

JAN 2009 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
programmers, for programmers – and have been
contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Good Intentions
t this time of year it seems I should be following the high street trend of
enclosing a free gift to encourage loyal readership. But I know you better
than that. Newsweek and Digital Photography are brushed aside when C Vu

pops through the door – and with good reason! We’ve got a great selection of
material in this issue, from Paul’s excellent boiler plating article to Colin’s
extensive review of Fortran literature spanning 27 years. We’ve also got a
fascinating insight into the difficulties with dates, and a great guide to
exception handling for those of you that have so far managed to avoid this
all-too-often ‘optional’ area of C++.
For everyone eagerly awaiting the 2nd instalment of the PC Lint guide
(myself included), I’m afraid that it has been slightly delayed, but it will
be featured in the March issue, all set to be hosted by Roger Orr.
What I love about this time of year is the feeling of potential that the
New Year brings. Whether it’s official resolutions or just a mental
reminder to do something differently, there is something very exciting
about planning how you’re going to fill a brand new set of 52 weeks (more
running, less Xbox).
If you’re in need of ideas, the ACCU conference is now firmly on the
horizon (details available at www.accu.org/conferences), so if you’ve never
been before, now is a good time to start thinking about booking your place
(or convincing your boss to book your place).
I’d like to say a huge thank you to everyone who worked so hard in the
always-hectic run up to Christmas, to ensure that you, the reader, now has
something to fill those long January nights with. Fortunately, I’ve already
read this issue, so I’ll leave the rest to you – enjoy, and have an action-packed
2009.

 A
Volume 20 Issue 6
January 2009

Editor
Tim Penhey
cvu@accu.org

Guest Editor
Faye Williams
mail@faye.tv

Contributors
Mike Crowe, Mark Easterbrook,
Andy Farlow, Thaddaeus Frogley,
Pete Goodliffe, Paul Grenyer,
Derek Jones, Gail Ollis,
Roger Orr, Aaron Ridout

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

FAYE WILLIAMS
GUEST EDITOR

2 | | JAN 2009

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

DIALOGUE
35 Desert Island Books

Paul Grenyer introduces
Alan Lenton and his
selection of books.

37 Code Critique Competition
This issue’s competition
and the results from last
time.

44 Bookcase
The latest roundup of
ACCU book reviews.

48 ACCU Members Zone
Reports and membership
news.

SUBMISSION DATES
C Vu 21.1: 1st February 2009
C Vu 21.2: 1st April 2009

Overload 89: 1st January 2009
Overload 90: 1st March 2009

FEATURES
3 Santa Claus and Other Methodologies

Gail Ollis takes a festive approach to software
development.

8 Trouble with Dates
Mark Easterbrook takes us on a date.

10 Exception Handling in C++
Andy Farlow demystifies C++ exceptions.

14 Developer Categorization of Data Structure Fields
Derek Jones investigates how developers create data
types.

19 This ‘Software’ Stuff
Pete Goodliffe continues to unravel the meaning of (a
programmer’s) life.

21 UML: Getting the Balance Right
Aaron Ridout discusses the usage and aesthetics of UML.

24 Containment During Subdivision
Thaddaeus Frogley tries to find the point.

25 Boiler Plating Database Resource Cleanup
Paul Grenyer cleans up after his code.

33 Regaining Control Over Objects Through Constructor Hiding
Mike Crowe describes an alternative form of object
construction.

WRITE FOR C VU
Both C Vu and Overload rely on articles submitted by you, the
readers. We need articles at all levels of software development
experience. What are you working on right now? Let us know!
Send articles to cvu@accu.org. The friendly magazine production
team is on hand if you need help or have any queries.

Santa Claus and Other Methodologies
Gail Ollis takes a festive approach to software development.

don’t believe in methodologies. This rather contentious position has
opened up many interesting conversations about approaches to software
development, but without the subsequent conversation it is a very bald

statement. So what do I really mean by it, and does examining it closer
actually uncover something more constructive? In this article I will outline
my position in more detail and explain how, in the course of bitter
experience, I came to reach it. But perhaps ‘bitter’ is the wrong word,
because I have had useful opportunities to observe the relationship
between plausible methodologies and the real world. So while I will
explain some of the reasons for their failure to solve problems, I will also
look at the essential elements of successful solutions and how – somewhat
to my surprise – I found that methodologies have a valuable contribution
to make, much like Santa Claus contributes to the magic of Christmas
despite the impossibility of flying reindeer.

Terminology (another -ology!)
Perhaps I should begin by defining my terms. First the sometimes ticklish
question of ‘methodology’. The suffix ‘-ology’, defined by the Oxford
English Dictionary (OED) as ‘the science or discipline of’, is widely
understood to mean simply ‘study of’. Thus in its software context
‘methodology’ is often regarded as a pretentious and inaccurate inflation
of ‘method’. Those who remember BT’s ‘exam results’ TV advert of the
1980s will know that ‘-ology’ carries an aura of academic respectability.
Maureen Lipman plays a grandmother who phones to congratulate her
grandson on his exam results, only for him to report that he has failed –
no passes except for pottery and sociology. ‘He gets an Ology and says
he’s failed!’ she exclaims. ‘You get an Ology, you’re a Scientist!’
Regardless of how ‘methodology’ came to be used for a systematic
collection of activities, this meaning is now enshrined in the OED:

Originally: the branch of knowledge that deals with method generally or
with the methods of a particular discipline or field of study; (arch.) a
treatise or dissertation on method; (Bot.) systematic classification (obs.
rare). Subsequently also: the study of the direction and implications of
empirical research, or of the suitability of the techniques employed in it;
(more generally) a method or body of methods used in a particular field
of study or activity.

Those who approve of the term will not be surprised to find its software
meaning catered for in this definition, while its detractors can perhaps take
comfort from its position right at the end of the list, after obsolete and
archaic usages. Unfortunately, this usage also means that the study I am
undertaking here must surely be in the field of methodologyology!
As for not believing, I do not mean this in the same way as ‘I don’t believe
in Santa’ – I do, of course, believe that methodologies exist! Nor do I mean
that I think they are worthless or never work. I am, however, a complete
unbeliever in the almost religious zeal that sometimes promotes them as
the industry’s salvation. In short, I don’t believe the hype. I don’t believe
in applying a solution without first analysing the problem; at best it is
unhelpful and at worst counterproductive. The reasons for failure to deliver
on the promises may lie in the soundness of the method, its ‘fit’ to a
particular problem or culture, the means of its implementation – or any
combination of these. I will now examine two examples which
demonstrate these failings; examples which, no longer being flavour of the
month, will hopefully not risk much offence. One is a methodology
specifically for software development. The other is for project
management and was employed on a large, interdisciplinary system
development. Both contribute material to the analysis that follows them
of how methodologies can fail to deliver.

Example 1: RTSASD
My software example is Real
Time Structured Analysis
and S t ruc tu red Des ign
(RTSASD), which I used in a
two-site development of a
large new radar system in the
late 1980s. This system was a
radical advance from the
earlier systems in which
software played a largely
passive role of processing the
da ta f rom the an tenna ,
requiring as it did additional
software to perform the
complex task of guiding a
‘steerable’ radar beam. Most
of the code was written in Ada for Intel 486 processors, but low level signal
processing required the greater power of a Distributed Array Processor
(AMT DAP 510). RTSASD is not language specific, or at least not for the
languages of its day, which predated the commercial rise of object oriented
software. It is a method which maps problem domain functions to
functional modules in the design; decisions are made about the scope and
interfaces of components in the analysis stage and strongly influence the
design. Looking back on this, two alarm bells ring immediately.
Firstly, I have grave doubts about the quality of analysis that can be
achieved by such an implementation-focused approach. It is a flawed
perspective for undertaking analysis of a customer’s requirements;
whenever I have seen it adopted (and its adherents are widespread) it has
produced a system which reflects the developer’s view of how to build
software and not the customer’s view of his business. Coupled with an
almost litigious devotion to contractually casting the requirements in stone
as the ink is drying on the contract, the net result is, time and again, a system
which meets the letter of the requirements, ticks all the boxes of the
contractual acceptance tests but leaves the customer less than delighted
with a purchase that fails to achieve what he had envisioned.
Secondly, such early design decisions flout the principle of reversibility:
‘There are no final decisions’ ([1], pp.44-46). In RTSASD, the analysis
phase makes premature design decisions which constrain the
implementation. In fact, an analysis formed in terms of the implementation
not only denies flexibility for the detailed design, but also limits the
potential expressiveness of the analysis. The solution is put before the
problem.
Further issues become evident only upon considering the artefacts
produced to represent the system pictorially (data flow and state transition
diagrams) and textually (data dictionaries and process specifications).
Without doubt these captured relevant information and proved a better
vehicle than wordy documents could have done in facilitating
collaboration between the two sites. Where they failed was in mapping to
well-structured code; it is perhaps not surprising, then, that some of what
was written managed quite spectacularly to break the compiler. Nor did
this style of representing the system support partitioning for

I

GAIL OLLIS
Gail was a software developer for 20 years and cares how the
job is done. She wondered ‘why did they do it that way?’ once
too often, so now she’s studying psychology. Send offers of
paid research studentships to accu@ollis.org.uk!
JAN 2009 | | 3{cvu}

work on subsystems, leading to whole groups of data prefixed with the
name of the site, subsystem and purpose (e.g. xxx_yyyyy_zzzzzzz_)
to package them together and create a namespace which the artefacts, in
their very flat view of the data, could not manage for us.
Despite the emphasis on functional aspects, the pictures of the system did
not map readily onto Ada packages and files, so this was awkward to do
and the rather haphazard transition was one-way – it was not always clear
where elements of the code had derived from, so the RTSASD artefacts
became a disposable step as part of the process rather than a body of
documentation that helped make sense of the code. The step from CASE
(Computer Aided Software Engineering) tool to code was reminiscent of
the simple box in the midst of a complex mathematical formula in an old
cartoon (by Gary Larson, I believe): ‘magic happens here’.
Creating the artefacts also became an end in itself. Following this approach
required a tool, and that tool was Teamwork. Persuading it to accurately
convey our design took so much effort that you could be forgiven for
thinking it was so named because it caused the team so much work. It was
a classic case of the tail wagging the dog as the creation of artefacts became
dominant over the important work of thinking. Somewhat scarred by the
experience, I would be wary of any tool with ‘team’ in its title; teams are
composed of human beings and interposing a computer is not necessarily
the best way to get them working together. (That’s not to say that
computer-mediated communication can’t be beneficial – but that’s a
discussion for another article).

What were we thinking? Given the complexity of the task it seems a
particularly risky time to have attempted something new, but perhaps the
task positively demanded a fresh approach if it were to be achievable. Bear
in mind that this took place in the heyday of waterfall development, when
companies would proudly announce that they were using it – unlike today,
when they try to pretend that they aren’t using it by calling it something
else. In a climate of big bang integration, lots went wrong when parts were
brought together, so although it is absurdly easy to criticise with 20 years
of hindsight, the appeal of RTSASD is an understandable one. I must also
give the company credit for recognising the need to invest in training and
consultancy to embark along this new path. Nonetheless it was a painful
experience at times. The system was delivered eventually, but not without
endless meetings, estimates, slip, arguments and re-estimates.

Example 2: GDPM
The company must have been in a period of hard reflection on its processes
and certainly cannot be accused of being set in its ways at that time,
because soon afterwards came another project with a new process – this
time for the project management. The project, like many the company
undertook, was essentially an update to an existing system for a new
customer, and like all radar projects it involved a mix of mechanical,
microwave, digital electronic and software engineering. As it was based
on an existing system, the myth of code reuse had dictated the estimates
for the software; I disagreed with the figures I was presented with at the
start of the project and estimated the task at twice the original hours, but
was overruled and the schedule was based on the myth. No prizes for
guessing how long it actually took, given that my estimate was based on
expertise, experience and analysis rather than a simplistic assumption that
it couldn’t take long because we could just plug in the code we already had
and tweak it a bit. This scenario is well described in a paper by Ozarin [2]
under the heading ‘excessive faith in code reuse’. In the face of such denial
nothing could have made the project run to plan, not even Goal Directed
Project Management (GDPM).
GDPM seems to have survived the test of time and nowadays has its own
website [3], which describes it as ‘a straight forward approach to project
management’ – though not one that extends to much quality control,
evidently, if the fact that the website refers to goal direced [sic] project
management is any indicator! To summarise very briefly, it defines a series

of project milestones and draws up a cross-functional matrix of
responsibility for their delivery.
Once again, my employer invested in its decision and paid for training for
all staff on the project. Like the RTSASD training, inevitably the examples
were simple ones. Unlike the RTSASD trainers, though, the GDPM
trainers cheated in order to boost their claims of how much more efficient
a GDPM project could be. It’s impossible to construct a rigorous double-
blind test to examine the results of asking people to do things differently;
even if the assessors of the results can be kept ignorant of the method used
to achieve them it is by definition impossible for the participants to be
unaware of it! And even if we accept this known weakness of our
experimental method, it is not possible to be certain of starting from a level
playing field. Either two teams are chosen at random and asked to complete
the same task with different methods, or the same team is asked to complete
multiple tasks with different methods. The former cannot be immune to
the huge differences we routinely see between teams and the latter cannot
control for the experience gained as the experiment progresses.
So in fact when the GDPM trainers set two Lego construction tasks, one
in the morning where we were left to our own devices and one in the
afternoon following specified principles, we could have achieved a
significant improvement for the afternoon’s performance just by what we
had learned from the morning’s experience. Unless the principles we were
required to follow positively hampered progress, things were certain to
improve. But the trainers made doubly sure by quietly shifting the rules.
Suddenly hugely useful pre-manufactured sub-assemblies became
available, this information magically appearing without the need for
application of new GDPM skills. Speaking subjectively, the ‘suppliers’
and ‘customers’ played by the trainers also seemed to be surprisingly
soothed into a more cooperative mood than could be accounted for by their
sandwich lunch.
All the management talking up the great new solution they had found had
already taken this training. Actually there was good stuff in it, but it’s
alarming that they didn’t seem perturbed by the quality of this ‘evidence’
for its effectiveness. Good evidence is very hard to find; unsuccessful
companies are unlikely to wash their dirty laundry in public if they can
possibly avoid it and those who succeed could be doing so for any one of
a multitude of reasons, or indeed a complex cocktail of factors. Given these
difficulties, perhaps the most reliable evidence to look for when evaluating
claims is a logical, coherent and adequately comprehensive strategy. If the
vendors come from a respected source with a good track record and show
a similar understanding of the problems, what’s useful and what’s not, so
much the better. Sadly some people seem to be satisfied with Lego, smoke
and mirrors.
If I am hard on the trainers it is partly because I think they did a promising
method an injustice. The most notable result of applying it was better
communication, with more opportunity to meet with people from across
the project with a cross-section of expertise. Interestingly it managed to
achieve this without co-location. Hard to imagine, I know, that this project
predated ubiquitous office email and project management software. A
high-tech business without email is inconceivable now and the website
reports that GDPM is ‘supported by a comprehensive tool’; I cannot help
but wonder if the main benefit it brought for us has been endangered by
progress.
While communication was much improved, it will be obvious from the
software estimating story there was no greater success in meeting
milestones; GDPM’s focus on finding ways of meeting the goals cannot
contend with the effects of such defective planning. Nor did it seem to
improve the ability to foresee the missing of milestones; perhaps it was too
intent on struggling against the odds to meet the goal at all costs. Another
factor may be the company’s own persistent hierarchical culture.
Consultants were used from the start to help implement the method but
their contact was almost exclusively with The Management, so while many
discussions took place, they did not involve the people who were getting
their hands dirty doing the work. The method was not a heavyweight one
and showed potential but it was not skilfully implemented, perhaps
because the company culture was not ready for it.

some people seem to be satisfied
with Lego, smoke and mirrors
4 | | JAN 2009{cvu}

Where they go wrong
I hope it is clear, from the fact that I see some benefits among the pitfalls
of these examples, that I am not suggesting that methodologies never
deliver improvements. And presumably it is normally a perceived need for
some improvement of some kind that ultimately motivates their adoption,
because even those who seek out new for newness’ sake usually have to
make their case with some claim for the advantage that can be gained. My
contention is simply that adopting a methodology as a solution rarely lives
up to expectations – and perhaps not surprisingly since expectations are
bound to be high; why would anyone embark on such significant and wide-
ranging changes if they were not optimistic about the
benefits? The reasons that these benefits fail to be realised
fall broadly into three categories: approaches that have poor
potential but nonetheless manage to look good; approaches
which actually have good potential but are thwarted by poor
implementation; muppet teams!
If I were to use one word to describe those in the first
category it would be meretricious:

Alluring by false show; showily or superficially attractive but having in
reality no value or integrity. (OED)

Although the word sounds as if its origins may lie in the merit that
something lacks but appears to have, in fact it is derived from the Latin
word for a prostitute, its earlier meaning being ‘befitting a prostitute’
(OED). The market for the oldest profession is long established, but new
technology has established new markets ripe for exploitation, and not just
in internet porn! In a software industry of missed deadlines and massive
overspends any promise to counter these is bound to be very seductive. In
addition, managing programmers is one of those tasks that has been
described as ‘like herding cats’, so anything which may simplify it is
clearly desirable. Having someone else work out how to actually achieve
all these difficult things is surely tempting, but as The Pragmatic
Programmer so succinctly puts it:

No matter how well thought out it is, and regardless of which 'best
practices' it includes, no method can replace thinking. ([1], p.201)

Many types of person are vulnerable to the appeal of a predetermined
formal solution. Budget holders are the most obvious because they are, of
course, particularly susceptible to the siren call of cost savings – but they
are rarely the people best placed to critically assess the potential for
achieving them. Those who actually carry out the work are likely to ask
more searching questions, and software developers in particular are
perhaps also more likely to have the analytical skills to assess the claims
rigorously.
Less obvious but nonetheless susceptible targets are those who are looking
for a mast to nail their colours to. We might characterise these as:
‘fundamentalists’, who seek ‘one true way’; ‘academics’, who find theory
very persuasive but perhaps lack the experience of the messy interface
where theory meets the real world; and ‘seekers’, who are always keen to
try the next new thing and often find themselves in possession of a solution
looking for a problem.
The frightening targets, because of the huge amount of influence they are
likely to wield, are the corporate psychopaths or ‘snakes in suits’ [4]. For
a smooth, polished and often charming mastermind of Grand Plans a
suitably glossy and high-profile methodology is a gift. It looks good, and
if the project succeeds there is no need to analyse what went right to
achieve this; clearly it was their foresighted choice of a world-class, best-
of-breed solution. If, on the other hand, the results are disappointing – and
the corporate psychopath will stoop to very low tactics to avoid this – any
potential for blaming the mastermind is much diluted because there is
nothing too shameful about having used a respectable method widely
recognised by the industry. And having made a sound choice, surely the
outcome was not really in their hands; it would have worked were it not
for poor execution by subordinates.
Of course there are also those who will be reluctant to accept changes, and
they contribute to a cultural explanation of the second category of failures:
sound methods that falter in their implementation. In some cases the

resistance is a passive one, a fear of change rooted in the lack of confidence
to try something new. These people have found a way of working they are
comfortable with and do not want to step outside their comfort zone. More
active resistance comes from those who are (over) confident – adamant that
they know how to do their job perfectly well already and affronted at the
idea that anyone could tell them how to do it better. These, by definition,
are not the organisation’s ‘best people’; the best people know there is
always more they can learn.
The supremely confident people are likely to rail against the imposition of
any measure from above that attempts to tell them how to do their job,

while the timid are likely to evade it (for example, by
keeping their head below the parapet, working away in a
quiet corner on legacy projects). However, top-down rules
are not the only way in which power is exercised. The
sociologist Michel Foucault described how power circulates
in the ideas, values and norms that people internalise. That
people are unaware of their self-imposed rules is evident in

the way they will describe them as ‘natural’ or ‘obvious’, if they think
about them at all. The internalised rules prevalent in an organisation
silently but powerfully govern behaviour. For example, a former colleague
once talked about ‘not being allowed to discuss salaries with other
employees’. While some companies do have such policies, no such rule
existed at the company in question, but the prevailing understandings
about appropriate conversation were strong enough to constrain people’s
behaviour just as much if there were a specific interdiction.
The potency of unwritten and often even unconscious rules governing
‘how we do things here’ has considerable influence to empower the
application of explicit measures that fit with the ways of an organisation
and to undermine those that don’t. I am not talking here about deliberate
sabotage, but simply a habitat in which new processes can either thrive or
languish – an outcome that will surely be familiar to many previous
delegates who have experienced the post-conference slump of heading
home full of ideas that then fall on stony ground. The ways of an
organisation are, of course, not set in stone but constantly renegotiated
through all the daily activities that reinforce or challenge them. Over time
significant change is possible, but it is more likely to shift little by little,
with a gradual catching on and following of leads, than in a big bang.
I referred to how well measures fit an organisation, and that in itself is a
crucial element of a successful implementation. It requires an honest
analysis of the situation and good advice to find the appropriate solution;
one size does not fit all. I will discuss the practical implications of this in
the next section. Starting from somewhere other than such an analysis also
pretty much guarantees that you will lose sight of the goal you set out to
achieve; if you don’t know where you’re going you’ll end up somewhere
else.
Finally the third category: however good the process, no project is going
to succeed with a poor team. Identifying good people and assembling them
into an effective team has been a challenge since programming began and
is far from solved, so it is another ripe market for exploitation for those
who claim to have a solution. As with process there are of course also
people out there trying to find genuinely helpful answers to this very
difficult question. It is a whole separate topic and not one I will cover here,
but it is well worth the effort spent on it because, in contrast to the muppet
team, a really good team can deliver in almost any circumstances.

What is really needed?
To help get to where you really want to be there is a single question which
is more important than any other:

What problem are you trying to solve?
Unfortunately it is too rarely asked. It is important to solve YOUR
problem, not A problem; prepackaged solutions may start from a different
launching point, a bit like the old joke about giving directions: ‘I wouldn’t
start from here’. Actually knowing what your most important problem is
requires an honest, 360 degree analysis to avoid simplistic assumptions
being made about cause. Compare this with the Cardboard Programmer

What problem
are you trying

to solve?
JAN 2009 | | 5{cvu}

(or its counterpart the Rubber Duck in [1]). Stopping to describe a situation
to an attentive listener is often enough of itself to rapidly identify the
underlying problem without a single word (or quack) from the listener.
Once you know the problem you are starting from you can apply
appropriate measures – appropriateness is key here. In the Cardboard
Programmer situation it isn’t uncommon to have first tried various
ineffective remedies based on inaccurate assumptions about the cause. It
is only when forced to examine the symptoms closely enough to be able
to describe them to someone else that the truth, almost magically, emerges.
If you can’t describe it clearly, chances are that you have not yet properly
understood the problem.
In coming to an understanding of the problem there is no such thing as a
silly question. Answering the questions and, more importantly, justifying
those answers, encourages closer examination which fosters
understanding of the reasons and helps to flush out spurious assumptions.
And just as no question is silly, nor is any potential solution when it comes
to visualising the possible ways forward. Ideas should first be generated
without judging them. Past experience is one source – have you ever had
a similar problem; how was it tackled; how did that go? – but more creative
ideas can also flow more freely if they are not immediately judged.
Conversely, having a convenient answer already lined up limits your
choices and the chance of a satisfactory solution.
Only once you have a body of ideas to consider is it time to judge
(constructively!), picking the best idea and working on it to refine it.
Because the other options have not been closed down too early, they too
are on the table as a source to cherry pick useful elements from. Finally
you have a strategy and can create a plan to employ it. If at all practicable,
that should mean testing it on a small scale first. In any case, its success
in solving the problem it was designed to tackle needs to be monitored.
Any mismatch is feedback rather than failure if you then use it to refine
your approach in the light of the extra information you now have. Wise
people know this and carry out retrospectives; the less wise hold witch
hunts or simply sweep it under the carpet and move on with no lessons
learned. There is of course also something to be learned from success, and
it is likely be all the more memorable if you follow advice to celebrate it
([5], pp.158-160 and [6], p.227).

Visualising solutions
I don’t believe methodologies have any place in ‘how to do things better’
until you have genuinely determined what problem you are trying to solve.
Having done that, though, they have tremendous potential in the process
of visualising possible solutions. They offer stories that illustrate how
things might be, and in picturing that image of the future it is necessary to
put ourselves into the story – much like those children’s story books
personalised with names of the recipient and their friends as the hero and
accomplices – to imagine what it can do for us in our own unique
circumstances.
As we read the story, do we nod in recognition as we see what purpose an
artefact of the process serves and the value it has for us? If the published
version of the story doesn’t quite fit our own reality, is it flexible enough
to bend to the shape of our world or is it prescriptively rigid and therefore
liable to break upon meeting our reality? How much are we persuaded by
it? Its persuasiveness depends not only on it being coherent and
comprehensive, but also on the extent to which it makes sense empirically
– largely a function of how much the author’s understanding of the
evidence chimes with our own. Simple respect for the author plays a part
in influencing our acceptance of their story, and that respect has its roots
in holding a broadly similar view of the world.
Fictional stories often demand something back from us if they are to work;
suspension of disbelief, for example, or imagination – they say the pictures
are better on radio! Methodologies make demands of us too, not only
mental ones like faith but also physical ones like resourcing for new roles
or tools. Before acquiescing to these we must consider whether they are
commensurate for every project affected by the decision. The best solution
for one is not necessarily the best for another. While it may be desirable
to compromise on a good all-round solution to gain the benefits of

consistency and familiarity, this just isn’t possible in circumstances where
what’s ‘best’ varies enormously. ClearCase, for example, may be an ideal
choice for a large multi site project; it requires a certain amount of admin
effort but that is an appropriate overhead in return for the benefits. For a
small project, however, it could be considered grossly heavyweight and
the overhead would be unaffordable.
ClearCase is not, so far as I am aware, a prerequisite for any methodology,
but it does demonstrate how a one-size-fits-all approach to tools can have
serious implications for a heterogeneous ‘all’ by having to choose the
highest common denominator. But tools can be a problem even if there is
a homogeneous ‘all’, or even a single project. Personally, I’m immediately
sceptical and suspicious of the ideas someone is trying to sell me if they
also have a tool to sell me to help implement those ideas, but you don’t
have to be a cynic to have reason to be wary. There are questions which
are more important than whether they have a vested interest.
Here are just some of the questions you need to have answers to. Is the
tool the master or the servant – are you doing things for a sound business
reason or to appease the mighty tool? Is it able to integrate with your
existing organisation? An important aspect of this might be the ability to
import and export information in a plain text format so that it can be linked
in with other systems. Closely related to this is its support for automation;
can that export be scripted and scheduled or does someone have to sit at a
GUI following a series of manual steps, time-consuming and each prone
to human error? Can everyone who needs to use it readily do so? If it’s so
complicated that only a few experts can use it and act as interlocutors, or
it is so expensive that licences are closely rationed, it is a hindrance. If it
only runs on a different operating system or a different network to the one
you are using for development, forget about it.
A sales pitch is unlikely to answer these questions adequately, though you
may well discover enough to rule it out if you have the right people present
to probe deeper. One suggestion is to request a complete set of user
documentation from the vendor before they are allowed to set foot on the
premises, the rationale being that if limited time is available for evaluation
it is better to spend all of it on the details than to squander any on installing
and setting up a trial version and so spend less time actually looking at how
you would use the product. Whichever approach you use, do ask these
questions as if it were your own money you’re spending.

Tailoring the solution
If visualising how you might adopt a methodology suggests it is a potential
solution then it can go forward into the process of selecting a solution and
refining it; the other solutions can be raided for useful nuggets. There are
purists who baulk at the ‘refining’, taking an all-or-nothing stance which
claims that the benefits will not be realised if you do not do everything by
the book. (Incidentally, one of the most vehement purists I have
encountered was actually not doing things in strict accordance with his
holy book, much as he believed otherwise. The uncertain meanings of the
badges people use to describe their approach are a whole separate topic!)
I disagree with the purists; they seem to lose sight of the real goal – solving
your problem – and pursue a different one of adherence to method. An
existing, coherent set of ideas is almost certainly a good place to start
instead of inventing your own, but mindless adherence to them certainly
isn’t. Critical faculties must be engaged all the time or the tail will wag
the dog. This doesn’t imply criticism of the method but simply the fact that
off-the-shelf solutions are by definition not tailored for a perfect fit:

It is a principle of methodology that the power of a method is inversely
proportional to its generality... To be powerful, a method must exploit the
problem’s features very minutely. Because problem features vary widely,
we need a repertoire of methods, each suitable for problems of a particular
class. (Michael Jackson, [7])

Santa Claus appears in the title of this piece because he offers a fine
example of a powerful and established story which is never followed
literally but always with legion accommodations to local abilities and
needs. The goal is to help create a happy Christmas for children (and thus
improve the chances of a happy Christmas for adults!) They get a lot of
pleasure not only from the presents but from the magical nature of their
6 | | JAN 2009{cvu}

delivery. The story is one of elves, flying reindeer, and dropping down
chimneys, but those of us who implement it don’t take that literally.
Bringing the magic to Christmas Eve and Christmas morning is achievable
by more pragmatic means that don’t involve living at the North Pole or
defying the laws of physics. Furthermore, every family tailors elements
of the story for themselves. Santa is rumoured to enjoy milk and cookies,
but when visiting my house he shared my mother’s taste for sherry and
mince pies. His generosity seems to be tempered by the family budget.
And despite the established place of a chimney in pictures of Santa at
work, lack of one is a potential hindrance that has been overcome by many
diverse solutions suited to the local terrain. The magic works because we
combine the power of the story with our own ingenuity.
So, as Santa shows, one size doesn’t fit all, at least not without some
alterations. The paradox is that anything too general is unlikely to be of
much use, while anything sufficiently specific is unlikely, without
refinement, to be entirely appropriate. It takes local knowledge to
determine how to ‘exploit the problem’s features very minutely’ –
knowledge that is perhaps best gained with the help of an independent
consultant who can bring a fresh perspective, because it is hard to see these
things objectively from within. Also very helpful in this process are
resources such as the Organisational Patterns book [5], which offers a
pattern language approach progressing step by step through measures
appropriate to the situation that prevails following the previous step.
In the search for a good fit, all sorts of resources can be called upon.
Methodologies are a means of circulating ideas and communicating
principles and provide a good source of theories, even if they are
sometimes akin to what is described in The Science of Discworld [8] as
‘lies to children’ – explanations of complex phenomena simplified to help
people understand. Like the description of the atom as a miniature solar
system, they are a starting point from which to build a more subtle
understanding.
People in other fields make successful use of this integrative strategy:

The mind is something you have to gain control over. I spent a lot of time
on this ... and I have read massively into it. Some of my reading was
business-related, about the principles of successful living, some of it is
understanding the brain and how it works and quite a lot has been more
philosophical. I have, for example, learnt a lot from the doctrines of
Buddhism. Don’t get me wrong. Don’t think: ‘Jonny’s now a Buddhist.’ I
am not. I have just been finding a direction, learning different ways of
looking at life and taking bits I could use and discarding bits I could not.

(Jonny Wilkinson, [9])
And in a respectable pragmatic approach we could learn from, many
psychotherapists, rather than being, for example, strict Freudians, integrate
therapies from a variety of different theoretical backgrounds into their
practice and can call upon whichever is the most appropriate for a
particular client at any given stage.

Conclusion
When it comes down to it, the team is the most important factor.

There is some resistance in our industry to the idea that people factors
dominate in software development.

... I kept discovering that successful teams were still delivering software
without using our latest energy-saving ideas.

Initially, I viewed this as a nuisance.

Eventually, it went from a nuisance to a curiosity ... the opposite
correlation held: Purely people factors project trajectories quite well,
overriding choice of process or technology.

I found no interesting correlation ... among processes, languages or tools
and project success.

(Alistair Cockburn, [10])

Obviously this doesn’t imply we should just forget about processes and
concentrate on getting together a good team; they are hard to find! The

perfect process is even more elusive... because it doesn’t exist. The value
of a process depends on its applicability to the problem and the current
circumstances, which are ever changing, so it must be flexible enough –
and subjected to enough intelligent thought – to cater for a dynamic arena.
Santa has survived the disappearance of chimneys from the average family
home; an intelligent approach to process can be equally durable.

References
[1] Hunt, A. & Thomas, D. (1999) The Pragmatic Programmer,

Addison-Wesley, ISBN 020161622X
[2] Ozarin, N. (2007) ‘Lessons Learned on Five Large-Scale System

Developments’ in 2007 1st Annual IEEE Systems Conference, IEEE,
ISBN 1-4244-1041-X

[3] www.gdpm.com (accessed 30/11/08)
[4] Spinney, L. (2004) ‘Snakes in Suits’, New Scientist, 21/08/04
[5] Coplien, J. & Harrison, N. (2005) Organizational Patterns of Agile

Software Development, Pearson Prentice Hall, ISBN 0-13-14670-9
[6] Kelly, A. (2008) Changing Software Development: Learning to

Become Agile, Wiley, ISBN 978-0-470-51504-4
[7] Jackson, M. (1995) ‘Problems and Requirements’ in Proceedings of

the Second IEEE International Symposium on Requirements
Engineering, IEEE, ISBN 0-8186-7017-7

[8] Pratchett, T,. Stewart, I. & Cohen, C. (1999) The Science of
Discworld, Ebury Press, ISBN 0 091 86515 8

[9] The Times (2007) http://www.timesonline.co.uk/tol/sport/
columnists/jonny_wilkinson/article2697308.ece (accessed 30/11/
08)

[10] Cockburn, A. (2002) Agile Software Development, Addison-Wesley,
ISBN 0-201-69969-9
JAN 2009 | | 7{cvu}

Trouble With Dates
Mark Easterbrook takes us on a date.

hink back to the first of January 2000 CE. The world had not stopped.
A last minute effort by the world’s computer programmers had
averted global meltdown. Everyone could relax until early in 2038

because software developers had learnt all about dates, albeit the hard way.
Unfortunately, history, as always, complicates matters, so there are plenty
of things to consider long before the next significant date rollover. In this
article I am going to look at a number of date problems and what caused
them, whether you need to do anything, and if so, what.

The leap year problem
Before Y2K, a common technical interview question was the calculation
of a leap year. A typical manifest was to provide a sample line of code and
ask what is wrong:
 is_leap = year%4 == 0;

Sometimes no code is provided and the candidate is asked to suggest an
implementation.
The intent of the question is manyfold, such as:

Write an expression in a clear and simple way.
Understand operators, especially the modulus operator and operator
precedence.
Initiate a discussion on leap year calculation, the Y2K problem, and
other issues that can arise from taking a too-simplistic view of the
problem domain.
Discuss the design of a date solution to demonstrate ability to
design. This might include date and datespan classes.

Adjusting the test for century years, such as 1900, which are not leap years,
results in:
 is_leap = year%4 == 0 && year%100 != 0;

and introduces one of the Y2K problems, because 2000 is a leap year.
Other ‘improvements’ such as:
 is_leap = (year%4 == 0);
 is_leap = (year%4) == 0;

show a lack of knowledge of leap year calculation and naivety of operator
precedence.
 isleap = year%4==0 && (
 year%100!=0 || year%400==0);

is an overcomplicated solution, vulnerable to typing errors, and wrong. I
bet most of you are googling at this point, and you will find the most
common ‘answer’ is the same as above, but it is still wrong.
A correct answer for the majority of applications is:
 assert(year>=1918 && year<=2099);
 is_leap = year%4 == 0;

If you understand why this is a ‘good’ answer, you will also understand
the following joke:
Q. In what month did the (Russian) October Revolution occur?
A. November.

Predicting the future
Before I look at history, let us take a quick look into the future and why I
choose an upper limit of 2099. Am I not introducing a year 2100 problem?
I might be, but I don’t care, and neither should you.

1. The chances of the code still being used at a time that it actually
matters is very small. Even if you are writing code for 40-year life
insurance policies, it is not a problem until the late 2050s; most other
applications won’t care until the 2090s.

2. A lot of date handling code will crash and burn before then anyway,
mostly in 2038. This will focus attention on year 2100 issue and
everyone will have 60 years to prepare, which is about 59 years
longer than most people spent preparing for Y2K.

3. We don’t actually know if 2100 is a leap year or not. It will be a leap
year if we continue to use the same calendar with the same definition
of a leap year that we use today – but a lot can happen in 90 years,
and our current calendar has only been universally used for 90 years.

I hope we can agree that trying to support dates beyond 2099 (where the
leap year matters) is a pointless waste of time.

What the Romans did for us
To be able to support dates prior to 1918, it is necessary to understand how
we arrived at today’s calendar.
Roman dictator-for-life Julius Caesar, concerned that the calendar was not
keeping aligned with the seasons, introduced in 45BC the Julian Calendar
with a year of 365¼ days, with the ¼ day handled by adding an extra day
every 4 years. This was a much more accurate calendar than those that
preceded it, but still 11 minutes longer than a real earth year.
The 11 minutes per year accumulated, but although it was known from as
early as the 2nd century CE, it was not until the mid-1570s, when it was
10 days behind the real seasons, that anyone did anything about it. The
spring equinox was falling around the 12th of March resulting in Easter
occurring too late in the real spring time. Pope Gregory XIII put his best
scientists on the case, and so by Papal Decree, the 4th October 1582 was
followed by the 15th, thus deleting 10 days; in future 3 leap years in every
400 would also be eliminated (the ‘divisible by 100 but not 400’ rule).
And thus the Gregorian calendar we use today come into being. Except
that even in Catholic lands only Italy, Spain, and Portugal switched on
time. Everyone’s birthday moved to a calendar date 10 days later, and
rents, interest and wages had to be recalculated for a month that had a mere
21 days (and you thought the Y2K problem was a difficult one).
France switched in December, parts of the low countries jumped from 21st
December 1582 directly to 1st January 1583, skipping Christmas. Most of
Catholic Europe had switched by 1584, but as at this time Europe was a
patchwork of feudal states, travelling across a border could mean the
calendar moving backwards or forwards 10 days in time. Think about this
next time you have to consider today’s timezones.

1752 and all that…
Resistance was strongest in Protestant and Eastern Orthodox lands. The
Julian calendar was followed until 1752 in Britain and its colonies, and it
wasn’t until after the October Revolution in Russia that the Gregorian
calendar became universal.
The 1752 change in Britain was an opportunity to make another
adjustment: moving New Year’s Day from the 25th March to the 1st
January; so in fact 1752 was a very short year, running from the 25th

T

MARK EASTERBROOK
Mark has experience developing embedded systems, OSes,
telecommunications systems, and command and control.
When not in front of a computer he rides motorcycles and
horses. Contact him at mark@easterbrook.org.uk
8 | | JAN 2009{cvu}

March, skipping 10 days in October, and finishing on the 31st December.
This was unacceptable for some annual contracts and financial dealings,
so the accountants of the day kept their year starting on the Julian 25th
March, which is now, after leap year adjustment, the 6th April in the
Gregorian calendar.

Handling dates before 1918
It should be clear by now that if you need to handle dates prior to 1918 it
is not sufficient to just validate and store a modern style date. Unless your
application is unique to a country or area, some, or all, of the following
will be needed:

The date converted to the Gregorian calendar CE/BCE extrapolated
backward if necessary. This allows date span calculations.
The original date including calendar and country/origin. Probably
free text to cater for historical methods of recording dates such as
years relative to the monarch reign.
Handle fractional year notation (e.g. 1751/2) for dates between 1st
January and 25th March.
A method of converting between calendars.

More up-to-date problems (no pun intended)
Even post-1918 the Gregorian calendar is not a given, with the Jewish and
Chinese as examples of calendars in daily use. However, if you choose to
only support the Gregorian calendar, there are still plenty of ways to
design-in bugs.

Day-month-year order and notation
There are a number of ways to order dates:

The USA uses M-D-Y order
Some Scandinavian and Far East countries use Y-M-D order
The international standard for dates (ISO8601) also uses Y-M-D
Most of the rest of the world, including most of Europe, uses D-M-Y
Military notation is D-time-M-Y order
Unix influenced systems use Weekday M D time timezone Y order
Email dates are Weekday, D M Y, time, timezone

Dates are usually delimited by a slash or hyphen in the English-speaking
world, and dots in Europe.
Parsing and displaying all these various formats is a difficult but solvable
problem, except for the ambiguous difference between the US M D Y order
and the D M Y order. On a single machine this can usually be solved by
reference to the locale settings, but in a network architecture, especially a
web based solution, the locale of the server may not be that of the user,
and browsers do not have a locale accessible by the server. Various
methods have been used to solve this issue:

Use the month name instead of the number; however, this may
introduce a language problem.
Drop down lists for input so the month field is constrained to 1-12
so it is obvious to the user. This does not eliminate the problem, it
just makes it less likely.
Display a pop-up calendar. It is quite tricky to ensure that this works
in all browsers and configurations.

The issue is further complicated by US written software referring to the
M D Y order as ‘English’ format.

The Excel 1900/1904 problem
Dates in MS Excel are represented by the (floating point) number of days
since an epoch. Time is encoded in the decimal part. There are two quirks
to the Excel implementation that can cause no end of headaches:

1. The epoch chosen for DOS/Windows is 1900, and for the Macintosh
is 1904. Thus anything that interfaces to internally represented dates
stored in Excel needs to check which epoch is in use.

2. The representation treats 1900 as a leap year so that serial value 59
is 28th Feb, 60 is an invalid date, and 61 is 1st March. This means
that for dates before 1st March 1900 the WEEKDAY function returns
the wrong value and dates cannot simply be subtracted to obtain the
number of days between two dates.

This has become a topical issue recently as both of these anomalies have
been ported unchanged into the OOXML specification. The ECMA
document actually forbids applications from supporting years before
1900!

The day, the whole day, and nothing but the day
The most common internal representation is to encode both date and time
in a single value, for example, Unix uses the number of seconds since 1970
and Microsoft uses the fractional part of the value as time of day. Although
this makes it easy to calculate the elapsed time between two values, it
breaks down when only the date is required. It is common to set the hidden
time component to zero (00:00 or midnight).
If you have a portable device containing a calendar, try setting a date-only
event such as a birthday (often called an all-day event). Now travel to a
far away timezone, set your device to local time, and look up that date
event. If it now runs from sometime on one day to the same time next day,
that hidden time has bitten. That date is only really midnight one day to
midnight the next in your local time zone.
You don’t even have to travel halfway round the world. Just wait for one
of the twice annual clock changes known as daylight saving. Are you sure
your carefully recorded date with the invisible 00:00 time doesn’t
magically become 23:00 the previous day?
Choosing 12:00 instead of 00:00 avoids some of the issues, but do you
really want code for ‘a day plus a half’ all the time?

The year 2038 problem
This is probably the most well known of the future date problems (second
only to Y2K if the past is also considered). In Unix based systems, date
and time is stored as the number of seconds since an epoch of 1st January
1970. This will overflow a 32 bit signed integer in the early hours of the
19th January 2038 and suddenly the world will be plunged back to
sometime December 1901.
Of course the naive answer is just to recompile your application for a 64
bit architecture because by then there will be no 32-bit machines still
running. This is not a solution because:

1. Today while we are transitioning from 32- to 64-bit architecture,
there are still a lot of 8-bit processors in the world, probably more
than the total 32- and 64-bit combined. There are likely to be 8-bit
systems still running in 2038, and certainly plenty of 32-bit.

2. The 2038 problem only occurs in 2038 for the real-time clock. For
anything looking forward it will occur before then. In May 2006
some server software crashed because it used one billion seconds in
the future to mean forever. Twenty-five years is a common term for
mortgages and life insurance, and thus are only 5 years away from
2038 rollover. It is all downhill from there.

3. Recompiling 32-bit applications for 64-bits is often non-trivial, even
if the original programmer was knowledgeable about portability
issues.

4. Where time is part of a binary file format, recompiling won’t work,
and if all components cannot be upgraded together, interoperability
between 32- and 64-bit parts is a problem with no easy solution.

As we approached the year 2000, it was mostly old Cobol and database
systems that were affected. The number of processors and our dependency
on them has mushroomed since then and this trend is likely to continue,
meaning that solving year 2038 issues is going to be more important than
solving the Y2K ones was.
JAN 2009 | | 9{cvu}

Trouble with dates (continued)
Leap seconds
Leap seconds are not strictly a date problem, but they can have an effect
on date calculations if sub-second accuracy is important to you. As our
planet wobbles around our sun, slight differences between astronomical
time (time relative to the stars) and UTC (time recorded by atomic clocks)
occur. For those for which this really matters, leap seconds are inserted into
(or deleted from) UTC to keep them in line.
This means that the length of a UTC year can vary by 1 or 2 seconds, and
cannot be predicted in advance, which makes any time representation that
is the number of seconds from an epoch rather difficult to maintain and
calculate. The solution for Unix time is to pretend leap seconds don’t exist.
If alignment between Unix time and UTC is important, you will need code
for the anomaly every time a leap second occurs, for example:

2008.12.31 23:59:59 UTC will be followed by 2008.12.31 23:59:60
UTC.
2008 12.31.23:59:59 Unix time will be followed by 2009.01.01
00:00:00.

Which means no matter how close you can synchronise the computer clock
to UTC, there will be a second where they represent different dates, and
any UTC time feed may validly contain 60 in the seconds field.

Finally…
Some of you will be lucky enough not to have to deal with dates, and this
article will have been simply of academic interest. The rest of us will have
to deal with at least some of the problems with dates discussed, the most
unlucky with all of them, although hopefully not all on the same project!
Understanding the anomalies and history of calendars allows the prudent
software developer to know how much effort to put into handling dates,
and especially to know what can safely be ignored for the problem domain
under consideration.
And of course you now know that someone with a Russian birth certificate
for 1 April 1908 won’t be celebrating his or her 100th birthday on April
Fools’ Day this year. I’ll leave it as an exercise to the reader to work out
when the party will actually be. Don’t be late, or early!
Exception Handling in C++
Andy Farlow demystifies C++ exceptions.

f you have not used the C++ exception handling mechanism before, it
may seem a little daunting. It’s one of those language features we may
decide is optional and therefore safe to ignore.

But here are two points to bear in mind: firstly, C++ exception handling
really is quite a simple concept (OK, like much of C++, it can be found to
be complicated if you dig deeper, but there is no reason to dig too deep too
soon) and secondly, if you’re using code that someone else has written
which throws exceptions, there’s the distinct possibility that your
application is going to terminate unexpectedly at some point with an
‘unhandled exception’ error. And depending on your application’s target
audience, that may be unacceptable.

Exceptions versus error codes
Essentially, exceptions are a very good alternative to using error codes.
When you use functions that return error codes, what can happen is that
the expected (successful) run-time flow of a program becomes mixed up
with the exceptional situation run-time flow. You find that in higher level
functions you have to concentrate on handling error situations that were
caused in lower level functions. The normal run-time flow becomes littered
with error processing – and these error codes often have to be passed up
through several levels of function calls.
It’s important at this point to make the distinction between expected
situations and exceptional situations. Expected situations are concerned
with all the possible events which can occur as a result of the software
working as you have designed it. You may well have designed your code
to deal with the user doing something silly (for instance sending a blank
email). So your code may check the body of the email and display a
warning message to the user if appropriate. This should be considered as
expected run-time processing. In this situation, an empty email doesn’t
represent an exceptional situation. It’s rather just one predictable situation
that may occur which requires handing in some way.

But, say that in trying to send an email, the piece of low level code that
opens up the network connection finds that it has run out of system
resources and it can’t actually send the email. What then? It could return
an error code, and all the function calls between this low-level function and
your high level calling code could propagate this error up for you to deal
with. Or, this low level code could ‘throw an exception’ that your higher
level code simply ‘catches’ and deals with outside of its normal processing.
This is the benefit of exception handling.

I void someClass::highLevelFunction()
{

 try
 {
 lowLevelFunction();
 cout << "lowLevelFunction worked OK";
 }

 catch (…)
 {
 cout << "Warning : lowLevelFunction Failed";
 return;
 }
 // Do some more processing
}

Listing 1

ANDY FARLOW
Andy’s been a developer for twenty years – long enough to realise that 80%
of software development is just maintenance. He holds that code is only
ever clever and fit for purpose if it’s easily modified when that purpose
changes. He likes trees. Contact Andy at: andy.farlow@ntlworld.com
10 | | JAN 2009{cvu}

So how does it work?
Like many concepts, it is best illustrated with an example. In a high level
function you may have some code as shown in Listing 1.
This code segment essentially says: try to call lowLevelFunction(),
but if that function fails in some exceptional way, then we expect that it
may throw an exception, so we’ll catch it. Once caught, we’ll display a
warning and return. If lowLevelFunction() works as expected, then
we’ll just carry on and do some more processing.
The called function may look something like Listing 2.
In lowLevelFunction() as soon as the throw statement is executed,
control leaves the function and goes up to the catch statement in
highLevelFunction(). If the throw statement is not called (because
we were able to get the system resources) then execution just carries on
and the code goes on to do some more processing before the function
returns.
Any piece of code may throw an exception. As we’ve seen above, it just
specifies something like:
 throw <exceptionObject>

where <exceptionObject> is any valid C++ object. It could be any
built-in type (e.g. int, float, bool) or a class instance. Most commonly
a class instance is used, and the class itself will be designed to represent
something about the exceptional situation. For example the class may
include a method which returns a string indicating what has gone wrong.
In this way the calling code doesn't have to do any specific processing (the
nature of the exception is encapsulated inside the exception object).
In the example above, we just used the standard library exception class
std::exception (often you’ll use something derived from this class).
It’s also possible to just catch an exception and to rethrow it. In this case,
you simply use the statement throw on its own (you can only do this within
a catch block). This in effect passes the exception on. More will follow
on this shortly.

Catching
Catching is achieved using a catch block which is just a catch statement
followed by a code block:
 catch(…)
 {
 // Process the exception
 }

or
 catch(<exceptionObject> &exceptionInstance)
 {
 // Process the exception
 }

The first form says catch absolutely any object that is thrown. Processing
of that object is impossible because there’s no way of knowing what it is,

but at least the program can recognise that something has gone wrong
(rather than just exit, that is, crash).
The second form says catch any exceptions of the type specified by
<exceptionObject> and in the following code block that object may
be used, if necessary, to process the exceptional circumstance.
If there’s no code to catch a particular thrown exception, then the program
will terminate. But, the whole purpose of exceptions is that they should be
caught – and when used to their best advantage, they’re caught by code
that’s higher up the call stack from the function that throws the exception.
Although there’s nothing to stop you writing code that throws and catches
an exception in the same function, it is just a little pointless – the reason
why should become clearer below.
The code that catches the exception can then use the exception object in
some appropriate way to process the exceptional situation. Useful
processing is often to report the error in some way (i.e. notify the user or
write a suitable message to an error log). Or, it can ignore the exact nature
of the error and do something else that the developer deems appropriate.
The important point is that the program won’t terminate unexpectedly and
that it deals with the exception as gracefully as possible.
It’s important to remember that the code in the catch block will only be
executed if some code within the try block threw an exception – and that
includes any code that’s in any functions that are called – and that means
called right down the call stack. If no exceptions are thrown, all code within
the try block is executed then execution continues on the line following
the end of the catch block. This is all shown in Figure 1 (simple exception
handling).
In Figure 1, you can see the alternate paths taken if riskyfunction()
works (the long arrow from its return statement) or fails (the short arrow
via the exception box).

Some more details
Every catch block has to be preceded by a try block. The point is that your
code does a try on something that should work, but it’s ready to catch
exceptions when they arise.
Notice in Figure 1 that the code on the left explicitly catches an object of
type std::exception (or rather a reference to one – more on this later).
In this case it will catch all instances of std::exception and
importantly, any instances of classes derived from std::exception.
This is shown in Figure 2 (more useful exception handling). However, it
won’t catch exceptions of other types.

Stack unwinding
An important point about exceptions is that as soon as one is thrown in a
called function, then all local objects within that function are automatically
deleted and cleaned up by the run-time environment (this magic occurs
because the compiler adds the code to do it for you). This is significant
because it means that all the relevant destructors are called on those objects
and (if the classes for those objects are written properly) any resources
allocated therein are tidied up automatically. The result is that the code that
catches the exception doesn’t have to do any cleaning up and de-allocating
of resources.

void SomeClass::lowLevelFunction()
{
 bool bResourceAllocationFailed = false;
 // Allocate some system resource
 bResourceAllocationFailed =
 getSomeSystemResource();
 if (bResourceAllocationFailed)
 {
 throw std::exception;
 }
 else
 {
 // Do some more processing …
 }
 Return;
}

Li
st

in
g

2
Figure 1
JAN 2009 | | 11{cvu}

Furthermore, if you have a function that throws an exception from way
down the call stack, then that stack is ‘unwound’ from the point of the
throw right up to where it's caught, and all local objects are cleaned up as
it happens. This is demonstrated in Figure 3 (stack unwinding).
Another important point shown up in Figure 3 is that a try block may be
followed by multiple catch blocks, each with a different type. This means
that when an exception is thrown and the stack is unwound, the catch that
matches the type of object thrown is executed.
It’s generally considered bad practice to have a try block with many
different catch blocks following it. The reason being that this method of
design simply mimics the use of error codes and case statements (or
multiple if-else statements if you’d prefer) to process them. That is, each
case clause (or if-else) would correspond to one of the catch blocks
in determining the program execution path. This is not what exceptions
were designed to do.
The theory behind it is this: your program naturally will have many
different execution paths depending on what inputs it receives. But when
an exception is thrown, it really does represent an exceptional
circumstance. It’s not one that you've designed into the code. So it should
ideally lead to just one particular exceptional path (not a choice of many).
However this is not a hard and fast rule when it comes to exception
handling, but should be thought of as a design goal.

Which catch does the catching
When an exception is thrown, the stack is unwound as explained above,
the first catch statement that is encountered that matches the type of
object thrown – or the first one that is declared as catch (…) – does the
catch. If there is no catch with a matching type and none with (…), then
it goes all the way up to the top and terminates the program.
As you can see in the example in Figure 3, you can specify that a catch
statement catches a base class so that it also catches instances of derived
exception class objects (though to do this they must be caught by reference
which is discussed next).

What to throw and what to catch
Generally, the simple advice is to write code which throws temporary
instances of classes derived from std::exception (or some other base
exception class, maybe from a specific library you’re using, or one you’ve
written yourself). Although, as mentioned before, you can throw ints,
floats and even char arrays, it’s best to stick to objects (since they may
encapsulate the nature of the exceptional circumstance). In all the
examples above, you can see that a local exception object is declared in
the called function and it’s that which is thrown.
When it comes to catching, there’s very little reason for doing anything
other than catching by reference. In the above examples you can see that
the catch is declared as:
 catch (std::exception &e)

In simple terms then, this code catches a reference to the object that was
thrown. If you catch instead by value (e.g. by specifying catch
(std::exception e)) this causes a copy to be made of the thrown
object (as it would if this syntax were used in a function argument
definition for example). If nothing else, catching by value introduces the
usual performance hit of additional copying and the inherent copy
constructor error potential. If you don’t want your catch block to modify
the exception object then just declare it const:
 catch (const std::exception &e)

Furthermore, by catching by reference, the code is polymorphically able
to catch instances of classes derived from the one specified in the catch
statement. This is obviously important if you have a hierarchy of exception
classes.
It is almost never a good idea to catch by pointer. For instance, how do
you know where the pointed-to object was allocated (stack or heap)? How
can you know whether it’s your code’s responsibility to delete it if it was
on the heap? There are other considerations too, so the general advice is
just don’t do it unless you have a very good reason to do so.

Some more about throwing Exceptions
You may see exception handling code such as:
 try
 {
 someCall();
 }
 catch (OneTypeOfException &exOriginal)
 {
 AnotherTypeOfException exNew;
 throw exNew;
 }

This could be considered perfectly valid from a coding point of view and
you may see it in existing code or even attempt to imitate it in your own
code. You may have very good reasons for doing so. But if you do, you
should ask yourself whether or not you’re catching the exception in the
right place to start with.
You might also want to rethrow the current exception, (possibly with better
reasons than you would for the above). The following code illustrates this:
 try
 {
 someCall();
 }
 catch (AnException &ex)
 // Note the catch by reference
 {
 if (powerHasBeenCut())
 {
 ex.addDescription("Power has been cut!");
 throw; // This rethrows object ex
 }
 }

Note the fact that throw is used in its own (without an object). This is an
example of catching an exception at one point in the call stack, enhancing

Fi
gu

re
 3

Fi
gu

re
 2
12 | | JAN 2009{cvu}

its usefulness and passing it on – rethrowing it. This does of course rely
on the exception being caught by reference, otherwise the code would just
be adding the description to a copy of the current object and when the
rethrow occurs, the copy goes out of scope and the original (without the
enhancement) is passed on.

Constructors and destructors
Since constructors cannot return error or status codes, it’s considered
reasonable for them to throw exceptions. The alternative is for them to set
some internal state (e.g. bool bErrorConstructingObject) and for
that to be queried by the code that uses the object. By having a constructor
throw an exception however, we can do something like the following in
the calling code:
 SomeClass *pSomeClassInstance = 0;
 try
 {
 pSomeClassInstance = new SomeClass;
 }
 catch(…)
 {
 // Report the allocation failure maybe
 return;
 }
 // Carry on

As long as SomeClass is written well, this can be
a useful way of designing code.
With destructors, however, it’s a different matter.
The problem lies in the fact that objects may well
be under the process of destruction during the stack
unwinding process (after an exception is thrown).
This, after all, is one of the benefits of the
mechanism. So consider the situation where an
exception is thrown and consequently is in the process of being caught up
the stack somewhere. As a result, a destructor on some object along the
way is called. What if that object itself throws an exception. Does the run-
time keep unwinding to the original catch or look for a new one based on
this new exception? Well, the answer is that it does neither of these things.
Rather it’s so disgusted by the dilemma that it just calls terminate()
and exists the program (as per the language specification). This is the very
circumstance that you were probably trying to avoid with exception
handling in the first place. So, don’t throw exceptions in destructors unless
you’ve got some very clever mechanism in place to avoid this situation.

A warning on exception specifications
A function may be declared to throw an exception using an exception
specification. With these, you simply add the types of exception objects
that may be thrown to the end of the function declaration like so:

 void SomeClass::someFunc(int dArg) throw (int)
 void SomeClass::anotherFunc(int dArg) throw (
 int, myEx)
 void SomeClass::someAdditionalFunction(
 int dArg1) throw ()

The first example declares a function that says that it may throw an int
exception, the second says that it may throw an int exception and a myEx
exception. The third says that it’s not going to throw any exceptions at all.
Many functions are declared in this way and you’ll see them as such in
various libraries and other bits of code.
The trouble with exception specifications is that they look like absolute
guarantees that the function will only throw the exceptions that are
specified, or that they will throw none at all. On the face of it that makes
any code that uses the function easy to write because you only have to catch
those types of exceptions (or none at all).
Unfortunately, this isn’t the case. In reality your exception specification-
limited function can throw other types of exceptions as well. This is

because any functions that it calls may throw exceptions – and your
function can’t act as a guarantor for their actions.
OK, you may say, that’s fine. I’ll just make sure that my function doesn’t
call any other functions that throw exceptions, just ones that do not throw
anything. In this way, it can keep its guarantee and any code that uses that
function can just handle the specified exceptions. They are two points to
bear in mind here though. Firstly, if your function does call another
function (which may call another function, which may call another, etc) it
is unlikely that you can ever have any idea about the exceptions that may
be thrown deep down this nested level of calls. The only real way to know
what exceptions may be throw is to look at source code – and very often
that’s either impossible (because you’re using a pre-built library) or just
way too time consuming and error-prone (not least because someone may
change that code in the future – thus breaking your function’s guarantee
without you knowing it). And that brings us on to the second point –
someone may modify your function in the future in such a way that it’s
able to throw some new exception that’s not in the exception specification
– again breaking its supposed guarantee to code that uses it.
If you’re still not persuaded, then consider this: if your function with its
exception specification does actually throw something that is not specified
in its specification (despite your best efforts to stop it), then your program

will terminate. And it will do this because the C++
specification says (somewhat ironically) that it
must throw std::unexpected() exceptions at
run-time under these circumstances – and that
terminates programs.
Ok, you may say after further consideration, I’ll just
make sure that my function with its exception
specification catches every possible exception (and
that’s easy, I’ll just use catch(…)) and I’ll re-
throw an exception that is in the specification. But
this rather misses the point of exception handling in

the first place. You’re just using the mechanism to do the same thing as
passing error codes up the stack, rather than using the exception handling
mechanism to do the stack unwinding for you (and doing your error
processing in just one place).
It seems that most experts agree that exception specifications seemed like
a good idea at the time of writing the language specification, but that they
turned out to cause more problems than they solved.

One more thing to consider
It’s been estimated that, on average, using the exception handling
mechanism can add about a five percent performance penalty to your code.
After all, the run-time has to do all this stack-unwinding for you. So you
may say this is unacceptable and that it’s better to use error codes to deal
with exceptional circumstances and avoid this penalty.
Remember though that exceptions are designed to handle exceptional
circumstances, not to implement the designed (and therefore expected)
flows that your program may go through. So, if all is well in your
application (and most, if not all of the time, it will be), then this overhead
becomes irrelevant. If exceptional circumstances do arise then
performance is unlikely to be the program’s main problem.
It is also generally considered true that having (unplanned) error handling
code intertwined with the normal flow in your code complicates its
maintenance. Many of us have had to maintain previously written code
with vast and complicated nested if-elses that deal with really unlikely
circumstances and have found that these are perfect nesting sites for all
manner of bugs.
Using the exception handling mechanism allows us to remove these bug
nests and deal with the circumstances they’re designed to handle in much
more suitable places in the application.

using the exception
handling mechanism
can add about a five

percent performance
penalty to your code
JAN 2009 | | 13{cvu}

Developer Categorization of
Data Structure Fields

Derek Jones investigates how developers create data types.

ata structures are an important aspect of software engineering and
while a great deal of effort has been expended on analysing them
from a mathematical point of view, almost no effort has been put into

analysing the thought processes used by developers when creating data
structures.
This article investigates the decision making process behind developers’
creation of datatype definitions. Two sources of data are analysed:
measurements of existing code (in particular patterns of field ordering
within one or more aggregate types, e.g. C struct types) and the results
of an experiment carried out at the 2005 and 2008 ACCU conferences (this
asked subjects to create one or more data structures to handle a specified
collection of data items).
This first part investigates various patterns that occur in the definitions
contained in a large body of existing C source code, while a second part
discusses the results of an experiment that asked developers to create a set
of definitions from a specification.
An understanding of the thought processes used by developers when
writing code is essential to the creation of support tools (e.g. refactoring
or flagging suspicious usage) and coding guidelines.
From the human point of view the organization of data structures is a
classification problem. People actively use classification to infer
characteristics of objects they have not encountered before. For instance,
if I encounter a four-legged animal that barks and has a tail I am likely to
classify it as a dog and I can use my existing knowledge of objects that I
have previously placed in the dog category to infer some of the likely
characteristics of the animal I have just encountered. This process is not
perfect, for instance during World War II some of the children evacuated
from the built-up areas of London to the country had not seen sheep before
and initially classified them as dogs.
Children as young as four have been found to use categorization to direct
the inferences they make [1], and many different studies have shown that
people have an innate desire to create and use categories (they have also
been found to be sensitive to the costs and benefits of using categories [2]).
Analysing the factors that influence how developers organise information
into one or more aggregate datatypes requires a more global perspective
than can be obtained from measuring source code (e.g. background data
on the application domain and program design constraints).
This first part of the article analyses existing C source code, concentrating
on finding common usage patterns within individual definitions.
Experience with source code suggests that the following are some of the
patterns that occur in the ordering of fields within aggregate definitions:

Fields having the same type will be placed next to other fields
having the same type.
Fields are likely to be placed close to other fields containing
information with which they share semantic associations.

The ordering of fields will follow the order in which information
appears in any written specification used as the basis for creating a
structure definition.

The second part of the article uses the experimental results to analyse
relationships between information that the designer perceives in the
application (e.g. in a geospatial application it is likely that the various kinds
of location information will be a strong candidate for being grouped
together). Any housekeeping information internal to the representation of
information within a program (e.g. the next field in a linked list) will also
be analysed.
The experiment performed at the two conferences asked subjects to create
data structures to represent various kinds of information. The results of
these two experiments are discussed in the second part of this article.

Analysis of existing source
The following subsection discusses measurements of struct definition
field usage in the translated form of a number of large C programs (e.g.,
gcc, idsoftware, linux, netscape, openafs, openMotif and postgresql).

The contents of any header files were only counted once. This C source
yielded 6,244 struct definitions containing a total of 47,554 fields
(average 6.7 per definition).
The following patterns of behaviour were investigated:

Field type sequences, in particular the observation that fields having
the same type are often placed next to each other.
Shared field names. The extent to which an aggregate definition
contains one or more fields whose names also appears in other
aggregate definitions.
Character sequences that are shared between fields in the same
aggregate definition, e.g., farm_house and farm_animal both
contain farm.
Influence of specification on field ordering. When a written
specification exists, do developers follow the ordering in which it
presents information when ordering fields within a structure
definition?

D

Number of structure and union type definitions containing a given
number of members (members in any nested definitions are not
included in the count of members of the outer definition). Based on the
visible form of the.c and .h files.

struct/union members

D
efi

ni
tio

ns

1 10 20 30 40 50 75 100

1

10

100

1,000

10,000
× .c files

struct
union

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×

×

×

×

×

×××××××××

×

×××
×

×
××

×
××

×
×

××

×
××

××××××
×
×

×
×
××

×× × × × ×

• .h files•

•

•

•

•••

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•••

•

•

•

•

•

•••

•

•
•
•
•

•

•

•

•

•

•

•

•••
••

••

•

•

•

•
•

•

•
•••

•

•
•
••

•

•

•

•

•

•••
•
•

••
••

•
•
•
• •

••
•

•
• •

•
•
•

•

••
•
•

DEREK JONES
Derek used to write compilers that translated what people wrote. These
days he analyses code to try and work out what they intended to write.
Derek can be contacted at derek@knosof.co.uk

Figure 1
14 | | JAN 2009{cvu}

Field type sequences

Experience shows that fields having the same type are often placed next
to each other within a structure. This subsection investigates this
observation.
If, within an aggregate definition, fields of the same type are always placed
next to each other, then a definition containing T different field types would
have T-1 changes of type. If developers always attempt to place fields of
different type next to each other, the number of changes of type has a
possible maximum value equal to the number of fields present minus one
(this pattern requires sufficient fields of different type that it is possible to
continually change type).
The possible sequences of field type within a definition will depend on the
number of occurrences of each type. For instance, a definition containing
four fields with two fields sharing one type and the other two fields sharing
a different type (say x and y) can have one of six possible type sequences:
xxyy xyxy yxxy yxyx xyyx yyxx of which 33.3% have the minimum
number of changes of type. When two fields share a single type and each
of the other two fields have different types there are 12 possible field type
sequences: xxyz xxzy xyxz xyzx xzxy xzyx yxxz yxzx yzxx
zxyx zxxy zyxx and again 50% of the sequences have the minimum
number of changes of type.
As the number of fields increases the number of possible type sequences
increases. In the case of five fields with three sharing the same type and
two sharing a different type there are 10 possible type sequences: xxxyy
xxyxy xxyyx xyxxy xyxyx xyyxx yxxxy yxxyx yxyxx yyxxx
of which 20% of the sequences have the minimum number of changes of
type.

Table 1 lists possible type sequences for aggregates containing 4, 5 and 6
fields, their number of occurrence in C struct definitions, the expected
percentage having the minimal number of changes of type and the actual
percentage having minimal changes of type. The enumeration of field type
sequences was calculated using a purpose-written program [3].
All pointer types were treated as being the same type (i.e., the pointer
type), all arrays were treated as having the same type (i.e., the array type)
and all struct types were treated as having the same type (i.e., the struct
type; it did not matter whether these types occurred via the use of a
typedef on an inline definition).

The number of struct definitions extracted from the source used for this
analysis was sufficient to provide enough data to analyse definitions
containing seven or fewer fields. Figure 1 shows a rapid, power-law like,
decline in the number of C struct definitions as the number of fields in
a definition increases, so significantly more source code would be needed
to analyse definitions containing eight or more fields.
In all cases the number of definitions containing minimal field type change
sequences was greater than would have occurred had the selection been
random, Figure 2 shows the percentage is greater than three standard
deviations (calculated as sqrt(p(1-p)n) where p is the probability of a
minimal field sequence occurring and n is the number of instances, which
has been normalised to 100).
Future research might analyse definitions where the number of type
changes was only one, or more, greater than the minimum.

Possible reasons for this grouping of fields by type include:
Fields are grouped together semantically and such related fields are
likely to hold similar kinds of information and this is represented
using the same type.
Developers are attempting to minimise unused storage space. Some
processors require that types larger than a byte be assigned an
address that is a multiple of some power of two. For instance, an
int may have to be assigned an address that is a multiple of 2 or 4.
Grouping fields having the same type is a simple strategy to ensure
that no unused padding appears between these fields.
Developers treat the type of a field as a categorization attribute and
give it significant weight when deciding the relative ordering of
fields within a structure type.

Same information, same name and type?

Developers are encouraged to give meaningful names to identifiers. If
fields in different definitions have the same name (and contain a reasonable
number of characters) it might be supposed that the information they hold
is closely related semantically and these fields might be expected to share
the same type.

The measured percentage of struct definitions having a minimal type
change sequence (x-axis) and the percentage that are expected to
occur if fields were ordered randomly. A cross indicates a measured
percentage and the random percentage for a definition containing that
particular number of types. If field ordering were random the crosses
would be expected to cluster along the solid diagonal line (bullets
indicate 1 standard deviation, dashed line 3 standard deviations). Data
for all definitions containing between four and seven (inclusive) fields.

Measured percentage

R
an

do
m

 o
rd

er
in

g
pe

rc
en

ta
ge

10

30

50

0 25 50 75 100

××

×

×

×

×

×

×

×

×

×

×

×

×

×

×
×

×

×

×
×

×

×

×
× ×

×

×

×
×

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

Field type patterns for struct definitions containing various numbers
of fields, the number of measured occurrences in source code and the
measured percentage having a minimum number of type changes, and
the percentage of type changes expected if field ordering was random.
When all fields have the same type, or where each field has a different
type, every sequence contains the same number of type changes and
were not counted.

Fields
 Field type

pattern
 Source

occurrences
 % minimum
type change

 % random
ordering

4 112 239 77.4 50.0

4 13 185 78.9 50.0

4 22 98 62.2 33.3

5 1112 57 87.7 40.0

5 113 94 64.9 30.0

5 122 86 57.0 20.0

5 14 121 76.0 40.0

5 23 94 61.7 20.0

6 11112 19 73.7 33.3

6 1113 23 60.9 20.0

6 1122 28 35.7 13.3

6 114 53 64.2 20.0

6 123 72 55.6 10.0

6 15 51 66.7 33.3

6 222 9 100.0 6.7

6 24 60 51.7 13.3

6 33 21 57.1 10.0

Fi
gu

re
 2

Table 1
JAN 2009 | | 15{cvu}

This supposition relies on different developers representing the same
information using the same name and the same type (the source code used
for this analysis was written by a large number of developers). An earlier
ACCU experiment [4] that asked subjects to assign a meaning to different
identifier names found a wide range of meanings assigned to each
identifier. The analysis of the experimental results, in part two of this
article, will provide information on the extent to which developers choose
the same name and type to denote the same application information.
Measurements of the translated C source show that within the measured
6,244 struct definitions and 47,554 fields, 21,805 (45.9%) fields had
names that were not shared by other fields, while 6,415 names were shared
by two or more of the other 25,749 fields (average 4.0 fields per name).

Is a field that shares its name with another field more likely to have a certain
type? With one possible exception Table 3 suggests that the type of a field
does not change the probability of its name appearing in another struct
definition. A possible exception is pointer types which appear to be slightly
more likely to occur, than the average, as the type of a field whose name
appears in another struct definition (your author is uncertain how to
appropriately calculate a standard deviation for values appearing in the two
columns and so cannot say anything about statistical significance).

A study by Anquetil and Lethbridge [5] analysed 2 million lines of Pascal
(see Table 4) and found that members that shared the same name were
found to be much more likely to share the same type than members having
different names.

Refactoring and the desire for backwards compatibility can result in fields
with the same name having the same type, i.e., fields moved into a new

definition are retained in the original definition for backwards
compatibility (perhaps because it is contained in a header included by lots
of third party programs).

Fields sharing a subsequence of characters

Developers sometimes use several words or abbreviations to create an
identifier having what they consider to be an appropriate semantic
interpretation. If two or more fields within an aggregate definition share a
semantic association it is possible that one or more subcomponents of their
names will share a sequence of characters, e.g., farm_house and
farm_animal both contain farm. The article on the 2007 ACCU
experiment [6] describes an algorithm for extracting the likely intended
subcomponents of an identifier and this was used for the analysis described
here.

A pair of fields within the same aggregate definition that share one or more
is subcomponents is called a field pair in this article.
If developers group together semantically related fields within a definition,
then field pairs will be closer to each other than if fields were ordered
randomly. This grouping expectation relies on there being a sufficiently
large number of different subcomponent character sequences that
developers are not likely to assign different semantic interpretations to the
same sequence.
Figure 3 shows the number of individual field pairs (crosses) that share one
or more subcomponents plotted against their distance from each other
(adjacent fields have distance 1, if one field separates them they have
distance 2 and so on; see Table 5). The bullets show the behaviour expected
if the fields in a field pair are ordered randomly.
Figure 4 shows the average distance of all field pairs (crosses) occurring
within a definition having a given number of fields. The bullets show the
average distance expected if the fields in a field pairs are ordered randomly.
The average distance slowly increases as the number of fields in a
definition increases. Reasons for this increase, rather than staying
essentially the same, include:

Definitions containing lots of fields are more likely to contain
accidental field pairs, in the sense that they share a subsequence that
was not explicitly intended to be shared, than definitions containing
few fields.

Table 2 shows the number of times a given name occurs as a field and
the number of different names occurring that number of times (e.g., if
blah_blah is used three times as the name of a field it would add one
to the count appearing in the second column of the 3's row). Only field
names containing 4 or more characters were analysed.

Times name used
 Number of different

names
 Percentage of all shared

names

 2 3239 50.54

 3 1108 17.29

 4 622 9.71

 5 310 4.84

 6 290 4.52

 7 162 2.53

Occurrences of structure type changes as a percentage of all field types
(second column) and as a percentage of all fields whose names also
appear in other struct definitions.

Type % all occurrences % duplicate occurrences

int 16.1 16.8

pointer-to 14.1 18.3

unsigned char 11.6 11.1

unsigned int 10.3 8.7

array of 9.4 10.9

unsigned short 7.6 7.5

struct 7.2 7.3

Number of matches found when comparing between pairs of members
contained in different Pascal records. Adapted from Anquetil and
Lethbridge.

 Member Types
the Same

 Member Types
Different

 Total

Member names the
same

 7,709
(33.7%)

 15,174
(66.3%)

 22,883

Member names
different

 158,828
(0.2%)

66,652,062
(99.8%)

66,710,890

The number of individual field pairs that share one or more
subcomponents plotted against their relative distance from each other;
based on the translated C source (crosses) and based on random
ordering of field pairs (bullets). Only definitions containing five or more
fields were analysed and only character sequences containing three or
more characters were counted. A field pair was only counted once, i.e.,
field pairs sharing more than one subcomponent were not counted
multiple times.

Distance between field pairs

O
cc

ur
re

nc
es

1

10

100

1000

10000

1 10 30 50 70

×

×
×
××

××××××××××××××××
×××

×××
××××××

×

××
×××

××
×
××

×
××××

×
×
×××

×
×
×
×××

×
××

×

×

×××

××
× × ×

••• • •

Ta
bl

e
2

Ta
bl

e
3

Figure 3
Ta

bl
e

4

16 | | JAN 2009{cvu}

The greater the number of fields the greater the probability that
many semantically related fields will be clustered together, creating
field pairs over a greater distance.
Fields are added and deleted from definitions as software evolves
[7]. In some cases developers have to add new fields at the end of a
definition so as not to change the storage layout of the existing
fields. In this case a newly added field may create a field pair but not
be placed much further away from its corresponding member(s) than
would be the case if it had been added when the definition was first
created.

If field pairs are clustered together it is to be expected that the average field
pair distance will be less than the random field distance for all sizes of
definitions. Figure 4 shows that this is not the case when the definition
contains between five and eight fields: 5 fields, expect less than 2.0 but
find 3.25; 6 fields 2.33 vs. 4.46; 7 fields 2.67 vs. 3.54; 8 fields 3.00 vs 3.18.
Possible reasons for this behaviour include: for smaller definitions
developers feel that the semantic association between fields is more
obvious than larger definitions and there is less need to explicitly call it
out via shared subcomponent names; in a set of fields having a tight
semantic association any shared name is likely to be part of the aggregate
type name and repeating this sequence in field names would be overkill.

Average distance between random pairs of fields

The average distance between a randomly chosen pair of fields in a
definition containing N fields is (N+1)/3.

Proof: the average distance can be obtained by summing the distances
between all possible field pairs and dividing this value by the number of
possible different pairs.
Table 5 shows the pattern that occurs as the number of fields in a definition
increases.
In the case of a definition containing five fields the sum of the distances
of all field pairs is: (4*1 + 3*2 + 2*3 + 1*4) and the number of different
pairs is: (4+3+2+1). Dividing these two values gives the average distance
between two randomly chosen fields, e.g., 2.
Summing the distance over every field pair for a definition containing 3,
4, 5, 6, 7, 8, ... fields gives the sequence: 1, 4, 10, 20, 35, 56, ... This is
sequence A000292 in the On-Line Encyclopedia of Integer Sequences
(www.research.att.com/~njas/sequences) and is given by the formula
n*(n+1)*(n+2)/6 (where n=N-1, i.e., the number of fields minus 1).
Summing the number of different field pairs for definitions containing
increasing numbers of fields gives the sequence: 1, 3, 6, 10, 15, 21, 28, ...
This is sequence A000217 and is given by the formula n*(n+1)/2.
Dividing these two formula and simplifying yields (N+1)/3.

Influence of a specification
Many software development projects start with some form of specification
containing information about the application. This specification may be
sufficiently detailed that it is possible to create a one-to-one mapping from
the information it contains to an aggregate definition. Of necessity any
information present in a specification, that may be encoded in the fields
of a definition, appears in some order. Definitions are created by adding
one field at a time and if the developer works systematically through a
specification it is to be expected that field ordering used will have that
order. Following the order of information in a specification has the
following advantages:

simplifies the process of verifying that all items listed in the
specification are covered by a field,
requires less cognitive effort to make use of an existing ordering
than to create a different one,
people influenced by what appears to be an existing way of doing
things.

To what extent does the order of fields in struct definitions in existing
code follow the order of corresponding information within a specification.
Source of data that can be used to answer this question are hard to come
by. National and international standards sometimes go into the level of
detail required and in some cases there are implementations available
whose source code can be viewed. For instance, POSIX [8][9] provides a
specification of the information that a conforming implementation is
required to support in various struct definitions. POSIX is supported by
a wide variety of vendors who need to make available to their customers
the source code, in header files, of the specified definitions. [10]
There are a number of complicating factors involved in using POSIX for
this analysis, including:

Implementations of much of the functionality specified in POSIX
were available before work started on this standard. The authors of
the standard may have based some of the orderings given in the
specification on one or more of these existing implementations.
One of the original vendors (i.e., AT&T) licensed various versions
of its implementation to other vendors. It is possible that this
resulted in some of the contents of some headers sharing more in
common than they might have if implemented from scratch.

Header files from five different platforms supporting the functionality
specified by POSIX were analysed (value in parentheses is the latest year
any of the headers, for that implementation, could have been modified).
The platforms were: RedHat 5.0 Linux (1996), Solaris 2.5 (1996), HP/UX
10 (1996), RS/6000 running AIX 3.2 (1992), Suse 10.3 Linux (2008). Two
versions of the POSIX Standard were used for the analysis, the first [8]

The average distance between field pairs for definitions containing a
given number of fields; based on the translated C source (crosses) and
based on random ordering of field pairs (bullets). The straight line is a
least squares fit of the average distance measurements. Only
definitions containing five or more fields were analysed and only
character sequences containing three or more characters were
counted. A field pair was only counted once, i.e., field pairs sharing
more than one subcomponent were not counted multiple times.

Number of possible occurrences (column values) of each distance (top
row) between every possible combination of field pairs in definitions
containing a given number of fields (left column). For instance, a
struct containing five fields has four field pairs having distance 1 from
each other, three distance 2, two distance 2, and one field pair having
distance 4.

Distance

Number of fields 1 2 3 4 5 6

4 3 2 1

5 4 3 2 1

6 5 4 3 2 1

7 6 5 4 3 2 1

Number of fields

A
v e

ra
ge

 d
is

ta
nc

e
be

tw
ee

n
fie

ld
 p

ai
rs

10 30 50 70

5

10

15

20

25

×
×
××××××××××

×××××
××

××××
×××

××××
××××

××

×

×

××
×

×

×

×
××

×

××
×
×

×
×××

×
× × ×

×

×

•••
•••

•••
•••

•••
•••

•••
•••

•••
•••

•••
•••

•••
•••

•••
•••

•••
•••

•••
•••

•••
••

Fi
gu

re
 4

Ta
bl

e
5

JAN 2009 | | 17{cvu}

published in 1990 and the latest [9] published in October 2008 (currently
a final draft being voted as the next revision of POSIX).
Most of the structs are required to support a relatively small number of
fields (the number in parentheses): sigaction (3), uname (5), tms (4),
stat (10), flock (5), termios (5) and passwd (5).

With the exception of Solaris, which had one field out of order, all
implementations of the sigaction, uname and tms structure
types had the same field ordering as that given in the POSIX
standard.
In all implementations the flock (one additional field in Solaris,
two additional fields in AIX) and termios (the same three
additional fields in RedHat and Suse) structure types had the same
field ordering as that given in the POSIX standard.
Within the stat structure type defined in the header sys/stat.h
the relative positions of the fields st_mode and st_dev were
reversed between the first and latest edition of the POSIX Standard.
Some vendors follow one ordering while the remaining vendors
follow the other. All vendors have defined more than the ten fields
listed in the first edition and intersperse the additional fields at a
variety of different locations.
Within the passwd structure type defined in the header pwd.h all
of the implementations included fields not specified in either version
of the POSIX standard, with the additional field shared across
implementations always occurring in the same relative location.
The sigevent structure type was not specified in the first edition
of the POSIX standard, but is in later versions. It is defined in Solaris
and HP/UX (in both cases with one field missing) and Suse (with
two fields appearing in a different order).

Other definitions
It is likely that aggregate definitions will not be the only kind of definitions
created by subjects taking part in the experiment. Names may be given to
scalar types through the use of typedef (or some other mechanism
appropriate to the language used by the subject) and names may be defined
to represent particular kinds of entities (e.g., using macros or enumeration
constants).
These non-structure definitions are not of interest to the questions
investigated in this study, but they may be of interest for other questions
concerning developer decision making. For instance, whether to use a
macro (e.g., a #define; one study [11] was able to automatically map
some sequences of identifiers defined as object-like macros to members
of the same, tool created, enumerated type).

Discussion
The first part of this study set out to investigate the extent to which various
patterns of struct field usage occur within existing source code.

Fields that have the same type were found to occur in sequence with
a probability that is significantly better than chance. There is no data
to support any conclusions for why this might be so (e.g., developers
actively try to achieve such a clustering or that clustering is driven
by developer perceived semantic similarity between the information
contained in fields and semantically similar information tends to
have the same type).
Fields in different definitions are sometimes given the same name
(see Figure 2). There is no data to support any conclusions (e.g.,
developers use the same name to represent semantically similar
information or the probability that different developers happen to
use the same names). Fields having a particular type were not more
likely to share the same name (see Figure 3). Refactoring and a
desire for backwards compatibility can generate fields of the same
name having the same type.
Pairs of fields, in the same definition, whose names share a common
subcomponent are much closer to each other than would be expected
from a random field ordering. One explanation is that fields sharing

a semantic association are grouped together and share one or more
sequences of characters in their name.
In a very small sample there was very good agreement between the
ordering of information in a specification and the fields in structure
definitions used by various implementations.

Threats to validity

The C source measured for this study has been actively worked on for many
years and during that time its struct definitions are likely to have
evolved. A study [7] of the release history of a number of large C programs,
over 3-4 years (and a total of 43 updated releases), found that in 79% of
releases one or more existing structure or union types had one or more
fields added to them, while structure or union types had one or more fields
deleted in 51% of releases and had one or more of their field names
changed in 37% of releases. One or more existing fields had their types
changed in 35% of releases [12]. The only source code measured was
written in C. To what extent is it possible to claim that the findings apply
to code written in other languages? Measurements of classes [13] in large
Java programs have found that the number of members follows the same
pattern as that measured in C (see Figure 1). While there are no obvious
reasons why the patterns found in C should not also occur in other
languages, there is no reason why they should. Measurements of source
written in other languages would put this issue to rest.

Further reading
A readable collection of papers on how people make use of categories to
solve problems quickly without a lot of effort: Simple Heuristics That
Make Us Smart by Gerd Gigerenzer, Peter M. Todd and The ABC
Research Group, published by Oxford University Press, ISBN 0-19
154381-7.
A readable upper graduate level book dealing with how people create and
use categories Classification and Cognition by W. K. Estes, published by
Oxford University Press, ISBN 0-19-510974-0.

Acknowledgements
The author wishes to thank everybody who volunteered their time to take
part in the experiments and ACCU for making a slot available, in which
to run the experiment, at both conferences.
Thanks to Faye Williams, Dawn Lawrie and David Binkley for
commenting on an earlier draft and to Dawn for writing a program to
evaluate field type sequences.

References and notes
[1] S. A. Gelman and E. M. Markman. Categories and induction in

young children. Cognition, 23:183–209, 1986.
[2] W. T. Maddox and C. J. Bohil. Costs and benefits in perceptual

categorization. Memory & Cognition, 28:597–615, 2000.
[3] This program was written by Dawn Lawrie. Your author is keen to

hear from anybody who knows of an algorithm, other than
enumeration, for calculating these values. The number of different
type combinations for a definition containing N fields is the number
of integer partitions of N. The probability of encountering a field
order having the minimum number of changes of type is obtained by
dividing the number of minimum changes of type (this is m!, where
m is the number of types in the partition) by the number of possible
combinations of each type in the partition, for each of the partitions
possible for a given definition.

[4] D. M. Jones. ‘I mean something to somebody’. C Vu, 15(6):17–19,
Dec. 2003.

[5] N. Anquetil and T. Lethbridge. ‘Assessing the relevance of identifier
names in a legacy software system’. In Proceedings of CASCON’98,
pages 213–222, 1998.

[6] D. M. Jones. ‘Experimental data and scripts for operand names
influence operator precedence decisions’. http://www.knosof.co.uk/
cbook/accu07.html, 2008.
18 | | JAN 2009{cvu}

Developer categorization of data structure fields (continued)

Professionalism in Programming #53
[7] I. Neamtiu, J. S. Foster, and M. Hicks. ‘Understanding source code
evolution using abstract syntax tree matching’. In Proceedings of the
2005 International Workshop on Mining Software Repositories,
pages 1–5, May 2005.

[8 ISO. ISO/IEC 9945-1:1990 ‘Information technology —Portable
Operating System Interface’ (POSIX). ISO, 1990.

[9] ISO. ISO/IEC FDIS 9945:2008 ‘Information technology —Portable
Operating System Interface (POSIX®)’. ISO, 2008.

[10] Your author is keen to hear from anybody who knows of any other
publicly available specifications and associated implementation
headers.

[11] J. M. Gravley and A. Lakhotia. ‘Identifying enumeration types
modeled with symbolic constants’. In L. Wills, I. Baxter, and E.
Chikofsky, editors, Proceedings of the 3rd Working Conference on
Reverse Engineering, pages 227–238. IEEE Computer Society Press,
Nov. 1996.

[12] I. Neamtiu. Detailed break-down of general data provided in [6]
kindly supplied by first author. Jan. 2008.

[13] R. Wheeldon and S. Counsell. ‘Power law distributions in class
relationships’. In Third International Workshop on Source Code
Analysis and Manipulation (SCAM 2003), pages 45–54, Sept. 2003.
This ‘Software’ Stuff, Part 2
Pete Goodliffe continues to unravel the meaning of

(a programmer’s) life.

n the first part of this mini-series we discovered money spinning ideas
for people with strange eating habits, and started to take a slightly
philosophical look at what the act of programming involves. We’re

trying to understand exactly what this ‘Software Stuff’ is so we know how
to build it better – how to write the right thing in the right way. We took
inspiration from the mythical ideal programmer, saw that programming is
an art.
In this part we’ll see how programming is both a science and a sport.
Remember that as we go along I will be posing a series of personal
questions. Consider each question and see whether it applies to you.

Software is... a science
Well, we talk about Computer Science. So there must be something
vaguely scientific going on, mustn’t there? Although it’s probably fair to
say that in day-to-day development organisations there is much less
science and more plumbing involved.
The archetypal mad scientist is, of course, Mr Albert
Einstein. He was great – about the most quotable
scientist there has ever been (which helps magazine
authors considerably). And he had a great sense of
humour. He said this: Any intelligent fool can make things
bigger, more complex, and more violent. It takes a touch
of genius – and a lot of courage – to move in the opposite
direction.
That’s a really profound quote; inappropriate complexity is a real killer in
most software projects.
Harking back to Part 1, Einstein was a bit of an artist too. He appreciated
elegance and beauty in his theories, and aimed to reduce things to a
coherent whole. He said: I am enough of an artist to draw freely upon my
imagination. Imagination is more important than knowledge. Knowledge is
limited. Imagination encircles the world.

See, I told you he was quotable.
So if software is like a science, was does that mean? It is (or should be)...

Rigourous We look for bug-free code that works, all the time, every
time. It must work with all sets of valid input, and respond
appropriately to invalid input. Good software must be accurate,
proven, measured, tested and verified. How do we achieve this?
Good testing is key. We look for unit tests, integration tests, system

tests. Preferably automated to remove the risk of human error. We
also look for experiential testing, too.
Systematic Software development is not a hit-and-miss affair. You
can’t aim to create a well-structured large computer system by
randomly accreting blobs of code until it appears to work. You need
to plan, design, budget, and systematically construct. It is an
intellectual, logical, rational, process; bringing order and
understanding out of the chaos of the problem space and the design
alternatives.
Insightful Software development requires intense brain powers and
astute analytical powers. This is especially important when tracking
down tricky bugs. Like scientists, we form hypotheses, and apply
something akin to scientific method (form hypothesis, work out
experiments, run experiments, validate theory).

So, based on that, ask yourself:

Is my... software always totally correct and completely accurate?
How do I prove this? How can I make this explicit, now and in the
future?

...and...

Do I... strive to bring order out of chaos? Do I collapse complexity
in my code until there are a few, small, unified parts?

...and...

Do I... approach problems methodically and thoughtfully, or do I
rush headlong into them in an unstructured way?

Software is... a sport
Not all metaphors are perfect, and I’ll admit that we have to treat this one
carefully. Here I’m not talking about ‘loner’ sports, like running. Before
I alienate all the athletes in my readership, I go running every week, and

I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@cthree.org
JAN 2009 | | 19{cvu}

manage to solve a lot of programming problems that way! But that’s not
where I’m drawing parallels here. (As it happens, I also have some of my
best programming ideas on the toilet, but that’s an entirely different story).
Software development involves:

Teamwork It requires many people, with different skills, working
in harmony.
Discipline Each team member must be in training, giving
commitment to the team, and putting in hard work.
Rules We’re playing to (developing to) a set of rules, and a team
culture. This is embodied by things like our development processes
and procedures, as well as the rites and rituals of the software team
and their tool workflows (consider how you collaborate around
things like the source control system).

The teamwork analogy is clearest with a sport like soccer. You work in a
team of closely functioning people, playing a game by a set of well-defined
rules.
Have you seen a team of 7-year-olds playing soccer? There’s one small
guy left back standing in the goal mouth, and every other kid is running
around the pitch maniacally chasing the ball. There’s no passing. There’s
no communication. There’s no awareness of the other team members. Just
a pack of children converging on a small moving sphere.
Contrast that to a high-quality premier league team. They operate in a much
more cohesive way. Good software teamwork involves a number of
important skills, highlighted in Figure 1. These are just a few of the
essential characteristics for good software development team work (I talk
more about this in my book [1]). How good are you at each of these?

Do I... have all of these skills? Do I work well in a team, or could
I improve in some areas?

Do I... want to improve as a programmer? Do I actually want to
write the right thing in the right way?

Another key aspect of being a sportsman is discipline. It requires
dedication, hard work, and a lot of training. You can’t get good at soccer
by sitting on a couch and watching soccer training videos. In fact, if you
do it with a few beers and a tub of popcorn, you’re likely to get worse at
soccer! You have to actually do it, get out there on the pitch, with people,
practise your skills, and then you’ll improve. You must train – have
someone tell you how to improve.
And the team must practise together, work out how individual people
should interact, and practise those team moves. These are dictated in part
by the rules of our game.

Am I... still learning about software development? Do I learn from
others, and am I perfecting my team skills?

Do I... invest enough effort in my own development? Am I
continually in training? Am I tired and muddy?

More anon
This is most definitely a whistle-stop tour of the world of software
development, but I hope it helps to highlight some of the essential things
we need to work at to become better software artists/scientists/
sports(wo)men.
In the final part of the mini-series we’ll think about more aspects of this
incredible software ‘stuff’.

References
[1] Code Craft: The Practice of Writing Excellent Code. Pete Goodliffe.

No Starch Press, 2007. ISBN 1593271190.

Fi
gu

re
 1
20 | | JAN 2009{cvu}

UML: Getting the Balance Right
Aaron Ridout discusses the usage and aesthetics of UML.

his is a quick article on a few areas of UML not normally covered in
the main text books. Please direct any comments or discussion points
via ACCU General (by the time you read this I should be back from

paternity leave, holidays and TOIL!), and/or feel free to e-mail me directly.

Aesthetics
I have no scientific results, but I have a ‘gut feeling’ that says if a diagram
looks balanced then this implies that the system being described is ‘better’
(by some measure of ‘better’). Personally, I see this as an extension of the
adage that if a class has an Open() method then it should also have its
opposite: a Close() method. Likewise Do() and Undo(), but it is also
based on the idea of symmetry in a diagram (about some axis or other).
Some layouts are better than others; the layout helps the user to understand
the intent on a diagram. In English, we write from left to right, and thus
have an intuitive understanding that a diagram has time running from left
to right; so a class drawn to the left of another starts first, processes first,
or manages the one to its right. I wonder if someone from other cultures
would recognise this idiom in the same way? (See Figure 1, which
compares left to right with right to left.)

What do you think? Personally, the obvious interpretation is correct for the
top pair, while the bottom pair requires slightly longer thought to intuit that
the ChartManager is in charge. This gets harder as the class diagram
contains more classes. I see this as akin to the signal-to-noise ratio: the
fewer classes on a diagram the easier it is to understand. Unless, of course,
you require an overview of the bigger picture, whence you (almost) want
a one-of-all type diagram on paper sometimes as big as 10m square! I find
that keeping to a 7 ± 2 rule [1] per diagram keeps the meaning and intent
clearer, i.e limit each diagram to about 7 ‘interesting’ nodes, with a total
of no more than 20 interesting-plus-supporting nodes. I would also
advocate the use of colour to show the main focal points, versus that which
is supporting or peripheral to the intent of the diagram. Colour is also a
good indicator of pattern membership, e.g. all members of a bridge pattern
could appear as a particular shade of yellow.
I hope that it is obvious, but don’t cross the streams (lines). The more lines
that cross on a diagram, the harder it is to see the associations.

Cascade or mobile

Which of the two diagrams shown in Figure 2 (cascade inheritance) and
Figure 3 (mobile inheritance) do you prefer? Does it make a difference?
What if you wanted to make it clear that there are various layers of
implementation details? Or were more interested in displaying that there
are three leaf classes?
Personally, I think the best choice depends on what you are trying to show:
layers or leaves.

Call-trees

These need to be balanced also, but here I look for horizontal lines of
symmetry. In Figure 4, a balanced call tree, there is a line of symmetry
about the Doit() call, so all is well.
For some time I’ve agonised over Resource Acquisition Is Initialisaton
(RAII): is it balanced? In the source code example below, one constructs
a Locker object, but never actively destroys it; it just oozes out of scope,
so the code looks unbalanced because there is no active ‘unlock’.
 void SonarMaster::DoIt() {
 Locker lock(mutex_);
 // do stuff while locked
 } // lock goes out of scope here!

However, looking at the sequence diagram in Figure 5, the addition of the
~Locker() line that the compiler inserts for you, makes the diagram look
balanced to me – what a quandary!

T

AARON RIDOUT
Aaron’s love of colourful jumpers offsets his fascination
with agile methods. Happily married with 17 children, an
Acorn Atom and a suitcase full of ZX81 tapes, in another
world he’d have been a children’s TV presenter. Contact
him at aaron.ridout@blackcat.co.uk.

Fi
gu

re
 1

Fi
gu

re
 2

Figure 3
Figure 4
JAN 2009 | | 21{cvu}

Attributes and associations

At the end of the day, attributes and associations both map to the same
things in your class: member variables. On a diagram I think you should
always use associations unless there are too many to coherently display,
in which case, omit the ones that are less interesting with regard to what
you are trying to convey.
Alas, I don’t know of any UML tool that let you display a member variable
as an association on some diagrams and as an attribute on others. If you
don’t want the association on a particular diagram, don’t put the target class
on that diagram – information hiding!

Implementation language
An analysis diagram can be drawn in ‘pure’ UML with no regard to the
language in which the system might be implemented. However, a design
diagram that is closer to the actual code to be produced needs to be moulded
to use the type system of the implementation language in mind. UML tools
have a huge variation in how well they support any given implementation
language: most offer some sort of one-way code generation, a few offer
round-trip. Personally I’ve only ever successfully managed ‘repeated one-
way’, i.e. the diagram is kept up to date, it generates the source code
framework and one writes source code in between the special comments
that the UML tool produces in the generated source. Few UML tools
understand the twiddly bits like const or volatile type qualification (cv-
qualifiers); you can often end up with several (un)related types like Item,
Item *, Item const &, Item const *, Item volatile * const,
etc. To us, the users of the UML tool, they are all the same type (Item)
with various cv-qualifications; to the UML tool they are all separate types.

Language binding

Table 1 shows how I view the C++ language binding working as the
strength of association decreases, i.e. at the top of the table the two classes
are strongly coupled and at the bottom of the table they are minimally
coupled. I’ve included some cutesy names to describe their relationship,
but I’m open to suggestions of improvement for these!
If the upper bound (n), is known, then multiple composition could be
implemented via C arrays, but I prefer std::vector as it provides better
size and other container operations. Similarly, multiple aggregation could
be a simple array of pointers to T, or it could utilise std::list, or some
other container that fits your requirements. What you choose will depend
on the code you want to produce, and some UML tools are more
configurable than others with regard to the C++ code they will generate.
For example, some UML tools let you use an association class and/or a
stereotype to specify the container, such that you can state that a
std::set<T> is used rather than a std::vector<T>. Whether this is
important to you depends on how close your diagrams are to the actual
code.

Semantic programming

A UML tool should easily support semantic programming, you just have
to be careful to use packages correctly to scope the generated files,

otherwise you’ll end up with one file for each type and a huge compile time
because the number of include files has rocketed.
Figure 6 shows that the Window class knows-of (includes) two enums,
They can be in one file, separate files or in an include bucket (i.e. a bad
smell that several places have: e.g. our_types.h).

Tools and patterns
One feature I would really like to find in a UML tool would be real and
proper support for patterns. What I mean by this is the ability to select a
pattern from a catalogue, say the bridge pattern, drop it onto my diagram
and perhaps fill in a property page to, say, rename the classes and select a
colour for the participants. I then expect that the tool will maintain the pre-

Public
Inheritance

d.h:
#include “b.h”
class D : public B
{};

is-a

Protected
Inheritance

d.h:
#include “b.h”
class D : protected B
{};

is-like-a

Private
Inheritance

d.h:
#include “b.h”
class D : private B
{};

like-a

Single
Composition

a.h:
#include “t.h”
class A {
 T m_T;
};

has-a

Multiple
Composition

a.h:
#include “t.h”
class A {
 std::vector<T> m_Ts;
};

has-
some

Single
Aggregation

a.h:
class T; //
forward declaration
class A {
 T * const m_pT;
};

uses-a

Multiple
Aggregation

a.h:
#include “t.h”
class A {
 std::list<
 tr1::smart_ptr<
 t>> m_Ts;
};

uses-
some

Association a.h:
#include “t.h”
class A {
 friend t;
};

refers-to

Dependency a.cpp:
#include “t.h”

knows-of

Fi
gu

re
 5 Table 1

Figure 6
22 | | JAN 2009{cvu}

conditions, post-conditions and invariants of the pattern! I.e. if I add a
DoABC() method to one side of the bridge, I expect the tool to
automagically add the same method to the other side of the bridge, or at
least offer to do so. This extends, obviously, to state charts and sequence
diagrams and probably all other ~9 diagram types too!

Parameterise from Above (PFA)
On the subject of patterns, PARAMETERISE FROM ABOVE has been
discussed a lot recently, so here’s my £0.03…
Take the small example in Figure 7. If you have a smaller number of
objects to create and pass around, hopefully they are created and owned
by main(), or perhaps by lazy evaluation (but please not singletons, just
don’t do it!), so that here the Context object has pointers to its constituent
parts (NB: forward references are used to minimise coupling, the relevant
header files being included only in the cpp that needs to use that one
module). This is so the Context object can be passed around or through
layers without inflicting coupling side effects in all classes that the Context
simply passes through. I’ve used this style successfully in a Java
application of ~100k SLOC, but then in Java everything is a reference and
everyone sees the object declarations.

When the number of objects increases and their life-times are more
complex, then you need to consider when and where they are created and
how much coupling you would inflict when passing the parameters around.
So I would consider having the parameters in different groups that can be
split up as they are passed down a call tree, i.e the larger PFA is passed in
at the top, and as you descend through the layers the smaller ‘tree’ groups
are passed on – see Figure 8. This reduces coupling and means that the
(smart) pointers have to be copied. Also, there could be duplicates: e.g. an
ErrorHander in all three tree groups. Obviously my names are fictitious
and as such this is a poor example (sorry), but this would be a hierarchy
that would in some way reflect the ‘tree’ in which they were being passed
around.
I have not used this in anger yet – it’s very much a work in progress. In
my model, main() creates all of the objects as it constructs the main PFA,
which also means that the life-times of all the constituents are simply the
same as main!

Tool gripes
UML tools are not perfect, as we all know. I would propose that ‘Some
tools do not use strong OO methods to design themselves’. What I mean
by this sweeping generalisation is that I want to be able to do things like
copy a method from one class (with all its parameters and settings) into
another class, and I would also expect to be able to do deep or shallow
copies, i.e. include any source code with it or not. This extends to class,
attribute, association, etc.
I would also like to see the UML model of the tool shipped with the tool
as an example UML model. This would allow users to write and integrate
better scripts into the tools to do those little jobs the tool vendor hasn’t yet
implemented or that are not ‘core’ enough.
I remember tying to create a script for a well known tool that could change
an attribute into an inheritance relationship. Simple, just change the line
style from ‘composition’ to ‘realise’ – ha ha ha! How wrong can one be?
Instead the process required taking a note of the details of the composition,
deleting the old composition from the model (and trying to keep any
orphaned classes on the diagrams they were on), then creating the new
realise relationship, filling in any details that you had, and finally forcing
the new line to appear on all diagrams that the participants were drawn
upon!
In their own UML model there was absolutely no relationship between any
of the flavours of ‘inheritance’ and any flavour of ‘association’, so you
could change a member variable from association to composition, calling
at all stations betwixt, but not into any form of inheritance; which to my
mind is simply the next stop on the ‘strength of association’ scale (see
Table 2).
While I’m on the subject of gripes, why do so few implementations of
sequence diagrams generate any code? Or worse, why don’t sequence
diagrams get created when reverse engineering existing code? Doxygen
can create them (I suppose all I need to do is output the XML from
Doxygen, write a quick XSL script and output XMI…).
Which leads nicely on to XMI: why, oh why, don’t UML tools import and
export XMI in a compatible way? Is the standard too lax? Or do the tools
not want you to import and export? Indeed, one of my evaluation criteria
would be to round trip a complex model via XMI to see exactly how much
information is lost.

Project estimates
Finally, I would like to finish with a simple exercise that may be of interest.
Once you have a model you can (i.e. it may not be useful!) use it to run
some statistics on the code you have generated. It is quite revealing to see
how much a line of code theoretically costs. Table 2 is a summary of work
I did some 15 years ago, but is obviously out of date; collect your own
statistics!

References
[1] The Magical Number Seven, Plus or Minus Two. http://

en.wikipedia.org/wiki/Hrair_limit

Acknowledgements
Many thanks to Neil Owens and Peter Cullinane for reviewing this article.
Share and enjoy!

Project Language Process Staff Cost(£K) Effort (days) SLOC Classes Effort/Class Lines/Day Cost/Class Cost/Line

GByte/sec Data Logger gnu C++ Waterfall ~12 £3,567 8394 100000 5000 1.679 12 £713 £36

MByte/sec Data Logger Borland C++ Waterfall 4 £147 240 30000 200 1.199 125 £736 £5

Production Test system Borland C++ Waterfall 7 £ 270 406 53000 411 0.987 131 £656 £5

Digital Tape Playback MSVC++ Waterfall 9 £ 171 306 38000 336 0.910 125 £509 £4

Workflow (Iteration 2) Java XP 5 £ 156 232 14000 197 1.178 62 £790 £11

Workflow (Iteration 3) Java XP 7 £ 251 383 20000 304 1.260 54 £825 £12

Workflow (Iteration 4) Java XP 7 £ 309 477 29000 391 1.221 60 £791 £11

Fi
gu

re
 7

Fi
gu

re
 8

Ta
bl

e
2

JAN 2009 | | 23{cvu}

24 | | JAN 2009{cvu}

Containment During Subdivision
Thaddaeus Frogley tries to find the point.

his article describes an efficient and reliable
method for determining which subdivision of a
triangle contains a point.

Given the triangle A–B–C, which can be subdivided into
4, so that:

a = A–AB–CA
b = AB–B–BC
c = AB–BC–C
d= AB–BC–CA

And given a point, P, inside ABC, which of a, b,
c, d contains P? Note that although this article
describes Sierpinski’s subdivision of 2d
triangles, the method described can be
generalized to apply to other subdivision spaces.

Background
There are a number of ways of determining if a point lies within a triangle,
such as using Barycentric Coordinates [1], an Angle Summation test, or
checking which side of each edge the point lies. In order to better
understand the final solution below, I will now explain how containment
using edge-side tests works.
Given an edge, AB, which side of the edge the point P lies can be
determined by checking the sign of (AB.x * AP.y) - (AB.y * AP.x), thus for
a Line class that has a Start vector and a Finish vector, a Side
function might look like this:

 Scalar Side(const Vector& p)const
 {
 Vector ab(this->mFinish - this->mStart);
 Vector ap(p - this->mStart);
 return (ab.GetX()*ap.GetY())-
 (ab.GetY()*ap.GetX());
 }

A point lies inside a single triangle if it is
on the right side of all of its edges. Note,
‘right’ becomes left if the winding order is
anti-clockwise. Thus a containment test
for a triangle, using the side-of-line technique, might look like this:

 bool Triangle::Contains(const Vector& p) const
 {
 return (mAB.Side(point) >= 0) &&
 (mBC.Side(point) >= 0) &&
 (mCA.Side(point) >= 0);
 }

The obvious solution to the subdivision problem, testing each subdivision
to see if the point lies within it, does not work.

Why 4x point inside triangle doesn’t work
ISO/IEC 14882 3.9.1/8 defines the precision of float, double, and long
double relative to each other. No absolute guarantee of numerical accuracy
is specified. In practice it is likely that the floating point arithmetic types
will be IEEE 754-2008 floats, of 32, 64, and 128 bits respectively, and the
results of operations will be rounded to fit in that number of bits.
In addition to imprecision from rounding, the IEE standard only
recommends that operations are reproducible (that is to say, the same input
is not guaranteed to produce the same output). This means that when
dealing with the results of operations on arbitrary floating point values, you
cannot depend on (a*b==a*b), and you certainly can’t expect a*b to be
binary equal to b*a.
What this means for us in practice is a containment test for a point very
close to a shared edge could be on the inside of both, or on the outside both
of the triangles that it borders, causing the point to ‘fall through the crack’
and thus the test to fail.
For further reading on the floating point issue, see David Goldberg’s paper
‘What Every Computer Scientist Should Know About Floating-Point
Arithmetic’ [2].
It is often suggested that bugs stemming from rounding errors could be
avoided by using a higher precision type, be it switching from float to
double, or using an arbitrary-precision arithmetic library, but this is both
unnecessary and ineffective, since it only delays the inevitable.

Solution
The solution to the problem is to consider only the
edges that make up subdivision d:

if p falls to the left of AB, it is inside b
if p falls to the left of BC, it is inside c
if p falls to the left of CA, it is inside a
otherwise, it must therefore be inside d.

Example code:

 Triangle* subD = &tri->GetSubDivision(tD);
 if (subD->GetEdge2dXY(tAB).Side(p) < 0)
 tri = &tri->GetSubDivision(tB);
 else if (subD->GetEdge2dXY(tBC).Side(p) < 0)
 tri = &tri->GetSubDivision(tC);
 else if (subD->GetEdge2dXY(tCA).Side(p) < 0)
 tri = &tri->GetSubDivision(tA);
 else tri = subD;

Conclusion
By using a process of elimination, we end up with a much more satisfactory
solution than the obvious series of tests seeking a positive result. Rather
than asking where the point is, we have asked where it is not.

Notes
[1] http://en.wikipedia.org/wiki/Barycentric_coordinates_(

mathematics)#Determining_if_a_point_is_inside_a_triangle
[2] http://www.validlab.com/goldberg/paper.pdf

T

THADDAEUS FROGLEY
Thaddaeus Frogley is a Senior Programmer at Climax,
a games developer based in Portsmouth, England.
Contact him at codemonkey.uk@gmail.com

a

b

c

A

B

C d

A

B

C

A

a

d b

c

B

C

AB

BC

CA

Anticlockwise

Winding Order

Clockwise

Boiler Plating Database Resource Cleanup
Paul Grenyer cleans up after his code.

’ve been using Java for nearly twelve months now and I am finding that
I like it. There are only two things that I have discovered so far that make
make me wonder what the creators of Java were thinking: exception

handling and layout managers. I’ll cover layout managers in a later article.
Java is a garbage collected language. Which means that, most of the time,
you don’t have to worry how the memory previously used by dead objects
is cleaned up. To me garbage collection has always felt a bit like a knee
jerk reaction for people who can’t use smart pointers properly in C++, and
for C programmers who must pay very close attention to the points at which
they release memory allocated to the heap. If garbage collection is meant
to help you clean up memory, why hasn’t something been developed to
help objects release resources? Java has finalizers, but as Joshua Bloch
points out in item 7 of Effective Java [1] finalizers cannot be relied upon
(see sidebar 1). Proper cleanup of resources is left to the developer whose
only real friend is finally.
In languages like C# the IDisposable [2] interface can be used to aid
cleanup. It has a single method called Dispose. All of an object’s cleanup
code should be placed in this method, and calling the method manually,
or via using, ensures resources are released. The drawback is that
IDisposable requires the client code to to use it. There is nothing like
this available in Java, but I think I may have an even better solution which
takes away the dependence on a class’s user to do any cleanup.
Tony Barrett-Powell in ‘Handling Exceptions In Finally’ [3] and Alan
Griffiths in ‘Exceptional Java’ [4] and ‘More Exceptional Java’ [5] both
discuss methods of dealing with database related cleanup and exceptions,
but their solutions are still verbose and can be boiler plated. These articles
form the basis of the boiler plate I present here.
In this article I’ll look briefly at the vast amount of exception handling code
that must be written to cleanly and efficiently close result set, statement
and connection objects, without relying on finalizers when accessing a
database, and then more in depth at one possible method of boiler plating it.

The problem
The problem is simple. Cleaning up after querying a database in Java is
unnecessarily verbose and complex. Plain and simple. I’ll start with an
example that demonstrates the problem. The system I’m working on
currently uses a number of web services. We have a set of web services
on the production box, another on the development box and another on our
local machines. The system asks the relevant database for the location of
the web service based on the services’ name (Listing 1).
This is a lot of code to get one string out of a database and most of it must
be repeated every time a database is accessed. Most of it is error handling
and resource management. In fact I’ve over simplified it. For a discussion
of how error handling and resource management should really be handled
see ‘Handling Exceptions in Finally’ mentioned above.
The Sun Java Documentation [6] states the following for the Connection
interface’s close method:

Releases this Connection object’s database and JDBC resources
immediately instead of waiting for them to be automatically released.

Note: A Connection object is automatically closed when it is garbage
collected. Certain fatal errors also close a Connection object.

It also states the following for the Statement interface’s close method:
Releases this Statement object’s database and JDBC resources
immediately instead of waiting for this to happen when it is automatically
closed. It is generally good practice to release resources as soon as you
are finished with them to avoid tying up database resources.

Note: A Statement object is automatically closed when it is garbage
collected. When a Statement object is closed, its current
ResultSet object, if one exists, is also closed.

And the following for the ResultSet interface’s close method:
Releases this ResultSet object’s database and JDBC resources
immediately instead of waiting for this to happen when it is automatically
closed.

I Item 7: - Avoid Finalizers
This item could have been written to put me straight. I’m the C++
programmer it speaks about and I was desperate for finalizers to be
Java’s destructor. They aren’t. In fact, unlike C++’s destructors, they are
unpredictable, often dangerous and generally unnecessary. Ok, so if
you’re not careful with exceptions, destructors in C++ can be dangerous
too. Java finalizers are worse.
The item explains that you should never do anything time critical io
finalizers as the JVM is ‘tardy’ at running them. I did some experiments
closing database connections in finalizers and couldn’t generate any
evidence that they were called at all. If and when finalizers are called is
JVM implementation specific. So cross platform programming using
finalizers is unpredictable at best, disastrous at worst.
The item also explains that uncaught exceptions thrown in finalizers are
ignored, but the finalization of the object is terminated leaving it in an
unknown and potentially corrupt state, which can result in arbitrary,
nondeterministic behavior. Using finalizers also increases the time to
terminate an object by a whopping 430 times according to an
(unexplained) test example run by Bloch.
The item describes the alternative to using finalizers as providing an
explicit termination method that can, typically, be called from a finally
block. This is what I do in a lot of cases and what the Java database
objects provide.
Finalizers could be used as a safety net for forgotten terminate method
invocations on the basis that it’s better to release resources late than
never, but of course there’s no guarantee it’ll get released at all as there
is no guarantee that a finalizer will ever be called...

Item 65: - Don’t Ignore Exceptions
The point that this item is trying to get across is that exceptions are trying
to tell you that something bad has happened and should not be ignored.
It's far too easy to write something like:
 try
 {
 …
 }
 catch(Exception e)
 {
 }
The item points out that ‘an empty catch block defeats the purpose of
exceptions, which is to force you to handle exceptional conditions’ and
‘At the very least, the catch block should have a comment explaining
why it is appropriate to ignore exceptions.’
The item gives the example of closing a FileInputStream as a
situation where it might be appropriate to ignore an exception, with a
comment in the catch block or a message (written to a log of course).
The state of the file has not been changed and there is nothing to roll
back. This of course assumes that the file resource has been
successfully released.
The advice in this item applies equally to checked and non-checked
exceptions.

‘Effective Java’

PAUL GRENYER
An active ACCU member since 2000, Paul is the founder
of the Mentored Developers. Having worked in industries
as diverse as direct mail, mobile phones and finance,
Paul now works for a small company in Norwich writing
Java. He can be contacted at paul.grenyer@gmail.com
JAN 2009 | | 25{cvu}

Note: A ResultSet object is automatically closed by the Statement
object that generated it when that Statement object is closed, re-
executed, or is used to retrieve the next result from a sequence of
multiple results. A ResultSet object is also automatically closed when
it is garbage collected.

This can all be interpreted in a number of ways. The first is that everything
gets closed when it is garbage collected, so there is no need to explicitly
close anything. This relies on the appropriate finalizers getting called but,
as Bloch tells us, Java provides no guarantee that a finalizer will ever be
called, even when an object is garbage collected.
Another method is to explicitly close Statement and Connection
objects as Statement objects clean up their associated ResultSet
objects. Drawbacks include any error caused by closing the ResultSet
is potentially ignored and the resource is not released as soon as it could be.
Yet another method is to explicitly close everything. This is the most code,
but releases resources and handles any error as soon as a resource is
finished with, making it the most efficient way of using resources.
I favour the third and final method. It is more code, but boiler plating will
mean most of it only needs to be written once. Everything will be cleaned
up as soon as possible, all errors can be trapped and reported, and nothing
is left to chance.

The close methods for Connection, Statement and ResultSet
objects can all throw if there is an exceptional circumstance. In Item 65 of
‘Effective Java’ (see sidebar), Bloch explains that exceptions should not
be ignored. He also describes certain circumstances where it might be okay
to ignore or log these types of exceptions. The Connection, Statement
and ResultSet close methods could be considered one of these
situations.

A solution
In ‘Another Tale of Two Patterns’ [7] Kevlin Henney describes the
FINALLY FOR EACH RELEASE and EXECUTE AROUND METHOD (EAM)
patterns. Both are applicable to the problem. Here I will look at the
FINALLY FOR EACH RELEASE solution and in Part II a solution using
EXECUTE AROUND METHOD.
In its basic form the FINALLY AFTER EACH RELEASE pattern looks like this:
 resource.acquire();
 try
 {
 resource.use();
 }
 finally
 {
 resource.release();
 }

which describes accurately how database resources should be created, used
and cleaned up.

Connection policies
Let’s start by looking at database connection management. There are a
number of ways of creating and using a database connection. Probably the
two most common are:

Creating it with a driver (e.g. JDBC) and a connection string.
Using an existing connection created and cleaned up somewhere
else.

Sensible boiler plate code should support both of these methods and allow
custom creation of database connections, which makes using a policy
ideal:
 public interface ConnectionPolicy
 {
 abstract Connection connect()
 throws ConnectionException;
 abstract void disconnect(final Connection con)
 throws ConnectionException;
 }

All the boiler plate code has to do is call connect to get a Connection
object and disconnect to release it when it’s done. It does not need to
care how the object is created or how, or even if, it is released. This means
that ConnectionPolicy could even be implemented as a Connection
pool. The implementation of ConnectionException is trivial
(Listing 2) and simply there to force a common exception type to be thrown
by the policy. It extends ResouceHandlerException, which we’ll
look at later.

try
{
 Class.forName(driver);
 Connection con = DriverManager.getConnection(
 connectionString, username, password);
 try
 {
 PreparedStatement ps = con.prepareStatement(
 "select url from services where name =
 'Instruments'");
 try
 {
 ResultSet rs = ps.executeQuery();
 if(rs.next())
 {
 System.out.println(rs.getString("url"));
 }
 try
 {
 rs.close();
 }
 catch(SQLException e)
 { // Report Error }
 }
 finally
 {
 try
 {
 ps.close();
 }
 catch(SQLException e)
 { // Report Error }
 }
 }
 finally
 {
 try
 {
 con.close();
 }
 catch(SQLException e)
 { // Report Error }
 }
}
catch(Exception e)
{ // Report Error }

Li
st

in
g

1

public class ConnectionException extends
 ResourceHandlerException
{
 public ConnectionException(
 final String message,
 final Throwable throwable)
 {
 super(message, throwable);
 }
}

Listing 2
26 | | JAN 2009{cvu}

 Most connections, if they’re closed by the policy, will be closed in the
same way: by calling close on the Connection object. So it’s worth
putting the common close code into an abstract class (Listing 3).
All this does is check that the Connection object is not null, call close
on it and catch and translate any exception it might throw. Implementing
a connection policy for an existing connection is then very simple
(Listing4).
A Connection object is passed in through the constructor and passed
back via connect. An overloaded constructor allows the cleanup flag to
be set (by default it is not set). When disconnect is called the flag is
checked to see if the connection should be cleaned up. Although it's simple,
it's not as simple as it could be as I have added the cleanup flag, but the
policy is more flexible this way.

A policy for creating a connection from a connection string and driver is
a little more involved, but the beauty of boiler plate code is that you only
have to write it once (Listing 5).
StringConnection extends AbstractConnectionPolicy and
takes advantage of the common disconnect method. The constructor
takes a driver string (e.g. "sun.jdbc.odbc.JdbcOdbcDriver") and
a connection string (e.g. "jdbc:odbc:Marauder") and uses them to set
the appropriate members. The setUser and setDatabase methods are
a variation on the builder pattern, as described by Joshua Bloch’s second
‘Effective Java’ item (see sidebar above), that allows a username and
password and a default database to be set optionally. For example:

final ConnectionPolicy conPolicy
 = new StringConnection(driver,connectionString)
 .setUser(username, password)
 .setDatabase(database);

The connect override uses the driver and connectionString
objects to create a Connection object, and catches, translates and
rethrows any exceptions. It also calls the useDatabase method. If the
database object has been set it uses it to set the current database by
building the appropriate SQL statement and using a Statement object
to execute it. The Statement object is cleaned up by a finally block. If
an exception is thrown at any point, the Connection object is closed, but
any close exception is ignored in favour of the original exception, and then
the original exception is rethrown. This is one of those rare cases where
an exception can be ignored, but should be logged.

Resource handler
Wit h t he F I N A L L Y F O R E A C H R E L E A S E p a t t e r n a n d t he
ConnectionPolicy interface as a starting point it is possible to start
building up a class that will handle the cleanup of resources automatically
(Listing 6).
The constructor takes and stores a ConnectionPolicy object. The
executeQuery method uses the policy to create, use and cleanup a
Connection object. A new feature called Generics [8] was introduced
in Java 1.5. One of the advantages of generics is that you can specify the
type used by a class when an instance of that class is declared. In the case
of the ResourceHandler the return type of the executeQuery method
is paramatized so that it can return any type. As we’ll see later, this is useful
if the SQL query is returning something other than a single string; such as
a list of strings or key value pairs.

public abstract class AbstractConnectionPolicy
 implements ConnectionPolicy
{
 @Override
 public void disconnect(final Connection con)
 throws ConnectionException
 {
 try
 {
 if (con != null)
 {
 con.close();
 }
 }
 catch(final SQLException e)
 {
 throw new ConnectionException(
 e.getMessage(), e);
 }
 }
}

Li
st

in
g

3

public class ExistingConnection extends
 AbstractConnectionPolicy
{
 private final Connection con;
 private final boolean cleanup;
 public ExistingConnection(final Connection con,
 boolean cleanup)
 {
 this.con = con;
 this.cleanup = cleanup;
 }
 public ExistingConnection(final Connection con)
 {
 this(con,false);
 }
 @Override
 public Connection connect() throws
 ConnectionException
 {
 return con;
 }
 @Override
 public void disconnect(final Connection con)
 throws ConnectionException
 {
 if (cleanup)
 {
 super.disconnect(con);
 }
 }
}

Li
st

in
g

4

Item 2: Consider a builder when faced with many constructor
parameters
The item gives an example of a class that has a number of optional
properties that should be initialised via a constructor and explains how
they can be initialsed using the telescoping constructor pattern or the
JavaBean pattern. It concludes that ‘the telescoping constructor pattern
works, but it is hard to write client code where there are many
parameters, and harder still to read it’ and that ‘the JavaBean pattern
precludes the possibility of making a class immutable’. His argument in
both cases is convincing.
As a solution, the item suggests a variation on the builder pattern.
Basically, the class with the optional properties has an inner class that
can be used to initialise the properties on construction. The resulting
initialisation syntax looks like this:
 NutritionFacts cocaCola =
 new NutritionFacts.Builder(240,8).
 calories(100).sodium(35).carbohydrate(27).
 build();
The item points out that ‘the builder pattern stimulates named optional
parameters’ and that the pattern does not really become useful until you
have at least four optional properties, and if needed should be used as
soon as possible, as refactoring to the pattern can be problematic.
The item summarises the builder pattern as ‘a good choice when
designing classes whose constructors or static factories would have
more than a handful of parameters’.

‘Effective Java’
JAN 2009 | | 27{cvu}

The next step after creating the connection is to create a Statement
object (Listing 7).
A Statement object is created by the createStatement method,
which is protected so that it can be overridden in a subclass if a different
type of statement needs to be created. A ResultSet object can be created
in much the same way (Listing 8). Once the result set has been created,
another method is called to create the return value (Listing 9).
The return value will always be null unless getValue is overridden in
a subclass. Finally a way of reporting errors needs to be implemented. In
some circumstances it may be sufficient to send the error to standard out
via printStackTrace. In others, the throwing of an exception may be
desirable. The use of a policy allows these and other error reporting
methods to be implemented:
 public interface ErrorPolicy
 {
 abstract void handleError(final Exception e)
 throws ResourceHandlerException;
 abstract void handleCloseError(
 final Exception e)
 throws ResourceHandlerException;
 }

public class StringConnection extends
 AbstractConnectionPolicy
{
 private final String driver;
 private final String connectionString;
 private String database = null;
 private String username = null;
 private String password = null;
 public StringConnection(final String driver,
 final String connectionString)
 {
 this.driver = driver;
 this.connectionString = connectionString;
 }
public StringConnection setUser(
 final String username, final String password)
 {
 this.username = username;
 this.password = password;
 return this;
 }
 public StringConnection setDatabase(
 final String database)
 {
 this.database = database;
 return this;
 }
 @Override
 public Connection connect() throws
 ConnectionException
 {
 Connection con = null;
 try
 {
 Class.forName(driver);
 con = DriverManager.getConnection(
 connectionString, username, password);
 useDatabase(con,database);
 }
 catch(ClassNotFoundException e)
 {
 throw new ConnectionException(
 e.getMessage(),e);
 }
 catch(SQLException e)
 {
 throw new ConnectionException(
 e.getMessage(),e);
 }
 return con;
 }
private void useDatabase(final Connection con,
 final String database) throws SQLException
 {
 if (database != null)
 {
 try
 {
 final Statement stmt =
 con.createStatement();
 try
 {
 final StringBuilder sql
 = new StringBuilder("USE [");
 sql.append(database);
 sql.append("]");
 stmt.execute(sql.toString());
 }
 finally {

Li
st

in
g

5 stmt.close();
 }
 }
 catch(final SQLException e1)
 {
 try {
 con.close();
 }
 catch(final SQLException e2) {
 // Swallow
 }
 throw e1;
 }
 }
 }
}

Listing 5 (cont’d)

public class ResourceHandler<Value>
{
 private final ConnectionPolicy conPolicy;
 public ResourceHandler(
 final ConnectionPolicy conPolicy)
 {
 this.conPolicy = conPolicy;
 }
 public Value executeQuery(final String sql)
 throws ResourceHandlerException
 {
 Value result = null;
 Connection con = conPolicy.connect();
 try
 { // use }
 catch(final SQLException e)
 { // Report Error }
 finally
 {
 try
 {
 conPolicy.disconnect(con);
 }
 catch(final ConnectionException e)
 { // Report Error }
 }
 return result;
 }
}

Listing 6
28 | | JAN 2009{cvu}

There is a general error handler, and a handler for errors caused by
releasing resources, because a client may wish to handle release errors
differently, for example logging them rather than throwing. The
ResourceHandlerException looks like this:

 public class ResourceHandlerException
 extends Exception
 {
 public ResourceHandlerException(String message,
 Throwable throwable)
 {
 super(message, throwable);
 }
 }

The default error policy ought to throw an exception and should only allow
the first exception it receives to be thrown. This is so that the first exception
detailing the real problem doesn’t get lost when subsequent exceptions are
thrown (Listing 10).
Error policies are integrated into ResourceHandler using another
builder method and by calling handleError or handleCloseError
in the appropriate catch blocks (Listing 11).
Java has another wonderful feature called anonymous classes. In Java In
A Nutshell [9] David Flanagan describes anonymous classes as:

...a local class without a name. Instead of defining a local class and then
instantiating it, you can often use an anonymous class to combine these
two steps

An anonymous class can be used to implement a custom getValue
method. The following example shows how anonymous classes can be
used to execute an SQL statement that returns a single string:
 final String url = new ResourceHandler<String>(
 new StringConnection(driver,connectionString))
 {
 @Override
 protected String getValue(final ResultSet rs)
 throws SQLException
 {
 if (rs.next())
 {
 return rs.getString("url");
 }
 return null;
 }
 }.executeQuery(
 "select url from services where name =
 'Instruments'");

public Value executeQuery(final String sql)
 throws ResourceHandlerException
 {
 Value result = null;
 Connection con = conPolicy.connect();
 try
 {
 final Statement stmt =
 createStatement(con);
 try
 { // use statement }
 finally
 {
 try
 {
 stmt.close();
 }
 catch(final SQLException e)
 { // Report Error }
 }
 }
 catch(final SQLException e)
 { // Report Error }
 finally
 {
 try
 {
 conPolicy.disconnect(con);
 }
 catch(final ConnectionException e)
 { // Report Error }
 }
 return result;
 }
 protected Statement createStatement(
 final Connection con) throws SQLException
 {
 return con.createStatement();
 }

Li
st

in
g

7 public Value executeQuery(final String sql)
 throws ResourceHandlerException
 {
 Value result = null;
 Connection con = conPolicy.connect();
 try
 {
 final Statement stmt =
 createStatement(con);
 try
 {
 final ResultSet rs =
 getResultSet(stmt,sql);
 try
 { // use }
 finally
 {
 try
 {
 rs.close();
 }
 catch(final SQLException e)
 { // Report Error }
 }
 }
 catch(final SQLException e)
 { // Report Error }
 finally
 {
 try
 {
 stmt.close();
 }
 catch(final SQLException e)
 { // Report Error }
 }

 }
 ...
 return result;
 }
 ...
 protected ResultSet getResultSet(
 final Statement stmt, final String sql)
 throws SQLException
 {
 return stmt.executeQuery(sql);
 }

Listing 8
JAN 2009 | | 29{cvu}

Alternatively if multiple strings are required:
 final List<String> urls =
 new ResourceHandler<List<String>> (
 new StringConnection(driver,connectionString))
 {
 @Override
 protected List<String> getValue(
 final ResultSet rs) throws SQLException
 {
 List<String> result =
 new ArrayList<String>();
 while(rs.next())
 {
 result.add(rs.getString("url"));
 }
 return result;
 }
 }.executeQuery("select url from services");

public Value executeQuery(final String sql)
 throws ResourceHandlerException
 {
 Value result = null;
 Connection con = conPolicy.connect();
 try
 {
 final Statement stmt =
 createStatement(con);
 try
 {
 final ResultSet rs =
 getResultSet(stmt,sql);
 try
 {
 result = getValue(rs);
 }
 catch(SQLException e)
 { // report error }
 finally
 {
 try
 {
 rs.close();
 }
 catch(final SQLException e)
 { // report error }
 }
 }
 catch(final SQLException e)
 { // report error }
 finally
 {
 try
 {
 stmt.close();
 }
 catch(final SQLException e)
 { // report error }
 }

 }
 ...
 }
 protected Value getValue(final ResultSet rs)
 throws SQLException
 {
 return null;
 }

Li
st

in
g

9 public class ThrowOnError implements ErrorPolicy
{
 private Exception exception = null;
 @Override
 public void handleError(Exception e) throws
 ResourceHandlerException
 {
 if (exception == null)
 {
 exception = e;
 throw new ResourceHandlerException(
 e.getMessage(),e);
 }
 }
 @Override
 public void handleCloseError(Exception e)
 throws ResourceHandlerException
 {
 handleError(e);
 }
}

Listing 10

public class ResourceHandler<Value>
{
 private final ConnectionPolicy conPolicy;
 private ErrorPolicy errorPolicy =
 new ThrowOnError();
 ...
 public ResourceHandler<Value> setErrorPolicy(
 final ErrorPolicy errorPolicy)
 {
 this.errorPolicy = errorPolicy;
 return this;
 }
 public Value executeQuery(final String sql)
 throws ResourceHandlerException
 {
 Value result = null;
 Connection con = conPolicy.connect();
 try
 {
 final Statement stmt =
 createStatement(con);
 try
 {
 final ResultSet rs =
 getResultSet(stmt,sql);
 try
 {
 result = getValue(rs);
 }
 catch(SQLException e)
 {
 errorPolicy.handleError(e);
 }
 finally
 {
 try
 {
 rs.close();
 }
 catch(final SQLException e)
 {
 errorPolicy.handleCloseError(e);
 }
 }
 }
 catch(final SQLException e)
 {

Listing 11
30 | | JAN 2009{cvu}

Executing statements that do not return a resultSet
The ResourceHandler works fine until you do something like this:
 new ResourceHandler(conPolicy).executeQuery(
 "insert into services ([Name],[url])
 values('Engine','http://prodserv01/axis/
 services/Engine')");

The above statement doesn’t return a result set and unhelpfully Java throws
an exception to let you know:
ResourceHandlerException: No ResultSet was produced

The best way to get around this is to add an execute method, similar to
the executeQuery method, but without a return value (Listing 12).
Finally, if you need to execute multiple statements that do not return result
sets, you can do this:
 new ResourceHandler(conPolicy).execute("..");
 new ResourceHandler(conPolicy).execute("..");
 new ResourceHandler(conPolicy).execute("..");
 new ResourceHandler(conPolicy).execute("..");
 new ResourceHandler(conPolicy).execute("..");

However, with the StringConnection policy this would create and
destroy the connection for each statement call. The alternative is to modify
execute to take an array of statements and iterate through them creating a
Statement object for each (Listing 13).
This has the draw back that even if you have just a single statement to
execute, it has to be passed in as an element of an array. This can be easily
overcome by adding an execute overload:
 public void execute(final String sql)
 throws ResourceHandlerException
 {
 execute(new String[]{sql});
 }

Conclusion
I was reviewing some code where I work recently and I came across the
code in Listing 14.
I summoned my two co-developers over, one of whom had written it, and
asked them to find the problem. They looked at it for a good 90 seconds
before I started offering clues. As soon as I asked what would happen if
rs.close() threw, the penny dropped and the lights went on. The
answer of course is that the Statement and Connection objects would
not get closed. The real break through came when one commented that Java
programs must be failing to close database connections properly all over
the place. The way Java handles resource cleanup is ludicrously verbose
and the idea of a method throwing when a resource is closed just plain
ridiculous.
However, I believe that I have shown here that this can be overcome using
FINALLY FOR EACH RELEASE, and the amount of code needed to query a
database can be reduced significantly with use of some simple boiler plate.
In part II I will look at another possible solution using EXECUTE AROUND
METHOD.

 errorPolicy.handleError(e);
 }
 finally
 {
 try
 {
 stmt.close();
 }
 catch(final SQLException e)
 {
 errorPolicy.handleCloseError(e);
 }
 }
 }
 catch(final SQLException e)
 {
 errorPolicy.handleError(e);
 }
 finally
 {
 try
 {
 conPolicy.disconnect(con);
 }
 catch(final ConnectionException e)
 {
 errorPolicy.handleCloseError(e);
 }
 }
 return result;
 }
...
}

Li
st

in
g

11
 (c

on
t’d

) public void execute(final String sql)
 throws ResourceHandlerException
{
 Connection con = conPolicy.connect();
 try
 {
 final Statement stmt = createStatement(con);
 try
 {
 execute(stmt,sql);
 }
 catch(final SQLException e)
 {
 errorPolicy.handleError(e);
 }
 finally
 {
 try
 {
 stmt.close();
 }
 catch(final SQLException e)
 {
 errorPolicy.handleCloseError(e);
 }
 }
 }
 catch(final SQLException e)
 {
 errorPolicy.handleError(e);
 }
 finally
 {
 try
 {
 conPolicy.disconnect(con);
 }
 catch(final ConnectionException e)
 {
 errorPolicy.handleCloseError(e);
 }
 }
}
...
protected void execute(final Statement stmt,
 final String sql) throws SQLException
 {
 stmt.execute(sql);
 }

Listing 12
JAN 2009 | | 31{cvu}

Acknowledgements
Thank you to Tony Barret-Powell, Kevlin Henney, Adrian Fagg and
Russel Winder for advice and guidance (and for not spotting the huge flaw
in my original proposal! ;-)).

References
[1] Effective Java: A Programming Language Guide by Joshua Bloch.

ISBN-13: 978-0321356680
[2] C# IDisposable interface: http://msdn.microsoft.com/en-us/library/

system.idisposable.aspx
[3 ‘Handling Exceptions in Finally’ by Tony Barrett-Powell:

http://accu.org/index.php/journals/236
[4] ‘Exceptional Java’ by Alan Griffiths:

http://accu.org/index.php/journals/399
[5] ‘More Exceptional Java’ by Alan Griffiths:

http://accu.org/index.php/journals/406
[6] ‘Java Generics’: http://java.sun.com/j2se/1.5.0/docs/guide/language/

generics.html
[7] Sun Java Docs: http://java.sun.com/reference/docs/
[8] Another Tail of Two Patterns: http://www.two-sdg.demon.co.uk/

curbralan/papers/AnotherTaleOfTwoPatterns.pdf
[9] Java in a Nutshell by David Flanagan. ISBN-13: 978-0596007737

public void execute(final String[] sql)
 throws ResourceHandlerException
 {
 Connection con = conPolicy.connect();
 try
 {
 for(final String s : sql)
 {
 final Statement stmt =
 createStatement(con);
 try
 {
 execute(stmt,s);
 }
 catch(final SQLException e)
 {
 errorPolicy.handleError(e);
 }
 finally
 {
 try
 {
 stmt.close();
 }
 catch(final SQLException e)
 {
 errorPolicy.handleCloseError(e);
 }
 }
 }
 }
 catch(final SQLException e)
 {
 errorPolicy.handleError(e);
 }
 finally
 {
 try
 {
 conPolicy.disconnect(con);
 }
 catch(final ConnectionException e)
 {
 errorPolicy.handleCloseError(e);
 }
 }
 }

Li
st

in
g

13 ...
finally
 {
 try
 {
 if (rs != null)
 {
 rs.close();
 }
 if (stmt != null)
 {
 stmt.close();
 }
 if (con != null)
 {
 con.close();
 }
 }
 catch(SQLException e)
 {
 // Translate exception
 }
 }

Listing 14

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

For further information, contact the editors: cvu@accu.org or overload@accu.org
32 | | JAN 2009{cvu}

Regaining Control Over Objects Through
Constructor Hiding

Mike Crow describes an alternative form of object construction.

onstruction often feels like one of the least flexible aspects of the
interface a C++ class provides to its client code. At the time of
traditional construction, the client must specify the exact type of the

object to be created, gets to decide where that creation occurs and
effectively has a veto over how the object can manage its lifetime. This
article explains how hiding the constructor and providing a separate means
to create the object gives this control back to the class itself.

The technique
Just because a class must provide a constructor is no reason for it to be
generally available. It is quite common to make the copy constructor
private [1] in order to stop client code from accidentally copying an
instance. If the default constructor is also made private then only the class
itself or its friends can create instances.
Listing 1 demonstrates a class which allows instances to be created using
a static create function (also known as a ‘factory function’). Beyond that
it doesn’t do anything useful. Even with this simple example we have
ensured that clients cannot create instances on the stack.

Controlling the return type
Once you have forced clients to call a function to create the object then
you also have control over the return type of that function. Smart pointers
such as boost::shared_ptr [2] and tr1::shared_ptr [3] offer
automatic management of object lifetimes, but in general they rely on
every part of the code using the same smart pointer implementation for that
particular class. In particular, the creator of the object should immediately
assign it to a smart pointer. Listing 2 shows how a static create function
allows this behaviour to be enforced by the class itself, thus ensuring the
raw pointer is not exposed, and removing the risk of it being used directly
(the smart pointer may provide a means to extract the underlying pointer
but anyone using it should hopefully realise they are on shaky ground). The
class can even assume that it is being represented by a shared pointer if it
needs to pass pointers to itself to other code.

Creation failure
Dealing with failure during construction in C++ has traditionally been
problematic. In theory, exceptions solve this problem, but there are still
some situations where, whether due to inadequate tools or system
constraints, exceptions are not applicable. Being able to control the exact
signature of the create function means that construction failure can be
indicated in a flexible way. The code in the class itself may not be pretty
but at least it can be encapsulated. Listing 3 shows an example of this
technique.

Implementation hiding
Pimpl [4] is a popular technique for separating interface and
implementation. It hides the implementation innards of a class from its
clients and decreases coupling by replacing the data members of a class
with a single pointer to a forward declared structure. This structure is
declared in the implementation file that contains the data members, and
all data member accesses need to be made through the pointer.
Listing 4 shows an alternative that provides an abstract interface to clients
using pure virtual functions and a static create function to create a concrete
instance that actually implements all the functions. No forwarding

functions are required and no special work needs to be done to access data
members. There is the slight penalty of a virtual call for each function call.
This method can’t completely replace Pimpl since it is much harder for
client code to derive from such a class. However, code that is part of the
implementation can derive from the class which gives rise to other
techniques as will be seen later.

C

MIKE CROWE
Mike Crowe started a short-term contract ten years ago as a
Windows developer and ended up writing embedded Linux
software too and found it much more fun. Contact Mike at:
mac@mcrowe.com

class HiddenConstructor
{
private:
 HiddenConstructor() {}
 HiddenConstructor(const HiddenConstructor &);
public:
 static HiddenConstructor *Create()
 {
 return new HiddenConstructor;
 }
};

int main()
{
 HiddenConstructor *obj =
 HiddenConstructor::Create();
 delete obj;
 return 0;
}

#include <boost/shared_ptr.hpp>
class SmartObject;
typedef boost::shared_ptr<SmartObject>
 SmartObjectPtr;
class SmartObject
{
 private:
 SmartObject() {}
 SmartObject(const SmartObject &);
 void operator=(const SmartObject &);
 public:
 static SmartObjectPtr Create()
 {
 return SmartObjectPtr(new SmartObject);
 }
};

int main()
{
 SmartObjectPtr obj = SmartObject::Create();
 return 0;
}

Listing 1
Listing 2
JAN 2009 | | 33{cvu}

One interface, many implementations
There is no requirement that a static create function always creates the
same type of object every time it is called. It just needs to create something
that implements the correct interface. The exact type of the object created
could be decided at compile time or it could also depend on parameters
passed to the factory function. Listing 5 shows a combination of both
methods used to create an audio decoder that’s appropriate for the platform
and the type of file being played. This method hides away the preprocessor
magic in a single more manageable place without polluting the client code.

Lifetime control
In Listing 1 we saw how we could stop an instance being created on the
stack. This means that the client can code no longer (easily) decide when
the object is actually deleted. For example, if the instance has a window
associated with it, we might want to wait until the window has been closed
before the object is destroyed, as long as we can guarantee that this will
happen before the program exits. In this case you may want to make the
destructor private too.

Conclusion
Although the technique I describe is not revolutionary I believe that it can
help to make code cleaner and safer with very little effort. I’ve used it in
all the situations described with great success.

Thanks
Thanks to Pete Goodliffe for reviewing drafts of this article.

References
[1] CERT C++ Secure Coding Practices MEM41-CPP. http://

tinyurl.com/6xte5h
[2] http://www.boost.org/
[3] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/

n1450.html
[4] http://c2.com/cgi/wiki?PimplIdiom (This page actually goes on to

describe something very similar to the method I've described here.)

class FailingCreation
{
 public:
 enum Error
 {
 SUCCESS = 0, OUT_OF_MEMORY = 1,
 INSUFFICIENT_FROBNICATORS = 2
 };
 private:
 FailingCreation() {}
 FailingCreation(const FailingCreation &);
 Error Init()
 {
 // Do more complex initialisation and
 // return zero to indicate success or
 // non-zero to indicate failure.
 return SUCCESS;
 }

public:
 static Error Create(FailingCreation **result)
 {
 FailingCreation *p = new FailingCreation;
 if (!p)
 return OUT_OF_MEMORY;
 Error error = p->Init();
 if (error != SUCCESS)
 delete p;
 else
 *result = p;
 return error;
 }
};

int main()
{
 FailingCreation *obj;
 if (FailingCreation::Create(&obj) ==
 FailingCreation::SUCCESS)
 {
 // Use object
 delete obj;
 }
 else
 {
 // Failed to create
 }
 return 0;
}

// Header (exposed to clients)
#include <boost/shared_ptr.hpp>
class Interface;
typedef boost::shared_ptr<Interface>
InterfacePtr;
class Interface
{
protected:
 Interface() {}
public:
 virtual ~Interface() {}
 virtual void MemberFunction(
 const char *data) = 0;
 static InterfacePtr Create();
};
// Implementation (hidden from clients)
#include <string>
class Implementation : public Interface
{
 std::string m_data;
public:
 virtual void MemberFunction(const char *data);
};
InterfacePtr Interface::Create()
{
 return InterfacePtr(new Implementation);
}
void Implementation::MemberFunction(
 const char *data)
{
 m_data = data;
}

Li
st

in
g

3 Listing 4

#include <boost/shared_ptr.hpp>
#include <stdint.h>
class AudioDecoder;
typedef boost::shared_ptr<AudioDecoder>
AudioDecoderPtr;
class AudioDecoder
{
 AudioDecoder();
public:
 static AudioDecoderPtr Create(
 const std::string &filename);
 virtual ~AudioDecoder();
 virtual void ReadSamples(uint16_t *samples,
 unsigned int sample_count) = 0;
};

Listing 5
34 | | JAN 2009{cvu}

Desert Island Books
Paul Grenyer introduces Alan Lenton’s reading

selection.

t’s difficult to be concise about Alan Lenton as there is so much to say. I
first met him one Tuesday afternoon in the Dirty Duck in Leamington Spa
(you know, that conference at the car museum). He was there for the now

legendary Phil Hibbs opener ‘I know someone who’s looking forward to
disliking you....’ and I haven’t been able to shake him since.

Over the years Alan and I have been regular drinking partners at all the
ACCU conferences we have both attended as well as all the London pub
meets. Alan has always been an enthusiastic and committed contributor to
the ACCU Mentored Developers. Alan brings with him a certain charisma,
and even saved me from organising a pub meet in Kings Cross once....

Alan Lenton
Coming after such luminaries as Paul Grenyer and Jez Higgins is a difficult
task indeed, but I will do my best to follow in their footsteps. [Paul, is that
enough to get me in to CVu, or do I need to lay it on a bit thicker?]
A desert island... Hmmm...
This is a bit alarming given the rise in sea levels due to global warming. I
hope I get rescued before the rising sea level covers my island! (Try living
in Norwich! – Paul).
So, apart from an unlimited supply of Bombay Sapphire Gin & Tonic, what
would I take with me?

Programming books...

Programming books, and in my case one stands out above all others:
Martin Fowler’s Refactoring [1]. When I first read this book, which I
picked up at the Blackwells stall at the ACCU Conference a few years

ba ck , i t
comple t e ly
transformed my
attitude to my code.
Previously, my attitude had
been one of ‘if it ain’t broke, don’t fix it’. Tampering with working code
when I first started programming taught me a few unpleasant lessons about
how dangerous it could be. Martin Fowler’s book taught me that it is
possible to improve the quality of existing code without breaking it, and
explained clearly and concisely just how to do it safely. As a result the
quality of code that I now write has greatly improved, and I think that I’m
a much better programmer for it.
The book was also my first introduction to the world of Agile, which I
embraced with all the enthusiasm of the convert. Not surprising really; the
books written by the founders of the agile movement are, in general, highly
readable and filled with enthusiasm. I take what I consider to be a more
balanced view now, but I retain a healthy respect for agile methods.
That was the easy choice; the other choices are more difficult, because
there is a whole slew of books that I could choose. Some of them are
obvious – Nico’s Standard Template Library [2], for instance, but Paul
covered that a couple of issues ago. No. I’m looking for something a little
different, and one that stood out is a book Bjarne Stroustrup wrote fourteen
years ago, The Design and Evolution of C++ [3]. At the time I read it I

I

JAN 2009 | | 35{cvu}

class GenericMp3Decoder : public AudioDecoder
{
public:
 GenericMp3Decoder(const std::string &filename);
 virtual void ReadSamples(uint16_t *,
 unsigned int);
 static bool CanPlay(
 const std::string &filename);
};

#if defined(__i386__)
class OptimisedX86Mp3Decoder :
 public AudioDecoder
{
public:
 OptimisedX86Mp3Decoder(
 const std::string &filename);
 virtual void ReadSamples(uint16_t *,
 unsigned int);
 static bool CanPlay(
 const std::string &filename);
};
#endif // defined(__x86__)
class WavDecoder : public AudioDecoder
{

public:
 WavDecoder(const std::string &filename);
 virtual void ReadSamples(uint16_t *,
 unsigned int);
 static bool CanPlay(
 const std::string &filename);
};
AudioDecoderPtr AudioDecoder::Create(
 const std::string &filename)
{
 if (WavDecoder::CanPlay(filename))
 return AudioDecoderPtr(
 new WavDecoder(filename));
#if defined(__i386__)
 else if (
 OptimisedX86Mp3Decoder::CanPlay(filename))
 return AudioDecoderPtr(
 new OptimisedX86Mp3Decoder(filename));
#endif // defined(__x86__)
 else if (GenericMp3Decoder::CanPlay(filename))
 return AudioDecoderPtr(
 new GenericMp3Decoder(filename));
 else
 return AudioDecoderPtr();
}

Li
st

in
g

5
(c

on
t’d

) Listing 5 (cont’d)

Regaining control over objects through constructor hiding (continued)

was still tending to use C++ as merely a better C (and it is better, by the
way!). The book helped me understand what C++ was really about, and at
that time I definitely needed the help!
As the legendary Verity Stob once put it, ‘Whereas smaller computer
languages have features designed into them, C++ is unusual in having a
whole swathe of functionality discovered, like a tract of 19th century
Africa. Nobody intended that C++ should support template
metaprogramming, a wildly clever but visually dismal technique that
allows the programmer to write a program within the program. One day it
was noticed that it could be done, and now it is done.’ [4]
Wise words from a talented lady!
My third choice of book is not, in fact, a programming book at all. It’s by
Robert G Williams, and it’s called The Money Changers [5]. It is a tour of
the global money markets featuring interviews with the people involved
in international currency exchanges. If you’ve ever been curious about
what happens behind the scenes when you stick your credit card in an ATM
in (say) Ulan Bator, then this is the book for you.
I bought it because I needed to understand money markets for an
enhancement I was planning for my online space trading game,
Federation 2 [6]. The book was a fabulous read, and for the first time I
understood what was happening in the money markets. The result was that
I put my plans for currency markets, where each planet had its own
currency, on hold, and left it with just commodity trading, commodity
futures trading, and company stock trading.
One day I will implement currency markets, but it’s just too big a project
for now! In the meantime the ideas the book taught me have enabled me
to understand the current financial crisis, and figure out what it is that the
central banks are trying to do.
My final non-fiction book is Unix Network Programming, Volume 1 by
W. Richard Stevens [7]. It’s known in the trade as simply ‘Stevens’, and
it’s the classic book on network programming. I learned how to do network
programming from the first edition, and by the time I recently replaced it,
it was much thumbed and suffering from brown, brittle pages.
This book has everything a programmer needs to know about networks,
including design of the networking part of both servers and clients. While
a lot of frameworks and high level libraries hide the implementation details
(which this book also covers), it remains important to understand what a
library is doing if you want to use it efficiently. Network programming is,
and has always been, one of those areas where efficiency and competence
matter. Oh, and contrary to the title, it’s about more than just Unix
programming.

...Fiction...

This was a straight fight between William Gibson’s Neuromancer [8] and
Neal Stephenson’s Snow Crash [9] – the two defining books of the
cyberpunk milieu. Eventually I settled on Snow Crash which has more
substance. It’s set in a world where governments have lost control of their
tax revenues, the mafia run pizza delivery services, and the whole net is a

virtual world. Our hero is Hiro Protagonist, a hacker, samurai swordsman
and pizza-delivery driver.
I’m not going to tell you the story, but it’s fabulous – buy the book and
read it for yourself over the summer holiday.

...Two CDs...

It’s a difficult decision. I have hundreds of CDs to choose from. Paul
already grabbed Marillion’s Misplaced Childhood [10], so that’s off. I
think one of the CDs has to be Pink Floyd’s Dark Side of the Moon [11].
I first heard it on a sunny afternoon while at college, and it has haunted
me ever since, both for the music and for the memories it evokes.
My second CD was a toss up between Tom Paxton’s The Compleat Tom
Paxton [12], and Waiting for Bonaparte by Men They Couldn’t Hang [13].
Eventually Tom Paxton won by a whisker. I regard Tom Paxton as one of
the best US folk singer/songwriters and this is a live double CD. The CD
showcases not just Paxton’s songs but also his story telling – ‘Talking
Vietnam Pot Luck Blues’ has to be heard to be believed.

...And a DVD

Yet more decisions – I guess the 40 DVD set of everything to do with
Babylon 5 [14] is probably cheating. I think I’ll plump for Gettysburg
starring Martin Sheen as Robert E Lee [15]. I was lucky enough to be taken
on a tour of the Gettysburg battlefield by a friend who had studied the battle
at US marine staff college. Having seen the terrain – and in the US, unlike
Britain, they preserve their Civil War heritage – I found the film all the
more remarkable. Viewing it for the first time I started to grasp the strategy,
tactics and decision making of both sides. And the tragedy of friends killing
one another. A truly remarkable movie – not to mention some of the most
fantastic beards ever seen on film!
Well that about wraps it up. All I need now to complete my collection is
a generator, a very large supply of fuel and a laptop :)

References
[1] Refactoring by Martin Fowler, Addison-Wesley, ISBN 0-201-

48567-2
[2] The C++ Standard Library by Nicolai M. Josuttis. Addison-Wesley

ISBN 0-201-37926-0
[3] The Design and Evolution of C++ by Bjarne Stroustrup. Addison-

Wesley ISBN 0-201-54330-3
[4] http://www.regdeveloper.co.uk/2006/05/05/cplusplus_cli/
[5] The Money Changers by Robert G Williams. Zed Books ISBN 1-

84277-095-9
[6] http://www.ibgames.com
[7] Unix Network Programming, Volume 1, 3rd Edition by W Richard

Stevens, Bill Fenner and Andrew M Rudoff. Addison-Wesley ISBN
0-13-141155-1

[8] Neuromancer by William Gibson. Voyager ISBN 0-006-48041-1
[9] Snow Crash by Neal Stephenson. Penguin Books ISBN 0-140-

23292-3
[10] Misplaced Childhood by Marillion. EMI
[11] Dark Side of the Moon by Pink Floyd. EMI
[12] The Compleat Tom Paxton by Tom Paxton. Elektra
[13] Waiting for Bonaparte by Men They Couldn't Hang. Magnet
[14] Babylon 5: The Complete Collection + The Lost Tales. Warner

Home Video
[15] Gettysburg. Warner Home Video

Next issue: Ian Bruntlett picks his desert island books.

Desert Island Disks is one of BBC Radio 4’s most popular and enduring
programmes:
 http://www.bbc.co.uk/radio4/factual/desertislanddiscs.shtml
The format is simple: each week a guest is invited to choose the eight
records they would take with them to a desert island.
I’ve been thinking for a while that it would be entertaining to get ACCU
members to choose their Desert Island Books. The format will be slightly
different from the Radio 4 show. Members will choose about 5 books,
one of which must be a novel, and up to two albums. The programming
books must have made a big impact on their programming life or be
ones that they would take to a desert island. The inclusion of a novel and
a couple of albums will also help us to learn a little more about the
person. The ACCU has some amazing personalities and I’m sure we
only scratch the surface most of the time.
Each issue of CVu will have someone different. If you would like to share
your Desert Island Books please email me: paul.grenyer@gmail.com.

What’s it all about?
36 | | JAN 2009{cvu}

Code Critique Competition 55
Set and collated by Roger Orr.

lease note that participation in this competition is open to all
members, whether novice or expert. A book prize is awarded for the
best entry. Readers are also encouraged to comment on published

entries, and to supply their own possible code samples for the competition
(in any common programming language) to scc@accu.org.

Last issue’s code
I’m trying to write a simple logging header file, but it doesn’t seem to be doing
the right thing – my errors aren’t being logged. Can someone help me sort
this out?

(Apologies for the missing “\” on the email version of the critique)

Critiques

Ian Bruntlett <ianbruntlett@hotmail.com>

It's been a while since I've used i/o streams. Here are the changes I made
to the student code critique to get it to work.

// logging.h line 2
enum { ERROR=1, WARN=2, DEBUG=4 };
// needed because default values not right

// logging.h line 20 added \ to end of line in
// order to compile

Later on in example.cpp - I basically muddled around until it worked.
I would be interested in seeing an article in CVu/Overload about this kind
of thing.
 std::ostringstream oss;
 oss << "An example msg";
 std::string msg("Problem: ");
 msg += oss.str();
 LOG_ERROR(msg.c_str());

Ken Duffill <k.duffill@ntlworld.com>

In the beginning...
I copied the two files Logging.h and example.cpp to my two build
environments. Visual Studio 2008 Express (which is also configured to run
PC-Lint over the code) and gcc under cygwin.
Both are configured to return maximum warnings.
When we run PC-Lint over this code it tells us the first four issues we need
to deal with.

1. Ignoring return value of function 'strftime(char *,
unsigned int, const char *, const struct tm *)'
It is not a good idea to ignore the return value from strftime (or
any other function for that matter) - it contains valuable information.
If buffer is not big enough for the output string and its
terminating nul, strftime will return 0, and the contents of
buffer will not be defined and may not be nul terminated. So, it is
good practice to at least assert that the return from strftime is not
zero.

 size_t numChars = strftime(buffer, sizeof(
 buffer), "%d %b %H:%M:%S", localtime(
 &timeNow));
 assert((

P

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.demon.co.uk

Listing 1

// ---- logging.h -----
enum { ERROR, WARN, DEBUG };

int level;

std::string now()
{
 time_t timeNow = time(0);
 char buffer[20];
 strftime(buffer, sizeof(buffer),
 "%d %b %H:%M:%S", localtime(&timeNow));
 return buffer;
}

#define LOG(LEV, X) \
{ \
 if (level & LEV) { \
 std::ostringstream oss; \
 oss << now() << " [" << #LEV << "] " \
 << (X) << std::endl; \
 printf(oss.str().c_str()); \
 } \
}

#define LOG_ERROR(x) \
LOG(ERROR, x)

#define LOG_WARN(x) \
LOG(WARN, x)

#define LOG_DEBUG(x) \
LOG(DEBUG, x)

// ---- example.cpp ----
#include <ctime>
#include <iostream>
#include <string>
#include <sstream>

#include "logging.h"

int main()
{
 level = DEBUG | WARN | ERROR;
 LOG_DEBUG("This is a test");

 LOG_WARN("This is a warning");

 std::ostringstream oss;
 oss << "An example msg";

 LOG_ERROR("Problem: " + oss.str());
}

Listing 1
JAN 2009 | | 37{cvu}

 0 != numChars) && "Check size of buffer");

Be careful, though, to assign the return from strftime to a
variable and then assert that the value is not zero. If you just wrap
the call to strftime in the assert then strftime won't get
called at all in a release build.
Now, at least, if you add (say) %Y into your format string and
strftime can no longer fit the result and its terminating nul into
buffer you will get told to increase the size of buffer.

2. Boolean within 'if' always evaluates to false
This is referring to the if (level & LEV) in the LOG macro
(and this one is actually the cause of your [first] problem).
First we need to understand that

 enum { ERROR, WARN, DEBUG };

will result in the value of ERROR being 0, the value of WARN being
1 and the value of DEBUG being 2.
Now we can see that in LOG_ERROR, when LEV is ERROR, this
conditional will always be false no matter what the value of level.
It appears that level is expected to be a collection of bits each
indicating one of the available logging levels. In this case the values
of the enums must each have one (and only one) bit set in order for
this to work as you expect.
So, if you change the enum to

 enum { ERROR = 1, WARN = 2, DEBUG = 4 };

this conditional will always correctly determine whether to log
according to LEV.

3. Declaration of symbol oss hides symbol oss
This problem is due to the conflict between the
std::ostringstream oss declared within the macro LOG
and the std::ostringstream oss declared in main. The
nature of macros make these conflicts very hard to spot, which is one
of their serious flaws.
So one ‘quick fix’ is to rename the std::ostringstream oss
in main to std::ostringstream oss1 and your example
now works as it should.
Alternatively, the whole clause:

 std::ostringstream oss; \
 oss << now() << " [" << #LEV << "] " \
 << (X) << std::endl; \
 printf(oss.str().c_str()); \

could be replaced by one that uses std::cout directly, and some
might say more readably:

 std::cout << now() << " [" << #LEV << "]" \
 << (X) << std::endl; \

As we are using C++ here, there really is no reason to use the C
Standard I/O directly (i.e. printf). We have used the iostream
formatting capabilities, and std::cout does the job so why not
use it. Additionally, you could later make it so that the stream is
passed in somehow so you can elect to use std::cout,
std::cerr or std::clog (or even some output logging file of
your choosing) without changing the logging code at all, something
you can't do if you are using printf.

4. function main(void) should return a value
It is legal to ‘forget’ the return in main (the only function in the
language that will put a return 0 in for you). However, this is
allowed only in order to support legacy code. It is not a good habit
to get into. Add a return 0; explicitly and everybody (including
PC-Lint) knows that you mean ‘everything ran OK’.

Now we have got the code past Lint, we can compile it.

Yes I really do mean that. If you use a static checker (and you should) then
configure your build system to run it before it runs the compiler. There is
no point in compiling ‘wrong’ code, and if it fails its static checks it is
wrong!
gcc under cygwin compiles without warnings. But Visual Studio whines
that localtime is deprecated and suggests we use localtime_s
instead. But, as localtime_s is not standard, we have to live with
localtime for now. This is OK so long as we are sure that timeNow
is a valid time_t, which in our code it is, and we are not running in a
multi-threaded environment.
So now the code Lints, builds (cleanly, if we have disabled Microsoft’s
localtime is deprecated warning) and when run produces the output we
expect.
Hurrah !
But there are other flaws in this example that need to be dealt with lest they
become important issues when your program grows.
I assume it is your intention to include Logging.h from multiple source
files. Unfortunately, with this implementation you can’t. To demonstrate
this I created a second .cpp file (second.cpp) thus:

 #include "Logging.h"
 #include <iostream>
 #include <string>
 void Test()
 {
 LOG_DEBUG("This is a second test");
 LOG_WARN("This is a second warning");
 std::string s1("A second example msg");
 LOG_ERROR("Problem: " + s1);
 }

The application now fails to build because the function std::string
now() and the variable int level have external linkage and must only
be declared once in the program. A better approach is to put now and
level into a class along with the enum, make level a private member
and initialise it in the constructor (but refusing to provide a default) we then
make sure that the caller knows what he is getting when he is using it. Note
here that PC-Lint will complain that we have not declared a default
constructor. This is actually what we want. We don’t want to be able to
forget to say what our logging level should be. If you use a static checker
(and you should) then you should be able to tell it to be quiet about this
warning (but only do that for this class).
Each module that uses Log must create its own Log object (and give it a
level parameter) this provides us with the bonus that different modules
can have different logging levels if they want to, but we could have decided
to pass a (const) reference to the Log object created in main if that had
better suited out design. We then need to refactor the macros into member
functions (which is a good thing anyway, remember – macros are BAD)
the only down side to this is we cannot use the little trick of getting the
name of the parameter by using #LEV anymore, but it is a small price to
pay. And, of course refactor the code in example.cpp and
second.cpp to use the new class and its member functions.
Now lets look at that enum again. It is common practice to use all uppercase
letters for macro names and other #defines, before we put the enum into
a class there was a potential problem here if some header, included after
Logging.h, #defined ERROR or WARN or DEBUG to any integer value
then the compiler will not complain; it would have just used the defined
value when you may have been expecting to use the enum. This problem
has now magically gone away because whenever you use the enum it has
to be qualified with the class name, so if ERROR (or WARN or DEBUG) get
defined, then Log::ERROR will become (say) Log::21, which won’t
compile. Other people’s libraries can still break your code, but at least not
silently. To make it less likely that other people’s code would break yours
you could change ERROR to a more unique name (using both upper and
lower case) such as ERROR_enum or ErrorLevel.
38 | | JAN 2009{cvu}

Now that we have done this let’s create Logging.cpp to hide all the
implementation detail of the Logging class.
Finally, it is important to make header files self-sufficient, and to depend
only upon includes needed for the interface so I have moved the
 #include <string>

from example.cpp into Logging.h and
 #include <ctime>
 #include <iostream>

from example.cpp into Logging.cpp.
Just in case Logging.h accidentally gets included more than one in the
same module I have added internal include guards

 #ifndef LOGGING_H
 #define LOGGING_H
 ...
 #endif

So my files now look like this:

// Logging.h
#ifndef LOGGING_H
#define LOGGING_H
#include <string>

class Log
{
public:
 enum {ERROR = 1, WARN = 2, DEBUG = 4};

 //lint -esym(1712, Log)
 Log(int requiredLevel);

 void Debug(std::string const &txt) const;
 void Warn(std::string const &txt) const;
 void Error(std::string const &txt) const;

private:
 int level;

 void Output(std::string const &levelName,
 std::string const &txt) const;
 std::string now() const;
};
#endif

// Logging.cpp
#include "Logging.h"

#include <cassert>
#include <ctime>
#include <iostream>

Log::Log(int requiredLevel)
: level(requiredLevel){}

void Log::Debug(std::string const &txt) const
{
 if (level & DEBUG)
 {
 Output("DEBUG", txt);
 }
}

void Log::Warn(std::string const &txt) const
{
 if (level & WARN)
 {

 Output("WARN", txt);
 }
}

void Log::Error(std::string const &txt) const
{
 if (level & ERROR)
 {
 Output("ERROR", txt);
 }
}

void Log::Output(std::string const &levelName,
 std::string const &txt) const {
 std::cout << now() << " [" << levelName
 << "] " << txt << std::endl; }

std::string Log::now() const
{
 time_t timeNow = time(0);
 char buffer[20] = {0};
 size_t numChars = strftime(buffer,
 sizeof(buffer), "%d %b %H:%M:%S",
 localtime(&timeNow));
 assert((0 != numChars) &&
 "Check size of buffer");
 return buffer;
}

// Second.cpp
#include "Logging.h"
#include <string>
void Test(void)
{
 Log log(Log::ERROR| Log::WARN | Log::DEBUG);
 log.Debug("This is a second test");
 log.Warn("This is a second warning");
 std::string s1("A second example msg");
 log.Error("Problem: " + s1);
}

// Example.cpp
#include "logging.h"
#include <sstream>
void Test(void);
int main()
{
 Log log(Log::ERROR| Log::WARN | Log::DEBUG);
 log.Debug("This is a test");
 log.Warn("This is a warning");

 std::ostringstream oss;
 oss << "An example msg";

 log.Error("Problem: " + oss.str());
 Test();
 return 0;
}

Notes:
I #include "Logging.h" as the first include in Logging.c; this
helps to ensure that Logging.h is self-sufficient. I use | rather than +
when initialising log, this just helps to show that these are bit fields not
just integers. I have included the prototype for Test in example.cpp as
opposed to creating a new file Second.h, this is definitely NOT
recommended in real code. We could define the Debug, Warn and Error
member functions to be inline. This might save the function call overhead
at the expense of increased code size (remember the compiler is not obliged
JAN 2009 | | 39{cvu}

to inline just because we ask it to), this is a decision to be made by the
designer.

Robert Jones <robertgbjones@gmail.com>

The first error in the code is that the logging level enumeration is using
the default assigned values, which will give
 ERROR = 0
 WARN = 1
 DEBUG = 2

which as bit patterns is 00, 01, 10, which is probably not what was intended.
When the LOG macro is used with the ERROR level, the bitwise test level
& ERROR will result in 0, ie false, so errors will never be output.
Using an enumeration definition of
 enum {ERROR= 0x01, WARN = 0x02, DEBUG = 0x04};

will make that aspect of the code work as intended.
With that fixed the second error is uncovered, which is that the extension
of the ERROR log message (oss.str()), is not output.
The problem here is that the macro mechanism has no understanding of
C++ syntax and scoping, and is just a dumb text substitution mechanism.
Adapting the main() sequence to include the dumb textual substitution
performed by the macro gives this code:

 int main()
 {
 level = DEBUG | WARN | ERROR;
 LOG_DEBUG("This is a test");

 LOG_WARN("This is a warning");

 std::ostringstream oss;
 oss << "An example msg";
 {
 if (level & DEBUG) {
 std::ostringstream oss;
 oss << now() << " [" << "DEBUG" << "] "
 << ("Problem: " + oss.str())
 << std::endl;
 printf(oss.str().c_str());
 }
 }
 }

From this the issue becomes much clearer. The oss in the main() is being
hidden by the oss in the scope of the macro expansion. In general this is
a difficult problem to avoid, and an excellent motivation not to use macros.
As a quick fix in this critique, renaming either of the oss’s will give the
intended results.

Simon Sebright <simonsebright@hotmail.com>

This little piece of code of yours certainly has a lot to say about it. I think
we can look at two main issues – firstly the use/misuse of macros and
secondly the way enums are used. Oh, and use of global variables too
makes it three.
OK, here’s a statement – use of macros is bad! What do you have to say
about that?
Well, when you say you can write a function once and then have many
instances of it, I think you mean that you can write a function generator
and then use it to generate a family of functions for you. But at what cost?
Can you show me the code for your macro-generated functions? No? OK,
well read up on your compiler settings. You can get it to spit out the C++
code which it sends to the actual compilation stage.
Right, what do you know? Yes you have a lot of gobbledygook in a big
file (that’s the #include statements bringing in the headers by the way),
and somewhere near the bottom is your logic. This is a good exercise

actually – when you write C++, you are actually writing in two languages
– the preprocessor one, and then C++ itself. Seeing the output from the
preprocessor is probably the best way to grasp that. Now, what can you
tell me about your functions? Yes, there they are at the bottom.
LOG_ERROR(), etc. By the way, pretty aggressive function names with
all those capital letters. Yes, that might be a convention for the actual
macros, but it doesn’t have to output functions with all caps – look at your
calling code, uggghhh!. And you’ll have a job debugging this lot too,
which is probably why you came to me.
I’d like to get rid of the macros before we go any further, then things might
become clearer. Now, you want three similar functions without wanting
to write the logic three times. That is very admirable, but let’s achieve it
using the language of the compiler, not the preprocessor. Now, we have
a good start with the three functions LogError(), LogWarning(),
LogDebug(). Yes, I’ve done a bit of renaming there. Now, what’s the
thing which varies between these? Yes, the ‘level’ of the information being
logged.
We can implement that with a common function, can we not? Let’s call
it Log(). Now, it’ll need to know which level we are talking about, and
the message, so it’s got two parameters – level and message. Exactly what
the level is, we’ll now talk about. Do you know, it’ll look remarkably
similar to your Log macro function, except that you didn’t actually have
a function, rather the function generator macro thingy.
What do you want to happen when these three functions are called? OK,
output the message with appropriate level indicator, plus the additional
logic that we only output the message at all if the global log level is set to
include that.
Tell me about this level variable, then. Aha, it is a combination of all the
options you wish to output. How have you encapsulated the concept of
‘combination’? Bitwise OR/AND. Yes, that’s a pretty standard way of
dealing with options which are mutually independent. How does it work
then?
The required values are OR’d together and the result contains them all
together. Hmm, that’s a bit vague, let’s look in more detail. The clue is
in what you just said, ‘bitwise’ OR. Each possible different value must be
represented by a different bit, 001, 010, 100, etc. in binary.
I think the problem here is that you declared the variable as an int.
However, we are not interested in level as a single integer, rather a
combination of ‘flags’. Let’s make it something like a BYTE, or a WORD,
which give the reader the anticipation that we are not interested in how
many cups of tea the user wants, but something rather more geeky.
Let’s look at the values you are using in more detail. So what are your
values? Your enum, yes, we got to that eventually. Yes, but what are the
actual values of your enumerations? You don’t know. Ah, well to save
you the round trip, let me tell you that if you don’t specify values for
enumerations, they start at 0 and automatically increase by 1 with each
subsequent enumeration. So you have … 0, 1 and 2. Yes. Now, can we
see the problem? How do you set the level to say you want to combine all
three? 0 OR 1 OR 2, is? Yes, 3. But that is only two bits set, not three.
You need to make sure that all of your options have an independent bit.
Here’s how:
 Enum LogLevel { LogLevelError = 0x01,
 LogLevelWarning = 0x02, LogLevelDebug = 0x04 };

I put the numeric literals in hex, to give a clue to the reader that we are not
interested in them as integers, but flags. Pity there is no binary literal
syntax, eh? Oh, and I put logLevel at the start because the enum names
leak out into the surrounding namespace and would clash with any others
of the same name. [You can wrap them in a namespace for that purpose,
that’s a bit more advanced, though.]

Now, can you think what was happening to your errors? Look at your code
in the macro generated function again. Yes, you are doing an AND with
zero and getting ? Yes, zero back. Simple.
So, there’s one last topic of concern to me – the dreaded global variable.
It all hinges on level. First, that’s something which might easily clash with
40 | | JAN 2009{cvu}

other variable names, but more importantly, it’s a prime source of coupling
in your code – testing this in a real-world project with lots of source files
becomes onerous. I would recommend hiding this variable somewhere
and having a function to set the log level, then you have the following
functions in your library:

 void SetLogOutputs(WORD levels);
 void LogError(const std::string& message);
 void LogWarning(const std::string& message);
 void LogDebug(const std::string& message);
 void Log(LogLevel level,
 const std::string& message);

Voila! Of course, there are the implementation details now, which I leave
up to you, and we could spend a long time making this much more detailed
and flexible – there are many logging frameworks out there, on which
people have spent a lot of time, but that’s for another day…
But, before we go, let’s talk about something else. What does the above
set of functions represent?
They are an interface. In this case a pretty C-style interface of a group of
functions which might be in their own header, with their own source. With
a little jiggery-pokery, we can put them as members of a C++ class. Give
it the levels in the constructor, and we have a handy Log object we can
pass around to the functions we call. That is what pattern exactly?
PFA, or PARAMATERISE FROM ABOVE! Now, in this model, you pass your
log object around, and you can have as many as you like with different
levels, different destinations, etc. You can even configure it from outside
the program and have some settings module pick it up. Then you will be
on the road to ultimate programming fulfillment.

Nevin Liber <nevin@eviloverlord.com>

The main issue is that enums are sequential numbers, not bit positions. The
line if (level & LEV) is the giveaway. To fix this:

 enum Level
 {
 Error = 1,
 Warn = Error << 1,
 Debug = Warn << 1
 };

Now, there is a deeper issue, in that level is declared as an int, yet its
possible values are permutations of the values in enum Level. Since
these two things go hand in hand, they really should be represented by a
single type. The obvious way is to make this a class; I’m going to explore
the less obvious way by adding helpers to enum Level.
Most C++ operators (assignment being the notable exception) can be
declared as non-member functions, which, among other things, allow us
to add functionality to an enum. To support bitwise operations, I’m adding
the following functions:

 Level& operator&=(Level& l, int mask)
 {
 l = static_cast<Level>(l & mask);
 return l;
 }

 Level operator|(Level l1, Level l2)
 {
 return static_cast<Level>
 (l1 | static_cast<int>(l2));
 }

All the messy casting is done in these functions, so that the code which
uses this type doesn’t have to worry about it.

I would also like a way to display all the bits that are set in a variable of
type Level, so I add the following stream insertion operator:

std::ostream& operator<<
 (std::ostream& os, Level l)
{
 if (!l)
 return os << '0';
 char const* bar("");

 if (Error & l)
 {
 os << bar << "ERROR";
 l &= ~Error;
 bar = "|";
 }

 if (Warn & l)
 {
 os << bar << "WARN";
 l &= ~Warn;
 bar = "|";
 }

 if (Debug & l)
 {
 os << bar << "DEBUG";
 l &= ~Debug;
 bar = "|";
 }

 if (l)
 os << bar << static_cast<int>(l);
 return os;
}
This will not only output the bits as a textual representation, but if none of
the bits are set, or extra bits are set, they will be displayed as a number as
well.
Moving on to now(): the only use of this is to stream it out, so why pay
the cost of a temporary string? For values to be streamed, a better method
is to declare it as a struct or a class with a stream insertion operator declared
as a friend, as in:

struct now
{
 explicit now(time_t timeNow = time(0))
 : timeNow(timeNow) {}
 friend std::ostream&
 operator<<(std::ostream& os, now const& t)
 {
 tm local;
 char buffer[sizeof("31 Jan 12:34:56")];

 strftime(buffer, sizeof(buffer),
 "%d %b %H:%M:%S",
 localtime_r(&t.timeNow, &local));

 return os << buffer;
 }
 time_t timeNow;
};

It is also more flexible, as it can produce formatted output for any time
value. If someone does need it as a string, they can always use
std::ostringstream or boost::lexical_cast to convert it.
Now to address the macro LOG(LEV, X): given the drawbacks of macros
(they manipulate syntax without regard to semantics), they generally
JAN 2009 | | 41{cvu}

should only be used to express things that cannot be directly expressed in
the language. Here it is used for two purposes:

1. To stream the textual representation of LEV.
2. To stream out any type X.

I have already addressed (1) with the stream insertion operator for Level;
(2) can be directly represented in the language by using a template.
In addition, besides doing double work (and creating an extra string) by
streaming into an ostringstream and using printf to actually display the
string, there is a subtle flaw (which in some circumstances, can lead to an
exploitable security hole) in the printf itself: if the output contains a
"%", it will be interpreted as formatting (taking whatever happens to be
on the stack as the variable being formatted) instead of directly output.
When using printf, always specify a formatting string (even if it is
trivial) which is distinct from the data being formatted, as in printf(
"%s", oss.str().c_str());

Rewriting LOG(), we get:

template<typename T>
void Log(Level lev, T const& t, Level l)
{
 if (l & lev)
 std::cout << now() << " [" << lev
 << "] " << t << std::endl;
}

Note: I added the third parameter l so that this function is not reliant on
level being a global variable.
Finally, I’ll add a global level variable (this time of type Level, not int)
for backwards compatibility, as well as rewriting the three logging
functions as template functions:

Level level;

template<typename T>
void LogError(T const& t, Level l = level)
{ Log(Error, t, l); }

template<typename T>
void LogWarn(T const& t, Level l = level)
{ Log(Warn, t, l); }

template<typename T>
void LogDebug(T const& t, Level l = level)
{ Log(Debug, t, l); }

Making the syntax changes in main() (I only use all uppercase names for
macros, not enum labels nor template functions):

int main()
{
 level = Debug | Warn | Error;

 LogDebug("This is a test");
 LogWarn("This is a warning");

 std::ostringstream oss;
 oss << "An example msg";

 LogError("Problem: " + oss.str());
}

One more thing: while the expression
 "Problem: " + oss.str()

works correctly in that it returns a std::string, it is more likely that it
worked accidentally than the author deliberately took advantage of the
following free function being declared in <string>:

template<class charT, class traits,
 class Allocator>
basic_string<charT,traits,Allocator>
operator+(const charT* lhs, const
 basic_string<charT,traits, Allocator>& rhs);

It would be better to write this more explicitly, as in:
 std::string("Problem: ") += oss.str()

It may seem contradictory because I’m taking advantage of the fact that
operator+= is a member function of std::basic_string, not a free
funct ion (because in the non-member case , the temporary
std::string("Problem: ") cannot be bound to a non-const
reference, while it is perfectly okay to call member functions on a non-
const reference). However, if it weren’t, the worst that happens with my
code is that it doesn’t compile. In the case of the user code, if that overload
for operator+() hadn’t been provided, the result would be another
subtle bug in the program.
So, one question to ask is: it took a bit of effort to add all this machinery
to enum Level, now() and Log(); was it worth it? In practice, I’ve
found that yes, it is. By having all that machinery in place, it is far easier
for the people who use my code to use it correctly, not only in the regular
case, but under higher pressure debugging circumstances as well.

Commentary
I think between them the entrants covered most of the points about this
code, except for one. I was going to say except two, but Nevin’s entry
referred to the problem with printf() being passed a string, rather than
a format string, as the first argument.
The remaining issue I would like to highlight is that there were several
complaints about the problems caused by the use of pre-processor macros
– and I agree with all their criticisms. However one advantage of the macro
solution (and one reason why it is still used in many C++ projects) is that
the compiler is able to make better optimisations. Consider this code:
 LOG_DEBUG(anExpensiveCall());

The code expands to
 if (level & DEBUG) {
 std::ostringstream oss;
 oss << now() << " [" << "DEBUG" << "] "
 << anExpensiveCall()<< std::endl;
 printf(oss.str().c_str());
 }

The call to anExpensiveCall() appears inside the conditional and is
therefore only made if the DEBUG logging level is enabled; whereas if we
use a function call the compiler has to evaluate the arguments whether or
not they are eventually used by the function.
Of course, this can be a problem if the calls have side-effects as the
behaviour of the program can be affected by the logging level – just the
problem Ken highlighted in the use of assert.
In many applications the unnecessary cost of evaluating the arguments
needed for unwanted logging is high (in a previous project it totally
dwarfed the cost of the application itself). In order to gain the same
performance benefit without using macros you need to add a manual check
before each call, something like this:
 if (level & DEBUG)
 logDebug(anExpensiveCall());

This is error prone – I’ve seen mistakes like:
 if (level & INFO)
 logDebug(anExpensiveCall());

and it also makes the logging more intrusive. So despite my general
disapproval of macros there are some places where I consider their benefits
outweigh their costs.
42 | | JAN 2009{cvu}

However, you must take care to avoid the sort of name clashes that the
critique code had with oss, for example by using ‘ugly’ variable names.

The winner of CC 54
I was pleased to see Ken’s entry this time round, where he was able to find
the two biggest problems with the code by simply (!) running PC-Lint.
While being able to read code and find faults is a fundamental skill, having
the ability to use a tool to perform the same task enables much more reliable
coverage of complete code bases. So this time I have decided to award
the prize to PC-Lint for finding the problems; Ken gets the prize for using
the right tool for the job!

Code Critique 55
(Submissions to scc@accu.org by 1st February)
I’m trying to write a C++ SQL framework that uses the operator<< idiom
to add bind variables. I’m having problems getting the operators right – I’ve
stripped it down to the following code that won’t compile. Using MSVC I get
a complaint about ‘bind’ on the last line of main; with g++ the Insert and
Query examples won’t compile either. Can someone help me sort this out?

You can also get the current problem from the accu-general mail
list (next entry is posted around the last issue’s deadline) or
from the ACCU website (http://www.accu.org/journals/).
This particularly helps overseas members who typically
get the magazine much later than members in the UK and
Europe.

// ---- test.cpp -----
#include <fstream>
#include <iostream>
#include <string>
#include <vector>

#include "db.h"

int main()
{
 using namespace std;
 using namespace DB;

 int id;
 string name;
 string filename("output.txt");

 // populate id and name ...

 Insert("insert into employee(name,id)"
 " values(%,%)")
 << name << id << execute;

 vector<Row> result = Query("select name "
 "from employee where id = %")
 << id << execute;

 string firstrow = result[0].toString();
 ofstream(filename.c_str()) << firstrow;
}

Listing 2 (cont’d)

// ---- db.h -----
#include <string>
#include <vector>

namespace DB
{
 class Row
 {
 public:
 std::string toString() const;
 // ... other method elided
 };

 static struct exec_t
 {
 } execute;

 class SqlBase
 {
 public:
 void bind(int &);
 void bind(std::string &);
 // ... other methods elided
 };

 class Query : public SqlBase
 {
 public:
 Query(std::string const & query);
 std::vector<Row> operator<<(exec_t &);
 };

 class Insert : public SqlBase
 {
 public:
 Insert(std::string const & statement);
 void operator<<(exec_t &);
 };

 // Use template to retain type of 'stream'
 template <typename T, typename U>
 T & operator<<(T & stream, U & value)
 {
 stream.bind(value);
 return stream;
 }
}

Li
st

in
g

2

JAN 2009 | | 43{cvu}

Python

Python Phrasebook
By Brad Dayley, published by
Sams, 2006, ISBN-13: 978-
0672329104

Reviewed by: Gail Ollis

As a Python evangelist I’ve
become rather resigned to
people saying ‘that’s for web
stuff, isn’t it?’, when I enthuse to them about
how Python made programming fun again. It’s
like saying ‘C++ – isn’t that for banking
applications?’. Sure, lots of people use it that
way, but there are many more who don’t. I was
therefore rather disappointed to find half this
book given over to the ‘web stuff’ – but maybe
that’s just because it seems to reinforce the
misleading stereotype I’ve been struggling
against.
As a consequence, it means that only the first
half of the book is likely to be relevant unless
you’re doing web programming. That half is not
bad as an aide-memoire because it covers bread-
and-butter functions that any Python
programmer will be using a lot – i.e. handling
strings, files, data structures. The second half
does the same thing for html, databases, xml and
so on. It’s day-to-day, basic instruction; the
Python Phrasebook selects a few choice
functions but doesn’t tell you where to get the
full story.
Far better to find out for yourself from the
excellent online resources and make notes
tailored to your own needs. This book feels a bit

like someone else’s notebook – someone not
sufficiently well versed in the language to be the
person you borrow notes from. Describing
Python’s class inheritance as ‘similar to that in
C’ [sic] must surely be a typographical mix up,
but there are other signs that this is a book by
someone who finds a bit of Python useful rather
than someone who understands it. The
obsession with data types is confusing for
beginners, while the misunderstanding of what
‘dynamic’ means – ‘it’s easy to get creative’ –
left me dumbfounded. At the ACCU conference
static versus dynamic boat race in 2007, the
author wouldn’t have known which boat to join!
The ‘phrases’ themselves don’t contain any such
glaring errors, though a whole table of socket
types is wrong in a classic cut-and-paste error;
all the descriptions are in fact file modes copied
from an earlier table. There’s also a bizarre
example of how to slice a dictionary; it’s
certainly not a common ‘phrase’ and I’m still
trying to work out why anyone would possibly
want to do it. But mostly, the errors are ones of
omission: regular expressions, option parsing,
iterators, generators and list comprehensions –
all parts of an essential Python toolkit – are
missing.
The claim on the back cover is that the Python
Phrasebook ‘lets you ditch all those bulky
books’, but with such omissions it can’t achieve
that end, leaving me wondering what the book
is for. It’s not designed to teach beginners, but
holds little for the more experienced Python
programmer. Perhaps the problem lies in the
very concept of a phrasebook, a book of useful
words and phrases in a foreign language. The

linguistic version allows you to say things you
don’t understand and leaves you ill-equipped to
deal with what happens next; good for comic
effect but not for a professional programmer. As
Monty Python’s Hungarian phrasebook would
say, my hovercraft is full of eels.

C++

Extended STL Volume 1
By Matthew Wilson, published
by Addison-Wesley, 572
pages, ISBN: 978-0-321-
30550-3

Reviewed by: Pete Goodliffe

This is an unusual book
review for me. Normally, I
digest a technical book in a
matter of a week or two and then write a review.
I don’t like writing a review without having fully
read the entire contents of a book; it’s not a fair
and representative review. Consequently this
review is remarkably delayed as Extended STL
has taken me literally months to read.
Why is this? The information in this book is
dense and not easily digested. There’s a lot of
complex stuff in here that – especially in order
to review fully – you really have to pay attention
to. I’m not sure I can entirely blame this on the
book, though. It’s a natural consequence of the
subject material.
Extended STL is the first volume in Wilson’s
projected two part series. This tome covers
collections and iterators. That is, it describes
how to create STL-compliant containers and
iterators from scratch or how to wrap existing
pieces of code with STL-interfacable proxies.
This is a non-trivial area, with many subtle
problems. The meat of the book is an in-depth
description of problems and solutions in the
implementation of STL-like code.
Volume 2 of the series will cover (amongst other
things) STL-like functions, algorithms, adaptors
and allocators. No doubt that, too, will be a
dense book covering complex subject matter.
Extended STL is a fairly unusual book in the
current marketplace, and so has little
competition. There are many books on learning
or using C++, on good C++ style, and on C++
programming idioms. There are many books
describing particular C++ libraries. But there are
few specifically about writing STL-like
extensions, and interfacing existing code with
the STL. So there’s little competition for
Extended STL. If you are doing this kind of work
then the book looks like a sound investment.

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous ‘not recommended’ rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Jez Higgins (jez@jezuk.co.uk)

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
44 | | JAN 2009{cvu}

This book is not an easy read. It took me an
incredibly long time to complete; it’s not easy to
read in small chunks, or when your brain is full
of other stuff. You really have to study a chapter
in depth from start to finish to follow the flow.
Extended STL opens with a set of chapters on
foundational concepts and terminology. These
are a refresher in some important C++ STL-
related techniques, and I suspect that the
majority of readers will take away the most
useful material from these chapters alone!
The chapters in the subsequent two parts
(collections first, then iterators) usually cover a
single example of the implementation of an
STL-like component: explaining the reason for
writing the component, the problems discovered
during implementation, and the ultimate
solution. An included CD contains all the
numerous code examples in the book.
Sometimes this example-driven approach
makes it hard to determine the most important
information presented in each chapter. It also
makes Extended STL less than ideal as a
reference work in which to look up techniques.
The book contains a scattering of ‘tips’ in callout
boxes. These appear to be a rather inconsistently
applied narrative conceit. They should either
have been scrapped or rationalised significantly.
As you read the text, it’s clear that you are
getting information from someone who really
knows what he’s talking about, and who has
done a lot of this kind of legwork many times
over. Wilson’s writing style is clear, although
sometimes I wonder whether the information
could have been presented better in a different
structure.
Extended STL is a testament to the incredible
power and to the incredible complexity of C++.
Many of C++’s detractors could cite it as a
counter-example for use of the language!
I found very few technical problems or mistakes
in the text. If I was being picky, I’d criticise the
author’s propensity for somewhat flowery
language which will leave non-native (and some
native) English speakers confused (or reaching
for the dictionary).

In summary:

Pros
Fairly unique coverage of this aspect of
C++ coding
Clear writing style
The voice of an expert

Cons
Dense information, often hard to digest
Not ideal as a reference work

Recommended if you are writing STL-like C++
code, or want to interface legacy code with STL-
style C++. Make sure you have plenty of time to
sit down and digest the material.

PHP

Spring into PHP5
By Steven Holzner, published by
Addison Wesley,
ISBN: 0131498622

Reviewed by: Giuseppe Vacanti

PHP is one of the many
languages that power web sites
around the world, and probably one of the most
popular. This book, published in 2005, describes
version 5.0.0 of PHP (at the time of this review
the production version is 5.2.6). Although PHP
can also be used as a normal shell scripting
language, the expectation, also in this book, is
that PHP’s home is inside a web page: most code
fragments are in fact bracketed by some HTML
mark up.
The book assumes very little previous
programming knowledge. The first four
chapters progress through what one might call
the standard language constituents: variables
and assignments, operators and flow control,
strings and arrays, and functions. Every chapter
is broken down into items, and each item is
covered in one or two pages, with a sample
HTML page to put it into context. If you have
any knowledge of a C-type language, you will
be zipping through these sections, as PHP’s
syntax has almost no surprises.
Chapters five and six cover how to handle
HTML forms. The examples show you the
HTML syntax for a certain form type (buttons,
check boxes, text areas, etc.), and the PHP code
needed to retrieve and validate the user’s input.
Again, the material is broken down into chunks
that fit one or two pages, and the examples are
clear.
One of the new features of PHP5 when it
appeared was the ability to have classes and
inheritance. This topic is covered in chapter
seven, which for some strange reason also deals
with file handling, although the latter could have
been treated in a separate chapter. PHP5 has
public, private, and protected inheritance, and
classes are instantiated with new: the reader
familiar with C++ will quickly come to grips
with the syntax, which is clearly explained.
The examples dealing with classes are rather
contrived, although they do the job of
illustrating the syntax. Classes are defined,
instantiated, and used in the same HTML page,
which rather defeats the purpose of having
classes in order to structure a large application.
I shall return to this remark later. Another
comment I have about this chapter is that
exceptions are not mentioned. It could be that
they were not present in the language in 2005,
although having gone through the change log at
php.net I have the impression that they were
there from the start.
Chapter seven continues with how to deal with
file access, while chapter eight describes how
PHP5 can be used to access a database, with

particular emphasis on MySQL. Again, a topic
is enunciated, the required syntax is explained,
an example follows, and the resulting web page
is displayed. All in two pages, and rather
effectively. The chapter also introduces the
PEAR DB module, an abstraction layer that
allows one to work with more database engines
than MySQL alone.
The final chapter covers a variety of items,
ranging from how to set and retrieve cookies,
connect to an ftp server, and send email, to
working with sessions. The book concludes with
two appendices containing the language and
function references.
As I have hinted in a few places, the book is well
written and well organized, with the exception
of file access being grouped with object
orientation. By the end of the book one gets a
good impression of how PHP5 works and how
it can be used; the chunk structure makes it easy
to find what one needs when working in browse
mode, for instance, when writing code.
I have however one criticism. By the end of the
book it will become obvious, I hope, that mixing
HTML and PHP5 snippets leads to untestable
and poorly structured code. In the end, capturing
the user’s input and displaying the application’s
output must be kept separate from most of the
application’s logic. Of course, the ability to mix
a programming language with HTML mark up
is what makes the language attractive, and this
is indeed a feature of many web application
languages. However the areas where the two
aspects come together must be kept to a
minimum, and that is why in the PHP world
templating systems like Smarty have been
introduced. This book however completely
ignores the topic, and this is not compatible with
the statement that this book is for those who
‘truly want to develop all the power of web
applications’.
In summary, a good book, but not the only book
on PHP5 you are likely to need if you wish to
move beyond a web application that consists of
a few HTML forms.

Fortran

Numerical Recipes in
FORTRAN: The Art of
Scientific Computing,
second edition
By William H. Press, Saul A.
Teukolsky, William T. Vetterling,
Brian P. Flannery, published by:
Cambridge University Press 1992, 915 pages, ISBN:
052143064X

Digital Computing and
Numerical Methods
(with FORTRAN-IV,
WATFOR, AND WATFIV
Programming)
JAN 2009 | | 45{cvu}

By Brice Carnahan and James O.
Wilkes, published by John Wiley
and Sons, 1973, 439 pages,
ISBN: 0471135003

Numerical Methods with
Fortran IV Case Studies
By William S. Dorn and Daniel D.
McCracken, published by John
Wiley and Sons, 1972, 403 pages, ISBN:
0471219193

Reviewed by: Colin Paul Gloster

This is a combined review of three
books on numerical methods with
FORTRAN.
N.B. The instalment of the famed ‘Numerical
Recipes’ under review is not Numerical Recipes
in Fortran 90: The Art of Parallel Scientific
Computing dated 1996, but a version for an
unofficial dialect based on FORTRAN-77. A
variant of this book exists with ‘77’ in the title
(Numerical Recipes in FORTRAN 77 – without
a hyphen this time) with the exact same ISBN
and supposedly also dated 1992.
The first chapter of Numerical Methods with
Fortran IV Case Studies begins with good
examples of how difficult it is to capture the
intended semantics of an approximate
mathematical solution being ‘near’ an exact
solution. Of the three books reviewed here, this
is the best one for maintaining a comprehensible
manner when describing the mathematics
involved. The next best in this regard is Digital
Computing and Numerical Methods. The
assumed knowledge of the readers of Numerical
Recipes in FORTRAN is not uniform, but in most
cases reading its chapters without an
introductory book from my teenage years would
leave me at a disadvantage. Fourier and wavelet
transformations, statistics and topics which are
not the main focus of the book are all explained
under the assumption that their basic
fundamental notions are understood.
In some cases the assumptions regarding the
readers of Numerical Recipes are not uniform
because different topics are being presented, but
sometimes it seems as if the coauthors had not
decided exactly who they were writing for. For
example, bins are mentioned independently in
Sections 7.8, 13.4 and 14.3 without referencing
the other sections and without being listed in the
table of contents nor the index. It is assumed in
Section 7.8 that the reader knows what a bin is,
unlike in the other sections. Similarly but to a
less severe extent, Bayes’s Theorem is printed a
few pages later than where familiarity with it is
actually needed.
Though fundamental concepts are explained in
the other two books in a manner in which almost
anyone could understand, those books are too
short and describe too few methods. The
numerical methods described in Digital
Computing were restricted to pages 255-439. A
vast amount of space is used in the rest of the
book to describe number bases and punched
cards. This is not to say that all worthwhile

methods appear in Numerical Recipes, but it
does contain many more. Some examples of
topics which are not covered in any of the three
books under review are concurrency, the
Doolittle method and Adams-Moulton methods.
The quotation from Byte magazine in the blurb
of Numerical Recipes stating that the book is
‘remarkably complete’ is therefore untruthful. A
quotation in the blurb from the Journal of
Nuclear Medicine is actually contradicted by the
authors on the first page of Chapter 6: Special
Functions, who ‘do not certify that the routines
are perfect’.
Furthermore, Cambridge University Press
misleadingly presented two quotations about
Numerical Recipes out of context. Elizabeth
Greenwell Yanik’s remark in SIAM Review:

The routines are prefaced with lucid, self-
contained explanations

was quoted without the third next sentence:
However, there are a number of advanced
topics that require a substantial amount of
collateral reading from the cited references in
order to understand the algorithm.

The praise in the blurb attributed to Byte has
been contradicted in a review published by the
American Journal of Physics. Interestingly, the
review in the American Journal of Physics was
also quoted in the blurb, though its contradiction
was omitted!
Much worse, somehow the only part of Jesse L.
Barlow’s review [1] of Numerical Recipes
which is quoted is the first two sentences of the
following paragraph:

The book’s virtues are that it lists important
topics from numerical analysis that may be of
interest to scientists and engineers. It gives
a summary of the philosophy behind each of
the methods discussed and a bibliography so
that one can find out more. Unfortunately, the
bibliography is somewhat dated. The
computer programs in this book should be
avoided. The book might be used as a
starting point, but the reader should always
look up a topic in another source.

Why was Barlow so negative? The best way to
check is to read Barlow’s review in full. Anyone
who might rely on Numerical Recipes should be
forced to read Barlow’s review, along with Jim
Law’s review in ACM SIGSOFT [2] and part of
Scientific Computing FAQ: Books, With and
Without Software, for NA, by Steve J. Sullivan
[3] . Though the details of Barlow’s review are
debatable, Barlow has the remarkably important
status of being one of only two reviewers (whose
reviews I have read) in which it is pointed out
that the coauthors are not wise concerning
mathematics (I have read 64 reviews of
installments of the Numerical Recipes series).
The other reviewer who decried the
mathematics of Numerical Recipes is Frederick
N. Fritsch in the January 1988 issue of
Mathematics of Computation. For example, on
page 53 they show that they do not understand
that there is no such thing as ‘the condition
number’ of a matrix. Condition numbers are like
norms in the sense that many different types of

incompatible definitions of condition numbers
exist, instead of merely ‘the’ condition number.
Condition numbers do not appear in any of the
other books under review.
I believe that the idea of aliens flying UFOs is
symbolic of a religion for people who have no
religion. Considering the reputation of
Numerical Recipes and that over twenty of its
reviews were completely lacking any mention of
inadequacies, I believe that I may have found
another new religion of the twentieth century. It
may be understandable that incidental
programmers and incidental mathematicians
such as physicists and biologists might not have
noticed various inadequacies in Numerical
Recipes, but the reviewers for Byte magazine
and SIAM Review (and many of the reviews
published by the Association for Computing
Machinery: they were not all accurate) should
not be so easily excused.
A disadvantage of Numerical Recipes is that it
contains source code. Without this source code,
a reader would be forced to devise subroutines
which might be more appropriate than the
examples in the book. However, many of the
readers actually prefer that it comes with source
code (apparently oblivious to the coauthors’
warnings to not use them). This harmful
misplaced belief of what they need (instead of
what they truly need) has been expressed in a
number of reviews of various installments of the
Numerical Recipes series, and taken to its
extreme in the following quotation from a
review of Example Book (Numerical Recipes)
FORTRAN and Example Book (Numerical
Recipes) PASCAL:

The example books contain programs that
allow the routines given in Numerical
Recipes to be embedded in a useful program
environment, i.e. as complete user software
packages not unlike the solution packages
that are available for the Personal Computer
market. It is this approach that has been
missing for the field of scientific computing,
and these example books fulfill a real need.

The other two books under review come with
even worse code (from a software engineering
perspective), partially because of the use of
Fortran IV instead of Fortran 77. However,
much of the code in Numerical Methods is worse
than the best possible in Fortran IV. For
example, the first subroutine call in that book is
on page 173, yet subroutines had supposedly
been added in Fortran II in 1958.
Much as incidental programmers do in any
language in 2008, Digital Computing and
Numerical Methods contains incohesive data
initialization statements such as:
 DATA X, Y(6), INT, FIRST, LAST,
 SWITCH/ -6.7, 1.93E-6, 49,
 1 'JOHN', 'DOE', .TRUE./

which admittedly is milder than what exists
outside of the books. The Numerical Recipes
review by C. R. Jenkins in the February 1987
issue of Observatory states:
46 | | JAN 2009{cvu}

My favourite NAG [Numerical Algorithms
Group, a library vendor] subroutine, for
example, has no fewer than 25 parameters.

Do not worry! Nothing in any of the three books
under review is that bad.
Not every piece of code in Digital Computing is
bad however. For example:
 ALOG(ABS(TAN(ALPHA)))

is a violation of the Law of Demeter but it is
sensible.
It would be possible to rewrite much of the
software in Numerical Recipes in order to use
fewer statements for the same outputs. For
example, the lengths of sprspm and sprstm
are nearly 56 lines each and they differ by
approximately only twenty lines. However,
much of the software in the book exhibits less
dramatic, debatably poor, software engineering.
If you have prospective clients or colleagues
who are incidental programmers who learnt
from this book, then it may be worthwhile
choosing some pages containing lines like:
sigl=max(TINY,
 fmaxl(j)-fminl(j))**0.6666)
sigr=max(TINY,
 fmaxr(j)-fminr(j))**0.6666)

and showing them how you would replace those
lines. If they accept the improvements, then you
may all win. If you do not convince them, it may
be an early warning that you should not become
involved. If you do not realize what might be
poor software engineering in those lines, then
avoid this book because it would not improve
your programming skills!
A sample of the new 2007 C++ edition of
Numerical Recipes [4], which is supposedly
object-oriented and efficient, contains:

Int i,ii,j,jj,np,schg=0,wind=0;
Initialize sign change and
winding number.
...
p0 = vt[0].x[0]-vt[np-1].x[0];
p1 = vt[0].x[1]-vt[np-1].x[1];
...
for (i=0,ii=1; i<np; i++,ii++) {
Loop over edges.
...
 d0 = vt[ii].x[0]-vt[i].x[0];
 d1 = vt[ii].x[1]-vt[i].x[1];
...

Note the capital I in class Int warns that it is
not an int! One of the problems encouraged by
the above piece of C++ code is postincrementing
of objects (postincrementing of many kinds of
objects in C++ can be slower than
preincrementing). Other issues with the scheme
chosen to control the for loop could also be
remarked upon.
We can also see that copying and pasting code
is a dubious manner of reusing code which they
still have not abandoned. Jim Law’s review [2]
of the 2002 (not 2007) C++ version is accurate
(though slightly harsh). He deplored the

incoherent intended readership (‘experts who
would deem the book to be insufficient or
beginners who would not learn enough from it’);
and ‘simple rewrite of the C programs in C++’:

There is no attempt to understand any
relative strengths or weaknesses of C++ and
object-oriented programming, or to
accommodate C++ users.

It does not seem that any version of any edition
of this work is excellent in these respects. C++
may have advantages over Fortran 77, but the
coauthors should have spent time improving
their programming skills before transferring
their programs to another language.
However, Numerical Recipes does not provide
convincing evidence that the coauthors even
learnt Fortran. I have never read the Fortran 77
standard, so perhaps every Fortran 77 book,
compiler and editor I have ever used contains
mistakes, but according to all these sources a
continuation line can not have an asterisk in the
first column (yet an asterisk in the sixth column
would be acceptable). However, a supposed
continuation line in Numerical Recipes is
denoted by an asterisk in the first column,
thereby making it a comment, thereby making
the software uncompilable.
Documentation is not the best in Numerical
Recipes. For example, SUBROUTINE bandec
contains:
if(mm.gt.mp.or.m1.gt.mpl.or.n.gt.
np) pause 'bad args in bandec'

which is the only explanation of the meaning of
the argument mpl.
In Pascal for Science and Engineering (which I
reviewed in the November 2008 issue of C Vu),
and Numerical Methods with Fortran IV Case
Studies, it was reassured that numerical
integration is relatively easy. This seemed to be
supported in one of the chapters on integration
in Numerical Recipes in FORTRAN but was
contradicted in another of its integral chapters
with a warning of ‘many different possible
pitfalls’.
The Gauss-Seidel and Jacobi methods were
briefly mentioned in Numerical Recipes and
dismissed. These methods are not ideal, but they
were treated harshly in Numerical Recipes and
they are very useful for explaining tradeoffs
between concurrency and lack of concurrency.
Books in which these methods and concurrency
are discussed include Applied Numerical
Analysis by Curtis F. Gerald and Patrick O.
Wheatley, Numerical analysis for applied
science by Myron B. Allen III and Eli L.
Isaacson, and Teach Yourself Algorithms by
Anthony Ralston and Hugh Neill (which is in the
same series as Teach Yourself Flower
Arranging).
Horner’s method was shown, explained and
named in Digital Computing and in Numerical
Methods. Horner’s method is something which
a good compiler should implement
automatically. In Numerical Recipes it must be
assumed readers already know it, as it is not

explained nor named therein. The more obvious
notation that can be used instead of Horner’s
method is not efficient, and it was joked in
Numerical Recipes that people who use this
should be ‘executed’, yet in their SUBROUTINE
trncst, in a different chapter, they have used
an obvious algorithm (i.e. calculating distances
by square roots) to choose a short route. They
should appreciate that this is not efficient if the
values of the distances are not actually
important, but merely their relationships to each
other. (N.B. An efficient alternative is shown in
3D Game Engine Design: A Practical Approach
to Real-Time Computer Graphics by David H.
Eberly. If the values of the distances are
important, then an efficient technique in one of
André LaMothe’s chapters in Tricks of the
Game Programming Gurus could be used
instead).
I rarely see Fortran’s COMPLEX mode (‘mode’ is
Fortran jargon for ‘type’), in books, but I was
once asked by a Fortran programmer whether
another language as opposed to a library has a
COMPLEX type. In Numerical Recipes it is
claimed that compilers’ implementations of
COMPLEX are buggy and/or inefficient.
Some other points of note:
The software in Digital Computing is not
rigorous, and in more than one chapter, software
in Numerical Recipes does not guard against
misuse, unlike the more defensive programming
seen in Numerical Methods.
There are conflicting warnings regarding double
precision in Numerical Recipes on pages 731
and 882. In Numerical Methods, sparse matrices
were not covered sufficiently. In Digital
Computing, it is claimed that functions can be
used with the complete confidence that they
produce the necessary results (you should not be
so credulous!).
Digital Computing does not always teach the
simplest method before a more advanced
method. Some parts of this book are good but
short. Too many other parts are bad.
A surprisingly (worryingly) small amount of
complexity theory (big-O notation), is present in
these books, with none whatsoever in Digital
Computing.
Numerical Methods has a much better treatment
of errors than the other books under review. It
contains good examples showing that increasing
the quantity of terms or digits can actually result
in less accurate results. A perfect book on
numerical methods would merge the Numerical
Methods treatment of errors with the treatment
in Applied Numerical Analysis by Curtis F.
Gerald and Patrick O. Wheatley. However,
Numerical Methods dismisses worst case
bounds on errors as being excessively
conservative. I disapprove of this attitude, which
is also found in Digital Computing.
As a point of interest, in a Sun Microsystems
article published in Integrated System Design
magazine in 1996, it was claimed that to
‘construct by correction’ was a major part of a
JAN 2009 | | 47{cvu}

48 | | JAN 2009

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Jez Higgins
chair@accu.org

In my household the New Year
marks the start of the annual
negotiating period before the
ACCU conference. If, the reasoning goes, I'm
off on a jolly for four days, what does the rest of
the family get in return. My arguments that
going to the conference is work, helping to keep
the roof over the head, food in the dogs' bowls,
and so on falls on deaf ears. "Yeah Dad, you can
stay up as late as you like when you're away",
was apparently so crushing that no response
could counter it, even though as a grown up I
can, unlike 8 year old boys, go to bed when I like
whenever I like. Going to the conference is work
- I regard it as part of my informal continuing
professional development - and it can be hard
work too. Four days is a long time to be
continually focusing, learning, filtering, talking.

I generally come away feeling completely
exhausted, even overwhelmed, taking weeks,
months or even years to chew over and think
through what I've seen and heard. But, by heck,
isn't it fun?
This year's conference runs from the 22 to 25
April, which is a little later than last year, at the
Barcelo Hotel in Oxford. It features keynote
presentations by Robert "Uncle Bob" Martin,
Frank Buschmann, Baroness Susan Greenfield,
and our own Allan Kelly. The conference
committee are confirming the programme as I
write, and it will, I suspect, be up at http://
accu.org/conference by the time you read this.
The ACCU's annual general meeting also takes
place during the conference. One important item
on the agenda each year is the election and
reelection of the committee and the officers.
While you can get involved in the running of the
organisation at anytime, simply by offering, the
AGM is an obvious start point. If there's

something you feel the ACCU could or should
be doing, or something it's doing now that could
be better, then consider standing for the
committee. You don't have to come brimming
with revolutionary fervour, you might simply be
willing to help and that's just as important. Being
on the committee needn't represent a huge time
investment, but as a volunteer run organisation
everybody's contribution can help to make a
difference. Do drop me a line if you'd like to
discuss an idea you have, or to find out more.

Membership
Mick Brooks
accumembership@accu.org

Contact the memberhip
secretary with any questions
about membership or journal
delivery.

Bookcase (continued)

new methodology devised for designing
UltraSPARC-1 processors. However, the
technique was not new because it had been
described, without the buzzwords, in Digital
Computing, 1973 as:

Virtually every engineering design evolves in
an iterative or trial-and-error fashion.

In summary, for the purpose of numerical
methods, Numerical Methods with Fortran IV
Case Studies is highly recommended because of
its excellent treatment of errors and also because
it is easy to understand. Afterwards, a book on
other numerical methods should be read (ideally
not one of the other two books which are under
review). The other two books reviewed here are
so bad as to be merely recommended with
reservations, although the treatment of least
squares fitting in Numerical Recipes is the best
of all books I have ever read.
For the purpose of checking programming skill
levels of incidental Fortran programmers, any of
these or a number of other books could be used.
I have used some of the excellent Algorithms for
Programmers [5] for extremely efficient
numerics not dealt with in any of the three
numerical Fortran books under review. I have
not yet read any of the parts of Algorithms for
Programmers which have exactly

corresponding sections in any of the Fortran
books, but judging from what I have read, it may
be worthwhile considering this instead of
buying an expensive reviewed book.
I am grateful to the American Library
Association, the American Statistical
Association and the Canadian Association of
Physicists for providing me with some of the
reviews mentioned herein. I am grateful to Peter
Friis and Stuart Golodetz for helping me to
obtain other reviews. I unfortunately have not
obtained all of the reviews of Numerical Recipes
which had appeared in University Computing,
Dr. Dobb’s Journal, Acta Applicandae
Mathematicae, Binary, Boston Computer
Society Newsletter, Bulletin of Mathematical
Biology, Mathematics of Computing, SIAM
News, The Mathematical Gazette and ZDM
(Zentralblatt für Didaktik der Mathematik/The
International Journal on Mathematics
Education). I especially still want to read those
missing reviews, so I would be grateful if
someone could help me to obtain them. I have
asked the publisher and coauthors of Numerical
Recipes to identify reviews in the blurb which I
had failed to track down. At the time of writing
one coauthor has provided me with a helpful list
of some of the missing reviews, and the
publisher has responded but not yet provided

tangible help, though I had asked more than five
weeks before submitting this review to the
ACCU.
If you would like me to identify reviews
discussed here please contact me for more
information. You can try to email
Colin_Paul_Gloster@ACM.org or fax +351
239829158

References

1. Computing Reviews, review number
CR114306. Association for Computing
Machinery

2. Software Engineering Notes, by Jim Law,
ACM SIGSOFT March 2003

3. Scientific Computing FAQ: Books, With
and Without Software, for NA, by Steve J.
Sullivan http://www.mathcom.com/
corpdir/techinfo.mdir/q165.html

4. C++ edition of Numerical Recipes http://
www.nr.com/nr3sample.pdf

5. Algorithms for Programmers by Jörg
Arndt
http:www.jjj.de/
fxt/

If you read something in C Vu that you particularly enjoyed, you
disagreed with or that has just made you think, why not put pen

to paper (or finger to keyboard) and tell us about it?

	Good Intentions
	Santa Claus and Other Methodologies
	Trouble With Dates
	Exception Handling in C++
	This ‘Software’ Stuff, Part 2
	Developer Categorization of Data Structure Fields
	UML: Getting the Balance Right
	Containment During Subdivision
	Boiler Plating Database Resource Cleanup
	Regaining Control Over Objects Through Constructor Hiding
	Desert Island Books
	Code Critique Competition 55
	View From The Chair
	Membership

