lists the smells and heuristics is
an invaluable index and summary of the material
MAY 2009 | | 27{cvu}

28 | | MAY 2009

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Jez Higgins
chair@accu.org

Crashing the deadlines as ever,
I’m writing this while making
lunch and listening to Gardener’s Question Time
on the radio[1]. I’m not big into gardening
myself other than by proxy, indeed my wife is at
the allotment as I type, although I am happy to
cook up the results. I haven’t bothered to retune
because, in the same way that I don’t really
follow The Archers, there’s a certain comforting
familiarity about GQT. Unthreatening amateur
gardeners lob up gentle problems to the panel of
experts. They, in turn, dispense sage advice,
generally after poking good-natured fun at the
questioner or one another. How reassuring it
must be for gardeners across the nation and,
through the miracle of the internet, around the
world. Any question answered, any problem
solved, any difficulty overcome in two or three
minutes of harmless banter. If only
programming were as straightforward ...

We’re finding it awkward to work out which
branches we need to apply bug fixes to.
What does that panel advise?

Now, have you been pruning back hard
enough?

 <chuckles>
By the time this issue of CVu hits your doormat,
2009’s ACCU conference will have come and
gone. Despite the doom and gloom of the credit
crunch being all around us, Giovanni and his
conference committee have put together a top

notch programme and registrations have held up
extremely well. It should be great. Our AGM
also takes place during the conference. It will be
my penultimate AGM as Chair, as I will be
standing down at next year’s. ACCU will,
therefore, be in need of a new Chair. A few
years ago, and as peculiar as it may sound, I had
a vision of myself as Chair during a committee
meeting while sitting on floor of Alan
Bellingham’s front room. Shortly afterwards,
Ewan stood down, and my destiny was made
manifest. Or something like that anyway.
Running ACCU isn’t an especially difficult job,
particularly with the assistance of the other
officers and committee, so if you’ve recently
had a precognition of your future or are merely
curious as to what it entails please get in touch.
[1] What’s more, a radio running code written by
ACCU members

Membership
Mick Brooks
accumembership@accu.org

I’ve just finished running
through the membership
statistics for the AGM. They
show a small, but disappointing,
drop in numbers for the second year running.
Last year I believed the drop was related to
teething troubles for the new membership
system at the major renewal time in August. It
seems that wasn’t the full story: this year
everything has been running smoothly and yet
there’s still been a drop in membership.

I know many of you do a great job evangelizing
for ACCU. I’d love to hear how you get on
talking to colleages and friends. Is there an
approach you’ve found that works? Or even that
doesn’t work? You all presumably stay
members because you get value from ACCU.
I’ve found it hard to convincingly make a case
for that value. We do have great tangible stuff:
the magazines, the mailing lists, the conference,
the local groups, but I still think there's much
more to ACCU than that. There’s definitely
something to be said about communicating with
people who care deeply about programming and
doing it as well as we know how – but I find it
hard to put that across without making us sound
like a bunch of self-satisfied know-it-alls. Can
you do it?
As always, please send any questions or
suggestions about membership and renewals to
me at
accumembership@accu.org.

Advertising
Seb Rose
ads@accu.org

The website advertising
continues to be fully subscribed, and we have
recently begun taking text links from Cylon
(which you may not have noticed). However, we
are looking for more journal advertisers, so if
you know of anyone who would be looking to
benefit from an association with the ACCU,
please put them in touch with ads@accu.org

presented in the first section of the book. I
haven’t been able to read it in its entirety, but the
use I have made of it demonstrated its utility.
The first appendix deals with in-depth issues
arising from concurrency. Concurrency is
covered briefly in an earlier chapter, but this
appendixdelves deeper into the murky waters.
The second appendix lists an implementation of
the open source date library that is used in the
worked examples.

I.M. Wright’s ‘Hard Code’
By Eric Brechner, published by
Microsoft Press, 240 pages,
ISBN: 0735624351

Reviewed by Seb Rose

Brechner is Director of
Development Excellence at
Microsoft and has been
writing internal blog columns
under the I.M. Wright pseudonym since 2001.
This book is apparently the complete set of those

internal articles, unmodified and arranged into
something approaching a coherent structure.
Some sidebars have been added to document
Microsoft specific terminology, changes in I.M.
Wright’s opinion and the occasional additional
observation.
The book’s target audience ranges from junior
developer through to management with advice
that covers all levels of process and practice. It
is divided into 10 chapters that cover much of the
pain of working in large software organisations
with titles that range from ‘Project
Mismanagement’ via ‘Software Design If We
Have Time’ through to ‘Being a Manager, and
Yet Not Evil Incarnate’. Each chapter starts with
an introduction that sets the context for the
articles it contains.
I.M. Wright has an opinionated, undiplomatic
voice. He describes failings and fallacies where
he sees them and tries, not unsuccessfully, to be
controversial and argumentative. I enjoyed both
his observations and his suggested tactics.

In the few places that he extolls the virtues of
Microsoft as a customer focused organisation I
found myself unable to suspend disbelief
sufficiently, so I just skipped them – just a few
paragraphs. What he did get across, however,
was the feeling that Microsoft was at least trying
to address some of the problems that such a large
organisation is liable to suffer from.
Brechner is clearly a bright guy, and has spent
much of the last decade looking at ways to
improve processes within, and performance
across, the organisation. He has read widely and
cites some interesting books, authors and papers
(the ommission of a bibliography is a great
shame).
The book is well written and not at all dull, with
lots of insights for anyone interested in trying to
come to terms with working in a large
organisation. The pieces are short enough to
allow a piecemeal approach to reading the book,
which I particularly liked.

Bookcase (continued)

	A Passion For It
	Java Inheritance vs Composition
	A Case for Code Reuse
	Inside a Distributed Version Control System
	The Case for D
	Hunting the Snark (Part 2)
	Code Critique Competition 57
	Desert Island Books
	Inspirational (P)articles
	G‘OO’d Behaviour
	View From The Chair
	Membership
	Advertising

