

OCT 2007 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
ACCU members – by programmers, for programmers
– and have been contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Volume 19 Issue 5
October 2007

Editor
Tim Penhey
cvu@accu.org

Contributors
Silas Brown, Pete Goodliffe,
Paul Grenyer, Thomas Guest,
Christer Löfving, Steve Love,
Roger Orr, Peter Pilgrim and
Ed Sykes.

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Seb Rose
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

TIM PENHEY,
EDITOR

How about letters?
t seems to me that the months are just flying by. Some part of me thinks that it is
due to general work pressures or children growing, but I think perhaps it is just
me getting older. They (the old fogies) say that time speeds up as you get

older.

When I was first considering writing this editorial I was hoping to say that ‘By
the time you read this, the first Otago ACCU meeting should have happened’,
but the organisation of it is taking longer than I had hoped. It seems that it will
now be ‘Before the next editorial, the first Otago ACCU meeting should have
happened.’ I was reading our local newspaper and came across an article
about Dunedin attempting to place itself as a ICT centre of excellence, and it
mentioned 30 companies in Dunedin that had professional programmers. Now
I live in Dunedin and I didn’t realise that there were that many hackers
around. It spurred me on to set up the inaugral Otago ACCU meeting. I was
put in touch with the head of the Otago chapter of the NZ computer society, and
it looks like we’ll be putting them on as a joint effort. I’m going to be giving the
initial talk as its hard enough trying to get these things rolling without having to
find a speaker too.

I happened to read a posting on accu-general recently where it was mentioned that
there was not a lot of feedback or comments on articles that were submitted to
CVu or Overload, and the author of the email found that it did not really encourage
them to write more. I can sympathise with this, but also you need to work out why
you are writing. Unfortunately, writing for ACCU to get immediate (for some value of
immediate) recognition is never going to end well. Most, if not all, the authors write with
very little recognition. I’d love to be able to have a letters section in CVu with reader’s
responses to articles, and this may even encourage more people to write. I remember being
really chuffed with my first email response to an article I wrote (and I don’t think it was
for the first article I had published).

The deadline is approaching to have submissions in for the ACCU 2008 conference. May I
suggest that the speakers write up their talks first as articles? Well, I can try.

I

2 | | OCT 2007

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

COPY DATES
C Vu 19.5: 1st November 2007
C Vu 19.6: 1st January 2008

IN OVERLOAD
Kevlin Henney continues the PfA Papers, Allan Kelly introduces
an Agile process, Stuart Golodetz looks at C++ templates and
Richard Harris concludes his auto_transfer series.

DIALOGUE
23 Regional Meetings

A round-up of the latest
ACCU regional events.

24 Code Critique Competition
This issue’s competition
and the results from last
time.

REGULARS
28 Book Reviews

The latest roundup from
the ACCU bookcase.

31 ACCU Members Zone
Reports and membership
news.

FEATURES
3 Regex Buddy

Christer Löfving introduces an inexpensive tool for
learning and using Regular Expressions.

4 An NSLU2 “Slug”
Silas Brown suggests some tinkering.

5 The Bazaar Approach: The Version Control Job
Steve Love continues his series on version control.

9 Experiences of a First Time Presenter at the ACCU Conference
The title says it all. But did Ed Sykes?

10 Professionalism in Programming #46:
Please Release Me #2
Pete Goodliffe continues to throw his software out the
door.

13 Tracing Function Calls Using Python Decorators
Thomas Guest hears the echo of a Python.

17 The World View of a Java Champion #2:
On The Powell Cable Car at JavaONE 2007
Peter Pilgrim proposes Java is still a major player.

18 One Laptop per Child
Silas Brown talks about an interesting project.

19 Visiting Files and Directories in C#
Paul Grenyer walks the file system.

RegexBuddy
Christer Löfving introduces an inexpensive tool for learning and

using Regular Expressions.

 year ago I worked with Tcl[1] , one of the shell scripting languages
that actually has support for Regular Expressions built into its
semantics[2]. That awakened my interest for the topic in a more

serious way, and I decided to dig a little deeper.
A Google search led to an excellent piece of software that I think deserves
an article of its own, namely RegexBuddy by JGSoft [3]. Alongside
Cygwin, Edit Plus and Mozilla Firefox, it quickly became a priority from
amongst my existing software to install on a new computer. It’s also a clear
candidate for the USB stick, where it is easily installed and configured as
well. True, we really aren’t pampered with Windows applications from
heaven but RegexBuddy is designed in a way more Windows applications
should be. It is stand-alone, lightweight yet powerful and has an overall
user-friendly appearance. Its footprint is small, actually very small, for a
Windows application – only 20 kB memory usage and a 10 MB space on
the hard drive is occupied after a full installation.
I have personally come to be a bit addicted to Regular Expressions, but to
be honest it can feel tricky to get started with them. This is mainly because
of the somewhat obscure syntax.
To take an example, a RE (Regular Expression) to match the pattern of a
valid Visa credit card looks something like this:
 ^4[0-9]{12}(?:[0-9]{3})?$

And that’s the expression in a ‘basic’ form. To test it in reality using Perl
as tool of choice, one has to include at least the following lines in a
script[4]:

if ($subject =~ m/^4[0-9]{12}(?:[0-9]{3})?$/) {
 # Successful match
} else

Of course this makes it cumbersome for a beginner to even test a RE, never
mind experimenting with REs and designing his or her own. Practice is,
as we know, the best way to learn anything and that is certainly particularly
true when it comes to hand crafting a RE. In this situation, RegexBuddy
provides invaluable aid. Just cut and paste the above expression into the
RegexBuddy ‘Create’ view, and the overall picture is visually laid out
(Figure 1).

All of the obscure syntax is translated to plain English. It is also possible
to build an RE from scratch, or modify an existing one, using the ‘Insert
token’ menu option in this view.
Testing the same RE against a bunch of text becomes piece of cake (a
match is highlighted in yellow – Figure 2).
There is even a debugging facility that visualizes how the RE matching
machine works. With our simple sample it looks like Figure 3.

When it comes to more complicated REs, this can be an efficient tool to
track down otherwise hard-to-detect bugs. In the ‘Use’ view, a choice can
be made among a few RE flavours for immediate code generation, then
just cut and paste the new or modified RE into its coding context. The
rather impressive list of options includes Ruby, Oracle and XSD among
others. (Option PCRE , a C library, seems to have a bug, though. It only
generates the #include <pcre.h> header). (Figure 4.)

A

CHRISTER LÖFVING
Christer is a full time consultant in the Nordic branch
of LogicaCMG, and has contributed many book
reviews since he joined ACCU in 1995. Christer can
be contacted at chlof@wmdata.com.

Fi
gu

re
 1

Figure 2
Figure 3
OCT 2007 | | 3{cvu}

From the above illustrations, it is easy to understand the potential of this
tool for the beginner struggling with his or her first RE and for the fluent
RE user as well. The final view includes a GREP utility – I haven’t tried
that one out, though. RegexBuddy comes with an extensive Regex library
ready to use, and it is possible to create new libraries.
In the earlier versions, one had to work with JGSofts ‘generic’
RE flavour during the design and testing phases, finally
converting to a particular flavour. But in the latest version 3.03
(July 2007), RegexBuddy easily adapts to a language of choice
from the first step of creation. (Note, this choice is only for the
most commonly used flavours like Perl, Python, Java and .NET.)
RegexBuddy makes a nice use of the nowadays more or less
forgotten Windows help files tool Winhelp (deprecated with the launch of
Vista). A RE reference and a tutorial really worth its name are provided
in Winhelp format. In fact, I studied this tutorial for myself several weeks
before proceeding to a book.
A drawback is that RegexBuddy is neither freeware nor shareware. There
is NO free trial version to download, not even for a limited period of time.
However, the price for a single user licence is surprisingly low (29.95 Euro
in August 2007).
Another potential minus is that the Linux version has been removed in the
latest release. However, according to RegexBuddy documentation, it is
possible to run the Windows version on Linux using Wine [5] – a tool for
running Windows applications in a Linux desktop environment. Ubuntu
7.04 seems to be the only tested distribution, but it should work with most

other distributions. (Wine has ready to use installation packages for all the
major Linux distributions.)
Of course RegexBuddy can be run as a standalone tool, but it is also
designed to be used as a companion to whatever software’s REs it is used
in conjunction with.
A lot of flexibility is offered. Earlier I mentioned RegexBuddy can be
installed on and runs fine from a USB-stick. When it comes to IDEs,
RegexBuddy can be added to the actual software’s Tools menu then
command line parameters are used to transfer the RE in question to
RegexBuddy using the clipboard. There is even support for a COM
automation interface (if anyone happens to be adventurous enough to try
that out ☺).
I got another small surprise when researching for this article and found the
physical location of the RegexBuddy creator, JGSoft. It’s a street address
in Thailand! Not that there’s anything wrong with Thailand, not at all. But
if I had searched for RE tools by country, I think my choice would have
been US, UK or any other European nation. Probably I would never have
thought to see what a small software company in Thailand might have to
offer. That’s the beauty with the new wonderful Internet world and its
unprejudiced search engines. It allows quality to shine through our
delusions. �

References
[1] Tcl , Tool Command Language
[2] Perl obviously belongs to this group too.
[3] http://www.regexbuddy.com
[4] I know, there are ‘one liners’ in Perl, but in this context I am

referring to a RE beginner.
[5] http://www.winehq.org/

Recommended reading
Mastering Regular expressions, Jeffrey Friedl, O’Reilly Media, Inc.;
3rd edition (August 8, 2006)

Fi
gu

re
 4

An NSLU2 “Slug”
Silas Brown suggests some tinkering.

fter reading an article in the Linux Gazette called ‘Debian on a
Slug’ (you can Google for it), I bought a Linksis NSLU-2 (a small
embedded device used to connect USB disks to Ethernet and act

as a storage server) and reprogrammed it to run Debian Linux. I now
wish to recommend this to other ACCU members for the following
reasons.
Most developers need servers, be they web servers, version control
servers, or whatever. Many will put the server on a PC that’s left
switched on 24 hours a day, or at least whenever they’re developing. But
PCs are often big and noisy and anyway they guzzle far too much
electricity: at UK Economy 7 prices, a 24-hour NSLU2 server should
pay for itself in less than 2 years when compared with a 24-hour PC, even

accounting for the fact that the PC will still be switched on some of the
time anyway. Perhaps more importantly from a developer’s point of
view, if you have an NSLU2 then I find you tend to be more willing to
start servers on it, as long as they’re lightweight enough. An NSLU2
using Flash media makes a very good home server (and router etc)
because it’s totally silent and you don’t have to worry about the power
it’s taking. That means there’s nothing to stop you running a server when
you need to, which tends to improve productivity if noise/power/size etc
was an obstacle before. Also, running it on an NSLU2 makes you think
about making it lightweight, which could help with scalability later if
you’re doing any server work. And setting up and customising an
NSLU2 is a good exercise in Linux tools. �

A

I would never have thought to see what a
small software company in Thailand

might have to offer
4 | | OCT 2007{cvu}

The Bazaar Approach # 2
dev

project1

src

build

project2

src

build

 STEVE LOVE
Steve Love is an independent developer constantly
searching for new ways to be more productive without
endangering his inherent laziness. He can be contacted at
steve@arventech.com

The Version Control Job
Steve Love continues his series on version control.

n the last article [1], I gave a short introduction to the Bazaar Version
Control System, and why it meets my needs as a developer. In short,
the decentralised nature of Bazaar means that it is easy for me to work

on my laptop away from my main PC – which ‘serves’ my source code
repositories – and perform local commits which I can later merge back to
the main repository, losing no history or version information in the process.
In this article, I want to take a more detailed look at how I use Bazaar; as
a result, this is partly a user-guide, partly a how-to and partly a look at the
approach that Bazaar takes to certain version control tasks. Along the way
we’ll look at how projects get versioned, using a central repository,
branching and merging, and release management of projects versioned
under Bazaar.

First things first
As with any version control system, the first order of business [2] is to put
something in it. Suppose we start from scratch with a whole new project
and assume that some source files and build files have already been
created, which require versioning. In the project’s top-level directory, the
following command makes it a Bazaar stand-alone branch:
 bzr init

There are various options to this command, but the only one that may
interest us for new projects [3] is –-dirstate-tags, which gives the
branch support for tagging revisions. Tagged revisions are similar in style
to CVS tags, being named revisions of the project. I actually prefer the
Subversion style of tagging, which is a copy of a branch at a certain point,
but for that to work efficiently we need a central repository, which we get
to later. For now, the defaults are fine.
So far, we’ve made an empty branch, so next we need to put any files
already in the project under control.
 bzr add

This command recursively adds everything in the current folder to the
branch. Well, more specifically, it adds everything that is currently
unversioned (unknown) and not ignored. Bazaar reports what it’s just
done, and it’s possible that some files were added at this point that we don’t
want versioned, and so they can be reverted:
 bzr revert [filename]

and subsequently ignored – see the sidebar. We can also look at the status
of the branch, to see which files have been added, removed or modified
since the last check-in, and which files are unknown:
 bzr status

Finally, we need to commit the changes to the branch [4].
 bzr commit -m "Initial project versioned"

If Bazaar finishes this with a report that it’s committed revision 1, then all
is well – the project is now versioned under Bazaar. Note that the -m
command requires a non-empty message – there are some useful things
that Bazaar insists upon!

Branchology
Having set up our initial project, we now have a Bazaar stand-alone branch
which represents the initial branch: the trunk. It contains the working copy,
the branch administrative area and the repository all in one place. There is
no need to check-out the working copy in order to work on it – it already

exists inside the branch directory. Simply modifying the files here and
performing a check-in commits changes to the branch.
To jump ahead of ourselves just a little, let’s get some terminology out of
the way.
A repository is the database of revisions, and may contain many branches.
A branch always has an associated repository, and it is usually in the same
place. This is called a stand-alone branch. A branch in a separate location
to its repository is called a check-out (see later).
In our simple scanario, the repository contains a single branch, the branch
consists of a single revision (the first), and the working copy, the branch
and the repository all share the same location – stand-alone. Official
terminology aside, I think of a repository as a collection of branches, and
a branch as a collection of revisions. Thinking this way makes the whole
idea of branching easier to manage.

Project management
A project, in the Bazaar world, is a directory managed by Bazaar. Each
branch represents a single project, so where you have multiple projects to
control, each would reside in its own branch. To make this all a bit more
concrete, consider the directory tree in Figure 1.
In a centralised VCS such as CVS or
Subversion, it would be common practice to
version the entire tree from dev down, and
make that tree the trunk. Checking out an
individual project is just a matter of supplying
the correct URL of the directory within the
repository. Similarly, checking out every
project is just a matter of asking for dev itself.
In Bazaar, it’s more common to individually
version each project, so in the above tree, project1 and project2
would each have their own branch and repository, and dev wouldn’t be
versioned at all.
This is really an efficiency issue, because getting a branch typically creates
a local copy of the entire project and branch history; it is this feature that
distinguishes distributed version control from centralised version control,
allowing a local branch to be merged successfully with a remote one. If
you really need a local branch of everything, each project needs to be
branched individually.

I Deliberately ignoring files in Bazaar works much the same way as for
CVS. A global ignore file is located at the user's home directory (which
varies for Unix and Windows users – see the bzr documentation), and
contains some common patterns. Individual projects may have custom
ignores which reside in the text-format file .bzrignore in the project's
branch root. This file gets automatically added to the branch if you issue
the command
 bzr ignore [patterns]
where "patterns" might be a specific file, or a wildcard match of a
set of files, e.g. "*.exe".
Items can be un-ignored by editing this file. Whole directories can be
ignored too.

Bazaar Ignores

Figure 1
OCT 2007 | | 5{cvu}

Branching and merging, pushing and pulling
A primary reason for using distributed version control in the first place is
that it allows me to get a local copy of some branch, perform local commits
to it, and merge back to the original branch at some later date. Whether
the original branch is a public project hosted on the Internet, or is on my
home PC and I need a local branch on a laptop, the principle is the same.
My home LAN has a PC named server, which shares the c:\dev
directory as dev [5]. It contains several projects managed by Bazaar,
which I’ll call paperclip and post-it. I have a laptop – called laptop
– which I connect to the LAN when I’m at home. Suppose I want to work
on the paperclip project, and I’ll be away from home. From my laptop,
I can get a local copy of the branch:
 bzr branch //server/dev/paperclip

Now changes I make to the laptop working copy can be committed off-
line to the local branch.

Merging

When I am next at home, reconnected, I can merge the changes I have
made to the laptop branch into the branch on server (where laptop
also has a c:\dev directory shared as dev). Note – this command is
executed on server:
 bzr merge //laptop/dev/paperclip
 bzr status

Any local changes in the server working copy must be committed before
the merge command can succeed. After the merge, the working copy
contains changes from the laptop branch. The status of the working copy
explicitly shows any pending merges.

Conflicts

If conflicts have arisen as a result of the merge, they are indicated in the
output from the merge command, and need to be manually rectified before
a commit can take place. The files which conflict can be listed:
 bzr conflicts

Each conflicted file will now have grown some friends with the same base
name but different extensions. The original file contains the conflicts in-
place, in the usual diff format. The new files are:
� <filename>.BASE which contains the file as it existed before the

last commit in the current branch.
� <filename>.THIS which contains the file with the commits made

on the current branch.
� <filename>.OTHER which contains the file with the commits

made on the branch being merged from.
These files are useful if you have an external conflict editor [6].
Once the conflicts have been resolved, Bazaar needs to be told:
 bzr resolve [file]

or
 bzr resolve –-all

Finally, the merged changes need to be committed to the repository:
 bzr commit -m "Merged from laptop"

A look at the log shows that not only changed files were merged, but the
version history from the remote branch is also available:
 bzr log

The message for the commit of the merge operation is the top entry,
followed by the indented commit messages from the remote branch.
Branches may be significantly more complex than this, with many levels
of branching having occurred in development. Because a merge operation
only brings committed changes from remote branches, the complexity of
the branches isn’t an issue.
Bazaar implements Smart Merging: that is, a branch remembers the
revision range at which a previous merge occurred. If changes are made

to the remote branch, on the laptop, a subsequent merge from server
only brings across the changes since the previous merge.

Pulling

Had changes occurred in the server branch, they would naturally need
to be reflected in the ‘remote’ branch on laptop. From the laptop, I can
merge back from the main trunk:
 bzr merge //server/dev/paperclip
 bzr commit -m "Merge back from server"

If no divergent changes have occurred in the laptop branch, however, these
two steps can be performed with a single command:
 bzr pull //server/dev/paperclip

This command makes the current branch a mirror of the branch specified
in the command. If there are changes in the current working tree that the
other branch does not have, the pull command will fail with a message
informing you that you need to merge from the other branch instead.
Note that pull doesn’t just do a one-pass synchronise and hope that’s
enough; it’s truly a merge of the remote commits including the revision
history of each commit on the remote branch, and any branches already
merged into it. Making the local branch a mirror of the remote one includes
making a mirror of its history as well.

Pushing

The reverse is also true if changes have occurred to the laptop branch
that need to be reflected in the main branch on server, as long as no
divergent changes exist on the remote branch:
 bzr push //server/dev/paperclip

The push command automatically commits the changes on the remote
branch. As with pull, if divergent changes exist in the remote branch, the
command will fail. There are three solutions to this:

1. Merge back from the remote branch, and then re-do the push
2. Perform the merge from the remote branch, and check-in
3. The push and pull commands have a --overwrite argument,

which has the expected result.
Pushing a branch causes the remote branch to become a mirror of the
current one, and as with pull, it merges the history along with the
changes. Both pull and push update both the target branch and its
working copy.

Release management
It is common in development projects to have release branches and tagged
revisions to manage releases. A simple use-case is a branching from the
main-line of development for a release-candidate, allowing new
development to continue on trunk without interfering with the release.
When the release is deemed fit for public consumption, it is tagged and
named, with any changes merged back to the main-line.
A Bazaar branch is exactly that – a branch – anyway, so creating a release
branch, for instance, is a matter of branching from the main-line.
Bazaar supports tagged revisions (in versions of Bazaar after 0.15) if you
initialise the branch using the –-dirstate-tags argument to the bzr
init command.
 bzr tag v0.1_rc1

creates a named revision in the branch. The tag is copied along with
everything else when the branch is merged, pushed or pulled, or
subsequently branched, so it’s available to everyone. This follows the CVS
mode of tagging, inasmuch as the tag is really just a convenient name for
a revision.
In Subversion, a tag is a copy of the tree at a certain revision – as is a branch.
Did I already mention I prefer this method to the CVS one?
It should be clear that having multiple branches of a development project
just ‘lying around’ is not the most efficient use of disk space when using
Bazaar. The distributed nature of Bazaar brings many benefits, but the
6 | | OCT 2007{cvu}

main cost of those advantages is that each branch needs to know the entire
history of the branch, which has got to be stored somewhere. A significant
project might have several branches representing release candidates,
feature exploration, sandboxes and more. Handily, Bazaar mitigates the
need to store the entire revision history in every branch.

Shared repositories
It’s already been noted that each branch is associated with a repository.
Furthermore, several related branches can share a repository, so that the
revision history of each is stored in a single place. In the case of a project
with lots of branches this can translate to a large saving in disk-space,
resulting in an associated saving in the time needed to perform operations
on a branch.
A shared repository is not itself a branch, rather it’s a container of branches.
To create a shared repository, in a directory called dev, issue the following
command:
 bzr init-repo dev

If you branch to a location inside the repository directory, the new branch
will automatically check to see if there is a repository it can share. For
example:
 bzr branch //server/dev/paperclip dev/paperclip
 bzr branch dev/paperclip dev/paperclip_fab_new_
 feature

will cause both the paperclip and paperclip_fab_new_feature
branches to share space in the repository for their revision information.
Shared respositories also provide the means by which Bazaar can operate
as a centralised versioning system. Part of the attraction – for me – of
Bazaar is its flexibility, which includes the idea that you may not always
want to pay the price for decentralised branches and repositories.

Goto check-out
Now that the concepts of branches, repositories and basic operations are
clear (right?) it’s time to look at some more advanced cases. If you’re more
familiar with CVS, Subversion or other centralised version control
systems, this section might come as a welcome return to sanity.
In the usual case that we’ve already covered, a stand-alone branch’s
working copy can be modified directly, or it can be branched to a different
location, resulting in merging, pushing and pulling between the branches.
The question arises, of these two (or more) branches, which one represents
the main-line, or trunk? The question becomes extremely important where
stable releases from predicatable source versions are needed – which is
what most people want.
Of course this question can be answered by convention – ‘The
paperclip branch on server is the trunk’ and releases are made from
there. An alternative is to use a centralised repository.

Centralised repositories

Instead of branching from the repository, a check-out is made.
 bzr checkout //server/dev/paperclip

This creates a check-out – including the working tree – called paperclip
on the local machine. The main difference between this and a regular
branch is that changes to the working copy are committed remotely to
//server/dev/paperclip, not locally.
Bringing the local working tree up-to-date with respect to the repository
is similarly familiar [7]:
 bzr update

This, of course, implies the availablity of the remote repository; if it is on
a network, then the local machine needs access to the network.
You might think then that a check-out is not as useful as a local, stand-
alone branch. The utility of a decentralised version control system is that
I can make local commits off-line. However, it can be easier to work with

a centralised repository if you commonly work
‘connected’. A check-in immediately commits to the
remote repository, so there is no need to merge/push/
commit. Perhaps more importantly, an update brings all
commits from a whole team of developers in one go.
The usual work-flow for this case would be:
 bzr checkout //server/dev/paperclip

Work on the project within the working copy. When it’s time to commit
those changes, first update to get anyone else’s changes:
 bzr update

Fix any conflicts resulting from the update, check that the working copy
isn’t now ‘broken’, then commit:
 bzr commit -m "My changes"

It is possible to force a check-in to be local only.
 bzr commit -m "Local changes" --local

Such local commits are sent to the repository as a batch when a normal
commit is performed (i.e. without the --local argument).

No working tree

A standalone branch includes its working copy, which is what makes it
standalone. A shared centralised repository would not normally have
working copies in the branches it manages, since they take up unnecessary
disk space, and are a resulting burden on the back-ups (you have them, too,
yes?). To work on a shared repository branch you check it out, and make
changes to the checked-out working copy.
The Bazaar solution to this is a repository with no working trees, created
as an argument to bzr init-repo:
 bzr init-repo --no-trees [folder]

Branches created within such a repository have only the branch
administrative files in the .bzr directory. A useful side-effect of this –
which we’ll expore a bit later when we revisit Release Management – is
the idea of nested branches inside the repository.
Unbound branch

Using a centralised shared repository is useful for teams and sole
developers alike, but as I’ve already mentioned, you lose the ability to
perfom local commits when you are disconnected from the repository.
Bazaar combats this by allowing you to freely switch back-and-forth
between connected and disconnected modes of work. When connected to
the remote repository you make a check-out of the branch as already
shown. If subsequently you need to disconnect from the network – for
example to take your laptop on the train – you can disconnect the check-
out from the repository:
 bzr unbind

The effect of this is to make your check-out into a regular stand-alone
branch. Commits made to the branch are now made locally, and must be
subsequently merged or pushed back to the main repository when you’re
connected again. Alternatively, if you’re likely to remain connected again
for a while, you can rebind to the main repository, and check your changes
in:

 bzr bind //server/dev/paperclip
 bzr update
 bzr commit -m "Remote changes"

Therefore, a check-out is effectively the same as a branch that has been
bound to a shared repository using bind.

having multiple branches of a development
project just ‘lying around’ is not the most
efficient use of disk space when using Bazaar
OCT 2007 | | 7{cvu}

<repo:>

trunk

branches

tags

Lightweight check-out

A normal check-out brings with it most of the branch administration
needed to perform some operations without the need for communicating
with the remote repository, for example status and diff operations can
be performed locally. If this is not really a concern, and you will always
be connected to the repository – you may even have a check-out on the
same machine as the repository itself – you might consider using a
lightweight check-out:
 bzr checkout //server/dev/paperclip -–lightweight

This results in a much smaller working copy, but one that requires access
to the repository for every operation. In addition, a lightweight check-out
does not support local-only commits.

Release management revisited
Near the beginning of this article, I made the comment that I prefer the
Subversion approach to tagged releases over the CVS – or indeed the
Bazaar – method of just naming a revision. We now have all the pieces to
make this as efficient as Subversion, and with just one remaining piece,
we can make it better than Subversion. Well, in my opinion anyway. To
recap:
� Branches in a shared repository share the repository for their

revision histories.
� Shared repositories can be created such that the included branches

have no (need of a) working copy of their own.
� Merging between branches is simple and efficient.

Given a shared repository with no working trees, in a directory called dev
with a project within it called paperclip, a Subversion-like tag becomes
a branch of the main-line:
 bzr branch dev/paperclip dev/paperclip_1.0

Since the two branches share the same repository, the paperclip_1.0
branch is a simple copy of the original. If no changes are made to the branch
– and it is intended to be a tag, remember, so strictly read-only – this copy
will never get any bigger. It does mean we may end up with a repository
within which are loads of branches with similar names, all at the same
(root) level.

This might suggest that shared repositories
are made with the scheme as suggested by
the Subversion documentation (Figure 2).
This at least keeps tags, branches and the
mainline independent physically of each
other, but there is another feature of Bazaar
we have yet to see, which makes this
structure superfluous.

Nested branches

In a repository created with the --no-trees option, if we create a branch
or directory within another branch, it is still independent of the parent
branch. By way of example, consider a regular stand-alone branch. A new
directory added to the branch will show up as ‘unknown’ in a status output
– the new directory is part of the branch, just not formally added yet. In
the case of the shared repository, the branch knows it has no working tree,
so directories within it cannot be part of the branch.
This is a rather nifty feature when we consider the Subversion repository
layout scheme shown above. A typical Subversion repository might look
like Figure 3.
To refer to the 1.0 release branch of paperclip might require a URL like:
 svn://localhost/repo/branches/releases/paperclip/1.0

By using nested branches in Bazaar we can create a repository layout like
Figure 4. Entries in grey are Bazaar branches. Other items are regular
directories. The top-level paperclip branch is the trunk, with nested
branches beneath it representing releases and features.

To get hold of the working copy of the main line, we check-out the project:
 bzr checkout //server/dev/paperclip

This brings just the paperclip working copy, and does not include the
releases sub-tree. To check-out the 1.0 release branch we could issue
a command like:
 bzr checkout //server/dev/paperclip/releases/1.0

Creating a new branch is similarly intuitive:
 bzr branch //server/dev/paperclip //server/dev/
 paperclip/features/new_ui

Note that this creates a branch directly within the repository, and the new
branch needs to be checked-out so it can be worked upon. Merging changes
on the branch back to the trunk requires a working copy of the trunk to
stage the merge:
 cd paperclip
 bzr merge //server/dev/paperclip/features/new_ui
 bzr commit -m "Merge from features/new_ui"

Listing which branches (in the Subversion or CVS sense) or tags are
available for a project becomes an exercise in looking at a directory on
disk.

No one true way
Bazaar supports many ways of working, because ultimately everything is
a branch. You can merge and diff between any related branches, so how
you organise your repository is up to you, and how you think it best for
the way you work.
Nested branches can help a great deal with organising the repository,
giving you yet more flexibility in how you do it. In the end, how you make
the best use of Bazaar is up to you, rather than being imposed by the tool.

Figure 3
Figure 4

<repo:>

trunk

branches

tags

paperclip

...

postit

releases

paperclip

1.0

postit

...

features

...

...

dev

paperclip

postit

releases

...

1.0

...

Fi
gu

re
 2
8 | | OCT 2007{cvu}

Experiences of a First Time Presenter at the
ACCU Conference

The title says it all. But did the speaker?

’ve just checked and the sun hasn’t started shining out of my backside.
That’s just one of the things that doesn’t change, when you go from
being an attendee to a presenter at the ACCU conference. I wouldn’t

like to generalise prematurely though and declare that one’s rear end
remains unilluminating post OOPSLA, SPA or EuroPython presentation.
Maybe next year the committee could put a special swallowable bio-
fuelled floodlight in all the speakers hotel rooms instead of this year’s
Easter egg. Myself and co-presenter Jan Kollhof found that the milky bar
egg was a definite step up from the mint chocolate that was refreshed daily
on our pillows last year.
It’s not just presenting that yields new experiences though, some were
simply a product of it being my second year of attendance. New to me was
the feeling of slight awkwardness upon meeting someone from last year’s
conference, who doesn’t have the foggiest who you are, despite having
shared an “AHA!” moment. “We were stood in the bar, it was 2am!
What’s-his-face from what-are-they-called introduced us, we chatted for
3 hours!” I was waving my arms wildly at the time. Somewhat
symmetrically, moments earlier I was also introduced to the name badge
boogie. It’s a strange number performed mainly by your eyes with a slight
feet shuffle thrown in. It begins when someone comes up to you and starts
talking animatedly about a conversation you had at 2am in the bar last year
and you swear you’ve never seen them before in your life. I think it’s a
skill you acquire over time so next year I reckon I’ll be pretty good at it.
Let me tell you now, I need the fear of public failure and ridicule amongst
my peers to motivate me. I have, for a number of years now, wanted to
resurrect my interest in artificial intelligence and biologically inspired
algorithms. Jan and I had an idea for what we thought was a really
interesting project involving distributed computation using JavaScript and
Python. We thought that someone else might be interested in it and given
that the idea was gestated at ACCU, why not present it the following year?
In doing so I would improve my presentation skills, learn to program in

Python and learn something by sharing that which we learned. It’s also the
kind of thing you can put on your CV and show off about to employers.
So what did we learn? We learnt that if you’re going to present at ACCU
you have to be prepared to go up against some pretty big names, but don’t
worry about it! Think about it this way: the bigger the competition, the
more interested the attendees must be in your talk. I have to admit I did
wonder if we’d get anyone at all in our talk but thankfully we got about a
dozen and they were all fully engaged. As a result our talk was dynamic
and interactive and I thoroughly enjoyed my part in it. Let me drop a hint
if you’re thinking presenting might be for you, be careful what you name
your talk. We thought we’d satirise AJAX by giving ours a web2.0 style
acronym, PAAJFDSCICOP. It turns out this was a really bad idea and put
people off. Our talk seems to be known as ‘the one with the
unpronounceable name’ and not ‘the one about using an ant colony as a
model for distributed computation’. We also learnt that the people at
ACCU tend to have a certain similarity in attitudes and practices. There’s
nothing quite like the look of boredom on your granny’s face as you tell
her how to suck eggs.
So I’m pretty enthusiastic about my presenting experience, it was a winner
all round. I learnt, I think the audience learnt and now I can get cheap or
free entry to a bunch of conferences by hawking our talk around the circuit.
If I can do it, you certainly can. I urge you to just think about something
that you get excited about and give it a whirl. What have you got to lose?
Nothing, oh apart from having a room full of people point and laugh at you.
I’m kidding of course, no one points and laughs they just rib you in the
bar afterwards. �

I

The Bazaar Approach (continued)

ED SYKES
Ed writes software for the telecoms industry where he’s
interested in getting the most out of people and computers.
When not writing software, he’s in his studio writing music.
He can be contacted at ed.sykes@gmail.com
Next time...
There is yet more Bazaar stuff to explore:
� More on the format of the bzr log, and how to track revision history.
� Some more uses of lightweight check-outs.
� Nested branches turn out to be useful beyond release management

when we look at by-reference dependent branches.
� Bazaar has its own smart server – similar in nature to the Subversion

server svnserve – which helps to restrict remote access to just your
Bazaar repositories and minimise network round-trips.

� Bazaar supports plugin components which extend its core
functionality, a few of which are indispensable.

� Using the Bazaar configuration files to configure Bazaar itself, and
customise the behaviour of some of the plugins. �

Acknowledgements
Many thanks to Tim Penhey and Pete Goodliffe for their comments on
drafts of this article.

References
[1] ‘The Bazaar Thing’, C Vu 19.4, August 2007.
[2] OK, so you need to actually get Bazaar first –

http://www.bazaar-vcs.org is the place for that.
[3] Unless you specifically need to allow for support of old bzr clients.
[4] Many of the Bazaar commands have aliases which will be familiar to

CVS/SVN users, e.g. ci for commit and co for checkout. You
can even create your own aliases.

[5] Bazaar is cross-platform – written in Python, it will run anywhere
Python can run. The examples shown are for the MS Windows
version, but note that I’ve used the // convention here for network
shares. The Bazaar commands are the same whichever platform you
run, and you can still use \\ if you prefer.

[6] I personally still use TortoiseMerge for Windows – part of the
TortoiseSVN project – for conflict editing, even though it’s supposed
to be for Subversion it handles Bazaar conflict files just as easily.

[7] Note that update works for regular branches as well. It brings the
working copy up-to-date with respect to its associated branch – in the
case of a central repository, the branch is remote.
OCT 2007 | | 9{cvu}

Professionalism in Programming # 46
Please Release Me #2
Pete Goodliffe continues to throw his software out the door.

n the previous column [1] we began a foray into the unnecessarily
murky world of software releases – a simple act that many software
houses get monumentally wrong. We discovered what a software

release is, the common types of software release, and worked out some
prerequisites for a good software release. In this article we’ll continue to
explore this territory, and investigate the mechanics of releasing the code
that we craft.
For those who have forgotten, or not read, the previous article, I have
defined a software release as: the process of obtaining, building,
packaging, and deploying/distributing a versioned software product, for an
agreed purpose.
It’s probably already clear that making a software release requires a high
level of care and particular eye for detail. Essentially, it requires you to be
anal. But we all needed an excuse to be anal, right? A good software release
process ensures that we have:
� an audit trail – we can see what went into an important external build

from three years ago to help us track bugs in it,
� a repeatable software build procedure,
� a reliable and understood release procedure,
� a person designated to make a release (ideally picked from a pool of

people who know how to do it – never rely on one individual),
� enough time to do it in,
� enough time to test the release, and
� a reliable publish/deployment mechanism.

These will all be addressed in this article. I'm sure you can't wait...

When do we make releases?
Before we start to make releases, we need to know when to do so. This is
a process issue, but it is so important that we need to mention it here – if
only briefly.
A software release should never take you by surprise. Your development
process must plan for it – very few programmers will slave over a codebase
for months without actually intending to release it at some point. There
should always be an ‘end goal’ in sight.
You should plan to make a release when the codebase is ready. That might
mean:
� All of the outstanding features slated for this release have been

implemented
� All of the code’s unit tests pass (and of course, you are enlightened

programmers – aren’t you – and everything is unit tested) so you
know the code is mechanically sound at the unit level

� All automated integration
tests pass (of course, you
have these too, don’t you?)

� All the bugs have been removed,
or any remaining known bugs are
deemed not to be ‘show stoppers’ by
the powers that be (officially these are
sold to customers as features)

... and ...
� The development organisation (e.g. the

company or open source project) are ready to make the release (the
marketing and distribution channels are ready, for example).

It’s quite a dance to get all of these things lining up at once, and how to
do so is well outside the scope of this article (although I can recommend
a good book that will help with this!) Clearly there is a large element of
planning involved with software releases. Cue software release golden rule
number one:

A software release should never take you by surprise.

But (there’s always a ‘but’), sometimes this ideal might not be possible.
For example, if an important customer discovers an urgent problem in a
release product and is clamouring for a quick fix, you might investigate
the fault, fix the bug, perform a quick test, and issue a release in a very
short cycle (this depends in part on how thorough your testing procedure
is – and how willing the customer is to accept code without a full regression
test cycle).

There is another important angle to the ‘when do you make a
release’ question: you should be making releases all the time.
Perhaps this sounds counter-intuitive, but it’s a really good idea.
Even if your releases are not going outside the development
team, you should make full production-worthy releases often.
There are many benefits:

� It proves that the build systems are working perfectly, and that no
one has broken the build scripts.

� It proves that you can repeatedly release working software, and that
your release process does not include an element of chance (too
many release processes I’ve seen rely on luck, whether it’s a
developer remembering some sketchy build runes, or a build
machine hard drive that might occasionally fill up and silently
corrupt the build).

� It gives you a chance to practise the release process at ‘unimportant’
times, so that ‘important’ releases can’t possibly go wrong.

� In the run-up to a major release, regular internal interim releases can
provide a development heartbeat to help focus programmers’ minds
towards the end goal.

� Regular ‘releases’ afford new developers the chance to run through
the build procedure so that everyone knows what’s involved. Then
you can be assured that you’ll never be left disaster planning when
Buildmaster Fred walks under a bus, or is hit by a cruise missile.

� When we perform ‘practice runs’ we learn how long the release
process takes, so when we have to make an important release, we
know how long to schedule and can avoid a last-minute rush (and
the inevitable consequent silly mistakes).

I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@cthree.org

very few programmers will slave over a
codebase for months without actually
intending to release it at some point
10 | | OCT 2007{cvu}

� Interim releases are great to hand off to the product test team, or
external beta testers to get a feel for the quality and stability of in-
development code. Doing this regularly also allows us to determine
how long a reasonable test (or regression test) phase should take.

So that’s the rationale for golden rule number two:

Make regular software releases, even when no major external
releases are imminent.

‘Regular’ for you might be hourly, daily, weekly, or even monthly,
depending on: your organisation, the codebase, the build technology, and
the the quality of your software release process. It’s important to do this
as frequently as you possibly can.

How to make a software release
So here it is. The nitty-gritty how-to section. In about as much detail as
we can stand, this is the theologically correct way to make a software
release. I’ve distilled ‘good practice’ into the five ‘P’s of software release.

1. Plan it

We’ve already looked at what it means to plan a release. But it’s important
to understand that a release does not start when the code is deemed ‘ready
to ship’, but long before. The planning of a release answers the following
questions:
� What software will be released. This sounds like a dumb question,

but often when you have a codebase that can build multiple product
variants it can be spectacularly easy to make a small mistake with
comic (or tragic) consequences.

� The specific version of the software that the release will be built
from. This is the exact source control location of the software – the
branch and version number on the branch (details vary depending on
the version control system you are using). Now is not the time to
preach about source control, but this presumes that you are already
following golden rule number three:

Software releases must be made from code held in a source
control system.

This provides a clear audit trail (so you can see what changed leading up
to this release, and exactly which bugs have – and haven’t – been fixed),
an unambiguous description of the code to be built (the location and
version number in the repository), and an obvious way of going back to
find the exact code that went into historical release at any time in the future.
Never, ever, release code that isn’t stored under source control. OK, sorry,
I preached.
� Who will say when the code is ready (a selection of product

managers, QA engineers, developers).
� When will they say that it is ready – and how you will know? Too

many software factories have such bad lines of communication that
one developer doesn’t know what another is doing, let alone one
department and another.

� Where the release is going once it’s made. Is this an internal ‘test’
release, a ‘release candidate’ that will be sent to beta testers and/or
sent for acceptance tests, or is this the final real-deal release? Will
this release be distributed internally, pushed to an update server, put

on a public webserver, or sent to a CD mastering house to be
manufactured onto physical media and distributed to retailers?

2. Prepare it

By now you know that it’s time to build your release, but first there are a
few preliminary steps. Before you get anywhere near a compiler you must
mark the code that the release will be built from in your source control
system. In many revision control systems this means tagging (or labelling,
depending on nomenclature) the set of files to be released [2]. Pick the files
from the appropriate branch – many times you will have a specific code
branch dedicated to the release code.
You can mark the code from anywhere; you might make a clean checkout
to create the branch, or you might carefully do this in a developer’s
personal workspace. Better still, many revision control systems allow you
to do this outside of a code checkout, and for simple tag operations this is
best.

So now you have the source set that will be used to make
the release unambiguously marked before you’ve
started to build it. (Remember that you’ve got to be anal
– now check that you have the right set of files
marked!). There is a good reason to do this step before
you make the release. Other developers may continue
to work on the release branch, and if they performed a

checkin as you were building the release there could be some confusion
as to which exact code set you built the release from. Marking the code
first avoids this confusion.

3. Produce it

Now, on a ‘clean’ computer [4] make a fresh check out of the release tag
you made in the previous step. Start from scratch. Nothing should be
reused from a previous release build – even if you are sure that it hasn’t
changed. Delete all the old stuff and go back to square one.

Always build your software in a fresh checkout, from scratch.
Never reuse old parts of a software build.

Now build it. What ‘build’ means to you depends on the kind of code
you’ve got. C and C++ code needs compiling into libraries and
executables. Java code needs byte-compiling. Many other languages don’t
have such a requirement, but more often than not they do have some kind
of ‘build’ step, to prepare the software for release.

there should be very little variation in the
actual release procedure, just in the final
destination of the software release

Good version control is a topic that I’ve covered in a previous set of
C Vu articles [3], but it’s worth reminding ourselves about ‘release
branches’.

You can make a branch in your version control system for just about
any reason: to work on a new feature independant of the rest of the
codebase, or to work on a bugfix or exploratory refactor. Here you
make the branch to encapsulate a set of changes, until they are
‘done’. When you’ve completed this kind of work, you will typically
merge the branch back onto the mainline (or trunk). Standard stuff.

Release branches are often made for the exact opposite reason –
to mark a point in the codebase where you want to ensure stability.
Once you have made a branch for your software release then other
new features can be developed on the mainline of code
development without fear of compromising the impending software
release. The QA department can perform regression testing of the
branch code without worrying that any new work will move the
goalposts under their feet. Very occasionally an important bugfix
from the mainline development may get merged into the release
branch, but each such change is made carefully, with the consent of
all people who have an interest in the quality of the software on that
branch.

Typically you will not merge a release branch back down onto the
trunk, as you perform no fresh development on it. All development
occurs on the trunk, is sanity tested there, and then merged onto the
release branch.

Release Branches
OCT 2007 | | 11{cvu}

The quality of this ‘Produce it’ step depends entirely on the quality of your
build system. It should be designed to provide absolutely no room for
human error:
� The best build systems work in a single step – one command line

call, or a single IDE button press.
� Any build configuration (e.g. makefiles,

build scripts, or IDE config files) MUST be
checked into source control and used to
generate the build.

� There should be no requirement for a user to
select build types (debug/release/full/demo/
whatever), update build identification
strings, or to fiddle with anything.

The more manual steps your build process has, the
more room there is for human error. All too often,
the build is pushed out to the very last minute and
rushed mistakes here are very common. More manual steps also require
more documentation, and this documentation is open to misinterpretation.

Automate your build process as much as possible. Ideally it
should require a single step.

An automated build system has less room for error and doesn’t need reams
of documentation (as the build script is an unambiguous description of how
to build the release). Once you have an automated build system then it is
then very easy to run the build system automatically every night. It’s great
to be able to come into work in the morning and find a full release of your
software waiting for you. In many projects the releases are actually taken
from a nightly build server, rather than built manually!
This step should include building any installer images that tie together all
the programs, graphics, registry keys, script files and other assorted
miscellany that constitutes an entire release. Ideally these installers should
all also be generated by the one single build command, and have
appropriate configuration set up by the build process (e.g. version
numbering is adjusted automatically).

4. Package it

The output of your build process will often be a selection of files (a number
of executables, for example), or it may be a single Windows installer
program. Whatever you’ve just built there is another consequent step – to
package it up in the file format that the user will receive it in.
Often this is not treated with as much importance as the previous ‘build’
step. Even though we’re now on the easy home-stretch sloppy mistakes
here can ruin everything. Packaging the code requires:
� Constructing a set of release notes that describe the changes that

compose this release, the end-user licence information, installation
instructions and other useful information.

� Constructing the final distributable image, perhaps a CD ISO image,
an update server package, or a downloadable zip file.

Again, this step should ideally be done automatically, although it is not
always practical. For example, it is perfectly possible to automatically
document the changes that have occurred in this release by pulling log
information out of your source control system. However, these log

messages are usually developer-oriented drivel
and need distilling into a user-friendly form.

5. Publish it

The final step. You’ve made the release. Now
release it!
Every release should be archived in a well-known
place for later retrieval. Perhaps this is an archive
drive on the network, or perhaps your company
lodges physical CDs in a ‘drawing office’. Make

sure that you have a controlled copy of your release lodged somewhere
where it will not get lost.
Then – publish. Whatever that means for you. And tell people about it.
Then have a nice cup of tea and a sit down.

Is that it?
Clearly constructing a software release is not something that happens in
one day. The act of preparing a release spans the entire development
process. You’ve been developing with the release in mind from the very
beginning. The release procedure was already known when you started
development, don't try to work it out in a mad rush at the end.
Most problems with software releases come for that very reason – they are
rushed out at the last minute. No one worked out how to do it properly,
and so when the release needed to be made it was cobbled together in an
ad-hoc way. But we all know better now, don’t we?
And we have another great reason to be anal. �

Notes
[1] ‘Please release me’ (Pete Goodliffe). In: C Vu Volume 19 Issue 4.
[2] In subversion, for example, you needn’t actually label the code – you

can just remember the revision number of the filesystem at the
release point. However, it is still good practice to create a tag in the
repository, as this records the release’s build point unambiguously in
the one place that it can’t get separated from the source code. Perhaps
this tag would only be made for major external releases, though,
rather than for every internal interim release build.

[3] ‘Effective Version Control’ (Pete Goodliffe). In: C Vu Volume 18
Issues 4-6.

[4] Often we set aside a computer specifically for release builds – the
build server.

it’s great to be able to
come into work in the

morning and find a full
release of your software

waiting for you

Pete’s book, Code Craft, is out now. It’s full of words and
has lots of pictures. There isn’t a chapter on software
release. But there is a tube of glue on the cover.

Check it out at www.nostarch.com
12 | | OCT 2007{cvu}

def echo_both_args(fn):
 """ Returns a traced version of the input
 2-argument function.
 """
 def wrapped(arg1, arg2):
 name = fn.__name__
 print "%s(%r, %r)" % (name, arg1, arg2)
 return fn(arg1, arg2)
 return wrapped

def dot(vec1, vec2):

dot = echo_both_args(dot)

Li
st

in
g

1

Tracing Function Calls Using Python
Decorators

Thomas Guest hears the echo of a python.

et’s suppose you want to trace calls to a function. That is, every time
the function gets called, you want to print out its name and the values
of any arguments passed by the caller. To provide a concrete example,

here’s a function which calculates the dot product of two vectors.

def dot(v, w):
 """ Calculate the dot product of two vectors.

 Example:
 >>> dot((1, 2, 3), (3, 2, 1))
 10
 """
 return sum(vv * ww for vv, ww in zip(v, w))

To trace calls to the function you could just edit it and insert a print
statement.

def dot(v, w):
 print "dot(v=%r, w=%r)" % (v, w)
 return sum(vv * ww for vv, ww in zip(v, w))

When you no longer want calls traced you can remove the print
statement or even comment it out. This approach works well enough for
a while but you soon discover there are more functions you want to trace;
and you’ll eventually end up with lots of functions being traced and lots
of commented-out tracing code. You might even end up with broken
commented-out code:

def dot(vec1, vec2):
 # print "dot(v=%r, w=%r)" % (v, w)
 return sum(v1 * v2 for v1, v2 in zip(
 vec1, vec2))

At this point, you realise that calling a function and tracing these calls are
orthogonal operations. Isn’t there a less invasive way to do this?

A less invasive way
Rather than change the original function you can simply wrap it with the
code which prints out the inputs (Listing 1).

The echo_both_args function accepts a single function as a parameter
and returns a new function which wraps this original function by adding
the desired trace functionality. By the way, I’ve introduced the term ‘echo’
for this action rather than the more conventional ‘trace’ since Python
already has a trace module which does something rather different. The
idea is that when you call a function, you hear your call repeated – like an
echo.
C/C++ programmers will have noticed the inner function object,
wrapped, which echo_both_args returns. Returning inner functions
is a common Python idiom, and is the way language implements the
closures found in other high-level languages such as Scheme or Ruby. The
inner function doesn’t go out of scope – in Python, objects persist as long
as needed.
The final line of the code snippet simply rebinds dot to the echoed version
of itself. We don’t need to pass the name of the function to be traced (dot
in this example) into echo_both_args since in Python a function object
carries its name around with it in a __name__ attribute. If we now call
dot in an interpreted session, we’ll see the call echoed:

>>> dot((1, 2, 3), (3, 2, 1))
dot((1, 2, 3), (3, 2, 1))
10

The inner function, wrapped, should be capable of wrapping any function
– so long as that function accepts just two parameters, that is. (Note the
use of the %r print formatter which converts any Python object into its
canonical string representation). If we want a more general purpose echo
which can wrap any function with any signature, we might try something
like Listing 2.
Here, the inner function, wrapped, has parameters (*v, **k), which
contain the positional and keyword arguments passed to this function
respectively. It doesn’t really matter how many arguments the function
being wrapped has, or indeed if this function itself accepts arbitrary
positional and keyword arguments: it just works – have a look in the Python

L

def echo(fn):
 """ Returns a traced version of the input
 function.
 """
 from itertools import chain
 def wrapped(*v, **k):
 name = fn.__name__
 print "%s(%s)" % (
 name, ", ".join(map(repr, chain(
 v, k.values()))))
 return fn(*v, **k)
 return wrapped

Listing 2

THOMAS GUEST
Thomas is an enthusiastic and experienced
programmer. He has developed software for
everything from embedded devices to clustered
servers. His website is http://www.wordaligned.org
Contact him at thomas.guest@gmail.com
OCT 2007 | | 13{cvu}

reference manual for details. We’ve used chain, one of the handy iterator
tools from the itertools module [1], to iterate through all the positional
and keyword argument values; then a combination of string.join and
the map and repr built-ins produce a string representation of these values.
We can now define, wrap and call some functions with more varied
signatures (Listing 3).
Running this code produces output:

 f(10)
 g('spam', 42)
 g('spam', 42)
 h()
 i('spam', 42, 'extra', 'args', 1, 2, 3)
 j(('green', 'eggs'), 'spam', 42)

This does something like what we want, but note a couple of problems:
� the second call to g uses keyword argument syntax, and the output

g('spam', 42) is exactly what we saw echoed by the previous
call to g even though the arguments have been swapped around.
We’d better try and echo argument names as well as their values
(just as we did when we first modified dot to echo calls).

� the output doesn’t show the (defaulted) arguments passed to h [2].

There’s another more subtle problem too. (Listing 4)
That is, by wrapping f, we’ve tinkered with its identity: its name has
changed and its documentation has disappeared. This is bad news in a
dynamic language, since any code introspecting f will get the wrong idea
about it. We should really have modified wrapper to copy various
attributes from f.

Decorators
At Python 2.3, the @ character was pulled out of the bag to provide a special
syntax for decorating functions in this way. Rather than retrospectively
rebinding a function f as shown in the examples so far, we can explicitly
decorate f up front with the echo wrapper like Listing 5.

Of course decoration isn’t reserved for the particular use case shown in this
article: we might decorate functions to time their execution, to protect them
against simultaneous access from multiple threads, to check the validity
of input arguments, to dynamically analyse code coverage, and so on.
Note also that there’s a special decorator in the functools module [3]
which does the job of making a wrapper look like its wrappee. (Listing 6)

Improving echo
Listing 7 is a version of echo which fixes the remaining problems: that
is, it prints out argument names as well as argument values, and it also
prints out any arguments defaulted in the call to the wrapped function. This
version is a little longer and considerably more fiddly [4], since we need
to dig deeper into the function’s code, but it follows the same basic pattern
as its predecessors.
While we’re improving things, note that we've also parameterised the
write function, rather than naively hijacking sys.stdout to print out
function calls.
Listing 8 shows the new version being tried and Listing 9 the resulting
output.
As you can see, it works on methods and classmethods too.
By the way, if you’re not familiar with classmethods, they’re created using
Python’s built-in classmethod function, which transforms functions in
the required way; and, as shown in the example above, the decorator syntax
is the recommended way of applying this transformation.

Wider application
Using this final version of echo to decorate functions is simple enough.
All you have to do is precede the function(s) you want to echo with the
echo decorator. What, though, if these functions are in a module you don’t
want to modify – one of the standard library modules, for example? What
if you want to echo an entire class by echoing all of its methods without

def f(x): pass
def g(x, y): pass
def h(x=1, y=2): pass
def i(x, y, *v): pass
def j(x, y, *v, **k): pass

f, g, h, i, j = map(echo, (f, g, h, i, j))

f(10)
g("spam", 42)
g(y="spam", x=42)
h()
i("spam", 42, "extra", "args", 1, 2, 3)
j(("green", "eggs"), y="spam", z=42)

Li
st

in
g

3

>>> def f(x):
... " I'm a function called f. "
... pass
...
>>> f.__name__
'f'
>>> f.func_doc
" I'm a function called f. "
>>> f = echo(f)
>>> f.__name__
'wrapped'
>>> f.func_doc
None

Li
st

in
g

4

>>> def echo(fn):
... from itertools import chain
... def wrapped(*v, **k):
... name = fn.__name__
... print "%s(%s)" % (name, ",".join(map(
... repr, chain(v, k.values()))))
... return fn(*v, **k)
... return wrapped
...
>>> @echo
>>> def f(x): pass
...
>>> f('does it work?')
f('does it work?')

Listing 5

>>> import functools
>>> def echo(fn):
... @functools.wraps(fn)
... def wrapped(*v, **k):
...
... return wrapped
...
>>> @echo
>>> def f(x):
... " I'm f, don't mess with me! "
... pass
>>> f.__name__
'f'
>>> f.func_doc
" I'm f, don't mess with me! "
>>> f(('spam', 'spam', 'spam!'))
f(('spam', 'spam', 'spam!'))

Listing 6
14 | | OCT 2007{cvu}

editing the class itself; or all the classes and functions in a module, again
without editing the module itself?
A little introspection works the required magic. All we have to do is work
our way through all the functions and classes in a module, and all the
methods in these classes, rebinding these functions to their echoed
versions. Extra attention is needed for class-, static- and private-methods,
but otherwise this code contains few surprises (Listing 10).

 Work in progress
I’ve used the echo library successfully on a number of occasions. Usually,
I simply want to capture all function calls made to a module. Echoing the
module generates a log file which I can then examine offline using the
standard unix shell tools.
I’ve resisted the urge to add options to fine-tune exactly which functions
get echoed, or to control whether or not private methods get echoed – I
prefer to generate a surplus of information then filter it as needed. (Though
note that the code, as it stands, doesn’t echo nested functions and classes.)

I discovered that if a class customises the special __repr__ method, then
trying to echo calls to this method leads to recursion and a runtime error.
As a consequence, echo avoids echoing __repr__ and, for good
measure, __str__ as well. I suspect that echo would lead to similar
problems if applied to another introspective module. Echoing doctest
wouldn’t be very clever, and echoing echo itself is surely doomed. �

Source code
The code for this article is available using anonymous SVN access at http:/
/svn.wordaligned.org/svn/echo. A Trac project supporting this article is
available at http://preojects.wordaligned.org/trac/echo

Thanks
Thanks to Dan Tallis, Kevlin Henney and all at CVu for their help with
this article.

import sys

def format_args(args):
 """ Return a string representing a sequence of
 function arguments.

 Each argument is either a (name, value)
 pair or simply a value.
 >>> format_args((('x', 2), ('y', 'spam')))
 "x=2, y='spam'"
 >>> format_args(1, 2, 3)
 1, 2, 3
 """
 def format_arg(arg):
 try: return "%s=%r" % arg
 except TypeError: return "%r" % arg
 return ", ".join(map(format_arg, args))

def echo(fn, write=sys.stdout.write):
 """ Echo calls to a function.

 Returns a decorated version of the input
 function which "echoes" calls made to it by
 writing out the function's name and the
 arguments it was called with.
 """
 import functools
 from itertools import chain, izip

 # Unpack function's arg count, arg names,
 # arg defaults
 code = fn.func_code
 argcount = code.co_argcount
 argnames = code.co_varnames[:argcount]
 fn_defaults = fn.func_defaults or list()
 argdefs = dict(
 zip(argnames[-len(fn_defaults):],
 fn_defaults))

 @functools.wraps(fn)
 def wrapped(*v, **k):
 formal = izip(argnames, v)
 defaulted = ((a, argdefs[a]) for a in
 argnames[len(v):] if a not in k)
 args = chain(formal, defaulted, v[argcount:],
 k.items())
 write("%s(%s)\n" % (fn.__name__,
 format_args(args)))
 return fn(*v, **k)
 return wrapped

Li
st

in
g

7 @echo
def f(x): pass
@echo
def g(x, y): pass
@echo
def h(x=1, y=2): pass
@echo
def i(x, y, *v): pass
@echo
def j(x, y, *v, **k): pass
class X(object):
 @echo
 def m(self, x): pass
 @classmethod
 @echo
 def cm(klass, x): pass

def reversed_write(s):
 sys.write(''.join(reversed(s)))
def k(**kw): pass
k = echo(k, write=reversed_write)

f(10)
g("spam", 42)
g(y="spam", x=42)
h()
i("spam", 42, "extra", "args", 1, 2, 3)
j(("green", "eggs"), y="spam", z=42)
X().m("method call")
X.cm("classmethod call")
k(born="Mon", christened="Tues", married="Weds")

Listing 8

f(x=10)
g(x='spam', y=42)
g(y='spam', x=42)
h(x=1, y=2)
i(x='spam', y=42, 'extra', 'args', 1, 2, 3)
j(x=('green', 'eggs'), y='spam', z=42)
m(self=<__main__.X instance at 0x7837d8>,
 x='method call')
cm(klass=<class __main__.X at 0x785840>,
 x='classmethod call')
)'seuT'=denetsirhc ,'sdeW'=deirram ,'noM'=nrob(k

Listing 9
OCT 2007 | | 15{cvu}

Notes and references
[1] http://www.python.org/doc/current/lib/module-itertools.html

‘itertools – Functions creating iterators for efficient looping’
[2] Strictly speaking, the default arguments aren’t ‘passed’ to the

function; they’re stored by the function object when the function
code is parsed.

[3] I suspect that inside this rather contorted function a simpler version
is begging to get out. I’d be pleased to accept any suggestions.

[4] http://docs.python.org/lib/module-functools.html ‘functools –
Higher order functions and operations on callable objects’

[5] A description of the Decorator pattern can be found in Design
Patterns: Elements of Reusable Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph Johnson, John Vlissides

[6] http://java.sun.com/j2se/javadoc 1Javadoc is a tool from Sun
Microsystems for generating API documentation in HTML format
from doc comments in source code.

[7] http://xdoclet.sourceforge.net ‘XDoclet is an open source code
generation engine.’

[8] http://pyconuk.org/index.html ‘The Python UK Conference’

Other languages also lay claim the to the term ‘decorator’, and indeed use of the @ symbol for this purpose. For example, a statically-typed
language such as C++ can utilise the DECORATOR [5] pattern to adapt objects at runtime: the classic example would be a window in a graphical
user interface, which may be dynamically decorated with (combinations of) borders, scroll-bars, and so on.
Java makes special use of the @ symbol in its annotations, a language feature related to Python’s decorators. You’ll also find the @ symbol used
in Java comments, where it augments the code without changing its runtime-behaviour, enabling the Javadoc [6] tool to generate better
documentation. I’ve seen this idea stretched further by the XDoclet [7] family of tools which perform tag-based tricks on Javadoc-style
comments in order to generate boiler-plate code – though in this case my response is closer to bewilderment than wonder.
Elevating the concept of decoration further brings us to aspect-oriented programming, a paradigm which provides language/framework support
for the separation of concerns – and if that sounds like a collection of buzzwords, it’s because I don’t know much about it!
For some readers, Python’s ability to tamper with classes and functions in ways unforeseen by their original implementer may seem dangerous,
and I regard this a fair reaction. Even at an event as Python-friendly as the recent PyCon UK [8], some present argued that static languages
were a safer choice for very large projects, primarily because such languages simply don’t allow you to write code such as
change_everything(world) – which is really what echo_module(module) does.
Meta-programming techniques like these need taste and restraint. As we’ve shown, in Python, the @ symbol is pure syntactic sugar; sweet as
it may seem, we should use it to improve, not impair.

Decoration, annotation, invasion and the @ symbol

import inspect
import sys

def name(item):
 " Return an item's name. "
 return item.__name__

def is_classmethod(instancemethod):
 """ Determine if an instancemethod is a
 classmethod. """
 return instancemethod.im_self is not None

def is_class_private_name(name):
 """ Determine if a name is a class private
 name. """
 # Exclude system defined names such as
 __init__, __add__ etc
 return name.startswith("__") and not
 name.endswith("__")

def method_name(method):
 """ Return a method's name.
 This function returns the name the method
 is accessed by from outside the class (i.e.
 it prefixes "private" methods
 appropriately).
 """
 mname = name(method)
 if is_class_private_name(mname):
 mname = "_%s%s" % (name(method.im_class),
 mname)
 return mname

def format_args(args):
 ...

def echo(fn, write=sys.stdout.write):
 ...

def echo_instancemethod(klass, method,
 write=sys.stdout.write):
 """ Change an instancemethod so that calls to
 it are echoed.
 Replacing a classmethod is a little more
 tricky.
 See: http://www.python.org/doc/current/ref/
 types.html
 """
 mname = method_name(method)
 never_echo = "__str__", "__repr__",
 # Avoid recursion printing method calls

Li
st

in
g

10

 if mname in never_echo:
 pass
 elif is_classmethod(method):
 setattr(klass, mname, classmethod(
 echo(method.im_func, write)))
 else:
 setattr(klass, mname, echo(method, write))

def echo_class(klass, write=sys.stdout.write):
 """ Echo calls to class methods and static
 functions
 """
 for _, method in inspect.getmembers(
 klass, inspect.ismethod):
 echo_instancemethod(klass, method, write)
 for _, fn in inspect.getmembers(
 klass, inspect.isfunction):
 setattr(klass, name(fn),
 staticmethod(echo(fn, write)))

def echo_module(mod, write=sys.stdout.write):
 """ Echo calls to functions and methods in a
 module.
 """
 for fname, fn in inspect.getmembers(
 mod, inspect.isfunction):
 setattr(mod, fname, echo(fn, write))
 for _, klass in inspect.getmembers(
 mod, inspect.isclass):
 echo_class(klass, write)

Listing 10 (cont’d)
16 | | OCT 2007{cvu}

The World View of a Java Champion # 2
PETER PILGRIM
Peter is a Java EE software developer, architect, and
Sun Java Champion from London. By days he works
as an independent contractor in the investment
banking sector. Peter can be contacted at
peter.pilgrim@gmail.com

On The Powell Cable Car at JavaONE 2007
Peter Pilgrim proposes Java is still a major player.

n early May, yours truly attended the annual JavaONE Conference in
San Francisco, USA. This event is truly the centre of the Java universe.
It has the same heartbeat and swell of excitement as the annual Apple

WWDC or the Microsoft Tech Ed conferences. This year over 15,000
attendees gathered together under one roof. JavaONE takes place over four
days and features 250 technical sessions on Java technology, scripting,
open source, Web 2.0 and more. It is the biggest Java conference world-
wide, in its twelfth year, and it is (under)written and produced by Sun
Microsystems. We had motivational talks by Bob Brewin, the CTO of Sun
Software; Rich Green, Executive VP of Sun; Jonathan Schwartz, CEO of
Sun; and James Gosling, Sun VP and father of Java. We had also
presentations from British developers such as Joe Walker and Stephen
Colebourne. Developers such as Geert Bevin, creator of the RIFE
framework, represented many Europeans who travelled over too.
The message of this year’s conference was that Sun is
focusing on the end user’s computing experience by
moving Java back to the desktop. Some will say it’s
about time. JavaFX is Sun’s attempt to take Java to the
typical web content programmer/designer. Also
JavaFX is the renamed product for a 20% computing-
time research project, dreamt up by Sun employee,
Chris Oliver. Chris invented a self-named scripting
language called F3 (borrowed from the phrase ‘form
follows function’; a modern architectural principle
coined by Louis Sullivan), which made it easier for
programmers to generate and control graphic elements
in 2D. Using JavaFX you can easily associate graphic
elements together, which are typically created in
graphic content programs such as PhotoShop. You can
take these elements, combine, program against them
and create moving animations. In contrast, creating the equivalent code in
the standard Java language, with the Java 2D API, would take far longer.
With JavaFX, Chris and Sun hope to reinvigorate Java on the desktop.
They also wish to capture the attention of web designers who are already
conversant in Adobe Flash and ActionScript.
Sun also announced JavaFX Script for mobile phones and other devices.
You would be astounded by how many mobile phones out there that are
Java compatible and can run the Java Virtual Machine. For a significant
part of the global populace, a mobile phone is their sole connection to the
wider Internet. So this explains why mobile devices are a very important
market for Sun and the Java ME platform.
However, Sun has two well-known competitors in the market. Microsoft
has its new SilverLight offering, and Adobe has its long standing Flash,
Flex Core and Flex Data Services. Let’s face it, Sun failed to set the world
alight with its now decade-old Java Applet technology. So now in order
to defend its own markets, it is computing with JavaFX. The reasons for
the unpopularity of applets are three-fold: poor deployability, weak
usability and straightforward performance. Java is perceptibly slow for
most Internet users and that is a shame, even for Groovy developers. So
at the conference, Sun announced its intention to fix the nagging JVM
issues.
As one of the key notes of the conference, Jasper Potts and Kenneth Russell
demonstrated IRIS, a new photo-sharing and uploading mash-up
application. IRIS is hybrid of Java applets, HTML, CSS and AJAX
integrated with the popular Flickr web services. Basically you can drag a
JPEG photo from your desktop and drop it into an applet that resembles a
camera shutter (hence the name, Iris), and the application then uploads

your digital photo to your Flickr account. In their presentation, Jasper and
Kenneth showed basic editing of the photos: sharpening, blurring,
cropping, resizing and colour correction. Afterwards the results were
saved back to Flickr. IRIS sports another brilliant applet that produce a
fantastic full 3D slide show at full screen size. This was stunning graphical
eye-candy, because this pure Java Applet displayed rotating cubes with
texture maps of the digital images, with hardware acceleration. What
amazed us all was that the Sun engineers found a way of getting this
functionality running with Java Runtime Environment 1.4 (circa 2002).
IRIS, therefore, will execute byte-code on earlier Java editions that are
already installed in corporate environments. The rub of the green is that
the engineers have still got to document their fabulous new techniques and
release the demo as open source.
The second great demo of the conference was NASA Whirl Wind, which

is in fact open source and available. Patrick Hogan, the
leader of the project literally showed us the world.
Whirl Wind is a Java Bean, which provides a 3D
mapping of the entire globe (or for that matter any other
spherical body like the moon or even Mars). It is very
similar to Google Earth, which is a native desktop
Windows application, except that Whirl Wind is a
standalone visualisation component written in 100%
Java. It can be integrated into either an applet or
application. NASA’s Whirl Wind is an awesome
graphical application. The smooth zooming and
rendering of the surfaces, whilst navigating across the
globe has to be seen to be believed. It demonstrates the
sheer power and speed of Java and OpenGL 3D API
bindings and I bet someone out there soon will find a
great use for this tool kit in a mash-up. Trust me – it

hasn’t been possible to describe Java as slow for a few years now.
Sun also announced that it will start addressing the download issues for
Java inside the browser. There will be a Consumer JRE that will be
modularised, in order to reduce the size of the Java download experience.
This will also increase the speed-to-launch for users. So for example,
people who do not require CORBA functionality, do not download that
module.
How would this work together? First of all, there will be a Java Kernel: its
task will be to reduce the time for installation and launch when the user
needs to install the JRE, in order to run an application. Then followed by
Quick starter, which will manage the execution of a Java application to
launch. Part of the solution to the speed, will rely on optimising operating
system to preload the JVM process, as pages from the disk.
I mentioned earlier that we also had several Brits at JavaONE this year.
For the AJAX Web 2.0 track, Joe Walker, a fellow Java Champion, gave
a presentation on his own creation Direct Web Remoting. He talked about
DWR 2.0 and the concept of reverse-AJAX. Stephen Colebourne, who is
known for his work on improving Java’s data and times API, presented a
late night BOF on JSR 310. Stephen is also a fellow Java Champion.
Representing London, I myself presented a piece called ‘Re-architecting

I

for a significant
part of the global

populace, a
mobile phone is

their sole
connection to the

wider Internet
OCT 2007 | | 17{cvu}

On The Powell Cable Car (continued)

One Laptop per Child
Silas Brown talks about an interesting project.

n case you haven’t heard of it already, the One Laptop
Per Child project, whose website is www.laptop.org,
aims to design a laptop with a production cost of

around $100 (about 50 pounds) that can be given to
children in the ‘third world’. The laptops are meant to be
rugged and will run on very little power; they have new-
technology displays that work well in all lighting
conditions, can be used in both with-keyboard and
without-keyboard (e-book) positions, have 256M RAM
and 1G of internal Flash memory (with USB ports that can take more), and
run a version of Linux on a 400MHz+ x86-compatible low-power CPU.
The machines also have WiFi (and will automatically create an ad-hoc
network around the classroom if no access point is available) and support
collaborative or group work.
The project is always looking for more volunteers to help develop its
software, which is all free as in speech/GPL. The distribution can be
downloaded and run in a virtual machine under QEMU or similar; if you
have good enough hardware you can try it. I have it on a real prototype
machine (called an XO because of the child-with-cross-legs logo); the
prototype machines are more limited in supply but the organisers kindly
sent me one so that I could do more realistic tests of its suitability for people
with low vision (it’s difficult to do that on an emulator because you can’t
be sure you’ve recreated the exact physical characteristics of the device).
They won’t be able to supply test hardware to everyone, but I’d like to
encourage more ACCU members to try the software download if they’d
like a good exercise or spare-time project that can also help a lot of
disadvantaged people. Additionally, I can’t help wondering if anyone in
ACCU would be interested in helping out with open courseware to help
the brighter children to learn programming.
The final choice of what courseware will be included with the XO will be
up to the ministries of education of the countries that accept it, but it’s
interesting to consider the possibilities. The desktop is built on Python and
the developers are keen to make the Python source available for inspection;

there is talk of implementing a ‘view source’ option for every application.
The distribution includes a Gecko-based browser, and a viewer for PDF
and other formats. Currently gcc is not included by default although it can
be downloaded as a package. The distribution is based on Fedora; I believe
this choice of distribution was at least partly motivated by the fact that Red
Hat are a major contributor to the specially-designed desktop front-end,
which is called Sugar and is based on Python and GTK with the Matchbox
window manager.
The best way to become familiar with the workings of the system (or at
least the parts of it relevant to your interests) is to dive into a working
system (on an emulator or whatever), press Alt-0 to get the developer
console, look at the output of ps auxwww to see what processes are
running with what parameters, and from there follow the scripts through
the filesystem, trying things out in a Python shell where necessary (e.g. if
it says get_path_to_something() try calling it yourself and see what
it gives). It helps to look around the dev.laptop.org website also. Bugs
are tracked with trac, and there is a wiki and mailing lists.
Definitely worth a look. �

I

SILAS BROWN
Silas is partially sighted and is currently undertaking freelance work
assisting the tuition of computer science at Cambridge University,
where he enjoys the diverse international community and its cultural
activities. Silas can be contacted at ssb22@cam.ac.uk

I can’t help wondering if anyone in ACCU
would be interested in helping out with open

courseware to help the brighter children to
learn programming
legacy applications with Spring Framework and Hibernate’, which was
well received.
At the conference Neil Gafter, Google employee, and one of the original
architects of generics for Java SE 5, talked about his proposal to add
Closures to the Java language (Java SE 7). It was a packed enthralling
lecture into the pros and cons of this language change. Closures will
definitely be useful for both library writers and users. It brought out the
semantic complexity of a few issues: the exact meaning of lexically scoped
variables; the treatment of exceptions, which are raised in a closure; and
abstract-code constructs. Incidentally Stephen Colebourne has also written
an alternative Closure proposal.
As leader of a London Java User Group, it was pretty fascinating to put
human faces to electronic addresses. I dined and drank with other JUG
leaders from all over the world, and we shared great experiences. We
talked about getting good quality speakers to events, hosting events and
getting sponsorship from companies. In conclusion, I thought the user
groups needs to collaborate more. The JUG leaders should all find out
about who and what else is out there in our development community. By
understanding technology and the affect of it on humankind, we are

building a digital society, not just a community. We can, as software
developers, really affect the lives and the spirits of others around us and
we will.
So Java is back on the desktop with JavaFX leading the way. I have no
doubt that Sun are extremely serious about solving the JRE issues, because
the market is ready for it yesterday! I personally cannot wait for the
Consumer JRE. I think that it will be crucially important for all
departments who are thinking about deploying future Java Web 2.0
applications. Java is already great for the enterprise and the server-side,
we know that. Java EE has been a world-wide hit for a lot of businesses.
Modularisation of Java SE and the usability of the Java plug-in will bring
major benefits, because Java already has a decent 2D and 3D APIs. We
just need tools like JavaFX and much better media support for popular
CODECS to get there. Did you know that Java is not the only language
that runs on the JVM? Including Java and now JavaFX, there are at least
200 other programming languages such as JRuby and Groovy that also run
on it. This year’s conference recharged my faith that Java will become
great on the front-end.
That is all for now, until the next time. Roll on 2008! �
18 | | OCT 2007{cvu}

Visiting Files and Directories in C#
Paul Grenyer walks the file system.

ecently I have been doing a lot of work with continuous integration
[CI] using CruiseControl.Net [CCNet]. It is currently an adequate
product, but has the potential to be an excellent product. I’m looking

forward to the next release, which is likely to be the first for .Net 2.
One particular requirement I had was to remove the source tree from the
disk after a change has been identified and before the change is checked
out. This effectively gives the user a completely clean check out each time.
This feature is not supported by any of the current CruiseControl.Net
source control tasks. It is possible to use a pre-build task to make a system
call to remove the source, but this is a hack and not portable easily across
platforms.
In my article ‘Continuous Integration with CruiseControl.Net – Part 3’
(available soon from http://www.marauder-consulting.co.uk), I wrote
about the powerful plug-in mechanism supported by CruiseControl.Net.
It can be used to modify existing task blocks to add, for example, the ability
to remove a source tree prior to checkout. C# is the ideal language to use
to write CruiseControl.Net plug-ins as they are simply .Net assemblies.
In this article I am going to look at how to use C# to remove a source tree
and develop the code into a enumeration method [EnumMethod] and
visitor [Visitor] compound that can be used for general purpose file and
directory traversal.

Directory.Delete
The .Net directory class has a Delete static method that takes a path to
the directory to be deleted. At first glance it appears to be the answer to
the problem and could make this article very short indeed (in reality all it
did was make my estimate of the time it would to write the plug-in wildly
inaccurate). To test it I created a temporary folder and put an empty text
file in it, then wrote the following code:
 Directory.Delete(@"C:\temp\somedir");

I was surprised to find that an exception was thrown. When I added
exception handling code the message was as follows:
 The directory is not empty.

This seemed fair enough and the Directory.Delete method does have
an overload that takes a second parameter called recursive, which
claims to remove all files and directories in the path recursively. I modified
the code and tried again:
 Directory.Delete(@"C:\temp\somedir",true);

Success! The file and the directory were both deleted. For good measure
(although now it just feels like proving black was white and getting killed
on the next zebra crossing [HHGTTG]), I tried the same code on a source
tree. It failed with the error message:
 Access to the path 'all-wcprops' is denied.

Some files had been deleted, but others had not. So I was left wondering
what was special about the files that hadn’t been deleted.
I have only worked with a few source control systems, namely CVS [CVS],
SubVersion [SVN] and Perforce [P4]. Perforce and at least one
configuration of CVS that I have used checks all its files out as read-only.
Files in the special .SVN folders used by SVN to keep track of changes
in the source are also read-only. all-wcprops is one of these files. I
started wondering if the problem could be caused by read-only files, so I
recreated my directory an empty text file, this time making it read-only. I
ran the code again and got the same error, this time relating to the file in
my directory.

This suggested that the solution was to remove the read-only flag from files
before deleting them. The FileAttributes enum and File class can
be used to test and set the attributes of a file, including read-only:

string file = @"C:\temp\somedir\somefile.txt";
FileAttributes fileAtts = File.GetAttributes(file);
File.SetAttributes(file,
 fileAtts & ~FileAttributes.ReadOnly);
Directory.Delete(@"C:\temp\somedir",true);

Executing the above code removed the file and the directory. However, I
could not test it on the source tree as that would require a list of all the files
in the tree that were read-only.

Listing read-only files in a directory
Listing the files in a directory in .Net is simple. All you need is a
DirectoryInfo object for the directory and then you can iterate through
a collection returned by the GetFiles method. To test this I added some
more files to the test directory, made three of them read-only and then ran
the code in Listing 1.
As expected the output listed the read-only files. The next step was to
remove the read-only attribute from the files. It also makes sense to remove
the files at the same time as that is the ultimate goal. The File.Delete
static method is used for this (Listing 2).

R

DirectoryInfo dirInfo = new
DirectoryInfo(@"C:\temp\somedir");

foreach (FileInfo fileInfo in dirInfo.GetFiles())
{
 FileAttributes fileAtts =
 File.GetAttributes(fileInfo.FullName);
 if ((fileAtts & FileAttributes.ReadOnly) != 0)
 {
 Console.WriteLine(fileInfo.FullName);
 }
}

DirectoryInfo dirInfo = new
DirectoryInfo(@"C:\temp\somedir");

foreach (FileInfo fileInfo in dirInfo.GetFiles())
{
 FileAttributes fileAtts =
 File.GetAttributes(fileInfo.FullName);
 if ((fileAtts & FileAttributes.ReadOnly) != 0)
 {
 File.SetAttributes(fileInfo.FullName,
 fileAtts & ~FileAttributes.ReadOnly);
 }
 File.Delete(fileInfo.FullName);
}

Listing 2
Listing 1

PAUL GRENYER
Paul has been a member of the ACCU since 2000 and
founded the ACCU Mentored Developers. Paul now
contracts at an investment bank in Canary Wharf. He can be
contacted at paul.grenyer@gmail.com
OCT 2007 | | 19{cvu}

This is still not a complete solution as a source tree will also contain
subdirectories that have some read-only files.

Listing subdirectories
A directory’s subdirectories can be listed in much the same way as its files,
but instead of using the GetFiles method the GetDirectories
method is used (Listing 3).
I tested this in the obvious way, by creating some subdirectories in my test
directory. The above code listed them all.

Putting it all together – recursion
I now had a method of:
� Listing all files in a directory
� Detecting if a file is read-only
� Removing the read-only attribute from a file
� Deleting a file
� Listing all subdirectories in a directory

The final solution needs to:
� Visit every directory in the source tree
� Remove the directory’s files and subdirectories
� Remove the directory itself.

The easiest way to do this is using recursion [Recursion]. In Listing 4,
DeleteDirectory is called recursively for every directory in the
supplied path until a directory is reached that doesn’t have any
subdirectories or all subdirectories have been visited. Then it works back
up the tree of directories removing the read-only attribute from read-only
files and deleting all files.

This of course is the solution to the problem. I ran it on the source tree and
it deleted all files and directories. So this article is finished, right?

The patterns
Wrong! The DeleteDirectory method is a very specific solution to a
very specific problem. It can not be used for doing anything other than
deleting directories and their contents. However, wanting to visit and
operate on every file and directory in a tree is a common requirement.
Imagine, for example, you were writing an application similar to Windows
Explorer or any other application that requires a list of files and directories.
The functionality provided by DeleteDirectory can be separated out
and expressed as two patterns. Iterating through directories and files is an
implementation of the ENUMERATION METHOD pattern and operating on
each file and directory is a (well hidden at the moment) implementation
of the VISITOR pattern.

DirectoryTraverser
Let’s start by looking at the class that will traverse through the directories
and files. DeleteDirectory works very well as simple static method,
but with DirectoryTraverser we want to be able to plug-in different
functionality and the power that a class provides makes life very much
easier, especially in terms of interface.
The DirectoryTraverser class only needs a single, non-constructor,
public method in its interface. This method is used to specify which
directory to traverse and to start the traversal:
 class DirectoryTraverser
 {
 public void Traverse(string path)
 {
 …
 }
 }

DirectoryInfo and FileInfo objects are used when the actual file
and directory traversal is performed. When the DeleteDirectory
method is called recursively the full path to the next directory is extracted
from the DirectoryInfo object. This is an unnecessary property access.
This can be avoided by providing a private overload of Traverse that
takes a DirectoryInfo object and use the original method to create the
DirectoryInfo object to be passed the first time the overload is called
(Listing 5).
If we were writing an application that sends an indented list of directories
and files to the console, we want to know about a directory before we know
about its files. If we’re writing an application that deletes directories and
files we want to know about each file before the directory so that we can
delete the files and then delete the directory. Order is very important.
Therefore we need two directory related actions into which we can plug
functionality. One invoked when entering a directory. The other invoked
when leaving a directory. Only a single pluggable action is needed for files
(Listing 6).
That completes most of the functionality of DirectoryTraverser.
However, at the moment it is not very pluggable.

DirectoryInfo dirInfo =
 new DirectoryInfo(@"C:\temp\somedir");
foreach (DirectoryInfo subDirInfo in
 dirInfo.GetDirectories())
{
 Console.WriteLine(subDirInfo.FullName);
}

Li
st

in
g

3

private static void DeleteDirectory(string path)
{
 DirectoryInfo dirInfo = new DirectoryInfo(path);

 foreach (DirectoryInfo subDirInfo in
 dirInfo.GetDirectories())
 {
 DeleteDirectory(subDirInfo.FullName);
 }

 foreach (FileInfo fileInfo in
 dirInfo.GetFiles())
 {
 FileAttributes fileAtts =
 File.GetAttributes(fileInfo.FullName);
 if ((fileAtts & FileAttributes.ReadOnly) != 0)
 {
 File.SetAttributes(fileInfo.FullName,
 fileAtts & ~FileAttributes.ReadOnly);
 }

 File.Delete(fileInfo.FullName);
 }
 Directory.Delete(path);
}

Li
st

in
g

4

class DirectoryTraverser
{
 public void Traverse(string path)
 {
 Traverse(new DirectoryInfo(path));
 }

 private void Traverse(DirectoryInfo dirInfo)
 {
 …
 }
}

Listing 5
20 | | OCT 2007{cvu}

IDirectoryVisitor
The visitor part of the implementation is the ability to plug-in behaviour
when a directory is entered, when a file is visited and when a directory is
left. The easiest way to do this is via a method call for each operation and
C#’s delegate mechanism would seem to be the obvious implementation
solution. In fact my early implementations used it. It is a good solution if
you only have one method to delegate. As soon as you have more it
becomes cumbersome. Do you set the delegates via the constructor or
properties or both? What if you only want a delegate for entering
directories and visiting files? Do you have a constructor that takes only two
delegates or only one? If so which one? Which two? etc.
The simplest solution in this case is to have a callback interface, such as
the one below:
 interface IDirectoryVisitor
 {
 void EnterDirectory(DirectoryInfo dirInfo);
 void VisitFile(FileInfo fileInfo);
 void LeaveDirectory(DirectoryInfo dirInfo);
 }

Then you can just implement the methods you want and leave the others
as empty methods that do nothing. For example the following
implementation of the interface lists all directories and files in the given
path. (Listing 7)
Now all that is needed is a method of plugging an implementation of the
IDirectoryVisitor into the DirectoryTraverser. This is easy
and straightforward. Simply pass an interface reference into the
constructor, store and call the appropriate callback, instead of the methods
show previous (Listing 8).
The class in Listing 8 does, of course, have a, strictly speaking, extra level
of unnecessary indirection: the calls to the EnterDirectory,
VisitFile and LeaveDirectory methods could be replaced with
calls directly to the visitor.
DirectoryTraverser and DirectoryWriter are used together as
follows:

DirectoryTraverser dirTrav =
 new DirectoryTraverser(new DirectoryWriter());
dirTrav.Traverse(@"C:\temp");

Coming full circle
The DirectoryWriter visitor in Listing 8 is very simple, not especially
useful and does not demonstrate how the EnterDirectory and
LeaveDirectory callbacks can be used together. The more advanced
version shown in Listing 9 uses the methods to control the indentation
when sending the directory and file structure to the console.
Running it against the test project I created for this article gives the output
in Listing 10.
An example of a visitor that deletes files and directories is shown in
Listing 11 to bring this article full circle. �

private void Traverse(DirectoryInfo dirInfo)
{
 EnterDirectory(dirInfo);

 foreach (DirectoryInfo subDir in
 dirInfo.GetDirectories())
 {
 Traverse(subDir);
 }

 foreach (FileInfo file in dirInfo.GetFiles())
 {
 VisitFile(file);
 }

 LeaveDirectory(dirInfo);
}

private void EnterDirectory(DirectoryInfo dirInfo)
{
}

private void VisitFile(FileInfo fileInfo)
{
}

private void LeaveDirectory(DirectoryInfo dirInfo)
{
}

Li
st

in
g

6

class DirectoryWriter : IDirectoryVisitor
{
 public void EnterDirectory(
 DirectoryInfo dirInfo)
 {
 Console.WriteLine(dirInfo.FullName);
 }

 public void VisitFile(FileInfo fileInfo)
 {
 Console.WriteLine(fileInfo.FullName);
 }

 public void LeaveDirectory(
 DirectoryInfo dirInfo)
 {
 }
}

Li
st

in
g

7

class DirectoryTraverser
{
 private IDirectoryVisitor visitor;

 public DirectoryTraverser(
 IDirectoryVisitor visitor)
 {
 this.visitor = visitor;
 }

 public void Traverse(string path)
 {
 Traverse(new DirectoryInfo(path));
 }

 private void Traverse(DirectoryInfo dirInfo)
 {
 visitor.EnterDirectory(dirInfo);

 foreach (DirectoryInfo subDir in
 dirInfo.GetDirectories())
 {
 Traverse(subDir);
 }

 foreach (FileInfo file in dirInfo.GetFiles())
 {
 visitor.VisitFile(fileInfo);
 }

 visitor.LeaveDirectory(dirInfo);
 }
}

Listing 8
OCT 2007 | | 21{cvu}

Acknowledgments
Thank you to Kevlin Henney for reviews and guidance.

References
[CI] http://en.wikipedia.org/wiki/Continuous_integration
[CCNet] http://ccnet.thoughtworks.com/
[EnumMethod] http://www.two-sdg.demon.co.uk/curbralan/papers/

ATaleOfThreePatterns.pdf
[Visitor] Design patterns: elements of reusable object-oriented software

by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.
ISBN-10: 0201633612 ISBN-13: 978-0201633610

[HHGTTG] http://www.bbc.co.uk/cult/hitchhikers/
[CVS] http://www.nongnu.org/cvs/
[SVN] http://subversion.tigris.org/
[P4] http://www.perforce.com/
[Recursion] http://en.wikipedia.org/wiki/Recursion
[GoF] Design patterns : elements of reusable object-oriented software by

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. ISBN-
10: 0201633612 ISBN-13: 978-0201633610

class DirectoryWriter : IDirectoryVisitor
{
 private int indent = 0;

 public void EnterDirectory(
 DirectoryInfo dirInfo)
 {
 StringBuilder buffer = new StringBuilder();
 buffer.Append(new string(' ', indent));
 buffer.Append(dirInfo.Name);
 Console.WriteLine(buffer.ToString());
 ++indent;
 }

 public void VisitFile(FileInfo fileInfo)
 {
 StringBuilder buffer = new StringBuilder();
 buffer.Append(new string(' ', indent+1));
 buffer.Append(fileInfo.Name);
 Console.WriteLine(buffer.ToString());
 }

 public void LeaveDirectory(
 DirectoryInfo dirInfo)
 {
 --indent;
 }

Li
st

in
g

9 DirectoryTraverser2
 DirectoryTraverser2
 bin
 Debug
 DirectoryTraverser2.exe
 DirectoryTraverser2.pdb
 DirectoryTraverser2.vshost.exe
 Release
 DirectoryTraverser2.exe
 DirectoryTraverser2.pdb
 obj
 Debug
 TempPE
 DirectoryTraverser2.exe
 DirectoryTraverser2.pdb
 Release
 TempPE
 DirectoryTraverser2.exe
 DirectoryTraverser2.pdb
 DirectoryTraverser2.csproj.FileList.txt
 Properties
 AssemblyInfo.cs
 DirectoryTraverser.cs
 DirectoryTraverser2.csproj
 DirectoryWriter.cs
 EntryPoint.cs
 IDirectoryVisitor.cs
 DirectoryTraverser2.sln

Listing 10

class DeleteDirectoryVisitor : IDirectoryVisitor
{
 public void EnterDirectory(
 DirectoryInfo dirInfo)
 {
 }

 public void VisitFile(FileInfo fileInfo)
 {
 FileAttributes fileAtts =
 File.GetAttributes(fileInfo.FullName);
 if ((fileAtts & FileAttributes.ReadOnly) != 0)
 {
 File.SetAttributes(fileInfo.FullName,
 fileAtts & ~FileAttributes.ReadOnly);
 }

 File.Delete(fileInfo.FullName);
 }

 public void LeaveDirectory(
 DirectoryInfo dirInfo)
 {
 Directory.Delete(dirInfo.FullName);
 }
}

Listing 11
22 | | OCT 2007{cvu}

OCT 2007 | | 23{cvu}

Regional Meetings
A round-up of the latest ACCU regional events.

ACCU North East
Report from Ian Bruntlett (ianbruntlett@hotmail.com)

Surroundings: We were in Contacts building again. Yesterday was the
official opening of Contacts new premises and there was some food left
over from Friday’s buffet, so we had free lunch including some really nice
cake. Contact was running a flag day and there were a number of people
rushing about, selling Contact stickers.
Presentation/Discussion: Snakes and ladders, AKA Python traps and
pitfalls. I (Ian Bruntlett) gave a presentation about Python. I covered how
far I’d got through the standard tutorials, highlighting the kinds of things
a C or C++ programmer would note as unusual things of interest.
We discussed the language and Alex experimented with some example
programs on his laptop, trying things out and generally working out what
can and can’t be done.
We covered list comprehensions and generator expressions and their
similarities: list comprehensions returning a list of results in memory,
generator expressions returning values one at a time.
We got a bit bogged down re: passing values to functions, namely:

1. Normal / positional parameters
2. Arbitrary argument lists
3. Keyword arguments

After the meeting, I dug out some examples and sent them to the ACCU
NE mailing list for people to experiment with and hopefully understand
some of the fancy things Python can do.

Unpacking argument lists

I deliberately avoided covering unpacking argument lists where the
arguments for a function are already in a list or tuple but need to be
unpacked for a function call. This can be done automatically. Here is an
example:
 print range(3,6) # produces [3,4,5]
 args=[3,6]
 print range(*args) # also produces [3,4,5]

In the same way, dictionaries can deliver keyword arguments with the **
operator:
d = { "voltage" : "four million",
 "state" : "bleedin demised",
 "action" : "VOOM" }
parrot (**d)

Programming was discussed and Alex took the opportunity to make people
aware of high level languages LISP, Erlang etc and he quoted Philip
Greenspun’s ‘Tenth Rule of Programming’, that any sufficiently
complicated C or Fortran program contains an ad hoc, informally-
specified, bug-ridden, slow implementation of half of Common Lisp.
Next month: Alex Kavanagh has agreed to present Erlang, a massively
threaded language.

ACCU Cambridge
Report from Ric Parkin (ric.parkin@gmail.com)

Since the last CVu, the local ACCU Cambridge group has held two
meetings, again kindly hosted by DisplayLink.
In August Ric Parkin gave an updated version of his talk ‘Semantic
Programming’ given at this year’s conference, looking at how to take
advantage of strongly typed languages to encode usage rules into the
program types, and what consequences this has on a program’s style and
idioms.
In September Peter Smith gave a talk ‘The Missing Link’ looking at the
much overlooked Linker, giving a high level overview of their role and
delving into some specific examples to illustrate some of their more quirky
corners, and how they’ve come to influence languages such as C and C++
with their concepts of ‘Linkage’, ‘One Definition Rule’, and name
conventions.
Despite the holiday season turnout has been good, and involved plenty of
audience discussion, and even more in the pub afterwards.
Future meeting are already pencilled in for 4th October, with Russel
Winder looking at Dynamic Languages, and on 1st November, with Allan
Kelly on Agile development. Hope to see you there!

ACCU London
Report from Steve Love (steve@essennell.co.uk)

The September ACCU London meeting was special for me because it was
my first time attending. The talk was by Pete Goodliffe, author of Code
Craft (if you haven’t got it, go get it!) and a hefty history of
‘Professionalism in Programming’ articles, who is well known for
monkeys and bare feet. If you’ve seen Pete present at the ACCU
conference, you’ll know that he is a treat to watch. The talk he gave was
‘Code Monkeys’, a slightly satirical, and completely irreverent look at the
inhabitants of what Pete calls ‘The Software Factory’.
A Goodliffe presentation wouldn't be complete without some fun and
games, as if watching Pete himself dancing and gesticulating wasn’t
enough. To give himself a chance for a short breather, Pete had us
designing a ‘simple’ system from scratch requirements. The purpose of the
exercise became clear when the meat of the talk began and Pete started
talking monkey-business. Being an excellent programmer isn’t really
about writing amazing code, it’s just as much about attitude – both to your
work and to your colleagues.
It was an entertaining and enlightening talk, delivered with the expected
gusto and enthusiasm, despite there being only 10 of us there.
If you weren’t there, you missed a treat and it’s nobody’s fault but yours! ☺
7 City Learning (http://7city.com) again hosted the evening and after the
talk we retired to a nearby hostelry to debate our true ‘monkey’ identities.

Code Critique Competition 48
Set and collated by Roger Orr.

lease note that participation in this competition is open to all
members, whether novice or expert. Readers are also encouraged to
comment on published entries, and to supply their own possible code

samples for the competition, in any common programming language, to
scc@accu.org.

Last Issue’s Code
I have this small program here and am wondering why, when compiled
with full optimisation it does not produce any output at all? It works
fine without optimisation.

Please try to help the programmer find the answer to this question (and
future ones).

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int tab[13][20]={
 {0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0},
 {0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,1,0,0},
 {0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1},
 {1,0,0,1,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,0},
 {0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,0,1},
 {0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0},
 {1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,2,0},
 {0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,1},
 {0,0,0,0,1,1,0,1,1,0,0,0,0,0,1,0,1,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0}};

int tabx[13][20];
int sumy[20];
int licz(char *konfig)
{
 int i,n,l,el,ile=0;
 char c;

 memset(&sumy,0,sizeof(sumy));
 memset(&tabx,0,sizeof(tabx));

 for (i=0; i<=12; i++)
 for (n=0; n<=19; n++) {
 c=konfig[i];
 l=atoi(&c);
 el=l*tab[i][n];
 if (el>0) sumy[n]=sumy[n]+el;
 tabx[i][n]=el; }
 for (n=0; n<=19; n++)
 if (sumy[n]==3) ile++;
 return(ile);
}

int ile1(char *s)
{
 int i,n=0;
 for (i=0;i<=12;i++) if (s[i]=='1') n++;
 return(n);
}
void main()
{
 char komb[13];
 int a1,a2,a3,a4,a5,a6,a7,a8,a9,aa,ab,ac,ad;
 int xx,w,ile;
for (xx=0;xx<=4;xx++)
 for (a1=0; a1<=1; a1++)
 for (a2=0; a2<=1; a2++)
 for (a3=0; a3<=1; a3++)
 for (a4=0; a4<=1; a4++)
 for (a5=0; a5<=1; a5++)
 for (a6=0; a6<=1; a6++)
 for (a7=0; a7<=1; a7++)
 for (a8=0; a8<=1; a8++)
 for (a9=0; a9<=1; a9++)
 for (aa=0; aa<=1; aa++)
 for (ab=0; ab<=1; ab++)
 for (ac=0; ac<=1; ac++)
 for (ad=0; ad<=1; ad++)
 {
sprintf(komb,"%d%d%d%d%d%d%d%d%d%d%d%d%d",
a1,a2,a3,a4,a5,a6,a7,a8,a9,aa,ab,ac,ad);
 w=licz(komb);
 ile=ile1(komb);
 if ((w==1) && (ile<=3))
 {
 printf("%s\t%d\t%d\n",
 komb,w,ile);
 }
 }
}

 Critiques

From Nevin :-] Liber <nevin@eviloverlord.com>

The main problem with this code is in its use of C strings. C strings must
always be '\0'-terminated, and there must be room in the underlying
array to hold that null byte.
There is also the minor issue that void main() is not a valid declaration;
it must return int.
Making minimal changes to the code:

/* ... */
int licz(char *konfig)
{
 int i,n,l,el,ile=0;
 char c[2] = {};
/* was: char c; */

 memset(&sumy,0,sizeof(sumy));
 memset(&tabx,0,sizeof(tabx));
 for (i=0; i<=12; i++)
 for (n=0; n<=19; n++) {

P

ROGER ORR
Roger has been programming for over 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf and the City. He joined ACCU in 1999 and
the BSI C++ panel in 2002.
He may be contacted at rogero@howzatt.demon.co.uk
24 | | OCT 2007{cvu}

 *c=konfig[i];
/* was: c=konfig[i]; */
 l=atoi(c);
/* was: l=atoi(&c); */
 /* ... */
}

/* ... */

int main()
/* was: void main(); */
{
 char komb[14];
/* was: char komb[13]; */
 /* ... */
}

This is a decent solution. However, for purposes of this critique, let’s
explore another one. There are advantages and drawbacks to using a C
string as the underlying data representation.
Pluses:

1. It is extensible. In order to add more bits, just increase the size of the
corresponding arrays.

2. It is displayable. All it takes is a simple printf.
Minuses:

1. It is fragile. Because it is not a self-contained type, everywhere it is
used one has to make sure that the array is big enough and that it is
'\0'-terminated.

Looking at the code, ultimately it is doing calculations based on bits in
komb. If we are willing to limit the maximum number of bits to those in
a fundamental type (short, long, etc.), we can use a fundamental type
to hold the bits, eliminating the fragileness of the original solution.
Given that we only have 13 bits, on most platforms an unsigned short
will do quite nicely to hold the data (I prefer using unsigned types when
doing bit manipulation). We’ll need some helper functions to extract bits
and to print. Here is the start of the code:

static const size_t K = 13;
static const size_t T = 20;
typedef unsigned short k_type;

int bit(k_type k, size_t b)
{ return !!((1U << (K - 1 - b)) & k); }

void print(k_type k, int w, int ile)
{
 size_t i;
 for (i = 0; K != i; ++i)
 printf("%c", "01"[bit(k, i)]);
 printf("\t%d\t%d\n", w, ile);
}

Normally I’d put in better names but I don’t know this problem domain.
bit(k_type k, size_t b) is a new function that returns the value
(0 or 1) of the bth bit of object k. Note: bit 0 is stored as the most significant
bit in k_type so that the bit positions match those in the original solution.

int licz(k_type konfig)
{
 int sumy[T] = {};
 static const unsigned char tab[K][T] =
 {
 {0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0},

 {0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,1,0,0},
 {0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1},
 {1,0,0,1,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,0},
 {0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,0,1},
 {0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0},
 {1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,2,0},
 {0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,1},
 {0,0,0,0,1,1,0,1,1,0,0,0,0,0,1,0,1,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0},
 };

 int ile = 0;
 size_t i;
 size_t n;
 for (i = 0; K != i; ++i)
 if (bit(konfig, i))
 for (n = 0; T != n; ++n)
 sumy[n] += tab[i][n];

 for (n = 0; T != n; ++n)
 ile += (sumy[n] == 3);

 return ile;
}

sumy and tab were only used inside this function, so I made them local.
tabx was set but never read, so I eliminated it entirely. To clear sumy, I
prefer initialization syntax over memset. tab is now a static const
unsigned char array as it never needs to be modified and an unsigned
char is perfectly large enough to hold the values 0, 1 and 2. I also added
an optimization in the first for loop: if the bit is 0, then the corresponding
contribution to sumy is also 0, so there is no need to calculate it.
int ile1(k_type s)
{
 int n = 0;
 size_t i;
 for (i = 0; K != i; ++i)
 n += bit(s, i);
 return n;
}

ile1(k_type s) just counts the number of 1 bits in s.
Finally, here is main(), using k_type instead of C strings:

int main()
{
 size_t xx;
 for (xx = 0; 4 != xx; ++xx)
 {
 k_type komb;
 for (komb = 0; 1U << K != komb; ++komb)
 {
 int w = licz(komb);
 int ile = ile1(komb);
 if (w == 1 && ile <= 3)
 print(komb, w, ile);
 }
 }
}

So, which solution would I go with? If I knew that I’d never need more
than the number of bits that can fit in a fundamental type, I’d go with the
second solution. If it needed to be extensible to an arbitrary number of bits
(and written in C), I’d stick with the author’s version (fixed, of course).

From Paul Evans <paul.evans@reuters.com>

First let’s fix the bug.
 int licz(char *konfig)
 {
OCT 2007 | | 25{cvu}

 int i,n,l,el,ile=0;

this next line is the start of the problem – see below
 char c;

 memset(&sumy,0,sizeof(sumy));
 memset(&tabx,0,sizeof(tabx));

 for (i=0; i<=12; i++)
 for (n=0; n<=19; n++) {
 c=konfig[i];

this next line is only works because a zero happens to be in memory after
the variable c, when optimisation is cranked up, this unplanned side-affect
of the code layout disappears and invalidates the translation of the numeric
character stored in c to the corresponding integer in l:
 l=atoi(&c);

by changing c in function licz from a char to a null-terminated char*
and then passing the pointer to this string to atoi, int l always gets the
correct value, regardless of optimisation levels.
Top Tip: don’t program in C, program in C++!!!!
[Ed: Paul then successively refactored the code – for reasons of space I
won’t show the intermediate versions, just give his commentary and output
of the last iteration]

In the first refactoring of the code we get rid of the obviously unnecessary
code + vars + do a little reordering of a nested loop: and behold! – the
original problem vanishes. But, it can still be vastly improved...
Next a lot of those for loops are going to have to go, but let’s do an
incremental refactoring and change all of those unnecessary post-
increments to pre-increments. They are very annoying because they
involve an unused temporary variable.

The final refactor

1. get rid of that messy char* string of ascii 1s + 0s to represent a bit
pattern. Use the actual bit pattern of an int + change all code
affected.

2. get rid of all magic numbers and use #defines instead (this is C
not C++)

3. try to find more meaningful names for things
4. in the spirit of space optimisation, use chars, shorts, etc., where

appropriate (assumes BITS to be <16)
5. put every for/if target into a {} block – easier to add/delete/

comment-out statements
6. consistent/tidy indenting, spacing + make main() standard by

returning an int
7. try to comment some things, but need context to do it properly.

It is still pretty scary, but not knowing the context for this weird beast, it’s
much more clearer than before.
#include <stdio.h>

#define BITS 13
#define COLUMNS 20
#define SUMY_TARGET 3
#define W_TARGET 1
#define MAX_BITS 3
#define REPS 5

char tab[BITS][COLUMNS]={
 {0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0},
 {0,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,1,0,0},
 {0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1},
 {1,0,0,1,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,0},
 {0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,0,1},
 {0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0},

 {1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,2,0},
 // notice the 2!!
 {0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,1},
 {0,0,0,0,1,1,0,1,1,0,0,0,0,0,1,0,1,0,0,0},
 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0}};

char calc_w(int bit_pattern)
{
 char bit_pos=0, n=0, w=0, sumy=0;
 for (n=0; n < COLUMNS; ++n) {
 for (bit_pos=0; bit_pos < BITS; ++bit_pos) {
 if (bit_pattern & (1<<(BITS-1-bit_pos))) {
 // the bit in bit_pattern bit_pos
 // positions from the left is set to 1
 // so do a weird sum
 sumy += tab[bit_pos][n];
 }
 }
 if (sumy==SUMY_TARGET) {
 ++w;
 }
 sumy = 0;
 }
 return(w);
}

char bit_count(int bit_pattern)
{
 char bit_pos=0, bc=0;
 for (bit_pos=0; bit_pos < BITS; ++bit_pos) {
 if (bit_pattern & (1<<bit_pos)) {
 // the bit in bit_pattern,
 // bit_pos positions from the right
 // is set to 1 -- so bump the bit count
 ++bc;
 }
 }
 return(bc);
}

int main()
{
 char bit_pos=0, reps=0, no_bits=0, w=0;
 short bit_pattern=0;
 for (reps=0; reps < REPS; ++reps) {
 for(bit_pattern=0; bit_pattern <
 (1<<BITS); ++bit_pattern) {
 // generate all the bit patterns from
 // 000....0
 // to
 // 111....1
 // that are BITS bits wide with
 // the lesser significant bits looping
 // more rapidly than the greater
 // significant bits
 w=calc_w(bit_pattern);
 no_bits=bit_count(bit_pattern);
 if ((w==W_TARGET)&&(no_bits<=MAX_BITS)){
 for(bit_pos=BITS-1; bit_pos >= 0;
 --bit_pos) {
 // print out a '1' or '0'
 // corresponding to the
 // bit in bit_pattern, bit_pos
 // positions from the left
 printf("%c",
 (bit_pattern & (1<<bit_pos)) ?
 '1':'0');
 }
 printf("\t%d\t%d\n",w,no_bits);
 }
 }
26 | | OCT 2007{cvu}

 }
 return 0;
}

Commentary
It is relatively easy to find the answer to the question the writer of the code
asked. However, few of us would want to leave it there because the code
is crying out for improving in the ways Paul and Nevin described.
The original code is hard to critique because it isn’t clear what it does. For
example, calling the big table of numbers tab gives no idea about what it
is a table of. One question neither entrant asked is whether the single 2 in
the table is actually correct – should it in fact be a 1? (I don’t know either!)
Paul’s first comment in main in his final solution (generate all the bit
patterns from 000....0 to 111....1 that are BITS bits wide) is an attempt to
fill in some of the missing meta-data in this program, but without
communication with the actual writer of the code there’s a lot that remains
unclear.
Does it matter?
Well, yes it does. For example, both solutions make attempts to reduce the
number of bits used to store the data being worked on, but without some
context for the problem it is hard to tell whether this is cost effective.
My favourite computing guideline is separate the things that change from
the things that stay the same. This program would be much easier to work
on if it was clearer which were which.
However, even where we don’t have a full understanding of the context in
which the code is to be used it is still possible to make localised
improvements to it. In this case, the existence of an output file makes it
very easy to verify that the new output matches the old, which gives
confidence that the refactorings are sound.
Note how hard it is to get this right – the refactoring of:
 for (xx=0;xx<=4;xx++)

to
 for (xx = 0; 4 != xx; ++xx)

looks right at first, but isn’t. I too have introduced similar bugs when
refactoring non-idiomatic code.

The Winner of CC 47
Both the entrants answered the original question and also provided
additional changes to try and make the code better.
Both solutions changed the original character string for komb into a
numeric value; Nevin’s explanation of the pros and cons of doing this was
good. I liked the places where Paul provided some rationale for his changes
as this should help the original programmer understand why things were
changed.
After re-reading both entries I’ve awarded this issue’s prize to Paul.

Code Critique 48
(Submissions to scc@accu.org by Nov 1st)

I’m reading in dates and printing them out sorted in ‘human friendly’
format. Sometimes the program crashes but I can’t see a clear pattern
– can you suggest what might be wrong and how the program could
be improved?

The code is in Listing 1.
(Thanks are due to Hubert Matthews for supplying the original idea for this
issue’s critique.)
You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website

(http://www.accu.org/journals/). This particularly helps
overseas members who typically get the magazine much
later than members in the UK and Europe. �

// Read dates, and display as sorted text
#include <time.h>
#include <iostream>
using namespace std;
#define CLOCK_YEAR_OFFSET 1900
int main()
{
 tm *tm = new::tm[10];
 time_t time_t;
 char b[16];
 int i = -1;
 char ch;

 cout << "Enter up to ten dates (yyyy-mm-dd)"
 ", end with 'exit': ";
 while (cin>>tm[++i].tm_year>>ch
 >>tm[i].tm_mon>>ch
 >>tm[i].tm_mday)
 cout << ": ";

 for (int j = 0; j != i; j++)
 {
 int to_year =
 tm[j].tm_year-CLOCK_YEAR_OFFSET;
 int to_month = tm[j].tm_mon-1;
 int to_day = tm[j].tm_mday;
 for (int k = j; k != i; k++)
 {
 if (((tm[k].tm_year-CLOCK_YEAR_OFFSET)
 > to_year)
 ||
 (((tm[k].tm_year-CLOCK_YEAR_OFFSET)
 == to_year) && (tm[k].tm_mon-1
 > to_month))
 ||
 (((tm[k].tm_year-CLOCK_YEAR_OFFSET)
 == to_year) && (tm[k].tm_mon-1
 == to_month) && (tm[k].tm_mday
 > to_day))
)
 {
 swap(tm[j], tm[k]);
 to_year =
 tm[j].tm_year-CLOCK_YEAR_OFFSET;
 to_month = tm[j].tm_mon-1;
 to_day = tm[j].tm_mday;
 }
 }
 tm[j].tm_year= to_year;
 tm[j].tm_mon = to_month;
 tm[j].tm_mday = to_day;
 }
 while (i--)
 {
 strftime(b,sizeof(b),"%a %d-%b-%Y",
 localtime(&(time_t=mktime(tm+i))));
 cout << b << endl;
 }
}

Listing 1

Prizes provided by Blackwells Bookshops and Addison-Wesley
OCT 2007 | | 27{cvu}

Languages
Core Python Programming
by Wesley J. Chun, Prentice
Hall, 2007, ISBN: 0-13-
226993-7, Pages: 1077

Reviewed by Ivan Uemlianin

This is a fairly terrible
book, but I hesitate to say
‘not recommended’
because I think inside it
there is another book
trying to get out which is not bad.
After some introductory material, the book
works bottom-up through the language. ‘Core
Python’ takes up the first 670 pages, and the next
350 take us through a selection of ‘Advanced
Topics’. The format is familiar: a chapter
discussing some aspect of the language,
followed by a set of exercises; gradually the
reader develops a firm understanding.
The book’s failings come in several categories:
� Errors, including the front cover (the

cover promises ‘Includes brand new
chapters on ... Java/Jython and Microsoft
Office.’ – actually, the 13 pages on MS
Office and four pages on Jython are
contained in a chapter called
‘Miscellaneous’); code that doesn’t work;
code that doesn’t tally with the text
describing it; code that doesn’t produce its
purported output.

� Inconsistencies: it gives two different
definitions of floor division (a wrong one
and a right one); recent additions to
Python are simply appended onto sections
describing earlier features, even when
these additions break backwards-
compatibility (e.g. exceptions on p.394).
The effect becomes surreal when we read
things like ‘this feature [string-based
exceptions] will be obsolete beginning
with Python 1.6’ (p. 386).

� Idiosyncrasies: the author makes some
odd choices about what to include and
when. Rarely used functions like id()
(p. 113) are discussed early on, while for
really useful features like regex flags the

reader is referred to ‘the documentation’
(p.686).

On top of all this, the text is excessively verbose,
leading to poor explanations precisely where
clarity is needed.
The inner book would be a mildly interesting, if
aimless, ramble through the lesser-travelled by-
ways of Python – most, perhaps all, historical
releases of Python are discussed here.
Occasionally a topic is discussed well – for
example class attributes, and static and class
methods (p. 537f), but note that the code on p.
538 does not tally with the text – but such
moments are rare.
This is not a book for learning Python: for that
I recommend Learning Python (Lutz & Ascher,
2003, O’Reilly). Learning Python covers
Python 2.3 but the content is perfectly applicable
to the current Python 2.5, and features new to
Python since then can quickly be picked up. That
a tutorial book covers the current version is not
the most important factor.
If you have a lot of time and tolerance, this book
might provide some light reading.

Pro C# with .Net 3.0, Special Edition
by Andrew Troelsen, Apress,
1186 pages, ISBN: 978-
1590598238

Reviewed by Frank Antonsen

Conclusion: Recommended.
At first I was very excited
about this book, then I was

somewhat disappointed and then I got excited
again. Sounds confusing? The initial excitement
was due to the title. A whole book about C# 3.0,
already! The disappointment was due to reading
the table of contents where I spotted chapter
titles such as ‘Doing XYZ in C# 2.0’. Then I read
the back cover again, and it was quite honest:
this was a C# 2.0 book updated with 100+ pages
about C# 3.0. Apparently somebody at the
marketing department at Apress got carried
away....... But when I started reading the book,
I was again excited.
This is a very good introduction to C#,
especially if you know some C-like language
already, which should be true for all readers of
an ACCU journal.
What I particularly like about the book is that it
shows how to write console application before
it discusses GUI programming or web services.
Even more advanced topics as nullable types
and writing your own iterators and indexers or
using reflection are covered quite early on in a
clear and natural fashion. I would have liked to
see generics covered earlier as well, though, but
the coverage is actually quite good.
The book furthermore contains a thorough
discussion of IL (Microsoft’s Intermediate
Language, which all .Net languages compile to),
together with dynamic modules (the
Reflection.Emit namespace) threads,
application domains and strong naming
assemblies. After this it moves on to Windows
forms, GDI+, web services and ASP.Net and
ADO.Net and database access.
In general the coverage is clear and concise, and
a nice touch is the emphasis (although only in the
initial chapters) on how to use alternatives to
Visual Studio such as SharpDevelop. There are

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website,
which contains a list of all of the books currently available. If there is something that you want to review,
but can’t find on there, just ask. It is possible that we can get hold of it.

After you’ve made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous “not recommended” rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Bookshops

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list
� Computer Manuals (0121 706 6000)

www.computer-manuals.co.uk
� Holborn Books Ltd (020 7831 0022)

www.holbornbooks.co.uk
� Blackwell’s Bookshop, Oxford (01865 792792)

blackwells.extra@blackwell.co.uk

Bookshops
28 | | OCT 2007{cvu}

a few mistakes or omissions, though. For
instance, claiming that the .Net attribute system
gives full support for aspect oriented
programming, when in fact it only provides a
way to attach meta data to types. Another
example is the way events and event handlers are
defined. The recommended idiom is to have an
event handler have the signature (object sender,
EventArgs), where the user can subclass
EventArgs to provide special information.
None of the custom examples adheres to this.
Furthermore, it was only in .Net 1.1 that you had
to define first a delegate and then an event; in
.Net 2.0 there is the short cut event
EventHandler<T> where T is any subclass of
EventArgs. Finally, in C# 2.0 there is no need
to explicitly cast delegates, you can instead rely
on inference by the compiler, so you can write
code like this:
obj.MyEvent += MyHandlerMethod;

instead of the older style:
obj.MyEvent +=
 new MyEventHandlerDelegate(
 MyHandlerMethod);

But these are all minor issues.
The C# 3.0 part is based on a beta release, but
gives a nice overview of WPF (Windows
Presentation Foundation – the declarative
alternative to WinForms), WCF (Windows
Communication Foundation – for programming
web services etc.) and WF (Windows Workflow
Foundation – for writing resumable code logic
in a more declarative manner) and, of course,
LINQ (the Language Integrate Query syntax for
extracting data from collections, data bases,
objects, XML files in a consistent style). This
coverage is fairly good, although some of it is
already obsolete. We now have C# 3.5 in beta
To summarize: if you are new to C# this is
certainly a very good book. If you are already
familiar with C# and wants to move on to
version 3.0 (or 3.5), then you should probably
invest in some of the dedicated books. There are
a number of good books, published by Apress or
by Addison-Wesley, covering each of the new
technologies in more depth.

Bulletproof Ajax
by Jeremy Keith, published
by New Riders, ISBN:
0321472667, 207 pages

Reviewed by Simon Sebright

I liked this book. It’s a nice
read-on-the-train size in
softback, and a good
smooth read in terms of
content.
His basic idea is that a web application should
have similar behaviour whether or not Ajax is
available (perhaps because the browser setting
does not allow Javascript). This leads to an
architecture where server-side code is in charge
of the html content, not client-side as is common
in Ajax applications.

The book starts with an introduction to Ajax,
Javascript and the XmlHttpRequest object. This
was well-delivered. Compared to another book
I recently read, it was to the point, and included
more robust details for certain situations.
We then have a discussion of data formats
including XML and JSON.
The chapter called ‘Hijax’ puts forward the
concept of progressive development of Ajax
applications. Start with a regular web page
served up by some server. Then begin to
intercept the links and button presses with
Javascript when allowed to only refresh certain
bits of the page as necessary. In the absence of
this intervention, the regular web page refreshes
will occur meaning that you don’t lose
functionality.
It notes that some applications may be so useless
without Javascript that no other approach
matters (consider a certain mapping application
for example).
Next comes a consideration of problems with
Ajax applications. For example, because whole
page refreshes do not occur, extra effort needs
to be put in to make the user feel that something
is happening.
The final part is a ‘put it together’ chapter where
various ideas are illustrated in a simple sell-
some-stuff application. A real application will
be a lot more, but the ideas in the book are clearly
expressed.
In summary, a refreshing approach for many
web applications/sites.

Operating Systems
The Official Ubuntu Book
by Benjamin Mako Hill, Jono
Bacon, Corey Burger, Jonathan
Jesse and Ivan Krstic,
published by Prentice Hall,
Pearson Education,
ISBN 0-13-243594-2

Reviewed by Omar Bashir

The striking issue with the
text appears to be its
organisation and probably some confusion with
regards to the target audience. If it was meant for
a Linux novice, some parts dived into
unnecessary and at times incomplete details,
which made it frustrating for even moderately
experienced users. The book even attempts to
make users understand fundamental windowing
operations such as how to close a window. Most
current Linux users have experienced other
WIMP user interfaces and this level of detail was
not only unnecessary but also inconsistent with
other parts of the text. At times it appeared that
the authors attempted to make the chapters self
explanatory as there was a noticeable amount of
repetition within the text and the text did not
flow well between the chapters and at times also
within the chapters.
The book explains various Ubuntu installation
aspects quite well; however, it does not do quite

as good a job towards performing system
administration operations by an individual user
(e.g. a desktop installation). Although Ubuntu is
quite user friendly, it does require rather
elaborate system administration. In my
experience with Ubuntu, its administration can
be mastered potentially by understanding a few
fundamental operations and then building on
that knowledge. The book should have focused
on those operations (e.g., using Synaptic to
install applications and various utilities and
commands for system administration and
diagnostics) rather than describing various
applications. Most Ubuntu applications are the
same as on other Linux-based operating systems
and are fairly user-friendly even for novice
Linux users with some Windows experience.
Description of each one of them is, therefore,
unnecessary for a book on the operating system.
Description of the evolution of Ubuntu, its
various projects and the community effort, form
an interesting reading. The support cases also
provide insight into troubleshooting various
common issues but at times do not go far
enough.
This book is recommended if the potential
reader is not familiar with the Ubuntu project or
Linux and intends to start using Ubuntu.
However, experienced Linux users, especially
Debian users and IT professionals may be
familiar with many more resources that may
provide more comprehensive information on
Ubuntu installation, system administration and
operation.

Miscellaneous
TSP - Coaching Development Teams
by Watts S. Humphrey, published
by Addison Wesley, SEI Series in
Software Engineering, 2006,
ISBN: 0-201-73113-4, 416 pages

Reviewed by Allan Kelly

Coaching seems to be
everywhere these days. I know
I’ve been banging on about it
for a couple of years but I am
not alone; Phran Ryder wrote about it in CVu
last year; several of the Agile methodologies
suggest a team coach; and the general press seem
to cover business or life coaching every month.
Now the Software Engineering Institute at
Carnegie Mellon University (yes, the people
who brought you CMM and CMMI) have
decided to jump on the bandwagon too.
I should perhaps state my bias up front. Good
stuff does come out of the SEI but my first
reaction to anything they produce is scepticism.
I know this isn’t good of me but I recognise the
bias and try to compensate. In reviewing this
book I’m trying to be even handed. And in truth,
a lot of what does come form the SEI is well
researched and thoughtful.
So to the book. This is one of many books from
the SEI that covers the ‘Team Software Process’
OCT 2007 | | 29{cvu}

or TSP for short. Now I don’t know much about
the TSP so in reviewing this book I was hoping
to learn a lot about coaching development teams
and a little about the TSP. As it is, I’ve learned
a little about coaching development teams and a
little about the TSP.
The book is completely true to its title. Lets take
it word by word:
� TSP: The book is TSP based, TSP runs

through everything in the book. I felt at a
disadvantage because I don’t know the
TSP and this limited what I could get from
the book. Neither is it a book to learn TSP
from.

� Coaching: it seems the TSP takes a very
directive approach to coaching and
assumes the coach is the TSP expert on
the team. Manager and developers look to
the coach for help running the process and
resolving process issues.

� Development: its about software
development teams (who else would use
TSP?)

� Teams: between the TSP advice there is
good advice for team coaches.
Unfortunately the author tends to use
more words then necessary. The book
could probably have been written in half
the number of pages.

The feel of the book is culturally biased towards
large American corporations, maybe these are
the only people who use TSP in which case it
doesn’t matter. But if you are European, Indian
or a small corporation I wonder if you will find
the book so applicable. Other than this the book
is well written and the author knows his subject.
In summary this book is true to its title. It is about
coaching TSP teams. If you are coaching
another type of development team you will learn
something here but there are other sources were
you could learn more in fewer pages. If you are
coaching a TSP team you might well find this
book very valuable.
To the best of my knowledge nobody has yet
written a good process-neutral book on coaching
development teams. In the mean time if you
need to coach a team, and they are not following
TSP, I suggest you read some of the more
general books on management coaching.

The Computer Game Design Course –
principles, practices and techniques
for the aspiring games designer
by Thompson, Berbank-
Green and Cusworth,
ISBN 978-0-500-28658-
6.

Reviewed by Ian
Bruntlett

This book is very
much like a coffee
table book in terms of
build. It comes in at approximately 200 pages,
filled with lush illustrations. It is split up into 3

parts – design theory, design process and design
production.
The digital theory section explains the
advantages of different types of game – shoot-
’em-ups, platform, strategy, puzzle.
The final two sections show the use of a process
to design a game. It discusses the design of
character, environment and physics modelling.
While it is biased towards studio-style
development, the material presented, a bit like
SSADM (Structured Systems Analysis and
Design Methodology) can also be adapted by
‘bedroom coders’.
Verdict: Recommended.

Software That Sells
By Edward Hasted, published
by John Wiley & Sons Inc (30
May 2005), paperback - 379
pages, ISBN-10: 0764597833

Reviewed by Paul Grenyer

This book was not offered
for review by the ACCU. I bought it as, like
many software engineers, I have ideas for my
own products and I would like to work for
myself writing my software. Although I am a
competent and experienced software engineer, I
lack both the skills and experience of
researching, funding, marketing and selling a
product. I am writing this review for the ACCU
as I suspect many other members are in a similar
position and would therefore find it useful.
The first few chapters cover how to develop your
idea, how to identify if it is likely to succeed,
who to speak to and what questions to ask them,
how to gather and interpret market research and
how to plan the project. Hasted’s approach is
straight forward common sense explained in a
clear pragmatic way. I was pleased to find I had
already started to do many of the things he
suggests, such as gathering a small ‘inner
sanctum’ of colleagues with whom to discuss
my ideas and gain valuable feedback, and
writing a project plan. The chapter on market
research confirmed much of what I suspected in
terms of who to contact and what to ask, but also
helps by documenting a structured approach.
The following chapter on making your company
somewhere people want to work and how to find
and utilize good people gives idealistic advice.
I think a better approach would have been to
state that the advice was idealistic and
acknowledge that it’s very difficult to get it to
work in practice. I found some suggestions, like
isolating developers in booths to work and
preventing any contact with them other than via
the project manager and that a webcam could be
a way of monitoring remote workers as highly
suspect. I can see what Hasted is trying to
achieve, but experience tells me this is not the
solution. Developers should be in an
environment where they can both concentrate
and interact with their team when necessary. The
use of phones, an instant messenger system and
email are all important tools for communication

between team members both inside the office
and for remote workers.
The chapter on raising cash and kind introduces
the concept of venture capitalists and business
angels. At least one of these was a term I had at
least heard before and it is good to have them
explained in a reasonable amount of detail.
The later chapters in the book covered topics that
I had not even started to think about such as
finding suppliers, shipping in bigger and bigger
volumes, customer service, how to keep
customers and what to do if you need to sell your
company or if someone wants to buy it.
This book covers an extraordinary range of
topics related to market researching software,
writing software, creating and running a
company and marketing, distributing and
supporting software. It is not a big book, but
does seem to include quite a lot of detail, mostly
in the form the author’s experience. The book
gave me almost everything I was looking for and
a fair bit more. My only disappointment was the
description of development techniques, but this
is the area I know the most about and have
experience of to compare with Hasted’s views.
There are other books that cover all the topics in
greater depth, but this is an excellent place to
start and I’m looking forward to putting many of
the suggestions into practice.
Recommended.

Netiquette: Internet
etiquette in the age of
the blog
by Matthew Strawbridge, ISBN:
0955461405, Software Reference

Reviewed by Giuseppe Vacanti

Anybody who can remember
the net before it was called the
Internet will be at home with Matthew
Strawbridge’s (MS) book: it contains known
advice from the days of net yore, updated and
expanded for the many new communication
channels available on today’s Internet. The
book, however, will be useful to veterans and
neophytes alike.
Netiquette, should you not be familiar with the
term, is the informal framework of rules and
conventions governing how people should
behave online. The origin of the word, we learn,
can be traced back to 1982: the issue of how to
behave online is almost as old as the net itself.
Online communication must do without the
many visual and audio cues that help people
understand one another when they speak face to
face. Add to that the fact that often members of
online communities come from different
countries and do not always master the language
that is used, and you have all the ingredients that
may lead to your misunderstanding others or
being misunderstood. Proceed with care, think
twice before you click on the send button, give
your interlocutors the benefit of the doubt, and
resist the temptation to immediately fire off a

[continued on back page]
30 | | OCT 2007{cvu}

accu ACCU Information
Membership news and committee reports
View From The Chair
Jez Higgins
chair@accu.org

In the View before last, I was
still recovering from the
conference (as if we ever
truely recover), and this time
round finds me chewing over my weekend at
PyCon UK. I didn’t go for the full sessions-all-
day-carousing-all-night conference experience
this time around, as the organisers had
conveniently arranged a venue a 15-minute
cycle ride from my front door, but my brain’s
still buzzing.
PyCon UK, held over the weekend of the 8th and
9th of September, was the first dedicated Python
conference held in the UK. As you are probably
aware, for the past several years the ACCU
Conference has hosted the UK Python
conference as a track. This year it took flight
(slithered off?) as an event in its own right, with
great success.
Running four tracks, there were over 35 sessions
packed into the two days, with 200+ people
attending. Sessions ranged from the
introductory to the really rather hardcore, and
every session I went to was well attended. The
atmosphere was relaxed and well organized.
There were even one or two ideas, like double-
sided name badges, we should steal for the
ACCU conference.
I’m not even anything like a full-time Python
programmer, but the whole thing was great fun
and I enjoyed myself immensely. The 2008
PyCon UK has already been announced, so if
you fancy a trip to Birmingham next September
you should seriously think about going.
If I can be so bold, I’d like to extend
congratulations on behalf of ACCU to John
Pinner and the organising committee for putting
on such a splendid event.

Membership Report
Mick Brooks
accumembership@accu.org

As I’m writing this the flood of
renewals is slowing to a
trickle. I knew it was coming,
but was still surprised by the
size of the peak at the traditional renewal time of
end of August. This was a real test of the new
membership system, and things didn’t run
perfectly.
The first email reminder should have been sent
three weeks before the end of August, but
somehow went missing, so that people were
only reminded one week before their expiry
date. At a time of year when many people are on
holiday, I know that this is not enough time.
There was then lots of confusion about login
details for the website (hopefully a one-off
problem). I also managed to confuse our

members who pay by standing order by sending
them reminders after they’d paid. Finally, I’ve
had some good feedback on website usability
issues, with a number of members unable to find
how to renew. I’m sorry if you were caught out
by any of this; Tim Pushman and I are working
to correct all of these problems.
Despite all of this, we managed to help the vast
majority of members to renew. From a
membership of close to 1000, I’ve been notified
of about 5 resignations, and approximately 25
more people have (so far) let their membership
lapse; suggesting that we will lose a maximum
of 30 members.
With this year’s renewal just out of the way,
you’re probably not thinking about next year’s
yet. However, now would be a good time to
arrange a standing order. You’ll save time and
money – we offer a £5 discount for members
who pay this way. If you’re interested, I can give
you details of who, when and how much to pay:
just email me at accumembership@accu.org

Website Report
Tim Pushman
webmaster@accu.org

In the last issue of CVu (August 2007), Allan
Kelly mentioned that he would be stepping back
from his involvement in the ACCU website.
Allan has been closely involved in creating the
website and, if you’ve read his earlier reports,
it’s been quite an adventure. Allan has put
tremendous energy into prodding and cajoling
people to create, as he puts it, a ‘shiny new
website’ and his input will be missed. Although
he hasn’t been involved in the ‘grunt work’ he
has been instrumental in getting things moving.
Now that the project is established he can step
back and concentrate on other things (a few
articles for CVu/Overload maybe???).
I’ll be putting together a regular report on
happenings on the website and putting out ideas
for future plans and directions. Although a
website relaunch is a small item for a large
corporation, for the ACCU, an association made
up of volunteers, it has been quite a major
project. Most members have an hour now and
then to spare and that is usually tied up with
creating the bi-monthly magazines, planning the
next conference, moderating the mailing lists,
running a mentored project, handling
membership enquiries, pulling in advertisers
and a dozen other odds and ends. Some even find
time to earn a living!
In this on-line world, the website serves as our
public face and, with the mailing lists, as a focus
for the association. Some of the main aims and
aspirations of the site are: to increase the
membership, provide more resources for
programmers in general, provide a focus for the
ACCU community and to supply backend
services for running the association.

The website itself is handled by Tony Barrett-
Powell, who is the editor dealing with site
content, and me. As it is a CMS (Content
Management System) there is the possibility for
multiple editors, and there are others taking care
of specialised areas such as the conferences and
mentored projects. As you may gather,
volunteers are always welcome to look after
parts of the site and if you feel like you want to
get involved, then contact Tony at
webeditor@accu.org.

Logos
A couple of issues back our publicity officer,
David Carter-Hitchin, mentioned that it would
be useful if those of us with blogs or websites
would put a link back to ACCU. I realised that
my website had no such thing, and I also realised
that the ACCU doesn’t have a selection of
ACCU logos that people can download or link
to. So, I hope that by the time you read this, there
will be some ACCU logos that you can link to
from your blogs. I’m not sure where they’ll be
available yet, look for an announcement on the
site.

Membership system
Some months back the whole ACCU
membership system was put online. This wasn’t
simply a custom built application, it also had to
integrate with the existing Xaraya framework
and as such consists of three interacting
modules. There were some bugs and unwanted
features to iron out, but now it seems to work
fine and the end of August was the time for a real
test, as that is when the majority of the ACCU
memberships are renewed. Whereas previously
this would have meant taking data from the web,
putting it into an Access database and exporting
the data from there, it is now all handled on the
web (with a little help from Worldpay),
including generation of mailing list labels and
reminder emails.

Mailing lists
August saw the move of the mailing lists to the
new server. These have been one of the last
things to move from brian.accu.org. And, thanks
to Steve Dicks having converted the existing
Majordomo lists to Mailman, the move went
very smoothly. Information on the Mailman lists
can be found at http://lists.accu.org/mailman/
listinfo/. Having moved the mailing lists, I
forgot to turn off the Mailman program on
brian.accu.org and was suddenly reminded
when, on Sept 1st, I received a bunch of
subscription reminders from brian!

ACCU events
There have been a growing number of local
ACCU meetings taking place and we now have
a section of the website devoted to just that (see
‘ACCU Near You’). Plus there is an ‘Events
OCT 2007 | | 31{cvu}

accuACCU Information
Membership news and committee reports
REVIEWS

Calendar’ on the site for an overview of what is
happening (this includes other programmer
related events). These pages also include the
ACCU USA chapter, one of the most active of
the regional ACCU groups.

Book reviews
The book reviews were not available for a
couple of weeks at the end of August due to a
mix of events, including a server hardware
upgrade and a licence that was linked to the

hardware... for now, things are back to normal,
but the licensing situation will need to be
worked out on a more long term basis.

Stats and such
The site continues to slowly grow in traffic.
There is normally a peak in April/May during
and after the annual conference, but the number
of visitors has stayed high since then, in fact
August saw nearly as many visitors as May. On
average there are about 1,000 visitors per day

(700 at weekends). The distribution of visits
used to reflect the European membership bias
but there have been an increase in visits at 4am,
which suggests more programmers in Asia are
dropping by. Interestingly, accu.org is the only
website I manage that shows Microsoft Internet
Explorer for less than half the visitors (46%).
Most sites count about 70%.
So, I’ll finish with a quick thank you to Allan
Kelly for getting the website moving, and to
Tony, Mick and Ewan for keeping it rolling.
32 | | OCT 2007{cvu}

reply: these guidelines, implicit or explicit
throughout this book, will serve you well when
online.
The book comprises three parts. The first part
covers the various forms of online
communication. Electronic mail receives, and in
my opinion deserves, the most attention: it must
be true that everybody who is active online has
an email account, and understanding how to
communicate via email is the foundation of any
other online communication form. Forums
(newsgroups and mailing lists), real-time
messaging, web sites, blogs, and wikis are also
covered. MS draws from available guides and
books, and his own experience, to list a number
of rules that should be followed when
communicating online through any of these
means.
I must confess to being mostly an email-based
person, and I was happy here to find some of my
convictions (obsessions?) spelt out in writing:
make a distinction between people in ‘To’ and
‘CC’ fields; four-line signatures; limit the use of
attachments; use plain text instead of HTML.
But there is plenty of sensible advice for each of
the online channels, and if you are going to make
use of any of them for the first time you’d be well
advised to have a look at what this book has to
say.
But the Internet is no longer a place where we
only interact with other people by writing. More
and more we make use of servers to download
or share files, watch videos, listen to radio
stations, or buy and sell stuff. Often we have
only a vague notion that other people may be
using the same service, and that our actions
might affect them. Present day netiquette rules
must address also these aspects, and this is what
MS does in the second part of his book. The
underlying principle here is: do not hog the
service, and be honest and fair when operating
online.

Finally, the third part of the book deals with
some of the plagues of the present day Internet:
spam, and the various security risks (viruses,
identify theft, fraud in general). Of course,
spammers and fraudsters will not be reading this
book and stop their activities, but we ourselves
can do something against them by behaving in
certain ways. For instance, be sure you
understand the economics of spam, and never
reward spammers by buying any of the products
they advertize. Here MS does a good job of
explaining the dangers and what simple
countermeasures we can take, in a manner
accessible also to the less technically minded
user.
In summary, the book presents in a clear and
concise manner the rules of engagement for
online communication, from email to blogs and
peer-to-peer networks. Some of the dangers of
online communication are also discussed.
Novices and seasoned users considering making
use of one of the new online communication
channels will find the book useful, and so will
administrators of online communties and
services who want to draft a code of conduct for
their users. Finally, parents of cyber-teeangers
might consider passing this book onto their
offspring to help them learn the ethics of the net.
Recommended.

Working Effectively with Legacy Code
by Michael Feathers, published
by Prentice Hall PTR (7 Oct
2004), ISBN-10: 0131177052,
ISBN-13: 978-0131177055

Reviewed by Paul Grenyer

Everyone should read this
book. Even people who are
working exclusively on
green field projects. It is a
good book. It is very easy to read and,
unlike many other large technical
books, not boring. A lot of the time I
couldn’t put it down.

Most of the time Feathers was confirming that I
was already doing the right thing and giving me
names for the refactorings I was doing to get
things under test. I also learnt some techniques
that hadn’t occurred to me such as Static Setter
for testing code that makes use of singletons.
However, there were several things covered by
the book that I wouldn’t do. Feathers is
obviously a big fan of object orientation and
specifically inheritance. On more than one
occasion I found myself thinking that I just
wouldn’t use inheritance there, I’d use an
interface. Discussion with ACCU members
revealed that a lot of people agreed with
inheritance as a method of getting things ‘safely’
under test. However I feel it leaves you with
worse and in some cases more dangerous code
when methods that should be private are made
protected or public for the sake of testing. I think
Feathers could go a long way towards rectifying
this situation by describing the use of
inheritance as the first step to get the code under
test prior to a further step of removing the
inheritance and introducing another method,
such as using an interface.
The majority of examples are in C# and Java,
with a few in C++ and a small number in C (there
is even one Ruby example). I think all examples
should be in C# or Java, except where the
refactoring is only applicable to C++ or C such
as Link Substitution. The book has a number of
examples that are not idiomatic to C++ and
introduce more potential problems such as
memory leaks under exception conditions. All
the examples using pointers deference them
incorrectly. Even if you are only using C++, you
should still read this book.
There isn’t a another book covering this subject
so this is the book you should read. I would like
to see a similar book aimed at a C++ audience
from a C++ expert.
Again, this is a good book. You should read it.
Highly Recommended

Book Reviews (continued)

	How about letters?
	An NSLU2 “Slug”
	RegexBuddy
	The Version Control Job
	Experiences of a First Time Presenter at the ACCU Conference
	Please Release Me #2
	Tracing Function Calls Using Python Decorators
	One Laptop per Child
	On The Powell Cable Car at JavaONE 2007
	Visiting Files and Directories in C#
	Regional Meetings
	Code Critique Competition 48
	Bookcase
	View From The Chair
	Membership Report
	Website Report

