

MAR 2009 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

What do you want to
know tomorrow?

came across this sentence the other day on the BCS website: ‘A depth of experience
in one discipline and breadth of coverage across a range of others.’ This sounds like
a good principle for anyone in our industry, particularly when there is a

downturn, but how do we get there?

Depth first
In my own experience many people are content to be a big fish in a small pool.
If you have worked in the same area of IT for a while in the same business (or
related ones) you may find yourself a ‘local expert’ in one discipline. In this
position it is all too easy to stagnate and to stop learning. It’s good to keep
pushing ourselves out of our comfort zones – meeting other people who are
also experts in the same discipline can help us to re-assess the extent of our
knowledge. However this can be hard to achive in our normal working life.
Through my membership of ACCU I have got to know many good C++
programmers and I’ve undoubtedly learned a great deal from them (as well
as realising how much more there is to know!)

Breadth
Learning new things can be both fun and scary. In the early stages of using
a new technology we don’t know enough to even find answers to our
questions; those we work with directly may be unable to help either if the
area we are moving into is new to our company. We turn from being
relatively comfortable experts to being unconfident novices – most of us
don’t enjoy this very much. It is often quicker to solve problems with the old
technology we do know than with the new stuff. ACCU gives us ways to contact
other people with the experience to point us in the right direction; through the
mailing lists, regional groups, magazines and the conference. Such contacts can
help us past those basic questions that are easy for the experienced person
to answer.
Further opportunities to learn new skills include writing for CVu or
Overload or speaking at a regional group or at the conference – although this year
we had so many good proposals we sadly couldn’t fit them all in. Or even guest editing
CVu ... and on that note Steve Love will be editing the next CVu.
I look forward to meeting many of you in Oxford at the conference.

 I

Volume 21 Issue 1
March 2009

Editor
Tim Penhey
cvu@accu.org

Guest Editor
Roger Orr
rogero@howzatt.demon.co.uk

Contributors
David Binkley, Ian Bruntlett,
Pete Goodliffe, Paul Grenyer,
Seweryn Habdank-Wojewódzki,
Derek Jones, Dawn Lawrie,
Dietrich Leichs, Alan Lenton,
Anna-Jayne Metcalfe, Seb Rose,
Matthew Wilson

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

ROGER ORR
GUEST EDITOR

2 | | MAR 2009

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
30 Mailbox @ C Vu

Balog Pal has something
to say.

31 Code Critique Competition
This issue’s competition
and the results from last
time.

35 Desert Island Books
Paul Grenyer introduces
Ian Bruntlett.

REGULARS
36 Bookcase

The latest roundup of
ACCU book reviews.

39 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 21.2: 1st April 2009
C Vu 21.3: 1st June 2009

Overload 91: 1st May 2009
Overload 92: 1st July 2009

FEATURES
3 A Practical Introduction to the YAMI Library

Seweryn Habdank-Wojewódzki and Dietrich Leichs
demonstrate inter-language object message passing.

8 Bluffer’s Guide to the Semantic Web
Seb Rose tries to explain the meaning of semantic.

10 Hunting the Snark
Alan Lenton has been searching for a job recently – it’s
not been as straightforward as he’d like.

12 Developer Categorization of Data Structure Fields (Part 2)
Derek Jones, David Binkley and Dawn Lawrie complete
their investigation into how developers create data types.

20 This ‘Software’ Stuff (Part 3)
Pete Goodliffe continues to unravel the meaning of (a
programmer’s) life.

22 Taming the Lint Monster (Part 2)
Anna-Jayne Metcalfe deconstructs the PC-Lint command
line ... and more.

26 xCover: Code Coverage for C/C++
Matthew Wilson looks under the bonnet of the xCover
open-source library.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

A Practical Introduction to the YAMI Library
Seweryn Habdank-Wojewódzki and Dietrich Leichs

demonstrate inter-language object message passing.

his article describes some basic features offered by the YAMI library
[1], which is designed to pass messages and their parameters through
the network (using TCP/IP protocol). The acronym comes from ‘Yet

Another Messaging Infrastructure’.
This article is neither a tutorial nor a reference manual – these are available
from the YAMI website – but instead concentrates on a practical example
of the library usage. YAMI’s interface is currently available in C, C++,
TCL, Python, PHP and Java (demonstrated in four of these below). The
general structure of each message contains the target, the name of the
object, the name of the message and its parameters where the target can
be either IP address or domain name. These features help to develop
distributed and/or multi-language object communication. A draft of such
a framework is shown in this article. (All the project code is available from
the accu web site at http://accu.org/content/journals/cvu211/
yami_example.zip)

YAMI as a communication library
There are many existing ways to implement communication in a
distributed system. Some popular standards include: Common Object
Request Broker Architecture (CORBA) [2], Internet Communications
Engine (ICE) [3], Simple Object Access Protocol (SOAP) [4], Java
Remote Method Invocation (RMI) [5], Distributed Component Object
Model (DCOM) [6], Abstract Syntax Notation One (ASN.1) [7] and
D-BUS [8]. Each of these has its own strengths and weaknesses but even
a brief description of each of them is out of the scope of this article. So
why would you choose YAMI – what are its features?

Some key features of YAMI

YAMI uses the XDR standard [9] which is a binary standard. This helps
make YAMI fast – its performance on a Dual Core AMD 1800MHz
Opteron can reach 25,000 messages per second. Another feature of YAMI
is the simplicity of the usage and interface. Astronomers from Milan who
were not skilled in programming comprehended it within 2 hours and were
then able to write Python scripts for their distributed system. The
simplicity of YAMI is increased by making the code using it as similar as
possible in all supported languages. The core of understanding YAMI is
to know the network agent; generally in Object Oriented (OO) languages
(C++, Java, Python) the application code using YAMI is more or less the
same. YAMI also supports P2P connections, which is useful to send
messages through firewalls. YAMI does not require any kind of system
‘daemon’.
Failover in YAMI is very simple: it just resends a message if it fails. In
order to avoid an infinite repetition there is an internal mechanism which
limits the duration of the retry. For simplicity in the presented example,
error checking is not shown in full. However YAMI offers an error
reporting functionality. In C the error reporting is supplied by an error code
returned by the executed function, for OO languages exceptions are used.

What is not supported in YAMI 3.x?

YAMI is intended as a simple building block with few external
dependencies. There is therefore no in-built support for distributed
transactions – such a feature can be built on top of YAMI if required, for
example using handshaking with message IDs. Similarly there is no
implicit way to use encryption; in YAMI any encryption library used must
be explicitly included and data have to be explicitly encrypted. The lack

of encryption was a design decision to avoid the library relying on any
encryption library. High level communication in distributed systems can
be assisted by the use of name servers to bind service names to addresses
but such searching is out of the level of YAMI’s abstraction which uses
IP addresses or network names like ‘mydomain.com’. If a custom naming
mechanism is required, this can be done manually. (Note that one of the
tools related to YAMI is the Property Server which can assist in such an
implementation).
To summarize, YAMI is not able to solve all the problems of distributed
systems communication, and it does not even aim to do so. But YAMI is
simple and easy to use – the next sections of the article will demonstrate
this.

Description of the example
Consider a building with restricted areas where a user must be granted
privileges in order to enter certain rooms. At the entrance of every room
there is a fingerprint sensor with a network interface. The aim of the system
is to track people’s movements – information about entry attempts by those
without appropriate access may be particularly interesting.
The overall structure is shown in figure 1, where the numbers on the figure
are the port numbers on the local machine. The first component is the
Sensor that detects attempts to enter the room and records the recognized
ID together with a time-stamp and the source system (both these pieces of
information are important in real-time applications). The second element
of the application is the Buffer. The information from the Sensors is
sent to the Buffers – note many Sensors can be connected to a single
Buffer. All the Buffers are in turn connected to the server (Object
Broker) which will collect all data from the Buffers and store them in

T

DIETRICH LEIHS
Dietrich is a long time experienced manager with a very
strong background in electronics, signal processing and
telecommunication. He sails in his free time. He can be
contacted at dietrich@kruenes.cc

Lightweight (library size of around 100kB or below, depending on the
operating system).

Low memory and resource consumption, which is also fully tunable.

Load-balancing capability with message forwarding.

Automatic recovery from connectivity problems.

Comprehensive thread management options. It is possible to switch off
threads, which is important for safety or mission critical systems.

Extremely easy and straightforward API for scripting languages.

Ability to ‘bypass’ firewalls with reverse message routing.

Portability across wide range of compilers, operating systems and
hardware platforms.

YAMI’s features

SEWERYN HABDANK-WOJEWÓDZKI
Seweryn specializes in high-performance distributed
computing. He is also focused on the industrial quality
standards of the code. In his leisure time he enjoys self-
made art. Seweryn can be contacted at
habdank@gmail.com.
MAR 2009 | | 3{cvu}

a database; in this simple example the storage format is a CSV file (Comma
Separated Values). The last element of the system is a Terminal. This
program is designed to work directly with the sensor; sensors usually
contain a list of the privileged persons and the purpose of the terminal is
to operate on the list. Terminals can be run on mobile phones, which
enables an operator to tune the parameters of the sensor on the spot.

Messages used in the example.

The Terminal sends "del_id" and "add_id" messages to the
Sensor. The Sensor sends to the Buffer all new data by using the
"new" message. The Object Broker requests data from the Buffer
by using "get" message. Both Buffers and Sensors react to the
"shutdown" message.
The fingerprint sensor is written in pure C and uses the implementation of
YAMI written in C. The buffers are written in C++ using the YAMI C++
wrapper. The Data server (Object Broker) is written in Python. Normally
such applications are set up on fast machines, so the Python script can be
efficient enough. The terminal is written in Java. The presented source
code is simple, it contains all the functionality that is important but omits
other details such as network security.

Fingerprint sensor
Listing 1 contains key lines from the C code for the fingerprint sensor
(fp_sensor.c). The sensor consists of two main elements. The first one
is the client which gets the user IDs and sends them to the buffer. The
second one is the internal server which processes messages for changing
the list stored in the sensor.
While the simulator is running it sends data (sensor ID, time stamp and
human ID) to the buffer every second (line 153). The server is the most
important part of the sensor and contains the code to allow changing of
the Sensor parameters. First the FpSensor object is registered with the
agent (line 114). The agent listens for messages which generate events
when the function servant is executed (line 251). In this function the
handler for the parameters which can be sent through the network with
messages is prepared (line 253). The command gets the message name
from an incoming message (line 264) and then fixed messages that are
stored in the server are compared with the incoming ones (lines 271 and
285). The exit message has no parameters, so its functionality is very
simple – all resources have to be released before exiting, but this program
relies on the operating system to do that. The parameters are taken from
the message by using the yamiAgentIncomingMsgGetParameters
command (line 287). This command takes all parameter sets from the
message. The yamiGetStringLength takes the length of the stored
string. The other function yamiGetStringValue takes a string from the
parameter set. The message "del_id" has only one parameter. The
removal of an ID from the list is simulated. The "add_id" message has
two parameters: the first is the human ID and the second is the simulated
string of the data that represents the internal structure of the fingerprint in
the sensor memory.

The code of the client is placed in the main function. The handler for the
parameter set is defined (line 77) and the client is constructed (line 80),
defined as an agent. The agent is responsible for all the communications
with the network environment. This environment is initialized (line 108)
and then the agent is created (line 114). Finally, at the end of main, there
is code to clean up the agent and the network on loop termination (lines
157–159).
The while loop contains all the client functionality (lines 126–154). What
is the client doing? The client creates a parameter set with the length of 3
elements (line 128) – it is important to create a structure with the right size
at the start. Next the actual information like sensor ID, time stamp and
human ID is prepared and then put in the set (lines 136–138) respecting

Fi
gu

re
 1

063 int main (int argc, char * argv[]) {
...
077 HPARAMSET params;
...
080 HYAMIAGENT agent;
...
108 yamiNetInitialize();
...
114 yamiCreateAgent (&agent,
 pr_opts.fp_sensor_port, NULL);
...
126 while(1) {
...
128 yamiCreateParamSet (¶ms, 3);
...
136 yamiSetInt (params, 0, process_id);
137 yamiSetInt (params, 1, time_info);
138 yamiSetString (params, 2, human_id);
...
147 yamiAgentMsgSendAddr (agent,
 pr_opts.buffer_host,
148 pr_opts.buffer_port, 2,
149 "HID", "new", params, NULL);
...
153 sleep(1);
154 }
...
157 yamiDestroyAgent (agent);
158 yamiDestroySemaphore (sem);
159 yamiNetCleanup();
...
164 }
...
251 void servant (HINCMSG incoming) {
...
253 HPARAMSET params;
...
264 yamiAgentIncomingMsgGetMsgName (incoming,
 &msgname);
...
271 if (strcmp (msgname,
 FpSensorMsg_DELID) == 0) {
...
283 }
284
285 if (strcmp (msgname,
 FpSensorMsg_ADDID) == 0) {
286 /* get parameters from message */
287 yamiAgentIncomingMsgGetParameters(
288 incoming, ¶ms);
..
293 yamiGetStringValue (params, 0, id);
...
303 }
304 }

Listing 1
4 | | MAR 2009{cvu}

both the types and values of the data. The integer value process_id
emulates the real sensor ID, time_info is the time stamp from the begin
of the system epoch, human ID (human_id) is a string. The
yamiAgentMsgSendAddr function is used to send the message with
parameters to the proper object (line 147); this function takes the handler
to the agent, the address of the target, the port of the target and the
communication level. (The level is not used in this example but it can be
important for some systems, for example if only strings are passed.) The
actual object sent is named HID, with message name "new" and then its
parameters. This single command sends the whole message (and also
consumes the parameter set).
Note that there is no need for parsing and/or casting objects from one type
to another – values with a concrete type are sent through the network. This
provides at least two advantages: firstly, the performance increases due to
the fact that there is no need of e.g. an XML parser; secondly, it is easy to
prepare a serialization procedure for storing an object into the ParamSet
(HPARAMSET) structure.

Buffer
The Buffer contains two logical objects. The first is the main buffer
program itself and the second is the container for the ID numbers and the
rest of the data. The code is shown in Listing 2 (buffer.cpp). Both
objects are separated because the buffer reacts to messages like
"shutdown", and the HID object (container) reacts to the incoming data
from the sensor and requests from the Object Broker. The C++ code
contains two namespaces human_ids and buffer. Both contain
Server c l a s se s . Eve ry Server c l a s s i s d e r i v e d f r om
YAMI::PassiveObject – this kind of server is passive, it means that it
waits passively for the incoming messages. Both servers contain an
overloaded call method which is called from the YAMI agent when a
message arrives.
In detail, the network is initialized in main as in the C code (line 194).
Next a semaphore is created (line 197) which blocks the buffer server (see
line 221) and forces it to wait for all messages. Then the Buffer server
functionality is initialized and the buffer for the human identification
numbers is created (lines 199–200). Now the functions are bound to the
server using boost::function function callbacks (line 203). The agent
is created and joined with the servers by registering objects (lines 203–
210).

...
134 incoming.eat();
...
136 }
...
146 };
...
150 } // namespace human_ids
...
152 namespace buffer {
...
161 class Server :
 public ::YAMI::PassiveObject {
162 public:
...
166 void call (
 ::YAMI::IncomingMsg & incoming) {
...
177 incoming.eat();
178 }
...
183 } // namespace buffer
184
185 int main (int argc, char * argv[]) {
...
194 ::YAMI::netInitialize();
...
197 ::YAMI::Semaphore sem (0);
...
199 buffer::Server buffer_server (sem);
200 human_ids::Buffer human_idsbuf;
...
203 human_ids::Server <human_ids::Buffer>
204 human_ids_server (::boost::bind(
 &human_ids::Buffer::get_human_ids,
205 &human_idsbuf),
206 ::boost::bind(
 &human_ids::Buffer::put_human_id,
207 &human_idsbuf, _1));
...
210 ::YAMI::Agent agent (port);
...
221 sem.acquire();
...
229 }

Listing 2 (cont’d)

036 namespace human_ids {
...
046 class Buffer {
047 public:
...
052 ::std::auto_ptr <Buf_t> get_human_ids() {
...
054 ::YAMI::MutexHolder mh (mtx);
...
059 }
...
062 void put_human_id (::std::auto_ptr
 < ::YAMI::ParamSet > & human_id) {
...
064 ::YAMI::MutexHolder mh (mtx);
...
066 }
...
071 };
...
074 template <typename Buffer>
075 class Server :
 public ::YAMI::PassiveObject {
076 public:
...
086 void call (::YAMI::IncomingMsg
 & incoming) {
087 String msgname (
 incoming.getMsgName());
...
090 if (msgname == msg::GET) {
...
097 Buf_t_ptr buf (get_hidbuf_());
...
102 ::YAMI::ParamSet params (
 bs * NO_HID_PARAMS);
...
116 incoming.reply (params);
...
118 }
...
121 if (msgname == msg::NEW) {
...
123 ::std::auto_ptr < ::YAMI::ParamSet >
124 params (incoming.getParameters());
125 if (params.get() != NULL) {
126 put_human_id_ (params);
127 }
...
132 }

Li
st

in
g

2

MAR 2009 | | 5{cvu}

The call function from the buffer::Server is very simple. It gets the
message name from the incoming message structure. If the message is
"shutdown" then the semaphore is released which allows the program
to exit. It is important to treat all incoming messages. eat is used in this
example, but there are other possibilities such as reject, reply or
forward.
The call method in human_ids::Server (line 86) is more complicated.
It distinguishes between the two messages "new" and "get". The first
message forces the server to create a new object in the buffer from
incoming parameters (lines 123–126). The "get" message comes from
the Object Broker. The server creates a temporary buffer, takes
information about the length of the internal buffer and then creates a
parameter set (lines 97–102). Finally the function replies to the message
(line 116), sending a list of all data to the Object Broker (transported
through the network).
It is important to highlight that messages are events, and the functions
connected with them can be executed at the same time, hence the need for
a mutex in the get_human_ids and put_human_id methods in the
human_ids::Buffer class (lines 54 and 64). This mutex blocks the
operation on the container. Note that the YAMI::MutexHolder is used
for this purpose as it is designed using RAII (Resource Acquisition Is
Initialization) to ensure the mutex is correctly released. Finally the buffer
collects data from the fingerprint sensors and could send them to the Object
Broker on demand.

Object broker
The Object Broker is designed to collect all data from the system and to
store them in the simple CSV data base. The Object Broker is written in
Python (see Listing 3, obj_broker.py). Every 5 seconds (line 148)
requests are sent to all buffers to get data and store them into the file.
The python script first steps through all classes definitions (Broker,
Buffer, HumanInfo) and functions (parse_config_file, main).
At line 159 the module is checked for being "__main__", meaning that
the file is being executed as a main program. In the main function (line
77) the configuration file is read and parsed, which contains ports and

addresses of the buffers in entries like: 12400 127.0.0.1. An agent is
created (line 100) but without specifying an explicit port, which leaves the
choice of port to the system. Then every buffer registers for its own domain
(or ID) which is used for simplifying the communication procedures as the
ID can be used instead of using addresses and ports. After initialization
the Object Broker starts to collect data in a while loop. For every domain,
the message "get" is sent to the object Buffer (line 118) and then the
wait method blocks the current thread and waits for the reply. Once the
wait completes the status of the message is checked (line 125). There are
nine possible statuses, three of which are checked. If the message status is
eReplied then the parameters are retrieved from the message using the
getResponse method (line 129) to create a HumanInfo object from the
incoming message and store it in the file.
The aim of the Object Broker operation is to get data from all of the items
listed in the configuration file Buffers and save them into the data base
(file). Once collected the data in the Buffers are erased.

Terminal
The aim of the terminal is to operate on the fingerprint sensor’s internal
data structures. As mentioned above, the sensor can be a standalone piece
of hardware with its dedicated software. The terminal can be launched, for
example, on the mobile phone. Again security aspects are omitted, but they
can (and should!) be implemented. The terminal is a simple console
application written in Java. The program waits for a command typed by
the user and sends it to the sensor. There are some helper functions in order
to filter out and forward known commands, this is just a skeleton of a
possible procedure. The terminal handles three commands: "add_id"
<ID> <data>, "del_id" <ID> and exit. The exit command exits
from the terminal. The other commands have parameters that are sent to
the sensor. In the Terminal.java (Listing 4, Terminal.java, line
36) a wrapper class for the System.exit function is constructed and a
command parser is created and used. The class FpSensorFunctions
(see Listing 5) implements the Executable interface which contains the
method execute. In this method a simple message is prepared using the
method YAMIEasyClient.sendOneWay: this method takes the
address, port, name of the object, name of the command (which is a
message in the YAMI nomenclature) and its parameters (see lines 30–32
in Listing 5).

Some results
For the purpose of testing the whole system is run in the structure shown
in Figure 1. The example of the results from the sensor output stream is
listed below (omitting the human readable time stamp for clarity).
Fingerprint sensor 12060 on port 12340 starts
communicate with buffer 127.0.0.1:12400
...

12 public class Terminal {
...
17 public static void main(String[] args) {
...
36 TerminalExit t_exit =
 new TerminalExit();
...
42 CommandParser command_parser
43 = new CommandParser (t_exit, c_func);
...
50 while (true) {
...
55 command_parser.parseLine(line);
...
59 }
...
63 }
64 }

Listing 4

...
025 class Buffer (object):
...
031 class HumanInfo (object):
032 def __init__ (self, fp_sensor_id,
 time_stamp,human_id):
...
046 def parse_config_file (config_file):
...
077 def main(argv):
...
100 agent = YAMI.Agent()
...
106 agent.domainRegister(str(i),
 str(domain_params[0]),
107 int(domain_params[1]), 2)
...
118 msg = agent.send(str(i),
119 buf.OBJECT, buf.GETMSG)
...
122 msg.wait()
...
125 status = msg.getStatus()
...
128 if status == YAMI.eReplied:
129 retpar = msg.getResponse()
...
159 if __name__ == '__main__':
...
169 sys.exit (main (sys.argv))

Li
st

in
g

3

6 | | MAR 2009{cvu}

Fingerprint sensor 12060 sends human ID 56-72-38 at
5789755
...
Add ID 12-34-56 with data Data_buffer_example.
Fingerprint sensor 12060 sends human ID 81-70-30 at
5789782
...
Delete ID 12-34-56.
Fingerprint sensor 12060 sends human ID 80-77-72 at
5789789
...
Add ID 34-56-78 with data Another_data_buffer.
Fingerprint sensor 12060 sends human ID 42-72-21 at
5789803

The output from the buffer is:
 Buffer server started.
 'new' received.
 ...
 'get' received.
 ...
 'shutdown' received.

The output and input from the terminal is:
<OUTPUT> Terminal started for fingerprint sensor:
127.0.0.1:12340
< INPUT> add_id 12-34-56 Data_buffer_example
< INPUT> del_id 12-34-56
< INPUT> add_id 34-56-78 Another_data_buffer
< INPUT> exit
<OUTPUT> Terminal exits.

Messages sent from the terminal to the sensor can be observed (in the
sensor results they are highlighted by using bold font).
The output from the object broker is:
 Domain 127.0.0.1:12400 added
 Domain 127.0.0.1:12410 added
 Object broker started.
 Get human ID
 ...
 Get human ID
 ...
 Exit.

And finally the result stored in the data.csv file:
 12060, 5789756, 50-55-14
 ...
 12064, 5789759, 65-18-84
 12060, 5789760, 30-21-33

Sensor IDs, timestamps and human IDs are stored. Note the sensor 12060
entries that are shown in the file.

Acknowledgements
We would like to thank Maciej Sobczak for continuous help with the
library usage. We also acknowledge Filip Wasilewski and Robert
Wojciechowicz for remarks on the Python internals. We also thank Roger
Orr for important remarks on the content and style for the article.

References
[1] http://www.msobczak.com/prog/yami/index.html
[2] http://www.omg.org/
[3] http://www.zeroc.com/index.html
[4] http://www.w3.org/TR/soap/
[5] http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
[6] http://msdn2.microsoft.com/en-us/library/ms809311.aspx
[7] http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One
[8] http://www.freedesktop.org/wiki/Software/dbus
[9] http://www.faqs.org/rfcs/rfc1832.html and http://www.faqs.org/rfcs/

rfc1014.html

14 public class FpSensorFunctions implements
Executable {
...
22 public int execute (String [] command_args)
{
...
25 if
(command_args[0].equals(FpSensorTxt.DELID)) {
...
30
YAMIEasyClient.sendOneWay(fp_sensor_address_,
fp_sensor_port_,
31 FpSensorTxt.OBJECT,
command_args[0],
32 new ParamSet().append(id));
33 }
...
35 if
(command_args[0].equals(FpSensorTxt.ADDID)) {
...
39
YAMIEasyClient.sendOneWay(fp_sensor_address_,
fp_sensor_port_,
40 FpSensorTxt.OBJECT,
command_args[0],
41 new
ParamSet().append(id).append(data));
42 }
...
48 }
...
52 }

Listing 5
MAR 2009 | | 7{cvu}

Bluffer’s Guide to the Semantic Web
Seb Rose tries to explain the meaning of semantic.

n the beginning, time out of mind, was the internet. We could send
e-mails, post to bulletin boards, download files. Later, still shrouded in
the mists of time, Tim Berners Lee invented the world wide web. Now

we could surf for information, products and services, create personal
content and interact globally. Somewhere on the way the phrase ‘Web 2.0’
entered common parlance, describing ‘the changing trends in the use of
World Wide Web technology and web design’ [1], though many (including
Mr. Berners Lee) believe that it doesn’t amount to much.
And so to the Semantic Web. Is it new? When will it arrive? What’s it for?
How does it relate to Web 3.0? All good questions.
The term semantic web first got a public airing in 2001 in an article by Tim
Berners Lee, Jim Hendler and Ora Lassila in the Scientific American [2].
This is not an academic paper, but a generally accessible description of
what might be achievable on the web. The idea of adding semantics
(meaning) to the web (which is generally about presentation) using
Resource Definition Format (RDF) and ontologies (schema) is discussed,
but not how this process could be facilitated. Now, 8 years later, there’s
not a lot to show the general surfing public that there has been any progress
made in this direction. The most popular search engine is based on pattern
matching textual query terms, and any attempt to combine information
from disparate web sites is a depressingly manual (and frustrating) affair.
This is a very quick tour of the various semantic web technologies, so I’ll
be avoiding detailed explanations of grammars of syntax. I’ll introduce the
main W3C standards that apply, but you should remember that some of
them are really quite recent. This may well be one reason why there has
been so little obvious progress over the past 8 years. The web first came
into existence largely on the back of HTTP, but there wasn’t an equivalent
technology for the semantic web to piggyback.
The Resource Descr ip t ion Framework (RDF) was a W3C
recommendation as far back as 1999 and was an extension of
entity-modelling that made statements about (web) resources. The W3C
has this to say about RDF: ‘RDF is a directed, labeled graph data format
for representing information in the Web’. The format of an RDF statement
(or assertion) follows the subject-predicate-object form, also known as
triples (so called because it has three elements):

My car (subject) is powered by (predicate) methane (object).
Which can also be written as the triple: MyCar poweredBy Methane.
RDF comes with a number of predefined serialisations, some of which are
simple renderings of triples (like the example shown above). There is also
an RDF XML serialisation, which is in common usage. It should be
remembered that RDF expresses set of triples, no matter which
serialisation is used. RDF can now be embedded in web pages (using
RDFa) to annotate displayed data with semantics. Since anyone can
publish a web page, anyone can publish RDF data – you might not ‘see’
it because it is ignored by your browser’s rendering engine.
RDF comes with a set of predefined resources, in its own namespace, so
that we can build basic type systems. The other standards that layer upon
RDF that are in common usage are Resource Description Framework
Schema (RDFS) and the Web Ontology Languague

(OWL). These also come with their own namespaces, stuffed full of more
advanced predefined resources that allow us to build more expressive
schemas. They allow us to declare classes that have transitive properties.
They allow us to declare properties. And lots more, which allows us to
build rich and complex type systems for data we publish on the web. Much
of this ontology modelling will appear familiar to those of you who practise
object orientated design, but beware.... there are subtle (and not so subtle)
differences.
Now we can construct our own schemas, serialise them in RDF/XML and
annotate our web pages. This in turn allows anyone to build software
agents that are aware of the semantics of these standards to derive meaning
from the data, rather than just being able to render it for us to look at. That’s
quite nice, but doesn’t sound very compelling. Well, these semantics that
these standards define come from the field of Description Logics (DL) and
this is where things get interesting (and difficult). Using the semantics, we
can construct general purpose inference engines that can take a set of
triples and infer (deduce) other triples that also exist. Lets have a simple
example:

Triple 1: Fred isSiblingTo Joe.

Triple 2: Joe isSiblingTo Anne.

Triple 3: isSiblingTo rdf:type owl:TransitiveProperty

Triple 4: isSiblingTo rdf:type owl:SymmetricProperty

Triple 1 and Triple 2 declare some facts: we know that Fred is Joe’s sibling
and that Joe is Anne’s sibling. Triple 3 and Triple 4 tell us that the sibling
relationship is symmetric (reflexive) and transitive. After applying an
inference engine that understands RDF, RDFS and OWL we would end
up with a virtual triple set that includes the triples:

Triple 5: Joe isSiblingTo Fred.

Triple 6: Anne isSiblingTo Joe.

Triple 7: Fred isSiblingTo Anne.

Triple 8: Anne isSiblingTo Fred.

This inference process is complex and processing intensive. And each
layer of standards (RDF→RDFS→OWL) introduces more complexity
and makes the job harder. If you are brave enough to look at some of the
DL literature, you’ll soon see that you can get into a state where some
inferences are simply not decidable (in finite time). This has led to various
subsets, supersets and species of these standards. Even in the OWL
standard itself, 3 seperate species of OWL are defined – OWL Lite, OWL
DL and OWL Full. Your choice will be governed by your requirements –
if you need fast responses then you’ll need to keep your schema simple;
if you have a complex ontology and a large dataset, then expect to set your
inference engine going and come back in a week.
Ignoring the performance issues, I hope you can see that there are some
possibilities. If, for instance, all public transport companies annotated their
online timetable systems using the same ontology (schema), then we could
construct an intelligent software agent to plan a journey from A to B on a
certain date, at a certain time, for a chosen price.
How likely is it that different companies would choose the same ontology?
Well, there are quite a lot of general purpose ontologies out there, but we
all know it is not likely that all systems will adopt the same one. The
semantic standards come with a number of powerful facilities that let us
map ontologies together. These facilities are just more RDF triples with
predefined semantics, such as owl:equivalentClass. We then just
run our inference engine over our tripleset to generate the equivalent triples
and frame our queries using the our preferred ontology.

I

SEB ROSE
Seb is a software contractor in some of the most hostile
working environments, including banks, pension
providers and manufacturers. He works with whatever
technology is prescribed by the client – mainly C++, .NET
and Java. Recently he realised a lifelong ambition and
became a tractor owner.
8 | | MAR 2009{cvu}

In the last paragraph I mentioned querying. Obviously with such a lot of
data to process we’ll want to query it, and this has been one of the areas
where the semantic web has been (and still is to some extent) lacking. W3C
published its recommendation for a semantic web query language,
SPARQL, in January 2008. This is a recursive acronym apparently:
SPARQL Protocol and RDF Query Language. There had been earlier
query languages, RDQL and SERQL to name two, but W3C worked to
provide a standard that satisfied diverse use cases. Not everyone is happy
with the end result [3], but everyone never is. It is an RDF based query
language that essentially matches conjunctions of triple patterns.
The recent W3C RDFa recommendation (mentioned earlier) provides a set
of XHTML attributes to augment visual data with machine-readable hints.
This allows sites to integrate RDF data into the rendered web page, rather
than publishing it in seperate RDF documents. Now ‘Anyone can say
Anything about Any topic’ (AAA), which of course means our software
agents will need to decide which websites to trust. This is a recurring
problem and there are no new solutions in the RDF world.
Is anyone using RDF et al?

Some familiar sites like Facebook, Linkedin or Digg publish
information in RDF.
There are a number of standard ontologies that are in common use,
such as Friend Of A Friend (FOAF).
RDF was the basis of the Atom 1.1 standard, but that mainly got
sidestepped by the more popular Atom 1.2.
And, there are all the application listed in the Resources section
below.

There is a lot of RDF data out there, but it tends to be in certain specialised
domains.
The standardisation process has got to a state that there is now a useful set
of technologies for application development. Over the coming years more
and more data will be published as RDF thus making it more worthwhile
to construct agents that can consume the data and do something useful with
it. If the ongoing research into efficient execution of semantic queries over
large datasets bears fruit, then we will really be able to reap the benefits
of semantically tagged data.
Hopefully this has given a brief introduction to the major pieces of the
semantic web jigsaw puzzle. I’ll be covering these technologies in a lot
more detail at my ACCU Conference session on Wednesday 22nd April
at 2 o’clock.

Resources
The first book to read: Semantic Web for the Working Ontologist –
Allemang/Hendler – ISBN 978-0-12-373556-0
Some open source/free tools and platforms that you can use to get you up
and running:

Protege – an IDE for developing ontologies. Read their tutorial on
developing an ontology for pizzas.
Neon – a European toolkit for ontology engineering.
Sesame – an RDF database using the SERQL query language (and
maybe SPARQL).
Jena – an RDF database.

Owlim – a semantic repository (you can use it as the storage layer
for Sesame).
Pellet - an OWL reasoner.

Some of the more interesting semantic web applications I’ve come across:
DBPedia – a community effort to extract structured information
from Wikipedia and to make this information available on the Web.
DBpedia allows you to ask sophisticated queries against Wikipedia,
and to link other data sets on the Web to Wikipedia data.
(http://dbpedia.org)
Sindice – Over 10 billion of application reusable pieces of
information are on the Web today. They come from projects such as
LOD but most of all from lots of Web 2.0 sites which are embracing
the vision of facilitating easy sharing of information for subsequent
automatic reuse and aggregation. (http://sindice.com)
Watson – a semantic web search engine at:
http://watson.kmi.open.ac.uk/WatsonWUI/
Twine – a new way for you to collect online content – videos,
photos, articles, Web pages, products – and bring it all together by
topic, so you can have it in one place and share it with anyone you
want. (http://www.twine.com)
OpenCalais – The Calais Web Service automatically creates rich
semantic metadata for the content you submit – in well under a
second. Using natural language processing, machine learning and
other methods, Calais analyzes your document and finds the entities
within it. But, Calais goes well beyond classic entity identification
and returns the facts and events hidden within your text as well.
(http://www.opencalais.com)
Freebase – an open database of the world’s information. It’s built by
the community and for the community – free for anyone to query,
contribute to, build applications on top of, or integrate into their
websites. (http://www.freebase.com)
paggr – winner of Semantic Web Challenge 2008. A novel online
application that combines smart data with semantic agents and
personalized portals. Not yet released. (http://paggr.com/about)
iyouit – gathers data around you and about you. We call this data
context. Context is centered on places you visit and people you meet
and can grow to include all kinds of things that surround you.
(http://www.iyouit.eu)
xOperator – combines advantages of social network websites with
instant messaging. (http://aksw.org/Projects/xOperator)
OPO – aimed at enabling the integration and exchange of data
related to a user’s presence in the online world. As opposed to static
user profiles and the interoperability in that domain, well supported
by the FOAF Vocabulary, the Online Presence project targets the
interoperability of dynamic properties that determine a user’s
current state of presence. (http://www.milanstankovic.org/opo/)

References
1. Wikipedia: http://en.wikipedia.org/wiki/Web_2.0
2. http://www.sciam.com/article.cfm?id=the-semantic-web&print=true
3. http://clarkparsia.com/files/pdf/sparqldl.pdf

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no magazines. We
need articles at all levels of software development experience; you don’t have to write about rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
MAR 2009 | | 9{cvu}

10 | | MAR 2009{cvu}

ALAN LENTON
Alan is a programmer, a sociologist, a games designer, a
wargamer, writer of a weekly tech news and analysis
column, and an ocassional writer of short stories. None of
these skills seem to be appreciated by putative employers...

Hunting the Snark
Alan Lenton has been searching for a job recently – it’s

not been as straightforward as he’d like.

Fun and games
he recruiter was succinct, and to the point. ‘I’ve just got off the phone
to the XYZ Sports Games studio’, she said, ‘They really liked the
class design you prepared, but in view of the fact that you couldn’t

name an England football team for the next World Cup, they’re not
interested in considering you for the software developer job.’
This was something of a first. I’ve never been turned down for a job before
because I couldn’t name my own choice of an England football team. I
couldn’t even think of a book I could buy to help me over this massive gap
in my technical ability.
As it happened, this was only the first in an increasingly surreal set of job
hunting encounters.
The next day I received a phone call from another recruiter who wanted
to put my CV in for a high level programming job with an online poker
company. As it happens, I do have quite a lot of experience programming
online poker, so I said go ahead.
He rang back an hour later and said the company liked my CV, was I
available for an interview later in the week. I said yes and gave him a day
that I would keep free for the interview. Two days later the recruiter’s boss
rang and said that he was taking over because the original recruiter had
left to become a ski instructor!
The new guy then told me that the boss of the poker company was flying
down from Glasgow (to London, where I’m based), and would meet me
in a coffee bar in Liverpool Street station. This seemed strange, to put it
mildly, but I agreed to the meeting – fortunately I didn’t have to carry a
copy of yesterday’s Times to identify myself, since we now have mobile
phones.
I sat in the coffee bar – a sort of narrow corridor squashed into a corner of
the station, and my mobile rang. ‘We’ve moved to a better coffee bar
upstairs’, a voice said, and gave directions. I have to confess that I was
starting to get more than a little worried, but I followed the instructions
and found the boss and his CTO.
In the event it seemed a fairly genuine affair, the software was demo-ed
on everyone’s mobile phones and we discussed what needed doing –
basically a full audit of the newly developed software to make sure it was
fit for purpose. Two days later the recruiter rang and told me they didn’t
think my poker was good enough for what they wanted...
When the next morning another recruiter rang me and asked if I was
interested in a job programming gaming software in Moscow, I decided
to gracefully decline the offer.

Might this job suit me?
The next opportunity seemed a little more promising. A Very Big Software
Company (aka VBSC) in the city might be interested. They would be
sending me a test to take shortly.
The test, when it arrived, turned out to be a URL for one of those
BrainBench thingies. I duly answered the questions and it announced that

I was an expert in C++, and in the top 10% of people who’d taken the test.
This would have been more convincing if I wasn’t pretty certain, on the
basis of the score it reported, that it got at least one, possibly two of the
answers wrong.
Anyway, this gained me an interview (the first of six as it happened). This
first one was a phone interview with HR and having passed that I was
invited to the VBSC building in the City. At this stage my wife intervened
and decreed that I had to wear a suit. I was hauled off to a big department
store in Oxford Street and told what I was going to wear. Those of you
who know me will appreciate just how traumatic the whole business was.
The first interview was going quite well, although they didn’t seem to be
asking any high level C++ programming questions.
Then it happened.
One of the guys leaned forward with an intent look on his face and said,
‘How would you reverse the words in this.’ ‘This’ was a piece of paper
with a sentence of a dozen or so words in it.
‘Oh’, I said breezily, ‘just load the words into an STL container and then
take them out in reverse order.’ I was about to continue that a stack would
probably be the most efficient when I realised that the interviewers had all
frozen with stunned looks on their faces. There was a silence. It seemed
to stretch on and on, but it probably only lasted a few seconds.
The guy who asked the questions recovered first, and shook himself. ‘Ah’,
he said, ‘but supposing you don’t have access to the Standard Library?’ I
have to confess that I nearly blew it then and there. I opened my mouth to
laugh and ask what compiler they were using that didn’t ship with the
standard library, but fortunately managed to restrain myself.
I managed, after a bit of a struggle, to come up with some massively sub-
optimal solution which didn’t take advantage of any of the useful facilities
provided by C++. Doing it the hard way seemed to appeal to them.
Sadly, this set the tone for all the other interviews as well, though it did
take a further five sets of interviewers asking questions before they decided
that my C++ wasn’t bad enough for them!
So, I hung up my suit with a feeling of relief and it was Xmas and the
recruiters softly and suddenly vanished away... until the new year.
To be continued...
(Note: names have been changed to protect the guilty – not to mention me)

T

Developer Categorization of Data
Structure Fields (Part 2)

Derek Jones, David Binkley and Dawn Lawrie complete their
investigation into how developers create data types.

his article is the second of two that investigates patterns in the
organization of structure data types. The first part looked at patterns
in a large number of struct definitions extracted from some large

programs (e.g., Mozilla and Linux) written in C. This second part analyses
the results of an experiment involving professional software engineers
performed at the 2005 and 2008 ACCU conferences. This analysis of
source code and this experiment are a first step towards understanding the
decision making process developers go through when creating the data
types used to represent information present within application software.
Experience shows that unless the number of solutions to a given problem
is heavily constrained different people will often generate completely
different solutions. For even the smallest collection of information there
are many different data structures that could be used to represent it. One
of the aims of the experiment described in this article is to investigate the
extent to which different developers make similar decisions when creating
data structures to represent the same information. Another aim is to
investigate the impact that the specification has on the ordering of
attributes (i.e., fields) in definitions.
The experiment performed at the two conferences asked subjects to create
the data structures part of an API that could be used by programs to
manipulate various items of information. The following is a list of some
of the decisions that subjects need to make when creating this API:

the items of information (i.e., the fields) contained in the same
structure definition,
the ordering of fields within a single data structure (e.g., a struct
type).
the name of a field and its type,
the supporting scalar types that need to be defined. Examples
include enumerated types or names given to scalar types (e.g.,
through use of typedef). While this is an interesting topic there
was not sufficient experimental data to perform any meaningful
analysis and it is not discussed further.

The issues discussed in the article are not usually covered by API coding
guidelines, which tend to deal with issues such as naming conventions,

error handling techniques, default parameters and which default constructs
should be defined.[3]
For even a small API there is a huge number of combinations of possible
structure type definitions. For instance, there are 210 ways in which the 10
items of information could be split between two structure definitions, 310

between three definitions and so on. The hypothesis that underlies this
experiment is that subjects’ decisions will be effected by their past
experience (e.g., lifetime experience of interacting with the items
appearing in the problems and programming experience creating and using
data types) and the way in which information is presented in the API
specification. The result of shared semantic influences is that patterns will
exist in the definitions created by different subjects. This article attempts
to uncover and offer explanations for some of these patterns.

Psychology studies
The general problem of how people go about the process of clustering
items into categories (which is one way to think about how fields are
organized into structure definitions) has been extensively studied by
psychologists. A brief overview of some of the key findings from these
studies is given in this section. To begin with, children as young as four
have been found to use categorization to direct the inferences they
make,[4] and many different studies have shown that people have an innate
desire to create and use categories (people have also been found to be
sensitive to the costs and benefits of using categories[11]). By dividing
items in the world into categories of things, people reduce the amount of
information they need to learn[15] by effectively building data structures
that enable them to lookup information on an item they may not have
encountered before, assigning that item to one or more categories, and
extracting information common to previously encountered items in those
categories. For example, which attributes of an item are used for lookup
and how attributes are compared are some of the issues studied by
psychologists. For instance, a flying object with feathers and a beak might
be assigned to the category bird, which suggests additional information
such as it lays eggs and may be migratory.
Of necessity the description of items of information in a specification will
name objects. To what extent do the names people use for objects effect
the categories they are assigned to? For instance, in English the name given
to a large stuffed seat for one person is the same as that for a wooden chair,
while in Chinese such a large stuffed seat is given the same name as a large
stuffed seat for two or more people. In a cross language study where the
subjects were native speakers of either English, Chinese, or Spanish[12,
13] Malt, Sloman and Gennari showed subjects pictures of objects of
various shapes and sizes that might be capable of belonging to either of
the categories— bottle, jar, or container, the subjects were asked to name
the objects and also to group them by physical qualities. The results found
that while speakers of different languages showed substantially different
patterns in naming the objects, they showed only small differences in their
perception of the objects (i.e., the categories based on physical attributes).

Category formation

How categories should be defined and structured has been an ongoing
debate within all sciences. For instance, the methods used to classify living
organisms into family, genus, species, and subspecies has changed over

T

DEREK JONES
Derek used to write compilers that translated what people wrote. These
days he analyses code to try and work out what they intended to write.
Derek can be contacted at derek@knosof.co.uk

DAVID BINKLEY
Dave Binkley is a Professor of Computer Science at Loyola
College in Maryland. His current research interests include
semantics-based software engineering tools, the
application of information retrieval techniques in software
engineering, and improved techniques for program slicing.
David can be contacted at binkley@cs.loyola.edu

DAWN LAWRIE
Dawn Lawrie is an assistent professor at Loyola College in
Maryland. Her research interests include the organisation of
information and applying information retrieval techniques to
software engineering. Dawn can be contacted at
lawrie@cs.loyola.edu
12 | | MAR 2009{cvu}

the years (e.g., most recently acquiring a genetic basis). Culture (i.e., the
society in which a person grew up) has also been found to influence this
process. [14]
What method do people use to decide which, if any, category a particular
item is a member of? The following are some of the different theories that
have been proposed (see the books listed in ‘Further reading’ for more
details):

The defining-attribute theory proposes that members of a category
are characterized by a set of defining attributes. This theory predicts
that attributes should divide objects up into different concepts whose
boundaries are well defined. All members of the concept are equally
representative.
The prototype theory proposes that categories have a central
description, the prototype, that represents the set of attributes of the
category. This set of attributes need not be necessary, or sufficient,
to determine category membership. The members of a category can
be arranged in a typicality gradient, representing the degree to which
they represent a typical member of that category.
The exemplar-based theory of classification proposes that specific
instances, or exemplars, act as the prototypes against which other
members are compared. Objects are grouped, relative to one
another, based on some similarity metric. The exemplar-based
theory differs from the prototype theory in that specific instances are
the norm against which membership is decided. When asked to
name particular members of a category, the attributes of the
exemplars are used as cues to retrieve other objects having similar
attributes.
The explanation-based theory of classification proposes that there is
an explanation for why categories have the members they do. For
instance, the biblical classification of food into clean and unclean is
roughly explained by saying that there should be a correlation
between type of habitat, biological structure, and form of
locomotion; creatures of the sea should have fins, scales, and swim
(sharks and eels don’t) and creatures of the land should have four
legs (ostriches don’t). From a predictive point of view,
explanation-based categories suffer from the problem that they may
heavily depend on the knowledge and beliefs of the person who
formed the category; for instance, the set of objects a person would
remove from their home while it was on fire.

Threats to validity
For the results of this experiment to have some applicability to actual
developer performance it is important that subjects work through problems
at a rate similar to that which they would process source code in a work
environment. Subjects were told that they are not in a race and that they
should work at the rate at which they would normally process code.
However, developers are often competitive and experience from previous
experiments has shown that some subjects ignore the work rate instruction
and attempt to answer all of the problems in the time available. To deter
such behavior during this experiment the problem pack contained
significantly more problems than subjects were likely to be able to answer
in the available time (only one person got as far as attempting the last
problem).
Developers often have the opportunity to interact with (e.g., ask questions
of) people including the following: domain experts who wrote the
specification, likely users of the API, and the paying customer. There was
no such opportunity in this experiment; thus, subjects only had their own
interpretation of the specification with which to work.
Developers often have the opportunity to study how information is going
to be accessed by applications. This allows the data structures to be
optimized for common access patterns or to make writing the code simpler
(e.g., by reducing the number of arguments that might need to be passed).
These design decisions are often made via an iterative process that may
involve interaction with the code that uses them.

The creation of data structures is usually an iterative process and the
answers provided by subjects in this experiment can only be regarded as
a first iteration. Each iteration requires a lot of time and it is not known if
subjects considered it more important to answer multiple problems than
provide a more refined answer to a smaller number of problems.

Subject experience

Traditionally, developer experience is measured in number of years of
employment. In practise the number of lines of source code read and
written (interaction with source code overwhelmingly occurs in its written,
rather than spoken, form) is a more accurate measure of source code
experience. Developer interaction with source code is rarely a social
activity (a social situation does occur during code reviews), and the time
spent on these social activities is probably small enough to ignored. The
problem with the read/write measure is that it is very difficult to obtain
reliable estimates of the amount of source read and written by developers.
This issue was addressed in studies performed at previous ACCU
conferences.[7–9]
What is the relationship between lines of source code written by a
developer and the number of data structures they have created? Modifying
existing code is a common developer activity. This is likely to result in
existing data structures being modified rather new ones created. Your
authors do not know of any empirical data that shed light on the
relationship between lines of code written and data structure created.
A persons background knowledge has been found to effect the categories
they create.[6] Experience shows that it is not unusual for the creator of
an API to be a non-expert in the domain being addressed. For consistency
it would be advantageous if all subjects taking part in the experiment were
either domain experts or not domain experts. No information on subject
experience with the domains used in the problems is available.

Subject motivation

Subjects are presented with a list of various kinds of information and have
to rely on their experience to design data structures to be used by programs
that process this information. Subjects have to estimate the trade-offs
among a large number of possible different structure definitions that could
be created. At the two extremes are a single structure containing all of the
information could be created and separate structure definitions for each
piece of information. The following are some of the factors that might play
a significant part in the trade off process:

Simplicity. Writing code is simplified when all required information
is obtained by accessing a single structure.
Information hiding. It may be necessary to restrict access to some of
the information, perhaps for commercial or security reasons, or to
reduce the likelihood that a fault in one part of a program can effect
unrelated data in another part. Distributing the information across
different structures is a means of organizing code that helps to
minimise the information available at given points in a program.
Minimising the impact of future updates, with the aim of making it
easier to change one part of a system without having to update
unrelated parts. For instance, if all of the information was held in a
single structure then when a new field is added or an existing field
changed, all of the code that referenced the structure would need to
be recompiled. If the information was organized into separate
structures based on semantic relatedness then adding a new field or
changing an existing field, means that only code referencing that
structure needs to be investigated when considering what
modifications need to be made.
Minimising the amount of storage used during program execution.
For instance, consider a tree whose nodes are represented by a large
single structure where each node contains some fields representing
frequently accessed information and other fields representing
seldom accessed information. In this case, dividing the single
structure into multiple structures can yield considerable storage and
performance savings,[1] with frequently accessed fields allocated to
MAR 2009 | | 13{cvu}

one structure and the less frequently accessed information in
different structures.

Experimental setup
The experiment was run by one of your authors during a 40 minute lunch
time session at each of the 2005 and 2008 ACCU conference
(http://www.accu.org) held in Oxford, UK; between 250 and 300
professional developers attend this conference every year. Subjects were
given a brief introduction to the experiment, during which they filled in
background information about themselves, and they then spent 30 minutes
(2005) and 20 minutes (2008) working on the problems. All subjects
volunteered their time and were anonymous.

The problem

Figure 1 is an excerpt of the text instructions given to subjects.
The experiment brochure handed out to subjects briefly specified three
different kinds of domain specific information, each of which followed the
format given in the Example:

Department of Agriculture. This involved: Meat (cattle, sheep, and
pigs) and Cereals (barley, corn and wheat) and the following list of
items: Owner of farm, Farm acres used to grow crops, Seed supplier,
Location of field, Fertilizer costs, Weed killer sprayed, Fertilizer
applied, Date crop harvested, Weight of average shipment, Was
organically produced, Number of each kind of animal on farm, Acre
of crop market value, Farm location, Antibiotics used, Feed-stuff
costs, Market value of kind of animal, Genetic ID, Crop sown date,
Last vet inspection date, Average labor cost for growing crop, Farm
acres used to rear animals, Pedigree ID, Date animal slaughtered,
Date animal born and Animal raising average labor cost. Some
subjects saw a subset containing 15 items, where some items had
been combined into a more generic description (e.g., ‘Crop sown
date’ and ‘Date animal born’ becoming ‘Date agricultural product
started life’).
Department of Transport. This involved: Self driven (Walking,
Cycling, Car and Motor bike) and Passenger (Ferry, Train, Bus, and
Flying) modes of transport and the following list of items: Arrival
time affected by congestion, Weekly travel cost, Method of
transport is environment friendly, Travel distance, Yearly
expenditure on infrastructure supporting transport method,
Workforce percentage using transport method, Travel time, Tax
revenue from transport method and Probability of arriving on time.
Department of Natural Resources. This involved: Industrial stone
(Marble, Slate, and Granite) and Purified metal (Gold, Silver, and
Titanium) and the following list of items: Raw material per
shipment, average weight, Production volume per week, Mining
location, Raw material value on commodity exchange, Storage cost
per week, Cost of extraction per unit weight, Mining date of raw
material and Dispatch method (e.g. sea/air).

Variations on the problem

There are various ways in which the problem information seen by subjects
could be organized. The format of the experiment meant that the
organization had to be kept as simple as possible. The following describes
the information organization that was varied:

The order in which items of information were listed in the problem
specification. For instance, in the Example problem the
specification uses the order ‘Name of given town’ followed by
‘Number of bathrooms’. The order in which items were listed was
randomly chosen for each printed set of problems.
In many cases it is possible to use different phrases to describe an
item of information. For instance, the phrase ‘Parking space
included with accommodation’ can also be worded as
‘Accommodation has parking space included with it’. In most cases
the phrase seen by each subject was randomly selected from two
possibilities (in a few cases only one phrase was reasonable).

Results
Approximately 240 (2005) and 300 (2008) people attended the conference,
of which 11 (2005) and 15 (2008) took part in the experiment. The 26
subjects produced 38 answers (Agriculture: 22 Transport: 12 Natural
Resources: 1. (Three subjects gave an answer to the example problem.)
Some answers were incomplete at the end of the allotted time. On average
each participant completed 1.5 problems. The average number of years of
experience of subjects was 11.1 (standard deviation 6.3). Subjects were
told that they could use any computer language and the languages used
were (subject counts in parenthesis) C++ (15), C (8), Java (1), C# (1) and
Python (1).
For the Agriculture problem, the average number of structure definitions
created per answer was 5.2 (standard deviation 2.5), and these definitions
contained on average of 5 fields (sd 3.5) (this includes fields not found in
the specification).
In the following discussion of the study’s results the term specification is
used to refer to the description of an item as found in the question seen by
a subject (e.g., ‘Size of garden’), while the term field will be used to denote
the name given by the subject (e.g., ‘garden_size’). The term
component is used to refer to a word or abbreviation found within a field.
Components might be separated using underscores or camel casing. For
example, ‘garden_size’ includes two components: ‘garden’ and
‘size’.
Subjects sometimes wrote comments on their answer sheets that were
obviously intended to be directed at those running the experiment rather
than source code comments that were part of an answer to the problem.
The common comment was that there was insufficient time to complete
an answer.

Influence of specification on information ordering in
declarations

The information in a specification is ordered in various ways and it is
hypothesized that this ordering has an effect on how developers order
various entities within a definition. The following are the information
ordering issues analysed in this subsection:

the effect that the order in which items of information are listed in a
specification has on the order in which fields are defined in a
structure. For instance, if the specifications lists the ‘number of
bathrooms’ before the ‘number of bedrooms’ the field
number_of_bathrooms may be expected to appear before
number_of_bedrooms (assuming they both appear in the same
definition and that these names are used).
the effect that the words used and their ordering in each specification
has on the components of a field. For instance, the specification
‘number of bedrooms’ might be expected to result in the field
number_of_bedrooms while the specification ‘bedroom count’
might be expected to result in the field bedroom_count.

Subjects sometimes gave answers that did not contain some items of
information. This is likely to have been an oversight, although at least one
subject made an explicit decision (their answer contained a comment
explaining how some items could be deduced from information on other
i tems, e .g . , organical ly produced f rom informat ion on the
fertilizer/weedkiller used).
Some subjects gave answers that included fields that did not directly
co r r e spond t o a n i t em l i s t ed i n t he spe c i f i c a t i on (e . g . ,
minimum/maximum/mean/standard deviation arrival delays in the
Transportation API). Such fields were ignored in the analysis.

Item words in field names

Identifiers are often formed by combining two or more known words. If
subjects are influenced by the content of a specification it is to be expected
that the words used and the order in which they occur will be reflected in
the name of the corresponding field. For instance, given the description
‘Fer t i l i ser costs’ a f ie ld name of fertiliser_costs or
14 | | MAR 2009{cvu}

fertiliser_cost might be expected, while the specification ‘Cost of
fertiliser’ might result in the field name cost_of_fertiliser (perhaps
with the of omitted) or fertiliser_cost.
It is possible that subjects have relatively fixed naming habits or that the
given specifications induced subjects to use a particular naming. The

results were therefore analysed by subject and by item of information as
follows:

1. The name of a field is broken down into its components (e.g.,
bathrooms_count has the components bathrooms and count
as does bathroomsCount). The algorithm is the same as that used
in a previous ACCU experiment.[9]

You will be asked to define some data structures to hold values for various
kinds of information. This is not a race and there are no prizes for providing
answers to all questions. If you do complete all the questions feel free to
add any additional comments to your previous answers.

Yumei is a medium sized island that gained independence in 1945. The
island economy is based on the export of a various kinds of raw materials
and agricultural products. The government has decided to publish a set of
APIs that applications written for government departments must follow.

The government could not reach consensus on an object oriented approach
and it was decided to specify data types and access functions separately.
You have been assigned the job of creating the data structures that will be
used to hold various kinds of information. If possible please briefly specify
any rationale used to decide how to organise the data structures.

The declarations can be written in a language of your choice (it would
simplify subsequent analysis if either C or Java were used). The members
may have any arithmetic type, or a pointer type, or an array type.

1. Read the information that needs to be represented.

2. Decide which information should be held in a given data structure.

3. Decide on a type to be used to represent the value of the information.

4. Decide on the name of a member to be used to denote the
information.

5. Define one or more structure types to hold members denoting the
information.

The following is an example question

The Department of Housing maintains rented accommodation for workers.
The form of accommodation can be one of:

Bungalow

Caravan

Dormitory

Flat

House

Youth hostel

The information, about the accommodation, that needs to be processed by
applications includes the following (in alphabetical order):

1. Address of accommodation

2. Detached, Semi-detached, Terraced

3. Easily moved

4. Floor number of accommodation

5. Name of current responsible occupant

6. Name of given town

7. Number of bathrooms

8. Number of bedrooms

9. Number of each kind of accommodation in given town

10. Number of rooms

11. Parking space included with accommodation

12. Shared bathroom

13. Size of garden

14. State of repair

15. Total area of floor space

16. Total value of each kind accommodation in given town

17. Weekly rent

1 #define HOUSE 0
2 #define BUNGALOW 1
3 #define CARAVAN 2
4 #define FLAT 3
5 #define DORMITORY 4

6 #define YOUTH_HOSTEL 5
7 #define MAX_ACCOM_KIND 6
8
9 #define NOT_APPLICABLE 0
10 #define DETACHED 1
11 #define SEMI_DETACHED 2
12 #define TERRACED 3
13
14 struct town_accommodation {
15 char * town_name;
16 int num_accom_kind[MAX_ACCOM_KIND];
17 float value_accom_kind[MAX_ACCOM_KIND];
18 };
19
20 struct accommodation {
21 int kind_of_accommodation;
22 int num_rooms;
23 int num_bedrooms;
24 int num_bathrooms;
25 float garden_size;
26 float weekly_rent;
27 int detached_status;
28 char easily_moved;
29 char shared_bathroom;
30 char has_parking_space;
31 int floor_number;
32 char * address;
33 char * repair_state;
34 char * current_occupants;
35 };
36
37 typedef unsigned char BOOL;
38
39 struct caravan_rec {
40 int number_of_rooms;
41 int number_of_bedrooms;
42 int number_of_bathrooms;
43 float size_of_garden;
44 float rent_per_week;
45 BOOL bathroom_is_shared;
46 BOOL parking_space_available;
47 int floor_number;
48 char * address;
49 char * state_of_repair;
50 char * current_occupiers;
51 };
52
53 struct accommodation_rec {
54 int accommodation_kind;
55 int number_of_rooms;
56 int number_of_bedrooms;
57 int number_of_bathrooms;
58 float size_of_garden;
59 float rent_per_week;
60 int detached_status;
61 BOOL bathroom_is_shared;
62 BOOL parking_space_available;
63 int floor_number;
64 char * address;
65 char * state_of_repair;
66 char * current_occupiers;
67 };

Figure 1
MAR 2009 | | 15{cvu}

2. For each component of a field what was not a dictionary word, the
component was treated as an abbreviation and replaced to the
appropriate dictionary word. Based on the specification, there was
always a unique replacement of each abbreviation. For example,
num was replaced with number.

3. The components from each field were compared to the words from
the corresponding specification. A component and a word match if
they have the save stem (e.g., the stem of ‘swimming’ is ‘swim’).
Stemming was performed using the Krovetz stemming
algorithm.[10] This comparison was carried out twice: once
ignoring the order of the component and word and the second time
requiring the same relative order.

Counting the number of components that appear in the corresponding
specification, in almost 70% of the cases all the components of a field occur
in the specification of the corresponding item. Figure 2 gives a break down
by fields containing 1, 2, 3 or 4 components and the percentage where the
corresponding specification does not contain zero or more of these
components.
The 50 cases, out of a total of 198 unique components, where a component
did not appear in the corresponding specification can be broadly broken
down into the following categories:

the component is more specific: there may be several fields each
relating to some aspect of the specification, e.g., an address
specification includes information on street, postal-code, etc.).
Another example is the fields garden_length and
garden_width created to hold information on ‘Size of garden’.

synonym-like usage: for example type used in place of kind and
count used in place of number, leading to the choice of the field
name product_type_count for ‘Number of each kind of
agricultural product’.
grammar support words: words such as is in is_organic and of in
cost_of_feed are used to generate short phrases.

Having shown that a large percentage of components occur in the
specification we now compare the relative ordering of components and the
words of the specification. This ordering might be effected by the
following.

An existing set of rules that the subject always uses to create fields
from combinations of words.
The relative word order present in the corresponding specification.
A desire for consistency in all field names. The specifications seen
by some subjects have characteristics that require decisions to be
made about conflicting choices.

The description of many items was randomly chosen from a small set of
possibilities; thus in some cases the descriptions given for two

semantically related specifications use different word order patterns. For
instance, a subject may see the two specifications ‘Weedkiller costs’ and
‘Cost of fertiliser’ (rather than ‘Fertiliser costs’ in the later case).
Subjects who base their choice of field name purely on the wording that
appears in the corresponding specification will not pay any attention to the
word order found in the specification. However, subjects trying to achieve
a degree of consistency across semantically related fields may select one
kind of word ordering over another, perhaps the word order from the
description that is first encountered (likely the first one listed in the list of
items).
Figure 3 breaks down the fields that contain 2, 3 or 4 components based
on the number of components occurring in the same order as the
corresponding words from the corresponding specification (a total of 260
fields). The figure omits fields having only one component in common and
also omits the single data point of one field with 6 components (because
patterns cannot be established from a single data point). There were no
fields with 5 components..

Of these 260 fields, the components occur in the same order as the words
of the corresponding specification in 86% of cases(37 cases did not follow
this order). This provides strong evidence for the hypothesis that the
subjects use the ordering of information in the specification when creating
field names.
Table 1 lists some examples of fields definitions given as answers to a
given specification. The samples are grouped under four common patterns
that are apparent in the data..
Is there a pattern to the 14% of cases where the specification order was not
following? One possible pattern is a preference for what might be
considered to be natural word order. There are many patterns to English
word order, with some orders being much more common than others.
Perhaps subjects made use of their knowledge of what they consider to be
natural word order. To test for this pattern of usage Google’s n-gram
dataset[2] was used; this data set includes counts of word pairs, triples, etc.
as found by Google on the web.
The frequency of occurrence of components in each field and the
corresponding specification word order were looked up in the Google
dataset. For example, the components start date occur 872,156 times,
while the words of the corresponding specification ‘date started’ occur
only 4,690 times. Thus the order of the components used by the subject in
this answer is 186 times more common, in the Google observations, than
the ordering used in the specification.
A breakdown of the 37 data points is presented in Table 2. In the table ‘No
observation’ include the 32.5% cases in which neither the components of
the participants field nor the words of the specification occurred in the

Percentage of fields containing a given number of components (e.g., 1,
2, 3 or 4) where the field’s components also occur in the corresponding
specification. In the group of four on the left all components occur in the
specification; in the next group one component does not occur in the
specification; and so on. Combined data from 2005 and 2008, a total of
260 fields having 704 components.

Number of components in field name

Pe
rc

en
ta

ge

1 2 3 4 1 2 3 4 2 3 4 3 4

0

25

50

75

100

×

•
Δ

×

• Δ

×

• Δ

× •
Δ

0 missing

1 missing

2 missing

3 missing
Percentage of fields containing a given number of components (e.g., 2,
3 or 4) where the field’s components occur in the same order as in the
corresponding specification (other words may appear in the
specification between matching components). In the group of three on
the left fields containing 2, 3 and 4 components all occurring in the
same order as the corresponding specification, in the next group of one
component does not occur in the same order and so on. Combined data
from 2005 and 2008, a total of 260 fields.

Component sequences having item order

Pe
rc

en
ta

ge

2 3 4 2 3 4 3 4 4

0

25

50

75

100

×
•

Δ

× •
Δ

×
•

Δ × • Δ

all

all but 1

all but 2

all but 3

Fi
gu

re
 2

Figure 3
16 | | MAR 2009{cvu}

Google dataset. The row ‘Subject more common; represents cases in which
the component order was at least 60% more common in the Google dataset
that the specification word order. Similarly, ‘Specification more common;
represents cases in which the specification word order was at least 60%
more common in the Google dataset that the component order. The final
category ‘About the same; includes the remaining cases.
The third of the data for which no observations were found all have three
or more components that represent phrases rarely seen in the Google
dataset, for example, ‘life start date’.
At 35% use of the more common order was almost twice as likely as using
an order that was less common than that appearing in the specification.
Possible reasons for this usage is a desire by subjects for consistency of
component order for related fields in the same structure definition.

Ordering of fields

Does the order of fields in structure definitions tend to follow the order in
which the corresponding item of information appears in the specification?
For instance, in the Example problem given earlier four items had the
relative order: Number of bathrooms, Number of bedrooms, Number of
rooms and Shared bathroom, and their corresponding fields had the
relative order num_rooms, num_bedrooms, num_bathrooms and
shared_bathroom (the two lists almost have opposite orders).
There are 24 possible ways this information can be represented using four
fields (see Table 3). In a random selection every field ordering has a 1 in
24 probability of occurring, but what is the probability of a random field
ordering matching that of the corresponding words listed in the
specification?
To better understand this question, we count the field-item agreement for
a sequence of fields. This metric represents the number of pairs that are in
the expected order. For instance, the sequence 2314 is assigned the value
4: 2 appears before 3 and 4, 3 appears before 4 and 1 appears before 4.
There are five sequences having an agreement metric of 4, see Table 3,
and the probability that a random sequence of four fields will have an
agreement metric of four is 5=24.
It was noted that the sequence 1; 3; 5; 6; 5; 3; 1 (second column in Table 3)
is part of the Triangle of Mohanian numbers – sequence A008302 in the
Encyclopedia of Integer Sequences, www.research.att.com/~njas/
sequences – and also appears in the number of inversions of a permutation.

This information was used to derive the possible number of structure
definitions having a given field-item agreement metric for definitions
containing larger numbers of fields.
Figure 4 shows the order distributions for the random case and the
collected data. In the figure crosses at 50% indicate that there is a 50/50
change of the fields having the order they do (i.e., there are two fields in
the definition). Moving left the crosses at 33.3% denote combinations
involving three fields (there are also crosses at 16.67% for less likely
combinations of three fields), crosses at 20.8% for some combinations of
four fields, and so on. The crosses very close to zero are for definitions
containing the less likely combinations of 6 or more fields, or just
containing lots of fields.
If field order selection was random then on average the field-item distance
would be 50% of the maximum value. The bullets in Figure 5 show the
expected distribution of field-order distance that would occur with random
field ordering. The crosses denote the percentage occurrence found in

Some wording patterns and examples of them that appeared in subject answers. The “consistency with previous field” pattern occurs when the name
of a field uses the same component ordering as that used by the field that occurred before it in the structure definition.

Field Specification

type name first SCurrency currencyRevenue
STime timeTravel

Transport method tax revenue
Travel time

favour preposition float costPerWeek
float probabilityOnTime
float revenueOfTax
float percentageOfUsers

Cost of travel per week
Probability of arriving on time
Tax revenue from transport method
Workforce percentage using transport method

consistency with previous field int costs_material
int costs_labor

Costs (e.g., Feed-stuff and Fertilizer) for agricultural product growing
Agricultural product average labor costs

noun adjective boolean bathroomShared
boolean parkingSpaceIncluded
String occupantName

Shared bathroom
Parking space included with accommodation
Name of current responsible occupant

Categorizes the fields components that appear in to different ordering
based on observations in the Google n-gram dataset.[2] No observations
- Number of field component sequences that did not appear in the Google
n-gram database. Subject more common - The sequence used by the
subject was more common than the specification. About the same - both
sequences had similar number of occurrences, and Specification more
common - the specification was the more common case.

Count Percentage

No observations 12 32.5

Subject more common 13 35.0

About the same 5 13.5

Specification more common 7 19.0

The 24 possible ways in which four fields can be ordered. Rows have
the same field-item agreement metric (the extent to which a field
ordering matches that of the corresponding items in the specification,
the higher the better).

Metric Occurrences Orders

6 1 1234

5 3 1324 2134 1243

4 5 2314 3124 1342 2143 1423

3 6 3214 2341 3142 1432 2413 4123

2 5 3241 2431 3412 4132 4213

1 3 4321 4231 4312

0 1 4321

Probability that the measured field-item distance, for a given structure
definition, could occur through random selection of fields (crosses) and
the same structure’s field-item distance expressed as a percentage of
the maximum possible (bullets). If field order selection was random the
bullets would be distributed around 50%. The structures measured are
ordered, left to right, by increasing probability of field-item distance.

Structure definition num

Pe
rc

en
ta

ge

0 20 40 60 80

0

25

50

75

100

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×
•
×
•
×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

Table 1
Ta

bl
e

2
Figure 4

Table 3
MAR 2009 | | 17{cvu}

problem answers (answers with greater than 5% chance of occurring
randomly were ignored). A significant percentage (44.4%) had the
maximum field-item distance (i.e., the relative field order was the same as
the items in the specification).

Information clustering

There are a lot of different ways in which information can be clustered into
different structures. For instance, there are 217 ways in which the 17 values
listed in the earlier example could be split between two structure
definitions, 317 between three definitions and so on.
The problems subjects were asked to solve have no correct answer as such.
If the development history for a variety of different APIs was available
such things as development cost, ease of maintenance and the other factors
discussed in the subsection on Subject motivation could be compared and
those with lower costs and/or greater benefits labelled as being ‘better’
than the others.
The analysis in this subsection looks for general patterns in how items
tended to appear together within the same structure definition.

Finding clusters

The organization of the data (i.e., a list of experimenter provide items
clustered into separate structure definitions in a manner decided by each
subject) and the analysis required (i.e., averaged over all subjects what
clustering of items exists, and how strong is it) is very similar to a study
performed Ross and Murphy[16] and the mathematical techniques used in
that study are used here. In one of the experiments performed by Ross and
Murphy subjects were given a list of various foods and asked to divide
them into groups; either ‘similar food types’, ‘foods that are eaten in the
same situation’ or ‘things that go together’.
Ross and Murphy generated a Robinson matrix from the subject data and
this was used to obtain information on the general form of the categories
created by their subjects. A Robinson matrix has the property that the value
of its matrix elements decreases, or stays the same, when moving away
from the major diagonal (more mathematical details in the Ross and
Murphy article[16]). A matrix can be put into this form by reordering its
rows and columns. This reordering brings together entries that are similar
and moves dissimilar ones apart. For this study the seriation package[5]
within the R statistical program, http://www.rproject.org, was used to
create a Robinson matrix. Figure 6 and Figure 7 are visual representations
of this matrix for one problem.
The Department of Agriculture problem produced the most answers (22);
it also contained the largest number of items (25), making it much more
likely that answers contain many structure definitions. The analysis in this
subsection is applied to the answers to this problem.
The similarity detection process involves the following two stage process,
for the answers to the Department of Agriculture API:

1. creating a similarity matrix from the structure specifications. The
rows and columns of this matrix both represent the specifications
listed in the problem, for instance if the entry for ‘Easily moved’ is
in row 3, then column 3 also denotes ‘Easily moved’. The entries for
this similarity matrix are calculated as follows: 1) Zero the matrix,
2) for each subject perform the following: a) add 1 to every entry in
the matrix where two specifications occur together in the same
structure definition (e.g., if a definition contains fields representing
both ‘Easily moved’ and ‘Shared bathroom’ add 1 to the entry at the
corresponding row/column (the matrix is symmetrical, so two
entries will be incremented).

2. Within the seriation package the seriate function is capable of
processing data having a variety of forms and implements a variety
of algorithms that attempt to optimize the process of generating a
Robinson matrix from this data (the computational cost is so high
that approximations have to be made). It was found that consistent
results were obtained by mapping the data to a dissimilarity form.
This was done using the formula 1– max_element/max_element_val
for each element of the matrix, where max_element_val is the largest
value in any element of the matrix.

The R instructions used to generate these images were:
 1 library("seriation")
 2 fmat <as.matrix(read.table("f.data"))
 3 fdist <as.dist(1 fmax/max(fmat))
 4 fser <seriate(fdist, method="BBURCG")
 5 pimage(fdist, fser)

The items corresponding to the ticks along both axis in Figure 6 and Figure
7 are as follows (the alternative specifications are also listed):
1 Date of last vet inspection | Last vet inspection
date
2 Date animal born | Animal birth date
3 Date crop sown | Crop sown date
4 Date animal slaughtered | Animal slaughter date
5 Date crop harvested | Crop harvest date
6 Antibiotics used | Antibiotics given
7 Fertilizer used | Fertilizer applied
8 Weed killer used | Weed killer sprayed
9 Pedigree ID | Pedigree class
10 Genetic ID | Genetic family
11 Supplier of seeds | Seed supplier
12 Was organically produced | Produced organically
13 Number of each kind of animal on farm
14 Farm acres used to grow crops | Acres used to
grow crops
15 Farm acres used to rear animals | Acres used to
rear animals
16 Average shipment weight | Weight of average
shipment
17 Market value of kind of animal
18 Market value of acre of crop | Acre of crop
market value
19 Average labor cost for raising kind of animal |
Animal raising average labor cost
20 Average labor cost for growing crop | Crop
growing average labor costs
21 Feedstuff costs | Cost of feedstuff
22 Fertilizer costs | Cost of fertilizer
23 Location of field | Field location
24 Location of farm | Farm location
25 Farm owner | Owner of farm

Comparing the clusterings extracted from the 2005 and 2008 answers
(Figure 6 and Figure 7) it can be seen that both the 2005 and 2008 data
appear to be made up of approximately three large clusters (combining the
data from both experiments produces a result that is almost identical to that
for 2008). Within each of these large clusters are smaller clusterings of
field items.

Bullets represent the probability (y-axis) of fields in a structure definition
having a given percentage of the maximum field-item distance (x_axis).
Crosses denote structure definitions in problems answers whose
field-order is less that 5% likely to have randomly occurred. Counts
have been put into bins of width 5 (percent).

Percentage of maximum field-item distance

Pe
rc

en
ta

ge
 o

cc
ur

re
nc

e

0 25 50 75 100

0

10

20

30

40

×• ×• ×• ×• ×• ×
•

×
•

×

•

×

•

×

•

×

•

×

•
×
•

×

•

×

•
×•

×

•
×

•

×

•

×

•

×

•

Fi
gu

re
 5
18 | | MAR 2009{cvu}

The only two items that are consistently placed in the same definition are
items 24 and 25 (‘Location of farm’ and ‘Farm owner’) and items 14, 15
and 13 are often included in the same definition with them (the name given
to definition containing this set of fields was often farm or something very
close to this name; no analysis of this kind of type name was made). Other
items are often placed in the a definition together the items 2, 4 and 6; other
small sets of items can be extracted from the figures.

Comparison with source code measurements

The first part of this article included various measurements of a large
amount of C source code. This subsection compares those measurements
against the same measurements for the structure definitions given in the
problem answers. The number of fields contained in the source code struct
definitions varied between 2 and 70 fields, while the definitions given in
the answers to the experiment problems contained a small range of fields
(between 2 and 15; average 5).
The first part of the article included three figures containing measurements
of field attributes and these are discussed in the following:

1. See Figure 8 for a comparison of experiment answers and source
code measurements. For those deltas having a zero measured
percentage there were no instances of a minimal type change
sequence because of the small number of occurrences of a given
type sequence (often only one occurrence).

2. In the case of the number of individual field pairs that share one or
more subcomponents because of the small number (i.e., 104) of
structure definitions available for analysis in the answers there is a

great deal of variation the number of occurrences of field-pair
distances and it is not possible to make reliable comparisons against
the source code measurements.

3. For the problem answers the average distance between field pairs for
definitions containing a given number of fields appears to be similar
to that found in the source code measurements. The small number of
data points means it is not possible to make a stronger statement. For
those wanting a comparison against the corresponding figure in part
1 of this article, the actual x/y axis values are: 3.14:5, 1.90:6, 1.00:7,
0.00:8, 1.00:9, 3.67:10, 0.00:11, 0.00:12 and 6.89:13.

Conclusion
This study investigates factors that influence the decisions made by
developers when deriving API structure definitions from a specification.
The hypothesis was that various kinds of information in the specification
had a significant impact on the way in which structure definitions were
organized and the naming of fields. The particular attributes found to have
an effect included:

The ordering of fields was strongly influenced by the order in which
items of information occurred in the specification.
Any words appearing in the components of a field name were likely
to also occur in the corresponding specification
Any words appearing in the components of a field name were likely
to either appear in the same order as that in the specification or to
follow common English word order.

An analysis of individual structure definitions showed that for some items
of information subjects made similar decisions on putting them together
within the same structure definition. It is not known whether this clustering
would have been stronger if subjects had had time to iterate on their initial
design decisions.
Further experiments are needed to confirm the results of this study and to
measure the consequences of allowing subjects more time to individual
answer questions. .

Further reading
A readable upper graduate level book dealing with some of the more higher
level aspects of how people create and use categories The Big Book of
Concepts by Gregory L. Murphy published by MIT Press, ISBN
0-262-63299-3.

A visualization of the contents of the Robinson matrix generated from
the 2005 field-item structure membership information. Darker areas
indicate more closely associated fields. The order of items along the x
and y axis is: 7, 3, 8, 5, 11, 22, 23, 12, 16, 15, 14, 24, 25, 21, 13, 17, 1,
10, 9, 2, 4, 6, 18, 20 and 19 (plot shows a subset of these values).

A visualization of the contents of the Robinson matrix generated from
the 2008 field-item structure membership information. Darker areas
indicate more closely associated fields. The order of items along the x
and y axis is: 13, 24, 25, 15, 14, 23, 22, 18, 20, 11, 8, 16, 5, 7, 3, 12, 10,
9, 1, 2, 4, 6, 17, 19 and 21 (plot shows a subset of these values).

The measured percentage of structure definitions having a minimal type
change sequence (x-axis) and the percentage that are expected to
occur if fields were ordered randomly. A delta symbol indicates a
problem answer percentage and the random percentage for a definition
containing that particular number of types for problem answers, while
cross applies to source code measurements. If field ordering were
random the deltas/crosses would be expected to cluster along the solid
diagonal line (bullets indicate 1 standard deviation, dashed line 3
standard deviations). Data for all definitions containing between four
and seven (inclusive) fields.

Measured percentage

R
an

do
m

 o
rd

er
in

g
pe

rc
en

ta
ge

10

30

50

0 25 50 75 100

× Δ× Δ

×Δ

×Δ

×Δ

×Δ

×Δ

×Δ

×

×

×Δ

×Δ

×Δ

×

×Δ

× Δ
×Δ

×

×

×
×

× Δ

×

×
× × Δ

×

×

×
×

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

Fi
gu

re
 6

Fi
gu

re
 7

Figure 8
MAR 2009 | | 19{cvu}

Professionalism in Programming # 54
A readable collection of papers on how people make use categories to solve
problems quickly without a lot of effort: Simple Heuristics That Make Us
Smart by Gerd Gigerenzer, Peter M. Todd and The ABC Research Group,
published by Oxford University Press, ISBN 0-19-154381-7.

Acknowledgements

The authors wishes to thank everybody who volunteered their time to take
part in the experiments and ACCU for making a slot available, in which
to run the experiment, at both conferences.
Thanks to Matt Hearn, Brittany Babin and Oluwaseyi Fatadi of Loyola
College for decrypting subjects’ written answers into machine readable
form.
Thanks to Michael Hahsler for suggestions on the use of his seriation
package.

References
[1] R. W. Bowdidge, ‘Refectoring gcc using structure field access traces

and concept analysis’, in Procedings of the Third International
Workshop on Dynamic Analysis (WODA 2005), pages 1–7, May
2005.

[2] T. Brants and A. Franz, Web 1T 5-gram, Linguistic Data Consortium,
Philadelphia, USA, 1 edition, 2006.

[3] K. Cwalina and B. Abrams, Framework Design Guidelines:
Conventions, Idioms, and Patterns for Reusable .NET Libraries,
Addison–Wesley, 2006.

[4] S. A. Gelman and E. M. Markman, ‘Categories and induction in
young children’, Cognition, 23:183–209, 1986.

[5] M. Hahsler, K. Hornik, and C. Buchta, ‘Getting things in order: An
introduction to the R package seriation’, Journal of Statistical
Software, 25(3):1–34, Mar. 2008.

[6] E. Heit, ‘Background knowledge and models of categorization’ in U.
Hahn and M. Ramscar, editors, Similarity and Categorization,
chapter 9, pages 155–178. Oxford University Press, Apr. 2001.

[7] D. M. Jones, ‘I_mean_something_to_somebody’, C Vu,
15(6):17–19, Dec. 2003.

[8] D. M. Jones, ‘Experimental data and scripts for short sequence of
assignment statements study’
http://www.knosof.co.uk/cbook/accu04.html, 2004.

[9] D. M. Jones, ‘Experimental data and scripts for developer beliefs
about binary operator precedence’
http://www.knosof.co.uk/cbook/accu06.html, 2006.

[10] R. Krovetz, ‘Viewing morphology as an inference process’,
Technical Report UM-CS-1993-036, University of Mass-Amherst,
Apr. 1993.

[11] W. T. Maddox and C. J. Bohil, ‘Costs and benefits in perceptual
categorization’, Memory & Cognition, 28:597–615, 2000.

[12] B. C. Malt, S. A. Sloman, S. Gennari, M. Shi, and Y. Wang,
‘Knowing versus naming: Similarity and the linguistic categorization
of artifacts’, Journal of Memory and Language, 40:230–262, 1999.

[13] B. C. Malt, S. A. Sloman, and S. P. Gennari, ‘Universality and
language specificity in object naming’, Journal of Memory and
Language, 49(1):20–42, 2003.

[14] R. E. Nisbett and A. Norenzayan, ‘Culture and cognition’ in D.
Medin and H. Pashler, editors, Stevens’ Handbook of Experimental
Psychology, Volume Two: Memory and Cognitive Processes, chapter
13. John Wiley & Sons, third edition, Apr. 2002.

[15] E. M. Pothos and N. Chater, ‘Rational categories’ in Proceedings of
the Twentieth Annual Conference of the Cognitive Science Society,
pages 848–853, 1998.

[16] B. H. Ross and G. L. Murphy, ‘Food for thought: Cross-classification
and category organization in a complex real-world domain’,
Cognitive Psychology, 38:495–552, 1999.

Developer categorization of data structure fields (continued)
This ‘Software’ Stuff, Part 3
Pete Goodliffe concludes his mini-series on the nature of our

craft.

ver the last few articles we’ve been taking a bird’s eye view over the
art, the craft, and the science of software development. We’re
looking at what software is, how it works, and how we build it. The

whole point of this exercise is to identify the ways we can each improve
as software developers.
We’ll wrap up this mini-series by seeing how software is both child’s play
and a chore. Remember that as we go along I will be posting a series of
personal questions. These questions are guides to help you work out
specific ways to improve your coding skills. Carefully consider each of the
as you read, and work out whether they apply to you. What can you do
about them?
Before we dive in, it’s worth revisiting the very first question I posed:

Do I... want to improve as a programmer?

In these days of economic hardship and reduced job security, surely you
owe it to yourself to improve as a programmer? Make yourself invaluable,
and more easily employable! Whether through this article, the other
articles in this magazine, or any other mechanism (books, the ACCU 2009
conference, practising) work out how you can grow and develop in this
craft.

Software is... child’s play
For me, this observation seems particularly appropriate; I’m really just a
child at heart. Aren’t we all?
My kids are now six and four. It’s incredibly interesting
to see how they continue to grow and learn, how their
world view changes and is shaped by each new
experience. We can glean a lot from the way a child learns
and reacts to the world. Consider how these apply to
our software development:

Learning A child is constantly aware that they are learning,
that don’t know everything. This requires a simple characteristic:
humility. Some of the programmers I have found hardest to work
with think that they know it all. If there’s something new they need
to know, they read a book and then presume that they’re an expert.
A total humility bypass.

O

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@cthree.org
20 | | MAR 2009{cvu}

{cvu}

A child is constantly assimilating new knowledge. We must
recognise that if we want to improve, we must learn. And we must
be realistic about what we do, and do not, know.
Enjoy learning, savour finding out new things. Practise and improve
your craft.
Simplicity Ask yourself: do I write the simplest code possible? Do
you reduce everything to the least complex form to make it easier to
understand and easier to code? I love the way kids try to get to the
bottom of things, to understand things from their own limited
perspective. They’re always asking why. Take, for example, a recent
conversation I had with my six- year-old daughter: Daddy, why is
Millie my sister? Because you’re in the same family as her, Alice.
Why? Well, because you have the same mummy and daddy, Alice.
Why? Because, well, you see, there are the birds and the bees... Oh
go and get a book! Why?...
We should be constantly asking why – questioning what we are
doing and the reasons for it. Seeking understanding of the problem
and the best solution. And we should strive for simplicity in our
handiwork. That is not the most simplistic ‘dumb’ code possible, but
appropriately non-complex code.
Looking cute If all else fails, this childish characteristic might help
you to get a pay rise. Perhaps more helpful for the ‘career’
programmer than the ‘professional’ developer?

With that in mind, we can ask ourselves:

Do I... write the simplest code possible? Or do I type what comes
to mind, and not think about commonality, refactoring, or code
design?

...and...

Am I... still learning? What can I learn about? What do I need to
learn about?

Software is... a chore
A lot of our software development work is not necessarily
pleasant. It’s not glamourous. It’s not plain sailing. It’s just
donkeywork that has to be done to get a project completed.
To be an effective programmer, you mustn’t be afraid of the
chores. Recognise that programming is hard work. Yes, it’s great
to do the cool design on newest product version, but sometimes
you need to do the tedious bug fixing and grubbing around the
old awful messy code to get a product shipping and make some money.
From time to time we must become software janitors. The requires us to:

Clean up We must spot problems and address them; work out where
breakages are and what the appropriate fixes are. These fixes must
be made in a timely and non-disruptive manner. A janitor does not
leave the unpleasant tasks to someone else, but takes responsibility
for them.
Work in the background A janitor does not work in the limelight.
They probably receive little recognition for their heroic efforts. This
is very much a supporting, not a lead role.
Maintenance A software janitor will remove dead code, fix broken
code, refactor and rebuild inappropriate workmanship, and tidy and
clean what is OK to ensure that it doesn’t fall into disrepair.

Am I... happy to do code ‘chores’? Do I only want the glamourous
work?

...and...

Do I... take responsibility for messy code and clean it up?

The ideal programmer revisited
I built a composite image of the ideal programmer based on the
observations that software is:

An art
A science
A sport
Child’s play
A chore

And go t th i s . Tha t ’ s de f in i t e ly
something to aspire to.
But thinking about it, Van Gogh was a
bit of a plank; he cut off his own ear, after
all. Einstein was as sharp as a button, but
clearly a few electrons short of an atom;
a few particles short of his wavelength.
Just look at the hair. Sportsmen are
intentionally bonkers – running around
on a cold muddy pitch inflicting pain and torture on themselves in the name
of ‘enjoyment’. Nutters. And janitors? When I was at school, I was
convinced that they’re all evil geniuses plotting to take over the world from
their underground boiler rooms.
Frankly, they’re all a little bit ‘abnormal’, aren’t they?
So my observation is this: programmers are simply not a socially
well-adjusted bunch. You have an excuse. So go forth and be... interesting.

A final thought
At the beginning of this series (remember all the talk of spaghetti and
custard?) we complained that too much software is like Alphabetti
Custard: the wrong thing, written the wrong way. Over the course of these
articles, we’ve tried to investigate what software truly is.
So here’s my final question :

What are you going to do now to help you write the right thing in
the right way?

If you don’t take something practical away with you then this series has
been nothing more then entertainment . (Well, hopefully it has been
entertaining). Stop and think for a moment what you are going to do to
improve.
Of course this has been a very rapid, very woolly investigation into the
nature of software. It’s been general and vague, but hopefully it will have
helped you to find ways to become a better programmer. If you really do
care about your code and how you develop it, you might find my book
entitled Code Craft an interesting read. Yes, that was a gratuitous plug.

Pete’s book, Code Craft, is available in
all good bookshops.

Check it out at www.nostarch.com
MAR 2009 | | 21

"C:\Data\PC Lint\8.00\lint-nt.exe" -i"C:\Data\PC
Lint\8.00" -background -b --u
C:\Data\Code\Projects\Applications\SourceVersione
r\Development\SourceVersioner_vs71_Debug_Win32.ln
t -u "C:\Data\PC Lint\8.00\std_vs71.lnt" env-
vc7.lnt -t4 +ffb +linebuf -
iC:\Data\Code\Projects\Applications\SourceVersion
er\Development\Debug
c:\Data\Code\Projects\Applications\SourceVersione
r\Development\Shared\FileUtils.cpp

Taming the Lint Monster, Part 2
Anna-Jayne Metcalfe deconstructs the PC-Lint

Command Line… and more.

n part 1 we introduced the PC-Lint static code analysis tool, and started
to look at how to configure it. In this part we will look closely at how
the PC-Lint command line is formed, and some of the common PC-Lint

options. We will also consider how to configure PC-Lint for a particular
project configuration, and some strategies for dealing with the analysis
results it generates.
First though, let’s take a closer look at the command line we closed the
first part with (Listing 1).
If we break this command line down to its essentials, we are left with
something a bit more comprehensible:

lint-nt.exe -i<PC-Lint folder> -background -b --u
<project.lnt file> <std.lnt file> -u env-vc7.lnt
-t4 +ffb +linebuf -i<intermediate files folder>
<source file>

Put simply, the above command line defines a single file (or ‘unit
checkout’) analysis using the configuration files project.lnt,
std.lnt and env-vc7.lnt. It is notable that the options given in each
.lnt file are applied in order – so those specified later in the command
line can override directives contained within (for example) std.lnt.
This is useful for message suppression purposes, as we can almost always
override a high level option later in the command line.
This example also shows several PC-Lint options which are worthy of
mention:

-i specifies a folder for include and/or indirect files. In this
particular case it is being used to specify the location of PC-Lint
indirect files referenced within std.lnt, and any .tlh and .tli
intermediate files located within the Debug subfolder under the
project.
-background instructs PC-Lint to run analysis at a low priority
(useful if you are running several analysis tasks in parallel or are
using a slow machine).
-b suppresses the banner line
--u instructs PC-Lint to ignore any files listed in the following
project.lnt file (we will come back to this later). --u is usually
used with -u.
-u instructs PC-Lint to perform a ‘unit checkout’ analysis – i.e.
analyse a single source file or compilation unit.
-t4 tells PC-Lint that it should use a tab size of 4 spaces while
parsing source files (one of the things PC-Lint can do is check
indentation).
+ffb instructs PC-Lint that it should assume ANSI compliant for
loop scoping. With compilers where this behaviour can be set by
project settings (notably Visual Studio .NET 2002 onwards), the
alternate option (ffb) may be required on specific projects.

Each occurrence of +linebuf doubles the size of the PC-Lint input
buffer (the default size is 620 characters).

Configuring PC-Lint for specific project
configurations
The file SourceVersioner_vs71_Debug_Win32.lnt is a project
specific indirect file – an indirect file which specifies the PC-Lint options
for a particular project configuration and platform. I usually refer to these
as ‘project.lnt files’ for convenience.
A quick glance at the contents of such a file reveals that it contains
preprocessor directives, the locations of additional include folders and a
list of the files in the project (Listing 2).
These indirect files are critically important in ensuring that PC-Lint uses
the same analysis configuration as the compiler itself. Any mismatch in
preprocessor directives or include paths is likely to result in a deluge of
angry (and very misleading) error messages.
It should be obvious by now that configuring PC-Lint for a given project
can be a very tricky business.
If you are using Visual C++, PC-Lint can read Visual C++ project files to
generate project.lnt files directly. For example, to generate a
project.lnt file for the Unicode Debug configuration and Win32
platform of project CoreLib you could use the command line:

lint-nt.exe CoreLib.vcproj +d"Win32|Unicode Debug"
>CoreLib_Win32_Unicode_Debug.lnt

Unfortunately, current versions of PC-Lint cannot correctly handle Visual
C++ projects which specify include folder or preprocessor symbol
specifications using Visual Studio environment variables or inherited
property sheet (.vsprops) files. If you have projects structured in this
way, you will have to either write the .lnt files manually or use a third party
tool to do so.
Furthermore this technique is limited to Visual C++ project files; for other
compilers you will have to write the project.lnt files yourself.

Whole project analysis
The list of files shown in the example above is used in ‘whole project
analysis’, which involves analysing all of the files in a project together.
This method requires significantly more memory than analysing each
source file individually, but has the advantage of allowing PC-Lint to
identify issues (e.g. unreferenced functions) which only become apparent
in a wider context than an individual compilation unit.

I

ANNA-JAYNE METCALFE
Anna hasn’t always written software for a living, but
saw the light and defected to software development
after several years writing ‘Rusty Washer Reports’ in
the defence sector. She has a taste for Belgian beer
(hint, hint!) and may be contacted at
anna@riverblade.co.uk.

Listing 1
22 | | MAR 2009{cvu}

If the following command line is used, PC-Lint will perform such an
analysis on the entire project:

"C:\Data\PC Lint\8.00\lint-nt.exe" -i"C:\Data\PC
Lint\8.00" -background -b "C:\Data\PC
Lint\8.00\std_vs71.lnt" env-vc7.lnt -t4 +ffb
+linebuf -
iC:\Data\Code\Projects\Applications\SourceVersioner
\Development\Release
C:\Data\Code\Projects\Applications\SourceVersioner\
Development\SourceVersioner_vs71_Release_Win32.lnt

By comparison with the previous example, the -u and --u options are not
used and a specific source file need not be specified since the
SourceVersioner_vs71_Release_Win32.lnt file contains a
list of files to analyse.
A similar method can be used to check all files in a complete solution or
workspace (much more useful, on the face of it). However, if you intend
to do so please bear in mind that:

You will have to generate a top level solution.lnt file which
dynamically sets the preprocessor directives and additional include
folders for every file in the solution – and this can easily be an order
or magnitude harder than getting them right for a single project.
The analysis runs in a single threaded process, so you will not have
representative results for quite some time if the codebase is large.

In practice I find that single file analysis usually gets you 95% of the way.
It is however worth running whole project analysis from time to time to
identify any deadwood which has crept in.

PC-Lint messages and categories
PC-Lint organises its messages into five categories of varying severity:

Elective Notes – e.g. 953 (‘Variable could be declared as const’)
Informational – e.g. 1924 (‘C-Style cast’)
Warnings – e.g 534 (‘Ignoring return value of function’) or 1401
(‘Member symbol not initialised by constructor’)
Errors – e.g. 1083 (‘1083 - Ambiguous conversion between 2nd and
3rd operands of conditional operator’)
Fatal Errors – e.g. 322 (‘322 - Unable to open include file’)

Conveniently, PC-Lint has a -w option which allows the warning level to
be set globally. For example, -w3 (the default) will enable only messages
of level ‘Warning’ and above – so all ‘Elective Notes’ and ‘Informational’

messages will be suppressed. Similarly, -w4 will enable all messages
except ‘Elective Notes’.
If you need to enable a specific message below the current warning level,
you can simply add a +e directive for the message in question after the -w
option. This brings us to a very useful way of detecting only specific issues
– for example, if you wanted to detect any unused include files in a project,
adding the options -w0 +e766 to your command line (after all other .lnt
files) will enable only message 766 (‘Header file not used in module’).
The following are examples of the sort of issues I specifically look for the
first time I analyse a third party codebase (interestingly, very few of them
are warnings – most are actually informational):

If you are running PC-Lint on a codebase for the first time with a
(consequently) relaxed warning policy, it may just be worth turning on any
issues you are specifically concerned about (using a +e directive in
options.lnt) to see if any of them manifest themselves.

Common analysis failures
Some errors are invariably fatal to the analysis in nature. The ones you are
most likely to see are:

Fatal Error 314: Previously used .lnt file
Each .lnt file can only be used once in the command line –
directly or by inference. If you see this error, check your
configuration files and command line for repeated .lnt files.
Fatal Error 307: Can’t open indirect file

429 Custodial pointer 'Symbol' (Location) has not been freed or
returned (Warning)

578 Declaration of symbol 'Symbol' hides symbol 'Symbol' (Warning)

716 while(1) ... (Informational)

717 do ... while(0) (Informational)

777 Testing float's for equality (Informational)

795 Conceivable division by 0 (Informational)

801 Use of goto is deprecated (Informational)

825 Control flows into case/default without -fallthrough comment
(Informational)

1506 Call to virtual function 'Symbol' within a constructor or destructor
(Warning)

1725 Class member 'Symbol' is a reference (Informational)

1735 Virtual function 'Symbol' has default parameter (Informational)

1773 Attempt to cast away const (or volatile) (Informational)

// Generated by Visual Lint 2.0.0.91 from file: SourceVersioner_vs71.vcproj
// -dConfiguration=Release|Win32
//
-D_UNICODE;UNICODE // CharacterSet = "1"
-DWIN32;NDEBUG;_CONSOLE // PreprocessorDefinitions = "WIN32;NDEBUG;_CONSOLE"
-D_CPPRTTI // RuntimeTypeInfo = "TRUE"
-D_MT // RuntimeLibrary = "0"

-i"..\Include"

SourceVersioner.cpp // RelativePath = "SourceVersioner.cpp"
SourceVersionerImpl.cpp // RelativePath = "SourceVersionerImpl.cpp"
stdafx.cpp // RelativePath = "stdafx.cpp"
Shared\FileUtils.cpp // RelativePath = "Shared\FileUtils.cpp"
Shared\FileVersioner.cpp // RelativePath = "Shared\FileVersioner.cpp"
Shared\PathUtils.cpp // RelativePath = "Shared\PathUtils.cpp"
Shared\ProjectConfiguration.cpp // RelativePath = "Shared\ProjectConfiguration.cpp"
Shared\ProjectFileReader.cpp // RelativePath = "Shared\ProjectFileReader.cpp"
Shared\SolutionFileReader.cpp // RelativePath = "Shared\SolutionFileReader.cpp"
Shared\SplitPath.cpp // RelativePath = "Shared\SplitPath.cpp"
Shared\StringUtils.cpp // RelativePath = "Shared\StringUtils.cpp"
Shared\XmlUtils.cpp // RelativePath = "Shared\XmlUtils.cpp"

Li
st

in
g

2

MAR 2009 | | 23{cvu}

This error indicates that PC-Lint was unable to locate a .lnt file on
its search path. Check that the file exists in the correct location and
that PC-Lint has a -i directive locating its folder.
Fatal Error 322/Error 7: Unable to open include file
If an include file cannot be found you will receive fatal error 322 and
analysis will abort, unless error 322 has been suppressed – in which
case error 7 will be raised instead and analysis will continue. In
either case, check your include paths and pre-processor symbol
definitions – particularly at project configuration level.
Error 91: Line exceeds Integer characters (use +linebuf)
PC-Lint has a fixed line buffer of 620 characters. If you see this
message, add a +linebuf directive (which doubles the size of the
buffer) to the command line and try again. Repeat the process until
the error disappears...
Error 303: String too long (try +macros)
As per error 91, but this time in macro definitions. Add +macrobuf
directives until it goes away.

Analysis speed
The speed of a PC-Lint analysis is influenced by many
factors, of which the most significant are probably the
structure of the codebase being analysed and the
performance of the system the analysis is being run on.
For a large codebase it is not unknown for a complete
analysis run to take several hours – and needless to say,
this can potentially pose problems or even act as a
disincentive to run the analysis at all.
As PC-Lint operates directly on source files (unlike the
.NET assembly analysis tool FxCop, for example), it
must read and process include files; therefore the
structure of include dependencies in your project can be
very significant in terms of analysis time. Reduce your
include dependencies (which you already do routinely,
I assume…?) and the analysis time is likely to be
reduced. Similarly, a reasonably specified modern
system (e.g. a Core 2 or Athlon X2 machine with
7200rpm disks and 2GB or more memory) will crunch
through your codebase in a far shorter time than that
cruddy old P4 box that was co-opted as a build server 4
years ago.
As current PC-Lint versions are entirely single threaded,
adding more CPU cores will not reduce the analysis time
unless you somehow run multiple analysis tasks
simultaneously. On multicore systems it is entirely
practical to do this (single file analysis is particularly
amenable to parallelisation), and it can reduce analysis
times quite significantly in some cases.
One interesting recent development is that PC-lint 9.0
(released last Autumn) adds options for precompiled
and bypass header support - which allow the contents of
system include files to be preprocessed and cached in a
similar way to the Visual C++ precompiled header
compilation mechanism. The tests I have run suggest
that these options can potentially cut analysis times by
a factor of at least 3 to 4. Unfortunately, the current
version of PC-Lint (9.00b) seems to generate extraneous
errors when precompiled headers are activated (I was
analysing a Visual C++ project, so that could be a result
of something specific to the Visual C++ system header
files, of course). No doubt any such issues will be
resolved in a future update to the software, at which
point these options could become very useful.
Overall, although techniques such as parallelisation and
precompiled headers can significantly reduce your
analysis time, I would strongly recommend that you take

a close look at the structure of your codebase and the performance of the
system the analysis is being run on first.

Tuning out issues in libraries
Regardless of which libraries you use in your projects, you are likely to
encounter PC-Lint issues in class or macro definitions within those
libraries. When you don’t have any control over the implementation of the
libraries concerned, such ‘noise’ can be irritating to say the least (athough
it could of course be indicative of a real problem with the library
implementation you should be aware of…).
Fortunately, using some of PC-Lint’s error suppression directives it is in
most cases relatively easy to write lint directives to prevent this happening,
for example:

-emacro(1924, MAKE_HRESULT)
-esym(1932, ATL::CAtlExeModuleT<*>)
-etype(1746, boost::shared_ptr<*>)

Figure 2

Lint output file : _aloa.xml
Total number of issues found : 96
Total severity score : 245

File List

 Rank Score MMsg MSev File

 1 81 618 3 globals.h
 2 64 1024 4 C:\progs\msvc\VC98\Include\vector
 3 24 818 2 aloa.cpp
 4 24 1510 3 parse.h
 5 20 1717 2 report.h
 6 18 1776 2 parse.cpp
 7 8 1776 2 globals.cpp
 8 6 506 3 report.cpp

Issue List

 Rank Msg Sev Count

 1 1776 2 20
 2 618 3 15
 3 1712 2 12
 4 1717 2 10
 5 1024 4 8
 6 118 4 8
 7 1702 2 4
 8 762 2 4
 9 783 2 3
 10 1764 2 3

Legend

Severity level 1 : Elective note
Severity level 2 : Informational
Severity level 3 : Warning
Severity level 4 : Syntax error
Severity level 999 : PC-lint error

Score Severity score
MMsg Number of issue with the highest severity encountered
MSev Severity level of the severest issue encountered
Msg Lint issue number
Sev Issue severity level
Count Total number of occurrences of issue in the whole project

Li
st

in
g

2

24 | | MAR 2009{cvu}

The directives -emacro , -esym and -etype suppress issues in macros,
named symbols, and instances of objects or values of the given type
respectively (note the availability of wildcards here). PC-Lint has quite a
number of such options for fine-grained control of warning policy, and it
is well worth getting to know how to use them effectively. By the way,
you can also use them in the code directly by prefixing them with a //lint
comment, for example:

//lint -esym(1712, CoreLib::CSomeClass)

A special mention should be reserved for the ‘big hammer of last resort’for
noisy library header files. It looks something like this:

//lint -save -w0
#include "NoisyHeader.h"
//lint -restore

The meaning of the above should be fairly self-explanatory – the
header in question has so much wrong with it that we’re just going
to disable any issues from it for now. Of course, if you find yourself
doing this as anything but a short term measure you really should
be asking whether the header in question code has a long term place
in your codebase...
Incidentally, over the past few years I have amassed significant collection
of such ‘tuning’ directives for issues within the Win32 libraries (Win32
API, ATL, WTL and MFC) which have been collected into specific
indirect files so we don’t have to specify them directly in each project or
in our global warning policy. You can download them from [2] if needed.

Turning down the volume – How to cope with a deluge
of analysis results
I am pretty sure that most developers who run PC-Lint do so using either
pre-configured scripts or some form of rudimentary integration into
whichever IDE they are using.
Regardless of the method used, the issue of how to deal with the volume
of analysis results it can produce remains.
Common strategies include turning off all but the most critical issues (with
the intention of gradually enabling others as the issues are addressed š not
that that always happens of course), grepping the raw analysis results,
exporting to a spreadsheet and filtering there....the list goes on.

Which method you use really doesn’t matter. What matters is that you find
an approach which works well for you and your organisation, and continue
to refine it as appropriate (the same applies to your warning policy, of
course).

(free) Tools which may help
While these techniques can be very efficient ways to spot specific issues
on your ‘watch list’, they may not give you much of a feel for the state a

codebase as a whole is in. For that, a tool such as Ralph Holly’s Aloa [3]
or LintProject [4] can be helpful.
Aloa (‘A Lint Output Analyser’) takes advantage of the fact that PC-Lint
can be configured to produce XML output, and interprets the results to
produce a text based summary of the issues encountered (Listing 2).
If you are looking for a way to get to grips with an unfamiliar codebase,
Aloa is well worth checking out.
LintProject (a tool I wrote several years ago and released as freeware via
codeproject.com) takes a different approach: it runs a simple unit checkout
analysis on complete Visual C++ solutions and produces simple HTML
reports of the results, organised by project and file.
I wasn’t aware of Aloa at the time, and we needed a simple way to analyse
the codebase of our main product – 80 projects comprising about 250,000
lines of code. Obviously, a manual per file or per project analysis was not
going to work, and we needed a way to analyse a complete solution in one
hit. Since PC-Lint does not provide a way to do this ‘out of the box’ (and
neither does Aloa, unfortunately) that meant writing something new.

Like Aloa, LintProject is a simple command line tool which runs PC-Lint
and captures its output. Unlike Aloa, LintProject runs on complete Visual
C++ solutions or workspaces (whichever terminology takes your fancy)
and produces simple HTML reports describing the number of issues found
in each project and file. Although the output it produces is far less detailed
than Aloa, it is a useful way to get a feel for the analysis state of a complete
Visual C++ solution.

Conclusion
Analysis tools such as PC-Lint can uncover real problems in your
codebase. Unfortunately, far too many developers are either blissfully
aware of the capabilities of code analysis tools or sceptical of their
usefulness (sadly many even see compiler warnings as unwanted ‘noise
and would rather turn down the warning level rather than fix the root
causes).
As a result advocating the use of such tools on a project can be a bit of an
uphill struggle – unless the project is failing, in which case they may well
grasp at anything for a while.

However, in our experience it is definitely worth investing the time
to integrate the use of such a tool into your development process.
Although you can expect to be warned of significant numbers of
issues in your code when you first analyse it, if you persevere the
analysis tool is likely to repay the investment you put into it many
times over by assisting you in increasing the quality of your code.
Like any tool, if you take the time to learn how to use it effectively

you will be more likely to reap the best results.

References
[1] http://www.gimpel.com
[2] http://www.riverblade.co.uk/products/visual_lint/downloads/

PcLintConfigFiles.zip
[3] http://www.ddj.com/cpp/184401810
[4] http://www.codeproject.com/KB/applications/lintproject.aspx

Analysis tools such as PC-Lint can
uncover real problems in your codebase

Regardless of the method used, the
issue of how to deal with the volume of
analysis results it can produce remains
MAR 2009 | | 25{cvu}

xCover: Code Coverage for C/C++
Matthew Wilson looks under the bonnet of the xCover

open-source library.

his article describes a novel use of a non-standard pre-processor
feature available with three leading C/C++ compiler collections to
provide limited but effective automated code coverage for C and

C++, in the form of the xCover open-source library.

Introduction
Ordinarily, I like to write articles that describe some invention that is safer
and/or faster and/or more flexible that the current state of the art, such as
those in last and next months’ instalments of Overload about a certain
formatting library. This is not one of those articles.
The library discussed, xCover, is one of three simple, indeed humble,
libraries that allow me to apply software quality assurance measures to my
open-source and commercial work. xCover is a code coverage library. The
other two, xContract and xTests, are software contract enforcement and
automated (unit & component) testing libraries, respectively. Aside from
correctness, a sine qua non of all quality software, the primary design
characteristics of these libraries are:

modularity, so they can be bundled with my open-source libraries,
and
portability, so they work with the range of compilers, architectures
and operating systems with which the open-source libraries work

Naturally, flexibility, expressiveness, discoverability and transparency,
and efficiency are all nice to have as well, and they have been accounted
for where possible, but they nonetheless play second fiddle. Thus, each
library has competitors in their respective areas against which they may
lose when compared in such terms.
Now that I’ve totally undersold you on xCover, where’s your motivation
for reading on? Well, for one thing, the manner by which code coverage
is achieved for C and C++ by pure library measures involves an interesting,
nay devious, twist on a (non-standard) pre-processor facility. Furthermore,
being a library, and an open-source one at that, it means code-coverage is
available to people don’t wish to spend money on proprietary commercial
tools, or who are not using development suites that include code coverage
tools (such as GCC’s gcov).

Code coverage
We don’t have the time, and I don’t have the expertise, to give a full
discussion of code coverage here. Instead, I’ll stipulate that coverage can
take account of the where, when, why and how much of execution.
Consider the function process_int() in listing 1.
The simplest aspect of code coverage analysis, where, consists of being
able to detect if execution passes through the lines 4, 9 and 13. when and
how much consist of recording each time execution passes through these
lines. Most complex, why, would involve determining which part of the
compound expression on lines 5–7 is active: is it that value is positive, or
is it that value is negative and the Boolean control parameter ignoreNeg

is non-zero. (Note: I wouldn’t recommend this coding style. It’s just for
pedagogical purposes.)
xCover primarily supports where analysis. Currently it does not record
when, and it records but does not report how much. It does not record why,
and I cannot foresee it being able to do so. As such it is, therefore, only a
partial code coverage solution, although in practice it seems to be a useful
portion.

__COUNTER__
Since version 7.0 of Visual C++, version 8.0 of Intel C/C++ and version
4.3 of GCC, these compilers support the non-standard __COUNTER__ pre-
processor symbol, which resolves to an integer whose value starts at 0 and
increments by 1 each time its value is used. Consider the program in
Listing 2.
This produces the output:
 __COUNTER__: 0
 __COUNTER__: 1
 __COUNTER__: 1

Note that testing for its existence does not increment the counter, only
using its value.

Where-coverage workflow

The basic workflow of an xCover-ed component is relatively simple. The
programmer marks one or more lines within each block with the
XCOVER_MARK_LINE() macro, which is implemented in terms of

T

MATTHEW WILSON
Matthew is a software development consultant,who
belives strongly that C++ software must be robust, efficient
and expressive: if not, you should be using something else.
Matthew is currently working on Breaking Up The Monolith:
Advanced C++ Design Without Compromise C.

1 void fn1(int i) {}
2 void fn2(int i) {}
3 void process_int(int value, int ignoreNeg)
4 {
5 if(value > 0 ||
6 (ignoreNeg &&
7 ((value = -value), value > 0)))
8 {
9 fn1(value);
10 }
11 else if(value < 0)
12 {
13 fn2(value);
14 }
15 }

Listing 1

#include <stdio.h>

#define GET_COUNTER() __COUNTER__

int main(int argc, char** argv)
{
 printf("__COUNTER__: %d\n", __COUNTER__);
 printf("__COUNTER__: %d\n", GET_COUNTER());
#ifdef __COUNTER__
 printf("__COUNTER__: %d\n", GET_COUNTER());
#endif
 return 0;
}

Listing 2
26 | | MAR 2009{cvu}

__COUNTER__, along with other standard stuff, such as __FILE__,
__LINE__ and __FUNCTION__. The code is then compiled and linked
with xCover’s object library. (Note: C applications must call
xcover_init() and xcover_uninit(), to ensure the library is
initialised. C++ applications need not do so, as this is implicitly handled
by Schwarz counters [1], [2].)
During execution, as each marked line is executed, the xCover API
function xcover_markLine() is called, passing in the file, line,
function and counter.
 xcover_rc_t
 xcover_markLine(
 char const* filename
 , int line
 , char const* function
 , int counter
);

If the file is not already known to the library, a file record will be created
and added to the file map, where it is associated with a vector of mark
records. The vector indexes correspond to the counter values. If the counter
does not already contain a mark record for the counter value, it is expanded
accordingly, and the mark record is initialised with the file, line and
function. The use-count of the mark record is increased.
At any time the user can request a report, and any mark records in the vector
(for the file corresponding to the report request) that have a use-count of
zero will be reported as uncovered code.
Let’s put our process_int() function into an xCover program (Listing
3) so you can see how this works.
There are several things to note:

The use of XCOVER_MARK_LINE() at lines 8, 13, 18 and 21 fully
mark the possible execution paths in process_int().
The explicit initialisation of the xCover library (lines 25 and 36),
because it’s a C program
The (incomplete) exercising of process_int() in lines 33 and
34.
The reporting of the coverage from the current file, in line 35

When executed, this produces the following output:
 [Start of file ../cvu.ex.2.c]:
 Uncovered code at index 2 in file ../cvu.ex.2.c,
 between lines 13 and 21
 [End of file ../cvu.ex.2.c]: 1 uncovered block(s)

Files, aliases, groups
Naturally, most of the time you’re not interested in code coverage of a
single file containing main(). In order to support this, the library provides
three ways of grouping sets of code coverage marks: by file, by file alias
and by group.
Many components, particularly header-only (including template) ones,
come in a single file. As such, it is appropriate to be able to request
coverage reports on a file. This is done via the xCover macro
XCOVER_REPORT_FILE_COVERAGE(filePath, reporter).
Users may specify the full file path, or just the file name, or file-name and
extension, or a pattern. (Pattern matching can be done with UNIX’s
fnmatch(), Windows’ shell’s PathMatchSpec(), or another of my
open-source libraries, shwild.) One reason for this is that different
compilers define __FILE__ differently: it can be absolute or relative; if
you’re on Windows it might contain forward slashes, or backwards
slashes, or a mix of the two. For example, you might see any of the
following forms, depending on your compiler:
 ../../include
 H:/freelibs/fastformat/0.3/include
 H:\freelibs\fastformat\0.3/include

Note that if your search criteria are too general, you will receive reports
for all matching files. Here are some examples from my code base:

XCOVER_REPORT_FILE_COVERAGE("*stlsoft/*/
string_to_integer.hpp", NULL);
XCOVER_REPORT_FILE_COVERAGE("simple_string.hpp",
NULL);

The second parameter is for a custom reporter, which is not yet fully
supported. If you specify NULL, you get the default reporter, which writes
to stdout.
As well as reporting by file name, it’s also possible to use aliases and
groups.
An alias is simply a user-defined alternate name for a file, defined within
the f i l e (i n a p l a ce t ha t w i l l be e xec u t ed) by t he mac ro
XCOVER_CREATE_FILE_ALIAS(aliasName). Aliases were my
original solution to the problem of different file path representation by
different compilers, before I added the wildcard pattern matching. But they
can still be useful if, say, you use different files to implement a component
depending on operating system, threading model, and so forth. Groups
enable you to associate multiple (related) source files into one logical unit,
via the macro:
 XCOVER_ASSOCIATE_FILE_WITH_GROUP(groupName)

Again, this is done within each associated file in a place that is guaranteed
to be executed. (Yes, I recognise the circularity in having a code coverage
library rely on certain parts of the code being executed, but in practice it
works well enough.)

1 /* file: cvu.ex.2.c */
2 #include <xcover/xcover.h>
3 #include <stdlib.h>
4 void fn1(int i) {}
5 void fn2(int i) {}
6 void process_int(int value, int ignoreNeg)
7 {
8 XCOVER_MARK_LINE();
9 if(value > 0 ||
10 (ignoreNeg &&
11 ((value = -value), value > 0)))
12 {
13 XCOVER_MARK_LINE();
14 fn1(value);
15 }
16 else if(value < 0)
17 {
18 XCOVER_MARK_LINE();
19 fn2(value);
20 }
21 XCOVER_MARK_LINE();
22 }
23 int main(int argc, char** argv)
24 {
25 int r = xcover_init();
26 if(r < 0)
27 {
28 fprintf(stderr, "could not initialise
 xCover library: %s\n",
 xcover_getApiCodeString(r));
29 return EXIT_FAILURE;
30 }
31 else
32 {
33 process_int(0, 0);
34 process_int(-1, 1);
35 XCOVER_REPORT_THIS_FILE_COVERAGE(NULL);
36 xcover_uninit();
37 return EXIT_SUCCESS;
38 }
39 }

Listing 3
MAR 2009 | | 27{cvu}

Drawbacks

Gaps

The most obvious drawback of the library is the issue of gaps. If, say, your
source file contains ten XCOVER_MARK_LINE() statements, but neither
of the first two are executed, you will get a message reporting along the
following lines:

Uncovered code at index 1 in file abc.cpp, between
the start of the file and line 34

Although somewhat lacking, it still gives useful information, and it is
sufficient to track down your uncovered code. If, like me, you tend to have
highly structured files, with extensive header information, includes,
compiler compatibility pre-processor testing, and so forth, it can actually
be many tens, or even a couple of hundred lines before you get to your first
line of executable code, which can mean that finding the first (unexecuted)
mark can be a pain. In order to work around this, you can use the macro
XCOVER_MARK_FILE_START() to designate the start of your file. You
can also use this to skip helper functions at the head of the file that whose
coverage you don’ t care about . The corresponding macro
XCOVER_MARK_FILE_END() allows you to achieve the same results at
the end of file.
It’s more important to use XCOVER_MARK_FILE_END(), and in a place
that’s guaranteed to be executed, because if you miss the last two of ten
you may never know about it.
Currently, a big problem is when none of the statements within a file are
executed. In that case the current version of the library does not even know
about the file. So, rather than getting a report that all of the statements from
your file are missing, you get no report at all, and everything looks hunky
dory.
In practice, this has proven much less problematic than it seems, since I
almost exclusively use xCover in association with automated testing.
When used to determine runtime coverage within applications it would be
more bothersome, but this could be reasonably easily fixed by using
Schwarz counters to ensure each compilation unit tells xCover about its
presence. I plan to address this in a forthcoming release.

Conflict with other uses of __COUNTER__

This is an issue I’ve not yet encountered since I’ve never used, nor even
come across, any code that uses __COUNTER__. (I have mused as to
whether it’s one of those architecture astronaut features, that someone
thought might have a good use but there’s never been a convincing use-
case. Or maybe I’m just missing something. Whatever the case, xCover is
the unwitting beneficiary.)
Anyway, if you do use __COUNTER__ for other things, then clearly
xCover is going to be at risk of producing false positives. A feature planned
for the near future will be the ability to specify a STOP and START pair of
macros that could be used around the other use(s) of __COUNTER__.
Naturally, that’s going to be quite visually intrusive in your code. Which
brings us to another issue.

Visual pollution

Having to have XCOVER_MARK_LINE() at every branch in your code
leads to a lot of stuff filthying up your beautifully crafted code, and can
detract from transparency. As yet I have no solution to ameliorate this
effect.
Of course, all well-crafted software will have contract enforcement code
providing, at least, pre-condition enforcements. It’ll likely already have
function-entry logging statements – controllable at runtime, of course –
allowing you to track the behaviour of your software at any point in its
lifecycle. So you’ll have a fair amount of such stuff already. Personally,
my brain has adjusted to these kinds of intrusions into functions/methods,
and I believe that if you structure your code it’s reasonably easy to navigate
your way past much of this function-entry stuff.

However, when you’re considering marking every block, there’s no
denying that it’s intrusive. Currently, there’s no answer to this. Although
there are some plans, as described in the next issue.

Auto-insertion

So far, I’ve survived with keyboard macros and search-replace to insert
all the XCOVER_MARK_LINE() (or equivalent) statements into code.
However, I do have plans to write scripts to do this (as I have to insert
Pantheios logging statements throughout the codebases of my clients).
These would find every occurrence of the opening curly brace and replace
it with the opening curly brace + XCOVER_MARK_LINE() (or equivalent),
except:

when there’s already one there, or
when it’s being used to define a namespace, enum, struct, class or
union, or
when it’s in a string or character constant, or
any other exceptions I’ve not yet thought of

Further to this, I’ve considered writing a pre-pre-processing filter that
would read in your source file and insert these automatically, before
passing to the pre-processor. That way, you wouldn’t have to have all this
evil looking junk in your beautifully succinct code. (I’m more than happy
for any gentle readers to take this idea on, and make it their own.)

Missing curly braces

A problem with auto-insertion occurs if you don’t always use curly braces,
as in:
 if (x < y)
 y = x;

I don’t wish to be unduly offensive, but if you write code like this, then
you’ve got much bigger problems than code coverage. Never, ever, ever,
write conditional code without curly braces. Ever.
So, given that haughty imperative, we don’t have any problems. Er, except
for the tertiary operator. Once again, this is a part of the problem space that,
like compound expressions – remember the why problem – xCover cannot
handle. It is only a library, after all.

What to do with unsupported compilers

For the moment, there’s nothing to do for unsupported compilers, other
than ensure that your source code works in either case. Listing 4 is an
extract from the code coverage header file in one of my client’s codebases,
with names changed to protect the guilty.
So, all the C and C++ code in company XYZ’s codebase uses
XYZ_MARK_LINE(), which resolves to nothing if the compiler doesn’t
support __COUNTER__ (and __FUNCTION__) or the particular build
configuration (e.g. release) requires coverage testing to be suppressed.
Alternatively, a pre-pre-processor that inserts the mark line statements
could provide the counts directly into the code for those compilers that
don’t support __COUNTER__, simultaneously removing any possible
conflicts with other uses of __COUNTER__ for those that do.

Code coverage for (open-source) libraries
As any of you know who use them know, the movement from one STLSoft
version to the next takes place at glacial pace in part because I am still (by
accident more than design) a one-man band, and mainly because I’m
always coming up with new libraries that are more interesting to develop.
One of the things that’s holding me up with the move to STLSoft 1.10 is
the need to sort the wheat – there’s some good stuff in there – from the
chaff – there’s also a lot of experimental, unused, oxygen-thieving junk in
there – and also my desire to get full code coverage in all the libraries. As
part of this millennial effort, I’ve been working through the components
and adding code coverage. If you want a sneak peek, you can download
the STLSoft 1.10 alpha distributions.
28 | | MAR 2009{cvu}

What’s been somewhat surprising to me in this process is just how many
defects have lain dormant in code that I’d believed correct. Take STLSoft’s
basic_simple_string, for example. Putting in code coverage helped
me find one branch of dead code, and four serious defects in what must
have been previously untravelled code paths!
Given this, I am planning to incorporate xCover into most/all of my open-
source projects, including bundling it with them and incorporating it into
the automated tests. The recently released FastFormat library contains
code coverage statements throughout its core, and I plan to ensure that the
Pantheios and recls libraries get the same treatment in the coming months.
I wait with some trepidation to see what might come out of this.

Code coverage for application code
When dealing with my own libraries, polluting the source with coverage
mark statements is defensible because (i) I own them, (ii) they must support
a lot of different applications in a lot of different ways, and (iii) they are
used a lot more than they are changed. While the first two arguments are
equally applied to proprietary application code, in practice the third may
not be. In consequence, the transparency of the code – how easy it is to
understand it in order to change it – achieves a higher significance than it
does for libraries.

In this case, it may be reasonable to restrict the application of the code
coverage macros to each function entry, and then to those other branches
that are deemed important. It’s really down to best judgement to balance
the advantages of full coverage with the reduction in transparency.
Another factor to bear in mind is that application code usually has to exist
on fewer compiler/architecture/operating-system permutations, and it’s
more likely that a compiler-related tool (e.g. GCC’s gcov) or a commercial
product is justifiable.

Summary
This article has introduced the xCover open-source C/C++ code coverage
library, based on the non-standard __COUNTER__ pre-processor symbol.
It has illustrated how where code coverage can be achieved via insertion
of XCOVER_MARK_LINE() statements that record the execution path in
the xCover library, and how gaps in the execution path may subsequently
be reported. The numerous drawbacks and limitations of the library have
been discussed, and measures used to ameliorate and/or obviate them have
been highlighted, where available.
The library does not attempt to be a universal solution to the code coverage
problem, but it has already proven to be of considerable use in open-source
and commercial developments as a measure for improving code quality.
The library is still in the early stages, and feedback and assistance will be
equally warmly received.

References
[1] C++ Gems: Programming Pearls from the C++ Report, Stanley

Lippman (editor), Cambridge University Press, 1998
[2] Imperfect C++: Practical Solutions for Real-Life Programming,

Matthew Wilson, Addison-Wesley 2004

/* ////////////////////////////////
 * File: xyz/quality/coverage.h
 */

...

/* ////////////////////////////////
 * Includes - 1
 */

#include <xyz/xyz.h>
#include <stlsoft/stlsoft.h>

/* ////////////////////////////////
 * Compatibility - 1
 */

#ifndef XYZ_QUALITY_NO_USE_XCOVER
if defined(\
 STLSOFT_PPF_COUNTER_SYMBOL_SUPPORT) && \
 defined(STLSOFT_PPF_FUNCTION_SYMBOL_SUPPORT)
define XYZ_QUALITY_USE_XCOVER
endif
#endif

/* ////////////////////////////////
 * Includes - 2
 */

#ifdef XYZ_QUALITY_USE_XCOVER
include <xcover/xcover.h>
#endif

/* ////////////////////////////////
 * Compatibility
 */

#ifdef XYZ_QUALITY_USE_XCOVER
define XYZ_MARK_LINE()
XCOVER_MARK_LINE()
#else
define XYZ__MARK_LINE()
stlsoft_static_cast(void, 0)
#endif

Li
st

in
g

4

ACCCU 2009: 22 - 25 April, Oxford
The 2009 edition of the ACCU conference is going to be
yet another unmissable one.

Some highlights include:

Pre-conference tutorials from Linda Rising on
‘patterns for introducing new ideas’, from Alisdair
Meredith on ‘C++0x’, and Steve Freeman and Nat
Pryce on ‘Test Driven Development’

Keynotes from Robert Martin, Frank Buschmann,
Nico Josuttis, Susan Greenfield, and Allan Kelly

Special track on patterns with some leading experts
from the patterns community

The usual wide range of topics –from agile
development, to programming languages and
programming techniques

Last but not least, for the first time, you can have
your five minutes of glory by presenting your ideas
in front of an audience with a lightning talk!

The ACCU conference is one you cannot afford to miss.

Registrations and more information at:

www.accu.org/conference
MAR 2009 | | 29{cvu}

30 | | MAR 2009{cvu}

Mailbox @ C Vu
Your letters and opinions.

ode Critique 54 had many good entries. Let me add some comments,
especially to Roger’s winner statement:

I was pleased to see Ken’s entry this time round, where he was able to
find the two biggest problems with the code by simply (!) running PC-
Lint. While being able to read code and find faults is a fundamental skill,
having the ability to use a tool to perform the same task enables much
more reliable coverage of complete code bases. So this time I have
decided to award the prize to PC-Lint for finding the problems; Ken gets
the prize for using the right tool for the job!

To avoid misunderstanding, let me state up front, that Ken did a great job
and deserves the price. My problem is with the ‘rationale’ statement. I’m
also not against using Lint, even embedded in the process, just IMO it did
a lousy job in the particular case. And the right tool for the case is still the
expert code reviewer, who received a questionable amount of help.
Let’s take a close look at what Lint flagged and the relation to the case.

1. Ignoring return from strftime. I agree with Ken that in general
it’s bad to ignore return values, especially those reporting errors. But
there are functions where we really don’t care about the return. A
frequent question on forums is what (void) prefix does before a
function, and answers are minority: to explicitly state we ignore the
return, majority: this is old-time uglyfication to shut up lint. E.g.
before strcpy.
Ken suggests the function could return 0 indicating indeterminate
buffer, and that it would be good to assert. In general, I am a big fan
and promoter of asserting, but this case is also an exception. The
buffer here is fixed at 20, the format string is a literal, and the
standard states the behavior: our string can be at most 2+5+2+2+2
chars in variable 5 bytes in fixed, that is overall 18. So in this state
assert only would check our standard lib works. We normally do not
spend code on that. Assert could defend against later modification
of the format string without also adjusting the buffer – I would not
accept it for a local buffer that is used for this and only this purpose,
and in a change-reviewed environment.
Nevin addressed this by defining buffer in a cute way: char
buffer[sizeof("31 Jan 12:34:56")]; too bad it is not
correct in content, the month field should be 5 characters.
The defence I use in practice is to avoid strftime, I have a suite
of functions str_printf, str_strftime, that take all the same
input and return std::string. The implementation covers all the
cases and figures out the length. At the cost of a few cycles
eliminating all the related problems for good. and saving the client
side from both length-related checks, and guessing. But if one is not
using a like approach and is determined to use strftime, it is fit
for the purpose here and is okay. Lint flagged a false positive. And
gets an extra bad mark, because it could theoretically figure out the
needed and passed length.

2. Expression always false. Yeah, indeed. Though, it reflects on the
problem that everyone noticed at first glance, just seeing plain enum
and being used as mask. Also, suppose the enum was a little
different, inserting a fourth level INFO in the front, and the rest of

the code kept as is. (Meaning no macros or whatever introduced for
it yet). The code is as broken as the original, but Lint is now silent.
I’d say it flagged the bug by a lucky accident.

3. oss hiding other oss. Roger classified it as a hit, but let’s look in the
details. The hiding of outer oss is intentional and good. The macro
uses {} for that very reason. It wants the hiding. In C++ hiding is
natural and made in by design. In my experience flagging it is
counter-productive, and just creates noise. One of my recent project
was even hit by a motion to turn on this warning and ‘clean up’ code
– the result was at least one bug introduced to correct code and
several places of uglyfication.
The bug in the code is not with hiding, but that the macro parameter
X is used incorrectly. In the test case it then hurts by using the wrong
oss. The correct macro would have an extra line as first thing inside
if: const std::string& msg = (X); And use msg in the
streaming line where (X) was. Then the code would work fine, and
do what was expected. And Lint would still report that there is
hiding.

4. main should return a value. Though I also tend to write explicit
return 0, I flag it as a bug in Lint. Probably it has a simple checker
that reports missing returns from non-void functions. Not having the
exception list with main(). A tool should be sharp and tell
problems from non-problems, here it fails.
I agree with Ken, that if you use a static checker you better deal with
flagged issues first – for the case I'd consider the net usefulness.

And we have still not mentioned the main issue that made me write in the
first place. Which is the example’s most dangerous problem? In my
evaluation printf(userstring) wins, hands down. Why? Because
the rest is easily found by a little testing of the module. Even if not, it makes
the log system somewhat lame. But the effect of the printf format-string
vulnerability can easily make it to production and cause disaster. Just have
"% n" somewhere in the log string, and you get some random 4 bytes
patched in your memory. With luck hitting a non-paged address, causing
crash, in other cases just modify some data element in a subtle way. Try
to think possible consequences. Or the hours of headache until one is able
to track back the problem to the auxiliary logging system....
Did Lint flag this? No. Could it? Easily. Compilers can flag it by
themselves too, just turn on the proper options. (Also most compilers have
a warning for if-expression being constant; ICC also has a remark for
hiding...)
In summary the only prize I’d offer Lint here is the raspberry.

Balog Pal
(pasa@lib.hu)

Editor’s note
Discussion about the code critiques is encouraged in the ‘Dialogue’ part of
CVu. What do you think – do you agree with these comments or would you
like to defend Lint? Email the editor for inclusion in the next CVu or post
directly to accu-general@accu.org!

C

If you read something in C Vu that you particularly enjoyed, you disagreed with or that has
just made you think, why not put pen to paper (or finger to keyboard) and tell us about it?

Code Critique Competition 56
Set and collated by Roger Orr.

lease note that participation in this competition is open to all
members, whether novice or expert. A book prize is awarded for the
best entry. Readers are also encouraged to comment on published

entries, and to supply their own possible code samples for the competition
(in any common programming language) to scc@accu.org.

Last issue’s code
I’m trying to write a C++ SQL framework that uses the operator<< idiom
to add bind variables. I’m having problems getting the operators right – I’ve
stripped it down to the following code that won’t compile. Using MSVC I get
a complaint about bind on the last line of main; with g++ the Insert and
Query examples won’t compile either. Can someone help me sort this out?

Critiques

Balog Pal <pasa@lib.hu>

Wow, now this is a fine CC! Let’s start with the reported problems. VC
states this:
scc55.cpp(52) : error C2039: 'bind' : is not a
member of 'std::basic_ofstream<_Elem,_Traits>'
 with
 [
 _Elem=char,
 _Traits=std::char_traits<char>
]
scc55.cpp(85) : see reference to function template
instantiation 'T &DB::operator
<<<std::basic_ofstream<_Elem,_Traits>,std::string>(
T &,U &)' being compiled
 with
 [
 T=std::basic_ofstream<char,
 std::char_traits<char>>,
 _Elem=char,
 _Traits=std::char_traits<char>,
 U=std::string
]

P

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.demon.co.uk

Listing 1
Listing1

// ---- test.cpp -----
#include <fstream>
#include <iostream>
#include <string>
#include <vector>

#include "db.h"

int main()
{
 using namespace std;
 using namespace DB;

 int id;
 string name;
 string filename("output.txt");

 // populate id and name ...
 Insert("insert into employee(name,id)"
 " values(%,%)")
 << name << id << execute;

 vector<Row> result = Query("select name "
 "from employee where id = %")
 << id << execute;
 string firstrow = result[0].toString();
 ofstream(filename.c_str()) << firstrow;
}

Listing 1 (cont’d)

// ---- db.h -----
#include <string>
#include <vector>

namespace DB
{
 class Row
 {
 public:
 std::string toString() const;
 // ... other method elided
 };

 static struct exec_t
 {
 } execute;

 class SqlBase
 {
 public:
 void bind(int &);
 void bind(std::string &);
 // ... other methods elided
 };

 class Query : public SqlBase
 {
 public:
 Query(std::string const & query);
 std::vector<Row> operator<<(exec_t &);
 };

 class Insert : public SqlBase
 {
 public:
 Insert(std::string const & statement);
 void operator<<(exec_t &);
 };

 // Use template to retain type of 'stream'
 template <typename T, typename U>
 T & operator<<(T & stream, U & value)
 {
 stream.bind(value);
 return stream;
 }
}

Li
st

in
g

1

MAR 2009 | | 31{cvu}

It is quite informative, the compiler wants to use << defined in DB. And
fails with template instantiation due to call bind() on ofstream. This
should make us realize that

1. a templated operator << picking up almost anything is not a good
idea, if it is really a special purpose thing.

2. using directive for DB was probably meant only for a few types,
but imports everything, including this template – and it takes over
those in std::.

3. most std::<< operators work with ostream.
cout << firstrow would work, but we’re passing ofstream,
and it is better fit for template than even a simple to-base
conversion!

More on this later, let’s look for the other reported errors. Having no gcc
around, I tried Comeau online with the code, and it reports

"ComeauTest.c", line 72: error: no operator "<<"
matches these operands
operand types are: DB::Insert << std::string
<< name << id << execute;
^

"ComeauTest.c", line 76: error: no operator "<<"
matches these operands
operand types are: DB::Query << int
<< id << execute;
^

We can think DUH, we have that omnipotent << and the compiler says no
match? What’s going on? Is it not seen?
If we fiddle a little with the code, and make Insert a named object, then
use the rest of the line, it gets accepted. The difference should be a clue:
Insert(...) and Query(...) is an rvalue, and the template wants to
bind it to a &, not const&, and this is not allowed. If we make the template
taking (T const & stream, U& value), it gets selected for the
original line.
This behaviour surprises me; if asked, I would guess deduction could chose
'T=const Insert' to meet a T& signature (as for references, the
standard allows using a more cv-qualified type at 14.8.2.1p3). Apparently
this does not apply to the rvalue case, it is simply not fit for T& place,
period.
Stepping back to VC: why does it accept this, is it an extension? Looking
at the options we find (at properties/ C/C++ / Language), that extensions
are enabled by default, turning it off – same as /Za switch – bingo, we
have the same errors here too. A relief to have compilers that agree.
(For a moment at least... I tried some more formulas with rvalues, and
discovered a difference. On the right hand side << name works fine. <<
(string) "a" fails on both. However, << (const string) "a" is
accepted for the template by Comeau (U = const string), not so by
VC. While passing a named const string is accepted by VC too.
Templates are still like black magic...)
Now we know the immediate problems, what can be done? Patching up
VC with extensions enabled was not so hard – I just removed the using
namespace DB; and inserted using declarations instead: using
DB::Insert; using DB::Query; using DB::Row; using
DB::execute; Alternatively, we could use those prefixes directly in the
code.
It is worth thinking about why it works, how the compiler selects the
correct stuff. The trick is called ADL, short for argument dependent
lookup, aka Koenig lookup. It says that if there is a function or operator
call, where arguments are a type from some namespace, the content of all
those namespaces are included in the overload selection. Thus having
DB::Insert on left of << makes DB::<< considered. Similarly having
std::ofstream or std::string there makes all the << operators in
std:: considered. (so using namespace std can also replaced by a
few using declarations to have string, vector, and some frequently

used names usable without prefix, even having them in a dedicated header
for the company; and leaving the zillion rarely encountered names hidden,
used with prefix).
Too bad this easy patch doesn’t work with turning standard mode back on
(and for the other compilers without relaxed & binding). While non-const
member functions can be invoked on a rvalue, for nonmember functions
rvalues bind only to const&. The ofstream call uses << operator in
std::, so we’re out of luck. Possibly we could create some more
overloads in a visible place, but then face duplication, side effects, so the
cure seems worse than the disease. Instead just go the normal way, use
named ofstream, then use << on that. The original line is fishy anyway:
there is no chance to know whether the operation succeeded or not.
Normally for ‘real’ i/o streams we want to check errors and report errors
at some place. (After explicit close too.)
The DB:: elements are different, they are not really streams, and can be
made to report errors in a sensible way, say throwing exception – and the
single line usage shown in main makes sense after all. (Until getting to
this point I had ‘who on earth would want code like that’ in my head, but
the usage made the ‘acceptable IF’ category ;-), especially if the
application is built around these operations.)
So, as the problem is, as discussed, the nonmember << taking &. The first
idea could be a blatant cheat:
 template <typename T, typename U>
 T & operator<<(const T & stream_c, U & value)
 {
 T& stream = const_cast<T&>(stream_c);
 stream.bind(value);
 return stream;
 }

Having this template, the code works, and does what the original intended.
Unfortunately it picks up some cases it should not compile: if someone has
a const Insert object, or a function was passed a const& with
intention not to tweak. Without the const_cast the attempt would be
caught by the compiler. Now it must be caught by review. If the intent is
as suggested, there is no real need to have const versions of these objects,
or pass them around – so it can work. However if they are normally used
as class members or passed around between functions, it is a risk.
Seeking a better solution, we notice that expression Insert("") <<
execute; works fine. As mentioned earlier you can call member
functions on rvalue, including non-const ones, and this version is a
member. How about getting rid of the freestanding template, and using a
member instead? Add this to Insert:
 template <typename U>
 Insert & operator<<(U & value)
 {
 this->bind(value);
 return *this;
 }

And the same into Query, that returns Query. Try: it works fine.
No more offending const_cast, though we have some duplication. We
could try to put it to SqlBase, but then the problem of losing the type info
comes back. And to handle it a very similar template must be re-introduced
in Insert/Query. Or go the other way around, have all << in SqlBase,
then issue a virtual call from the one that processes execute. But those
functions have a different return type.
A third approach, which actually works, could use a different approach,
sacrificing the uniform execute. If instead we had executeI and
executeQ, it ties the correct procedure and return type. Creating a
possibility to mismatch: Query(...) << executeI; but that can be
caught at compile or link time. This way we can even eliminate the
bind() functions, just putting the body in the overloads of
SqlBase::<<, and not using template for anything.
But then do we really need subclasses Insert and Query? Is there any
functionality left asking for a subclass? The simplified example hides the
info to make that decision. But if it’s okay the example looks like this:
32 | | MAR 2009{cvu}

// ---- db.h -----
#include <string>
#include <vector>
#include <stdio.h>

namespace DB
{
class Row
{
public:
 std::string toString() const {return "Row";}
 // ... other method elided
};

const struct execI_t
{
} execInsert = {};
const struct execQ_t
{
} execQuery = {};

class Sql
{
public:
 Sql(const std::string & command) {}
 Sql & operator<<(int & value)
 {
 puts("bind int ");
 return *this;
 }
 Sql & operator<<(std::string & value)
 {
 puts("bind string ");
 return *this;
 }
 // ... other methods elided
 std::vector<Row> operator<<(const execQ_t &)
 {
 puts(" Query\n");
 return std::vector<Row>(1);
 }
 void operator<<(const execI_t &)
 {
 puts(" Insert\n");
 }
};

}

// ---- test.cpp -----
#include <fstream>
#include <iostream>
#include <string>
#include <vector>

#include "db.h"

int main()
{
 using namespace std; // left for test only
// using namespace DB; // could be used for
 // the simple example
 using DB::execInsert;
 using DB::execQuery;
 using DB::Sql;
 using DB::Row;

 int id;
 string name;
 const string filename("output.txt");

 // populate id and name ...

 Sql("insert into employee(name,id)"
 " values(%,%)")
 << name << id << execInsert;

 vector<Row> result = Sql("select name "
 "from employee where id = %")
 << id << execQuery;

 if(!result.empty())
 {
 string firstrow = result.at(0).toString();
 ofstream fstr(filename.c_str());
 fstr << firstrow;
 fstr.close();
 if(!fstr)
 cerr << "output file failure\n";
 }
}

Certainly in the live version the implementation should do checks that all
bindings happen, execution is last, the passed initialising string matches
the type, and throw exceptions on execution failure. Also it must be aware
of Sql injection attacks and avoid them. Note that the exec objects are made
const and result is not accessed by [0] even in test. Use a check or member
.at() avoiding undefined behavior in case 0 rows are returned. The
functions are certainly not meant to be implemented in db.h, it’s just to
save space. The namespace DB is now fairly neutral, much less objections
against using directive if fixed that way – or can be even considered for
removing, if the mainstream usage would want non-prefixed forms
anyway. The all-caps name could clash with a macro.
Let me finish with what I started: this was an excellent choice of example
code.

Commentary
The code originally intrigued me because the paradigm of writing database
code using the << operator looked quite nice but the ambiguity problems
were nasty. The two problems with the streaming operators are that :

1. Operators can be defined as free-standing functions or as member
functions.
With the existing C++03 standard this produces a subtle difference
in behaviour with temporary stream objects.

 Stream() << object;

This line compiles if and only if the relevant operator<< is a
member function.
However the next version of the standard contains ‘r-value
references’, which do bind to temporary objects. In the current draft
of the new standard streaming operators are declared to take the
stream by r-value reference so the above code will now work in both
cases. Unfortunately, there’s still a debate about the binding of
r-value references so it’s not clear what the final standard will state.

2. Templates are a bit too universal for some things.
The problem is that making the operator<< a template captures
too many potential targets. However, if operator<< is not a
template then the function loses type information – the return type
can only be the type of the argument. (This matters because, for
good reasons, the streaming operations for exec have different
return types in the derived classes.)
What is needed is a compromise – where the argument type is
constrained but the return type can be the actual compile time type
of the argument. This isn’t directly supported by C++, although
clever template tricks can sometimes get pretty close.
MAR 2009 | | 33{cvu}

I’m left unsure after using code like this whether the pain is worth it – the
streaming operator has an air of simplicity to it, but does it actually express
intent more clearly than naïve methods calls?

The Winner of CC 55
Well there was only one entrant so the decision was easy …
I think Balog covered pretty well all the points with the code so I feel that
he definitely deserves this issue’s prize.

Code Critique 56
(Submissions to scc@accu.org by April 1st)
I’m writing a simple hash-map and I’ve got a couple of questions. Firstly, why
does the line marked '1' in the header file need the word ‘typename’?
Secondly, my little test program doesn’t quite work – the last line of output
still shows the old value for ‘key2’.

Please help the programmer answer their questions – and suggest some
other questions they ought to think about too… the code is in Listing 2.

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/).
This particularly helps overseas members who typically get the magazine
much later than members in the UK and Europe.

 else
 {
 it = std::find(bucket.begin(),
 bucket.end(), key);
 if (it == bucket.end())
 {
 entry e;
 e.key = key;
 e.value = value;
 bucket.push_back(e);
 }
 else
 {
 it->value = value;
 }
 }
}
template <class Key, class Value>
Value hashmap<Key, Value>::get(Key key)
{
 int hashval = hashfun(key);
 int thebucket = hashval % buckets.size();
 bucket = buckets[thebucket];
 it = std::find(bucket.begin(),
 bucket.end(), key);
 if (it == bucket.end())
 {
 return Value();
 }
 else
 {
 return it->value;
 }
}
template <class Key, class Value>
int hashmap<Key, Value>::hashfun(Key s)
{
 return std::accumulate(s.begin(),
 s.end(), 0);
}

// ---- hash.cpp -----
#include <iostream>
#include <string>

#include "hash.h"

int main()
{
 hashmap<std::string, std::string> test;

 test.set("key1", "value1");
 test.set("key2", "value2");
 std::cout << "key1 = "
 << test.get("key1") << std::endl;
 std::cout << "key2 = "
 << test.get("key2") << std::endl;
 std::cout << "key3 = "
 << test.get("key3") << std::endl;
 test.set("key2", "another_value2");
 std::cout << "key2 = "
 << test.get("key2") << std::endl;
}

Listing 2 (cont’d)

// ---- hash.h -----
#include <algorithm>
#include <list>
#include <numeric>
#include <vector>

template <class Key, class Value>
class hashmap
{
public:
 hashmap(int size = 10)
 : buckets(size) {}

 void set(Key key, Value value);
 Value get(Key key);

private:
 struct entry
 {
 Key key;
 Value value;
 bool operator==(Value key) const
 {
 return key == key;
 }
 };

 int hashfun(Key s);
 std::vector< std::list<entry> > buckets;
 std::list<entry> bucket;
 typename std::list<entry>::iterator it; // 1
};

template <class Key, class Value>
void hashmap<Key, Value>::set(Key key,
 Value value)
{
 int hashval = hashfun(key);
 int thebucket = hashval % buckets.size();
 bucket = buckets[thebucket];
 if (bucket.size() == 0)
 {
 entry e;
 e.key = key;
 e.value = value;
 buckets[thebucket].push_back(e);
 }

Li
st

in
g

2

34 | | MAR 2009{cvu}

JAN 2009 | | 35{cvu}

Desert Island Books
Paul Grenyer introduces Ian Bruntlett.

esert Island books is deviating from its normal format this issue. Most
people will already have realised that this series is not actually about
books or music. It’s about people.

Ian Bruntlett is well known to accu-general members, so when he sent me
a piece describing his career to date, I was only too happy publish it as part
of the series.

Ian Bruntlett
Ian Bruntlett is an IT volunteer worker at Contact, Morpeth, a mental
health charity. Contact takes in unwanted computers, Ian refurbishes them
and puts a lot of free software on. He’s learning new skills, starting with
basic stuff (Scribus, OpenOffice etc) and then moving on to more technical
stuff. Contact allows its building to be used for the ACCU NE meetings.
Ian’s first computer was a HP-33E programmable calculator. Then he
moved to the Spectrum. Then he moved to the Sinclair QL and stayed there,
writing articles and software. In particular his articles helped publicise the
QPE – Qjump Pointer Environment. These days if you want a mouse you
stick it in the back of your PC. In the QL days, you took the lid off your
computer and removed a ULA (Uncommitted Logic Array), inserted a
daughter-board and then reinserted the ULA.
After studying at Sunderland University for a BSc in I.T., he applied for
Phd funding and failed to get it. So Ian moved into the world of commercial
software development, spending the next 5 years working on LiBRiS
Opac/Unity: a family of library book search engines and database building
programs, written using Watcom C. At that time his most influential book
was Object Oriented Analysis by Coad and Yourdon.
After that work dried up, Ian landed a job in Edinburgh, commuting
between Berwick Upon Tweed and Edinburgh Haymarket. During that
time he resumed hearing voices, in his case studying C++ and Design and
getting feedback from voices in his head talking about programming. He
was running code walk-throughs on the train with at least three voices in
his head contributing.
Eventually Ian was made redundant, became very ill and ended up in a
psychiatric hospital. Between 2001 and 2004, Ian became ill in a familiar
routine – first you get a job, then you get stressed, then you go into hospital,
then you lose job, and repeat. He looked on the internet for information
about schizophrenics and their experiences. Finding little he started a blog:
schizopanic.blogspot.com .
After going through this he was offered a post as a voluntary IT worker.
Contact Morpeth (http://www.contactmorpeth.org.uk/) had been donated
two PCs and a broadband connection by BT. So he ended up teaching
people with mental health problems how to use computers. And after that
had been going for a while, he reckoned that the people being trained
preferred spending their money on cigarettes instead of IT equipment – so
he sought permission to solicit donations of unwanted PCs. The scheme
was approved and it has paid off handsomely. Ian created a ‘software
toolkit’ (OpenOffice, Scribus etc, AVG anti virus, TuxTyper, TuxMath
etc) of free software to put on PCs being donated to Contact’s members.
Free software has been very helpful in keeping costs down and he tends
to put on programs that are available for Windows and Linux, with the
eventual hope of moving some of Contact’s general purpose PCs to either
SuSE or Ubuntu Linux.
At the moment he is doing a bit of self-tuition – he’s learning the basics
of Ubuntu Linux, Windows XP and Vista and non-techie apps like

OpenOf f i ce ,
GIMP, Sc r ibus ,
Inkscape. After that
he ’ l l d i p b a c k i n t o
programming again.
The following books (amongst others) paved the way for Ian’s career as a
C++ programmer.
Multi-paradigm Design for C++ wasn’t the first or last design book that
he has read but has been the most influential – at the time he was reading
it he was devouring every sentence, writing up study notes. So what was
so important? Well, prior to that he just learnt language features and didn’t
have a framework to understand them. This book introduced him to
‘Commonality Analysis’ with its different dimensions (Structure, Name
& Behaviour, Algorithm) and ‘Variability Analysis’ (with the same
dimensions plus Binding Time and Defaults). Its coverage of ‘Object
Oriented Analysis’ was the first time he read about OOA and actually had
a ‘Eureka!’ moment. Domain Analysis (a well considered study resulting
in a defined domain and dictionary) is the foundation for Domain
Engineering (a software design discipline that focuses on the abstractions
of a business (a domain) with the intent of reusing designs and artifacts).
It is also influences Application Domain Analysis (where domain analysis
is applied to the business/application domain) and Solution Domain
Analysis (where the implementation technologies are examined). The
book has ‘Simple Mixing of Paradigms’ and ‘Weaving Paradigms
Together’ chapters, which heavily influenced him when he wrote a multi-
paradigm library to map C++ objects on top of C. The book concludes with
‘Augmenting the Solution Domain with Patterns’, something he will get
round to one day.
Design Patterns is a book he is still growing into. Every so often he notices
a pattern in the book and thinks ‘Ah! I’ve done that before’ – the latest
momen t l i ke t ha t he ha d wa s w i th a C func t ion c a l l ed
GetBookViaPosting, which was an object factory. He isn’t working
due to his illness and decided one day to help write free software. One
benefit of such an activity is exposure, once more, to production C++ code
and the spotting of the occasional patterns throughout the systems being
worked on.
The C++ Primer gave him a good grounding in C++. Sure, there are more
specific self-help C++ books out there (Scott Meyer’s stuff, Herb Sutter’s
stuff) but this book gave him a good grounding and confidence in what
was then modern C++. It is what he calls a ‘Kilo-Page book’: it’s big, has
exercises and is very thorough. Without this book, life writing C++
programs would have been a lot less pleasant. He found its coverage of
classes and templates to be particularly helpful; however, he found that he
needed a copy of Leen Ammeraal’s STL for C++ Programmers to
augment this book’s coverage of algorithms.
Before he used the C++ Standard Library, he read Leen Ammeraal’s STL
for C++ Programmers, which got him going with C++’s standard library
containers. Prior to using the STL, Ian rolled his own containers, typically
arrays and linked lists – both of which can be handled with embarrassing
ease with the STL. It’s one thing to look at manual pages for the STL, its
quite another to figure out how to use them without breaking something.
His experience in writing his own containers helped him use and appreciate
the STL.

D

Project Management: Best Practices
for IT Professionals
By Richard Murch, published by
Prentice Hall, ISBN: 978-
0130219145

Reviewed by Paul Grenyer

Although I have actively, and
sometimes passionately,
resisted the move into any
sort of management beyond
team / technical leading for many years, I’m
finding recently that I’m becoming more
interested in project management. It’s a sobering
fact that where I am now I have a team and I need
to manage them better.
Project Management by Richard Murch was
(how shall I put it?) strongly recommended and
presented to me by my current boss. It’s a
reasonably sized hardback book at 220 pages,
plus appendices. The information on each page
is, in most cases, both verbose and spread out,
so it could have been a much smaller book. I

would have scrubbed the final chapter on the
internet altogether until I noticed the publication
date of October 2000. It’s a book of its time and
therefore describes the more traditional project
management techniques based around quite lot
of documentation and rigid process. As such
there is no mention of XP or Agile, neither of
which could be ignored in a modern text. I read
it cover to appendices in a little over a week and
I learnt a lot.

There were a few things that irritated me about
the book. Murch states very early on that all
projects must cater for change. I couldn’t agree
with him more, but in several other places in the
book he talks about eliminating scope creep. I
may be being a little harsh as most of the scope
creep Murch refers to is the ‘wouldn’t it be nice
if’ type. What he seems to have missed is that all
scopes in software development creep. The
reason they creep is that software engineers
strive to give users what they asked for and,
invariably, users ask for what they think they
want, not what they actually need. Any well
managed project will have the users involved
from beginning to end (a point Murch does
make) and as the users see what they’re getting
they’re able to help direct the engineers to what
they actually need and scope creeps. Scope
creep could of course be eliminated by gathering

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
36 | | MAR 2009{cvu}

Babylon 5 : A Call To Arms – core rules and fleet lists by Mongoose
Publishing plus unofficial supplements by enthusiasts. (Star Trek : TNG,
Star Gate). This was the first wargame that really took off for him
(excepting Greyhawk Wars, which he played a couple of times). It isn’t a
perfect system and he’s had to augment the books by creating a laminated:

quick reference sheet for special actions and weapon traits. The game can
be divided into: 1) core rules (they apply all the time) and 2) fleet lists
(which at the moment are the B5 fleet lists published by Mongoose plus
various fleet lists that have been devised by enthusiasts and uploaded onto
the web with the tacit approval of Mongoose Publishing).
Traveller – Core Rulebook by Gareth Hanrahan, published by Mongoose
Publishing. The possibilities of this game are mind blowing. While it is
set during the days of a galactic empire, the ‘Third Imperium of Mankind’,
it can be used to play in almost any science fiction setting. He’d one day
like to run scenarios in, say, the Martian Trilogy by Kim Stanley Robinson,
the merchant setting of C. J. Cheryyh or the Darkover setting by Marion
Zimmer Bradley. This is an old game given new life. Mongoose have
declared on their blog that they are going to support Traveller for the long
term.
The Kick Inside by Kate Bush is the first record Ian bought with his own
money. And yes, it was a real record – made of vinyl and spinning around
at 33 1/3 rpm. He initially bought it for the Wuthering Heights single. It
was second hand and he paid £1.50 for it. It had loads of hisses and
scratches, so much so that when he bought the CD version, he thought the
missing hisses were a defect.

Next issue: Ewan Milne picks his desert island books.

Desert Island Disks is one of BBC Radio 4’s most popular and enduring
programmes:
 http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml
The format is simple: each week a guest is invited to choose the eight
records they would take with them to a desert island.
I’ve been thinking for a while that it would be entertaining to get ACCU
members to choose their Desert Island Books. The format will be slightly
different from the Radio 4 show. Members will choose about 5 books,
one of which must be a novel, and up to two albums. The programming
books must have made a big impact on their programming life or be
ones that they would take to a desert island. The inclusion of a novel and
a couple of albums will also help us to learn a little more about the
person. The ACCU has some amazing personalities and I’m sure we
only scratch the surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?

Desert Island Books (continued)

requirements and then isolating the users until
the project is complete, but then the users won’t
have what they need.
The book also shows its age when describing
testing. Unit Testing no longer refers to testing
a unit of work. It is an automated test testing a
single unit such as a class. These test should be
written by the software engineer and not left to
another party following development.
I haven’t encountered Rapid Application
Development (RAD) in the project management
sense before. From Murch’s description it
sounds like the only teams it would suit are those
that are simply stringing together existing
components, where there is no learning to be
done and very little to zero chance of scope
creep. This seams totally unrealistic to me.
Software engineers innovate and to innovate
they have to learn. When people are learning
they make mistakes and RAD doesn’t allow for
mistakes.
That said, let me reiterate that I learnt a lot and
there is plenty of good advice in this book. As I
read it I made a list of the things to remember and
to try and make use of. I ended up with 19 points
and page numbers. To my surprise a lot of these
did revolve around documentation, but I still feel
it should be minimal and I’m still undecided
about how much should be hard-copy and how
much electronic.
Murch states that project managers should stay
positive (P.15) about all aspects of the project
while, at the same time, be able to handle often
relentless stress (P.18). This is a very accurate
observation that all project managers should
bear in mind.
A lot of, but not all, software engineers and
managers are aware of the risks that might affect
their projects. Murch talks about risk
management objectives (P.163) and
documenting and constantly reviewing risks that
effect the project. The scoring system and
examples presented are sensible and I can see
them being useful. Once identified, all risks
should have a risk management plan (P.166).
This all makes perfect sense, especially when
you consider ‘the first step in avoiding a trap is
knowing of its existence’. This way there are
less surprises for all concerned.
Software engineers are often left to battle on
with a problem on their own, be it pride or the
illusion that someone else’s time is better spent
on a separate problem or on development.
Murch points out that problems are solved
quicker and more easily when more than one
person investigates the problem (divide and
conquer P.176). He also describes a repeatable
problem solving methodology (P.177) that helps
the team to understand and document the
problem for future reference, plan and
implement a solution.
Problems do occur in projects. In most cases
these problems are fixed and the team assigns
them to history and moves on. This kills the
learning process as soon as the problem is fixed,

which leaves it liable for repetition in the future.
Murch describes ‘Lessons Learned’ reviews
(P.28) which are a type of post mortem designed
to help the team learn from problems and
mistakes to help avoid them in the future.
All projects, even Agile and XP projects need a
project plan (P.41) and no project should be
started without one. Projects should be divided
up into phases and/or milestones with a phase
check list (P.64) so that it is clear to the team and
to project and senior management if a phase has
been completed successfully. Regular project
review reports (P.32) enable the team, the
project manager and senior managers to monitor
and understand the progress of the project.
Projects also need a set of standards (P.29) that
are reviewed regularly to make sure that
everyone is producing the right level of quality.
Murch explains, as we all know, that people are
the most important part of any project. It is
important to retain staff and make them feel
secure. Murch suggests that the best way of
doing this is with incentive packages, usually
consisting of a high salary, options, dental plans
etc. Although I agree (what software engineer
wouldn’t) the people you work with are often the
biggest factor. Therefore, when expanding the
team, it is vitally important to find people who
will fit into the team, not just those that are the
right price or have the right level of technical
skill. Evaluating the skills within the team over
time (P.24) is important. It helps make sure that
team members learn and maintain the skills that
are going to be of most use to the team currently
and in the future.
Murch describes two roles that would be useful
in any team: a scribe (P.157) who is responsible
for recording and collating discussion in any
team meeting (formal or otherwise) and a
release manager (P.193) who is responsible for
overseeing releases, release planning and
managing any problems that arise.
I wouldn’t recommend this book as an absolute
or only guide to project management, especially
as it is so out of date, but it is a good place to start
if you are going on to read other things. As for
me, I have Agile Project Management: Creating
Innovative Products (ISBN: 978-0321219770)
lined up next.

Programming Microsoft Visual C#
2008: The Language
By Donis Marshall, published by
Microsoft Press, 746 pages, ISBN: 0-
7356-2540-9

Reviewed by James Talbut

Not recommended, but not without merit.
This is an update to the 2005 edition, also by
Donis Marshall, that was substantially shorter.
The book attempts to be a reference, presented
in prose as a tour through all the features of the
C# language, covering only those aspects of
.NET that are necessary for this tour. This results
in some coverage that is idiosyncratic, for
example a very brief coverage of using LINQ (a

language feature) to access databases, without
any coverage of any other techniques for
database access. Despite this, the coverage
presented by the book is generally reasonably
thorough, it’s certainly enough to provide a
thorough introduction to C#. That’s the good
news.
The bad news is that the book cannot decide who
it is trying to present this information to. Terms
such as ‘the stack’ and ‘the heap’ are used in the
first chapter without any explanation, but then in
Chapter 3 there is an inane explanation of
inheritance using people as an example. There
are also pointless statements which seem
intended purely to increase the word count:
‘This property returns the rank of the array,
which is the number of dimensions. For
example, a two-dimensional array has a rank of
two.’ I would hope that anyone capable of
coping with this book could work that out for
themselves – there are similarly redundant
examples elsewhere that occupy entire
paragraphs, but they are not suitable for quoting.
Donis also presents some questionable
statements as facts, without consideration of
counter examples. Chapter 1, with reference to
short circuit evaluation of Boolean expressions,
contains the statement ‘Without disciplined
coding practices, short-circuiting might cause
unexpected side effects’. To my mind, any
potential issues here are caused by the use of
expressions with side effects in Boolean
expressions, not by the use of short-circuiting,
but no explanation of this is provided at all.
My final complaint is that there is a distinct
dislike of C++ presented in the book, from
Chapter 7: ‘The CLR performs an intelligent
expansion of generic types, unlike C++, which
blindly expands parameterized types’, which is,
at best, presented as propaganda, with no
consideration of the merits of compile time
evaluation in C++. There are a number of
examples of statements such as this, which will
simply annoy any existing C++ developers.
Despite the wealth of information in this book,
it has taken me some three months to wade
through to the halfway point. At this point I have
decided that I have more interesting books to
read, though I will still occasionally look up
topics in here for reading in the smallest room.

Object Oriented Construction
Handbook: Developing Application-
Oriented Software with
the Tools and Materials
Approach
By Heinz Zullighoven (with many
contributing authors), published
by Morgan Kaufman, ISBN:
1558606874

Reviewed by John Penney

Over the course of several large-scale German
and Swiss enterprise-wide application
developments, Zullighoven and co. evolved a
development methodology for enterprise
MAR 2009 | | 37{cvu}

applications that they have termed the ‘Tools
and Materials’ approach – or T&M. This book
was first published in Germany in 1998, this is
the first English edition in 2005.
The T&M approach characterises the artifacts
the manipulated by the end-user as either ‘tools’
(such as a ruler) or ‘materials’ (such as a
spreadsheet). Materials offer interfaces that
tools can use, and this metaphor extends from
the UI design through construction of the
domain model to class-level design. The key
features of T&M seem to be an extensive use of
real-world metaphors, and a great emphasis on
mapping the application development to the
business and problem domain. In this regard, it
seems there’s a great deal of overlap between the
T&M approach and Eric Evans’ much more
well-known Domain Driven Design.
The fundemental flaw here – and the reason why
this book will gather dust – is that this is very
academic, dense and wordy – a weighty 600
pages. Understanding the complex sentences is
made much more difficult by the questionable
English. I found whole paragraphs that were
grammatically correct but which I struggled to
make sense of. Doomed attempts to add clarity
through examples only resulted in unintentional
comedy: ‘if someone says a sentence like “that
was close to the limit,” who would think of a
borderline between two countries?’ Err... no-
one, Heinz? ‘A pen is a tool [when being used
to write] but not when [used with] a sharpener
to sharp it’. Obviously the quill is still widely
used in German software engineering circles.
There is undoubtedly a good deal of wisdom
buried in this book: the formal definitions of
patterns, frameworks and components and the
catalogues of design metaphors and modelling
artifacts are impressively thorough. However,
for this to be at all useful to a lesser mortal
lacking superhuman powers of concentration,
an ‘Introduction to T&M’ (written by someone
else!) would be essential. Lacking this, I’ll stick
with Eric.

Applying Domain Driven Design and
Patterns With Examples in C# and .Net
By Jimmy Nilsson, published
by Addison Wesley, ISBN: 0-
321-26820-2

Reviewed by Omar Bashir

Recommendation: Verbose
and anecdotal but contains
relevant knowledge and
interesting case studies.
Going through this book was a mission. First
seven pages of the book contain praise for the
book with the last one from author’s eight year
old son, ‘Dad, do you really think someone will
read it’. As I went deeper into the book, that
remark frequently kept coming back to mind.
I will give credit to author’s sincere intentions in
adopting an informal approach to explaining the
design and test driven development of software
based on domain models. However, his

explanation of the design and implementation
process becomes increasingly anecdotal leading
to substantial and unnecessary verbosity. The
information contained in this book could have
easily been contained in a book less than half its
size. The text contains many unnecessary,
unrelated and uninteresting comments and notes
that break its flow making it considerably
challenging to focus on the subject.
The author consistently advocates moderate
application of a number of aspects of agile
software development rather than a zealous
(over) application of methodologies. He stresses
an informed and an experience based adaptation
of various methodologies. Although he does not
advocate an upfront formal design but he does
encourage a limited and informal upfront design
of an infrastructure agnostic domain model that
is progressively refined through TDD. The
author also suggests reusing successful
architectural styles and frameworks within a
development environment. In fact he strongly
recommends developing and using a generic
framework that can be customized on project/
product basis as these provide consistency in
development, reduce per project learning curve
and also reduce overall time to market.
The book contains a number of sections by
invited authors provide interesting introduction
to TDD using mocks and stubs, design
approaches to adopt and approaches to
developing UI to support domain driven
applications. An appendix discusses variations
in domain models considering the requirements
of development exercise being followed in the
book as viewed by three invited authors. Their
relatively moderately formal and focused
writing style makes for refreshing breaks within
the overall text.
The book refers considerably to patterns and
techniques authored by Eric Evans in his
Domain Driven Design book and by Martin
Fowler in his Patterns of Enterprise Application
Architecture book. A prior study of these books
or the referenced topics helps understanding this
book. Furthermore, this book also expects
familiarity with GoF patterns and TDD. The
latter, however, is described and illustrated in
detail through various examples.
The book references mostly open source .Net
technologies (e.g. Spring.Net) without
mentioning any application of the described
approaches using Microsoft technologies like
the Enterprise Services, .Net web services etc.
Author’s use of C# is unimpressive with no use
of and only a passing reference to generics and
a limited discussion on the application of
attributes (annotations in Java) in domain
related or support code. Use or discussion of the
.Net framework is also non-existent. The author
also expresses strong opinions against XML
suggesting that suitable tools did not exist for
XML editing and that most IDEs cannot
associate XML to the source code and therefore
cannot assist in updating XML while refactoring
the code. While the latter may be true, the former

(existence of comprehensive XML tools) may
not entirely be true. Most new IDEs (Visual
Studio, Eclipse etc.) contain reasonable XML
editors while a considerable number of
commercial and open source XML tools are also
available.
Finally, from the infrastructure perspective, the
book only discusses persistence. It would have
been interesting if the author could have
generalized these concepts for application to
other infrastructure related aspects such as
messaging and communication.

A FORTRAN Primer
By Elliott I. Organick,
published by Addison-
Wesley, 183 pages,
‘Copyright (C) 1963’ but
‘Philippines Copyright 1965’,
‘Fourth printing, March 1966’

Reviewed by: Colin Paul
Gloster

I have become involved with a number of
Fortran users, so I read this book, as it is for
beginners and was short enough to be read
quickly; even though it is dated 1965 and deals
with out-of-date Fortran II dialects (with a
chapter on Fortran IV). This might lead one to
suspect that it is of little use, and admittedly,
some of the Fortran II language documented
herein has been removed from newer versions of
Fortran.
Nonetheless, it was worthwhile to confirm for
myself the miseducation directed towards
Fortran users, the aftermath of which persists
circa four decades later. For example, a single
318-line Fortran file in a 2003 code available
online (Fortran users treat the word code as a
countable noun), has 45 GO TO statements,
jumping (if they are ever reached), to 26 distinct
numerical statement labels (which are called
line numbers in BASIC). For the benefit of
readers of this review who are new to
programming, I point out that it is typically a bad
idea to use GO TO.
The flow of English words in the GO TO chapter
fittingly hops back and forth between the
columns in a confusing manner dissimilar to the
preceding chapters. I eventually noticed that,
unlike dialects of BASIC which I had used,
numerical statement labels do not need to be in
sequential order in Fortran. One of the many
examples of this feature in the book is Statement
53 followed by Statement 10.
Hard-coded numbers (magic numbers), instead
of symbolic names are another bad practice
found in this book; the first program relies on an
undefined symbolic constant. Another item of
note is the first figure in Chapter 3 – referenced
as Fig. 3-1 in the text but Fig. 3-3 in the caption.
The first mention of user-defined functions
appears in a single paragraph in Chapter 6,
before their next appearance in Chapter 11. In
decent programming languages, user-defined
functions are important and should be ingrained
into learners' habits from an early stage. It is easy
38 | | MAR 2009{cvu}

MAR 2009 | | 39

accu ACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Jez Higgins
chair@accu.org

As I type, the Chair’s chair is
seat D48 of 390-013 Virgin
Spirit[1], being the 17:23 from
London Euston. It’s overwarm
and rather cramped. The view,
what I can make out in the little light that
remains, is relative featureless arable farmland
that occupies the gap between London and
Milton Keynes. Fortunately it’s whipping by at
100 miles an hour and, if I had daylight to see it,
I know it would get significantly prettier as we
head northwards. I usually spend my working
hours hanging around in my attic, but I ventured
out onsite today because I’ve been appointed
‘publishing guru’. At work, we’re installing and
commissioning a new content management
system which will, according to the consultant
we’ve engaged, work splendidly once we get it
working. Getting it working is the tricky part.
Accordingly, several teams have been
reorganised around specific areas of
functionality, development practices have been
given a bit of a kick up the backside, and so on.
Publishing, that is getting the content and code
out development and editorial and off onto a
website where customers can get what they’re
paying for, cuts right across the neat team
boundaries, and so I have something of a roving
brief. It promises, by turns, to be both frustrating
and rather interesting. Being handed this
position might simply be the result of not being
in the room when the jobs were handed out, but
it was sold to me in a much more positive way.
‘You know’, I was assured, ‘lots of stuff about a
lot of things.’ I countered that while my
knowledge might be broad, it was relatively
shallow. Apparently, breadth was the overriding
factor. Being a gadfly generalist is, it seems,
something of speciality these days.
In a roundabout way ACCU has helped feed my
position as generalist-in-chief. I’ve written often
about this before, but ACCU’s journals, mailing
lists, and conferences, continually throw up new
things to think about. While the import of
something is rarely apparent at the time, merely
having some little snippet or clue or idea lurking
somewhere deep in your memory is enough to
get you started. We all need a bit of a leg up now
and again, and ACCU is capable of giving a
pretty hefty hoik. Everybody should have that to
call upon, so I hope you’ll take up David’s
recruit-a-member challenge. New members will
help us, and we’ll help them. Some of my over-
eager work colleagues might call that a ‘win-
win’, but I prefer to think of it in less mercenary
terms as ‘a pleasant thing to do for a friend’.
ACCU’s AGM will shortly be upon us, taking
place on the Saturday 25 April during the
conference at the Barcelo Hotel in Oxford. (You
don’t have to be attending the conference to

attend the AGM.). One important item on the
agenda each year is the election and reelection of
the committee and the officers. You can get
involved in the running of the organisation at
anytime, simply by offering, but the AGM is an
obvious start point. If you have an idea for
something ACCU could or should be doing or
for something it’s doing now that could be done
better, then consider standing for the committee.
Being on the committee needn’t represent a huge
time investment, but as a volunteer-run
organisation everybody’s contribution makes a
difference. Do drop me a line if you’d like to
discuss an idea you have, or to find out more.
[1] And I know this because ... http://is.gd/j9Ci

Membership
Mick Brooks
accumembership@accu.org

First an apology to those of you
who emailed
accumembership@accu.org
since December and didn't get a
prompt reply. Google’s mail
filter took exception to some (but
not all) ACCU-related messages
and marked them as spam. By the time I noticed
(it was an even-more-than-usually disjointed
thread on the accu-general list that gave it away)
at the end of January there was a significant
backlog of messages that I needed to respond to.
I’m now caught up, so if you wrote to me and
still haven’t had a response could you drop me
another line?
ACCU currently has just under 810 members –
the same number that we had at the end of
August. I expect this to increase in the next
month as people join to book for the annual
conference, but, as David Carter-Hitchin
stressed recently, we do need your help to ensure
we get new members. I’m sure you all have
colleagues and friends who would be interested
in membership of ACCU – you just have to let
them know we’re here. If you could make use of
a few extra magazines or flyers for your coffee
room let me know: I always have spares that I
can send out.
As always, please send any questions or
suggestions about membership and renewals to
me at accumembership@accu.org. (I’ll be
checking my spam folder from now on, I
promise.)

Publicity
David Carter-Hitchin
publicity@accu.org

Help the ACCU!
ACCU membership numbers
have reduced quite significantly
lately, and my guess is that this
is related to the economic

downturn. In order to counteract this we need to
boost our numbers by telling everyone about the
ACCU. One challenge this year is to recruit one
member from your friends and work colleagues.
If everyone did that the ACCU would double in
size. The big project for me this year is going to
be to get an ACCU leaflet into every library in
the UK and in other countries where the ACCU
have a presence. This sounds like a time
consuming task but actually it’s very simple, but
I do need your help. Most libraries have a
distribution function for leaflets and other
information, so you can give a stock of leaflets
to one library and they will distribute them
around the local county or region. All I need you
to do at this stage is to mail me your location. I
will then pick one person from each county/
region and ask them to visit their local library to
find out how many leaflets they would need. I
will then send you the leaflets which you take to
your library. Easy eh? So don’t delay – please
sign up for this by e-mailing me at
publicity@accu.org.

Adverising
Seb Rose
ads@accu.org

A couple of our advertisers are
reaching the end of their
campaigns over the next month
or two, so there may be some
spaces available for new web
campaigns. We run a maximum of five web
campaigns at a time (to guarantee our advertisers
decent exposure), and we’re generally fully
booked. If you know of any organisations that
might benefit from advertising in our journals
and on the website, please forward their contact
details to ads@accu.org

40 | | MAR 2009

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

 The 21st AGM
Notice is hereby given that the 21st Annual General Meeting of The C
Users’ Group (UK) publicly known as ACCU will be held during the
lunchtime break on Saturday 25th April 2009 at the Oxford Barceló
Hotel, (formerly the Oxford Paramount Hotel), Godstow Road, Oxford,
OX2 8AL, United Kingdom.

Current agenda
1. Apologies for absence
2. Minutes of the 20th Annual General Meeting
3. Annual reports of the officers
4. Accounts for the year ending 31st December 2008
5. Election of Auditor
6. Election of Officers and Committee
7. Other motions for which notice has been given.
8. Any other Annual General Meeting Business (To be notified to the

Chair prior to the commencement of the Meeting).

The attention of attendees under a Corporate Membership is drawn to
Rule 7.8 of the Constitution:

... Voting by Corporate bodies is limited to a maximum of four
individuals from that body. The identities of Corporate voting and non-
voting individuals must be made known to the Chair before
commencing the business of the Meeting. All individuals present
under a Corporate Membership have speaking rights.

Also, all members should note rules 7.5:
Notices of Motion, duly proposed and seconded, must be lodged with
the Secretary at least 14 days prior to the General Meeting.

and 7.6:
Nominations for Officers and Committee members, duly proposed,
seconded and accepted, shall be lodged with the Secretary at least
14 days prior to the General Meeting.

and 7.7:
In addition to written nominations for a position, nominations may be
taken from the floor at the General Meeting. In the event of there being
more nominations than there are positions to fill, candidates shall be
elected by simple majority of those Members present and voting. The
presiding Member shall have a casting vote.

For historical and logistical reasons, the date and venue is that of the last
day of the ACCU Spring Conference. Please note that you do not need
to be attending the conference to attend the AGM.

(For more information about the conference, please see the web page at
<url:http://accu.org/conference>.)

More details, including any more motions, will be announced later. A full
list of motions and electoral candidates will be supplied at the meeting
itself.
Alan Bellingham
Secretary, ACCU

to condemn the author for presenting the topic so
late, but unfortunately Fortran is not a decent
programming language, partially because
Fortran compilers are not required to detect
actual parameters that do not correspond to the
formal parameters. (It is possible to overcome
this deficiency in Fortran 90 onwards ... if one
knows how to).
It has been claimed on a number of web pages
that the COMPLEX and DOUBLE PRECISION

modes (types) were added in Fortran II, but in
this book they are mentioned only in the Fortran
IV chapter. Perhaps these dialectal names are
unofficial and have ill-defined boundaries, or
perhaps someone was mistaken.
The author clearly went to a lot of effort to make
this book comprehensible to beginners to
programming. Such readers who must use
Fortran (for example, those who are forced to in
a course which is predominantly unrelated to

computers), should not use this book. It may be
more worthwhile for someone used to
programming who wants a quick overview of
Fortran without expecting everything to be as it
is in a recent Fortran version.

Bookcase (continued)

	What do you want to know tomorrow?
	A Practical Introduction to the YAMI Library
	Bluffer’s Guide to the Semantic Web
	Hunting the Snark
	Developer Categorization of Data Structure Fields (Part 2)
	This ‘Software’ Stuff, Part 3
	Taming the Lint Monster, Part 2
	xCover: Code Coverage for C/C++
	Mailbox @ C Vu
	Code Critique Competition 56
	Desert Island Books
	View From The Chair
	Membership
	Publicity
	Adverising
	The 21st AGM

