The magazine of the ACCU WWW.accu.org

AT T AT

| “ | dPauIGrenyér :

5 s nj:qg?worth

- ;r nate or

' "'!agge a‘m’rnvn‘d

e ,X’\

% ona &Gﬁ

SEssE=Code Critigue &

—U_:' ¥ m

- l— _f - -i-\
gRsao -»;%

' ‘qramﬁllnq Posers

{cvu

Volume 19 Issue 6
Decemher 2007

ISSN 1354-3164
Www.accu.org

Tim Penhey
cvu@accu.org

Contrihutors

Giovanni Asproni,

David Carter-Hitchin,

lan Clatworthy, Renato Forti,
Pete Goodliffe, Paul Grenyer,
Peter Hammond, Roger Orr and
Ric Parkin.

Jez Higgins
chair@accu.org

Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distrihution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

acCu

{cvu}

w ell, at least in the southern hemisphere it is summertime, and

in traditional New Zealand style, summer starts with a day
of drizzly rain. However when the sun has been shining
and the weather warm, I have been thinking of the UK Christmas
break. Christmas in NZ mean barbeques and sunscreen, and
pavlova (can’t forget the pavlova) as opposed to the large heavy
meals that make you want to sleep in the middle of the
afternoon.

Winter in the UK means one thing however, and that is spring
comes next. With spring comes the 2008 ACCU conference
again held in Oxford. I’'m expecting another fantastic
conference with great speakers and keynotes, sensational
evening discussions (sometimes with a drink in hand), and a
terrific group of attendees to meet.

I’m having trouble sometimes realising that another whole
year has passed. I look back and see a stack of C Vu mags
that I have helped see the light of day. If there are other
ACCU members who are wanting to help more with the
production of the organisation’s magazines, please email me. I
must admit I’ll be surprised if I get many, but that is the nature of
a volunteer organisation.

I’ve found myself in an interesting position where I work now.
I’ve gone from just being a software developer to being a manager.
I’m still supposed to be writing code too, however I have come to
realise that actually writing code is now somewhere around 50%
of my expected work rather than somewhere around 90%. This
has left me with a slight dilemma. I’ve never done any management
before. I’ve just ordered a copy of a book from amazon.com which
looks to be quite amusing — Managing Humans by Michael Lopp. I’ll
keep you posted on it.

(WA

TIM PENHEY,
EDITOR

The official magazine of ACCU

ACCU is an organisation of programmers who care The articles in this magazine have all been written by
about professionalism in programming. That is, we ACCU members — by programmers, for programmers
care about writing good code, and about writing itin ~ — and have been contributed free of charge.

a good way. We are dedicated to raising the standard T4 find out more about ACCU’s activities, or to join the

of programming. organisation and subscribe to this magazine, go to

ACCU exists for programmers at all levels of WWW.accu.org.
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

Membership costs are very low as this is a non-profit
organisation.

DEC 2007 [{cvu} |1

{cvu}

DIALOGUE

24 Code Critique Competition
This issue’s competition
and the results from last
time.

29 Guidelines for Contributors
Thinking of writing for us?
Here’s how.

30 Regional Meeting
News from the latest
ACCU Cambridge
meeting.

30 Sponsored Conference
Places
Do you know someone
who may qualify?

30 New ACCU Group on
Linkedin
Hooking up using
LinkedIn.

REGULARS

31 Book Reviews
The latest roundup from
the ACCU bookcase.

32 ACCU Members Zone
Reports and membership
Nnews.

FEATURES

Pete Goodliffe helps us to adopt the postion.

9 Distributed Version Control Systems
lan Clatworthy describes the how and why of DVCS.

9 Continuous Integration with CruiseControl.Net
Paul Grenyer creates a handy plug-in.

16 Embedding Lua into a C++ Application
Renato Forti demonstrates Lua with a tutorial.

20 Reuse, Recycle, Refill?

Peter Hammond describes some pitfalls of reuse.

COPY DATES

CVu20.1: 15! January 2008
CVu20.2: 15t March 2008

Kevlin Henney continues his series on ‘The PfA Papers’,
Richard Harris investigates the travelling salesman in ‘“The

Model Student’ and much more.

ADVERTISE WITH US

The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

2 |{evu} | DEC 2007

COPYRIGHTS AND TRADE MARKS

Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.

By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

Professionalism in Programming # 46

Pete Goodliffe helps us to adopt the position.

demand placed on programmers grows, moving us from the once

traditional 15-hour working day closer to the continental 26-hour
working day. In such a climate, it’s becoming increasingly important to
ensure that you have a comfortable and ergonomically sound working
environment.

ns modern software development project pressures increase, the

This is perhaps as vital an issue to the 21st century programmer as good
code design or any other software development practice. After all, you
can’t be an agile developer with a bad back, and you can’t navigate a
complex UML class diagram with failing eyesight. In order to improve the
quality of your life spent in front of the computer, and perhaps to safeguard
your physical well-being, we’ll look in this column at how to tailor your
working environment.

Pay close attention; if you don’t get this stuff right you could end up with
large medical bills! You’ll thank me one day.

Basic computer posture

First, let’s look at the most basic case of day-to-day computer use: sitting
in front of a monitor (or as old-school Human Resources departments like
to callit: a “VDU?’ [1]). You probably do this for many, many hours a day,
so it’s vital to make sure that you sit correctly. Surprisingly, sitting down
is a quite complicated task. It requires hard work and determination to
master. As you work through this section, remember to take regular breaks
— go for a run or something equally relaxing.

The way you sit at a computer has implications for not just your
productivity (bad posture can have a surprisingly large effect on your
concentration and, therefore, your productivity) but also your health. Poor
posture can lead to: neck pain, back pain, headaches, digestive problems,
breathing difficulties, eye strain... the list goes on. These are the ergonomic
experts’ recommendations (see figure 1):

1. Adjust your chair/monitor position so that your eyes are level with
the top of your screen and your knees are slightly lower than your
hips. Adjust the monitor so that it is a comfortable distance from you
(say about 18 to 24 inches).

2. Your elbows should rest at an angle of about 90 degrees. You should
not need to significantly move your shoulders when typing or to use
the mouse. To achieve this your keyboard should be at about elbow
height.

3. The angle of your hips should ideally be 90 degrees, or slightly
more. (You’re thinking about this as you read, aren’t you?)

4. Your feet should rest flat on the floor; do not tuck them under your
chair. Don’t sit on them, either — you’ll get terrible leg-ache and a
footprint on your rump.

5. Your wrists should rest on the desk in front of you. (It’s certainly
very poor posture to let them rest on a desk behind you. Unless you
are severely double-jointed.) Your wrists should remain straight
when typing.

6. Adjust your chair to support the lower back.

To avoid problems:

m Shift your position throughout the day to keep your muscles loose
and to ease tension in your body.

m Take plenty of breaks, and walk around the office. You may find it
beneficial to talk to other people. After a little practice oral
communication can become second nature, even to the seasoned
programmer.

® Don’t collapse your neck as you
read the screen. Hold your head
high, and be proud to be a
programmer.

==

m Defocus your eyes
occasionally. Try those auto-
stereogram thingies that were
popular in the 90s. Or look up
from the screen and focus on a
distant object (perhaps you
could look longingly at the
door, for example, or that nice
temp in accounts).

® In truly extreme cases of muscle fatigue you may find it necessary
to take drastic action: step outside of the building (yes, it is perfectly
safe to do this) and take an extended stroll. If the stroll gets too
relaxing you’ll find plenty of seats in the local park where you can
practise sitting down momentarily.

Having determined a good posture for the basic case of computer use, let’s
now look at some of the less-considered postures required by the modern
programmer. After all, it’s important to ensure that we remain
ergonomically sound during the entire day...

The debugying posture

Code got you down? Are the gremlins refusing to budge? . W
Have you been concentrating for six hours flat, yet
you still can’t work out why there’s an ugly brown * ~~ Zh—
rectangle on the screen when you should have an @
elegant turquoise octagon?

In this case your body needs a slightly
different posture to accommodate the weight of
the world on your shoulders and the shift of 7\ J2
your cerebral cortex from the top of your body U y

to somewhere inside your shoe. To adequately (?% &
support your body and prevent further strain

(unfortunately, the brain-strain is unavoidable)

follow these steps:

® [ean forward slightly (a hip angle of 45-60 degrees is best)

® Place your elbows on the desk on front of you (ideally, they should
rest at your wrists’ position when typing)

m Extend your forearms vertically upwards

B Lean your head against your arms

m Sigh
Figure 2 illustrates this. In these situations you may also find it more
comfortable to move the monitor a little closer to the front of the desk than
you would ordinarily have it. You’ll find that this makes it much easier to

repeatedly bang your head against it when you’re feeling particularly
frustrated.

PETE GOODLIFFE

Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at

pete @cthree.org

™,

DEC 2007 I{cvu}| 3

{cvu}

When it's really going hadly

Sometimes, despite adopting a careful debugging
poise you won’t be able to solve that thorny
problem. The bugs just won’t budge. You
can look as nonchalant as you want, they
just don’t seem to respect your determined
(yet comfortable) posture. Programming is
not always plain sailing, and sometimes all that
straight-back, slack-shoulder nonsense can
take a running jump...

If you find that it is going really badly, then adopt the position shown in
figure 3, and brace yourself for when it all crashes and burns around you.

The all-nighter

When deadlines loom you may find yourself working heroic hours to get
everything finished in time. Of course, you know

ﬂ that no-one is going to thank you for it, but a sense

of moral obligation and a pride in your work will

;5 compel you to stay up three nights in arow and
% to live off a diet of caffeine and stale donuts.

{'\?) You will find the posture in figure 4
) particularly useful after the fourth all-night
1 stint. Like any ergonomic consideration, the

really important thing here is to adjust your
working environment to help you. If possible,
shut the blinds and close the door to block out extraneous noise or anything
that might distract you from your current task. If you work in a loud
communal area with many people walking past all day, then arrange your
desk and chair so as to offer maximum potential to not be seen.

Try not to snore too loudly. You may find it useful to insert the mouse
firmly into your mouth to plug the airway. (Remember not to do this if you
have a blocked nose, or you might asphyxiate yourself).

Occasionally a boss feels compelled to prowl

AT
ﬁ,ﬂ”‘;“:;‘\ around to ensure that his minions are working

VOO .
(L)\/‘/ as hard as pack mules. In order to ensure his

maximum comfort and to prevent him from
straining his delicate aggravation muscle, you
should adopt the posture shown in figure 5.
It’s for his own good:

m Employ a taught, pained posture.
Tighten all your muscles, and look like
you are poised to chase after a burglar.

nll/A e

B Adopt a screwed-up facial expression
(if this is not already your natural
appearance after years of

programming). Something along the lines of severe constipation

gives an adequate appearance of extreme concentration.

® For the best effect, purchase some dry ice (this can be readily
obtained from stage supplies store) and leave it under your desk. The
boss will be impressed at the perspiration generated by your fervent
work. Don’t be tempted to over-do this though, or your colleagues
may become concerned at your problems with flatulence, or security
may call the fire department.

Ideally, orient your workspace so that your back is against a wall so that
no one can walk up behind you unawares. Adopting the figure 5 posture
at very short notice can lead to sprained muscles (especially if you have
to rapidly remove your feet from the desk) and fused nerves.

The all-clear

Be careful when adopting the above posture to not screw your eyes up too
much. It’s important to be able to see your boss walk away so you know

4 |{cvu}| DEC 2007

when it is safe to relax, and adopt the posture in
figure 6.

You will find that using a joystick to play
network games requires rather less wrist strain
than a keyboard, and so it is preferable to use
one, where available. Creative filing of ﬁ
expenses claim forms should enable you to “.
justify the purchase of a very good quality "-’—’5 =
gaming device. Do not consider Nintendo Wii
controllers in the office — they are not
especially subtle.

1
!

Our final programmer posture should be
employed when designing new code, or working
on extremely hard problems. At these times it is
important to ensure maximum comfort and that
you will not be distracted by your surroundings.

You should find that figure 7 is fairly self-
descriptive.

Finally, it is valuable to spend a little time considering the health of your
eyes. Make sure that as you peer at your monitor you don’t strain your eyes.
Take frequent breaks. Ensure your screen doesn’t suffer excessive
reflections from windows or lights; move the screen if this is a problem.
Make sure that direct light sources (a window or a lamp) are not directly
pointing at you, too.

If you have a CRT monitor, consider adjusting the refresh rate to make the
image more stable. Can you change the contrast and brightness settings on
the display to make it easier to read?

Regular eye tests are essential. Here’s one simple test you can try in the

comfort of your swivel chair,

which doubles as a good

regular eye exercise: Print a
T O
TM

copy of figure 8 and hang it
on the wall above your desk
(you may need to experiment
to work out the best distance
you should be from the
chart). From time to time R
during the day move your

focus away from the

computer screen and look at L L
the chart. Start by reading the

top letter, and work steadily E D
downwards. Read as far as TOU
you can to the bottom.

A

NE
OGRE

Until next time...

I hope that you have found this information useful, and that it helps you
to maintain a good posture as you continue to cut great code. See you next
issue, if your eyesight doesn’t pack up before then. ®

[1] Vision Destruction Unit

Pete’s book, Code Craft, has been out for a while now. It's
quite heavy, so you might need to adopt a careful posture
when you read it. He wrote a lot of it using figure 7.

Check it out at www.nostarch.com

{cvu}

lan Clatworthy describes the why and how of DVCS.

he Version Control space is undergoing a renaissance right now
T thanks to the increasing popularity of Distributed Version Control

Systems (DVCS) such as Arch [1], Bazaar [2], BitKeeper [3],
darcs [4], Git [5], Mercurial [6], Monotone [7] and SVK [8]. This paper
explains why this technology is useful today and will be important in the
medium to long term for most software development teams, whether open
source or commercial. Guidelines are also suggested for selecting a tool
and recommendations are presented on how to use the technology
effectively.

The challenges of software development

While there are important differences between open source and
commercial development models, the core challenges are largely the same
and timeless. As Fred Brooks observed many years ago, there will never
be a silver bullet [9] to slay the software development beast. Most
interesting software is inherently complex, users want it as soon as possible
and typically have low tolerance for poor quality.

In the open source world and many commercial environments, a program
is never finished while it has users with new ideas for what it can do,
changing requirements, new environments or bugs. Software development
is therefore not just about static design but very much about managing the
evolution of design, communicating among the contributors and helping
people understand what was done before.

To generalise further, Software Engineering is ultimately a
communications challenge [10]. Version after version, the path from ideas
to released code is often a long one involving many players . In commercial
organisations for example, these include customers/users, sponsors,
business analysts, architects, team leaders, software engineers, technical
writers, quality engineers, support engineers, etc. The history of computer
science is arguably one long procession of technologies designed to make
that communication chain/cloud a more reliable one: higher level
programming languages, OO, Use Cases, UML, design patterns, Agile
development methodologies and beyond. The core challenge of software
development is ultimately this:

How do we collaborate more effectively, both instantaneously and over

time?

The role of configuration management

Configuration management is a foundation best practice of every popular
software engineering methodology regardless of the methodology type.
Whether a waterfall, spiral, iterative, agile or open source approach is used,
CM is fundamental because version control tools have proven themselves
to be the most effective way, in terms of signal to noise ratio, of technical
people communicating changes across the room to each other today, let
alone across the globe over time. As a consequence, improvements to VCS
technology have a direct impact on collaboration effectiveness. It is
therefore no surprise that open source leaders such as Mark Shuttleworth
and Linus Torvalds are among the driving forces behind this technology.
Mark has stated that [11]:

Merging is the key to software developer collaboration.

Linus has strong views on how VCS tools support development or
otherwise. [12]

Changing the game

There are numerous pros and cons to using a distributed VCS tool. As with
most technologies, these vary depending on one’s perspective: Developer
vs Release Manager vs Community. Collectively, the benefits do add up
and most early adopters of the technology are using it today for one or more
of the reasons presented. For the vast majority of teams though, important
questions remain:

1. Could some of the benefits be realised by waiting for later versions
of existing central VCS tools?

2. Are there compelling reasons why distributed VCS technology will
become mainstream regardless?

The answer to both questions is ‘yes’. I fully expect better central VCS
tools (or the promise thereof!) to delay mass adoption of distributed VCS
tools in the short term, particularly while the DVCS tools are maturing. In
the medium to long term though, the compelling benefits of DVCS
technology will shine though.

Ultimately, a tool is just a tool and the real benefit comes from the
processes it enables. There are two reasons I believe distributed VCS will
ultimately replace central VCS technology across the industry:

m Better adaptability
m Used wisely, it delivers higher quality software
These benefits are explored further below.

Distributed VCS in a nutshell
Wikipedia offers the following definition [13]:

Distributed revision control takes a peer-to-peer approach, as opposed

to the client-server approach of centralized systems. Rather than a

single, central repository on which clients synchronize, each peer’s

working copy of the codebase is a bona-fide repository. Synchronization
is conducted by exchanging patches (change-sets) from peer to peer.

This results in some striking differences from a centralized system:

B No canonical, reference copy of the codebase exists by default; only
working copies.

B Common operations such as commits, viewing history, and
reverting changes are fast, because there is no need to
communicate with a central server.

B Each working copy is effectively a remoted backup of the codebase
and change history, providing natural security against data loss.

While this definition is technically correct, practically there is always a
single copy that is sanctioned as the main development branch in teams
using distributed VCS tools. Over and above the potential for disconnected
operation, the primary differences between distributed and central VCS are
these:

m Developers can collaborate directly without needing central
authority or incurring central administration overhead

B The acts of snapshotting changes and publishing changes can be
decoupled.

IAN CLATWORTHY

lan joined Canonical in early 2007 to work on
Bazaar and other collaboration tools used to build
Ubuntu. He can be contacted online via
http://ianclatworthy.wordpress.com/ or
ian.clatworthy @internode.net.

et —

DEC 2007 |{evu}| 5

{cvu}

These differences mean that the integrity of the main trunk remains higher
over time. This has a positive impact all round:

B developers are continuously working from a more stable base (so
much less time is needed tracking down why their last update
command has broken their sandbox)

B better quality is delivered when the time comes to ship reducing
stress on the QA and release management roles/teams

m the VCS server set-up and managed by the system administration
team does not need as much disk space, CPU, bandwidth, etc. to
accommodate the concurrent load needs of the team/community.
[14]

The developer view

One of the reasons why DVCS technology is gaining popularity is because
developers seem to prefer them. Some notable benefits are:

1. Disconnected operation — developers can still be productive when
the umbilical cord to their central VCS repository is broken, e.g.
when travelling.

2. Experimental branches — creating and destroying branches are
simple operations. This is particularly useful
when experimenting with new ideas, e.g. a
‘spike’ when using eXtreme Programming.

intelligent merge tracking means merging
early and merging often is both possible and
surprising painless. It is difficult to explain
just how much of an impact this can make on
how co-developers can work together more
easily, e.g. when Pair Programming.

4. Staying out of the way — collectively, the

less time on mechanical chores and more
time on tasks that add value.

The release manager view

Good release management is a complex art, balancing the numerous trade-
offs implied by the classic management triangle: Scope/Resources/Time.
A great deal of the success enjoyed by teams using Agile Development
Methodologies comes from using smaller iterations more frequently and
the adaptive planning [15] that occurs as a consequence. Even with the best
adaptive planning and continuous integration practices though, centralised
VCS trunk quality ‘dips’ during the course of each iteration and a scramble
often occurs towards the end of the iteration to restore quality to the
previous level or better.

In an ideal world, a Release Manager would built each new version by
picking and choosing ‘lego brick’ size blocks of functionality — features,
improvements and bug fixes. If a feature doesn’t meet user requirements
or quality standards during testing, it should be possible to truly drop it as
an atomic change (not just leave the code largely in place and hide access
to it). Following the Defer Commitment practice of Lean Software
Development [16], the Release Manager could defer decisions to the last
possible moment, not just the start of each iteration.

Given the inherent complexity of software, this nirvana will sadly never
arrive. However, distributed VCS brings us closer to it than ever before
provided developers work in feature branches [17] either as individuals or
in small groups. While this is technically possible using massive amounts
of branches in a centralised VCS tool, distributed VCS tools make it
practical thanks to their intelligent merging and their support for pulling
changes just as easily as pushing them.

Viewed from this perspective, distributed VCS tools become a natural
progression of the state of the practice. Subversion improved on CVS by
making tree-wide commits atomic while Bazaar (for example) improves
on Subversion by making ‘feature-wide commits’ (i.e. feature branch
merges) atomic.

6 |{cvu} | DEC 2007

New ways of building
3. Easier ad-hoe collaboration with peers - (GOINPANIES and feams -
arenowarealivyand -
distributed WGS iS ON@ cuiica anaiysis of ehis issue has been
of the important
sbove features mean that devclopers spend LOCHINOIOYIGS FeqUire

The community view

Every innovation starts with a problem that existing technology doesn’t
successfully solve. Mark Shuttleworth has explained that his driving
motivation [18] for developing DVCS technology is because of its positive
impact on open source communities:
Distributed version control is all about empowering your community, and
the people who might join your community. You want newcomers to get
stuck in and make the changes they think make sense. It's the difference
between having blessed editors for an encyclopedia (in the source code
sense we call them ‘committers’) and the wiki approach.
Beyond lowering the barrier to entry, there are other notable community
benefits:

B an easier migration path from non-core to core contributor

B as the community grows from 1 to 10s to 100s to 1000s, different
workflows can be adopted without needing to change the VCS
toolset

B branch management scales better than patch tracking.

The last point is important for teams or people who want or need to keep
alist of patches and reapply them when a new upstream version is released.
While tools like Patchwork Quilt [19] are useful,
it is typically much easier to do that particular
dance using a DVCS and either:

having your own branch with patches
applied and merging the new work, or

reapplying bundles, i.e. patches with the full
intelligent metadata available.

provided by John Arbash Meinel. [20]

The communities we join, whether off-line or on-
line, say a lot about the sort of people we are. The
flip side to this is that the tools we offer, when
starting a community, implicitly say a lot about the sort of people we want
to sign up.

The senior management view

There are many complex issues and few easy answers facing senior IT
managers in most large corporations. Many IT best practices (outsourcing,
offshoring, agile) are inherently in conflict and the risks — wasting money
solving the wrong problems, quality, unpredictable exchange rates, skill
shortages in development centre locations, etc. — can be high. As the open
source movement has shown with stunning results, effective distributed
collaboration is possible given the right people, the Internet and the right
toolset. New ways of building companies and teams are now a reality and
distributed VCS is one of the important technologies required. To quote
Brian Aker, Director of Architecture at MySQL AB [21]:

We have been using a distributed source control system since 2000. Our

development process, which allows us to span multiple countries since

all developers work from home, wouldn’t work without it.
Of course, employing the best people possible regardless of their location
is nothing new. The change is that the areas where that is viewed as a best
practice will expand from consulting to engineering and beyond.

At this point in time (Q4 2007), assuming every feature you need is there
and rock solid in a given DVCS tool would be unwise. The maturity of all
DVCS tools has a way to go in comparison to industry standards such as
Subversion. As a rule, quirks and rough edges remain in both the tools and
their documentation. 3rd party support in terms of integration into other
tools is often beta quality. Text books and training courses are generally
not yet available.

It must be stressed though that the leading tools are clearly good enough
for a huge number of projects to adopt today. Interestingly, many of the
tools are indeed much better in many regards than more established tools

{cvu}

in ways users may not initially expect. For example, all the leading DVCS
tools are incredibly good at efficient project history storage.

Maturity and 3rd party support will undoubtedly remain a tactical adoption
issue for a fair number of projects in the short term. Given their rapid rate
of development, I expect this issue to largely disappear over the course of
2008. The strategic debate will then most likely pick up steam.

The arguments against distributed VCS

Greg Hudson has argued that the distributed VCS approach and the
pyramid development model used by the Linux kernel team has numerous
limitations and that a central repository with multiple committers would

most businesses and all teams I've ever

work better. [22] Linus has rejected this arguing that the approach
implements the practical reality of developers using a ‘network of trust’
to get things done. I agree that the centralised workflow model has far more
merit than Linus gives it credit for but his network of trust argument is rock
solid. Indeed, most businesses and all teams I’ve ever seen unofficially
operate on trust, regardless of the official management and technical
hierarchies.

Ian Bicking has written about the potential downside of the distributed
approach. [23] To summarise his concern, sharing early and often (as the
central approach effectively mandates) encourages a better dynamic,
particularly in the open source world. A rebuttal of this has been given by
Bryan O’Sullivan. [24] I would further argue that (team-wide) publishing
of changes once complete actually increases the quality of communication
within a team. For example, receiving a diff about a completed logical unit
of work is far more valuable than lots of smaller diffs (that may not make
sense in isolation and a higher percentage of which are likely to be going
down an incorrect path). Free services such as Launchpad [25] also help
by making it easy to publish new branches to a central registry.

low administration. I have previously published a series of articles
covering these criteria in more depth.

The case for Bazaar

While recognising Git and Mercurial for the amazing tools that they are,
I believe Bazaar will be the right strategic choice for a majority of teams
in the future, if not already. (Disclaimer: I work for Canonical, the
company sponsoring Bazaar, and joined the development team in early
2007 accordingly.) Bazaar has a high focus on:

® usability — being a tool developers love to use (i.e. having an

interface that exposes just enough detail, having a straightforward
command set, trying hard not to unpleasantly surprise
users)

m flexibility — enabling whatever workflow makes sense
across the collaboration spectrum: from personal
productivity tool to communities with thousands of
users

B correctness — doing the right thing (e.g. comprehensive
rename support so that merging just works as frequently
as possible)

B quality — Bazaar has a test suite with around 8500 tests (and
growing)

® cross platform support (though Mercurial is also good in this
regard).

For these reasons among others, I believe Bazaar is, and will most likely
remain, easier for many teams to migrate to than the alternatives. In the
open source world, Bazaar has the added benefit of free hosting on
Launchpad and strong integration with the collaboration tools it provides.
For example, Launchpad makes it easy to register branches, find branches
and associate branches with product releases and bug fixes. In the
commercial world, Bazaar provides the easiest upgrade path for teams
largely happy with centralised workflow and commercial support is
available if required.

To date, the primary issue with Bazaar has been performance on large code
bases, particularly across high latency networks. This issue has been

Havoc Pennington [26] has argued against the broader applicability of niSIrih“tell vcs is a new 'ield andl as a

the distributed approach:
| think what | don’t get yet is why you’d want to maintain a bunch of
local changesets for very long. The Linux-kernel-style fork-fest
seems just nuts for anything I’'m working on.
He has also raised the issue of generally poor usability:
The distributed systems seem pretty wild from a user experience
standpoint. In the sense of ‘jeez, | can tell a (kernel, Haskell, shell)
programmer wrote this’. Subversion may be less flexible but it's also less
confusing.
These concerns should not be dismissed lightly. For distributed VCS to
gain industry wide adoption, it needs to embrace and extend the central
approach the vast majority of teams are comfortable with today. As I have
argued previously, the future of version control is neither central nor
distributed — it’s adaptive [27]. There are compelling advantages to
distributed VCS technology but many users and teams will adopt it for
incremental improvements initially, looking for flexibility down the track
— not a whole new way of working on day zero.

Selecting a distributed VCS tool

Of the numerous tools available, a small number will reach a critical mass
of acceptance. In my opinion, the most likely candidates are Bazaar, Git
and Mercurial. A sample of the projects adopting these three tools are
Ubuntu, the Linux kernel and OpenJDK respectively. Popularity aside,
when selecting a tool, the criteria to consider ought to include reliability
[28], adaptability, usability [29], extensibility [30], integration [31] and

largely addressed by the introduction in 0.92 of a new format known as
packs. As well as greatly improving performance on some key use cases,
packs are important to Bazaar’s evolution because they enable some
interesting new features under development such as history horizons. With
a strong and growing community actively developing it using numerous
best practices and a productive programming language (Python), it is
common for each (monthly) release of Bazaar to include 50-100
enhancements. It’s an exciting community to be a part of and we are always
looking for new members. (If Bazaar sounds exciting to you, please
consider helping us to change the world.)

Distributed VCS is a new field and, as a rule, best practices are still
evolving. Existing software engineering texts rarely mention DVCS and
tool-independent books on the topic may well take another year or two to
surface. With these facts in mind, the best source of information of how
best to use the technology is arguably the open source communities: the
IRC channels and mailing lists for the various tools.

Some general recommendations are:

B Make sure the location of the primary development trunk is well
publicised

m Use a program such as Robert Collins’ PQM [32] together with an
automated regression suite to ensure its quality is sacred

DEC 2007 | {evu}| 7

{cvu}

m Use a program such as Aaron Bentley’s BB [33] to track submitted
patches and their review status.

Distribution increases flexibility but a sensible amount of central data
management can greatly aid effective collaboration. For example,
Launchpad provides a central nexus where people can find information
about open source projects, distributed team members, find branches,
browse the code and so on. Alternatively, tracking important branches can
be done using whatever technology makes sense, e.g. Wiki pages, a CMS,
database or shared drive in a commercial environment.

PQM (Patch Queue Manager) automates commits to a branch by enforcing
a test suite on the result of automatic merges. This is important because,
as a project grows, the time to run a thorough automatic test suite grows
as well. Development either slows down or developers stop running the
tests on every single commit. The latter option is the road back to poor
quality where regressions are only found after they’ve been in the main
branch for some time.

BB (Bundle Buggy) retains an action queue of patches still needing review.
It is an excellent aid to the typical open source process of people posting
patches to a mailing list. Too often these patches are dropped, or become
an interruption to the reviewers’ work if they must be handled
immediately. Working with Bazaar, BB keeps track of patches that have
been merged or superseded, and it accumulates comments and decisions
from reviewers. To put the importance of this in perspective, here’s a
simplistic summary of the key difference between commercial and open
source project management:

® Commercial: How fast can we plant?
B Open source: How fast can we harvest?

BB is Bazaar’s harvesting dashboard of choice.

The new breed of distributed version control tools are exciting because
they change the software engineering game: they enable new ways of
collaborating and that in turn enables new ways of thinking about and
executing software development. Given its inherent distributed and
loosely coupled nature, the open source community has much to gain from
DVCS technology. As distributed development and open source practices
gain popularity in commercial teams, the technology will become
increasingly valuable there as well.

Adoption of DVCS technology will be piecemeal in the short term as the
tools and 3rd party support matures. Nevertheless, DVCS is here to stay
as the process flexibility it offers and higher quality software development
it enables are compelling advantages. In particular, DVCS makes
development in feature branches practical, maximising the rate at which
teams can deliver value to users — a key tenet of Lean Software
Development. By 2011-2012, I predict this technology will be widely
adopted and many teams will wonder how they once managed without it.

Of the large number of available DVCS tools, three stand out as likely to
gain a critical mass of acceptance: Bazaar, Git and Mercurial. With a high
focus on doing the right thing, usability, workflow flexibility and cross
platform support, Bazaar is a safe choice for many teams looking to make
the most of this technology. ®

Acknowledgements

Thanks to Elliot Murphy and Martin Pool for reviewing this paper.
References

1 Arch home page, http://www.gnu.org/software/gnu-arch/

2 Bazaar home page, http://bazaar-vcs.org/

3 BitKeeper home page, http://www.bitkeeper.com/

4 Darcs home page, http://darcs.net/

5 Git home page, http:/git.or.cz/

8 |{ecvu} | DEC 2007

O 0 3N

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

Mercurial home page, http://www.selenic.com/mercurial/wiki/
Monotone home page, http://monotone.ca/

SVK home page, http://svk.bestpractical.com/

Fred Brooks, ‘No Silver Bullet: Essence and Accidents of Software
Engineering’, IEEE Computer, Apr 87,
http://en.wikipedia.org/wiki/No_Silver Bullet

Ian Clatworthy, ‘Collaboration Redefined’,
http://ianclatworthy.wordpress.com/2007/06/08/collaboration-
redefined/

Mark Shuttleworth, ‘Merging is the key to software developer
collaboration’, http://www.markshuttleworth.com/archives/126
Linus Torvalds, ‘Google tech talk: Linus Torvalds on git’,
http://www.youtube.com/watch?v=4XpnKHJAok§

Wikipedia, ‘Distributed revision control’,
http://en.wikipedia.org/wiki/

Revision_control#Distributed revision_control

Mark Reinhold, ‘Source-code management for an open JDK”,
http://blogs.sun.com/mr/entry/openjdk_scm

Craig Larman, Agile and Iterative Development: A Manager’s
Guide, Chapter 2 — Iterative & Evolutionary,
http://safari.oreilly.com/0131111558/ch02

Lean Software Development home page,
http://www.poppendieck.com/

Steve Berczuk & Brad Appleton, Software Configuration
Management Patterns: Effective Teamwork, Practical Integration,
Chapter 19 — Task Branch, http://www.scmpatterns.com/book/
Mark Shuttleworth, ‘Renaming is the killer app of distributed version
control’, http://www.markshuttleworth.com/archives/123
Patchwork Quilt home page, http://savannah.nongnu.org/projects/
quilt/

John Arbash Meinel, ‘Thoughts on branch tracking vs patch
tracking’, https://lists.ubuntu.com/archives/bazaar/2007q4/
032519.html

Brian Akers, response to ‘Distributed Source Code Management —
Niche or Trend?: The Q&A’ by Stephen O'Grady,
http://redmonk.com/sogrady/2007/06/26/dscm/

Greg Hudson, ‘Why BitKeeper Isn’t Right For Free Software’,
http://web.mit.edu/ghudson/thoughts/bitkeeper.whynot

Ian Bicking, ‘Distributed vs Centralized Version Control’,
http://blog.ianbicking.org/distributed-vs-centralized-scm.html
Bryan O'Sullivan, ‘On distributed and centralised revision control’,
http://www.serpentine.com/blog/2005/08/10/on-distributed-and-
centralised-revision-control/

Launchpad home page, https://launchpad.net/

Havoc Pennington, ‘Source control’, http://log.ometer.com/2006-
10.html

Ian Clatworthy, ‘Version Control: The Future is Adaptive’,
http://ianclatworthy.wordpress.com/2007/06/21/version-control-
the-future-is-adaptive/

Ian Clatworthy, ‘Wanted: Rock Solid Version Control’,
http://ianclatworthy.wordpress.com/2007/07/11/wanted-rock-solid-
version-control/

Ian Clatworthy, ‘It Takes a Community to Raise Great Software’,
http://ianclatworthy.wordpress.com/2007/07/02/it-takes-a-
community-to-raise-great-software/

Ian Clatworthy, ‘Version Control: Plugins vs Toolkits’,
http://ianclatworthy.wordpress.com/2007/07/18/version-control-
plug-ins-vs-toolkits/

Ian Clatworthy, ‘Version Control: Design for Integration’,
http://ianclatworthy.wordpress.com/2007/07/30/version-control-
design-for-integration/

PQM home page, https://launchpad.net/pgm

Bundle Buggy home page,

http://bundlebuggy.aaronbentley.com/

Paul Grenyer creates a handy plug-in.

ne of the first rules of writing is to write about something you know

about. With the exception of the user guide for Aeryn [1] and

Elephant [2] I have never done this. [have always written about new
techniques, operating systems and ideas that [have been exploring as the
article develops. The article has been a key player in the learning process
for me.

My articles about CruiseControl.Net [3][4] are no different. I’d only been
using CruiseControl.Net on and off for about a month before I wrote the
first article. I was no expert then and I’m still learning now.

So what’s the main thing I have learnt? CruiseControl.Net [5] has the
potential to be a great application, but it’s early days. There are a number
of missing features, such as support for makefiles, sufficient error
reporting from NAnt [6] and, the feature I see asked for the most in the
forums, a setting to remove and recreate the source code directory prior to
version control checkout. This is all pretty basic stuff and I am at a loss as
to why the writers of CruiseControl.Net have not added these features.

The CruiseControl.Net development team do have a patch submission
procedure, but I need something that will work now and I don’t want to
use anon-standard build in the mean time. Luckily CruiseControl.Net does
have a plug-in mechanism. The main missing feature, the ability to remove
the source code directory prior to checkout, can be addressed by writing a
plug-in.

In this article I’1l describe how to create and install a plug-in for
CruiseControl.Net, a couple of different ways to setup the appropriate
Visual Studio project and write a new task block.

The limited instructions provided on the CruiseControl.Net website states
the following:

1. Create a Class Library project to build the assembly that will contain
your custom builder plug-in. The assembly that it produces should
be named: ccnet.*.plugin.dll (where the star represents the
name you choose).

Add your new custom builder class.

The class (see Listing 1 for an example) must implement the
ThoughtWorks.CruiseControl.Core.ITask interface (found in the
ccnet.core assembly).

4. Mark your class with the NetReflector ReflectorType attribute.
The name argument supplied to the attribute is the name of the
element/attribute that will appear in the configuration file.

5. Add any configuration properties that you need, marking them with
the NetReflector ReflectorProperty attributes accordingly.
Note that the attribute names are case sensitive and must match
exactly in the configuration.

6. Implement the Run method. The supplied IntegrationResult
should provide you with everything that you need to know about the
current build.

7. Compile the assembly.

Copy the assembly into the folder containing the
CruiseControl. NET assemblies (or the current directory that you are
running the ccnet server from).

using System;
using Exortech.NetReflector;
using ThoughtWorks.CruiseControl.Core;

namespace
ThoughtWorks.CruiseControl.Sample.Builder

{
[ReflectorType ("mybuilder")]

public class NAntBuilder : ITask
{
public void Run(IntegrationResult result)
{
Console.WriteLine ("Hello World!") ;
}
}

9. Modify your ccnet.config file in accordance with the sample
config file shown in Listing 2.

Although the instructions are limited this is pretty much all there is to it.
The only other details missing are how to setup a project and what the
dependencies are. This is what I’ll be covering next.

This is an article about CruiseControl.Net and as Visual Studio is well
understood by most Windows developers, I am not going to go into the
details of creating the project. Instead I am going to concentrate more on
the structure and dependencies of the project.

.Netversions

When I started this article in May 2007 the current version of
CruiseControl.net was 1.2.1.7 and used .Net 1.1. In the middle of June
2007 CruiseControl.Net 1.3, the first version to use .Net 2.0, was released.
Plug-ins written in .Net 1.1 can, of course, be used by both versions but
plug-ins written in .Net 2.0 can only be used with version 1.3+. Equally,
Microsoft Visual Studio 7.x can be used to write plug-ins for either version,

<cruisecontrol>
<project name="myproject">
<tasks>
<mybuilder>
<!-- include custom builder properties
here -->
</mybuilder>
</tasks>
</project>
</cruisecontrol>

PAUL GRENYER

Paul has been a member of the ACCU since 2000. He
founded the ACCU Mentored Developers and serves on the
committee. Paul now contracts at an investment bank in
Canary Wharf.

DEC 2007 |{evu}| 9

{cvu}

but Microsoft Visual Studio 8.x can only be used to write plug-ins for
version 1.3+.

CrusieControl.Net plug-ins are inherently dependent on the following
assemblies:

B ThoughtWorks.CruiseControl.Core.dll

This is the main CruiseControl.Net assembly and contains the
classes and interfaces that make up the source control, task and
publisher blocks.

B NetReflector.dll

Net reflector [7] provides the mechanism that CruiseControl.Net
uses to take the XML parameters from ccnet.config and insert them
into block class properties. It is a third party assembly, but supplied
with CruiseControl.Net.

B logé4net.dll

Log4Net [8] is a well known third party logging library for .Net and
this is exactly what CruiseControl.Net uses it for.

B ThoughtWorks.CruiseControl.Remote.dll

The CruiseControl.Net remote assembly is not strictly a plug-in
dependency. However, if the CruiseControl.Net core Visual Studio
project is included in a solution the remote project must also be
included as the core project references it.

The easiest way to create a solution for a CrusieControl.Net plug-in is as
follows:

1. Create an appropriately named C# assembly project and solution
with Visual Studio. The name of the assembly must be in the form
ccnet.*.plugin.dll where the star represents the name of the
plug-in.

2. Create a 1lib folder and copy into it the assemblies that
CrusieControl.Net is dependent on. Make sure you get the right
versions of the assemblies for the version of .Net you are using. Both
the release and source code zips of CruiseControl.Net contain all the
required assemblies, and they are also located in the subversion
repository.

Add the dependencies as references to the project.

4. Check the solution, the 1ib folder and its contents into a source
control system.

CruiseControl.Net is an evolving project, so plug-ins should not be fixed
to a completely static version and ideally space shouldn’t be taken up in
the source control system with pre-built assemblies.

CruiseControl.Net is one of the best organised projects I’ve seen. It uses
a subversion [9] repository and releases are copied to the tags directory as
recommended by the creators of subversion. Therefore if a plug-in project
is also using subversion, a link can be created so that the appropriate
CruiseControl.Net release tag is checked out as part of the plug-in working
copy (see sidebar). This means that any patches can be picked up easily,
space isn’t taken up in the plug-in repository with the CruiseContol.Net
code and when the next release comes out the tag link can be easily moved
or added. If subversion is not being used the source from the appropriate
CruiseControl.Net source code zip can be checked into the plug-in
repository instead and used as a stable reference.

Assuming that either a link to a CruiseControl.Net release has been created
or the source code checked into the plug-in repository the following steps
should be taken to setup a CruiseControl.Net plug-in solution in Visual
Studio:

1. Create an appropriately named C# assembly project and solution
with Visual Studio. The name of the assembly must be in the form

10 I{ecvu} | DEC 2007

The recommended way to organise a subversion repository is into three
directories:

branches

tags

trunk
The main development goes on in trunk, any specialist branches are
developed in branches and releases are copied to tags.

CruiseControl.Net follows this recommendation. The final .Net 1.1
release is 1.2.1.7 and is located here:

http://ccnet.svn.sourceforge.net/svnroot/ccnet/tags/1.2.1.7

The current release (at time of writing) is 1.3.0.2918, uses .Net 2.0 and
is located here:

http://ccnet.svn.sourceforge.net/svnroot/ccnet/tags/1.3.0.2918

Following the subversion recommendation a CruiseControl.Net plug-in
should have the directory structure above and all development should
be done in trunk. CruiseControl.Net plug-ins are dependent on the
CrusieControl.Net assemblies and its third party assemblies. These can
be committed to the repository or a link to the CrusieControl.Net release
source can be created and the assemblies built from the source
directory. The source code isn't actually copied into the plug-in
repository, it is only checked out at the same time.
A good place to link the CruiseControl.Net source code is:
trunk/thirdparty/ccnet/
with a further subdirectory for .Net 1.1 version and the .Net 2.0 version:
trunk/thirdparty/ccnet/1.2.1.7
trunk/thirdparty/ccnet/1.3.0.2918
This enables you to build your plug-in for either .Net version just by
pointing your build system at the appropriate sources.

There is no need to create the thirdparty directory or the ccnet directory.
The version directories must not be created or a locked error will be
given when the linked code is checked out. To create the link:

1 Open a command prompt and move to the trunk directory.
2 On Windows set the default text editor for Subversion:
set SVN EDITOR=notepad
3 Execute the following command:
svn propedit svn:externals
The full stop at the end is very important as it specifies that the
property (see subversion manual for more details) is set on the
current (trunk) directory. If the plug-in goes into continuous
integration the chances are that only the trunk directory from the
plug-in workspace will be checked out so the property must go there
or the CruiseControl.Net source won't get checked out with it.

4 Enter the following into the default text editor instance that is
launched and then save and close it:
thirdparty/ccnet/1.2.1.7 http://ccnet.svn.
sourceforge.net/svnroot/ccnet/tags/1.2.1.7
thirdparty/ccnet/1.3.0.2918 http://ccnet.svn.
sourceforge.net/svnroot/ccnet/tags/1.3.0.2918
5 Execute svn update to checkout the CruiseControl.Net source.

6 Execute svn ci -m"<suitable commit message>" to
commit the property change to the repository.

The property can be checked by executing svn propget

svn:externals and should give the following output:
thirdparty/ccnet/1.2.1.7 http://ccnet.svn.
sourceforge.net/svnroot/ccnet/tags/1.2.1.7
thirdparty/ccnet/1.3.0.2918 http://ccnet.svn.
sourceforge.net/svnroot/ccnet/tags/1.3.0.2918

If necessary the link can be removed by executing: svn propdel
svn:externals.

Be very careful not to cancel a subversion command while setting a
property or checking code out as this can cause repository locks that are
very difficult to remove.

{cvu}

ccnet.*.plugin.dll where the star represents the name of the
plug-in.

2. Create a second assembly project for wunit tests called
ccnet.*.plugin.test.dll where the star represents the name
of the plug-in.

3. Add core.csproj from <ccnet source>/project/core
and Remote.csproj from <ccnet source>/project/
Remote to the solution.

Make sure you choose the CruiseControl.Net source directory that
goes with version of .Net and Visual Studio that you are using:

Net CruiseControl.Net Visual Studio
1.1 1.21.7 7.x
2 1.3.0.2918 8.0

4. Add core as a project reference and NetReflector.dll from
<ccnet source>/lib as an assembly reference to the
ccnet.*.plugin project.

5. Add ccnet.*.plugin and core as a project reference and
NetReflector.dll from <ccnet source>/lib as an

assembly reference to the ccnet.*.plugin.test project.

6. Addnunit.framework.dll from<ccnet source>/tools/
nunit as an assembly reference to the ccnet.*.plugin.test
project.

The nunit.framework assembly from the CruiseControl.Net source
should be used to ensure you have an assembly that uses the correct
version of .Net.

7. Create an empty directory called x1s at the solution root.

The core project has a post build step that copies some xIs files from
the root of the CruiseControl.Net solution to the output directory. It
uses a Visual Studio environment variable to determine the root of
the solution. Building the project from another solution confuses it.
Without the xls directory the project will fail to build due to failure
of its post build step. It’s a hack, but it solves the problem.

The solution will now build. The CruiseControl.Net source code,
unfortunately, generates a number of warnings. You might also want to
create a NAnt script. This is useful if you’re using, for example, Mono [10]
or something other than Visual Studio. NAnt is also useful if you want to
build your plug-in for multiple versions of .Net.

Getting the plug-in into Continuous Integration

This is an article series primarily about Continuous Integration, so
naturally the first thing to do is to place the plug-in under Continuous
Integration. In Part I of this series I described how to create a
CruiseControl.Net configuration file with a project block, source control
block, tasks blocks and an email publisher block. The project structure
described above also requires an NUnit block.

NUnit task block

All software projects should be unit tested. CruiseControl.Net is one of the
best and most completely unit tested projects I’ve seen. Any plug-in should
also be unit tested. The solution creation described above includes the
creation of a project for unit tests. Running unit tests as part of the build
is an important part of Continuous Integration. CrusieControl.Net is
intended primarily (but not exclusively) for .Net projects, therefore it has
a block that supports the most well know and popular .Net testing
framework: NUnit [11].

The only required NUnit task block parameter is a list of assemblies to run.
However, just specifying assemblies assumes that the nunit-console.exe
executable, which is used to run the tests and to generate the output xml
file containing the results, is in the path. There are a few different versions
of NUnit. To make matters more complicated there are separate .Net 1.1
and .Net 2.0 versions and you cannot have them both installed at the same
time. To ensure the correct version of NUnit is used it should also be

<nunit>
<path>thirdparty\ccnet\1.3.0.2918\tools\nunit\
nunit-console.exe</path>

<assemblies>
<assembly>ccnet.marauder.plugin. tests\bin\Debug\
ccnet.marauder.plugin. tests.dll
</assembly>
<assembly>ccnet.marauder.plugin. tests\bin\
Release\ccnet.marauder.plugin.tests.dll
</assembly>
<assembly>build\net-1.1\ccnet.marauder.plugin.
tests.dll</assembly>
<assembly>build\net-2.0\ccnet.marauder.plugin.
tests.dll</assembly>
</assemblies>
</nunit>

checked into the repository. CruiseControl.Net includes NUnit in its
repository and it can be accessed as shown in Listing 3.

Bear in mind that assemblies created with both .Net 1.1 and .Net 2.0 can
be run using the .Net 2 version of NUnit, but assemblies built with .Net
2.0 can only be run using the .Net 2.0 version.

There are also parameters for setting the name of the xml output file and
the timeout. The result of running the tests can be viewed using the
CruiseControl.Net Dashboard via the NUnit Details link in the Build view
and are included in the email if an email publisher block is specified.

The complete CruiseControl.Net configuration for CCMarauder is shown
in Listing 4 (continues overleaf).

Adding a source control task to the plug-in

Now that the infrastructure is in place, the development of the plug-in itself
can begin.

The layout of a CruiseControl.Net plug-in ought to match the layout of the
CruiseControl.Net project, for consistency if nothing else. Create a
sourcecontrol folder in the ccnet .marauder.plugin projectin Visual
Studio (this will create a corresponding directory on the disk) and create

<cruisecontrol>
<project name="CCMaruader">
<workingDirectory>c: \temp\ccnet\ccmarauder\
</workingDirectory>
<artifactDirectory>c:\temp\ccnet\ccmarauder
</artifactDirectory>

<sourcecontrol type="svn">
<trunkUrl>http://ccmarauder.tigris.org/svn/
ccmarauder/trunk/</trunkUrl>
<workingDirectory>c:\temp\ccnet\ccmarauder
</workingDirectory>
<executable>C: \Program Files\CollabNet
Subversion\csvn.exe</executable>
</sourcecontrol>

<tasks>
<devenv>
<solutionfile>ccnet.marauder.plugin.sln
</solutionfile>
<configuration>Debug</configuration>
<executable>C: \Program Files\Microsoft
Visual Studio .NET 2003\Common7\IDE\
devenv.com</executable>
<buildtype>Rebuild</buildtype>
<buildTimeoutSeconds>300
</buildTimeoutSeconds>
</devenv>

DEC 2007 | {cvu}| 11

{cvu}

<devenv>
<solutionfile>ccnet.marauder.plugin.sln
</solutionfile>
<configuration>Release</configuration>
<executable>C: \Program Files\Microsoft
Visual Studio .NET 2003\Common7\IDE\
devenv.com</executable>
<buildtype>Rebuild</buildtype>
<buildTimeoutSeconds>300
</buildTimeoutSeconds>
</devenv>
<nunit>
<path>C:\Program Files\NUnit 2.4.1\bin\
nunit-console.exe</path>
<assemblies>
<assembly>ccnet.marauder.plugin. test\
bin\Debug\ccnet.marauder.plugin.
test.dll</assembly>
<assembly>ccnet.marauder.plugin. test\
bin\Release\ccnet.marauder.plugin.
test.dll</assembly>
<assembly>build\ccnet.marauder.plugin
.test.dll</assembly>
</assemblies>
</nunit>
</tasks>
<publishers>
<xmllogger logDir="buildlogs" />
<email from="paul.grenyer@gmail.com"
mailhost="mailhost.zen.co.uk"
includeDetails="TRUE">
<users>
<user name="Paul Grenyer"
group="buildmaster"
address="paul .grenyer@gmail.com" />
<user name="ccmarauder Developers"
group="developers"
address="continuousintegration
@ccmarauder. tigris.org"/>
</users>
<groups>
<group name='"developers"
notification="change"/>
<group name="buildmaster"
notification="always"/>
</groups>
</email>
</publishers>
</project>
</cruisecontrol>

an Svn.cs file in it. Check the file and folder into your version control
system.

CruiseControl.Net uses Net Reflector [7] to allow its blocks to be
dynamically instantiated from the XML in its configuration file and have
the task’s properties initialised with the values specified in the XML.
Therefore a Exortech.NetReflector using directive is required.

Usually, custom tasks implement the ITask interface. However, we want
to add functionality to an existing task. The ability to remove the source
directory is missing from all CruiseControl.Net source control tasks. I am
going to describe how to add it to the Subversion task and therefore will
inherit the new task from that. The task also needs a name to identify it in
the CruiseControl.Net configuration file. marauder-svn is sufficiently
descriptive and unique. The name of the task is specified using the
ReflectorType attribute. The basic class declaration looks like
Listing 5.

12 |{cvu} | DEC 2007

using Exortech.NetReflector;
namespace ccnet.marauder.plugin.sourcecontrol
{

[ReflectorType ("marauder-svn")]

class Svn ThoughtWorks.CruiseControl.Core.

Sourcecontrol.Svn
{
//

[ReflectorType ("marauder-svn")]
class Svn
ThoughtWorks.CruiseControl.Core.Sourcecontrol.Svn
{
private bool removeWorkingDir = false;
[ReflectorProperty ("removeWorkingDirectory",
Required=false)]
public bool RemoveWorkingDir

{
get { return removeWorkingDir; }
set { removeWorkingDir = value; }
}
/o

Not everyone will want the new functionality so it needs to be easily
enabled and disabled. The easiest way to do this is with a property based
flag that is initialised from the configuration file. The
ReflectorProperty attribute is used for this (Listing 6).

At this stage it’s helpful and useful to add a test. Create a sourcecontrol
folder in the ccnet.marauder.plugin.tests project in Visual
Studio (this will create a corresponding directory on the disk) and create
an SvnTest.cs file in it. Check the file and folder into your version
control system.

All CruiseControl.Net blocks have tests that check that settings defined by
the XML in the configuration file are correctly initialised in the blocks’
properties. A number of using directives are needed to write the test:
B using ccnet.marauder.plugin.sourcecontrol
Defines marauder-svn.
B using ThoughtWorks.CruiseControl.Core.Util
Defines CruiseControl.Net utility classes such as Time.
B using Exortech.NetReflector
Defines classes to take XML configuration and inserts it into block
class properties.
B using NUnit.Framework
Defines classes and attributres for the NUnit framework.

The test fixture and test function are defined as in Listing 7.

using ccnet.marauder.plugin.sourcecontrol;
using ThoughtWorks.CruiseControl.Core.Util;
using Exortech.NetReflector;
using NUnit.Framework;
namespace
ccnet.marauder.plugin. tests.sourcecontrol

[TestFixture]
public class SvnTest
{
[Test]
public void PopulateFromFullySpecifiedXml ()
{
//

{cvu}

[Test]
public void PopulateFromFullySpecifiedXml ()
{
string xml = @"
<marauder-svn>
<executable>c:\svn\svn.exe</executable>
<trunkUrl>svn://myserver/mypath</trunkUrl>
<timeout>5</timeout>
<workingDirectory>c:\dev\src
</workingDirectory>
<username>user</username>
<password>password</password>
<tagOnSuccess>true</tagOnSuccess>
<tagBaseUrl>svn://myserver/mypath/tags
</tagBaseUrl>
<autoGetSource>true</autoGetSource>
</marauder-svn>";

Svn svn = (Svn) NetReflector.Read(xml) ;
Assert.AreEqual (@"c:\svn\svn.exe",
svn.Executable) ;
Assert.AreEqual ("svn://myserver/mypath",
svn.TrunkUrl) ;
Assert.AreEqual (new Timeout(5),
Assert.AreEqual (Q"c:\dev\src",
svn.WorkingDirectory) ;
Assert.AreEqual ("user", svn.Username) ;
Assert.AreEqual ("password", svn.Password) ;
Assert.AreEqual (true, svn.TagOnSuccess) ;
Assert.AreEqual (true, svn.AutoGetSource) ;
Assert.AreEqual ("svn://myserver/mypath/tags",
svn.TagBaseUrl) ;
Assert.AreEqual (true, svn.RemoveWorkingDir) ;

svn.Timeout) ;

This is all that is required to create a test and, even though it does not
actually test anything yet, if it is committed to source control, continuous
integration will pick it up and run the test. Try it.

One thing worth testing is that the properties of the base class
(*.Core.Sourcecontrol.Svn) are still populated correctly. The
easiest way to do that is to copy the SVN CruiseControl.Net test into the
plug-in test (Listing 8).

The code above is not an exact cut and paste from CruiseControl.Net test.
The root XML tag has been modified so that it instantiates the Svn block
from the plug-in, rather than the CruiseControl.Net block and a new test
has been added to test the value of RemoveWorkingDirectory. The
default value of removeWorkingDirectory is false, so currently the
test will fail. Commit the file to source control to see this.

To fix this, a new element needs to be added to the XML. The xml string
defined in the test function represents, although is not the same as, the

string xml = Q"
<marauder-svn>
<executable>c:\svn\svn.exe</executable>
<trunkUrl>svn://myserver/mypath</trunkUrl>
<timeout>5</timeout>
<workingDirectory>c:\dev\src
</workingDirectory>
<username>user</username>
<password>password</password>
<tagOnSuccess>true</tagOnSuccess>
<tagBaseUrl>svn://myserver/mypath/tags
</tagBaseUrl>
<autoGetSource>true</autoGetSource>
<removeWorkingDirectory>true
</removeWorkingDirectory>
</marauder-svn>";

XML used in the CruiseControl.Net configuration file. Listing 9 shows
where the element must be added.

Commit the modification to source control to see the tests pass.
CruiseControl.Net blocks also have tests for the minimum required XML:

[Test]
public void SpecifyFromMinimallySpecifiedXml ()
{
string xml = @"<marauder-svn/>";
svn = (Svn) NetReflector.Read(xml) ;
Assert.AreEqual ("svn.exe", svn.Executable) ;
Assert.AreEqual (false, svn.RemoveWorkingDir) ;

}

One test that is missing from CruiseControl.Net is the element present in
the XML, but with a value of £alse. For completeness this should also
be added to the plug-in tests:

[Test]
public void SpecifyFalseInXml ()
{
string xml = @"
<marauder-svn>
<removeWorkingDirectory>false
</removeWorkingDirectory>
</marauder-svn>";
Svn svn = (Svn)NetReflector.Read(xml) ;
Assert.AreEqual (false, svn.RemoveWorkingDir) ;

}
Implementing the task block

As shown in the sample builder class above, a task block is usually
implemented by the ITask interface. The tasks that the task block performs
go into the Run method. Our custom Subversion source control block does
not implement ITask. It implements ISourceControl instead, which is the
equivalent interface for source control blocks (Listing 10).

namespace ThoughtWorks.CruiseControl.Core
{
[TypeConverter (
typeof (ExpandableObjectConverter))]
public interface ISourceControl
{

Modification[] GetModifications (
IIntegrationResult from,
IIntegrationResult to);

void LabelSourceControl (
IIntegrationResult result) ;

void GetSource (IIntegrationResult result) ;

void Initialize (IProject project);

void Purge (IProject project) ;

We need to modify the standard behaviour of the CruiseControl.Net
Subversion source control block so that the working directory is removed
before the source is checked out. Looking at the CruiseControl.net
Subversion class reveals that the source is checked out in as shown in
Listing 11.

public override void GetSource (
IIntegrationResult result)

if (! AutoGetSource) return;

if (DoesSvnDirectoryExist (result)) {
UpdateSource (result) ;}

else {
CheckoutSource (result) ;}

DEC 2007 | {evu}| 13

{cvu}

[ReflectorType ("marauder-svn")]
public class Svn
ThoughtWorks.CruiseControl.Core.Sourcecontrol. Svn
{
//
public override void GetSource (
IIntegrationResult result)

if (AutoGetSource)

{
// Add new functionality here.
base.GetSource (result) ;

This method is virtual (this is indicated by the use of the override
keyword and the lack of a compiler error), so all we need to do is override
this method in our subclass, add our functionality and then call the above

using System.IO;

/]

public override void GetSource (
IIntegrationResult result)

if (AutoGetSource)
{
string workingDirectory =
result.BaseFromWorkingDirectory (

WorkingDirectory) ;
if (RemoveWorkingDir)
{
Log.Info ("Removing working directory.");
DeleteDirectory (
new DirectoryInfo (
workingDirectory)) ;
}
base.GetSource (result) ;

}
private void DeleteDirectory (
DirectoryInfo dirInfo)

foreach (
DirectoryInfo subDirInfo in
dirInfo.GetDirectories())

DeleteDirectory (subDirInfo) ;
}
foreach (
FileInfo fileInfo in dirInfo.GetFiles())

FileAttributes fileAttri =
File.GetAttributes(
fileInfo.FullName) ;

if (

(fileAttri & FileAttributes.ReadOnly) !'= 0)
File.SetAttributes (fileInfo.FullName,
fileAttri & ~FileAttributes.ReadOnly) ;
}
Log.Debug (string.Format (
"Removing: {0}",fileInfo.FullName)) ;
File.Delete(fileInfo.FullName) ;

}

Log.Debug (string.Format ("Removing:
dirInfo.FullName)) ;

Directory.Delete (dirInfo.FullName) ;

{o}",

}

14 |{cvu} | DEC 2007

GetSource method. There is one further consideration. Looking at the
above method closely reveals that if AutoGetSource is set to false,
the method does nothing. Our overridden method needs to act in the same
way (Listing 12).

Before the working directory can be removed, we need to know what it is.
Several CruiseControl.Net task blocks have a working directory property.
Usually if this is an absolute path it is used as is. If it is a relative path then
the project working directory is appended to the beginning. The
CruiseControl.Net subversion source control block has an example of how
to create the working directory:

string workingDirectory =
result.BaseFromWorkingDirectory (WorkingDirectory) ;

WorkingDirectory is a property of the subclass. result is areference
to an object that implements the IIntegrationResult interface and
gives access to all sorts of project settings, including the global working
directory path, and is passed to all task blocks.

Once the working directory path has been ascertained,
RemoveWorkingDirectory needs to be checked and if true the
working directory removed (Listing 13).

The details of the DeleteDirectory method are beyond the scope of this
article, but explained in detail in Visiting Files and Directories in C# [12].
Log is a log4net logger available in a base class.

As mentioned previously, CruiseControl.Net source control blocks do not
create the source code directory if it does not exist. Adding this
functionality is straight forward (Listing 14).

That completes the implementation of our custom Subversion source
control block. The next step is to add more unit tests. However, this would
involve:

B Applying an extract method to GetSource so that the new
functionality can be called without calling the base class version of
GetSource.

m Creating a class to call the File and Directory methods and
extracting its interface so that a mock can be passed in when testing.

public override void GetSource (IIntegrationResult
result)
{
if (AutoGetSource)
{
string workingDirectory =
result.BaseFromWorkingDirectory (
WorkingDirectory) ;
if (RemoveWorkingDir)
{
Log.Info ("Removing working directory.");
DeleteDirectory (new DirectoryInfo (
workingDirectory)) ;
}
if (!'DirectoryExists (workingDirectory))
{
Log.Info("Creating working directory.");
CreateDirectory (workingDirectory) ;
}

base.GetSource (result) ;

}

private bool DirectoryExists (string path)

{

return Directory.Exists (path) ;

}

private void CreateDirectory(string path)

{

Directory.CreateDirectory (path) ;

{cvu}

This is quite involved with a number of steps and outside the scope of this
article.

Using the plug-in with CrusiseControl.Net

Finally the ultimate test: plugging the plug-in into a CruiseControl.Net
server. To use, and test, the plug-in with CruiseControl.net:

Stop the service or command line running

2. Copy the plug-in assembly to the CruiseControl.Net service
directory.

3. Edit the ccnet.config file (see below).

4. Restart the service or command line.

Adding anew task to the ccnet . config file is described at the beginning
of this article. Using a source control task block is slightly different. The
standard SVN block for the Aeryn project described in Part 1, is as follows:

<sourcecontrol type="svn">
<trunkUrl>http://aeryn.tigris.org/svn/aeryn/
trunk/</trunkUrl>
<workingDirectory>c:\temp\ccnet\aeryn\working
</workingDirectory>
<executable>C:\Program Files\...\csvn.exe
</executable>
</sourcecontrol>

It can be modified to use the plug-in like this:

<sourcecontrol type="marauder-svn'>
<trunkUrl>http://aeryn.tigris.org/svn/aeryn/
trunk/</trunkUrl>
<workingDirectory>c:\temp\ccnet\aeryn\working
</workingDirectory>
<executable>C:\Program Files\...\csvn.exe
</executable>
<removeWorkingDirectory>true
</removeWorkingDirectory>
</sourcecontrol>

Changing the source control type to the attribute used to identify the plug-
in SVN class tells CruiseControl.Net to load it instead of the standard SVN

rocket science or brain surgery.
What do you have to contribute?

Overload, and by a newcomer.

B What are you doing right now?
B What technology are you using?
B What did you just explain to someone?
B What techniques and idioms are you using?
If seeing your name in print isn’t enough, every year we award prizes for the best published article in C Vu, in

task. Adding the removeWorkingDirectory tags tells marauder-
svn to invoke the new functionality. That’s all there is to it.

There are a number of ways to test it. One easy one is to tail the
CruiseControl.Net log (ccnet.log in the service directory), force a
build and watch for the log messages:

[Aeryn:INFO] Building: Paul Grenyer triggered a
build (ForceBuild)

[Aeryn:INFO] Removing working directory.
[Aeryn:INFO] Creating working directory.
[Aeryn:INFO] Starting build:

Another way to test is to open Windows Explorer (or equivalent) on the
working directory and watch the source disappear and get rechecked out
following a force a build.

Although the unit tests mean we should be confident that the new source
control task works as expected, it is also worth checking what happens
when removeWorkingDirectory is set to £alse and what happens
when it is removed and the default value (false) is used. B

Acknowledgments

Thank you to Jez Higgins for the pointers on svn propset and reviews.
Thank you to Peter Hammond and Adrian Fagg for review and Caroline
Hargreaves for proof reading.

References

[1] http://www.aeryn.co.uk/

[2] http://elephant.tigris.org/

[3] Integration with CruiseControl.Net — Part 1
http://www.marauder-consulting.co.uk/articles

[4] Integration with CruiseControl.Net — Part 2
http://www.marauder-consulting.co.uk/articles

[5] http://cenet.thoughtworks.com/

[6] http://nant.sourceforge.net/

[7] http://sourceforge.net/projects/netreflector/
[8] http://logging.apache.org/logdnet/

[9] http://subversion.tigris.org/

[10] http://www.mono-project.com/

[11] http://www.nunit.org/

[12] “Visiting Files and Directories in C#’
http://www.marauder-consulting.co.uk/articles

C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about

For further information, contact the editors: cvu@accu.org or overload@accu.org

DEC 2007 | {cvu}| 15

{cvu}

Embedding Lua into a G++ Application

Renato Forti demonstrates Lua with a tutorial.

Audience

his article was written for beginners. It introduces embedding and
using Lua in C++ applications. You need have some proficiency in
C++ and the Lua language to understand it.

If you are new to C++, you can read some introductory texts to become
more familiar with the language. In the bibliography, I list some good
books on C++. For Lua, see my last article or consult the bibliography for
links and books.

Lua is an embedded language, which means that your applications can
incorporate Lua into them.

Your application needs some way to communicate with Lua, using what
is known as the Lua C API. This is a set of functions that allow your C or
C++ code to communicate with Lua and vice versa. The C AP is divided
into two parts:

B Lua core, which provides the primitive functions for all interactions
between C and Lua,

m Lua library, which provides several convenient functions to
interface C with Lua.

To pass values to the host program, Lua uses a virtual stack. Each element
in this stack represents a Lua value: string, number and so on.

When Lua calls a C function, the called function gets a new independent
stack. Each call creates a new stack. This stack initially contains any
arguments to the C function and it is where the C function pushes its results
to be returned to the caller. You will see this in action in the sample below.

Put Lua to work
Now we will start to construct a sample. You will need:
1. Lua - get it from http://www.lua.org/download.html

2. Build Lua in a library — see my previous article, or consult the
bibliography.
3. A C++ compiler.
I use Visual Studio 2005 Command Prompt to compile and Notepad-++ to

edit source on Windows XP, but you can use your preferred compiler and
OS. Lua runs on Windows, Unix, and others.

After you have all these, it is time to start.

Build Lua environment

The first thing is to include lua in your main. cpp, see Listing 1. This file
is located in <lua source>\etc.

Lua needs to be initialized and, once you finish your work, closed down.
The C API provides the following functions to do this:

B lua State* lua_open();

B void lua_close(lua_State* pLuaState);

RENATO FORTI

Renato Forti is a C++ programmer who works at
Vegas Card, a financial company located in Brazil.
He can be contacted at re.tf@acm.org

16 I{cvu} | DEC 2007

// Lua support

#include <lua.hpp>

#include <iostream>

int main(int argc, char ** argv)
{

return 0;

}

These functions are defined in 1ua.h, which is included, with others, in
lua.hpp.

The 1ua_open () is actually a #define to lual._newstate (), see:

#define lua open() lualL newstate()

The luaL_newstate () function create a new Lua environment, also
known as state. This lua_State is a dynamic structure that you will need
pass as an argument to all functions inside Lua.

Animportant question here is: Whathappens ifTcall lua_open more than
once? A subsequent call of lua_open has no effect, so it is safe to call
lua_open more than one time.

To keep things easy, I will use the RAII idiom here. (Listing 2 —
LuaEnvironment.hpp)

Now is time to start, see Listing 3 (main.cpp).

Lua provides many standard libraries. These libraries cover services like
/O, operating system facilities and so on:

m Dbasic library;
® package library;

B string manipulation;

// Lua support
#include <lua.hpp>
#include <stdexcept>
class LuaEnvironment
{
public:
LuaEnvironment () : state_(lua_open())
{
if (!'state)
throw std::runtime error(
"Lua environment failed to initialise");

~LuaEnvironment ()

{

lua_close(state_) ;

}

lua_State* getLuaState (void)
{

return state_;

}

private:
lua_State* state ;

};

{cvu}

#include "LuaEnvironment.hpp"
#include <iostream>
int main(int argc, char ** argv)
{
try
{
LuaEnvironment luaEnv;
// Do things with lua here
}
catch(const std::runtime erroré& runtimeError)
{
std: :cout << runtimeError.what() <<
std: :endl;
return 1;
}

return 0;

-

table manipulation;
mathematical functions (sin, log, etc.);
input and output;

operating system facilities;

debug facilities.

luaopen_XXX is used to open a library, where XXX is the library name,
for example consider:

//for the mathematical library
luaopen_math (luaState) ;

//for the I/0 and the Operating
luaopen_io(luaState);

Or you can open all libraries with an single call to:

void lual_openlibs (lua_State* L) ;

Now we will make one Lua function that returns the classic ‘Hello world!”
message to the caller. See Listing 4 — sample. lua.

Now some explanation of the Lua C API functions needed to call our
hw (). The first is:

int lual_dofile(lua_State* L,
const char *filename) ;

luaL_dofile loads and compiles the given file. In our case
sample. lua in second parameter, the first parameter is Lua State
returned by lua_open () . If execute successfully it returns 0.

To use a string rather than a file you can use:

int lual dostring(lua_State* L, const char *str);

Before we call a function, we need to push the function onto the stack. To
do this we will use:

void lua_getglobal (lua_State* L,
const char *name) ;

Then we need to call our function:

int lua pcall(lua_State* L, int nargs,
int nresults, int errfunc);

-- very simple function

function hw()
return "Hello world!"
end

And to get returned value:

const char *lua tostring(lua_State* L,
int index);

Here we add all the functions to our wrapper class LuaEnvironment
(Listing 5 — LuaEnvironment . hpp).

The sample code is shown in Listing 6 (main. cpp).

class LuaEnvironment
{
public:
LuaEnvironment ()
state (lua_open())

if (!'state)
throw std::runtime error(
"Lua environment failed to initialise");

LuaEnvironment (const std::string& filename,
bool openLibs = false)
state_(lua_open())

if (!state)

throw std::runtime error(

"Lua environment failed to initialise");

if (openlibs)

openStandardLibs () ;
if (dofile(filename))

throw std::runtime error(

"Load Lua File Error.");

~LuaEnvironment ()
{
lua close(state)
}
void openStandardLibs ()
{
lual. openlibs (state) ;
}
lua_State* getLuaState (void)
{
return state_ ;
}
int dofile(const std::string& filename)
{
return lual dofile(
state , filename.c str()):;
}
void setFuncName (
const std::string& functionName)

lua_getglobal (state , functionName.c_str());
}
int pcall(int nargs = 0,
int errfunc = 0)

int nresults = 0,

return lua pcall(state_, nargs,
nresults, errfunc);

}

std: :string tostring(int index = -1)

{

return lua_ tostring(state_, index);

}

private:
lua_State* state ;

};

DEC 2007 | {evu}| 17

{cvu}

LuaEnvironment luaEnv("sample.lua", true); @
// Do things with lua here

luaEnv.setFuncName ("hw") ; @

luaEnv.pcall (0, 1); ©

std: :cout << luaEnv.tostring() << std::endl; @

Some explanation:
©: Load sample. lua and open Lua standard libraries
@®: Define function to be called
©: Call Lua function
O: Get result as string.
A note about Stack Index:

Luauses a LIFO (Last In, First Out) stack. In the code above you saw that
we used -1 in lua_tostring as the default index. What this means is
that -1 refers to the element at the top, the last element pushed, -2 to the
previous element, and so on: if we use 1 will we get the first element
pushed, 2 to the next etc. Negative indices count down the stack from the
top, positive indexes count up the stack from the bottom.

(top)

(3) lua_tostring(state_, 3); orlua_tostring(state_, -1);

(2) lua_tostring(state_, 2); or lua_tostring(state_, -2);

(1) lua_tostring(state_, 1); or lua_tostring(state_, -3);

Lua stack

Now we will improve our error handler with a class (Listing 7 —
LuaException.hpp).

When an error occurs in Lua the message is always pushed on top of the
stack, by lual_error. Because of this we use lua_tostring (L,
-1) to get the top message. Note that status must be greater than 0. (See
Listing 8 — LuaEnvironment . hpp, which uses LuaException and
Listing 9 —main. cpp, which is the full code.

Note that I changed sample.luato @sample. lua to generate an error.
The output when I execute this code is:

C:\temp\lua-5.1.1\src>main
ERROR: cannot open (@sample.lua: No such file or
directory

Now we will define a more complex function (sample.lua):

function more_complex(x, y)
return x+y, x-y, x*y, x/y;
end

#include <lua.hpp>
#include <stdexcept>
#include <iostream>
#include <string>

class LuaException
public std::runtime error
{
public:
LuaException (const std::stringé& msqg)
: std::runtime error (msg)
{
}
// Lua error
LuaException (lua_State*L, int status)
std: :runtime error(lua_tostring(L, -1))
{
lua pop(L, 1);
}
}i

18 I{cvu} | DEC 2007

class LuaEnvironment

{

};

public:

LuaEnvironment ()
state (lua_open())

if (!state)
throw LuaException (
"Lua environment failed to initialise");
}
LuaEnvironment (const std::string& filename,
bool openlLibs = false)
state (lua_open())

if (!state)
throw LuaException (
"Lua environment failed to initialise");
if (openlLibs)
openStandardLibs () ;
dofile (filename) ;

}

void dofile(const std::string& filename)
{
int status = lual dofile(state_,
filename.c_str());
if (status)
throw LuaException(state_, status);

}

void pcall (int nargs = 0, int nresults = 0,
int errfunc = 0)

int status = lua pcall(state_, nargs,
nresults, errfunc);
if (status)
throw LuaException(state_, status);

This function receives two parameters and has four results.

We will need some further Lua C API functions:

void lua_pushnumber (lua_State* L, lua_ Number n);

This function pushes a number value on to the stack. This will be used as
x, y argument to our function. The Lua API has push and lua_to
functions for each C type that can be represented in Lua.

lua_Number lua_ tonumber (lua_State*L, int index);

int main(int argc, char ** argv)

{

try

LuaEnvironment luaEnv ("@sample.lua", true);

luaEnv. setFuncName ("hw") ;
luaEnv.pcall (0, 1);
std: :cout << luaEnv.tostring() << std::endl;

catch (const LuaException& luaException)

std: :cout << luaException.what() <<
std::endl;
return 1;

return O;

{cvu}

class LuaEnvironment

{
public:
std: :string tostring(int index = -1,
int pop = 1)
{

std: :string result = lua_tostring(state_,
index) ;
if (pop)
lua_pop(state_, pop);

return result;
}
lua Number tonumber (int index = -1,

int pop = 1)

{
lua Number result = lua_tonumber (state_,
index) ;
if (pop)
lua pop(state_, pop);
return result;
}
void pushnumber (lua Number number)
{
lua pushnumber (state , number);
}

};

We use lua_tonumber to get value of stack:
void lua pop (lua_State*L, int n);

We use lua_pop to pop one or more elements from the stack. See this
reflected in our class (Listing 10 — LuaEnvironment . hpp).

Now I will show how to call it (Listing 11 — main.cpp). Some
explanation:
©: push first arg (x)
@®: push second arg (y)
©: get Istreturned value. Recall that Lua has a LIFO stack, so the results
are returned right to left. In this case the first returned value is x/y :
1.09091
O: get 2nd returned value.
©: get 3rd returned value.
@: get 4th returned value.
Note: If you want to check if the returned value is fine, you can use the
lua_is.. function, that checks the type of value, see Listing 12
(main.cpp).
As well as lua_isnumber, you have:
lua_isstring
lua_istable

and so on...all with same prototype.

/...

LuaEnvironment luaEnv ("sample.lua",
luaEnv.setFuncName ("more_ complex") ;
luaEnv.pushnumber (6) ; @
luaEnv.pushnumber (5.5) ; @
luaEnv.pcall (2, 4);

true) ;

std: :cout << luaEnv.tonumber () << std::endl; ©
std: :cout << luaEnv.tonumber () << std::endl; @
std: :cout << luaEnv.tonumber () << std::endl; ©
std: :cout << luaEnv.tonumber () << std::endl; O

Il oo

// ...
if (!lua_isnumber (luaEnv.getLuaState(), -1))
std: :cout << "Error : value need be number."
<< std::endl;
// ...

We have others stack operations, like lua_gettop, lua_settop,
lua_pushvalue, lua_remove, lua_insert and lua_replace.
See the API documentation for more detail about these functions.

Well, now is time to show how to call a C function from Lua.

Call C function from Lua

To call C functions from Lua you need to register the C functions with the
Lua environment.

The first step is create a C function, see Listing 13 (main.cpp).

static int 1 foo(lua_State* L)

{
int value = abs(lual_checknumber (L, 1)); @

lua_pushnumber (L, value); @

return 1;

}

You can change this for any action that you need. Well let’s start with the
explanations:

©: Checks whether the function argument narg is a number and
returns this number.

®: here we push the result back to Lua, all will become clear ...

void lua_register (lua_State*L,
const char *name,lua CFunction f);

We use lua_register to register the new C function with Lua. In our class
we add:

void registerFunc (
const std::string& functionName,
lua_CFunction func)

lua_register(state_,
functionName.c_str(), func);

}

In Listing 14, comment @ shows where we register the C function and the
code in Listing 15 (sample. lua) calls it. ®

Acknowledgements

I would like to thank Tim Penhey and Jez Higgins for the various
improvements they suggested for this article.

Bibliography
Lua: Roberto Ierusalimschy, Programming in Lua - 2nd ed.
(http://www.inf.puc-rio.br/~roberto/pil2/) ISBN 85-903798-2-5

Lua.org: http://www.lua.org/
Mailing list: http://www.lua.org/lua-1.html
Community: http://www.lua.org/community.html

Using Lua to control your application:
http://www.codeproject.com/samples/lua.asp

Calling Lua functions: using C++ language:
http://www.codeproject.com/useritems/Calling_Lua_functions.asp

Wikipedia: http://en.wikipedia.org/wiki/Lua %28programming_
language%29

DEC 2007 | {cvu}| 19

{cvu}

Peter Hammond describes some pitfalls of reuse.

¢ are all being encouraged to recycle and re-use these days, and
w in general I’m all for it. There is one area though where recycling

is both unnecessary and harmful, and that is in naming variables
when programming. Refilling a variable is often more like putting weed
killer in a milk bottle than putting soup in a yoghurt pot. This paper shows
some of the pitfalls that can arise through re-using a variable, how it can
be avoided, and where it can be appropriate.

The cost of recycling

Many programmers start out with a procedural programming style. Those
ofus old enough to have starting programming on BASIC home computers
would have had no choice. Many current C++ introductory texts (with
some noble exceptions) perpetuate this style, even though it is neither
necessary nor desirable in modern languages. With the older languages it
was common to have to declare all the variables at the start of the scope,
and then assign to them as they became usable. This lead some
programmers to treat the local scope in much the same way that they might
treat that box in the garage — to hold a bunch of stuff that might just ‘come
in handy’ one day. Sometimes names were re-used because the
programmer could see that the previous use was not needed any more and
so could re-use the memory. In the old days of severely limited stack and
compilers that did exactly what you told them to do, this may have been
good practice, but for most of us those days are long gone. Often the re-
use was simply a case of the programmer being too lazy to create a new
name.

In more modern languages such as C++, it is no longer necessary to declare
all the variables in advance: they can be created as needed. Furthermore

the compiler is smart enough to work out when the variable is no longer
in use, and recycle its memory automatically. This means that variables
can be given sharp, clear names that help to document the code. If a
variable is recycled by the programmer, then either the name has to be
made fuzzy and weak, or at least one of the uses has the wrong name. Both
happen in real life, and both are bad for readability and maintainability.
Suppose we have an object that has a name, and buried in the middle of
that name is a serial number that has to be found. This fairly typical
approach demonstrates the first problem [1]:

const string digits ("0123456789")

string str = obj.get name();

str = str.substr (str.find first of (digits),
str.find last_of (digits));

str here is rather bland, but making the name more specific doesn’t help:

string serial = obj.get name();

serial = serial.substr (
serial.find first of (digits),
serial.find last of (digits));

PETER HAMMOND

Peter Hammond started out as a materials scientist,
before changing career dirrection and joining BAE
Systems in the late 1990s. Since then he has
worked on a number of defence related systems,
large and small, with particular interests in
component architectures, real-time systems, and
agile methods.

E“lllﬂdding I.“a imﬂ a c++ nlllllica“ﬂll (continued)

#include "LuaEnvironment.hpp"

#include <iostream>

static int 1_foo(lua_State* L)

{
int value = abs(lual_checknumber (L, 1))
lua_pushnumber (L, value);
return 1;

}
int main(int argc, char ** argv)
{
try
{
LuaEnvironment luaEnv;
luaEnv.openStandardLibs () ;
luaEnv.registerFunc("foo", 1 _foo); (1
luaEnv.dofile ("sample.lua") ;
}
catch(const std::runtime_error& runtimeError)
{
std: :cout << runtimeError.what() <<
std: :endl;
return 1;
}
return 0;
}

20 |{cvu} | DEC 2007

C++: Bjarne Stroustrup, The C++ Programming Language - 3rd ed.
ISBN-13: 978-0201700732

C++ Books (full list): http://www.amazon.com/C%2B%2B-Books/lm/
RIFWITBSD4E82F/ref=cm_lm_byauthor_title full/103-7510116-
1265448

Bjarne Stroustrup’s homepage: http://www.research.att.com/~bs/
homepage.html

Note: Web links listed here may not be valid in the future.

function myABS (p)
return foo(p) ;
end

-- call foo

value = foo(-55);
print (myABS (-333)) ;
print(value) ;

{cvu}

Paul Grenyer recently gave us a look at several ways to fill a container
[2]. The Boost Assign library [3] gives us another approach. It allows
standard containers to be filled with something closely approximating
the aggregate syntax that is only available for arrays of PODs. Clearly
this is only useful when the set of objects is known at compile time, and
is reasonably short; it would be no use for creating a range between x
and y in steps of z, where the values are not known until runtime, or
between 0 and 10000 in steps of 2. It is however extremely convenient
for filling containers with known objects, which can themselves be
variables.

Consider a test case where a method is expected to return a set of
objects of some class type. Without Boost Assign, you have two
choices. One approach is to fill a container using something like
push_back:

vector<int> expected_results;

expected results.push back (0);

expected results.push back (1)

expected results.push back (1)

expected results.push _back (2);

expected results.push back (3);

BOOST_CHECK (fib(5) == expected results);
The other is to compare each member of the returned collection
separately:

const vector<int> results = £fib(5);

BOOST_CHECK (results.size() == 5);

BOOST_CHECK (results[0] == 0);
BOOST_CHECK (results[l] == 1);
BOOST_CHECK (results[2] == 1);
BOOST_CHECK (results[3] == 2);
BOOST_CHECK (results[4] == 3);

The Assign facility allows you to create an expected result collection
easily, with minimal tedious repetition, and has the additional benefit
that the result can be made const:
const vector<int> expected results =
list of (0) (1) (1) (2) (3)
BOOST_CHECK (fib(5) == expected results);

How it works
For the full details, the reader should of course consult the library’s
documentation and code. The design of the library is as simple as its
use; it relies on no brain-melting template metaprogramming
techniques, just operator overloading and some ‘classic’ templates. In
brief, it overloads operator () to permit objects to be constructed
inline. It also overloads the assignment operators to return something
that has operator, overloaded to push its argument onto the collection.
This is not applicable when constructing a const object, but is illustrated
by something like this example from the documentation:

my vector<int> vec;

vec = 1,2,3,4,5,6,7,8,9,10;

since in the first of these two lines, it is not the serial part, it is the whole
name, so the code is telling fibs. The answer is to name each concept
correctly:
const string obj_name = obj.get name ();
const string serial = obj_name.substr (
obj_name.find first of (digits),
obj_name.find last of (digits));
We will come back to the issue of efficiency and the additional string object
later.
Good names are very important in expressing the design and intent of a
piece of code, and they can help you to catch bugs; you are much more
likely to spot the error (when it is buried in the middle of several lines of
arithmetic) in

const float acceleration = position / speed;

than in
x = p/s;

A recycled variable makes code harder to read in another way too. When
reading a moderate sized block of code, it is easy to miss a re-assignment
between where you saw a variable being declared and where you are now.
If, for example, the stream that was originally attached to a configuration
file has been recycled as a data file, you may be left wondering for some
time how the code was ever supposed to have worked in the first place.
You will probably find it after a few minutes, but it slows you down and
breaks concentration.

Reusing a variable will inevitably lead to variables whose scope exceeds
their usefulness. The consequences are generally most obvious pointer
with variables, as between outliving its last use and being pulled out of the
‘come in handy box’ it points at a dead object or some random piece of
heap, and de-referencing it may lead to an access violation. Using arandom
integer may cause a less spectacular failure, but it is all the worse for that.
Such a bug could lie dormant for years. A particularly virulent form of
excessive scope is the member variable that is not actually part of the
class’s state; the original programmer put it in class scope to avoid passing
a parameter to a private implementation function. Now, consider the
hapless maintenance programmer who has just landed in one of that class’s
methods; how does he know what is in that member? Particularly if it is
named something unhelpfully general likem_£ile. The only answer is to
trawl the class’s methods trying to pair up validations and invalidations of
the object.

So, if we don’t want to re-use variables, what do we do? Well, fairly
obviously, declare a new name for every object. What’s more, since we
are not going to reuse it once it has done its particular job, we can make it
immutable — const in C++, £inal in Java. This can save a whole set of
errors related to accidentally changing it: for example by using = instead
of ==, by passing it to a mutating operation that we thought was read-only,
or by a careless maintenance programmer thinking it was safe to reuse
when it was not. Sometimes it is not possible to initialise an object directly,
since it needs to be incrementally built. However, often this is a single stage
and the object is const once completed. These cases can be taken care of
by factoring out the construction code, or by using the Boost Assign library
(see sidebar).

This leads to a style that becomes reminiscent of functional programming.
In fact, once you get used to it, you might well find yourself dropping many
of the names altogether, and chaining results into arguments directly. This
may not be such good thing. As mentioned earlier, names are important
for self-documenting code. It is probably easier, and certainly more
reliable, to name an intermediate concept rather than writing a comment,
so name those concepts. Also named objects have definite scope, and this
can help with exception safety. For example, the Boost scoped ptr
library recommends assigning the result of every new to a named
scoped_ptr to ensure the correct deallocation should an exception
occur. C++ has many traps for the unwary; one of these is the order of
evaluation of function arguments [4]. In the following example, it is
implementation defined whether bar is called for x or y first:

void foo (int x, int y);

int bar();

foo (bar(), bar()):;

Ifbar () is stateful (perhaps reading the input from a stream, for example),
this may result in strange errors. Declaring the intermediate constants
explicitly removes this:

const int x = bar();

const int y = bar();

foo (x, y):
If you are adopting this style, soon you are going to come across the
situation where the name you want to use is already in use. When this
happens, ask yourself two questions. First, is it really the right name for
both of them? If the name is £ile, probably it is just right for neither of

DEC 2007 | {cvu} | 21

{cvu}

them. Ask yourself what each is. If you say one is the configuration file
and one is the data, then there are your names. In other words, try to make
both names more precise, and often that means longer. The second
question is whether the scope is too large. Perhaps you need to refactor to
bring out a small function which removes the ambiguity from the object
name. Have you put a variable at class scope when a const at method
scope would be more appropriate?

Efficiency

There are two forms of efficiency that are often cited as reasons to re-use
a name: stack space and time. The stack space argument is generally
spurious in modern compilers. Apart from the fact that a few extra bytes
on the stack is very unlikely to be an issue these days, an optimising
compiler will do away with the intermediate names anyway. Listing 1
illustrates this point clearly. It shows three versions of a simple function,
with the salient parts of the corresponding object code, showing that there
is no penalty for introducing meaningful names. It was compiled using
Microsoft Visual Studio 7.1 with default optimisation for Release build
settings. Comments and instructions not related to the comparison have
been removed from the object listings for clarity.

The speed issue may be more significant. It is often true that a procedural
style may be more efficient, since it can avoid making copies by working
in-situ. However, remember the old maxim, ‘Make it right, make it fast’
[5]: it is more important that software be correct than fast. You should
never appeal to efficiency without evidence from a profiler.

Re-assignment where appropriate

Still, you may well find that after all this you get back to a point where
you want to re-assign to a variable. Unless you are working in a pure
functional language, that is not a problem. The popular general purpose
languages all support the procedural style, and it is appropriate for elegant
solution of many problems. For example, the Fibonacci series is a classic
example of a functional algorithm, but has exponential complexity. A more
procedural style gives linear complexity with a compact algorithm [6]:

unsigned fib (unsigned count) {
vector<unsigned> memo (2, 1lu);
for (unsigned i = 2u; i <= count; ++i)
memo .push_back (memo[i - 1] + memo[i - 2]);
return memo.back () ;

}

When the correct paradigm has been selected, re-assignment does not
indicate that the name is being re-used, but merely continuing to be used
for its original purpose. This should be the simple test for a piece of code;
at any given point, does the object’s name express its purpose clearly and
correctly?

Clear, strong names can greatly improve reliability, readability and
maintainability of software. Adopting a functional-like style, where each
result is named in a constant, is a natural continuation of strong naming
which can enhance these benefits. This is not to say that there is no place
for variables and the procedural style of programming. However, once a
programmer has developed the habit of not re-using names because they
happen to be around, procedural style re-assignment is likely to be reserved
for situations where it is appropriate. B

Thanks to the many reviewers whose input helped to improve this article,
particularly Simon Sebright, Paul Grenyer, Matt Reeve and the CVu
review panel.

[1] Inall code examples, namspaces std: : and boost: : have been
omitted for brevity.

22 |{cvu} | DEC 2007

float getDistance() ;
float kmToMiles (float);
float alreadyGone() ;
void fool () {
float distance = getDistance() ;
distance = kmToMiles (distance) ;
distance -= alreadyGone() ;
}
void foo2 () {
const float distance km = getDistance();
const float distance miles = kmToMiles (
distance_km) ;
const float distance left =
distance miles - alreadyGone() ;
}
void foo3 () {
const float distance left =
kmToMiles (getDistance()) - alreadyGone() ;
}
_distance$ = -4
?fool@QRYAXXZ PROC NEAR
00000 51 push ecx
00001 e8 00 00 00 00 call ?getDistance@R@YAMXZ
00006 d9 1lc 24 fstp DWORD PTR
_distance$ [esp+4]
00009 8b 04 24 mov eax,
DWORD PTR _distance$ [esp+4]

0000c 50 push eax

0000d e8 00 00 00 00 call ?kmToMilesQRYAMMQZ
00012 dd d8 fstp ST(0)

00014 e8 00 00 00 00 call 2?alreadyGone@QRYAMXZ
00019 dd d8 fstp ST(0)

_distance_km$ = -4
?fo02@Q@RYAXXZ PROC NEAR
00000 51 push ecx
00001 e8 00 00 00 00 call ?getDistance@@YAMXZ
00006 d9 1lc 24 fstp DWORD PTR
_distance_km$ [esp+4]
00009 8b 04 24 mov
_distance_km$ [esp+4]

eax, DWORD PTR

0000c 50 push eax

0000d e8 00 00 00 00 call ?kmToMiles@Q@RYAMMQRZ
00012 dd d8 fstp ST(0)

00014 e8 00 00 00 00 call ?alreadyGone@@YAMXZ
00019 dd d8 fstp ST(0)

?foo3@QRYAXXZ PROC NEAR 00000 e8 00 00 00 00
call ?getDistance@RYAMXZ

00005 51 push ecx

00006 d9 1lc 24 fstp DWORD PTR [esp]

00009 e8 00 00 00 00 call ?kmToMiles@QRYAMMQRZ
0000e 83 c4 04 add esp, 4

00011 dd d8 fstp ST(0)

00013 e8 00 00 00 00 call ?alreadyGone@@YAMXZ

00018 dd d8 fstp ST (0)

[2] Paul Grenyer, ‘Loading a Container with a Range’, CVu 18-6, p 16,

Dec 2006.

[3] Thorsten Ottosen, ‘Boost.Assignment documentation’, http://

www.boost.org/libs/assign/doc/index.html

[4] Scott Meyers, Effective C++, 3rd ed, Addison-Wesley, NY, p 76.
[5] James Coplien and Kent Beck, ‘After all, we can't ignore efficiency

—part 2°, C++ Report, p72, Jul 96; cited at http://home.earthlink.net/
~huston2/dp/run_rite.html

[6] Based on Andrei Alexandrescu, ‘The Appliance of Science: Things

in Computer Science that Every Practitioner Should Know’, ACCU
Conference, Oxford. http://accu.org/content/conf2007/
Alexandrescu-The Appliance of Science.pdf, with small changes
to emphasise the points of this paper rather than the original.

Gode Critique Gompetition 49

Set and collated by Roger Orr

// Read dates, and display as sorted text
#include <time.h>

#include <iostream>

using namespace std;

#define CLOCK_YEAR OFFSET 1900

int main()

{

tm *tm = new::tm[10];
time t time t;

char b[16];

int i = -1;

char ch;

cout << "Enter up to ten dates (yyyy-mm-dd)"
", end with 'exit': ";
while (cin>>tm[++i].tm year>>ch
>>tm[i] . tm_mon>>ch
>>tm[i] . tm mday)
cout << ": ";

for (int j = 0; j '= i; j++)
{
int to_year =
tm[j] .tm year-CLOCK YEAR OFFSET;
int to _month = tm[j].tm mon-1;
int to_day = tm[j].tm mday;
for (int k = j; k !'= i; k++)
{
if (((tm[k].tm year-CLOCK YEAR OFFSET)
> to_year)
Il
(((tm[k] .tm year-CLOCK_ YEAR OFFSET)
== to_year) && (tm[k].tm mon-1
> to_month))
Il
(((tm[k] .tm year-CLOCK_ YEAR OFFSET)
== to_year) && (tm[k].tm mon-1
== to_month) && (tm[k].tm mday
> to_day))
)
{
swap (tm[j], tm[k]);
to_year =
tm[j].tm year-CLOCK YEAR OFFSET;
to month = tm[j].tm mon-1;
to_day = tm[j].tm mday;
}
}
tm[j].tm year= to_year;
tm[j].tm mon = to month;
tm[j].tm mday = to_day;
}

while (i--)
{
strftime (b,sizeof (b) ,"%a %$d-%b-%Y",
localtime (&(time_ t=mktime (tm+i)))) ;
cout << b << endl;

A book prize is awarded for the best entry.
Please note that participation in this
competition is open to all members, whether novice or expert. Readers are
also encouraged to comment on published entries, and to supply their own
possible code samples for the competition (in any common programming
language) to scc@accu.org.

Lastissue’s code

I’'m reading in dates and printing them out sorted in ‘human friendly’ format.
Sometimes the program crashes but | can’t see a clear pattern — can you
suggest what might be wrong and how the program could be improved?
(See Listing 1 — thanks are due to Hubert Matthews for supplying the
original idea for this critique.)

From lvan Uemlianin <ivan@Ilaisdy.com>

Comment on original code.

The comment ‘sometimes the program crashes’ proved of no use to me. |
ran the program a few times and it didn’t crash. Rather than try to work
out what might be causing any kind of hypothetical intermittent crash, I
went straight on to analyse and improve the code. Far better would have
been even a single example crash.

Although there were no crashes, there was some strange behaviour. I first
looked at this program on a windows laptop — running g++ 3.4.4 under
cygwin — and all seemed well. When I got home and looked at it with my
main machine — running g++4.2.1 under debian — things suddenly seemed
very unwell. Essentially the input was not being stored properly in the
tm[]: the first date input was always output as 30th November year-1. For
example:

Input Output
1999-12-12 Mon 30-Nov-1998
2001-01-12 Thu 30-Nov-2000
1910-06-06 Tue 30-Nov-1909

I wondered whether the value returned from the increment in line 17 was
interfering with the input stream. In any case, initialising the count to 0
instead of -1, and moving the increment from the condition to the execute
block of the while loop, removed the bug.

As well as the above, there are several small things wrong with this
program, which add up to make the program difficult to read and therefore
difficult to maintain.

It might be worth noting in passing that the tm data structure is only good
for years since 1900. Years before that will be output as Wed 31-Dec-1969
or Thu 01-Jan-1970 or something similar depending on the platform.

Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and §
the BSI C++ panel in 2002.

He may be contacted at rogero @howzatt.demon.co.uk

DEC 2007 |{cvu} | 23

{cvu}

Variables are given meaningless names. This is fair enough with the count
variables i, j, k, and the temporary char variable ch, but [would prefer
meaningful names for variables that carry meaningful content. What
counts as meaningful is of course open to debate, but I think many would
agree that b is not.

Two variables are even given the same name as their type (i.e., tm *tm
and time_t time_t). One could claim that these are meaningful names,
in the same way that prefixes in Hungarian notation are meaningful.
However, such a naming convention can only have limited use in small
programs (i.e., with only one instance of the type) and might therefore
count as a bad habit; and I must say I found it disconcerting to have type
names popping up as variable names throughout the program. Better would
have been something like tm *dates and time_t timeType).

Use of macros

The program uses a preprocessor macro to set CLOCK_YEAR OFFSET to
1900 (line 5). Preprocessor macros insert arbitrary code segments into a
program before compilation and are rather a powerful tool. The purpose
of this line, however, is merely to define a constant integer. Far better to
say so explicitly, both to the compiler and to any humans who might read
the code, with something like:

const int CLOCK_YEAR OFFSET = 1900;.

There are other constants in the program which have been left as magic
numbers which would also benefit from the const int treatment.

Between input and output, lines 20-51 perform two operations: they adjust
the input for each date and they sort the dates. These two operations are
logically independent and the simplest thing would be to do one before the
other. The program decides to do both at the same time, resulting in
gratuitously complicated and repetitious code.

Everything in main()

Finally, everything is in main (). The main () function should tell you
at a glance what the program is supposed to do, with the nitty-gritty
elsewhere in the program. For this program, an ideal main () would
contain three functions: input_dates (), sort_dates () and
output_dates (). The three functions could then be tested and refined
independently.

The listing below shows a version of the program with the above changes.
I have moved adjustment of input out of the sort routine and into
input_dates (). I have not added unit testing, or used any more STL
than that used in the original program. Indeed, the operation of the program
is identical to that of the original. The new program is twenty lines longer,
but I think is easier to read, and should be easier to maintain.

// Read dates, and display as sorted text
#include <time.h>

#include <iostream>

using namespace std;

const int CLOCK_YEAR OFFSET
const int LOCAL TIME LENGTH
const int MAX SIZE = 10;

int input_dates(tm dates[]);
void output dates(tm dates[], const int size);
void sort dates(tm dates[], const int size);
int input_dates(tm dates[])

1900;
16;

{
int i = 0;
char ch;
cout << "Enter up to three dates (yyyy-mm-dd)"
", end with 'exit': ";

while (cin >> dates[i].tm year >> ch
>> dates[i] .tm mon >> ch
>> dates[i].tm mday)

24 |{cvu} | DEC 2007

{
dates[i] .tm_year = dates[i].tm year -
CLOCK_YEAR_OFFSET;
dates[i] .tm mon = dates[i].tm mon - 1;
cout << ": ";
i++;
}

return i;
}
void sort dates(tm dates[], const int size)
{

for (int j = 0; j !'= size; j++)

{
for (int k = j; k '= size; k++)
{
if ((dates[k].tm year > dates[]].tm year)
11
((dates[k].tm year == dates[j].tm year)
&& (dates[k].tm mon > dates[j].tm mon))
Il
((dates[k].tm_year == dates[j].tm year)
&& (dates[k].tm mon == dates[j].tm mon)
&& (dates[k].tm mday > dates[j].tm mday))
)
swap (dates[]j], dates[k]);
}
}

}

void output_dates(tm dates[], const int size)

{
char buffer[LOCAL TIME LENGTH];
time_t time_ type;

int i = size;
while (i--)
{

strftime (buffer,
"%$a %d-%b-%Y",
localtime (& (time_type= mktime (dates+i))));
cout << buffer << endl;

sizeof (buffer),

int main/()

{
tm *dates = new::tm[MAX SIZE];
int size;
size = input_dates(dates);
sort_dates(dates, size);
output_dates (dates, size);
return O;

}

From John Penney <l.Penney@servicepower.com>

Bugs, like brown sticky stuff, happen. Bugs plague even the most
experienced coder — mostly because even the most experienced coder
sometimes has to work with other people’s code! But one thing that makes
a big difference is how you track down such problems.

I am firmly in the test-first camp, and I’ve chosen to take on this month’s
Code Critique with some test-first debugging. Not only will this find the
bug, but we will end up with a good understanding of what the code is
doing, and a good framework for moving on to refactoring to something
a little more elegant!

The code seems almost wilfully obscure. We have one (count *em!)
comment in the whole code. Most of the variables are one character long.
The type name tm has been overloaded as a local variable name tm.

{cvu}

Fortunately that one comment turns out to be pretty helpful in deciding
how to split the code up and apply unit tests. It tells us the program does
three things:

1. Read some dates
2. Sort the dates
3. Display the sorted dates

So I took each of these 3 chunks of code in turn and placed it in a local
function with the intention of adding unit tests for each, using assert ()
to confirm correct behaviour. Note that in this first refactoring we’re
necessarily operating without the aid of unit tests, so must change as little
as possible. We can of course run the application manually to get a measure
of reassurance that we haven’t broken it.

Testing date input

The first operation — to read some dates — might look tricky to unit test,
but with the help of ostringstream and istringstream it becomes much
easier:

int getInputs (ostream& os, istreamé& is,
tm* tm)
{ // cout and cin replaced with os and is
os << "Enter up to ten dates "
" (yyyy-mm-dd) , end with 'exit': ";
while (is>>tm[++i].tm_year>>ch
>>tm[i] . tm_mon>>ch
>>tm[i] . tm_mday)
os << ": ";
return i;

}

So that our caller looks like this:
i = getInputs(cout, cin, tm);

And here are a couple of my tests:

{
ostringstream os;
istringstream is("exit"); // No dates
const int numRecs= getInputs(os, is, tm);
assert (numRecs == 0) ;

}

{
ostringstream os;
istringstream is("2007-10-22\n"

"2007-10-23\n2001-01-01\nexit") ;

const int numRecs= getInputs(os, is, tm);
assert (numRecs == 3);
assert (tm[0] == makeTM (2007, 10, 22));
assert(tm[l] == makeTM (2007, 10, 23));
assert(tm[2] == makeTM (2001, 1, 1))

}

As you can see, I’ve introduced a ‘test fixture’ called makeTM () . This is
atrivial function that just creates a tm object. What might not be so obvious
is that I’ve also added an operator== for a tm object.

tm makeTM(int year, int mon, int mday)
{
tm localTM;
localTM. tm_year year;
localTM.tm mon = mon;
localTM. tm mday = mday;

bool operator==(const tm& lhs, const tm& rhs)
{
return lhs.tm year == rhs.tm year &&
lhs.tm mon == rhs.tm mon &&
lhs.tm mday == rhs.tm mday;
}
These tests all pass (for normal input data). So the bug ain’t here, but we’ve
still achieved a lot. makeTM () and the operator==were added to make

the tests easier to write and read, but we’ll find that subsequent refactorings
of the production code will make use of these. This is quite typical! Also,
if it becomes a requirement to be more vigilant against stupid user input,
we could add test cases for bad years (1889), bad months (13, 00), bad days
(00, 32), bad formatting (17th Nov 2004) etc.

Testing date sorting

We’re told our second operation is to sort the supplied dates. So I just
moved the relevant chunk of code into a new local function called
sortTM():

void sortTM(tm* tm,

int i) // Number of tm records

// Sorting code unchanged

}
I added a test with i=0: no failures. Buoyed with success, I added a test
with i=1... my test failed because in fact the function does not just sort
the dates, but it modifies the tm objects so that they’re suitable for input
to mktime () later on:

{

tm[0] = makeTM (2007, 10, 22);
sortTM(tm, 1);
assert(tm[0] == makeTM(107, 9, 22));

}

Note that my goal right now is to add tests and find the bug, not to change
the code. So I left the functionality of sortTM unchanged and modified
my expected results.

Adding my next test with i=2 produced another test failure and another
surprise. The dates are sorted with the most recent first:

{
tm[0] = makeTM (2007, 10, 21);
tm[1l] = makeTM(2007, 10, 22);
sortTM(tm, 2);
assert(tm[0] == makeTM(107,
assert(tm[l] == makeTM(107,
}

T added a few more tests and received no further surprises.

9, 22));
9, 21));

Testing date output

I moved onto the last operation of the code, to display the results. I thought
it would be easier to work with one tm object at a time, so just introduced
a function to format one tm object:

void formatOutput (char* buff, int buffSize,
tm* theTM)
{
time_t time_t;
strftime (buff, buffSize,"%a %d-%b-%Y",
localtime (& (time_t=mktime (theTM)))) ;

}
I added my first test:
{
tm[0] = makeTM(107, 9, 22);
formatOutput (b, sizeof(b), tm);
assert(strcmp (b, "Mon 22-0Oct-2007") ==
0);
}
The program crashed... hurrah!
The hug

I had my suspicions as to the cause, but confirmed the problem using the
debugger. It turns out that the mk time () call is failing, returning -1. This
in turn makes localtime () fail, leaving strftime () to go belly-up.

My IDE immediately shows me the problem: not just one an uninitialised
variable but lots of uninitialised variables! The tm type has many data
members but we’ve only set tm_year, tm_mon and tm_mday.

DEC 2007 | {cvu}| 25

{cvu}

mktime () is trying to produce a time_t (the time represented as a
number of seconds) and to do that it needs to consider the tm object’s
member data representing number of hours, minutes and seconds, which
we’ve not initialised.

As is the way with uninitialised variables, these could be zero (in which
case mktime () will work) or could be something else (in which case
mktime () might work!).

The fix

Now we can easily make the test work by initialising all the members of
the tm object in makeTM() :

tm makeTM(int year, int mon, int mday)
{
tm localTM;
localTM. tm_year = year;
localTM.tm mon = mon;
localTM. tm mday = mday;
localTM.tm_hour = 0;
localTM.tm _isdst = -1;
localTM.tm min = 0;
localTM.tm _sec = 0;
localTM.tm_wday = 0;
localTM.tm yday = 0;

// "unknown"

return localTM;

}

However, this doesn’t fix the production code because makeTM () isn’t
used to create the tm objects that getInputs () returns. But why not
reuse makeTM () in getInputs () — and make it a bit easier to read at
the same time:

int getInputs (ostream& os, istreamé& is,

{

tm* tm)

os << "Enter up to ten dates "
" (yyyy-mm-dd) , end with 'exit': ";
int i = 0;
char ch;
int year, mon, mday;

while (is>>year>>ch>>mon>>ch>>mday)
{
tm[i++] = makeTM(year, mon, mday) ;
os << ": ";
}

return i;

}

And we can re-run our unit tests to confirm that we’ve not broken
getInputs (). (Actually I should confess that my first refactoring did
break getInputs () : with i initialised to -1 the tests failed!)

Let someone else do the hard work #1

Sonow we have a fully working program with a good set of unit tests. What
further refactorings can we do? Well, one important principle in C++ is
‘don’t attempt to do something that the STL can do for you’. And the STL
can do sorting and loops pretty neatly. This knowledge led me to this rather
startling simplication of our sortTM() function:
void sortTM(tm* tm,
int i) // Number of tm records
std: :sort<tm*>(&tm[0],
compareTM) ;
for_each<tm*>(&tm[0], &tm[i], mangleTM) ;

&tm[i],

}

Note that we can pass pointers to the first and one-past-the-last tm objects,
and they quite happily work as iterators in sort () and for_each().
You gotta love that!

The new function compareTM () neatly encapsulates the existing code to
compare tm objects:

26 |{cvu} | DEC 2007

bool compareTM(const tm& lhs, const tm& rhs)

{

return (lhs.tm year > rhs.tm year) ||
(lhs.tm year == rhs.tm year &&
lhs.tm mon > rhs.tm mon) ||
(lhs.tm year == rhs.tm year &&
lhs.tm mon == rhs.tm mon &&
lhs.tm mday > rhs.tm mday) ;

}

And mangleTM() isolates our code to prepare the tm struct for the
mktime () call:

void mangleTM(tm& theTM)

{
theTM. tm_year-=CLOCK_YEAR OFFSET;
--theTM. tm_mon;

}

Let someone else do the hard work #2

The STL is rather good at containers as well. They are fast, easy to use and
extendable. If we used an STL container instead of the hard-coded array
of 10 tmobjects, we’d lose the limit on 10 dates and wouldn’t have to carry
the container length around with us (variable i). Which STL container to
choose? Well, a good default is std: :vector () and it suits us well
enough here.

Another thing that was bugging me from the first was the overload of tm:
it’s a type name and a variable name. OK, it works, but it’s not very
readable, so while replacing the tm array with a vector, I also renamed it.

Our main is now more concise, readable and maintainable:
int main(int argc, char* argv[])
{
std: :vector<tm> theTMs;
char b[16];

getInputs (cout, cin, theTMs);

sortTM (theTMs) ;

for (vector<tm>::const_iterator iter
= theTMs.begin() ;
iter '= theTMs.end() ;
++iter)

formatOutput (b, sizeof (b),
cout << b << endl;

*jiter) ;

}

The tests are run and pass.

Exercises for the reader

I stopped refactoring here as the Code Critique deadline was looming...
but you don’t have to stop!

If this code were performance-critical I’d consider replacing the
std: :vector with a std: : 1ist and use the member version of sort
(std::1list::sort()). Member versions of algorithms are always
preferable to non-member versions because they can take advantage of
knowing how the container is organised — and so can avoid creating
unnecessary copies of objects for example.

You could also make formatOutput return a std: : string object:
cout << formatOutput(*iter) << endl;

This refactoring means that the client code (main) no longer knows or
cares how long the formatted output is — allowing us to change it if needs
be.

The unit tests look like this:

cout << "Testing sortTM()..

{
theTMs.push_back (makeTM (2007, 10, 22));

." << endl;

{cvu}

sortTM (theTMs) ;

assert (theTMs[0] == makeTM(107, 9, 22));

}
// more tests elided
cout << "... PASS" << endl;
cout << "Testing formatOutput()..." << endl;
{
const tm theTM = makeTM (107, 9, 22);
formatOutput (b, sizeof(b), theTM);
assert(strcmp (b, "Mon 22-0Oct-2007")== 0);
}
// more tests elided
cout << "... PASS" << endl;
[Ed: The complete code, including the unit tests, was listed in full. | have
summarized it to save space]

From Nevin :-1 Liber <nevin@eviloveriord.com>

Besides a memory leak (younew: : tm[10] butneverdelete[] it—and
there is no reason to new it in the first place; a local variable would work
just fine), one possible problem is with the line:

while (cin>>tm[++i].tm_year>>ch
>>tm[i] . tm_mon>>ch
>>tm[i] . tm_mday)
While i has incremented before evaluating tm[++i] . tm_year, that
increment may happen before or after evaluating tm[i] . tm_mon and/or
tm[i] . tm mday, leaving i, tm_mon or tm_mday in an unknown state.

Also, nothing enforces the limit of 10 items. If you accidentally enter more,
the program will be in an unknown state as well.

The other fields of the tm data structure are not initialized. This may or
may not work correctly when mk time is called. So how could the program
be improved?

While the code is just one bigmain () program, there is structure to it:
1. Input the dates
2. Looping over the dates:

a) Fix the year and month so that tm year, tm mon and
tm_mday match local time

b) Loop over the rest of the dates and effective perform a hand
coded (insertion) sort, from latest date to earliest date

3. Loop over the now sorted dates in reverse order and display them

To improve the program, I’ll separate out each piece of functionality into
a separate function, and be a little smart on the names I pick for those
functions. Also, instead of hand-coding a sort, I’ll use std: : sort.
Finally, I’ll get rid of that pesky 10 date limit.

1. Include various headers:

#include <algorithm>
#include <ctime>
#include <istream>
#include <iostream>
#include <iterator>
#include <ostream>
#include <vector>

2. Write a function whose purpose is to input a date from a stream and
convert it to a tm:

std: :istream& operator>>(std::istreamé& lhs,
tm& rhs)
{
tm tmtm = tm() ;
char c;
if (lhs >> tmtm.tm year >> c
>> tmtm.tm mon >> c >> tmtm.tm mday)
{
tmtm. tm _year -= 1900;
--tmtm. tm _mon;
::mktime (&tmtm) ;
rhs = tmtm;

}

return 1lhs;
}

Because I used operator>> as the name of my function, I can
directly use it with any istream in any part of my program, without
having to remember a different, non-matching syntax. This is how
streams are meant to be used.

All the unused fields of tmtm are initialized to 0. If I can’t read it in,
I don’t modify the caller’s variable. I immediately convert it to the
unbroken time. I never know who is going to use it once it leaves this
routine.

3. Write a function to output a tm:

std: :ostreamé& operator<<(std::ostream& lhs,
tm consté& rhs)
{
char buf[sizeof "Wed 31-Oct-2007"];
::strftime (buf, sizeof buf,
"%a %d-%b-%Y", &rhs);
return lhs << buf;
}

I don’t know or care how big buf is; sizeof calculates the right
size to fit a C string of this form.

4. Write a function to output a vector<tm> (since I’ll be storing them
in a vector instead of a fixed size array):
std: :ostreamé& operator<<(std::ostreamé& lhs,

std: :vector<tm> const& rhs)
{
std: :copy(rhs.begin() , rhs.end(),
std::ostream_iterator<tm>(lhs, "\n"));
return lhs;

}
5. Write a function to compare tms:

bool operator<(tm consté& lhs,
tm consté& rhs)

{
tm 1(1lhs);
tm r(rhs);
return ::difftime(::mktime(&l),
::mktime(&r)) < O0.;
}

Instead of hand coding the difference calculation, use difftime
(on local copies of the time passed in, since we don’t want to modify
the user parameters passed in).

By naming the function operator<, it can be used naturally by
std: :sort.

6. Finally, add the greatly simplified main ():

int main ()

{
std: :vector<tm> theTms;
tm tmtm;

std: :cout << "Enter dates (yyyy-mm-dd), "
"end with 'exit': ";
while (std::cin >> tmtm)

{
theTms.push_back (tmtm) ;
std::cout << ": ";

std: :sort (theTms.begin (), theTms.end())

std: :cout << theTms;
}

By using a vector, the only limit on the number of dates is the amount of
memory available to the program.

DEC 2007 | {evu}| 27

{cvu}

// cmap.h
#include <map>
using namespace std;

// map that has a const operator][]
template <typename K, typename V>
class cmap : public map<K,V>

{
typedef map<K,V> base;
public:
using base: :operator][];
const V& operator[] (K const &k) const
{
if (count(k) == 0)
{
static V v;
return v;
}
return ((base) (*this)) [k];
}
};

// test cmap.cpp
#include "cmap.h"
#include <iostream>
#include <string>

void test(cmap<int, string> & m, int idx)

{
cout << "m[" << idx << "]="
<< m[idx] << endl;
}
void ctest(const cmap<int, string> & m,
int idx)
{
cout << "const m[" << idx << "]="
<< m[idx] << endl;
}
int main()
{
cmap<int, string> map;
map[0] = "Zero";
map[1l] = "One";
map[2] = "Two";

test(map, 2);
test(map, 3);

ctest(map, 2);
ctest(map, 3);
}

//Example output when it goes wrong
// (const m[2] should be Two):
//m[2]=Two

//m[3]=

//const m[2]=

//const m[3]=

28 |{cvu} | DEC 2007

Use std: : sortinstead of the hand coded insertion sort. It will be faster
in most circumstances, and being in the standard library, it is code you can
be reasonably sure is correct (and you get all that with just one line of user
code!)

The vector is actually sorted from earliest to latest date. To change that
order to match the original program, replace begin () and end () with
rbegin () and rend () throughout the program.

Commentary

When I first saw the code that formed the basis of the code critique, I was
mostly struck two things, leaving aside for a moment the problem of the
crash. One was the amount of repetition in the code, and the other was lack
of clarity in the code — it was all in a single block.

The main problems with repetition are that it is hard to read (the text that
matches tends to mask the text that’s different), it is expensive to change
(as the same change must be applied multiple times multiple lines of code)
and it is inefficient (as the same instruction sequence is executed more than
once).

The problem with the structure is that the same piece of code is comparing
the dates was converting the format and converting the representation.
Separating these out into individual functions makes it possible to write
re-usable code (or make use of existing code).

One brief aside on the line tm *tm = new::tm[10] ;. This uses the
same name for the variable as for the data type, which then means that the
scope resolution operator : : must be used in the allocation. Note that the
: : is binding to the following tm and not to the preceding new.

The winner of CC 48

I liked all the entries — they all both fixed the initial problem and made the
code clearer. Both John and Nevin made use of the standard library sort
in their solutions, which is (almost always) the right thing to do.

However, I was particularly taken with Ivan’s main () as it was so very
short and clear, so I’ve awarded him this issue’s prize.

Code Critique 49

(Submissions to scc@accu.org by 1st January 2008)
I'm frustrated by the map class in the standard because the indexing
operator isn’'t const. So I'm trying to made my own class — cmap —
which has a const friendly operator[]. It almost works, but |
sometimes get the wrong value output — can you help me?
As always, try to go beyond simply solving the initial problem. The code
is in Listing 2.
You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps
overseas members who typically get the magazine
much later than members in the UK and Europe. B

Prizes provided by Blackwells Bookshops and Addison-Wesley

{cvu}

Thinking of writing for us? Follow these guidelines to help

smooth the way.

articles for publication. For more detailed information, please
contact the editor of the relevant publication (cvu@accu.org or
overload@accu.org).

T hese guidelines provide general instructions on the submission of

For examples of the elements described, please see recent issues of the
journals.

With your article, you need to send:
B A short personal profile (see ‘Profile’)
B Any images used in your article as separate files (see ‘Illustrations’)

B An introductory line or sentence (see ‘Structure’)

Articles can be accepted as Word or Open Office documents; alternatively,
save your file as RTF. If your article is in any other format, please check
with the production team that it can be opened and the text extracted.

If you are using a text editor, devise and explain a convention for your
document. For example, ‘Heading 1 in block capitals, heading 2
underlined, code snippets in text surrounded by <<c>>’. You can use a
numbered system for headings — the numbers will be removed from the
finished article. Clearly separate any such instructions from the body of
the document.

Text for sidebars or panels can either be inserted in the approximate
position in the text or provided at the end if its location is unimportant.
Clearly mark the beginning and end of the text forming the sidebar.

Please do not apply complex formatting to your articles — this will almost
certainly be changed during the typesetting process to comply with the
journal standards. The formatting you apply is, however, used as a guide
by the production editor when determining how to format particular
elements.

A fixed width font is used to display code fragments and filenames (bold
for code and non-bold for comments and filenames) — if possible, use a
suitable font in your article to indicate this (Courier, for example).

The formatting of listings will almost certainly be changed due to space
constraints. Unless there is good reason to do otherwise, code is placed in
a single column, giving a maximum number of characters per line of 48.
If the formatting of your code is important to you, you are welcome to
ensure your listings fit within this number of characters and every attempt
will be made to retain your personal style, although this cannot be
guaranteed. If the formatting of the code is particularly relevant to a point
you are making (for example, contrasting two different styles of writing),
please say.

A Word template is available containing a Code paragraph style set to the
correct width.

A short profile of the author is required for all articles. This should be brief
—approximately 50 words — and may need to be shortened if space is tight.

Please ensure your name is as you would wish it to appear in the journal
and include an email address or another means of contact (for example,
via a website).

For C Vu only, a photograph of the author (head and shoulders) is also
required. This should be high-contrast and at a minimum resolution of 200
dpi (ideally 300 dpi).

Try to keep titles short and relevant - they should ideally fit on a single
line and definitely require no more than two lines. A short strapline (C Vu)
or introductory sentence (Overload) is required — if these are not provided
by the author, they will be created as part of the editorial process.

Both publications have provision for three levels of heading within the
body of the article, although the third should be used rarely. Headings are
not numbered, so please do not reference other sections by heading number
in your article, even if you use them.

lllustrations

You must supply images as separate files, as well as placing them in your
article to show approximate location. The journals are printed in black and
white, so please make sure that your images do not rely on colour alone
to differentiate between the components. Also check that any lettering can
be seen when the image is converted to greyscale and it has been scaled
to fit on a page. (Note: Colour images are useful, as a PDF version is
produced in colour).

® Supply images in common formats such as JPG, TIFF, SVG, or
PNG.

B Photographs and similar images must be a minimum of 200 dpi,
ideally 300 dpi.

m Save diagrams and line drawings in vector format. Do not attempt to
convert raster images to vector format.

m Screenshots should be saved in a non-lossy format. TIFF and PNG
have been used successfully. GIF is also a suitable format, but check
that the colour depth supported by your application has not
adversely affected the image.

CVu and Overload treat references and footnotes differently. Please ensure
that references are as complete as possible.

B CVU: References and notes are marked by placing numbers in
brackets in the text; for example: [1]. References and notes are both
numbered in the same sequence and the corresponding information
provided in a Notes and References section at the end of the article.

® Overload: Notes are treated as footnotes - number these and supply
the corresponding text either as footnotes or at the end of the article.
References are marked in the text using the author’s name and final
two digits of the year of publication (for example, [Griffiths06]) and
the full reference is provided in a References section at the end of
the article. Sometimes it is not possible to provide an author or year:
in this case choose a suitable word. For example, if you are
referencing the Boost libraries, you may use [Boost] as the reference
marker. B

DEC 2007 |{cvu} | 29

{cvu}

by Ric Parkin

The Cambridge local group have held another two well attended
meetings, hosted once again at DisplayLink’s offices, followed by
much discussion in a local pub.

In October Russel Winder presented ‘Closing the Case for Groovy (and
Ruby, and Python)’, which looked at the idea of closures (and their
subtle varients) in various languages and showed how they can radically
change your programming from the common imperitive style. Some
facinating examples that generated HTML were shown, which
illustrated the points and really made people think of alternatives to their
current approaches.

In November Allan Kelly talked about ‘Agile software development —
where to begin’. This concentrated on the developer’s viewpoint,
including why you might want to be more agile, which practices you
might try to introduce, and how to get started without having to change
everything at once. He also touched on the effects on other parts of an
organisation that becoming agile will cause, and how to survive them.

‘Sponsored Conference
Places

by Giovanni Asproni

The ACCU Conference is a fabulous, entertaining and stimulating place
to be. It is, without doubt, the jewel in the ACCU's crown. Nowhere else
can you meet so many interesting and notable people in our field.

It should, therefore, be on every techie's calendar. Not everyone,
however, can attend. For some people it is too far away or they are too
busy; for others there are financial barriers. To encourage this last
group, four one-day tickets for the 2008 conference are on offer.

The conditions are:

1. The candidate must be proposed by a full ACCU member who is
expected to accompany the candidate for that day.

2. The candidate must not have been to an ACCU conference
before.

3. The candidate must be at least 18 years old.

Application process

Any ACCU member wishing to put someone forward for a place should
email accuplaces@oxyware.com before Jan 31st 2008 with a short
description (maximum 250 words) of why they believe the candidate
would benefit from coming to the conference. After the closing date,
the four successful candidates will be informed by the end of February
and the remainder will be placed on a waiting list.

Conditions

1. The offer covers only the entrance to the conference. Travel,
accommodation and subsistence are not covered.

2. In the event of a candidate not being able to take up a place, the
place will be offered to those on the waiting list.

3. In the event that the proposer cannot accompany the candidate,
they may either find a substitute ACCU member to do so or offer
the place to the waiting list.

by David Carter-Hitchin

For those who don’t know http://www.linkedin.com/ is a popular
contact website for work colleagues to stay in touch with each other, to
recommend colleagues for new appointments and to win the hearts and
minds of potential recruiters; somewhat like Friends Reunited for old
work mates. The basic idea is that you build up a network of friends
and colleagues, and you can also see your friends’ networks, and your
friends’ friends’ networks and so on. There are a number of protocols
in place to ensure that people don’t get any unwanted communications
and so forth — for example if you want to contact a colleague’s old
colleague, you need to pass the message through your immediate
colleague. Also the service has its own messaging system, so you don’t
need to declare any of your own e-mail addresses. You get to choose
which parts of your profile are public and so on and so forth. In short
LinkedIn is a useful resource when it comes to the corporate and
professional workplace. So why do we in the ACCU care about all this?
Well, LinkedIn is useful in its own right, so it’s worth signing up for
anyway, but recently Allan Kelly has added the ACCU as a group to
the service, so you can now show that you are a member of the ACCU
on your profile. The advantage of doing this is that other members of
the ACCU will be more readily identifiable to one another, and also,
and most importantly, it will advertise the existence of the ACCU to
the work community as a whole. Notice I didn’t specify which work
community, as in theory LinkedIn is global and spans all industries, but
it is heavily populated by geeks! Therefore, the more people that get
their details registered and signed to the online ACCU LinkedIn group,
the more chance we will spread the good word of the ACCU to people
who are likely to join. It is an extremely good place for us to advertise
our association — for one it’s free, for another it’s generally to
likeminded people.

So, what are you waiting for? Fire up your favourite browser, and visit
http://www.linkedin.com/, if for nothing else but in the interest of
promoting our wonderful organisation. In Allan Kelly’s words, here’s
how you join:

Visit http://www.linkedin.com/e/gis/1908/6123922B178D

Provided you use the same e-mail address for LinkedIn and ACCU
membership you should be automatically accepted. Once you have
joined the ACCU badge should appear on your profile and you should
be able to contact other LinkedIn ACCU members through the system.
If you have a different e-mail address then you can just add it to
‘account&settings’ (top of LinkedIn page) and Personal Information/
Email Addresses. Finally, once you’ve joined the ACCU group, be sure
to make it publically visible on your profile (providing you are happy
with this, but why ever shouldn’t you be?!)

We have chosen to set up this group for several reasons:
B Several people requested such a group
B The ACCU badge will raise the profile of the ACCU
B ACCU members will have another route to contact one another
[]

Both the ACCU and LinkedIn are increasingly being used by
recruiters and many ACCU members find this useful.

30 I{cvu} | DEC 2007

The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous “not recommended” rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Moving to Free Software

By Marcel Gagne, published by
Addison Wesley, ISBN 0-321-
42343-1

Reviewed by lan Bruntiett

I’ve been putting free software
onto a mental health charity’s ;
(http:// e
www.contactmorpeth.org.uk/) client’s PCs for
nearly two years now and shipped about a
hundred free PCs to them. I’ve personally built
up a small library of useful programs and so I
looked forward to reviewing this book and
discovering new F/OSS gems.

This book comes with a DVD of F/OSS
programs and, in general, it dedicates a chapter
to each program. Some exceptions are 1) all the
games are bundled together into one chapter and
2) OpenOffice isn’t completely covered (but it
does give chapters to Writer, Calc, Impress and
Base).

To cut a long story short, here are the subjects
and relevant programs that come with the book.

m Internet: FireFox (web browser),
Thunderbird (email client), Gaim (IM),
Skype (VOIP)

NVU (Web Site Design)

OpenOffice.org: Writer (word processor),
Calc (spreadsheet), Impress(similar to MS
PowerPoint), and Base (similar to MS
Access)

® Audio: CDex (CD Ripper and Audio
Converter), Audacity (Podcasts), Juice
(Podcasts)

® Graphics: GIMP (like MS Paint),
Inkscape (vector graphics), Scribus (DTP)

m Utilities : 7-Zip (compressing files),
SpyBot (anti-spyware), ClamWin
(antivirus)

B Linux : Ubuntu Linux. One of the easier
Linux distributions available.

To finish it off, the following games are
provided: PlanetPenguin Racer, FreedroidRPG,
Armagetron Advanced, Super Tux, BZFlag,
Fish Fillets: Next Generation, Neverball and
Neverputt, SolarWolf and Flightgear.

So that’s what the book is good at. What are its
weaknesses?

This book should mention:

® which versions of Windows the programs
are compatible with

B what are the minimum hardware
requirements

® what other programs do they rely on
(GIMP relies on GTK)

The author really should have some way of
enabling readers/users of this book to contact the
author to tell him about incompatibilities and
share workarounds — possibly a web site with a
forum. Don’t expect to give this book to a non-
technical friend and have all the programs work.
You’ll need to do some technical handholding
and an internet connection is definitely needed
to download apps that aren’t fully on the disk
(the DVD has GIMP on it but not the GTK
toolkit that GIMP requires).

Verdict: Recommended.

Understanding .NET

Second edition, by David
Chappell, published by
Addison-Wesley

Reviewed by Albrecht Fritzsche

Are you one of those people
always wondering what
NET actually means? What
all these buzz words like

 Understanding .NET

ADO.NET, ASP.NET, etc. stand for? How to
get a first understanding of the capabilities of
Microsoft’s framework?

Then this book might be the right choice for you
— providing answers to all those questions and
giving a very good overview in just 300 pages.

The very concise style, e.g. during the
introduction you get an understanding why a VB
program will exhibit roughly the same
performance as a similiar C# program, makes
this book a good choice for professional
developers and managers wanting to gain an
initial understanding of .NET, its fundamentals
and capabilities.

In the following chapters you will be taken on a
tour through the Common Language Runtime,
some .NET languages like VB, C#, and C++/
CLlI, the framework’s class library, ASP.NET,
ADO.NET and distributed applications. The
given examples are always complete and still
rarely take up half of a page. The whole edition
is updated for .NET framework 2.0.

The book is clearly structured, and the lucid
style of the author is easy to read. An
exceptionally good idea seemed to me that all
subjective comments of the author are clearly
separated from the rest of the book in greyed-out
boxes, reaching from ‘Are generics worth it?’
and ‘Is C# just a copy of Java?’ upto ‘The
revenge of hierarchical data’ and ‘The short
happy life of .NET My Services’.

Allin all this book serves as a good and concise
introduction into this huge framework and gives
you within days a good first impression of what
NET actually means.

Recommended.

The following bookshops actively support ACCU (offering a post free service to UK members
—if you ever have a problem with this, please let me know — I can only act on problems that you
tell me about). We hope that you will give preference to them. Ifa bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can

be added to the list

B Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk

® Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk

m Blackwell’s Bookshop, Oxford (01865 792792)

blackwells.extra@blackwell.co.uk

DEC 2007 I{cvu} | 31

Membership news and committee reports

View From The Chair

Jez Higgins
chair@accu.org

A motion from the floor of this
year’s Annual General

Meeting instructed ‘the "
committee to produce a ‘
document detailing the financial management of
the association to the 2008 AGM’. In the
discussion around the motion, it was stated by
the proposer that the document was not expected
to exceed one side of A4 paper.

We are not yet at the 2008 AGM but the current
draft stands at well under a side of A4, so it
seems sensible to present it a little early. If you
would like further details or clarification, please
contact me so that the draft can be revised for the
AGM.

The Society instructs the committee to

produce a document detailing the financial

management of the association to the 2008
AGM.

The vast majority of the organisation’s income is
in the form of membership subscriptions. Aside
from a few corporate members who pay by
cheque, subscriptions are paid directly into the
ACCU account by WorldPay or by members’
individual standing order. There is a
significantly smaller income from advertising in
CVu and Overload.

The single biggest outgoing is the cost of
producing CVu and Overload: production
editing and pre-press, printing, and postage.
These are, essentially, on going costs taken on
and approved historically. There are a small
number of other, much lower value, expenses
that the Treasurer is instructed to pay until
further notice, such as our annual data protection
registration renewal.

All other spending decisions are approved by the
committee as they arise. Any discussion usually
occurs at a committee meeting, but can also take
place on the committee mailing list.

The discussion and decisions arise either as the
result of a request or suggestion from a member
(‘it would be a good idea if ..."), from a request
within the committee (‘can we have some
money for...”), or by some external event (‘argh!
we need a new production editor’).

Most of these spending decisions are for fixed
sums, for example a one-off room hire fee for a
local group. Less often a committee member is
given a budget within to negotiate, as when, for
instance, a new production editor was hired.

Day to day management of the bank accounts
rests with the Treasurer.

All payments are made by cheque, requiring two
signatures. Like the Queen, ACCU never carries
cash.

32 |{cvu} | DEC 2007

Mick Brooks
accumembership@accu.org

At the AGM earlier in the year,
the membership approved the
publication of the ACCU
handbook as an online version,
which will replace the traditional printed paper
one. We are now preparing to produce this
online edition, which in the first instance will
take the form of a PDF file. This file will be
made available for download on the ACCU
website, exclusively to full members of the
association.

A large fraction of the membership have
previously given permission for details of their
membership, including their contact
information, to be displayed in the paper
handbook which was distributed to all members.
This makes the handbook a useful tool for
members who’d like to communicate with other
members, particularly those that live and work
in their local area. We appreciate that members
may have a different attitude to online
publication of these details, and we’d like to give
you plenty of time to remove your consent
before the new handbook goes live.

Turge all members to login to the ACCU website
at http://www.accu.org and review their contact
preferences. They are accessed by clicking the
Account link (which appears in the Login
panel), and then, the ACCU Subscriptions tab.

There you can review and edit the all of the
information recorded about your membership.
The setting which determines whether you will
appear online is labelled ‘Name in Handbook?”.

The new handbook will not be produced until
the 1st of February, giving you plenty of time to
update the setting if you’d prefer not to appear.
If, on that date, the setting for your account is
ticked, then your details will appear in the next
handbook. If you have any problems updating
the setting, or have any questions about the new
handbook arrangements, please contact me at
accumembership@accu.org.

Publicity Officer Report
David Carter-Hitchin

It’s been a busy few months for me since the
conference for all the wrong reasons; I’ve
finished a part-time degree and changed job. Not
that this is a care of yours, but this means I
haven’t spent as much time as [would have liked
to on publicity, but that is set to change. The first
task has been to draft a letter introducing the
ACCU which will be sent to every educational
institution in the UK which offers some kind of
software related (even vaguely related) award —
be it a degree or diploma, computer science,
engineering, physics or games programming or

computer graphics. Actually thinking about it, it
would be good to see more representation from
the graphics people — I’d like to see the odd
article in CVu about Phong shaders, radiosity
and so on! If I’'m wrong and you’re already out
there, then please write something! After the
universities have been addressed, then next on
the list will be software houses and any
corporate and banks with a large computing
requirement. After that, I’ll be working on
building up some mutual arrangements with
other conferences. Allan Kelly has recently done
a brilliant job of creating an ACCU group on
LinkedIn (http://www.linkedin.com/), which
will be superb free promotion of the ACCU —
sign up for this now. For more information, see
the article on this on page 33 of this edition. Hats
off to Allan. Thanks must go to the various
people who have sent me the odd suggestion by
e-mail, notably Ian Bruntlett, who has rekindled
an arrangement that we used to have with
O’Reilly publishers. I’'m not sure this will result
in any significant promotion of the ACCU by
O’Reilly, but it will at least mean that we can get
all their books to review before they hit the
shelves in Amazon. Even if this results in just
one link to our reviews, then it will have been
worth it. Keep those ideas coming. Finally, don’t
forget to mention the ACCU to all your friends
and colleagues, and put a link to the ACCU
website on your e-mail signatures.

	It’s summertime!
	Programming Posers
	Distributed Version Control Systems
	Continuous Integration with CruiseControl.Net
	Embedding Lua into a C++ Application
	Reuse, Recycle, Refill?
	Code Critique Competition 49
	Guidelines for Contributors
	Cambridge Meeting
	Sponsored Conference Places
	New ACCU Group on LinnkedIn
	View From The Chair
	Membership Report
	Publicity Officer Report

