The magazine of the ACCU WWW.accu.org

iy ST, —,

- "._,f«-""-' -—...._ -4
o

A Brief Intro uctidw

. "Silas Brown

Continuous Inteqratlon CruiseControl.Ne
Paul Grenyer >

J-"""_’*

Scripting C++ O
Lear, Dixon, Gray and Irew

roduction to Lua
Renato Forti

i
ot %"w e oy
a"ndards Report

- Code Critique
Book ‘Reviews

{cvu

Volume 19 Issue 4
August 2007

ISSN 1354-3164
Www.accu.org

Tim Penhey
cvu@accu.org

Contrihutors

Silas Brown, Kevin Dixon,
Renato Forti, Lois Goldthwaite,
Pete Goodliffe, Simon Gray,
Paul Grenyer, John Lear,
Steve Love, Roger Orr,

Simon Trew

Jez Higgins
chair@accu.org

Alan Bellingham
secretary@accu.org

ACCU Membership
Mick Brooks
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Thaddeus Froggley
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distrihution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

acCu

{cvu}

written by ACCU members and contributed for free, for the benefit

n s most of you are aware, the contents of both C Vu and Overload are
of the ACCU organisation as a whole.

Why write an article? There are several responses to this. A great one is
for the author to learn. You do learn a huge amount while writing an
article. Ideas that were only half formed get clarified and a deeper
understanding is gained through the need to explain the idea to others.
The author of the article also gains experience in writing. Having the
ability to clearly communicate ideas in writing is a great skill for a

software developer.

A number of years ago I bought a copy of the book The Cathedral &

The Bazaar by Eric Raymond. The book is a collection of essays on
Linux and Open Source. I found the book extremely enjoyable, and it

is one of the reasons that I ended up learning Python, but that is for
another time. The essay that [want to draw a parallel to is called
‘Homesteading the Noosphere’. In the essay Raymond talks about gift
cultures and how they relate to open source software developers. I think
that writing for ACCU fits into this idea of a gift culture, the authors of
the articles that you read in C Vu and Overload are gifting their

experience, knowledge and time.

Becoming an author within ACCU, a highly knowledgeable organisation

with many members who are top of their fields, will contribute to your own
professional development, and help you forge a reputation of your own. This
reputation is not necessarily direct or immediate, but grows over time. There is
always space at the top for those willing to work the hard yards to get there. Now
I’m not saying that writing for ACCU will make everyone think that the sun
shines out of your..., however if you are aiming for the top, becoming an author

is a step in the right direction.

(WA

TIM PENHEY,
EDITOR

The official magazine of ACCU

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.

ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
ACCU members — by programmers, for programmers
— and have been contributed free of charge.

To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
WWW.accu.org.

Membership costs are very low as this is a non-profit
organisation.

AUG 2007 [{cvu} |1

{cvu}

DIALOGUE

19 Standards Report
Lois brings news from the
C standard committee.

20 Regional Meetings
A round-up of the latest
ACCU regional events.

21 Code Critique Competition
This issue’s competition
and the results from last
time.

21 Book Reviews
The latest roundup from
the ACCU bookcase.

31 ACCU Members Zone
Reports and membership
news.

FEATURES

3 Professionalism in Programming #4%:

Pete Goodliffe helps us to “let go”.

9 The Bazaar Thing

Steve Love works the version control job.

8 ABrief Introduction to Cygwin

Silas Brown finds alternative tools.

9 Continuous Integration with CruiseControl.NET
Paul Grenyer explains the CCNet Web Dashboard.

11 Scripting C++ Objects

Our Gang of Four bless COM with perl.

16 Introduction to Lua

Renato Forti introduces another scripting language.

COPY DATES

CVu19.5: 15t September 2007
CVu19.6: 15 November 2007

Roger Orr debugs release builds, Thomas Guest uses shell
scripts, Richard Harris tries to reduce unnecessary copies and
Kevlin Henney revisits Parameterize from Above.

ADVERTISE WITH US

The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

2| {cvu}| AUG 2007

COPYRIGHTS AND TRADE MARKS

Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.

By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

Professionalism in Programming # 43

Pete Goodliffe helps us to “let go”.

release. This wasn’t the first release that the group had made, but it

was a pretty important one, and they wanted me to make sure that it
went smoothly. In this kind of situation you need someone with nerves of
steel, an unerring eye for detail, and an encyclopaedic knowledge of the
intricacy of every build system and release procedure. Or failing that, you
ask me to help.

n few months ago I was brought in to help a team make a software

Now, I’'m no “release engineer” (yes, there are such curious beasts out
there). But I’ve been around long enough, and made enough software
releases to know what passes muster as Good Practice and what’s Not
Good Practice.

What was going on in this shop was Not Good Practice. Their release
‘procedure’ almost caused me to involuntary vomit.

They didn’t really know what was going on, and they certainly weren’t in
control. The release seemed to have come as a surprise to everyone — if it
was on a plan anywhere then no one had looked at that plan until the last
minute. There was no documentation about how to make a release; it was
knowledge tucked away in a single person’s head. And sadly it hadn’t been
remembered very well, so we had to work most of it out from first
principles again. Even the software’s build process wasn’t understood
properly. And to add insult to injury, the release could only be made on
this one guy’s development workstation because:

B A lot of the code was not under source control; it lived locally on the
hard disk in his machine (which — as I’m sure you can guess — was
not being backed up). The code was based upon an original software

Different types of software are

release by another organisation. We had no record of where this
original code came from, which version of the code it was, or how it
had been subsequently modified.

B The exact build environment (including the required version of the
compiler, a set of libraries, and other environmental setup —
environment variables and config files — had been set up magically
on this computer, and had not documented or put in a central
configuration file anywhere.

B He couldn’t remember exactly how it had been set up like this in the
first place, and couldn’t produce another identical build machine. If
that machine ever died we’d be in a world of painful pain.

That was not good. It was not justifiable. It was just plain wrong. And I
made sure everyone knew about it.

Sometimes I really do moan.
But sometimes it’s justified.

Software releases are the lifeblood of the software development industry.
If all of your programs were mere toys for personal use then you wouldn’t
need to worry about having a good software release ‘procedure’. But
instead, you’d have to worry about how to make enough money to pay for
all the electricity you were wasting. In the Real World, most every piece
of software must be ‘released’ in one form or other: to test, to manufacture,

to the customer, to the wild world
beyond the programmer’s workstation.

There is a real art to doing this well. It’s not
too hard, but it requires great care, a
methodical approach, and attention to
detail. Contrary to some opinions, getting it

theologically right really does matter. Bad

software releases can bite you on the backside weeks, months, or even
years later.

So in this article I’m starting a mini series on the joys of releasing software.
We’ll see what software releases are, what ‘good’ software releases are,
how to make them, and then how to make them over and over again.

Once I have finished this series I will stack all the articles in a pile, roll
them up tightly, and start beating people round the head with them!

The types of software release

This would be an easy article to write if there was only one way to release
software, a single universal mechanism. But there isn’t. Different types of
software are constructed and deployed in different ways, and consequently
have different release procedures. Consider, for example:

® Shrink-wrap software (the kind of PC applications that are
commonly sold to users in shrink-wrapped boxes, but these days are
equally likely to be downloaded over the internet) must be built, the
distribution files must be incorporated into an installer that the end-
user can run, and then either wrapped into an ISO image
to be put on a CD or DVD, or perhaps zipped up into a

archive that can be downloaded over the internet.

Web-based software and web services are not distributed
to end users in the same way. Instead this kind of
software release is deployed on a web server. If the
release is an update to an existing web application, the
users will immediately (and hopefully seamlessly) start
using the new version without any knowledge of an
upgrade taking place.

B Embedded devices commonly have their software (otherwise
known in this domain as firmware) compiled and burnt into memory
chips on the device. Depending on the richness of the embedded
device, the software may be upgradable in place, or the install
process may be a once-only manufacturing operation. A single
embedded device may consist of several chips (a general purpose
CPU, PICs, micro controllers, etc) which each need their own
software installed and loaded in various different ways.

® Mobile application software is a specific, but increasingly common,
form of embedded software release. Most mobile devices theses
days are very rich-featured embedded devices, and software is often
installed to them live, over a network connection.

m Software libraries and software frameworks may be developed as
shrink-wrap components for other developers to use. They might be
distributed as pre-built object files or shipped in source form. C-

PETE GOODLIFFE

Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion
for curry and doesn’t wear shoes. Pete can be contacted
at pete @cthree.org

AUG 2007 I{cvu}| 3

{cvu}

style languages also require a set of header files to be shipped with
the software.

So clearly there are many different forms of software and, consequently,
of software release procedure. However, they have many common
considerations, and I’ll do my best to cover them here.

What is a software release?

OK, let’s get the tedious “obvious” stuff out of the way first. What actually
is a software release? My personal definition of a software release is:
The process of obtaining, building, packaging, and deploying/
distributing a versioned software product, for an agreed purpose.
Let’s break this down one step at a time and see what it means. We’ll look
at it all in more detail later on in the series.

B Obtaining the code

The first step in a release procedure is identifying and obtaining the
code that constitutes the release. We must start from a well-known
code set, extracted from a well-known place. Usually that means it
is held under source control and you know what version/branch the
code is to be fetched from.

We actually care about more than just source code at this stage; we
must collect all of the code files and all of the required supporting
material that will contribute to creating the release (including
graphics, data files, documentation, etc).

B Building the code

In many programming languages, the source code files must be
compiled into object libraries or executable programs, or byte-
compiled into files capable of being interpreted by a language
executor. The outcome of this step will be one or more program
files, along with any runtime support required to make the program
run (e.g. data files, control scripts).

m Packaging the code

Once all of the executable files have
been prepared, the results must be
packaged. They may need to be
collated into a central location from
their positions around the source tree.
A program installer might be
generated, or the files simply archived
together. As the files are packaged a
README file may be incorporated
as a convenience for the end user.

® Deploying/distributing the packaged software

Often this step is forgotten in the release process, especially in
shrink-wrap land. A DVD or CD image of the release set must be
created if the software is shipping on a physical medium. If the
software is a network service, then it must be copied over to and
installed on the central servers. This is an important integral part of
arelease process. Releasing software doesn’t stop when the code has
been built. (There is potential to make an error right up to the point
the user is given the software!)

B Versioned software

There are several versions that must be tracked by a good software
release. The first ‘obtain the code’ step must fetch a clearly defined
revision of a code set. However, the constructed software release
will have a version number (that may or may not be derived from the
source code version).

The format of the release version number isn’t important, but end
users must be able to differentiate different software releases of the
same program. Clear version numbers help you tell “Version 1.02”
of the software apart from “Version 1.08”.

Ideally, the software itself has some concept of its release version
number (perhaps it displays it in an “About this program” screen).
This adds an extra burden on the release mechanism: it must ensure

4 |{cvu}| AUG 2007

that the software’s internal idea of the version number matches that
of the release process. It is very confusing to have a version “2.14”
software installer that installs software claiming to be version
“2.10a”

B An agreed purpose

If you are making a release then there must be a need for it. Perhaps
that goes without saying, but plenty of programmers do silly things
for no good reason!

You may be creating a brand new release of a new piece of software
heading out on its maiden voyage. It might be an incremental
upgrade release — either a ‘patch’ that installs over the top of a
previous software install, or a new self-contained complete install.
It might be a major backwards-incompatible version of the software
that must first ensure any old code has been deleted as part of the
upgrade process. Each of these motivations alters the requirements
of the final software installer.

As a product nears its ultimate “release” to the big wide world, we will
usually perform a series of mini-software releases:

B Often an alpha release of the software is made. This tends to appear
quite early in the project, and is released either externally, or to a set
of in-house testers. There will be no promises about the stability or
quality of this alpha release — it just gives a good idea of what the
software will be capable of.

® Later in the process we make beta releases. These are considered
fairly stable and form the basis for serious bug testing.

B As we draw nearer the finish line a series of release candidate
releases are made.

B When one of these is deemed acceptable, it becomes the “official”

release and is deemed the gold master [1]. This is the ultimate
release that is put onto CDs and sent to
customers, deployed on the live web
server, or that gets sent to far eastern
factories to be put into the manufacture
process.

Each of these different releases should
actually be made in a very similar way —
there should be very little variation in the
actual release procedure, just in the final
destination of the software release. This is
crucial — as we make the early testing
releases we are therefore testing the release
process as much as we are testing the software itself. We use the early
releases to iron out bugs in the release procedure so that when we make
the final release everything is guaranteed to work well.

The prerequisites for a good release procedure

In the remainder of this first article we will consider the prerequisites for
a good software release.

It’s important to get our software release processes right. The most perfect
software can easily be spoilt by a half-baked release procedure. What use
is all your hard work if the software release incorporates an old, buggy set
of source files instead of your latest-and-greatest, or if it fails to create a
robust software installer image?

B Before you start to make a software release, you must plan it
carefully. Do not rush out a release when it seems appropriate, think
about it beforehand. You must define: its purpose (is it going to be
aminor bug-fix/maintenance release of an existing software version,
is it a new feature release, etc), when you intend to ship it (ah! we all
love deadlines, don’t we), whether there is any play in those
deadlines, and when the alpha/beta/release candidate releases will
be made.

m Software releases should be a high-level planning issue, tracked on
a project plan and clearly visible to project managers.

The Bazaar Thing

Steve Love works the version control job.

that, I"d used CVS [2] for quite a while, and been very happy with it

until Subversion came along with its atomic commits and versioned file
system. Some things just break your fidelity down too much, but Pete
Goodliffe [3] has some very sound advice on this, which, paraphrased, is
“pick a version control system you like and require a compelling reason
to move away from it”. Subversion had reasons good enough for me to
switch from CVS. I wasn’t expecting good enough reasons to move away
from Subversion any time soon until our illustrious editor, Tim Penhey
gave a ‘Birds of a Feather’ session at the ACCU 2007 conference on the
highlights of Bazaar [4].

Now I have fairly straightforward requirements from my VCS; the only
thing that really matters is that it works and I have enough trust in the
software to be able to make any kind of mistake in my working copy safe
in the knowledge I can roll it back to a previous version. If it’s easy to use,
cheap to install, doesn’t have huge disk-space requirements, well all those
things are nice, but they’re just the dressing really. It’s trust that matters.
As developers we (should!) see our VCS as the Keeper Of The Keys, One
Who Protects Our Valuables. It’s an important job, and we want to make
sure we hire the right software for it. So to speak.

I am a Subversion [1] user, and have been for quite some time. Before

The cons of SUN

So back to Subversion. It’s been a handy tool, but lacked just one thing. I
work on a laptop quite a bit, and so want to be able to check in and out
when I’m disconnected from real life and have no network connection.
Subversion assumes a single repository, possibly on a network, perhaps
even the Internet. Checking in a file sends changes to the one true
repository. If my repository is on my home PC and my laptop is
disconnected from my LAN, a check-in from the laptop must fail because
svn can’t connect to the repository.

One answer might be that my “main” repository is on the laptop, and I
update from there to my home PC when it’s connected; this obviously
requires my laptop to be a server, which seems back-to-front. Another
answer might be to have the main repository on a thumb-drive, and use

STEVE LOVE ’

Steve Love is an independent developer constantly ”
searching for new ways to be more productive without
endangering his inherent laziness. He can be contacted

at steve @arventech.com

Professionalism in Programming)

B [t must be clear who is going to make the release. In large teams
there is often a designated buildmaster who maintains the build
system and takes responsibility for managing all software releases
[2]. In smaller teams the build/release role may move around.

® The release procedure must be clear and unambiguous. Even if you
have a single buildmaster who takes overall responsibility, the
whole process should be well defined and documented so that
anyone can perform a release in the future.

® The release processes must be really very simple; this dramatically
reduces the likelihood of error. We’ll see the best way to document
the process and make it simple later.

B [t must be clear who makes the final decision about whether the
software is acceptable and a release can be made. Naturally, this
means that you should have a thorough QA process and good bug-
tracking system.

B The code must be managed under source control. We need to be able
to track in the future exactly what source set when into release 7 of
our software. We must also have a mechanism to record which set
of files formed the basis of which software release. (Source control
system tags/labels and branches are useful for this.)

B Your software must have a robust and reliable build procedure.
Building the same set of source files twice must always produce an
equivalent set of output files. You can’t have a reliable release
procedure without this.

B A good release always starts from scratch. You should not build an
important release over the remains of a previous release, no matter
how tempting it is. Sure, you don’t think that it matters, that any of
those old files have changed, or that anything can go wrong. But you
still shouldn’t do it. Wipe the old build tree, and start again.

B You must leave sufficient time to make the release correctly.

B When crunch time comes it becomes far too appealing to make
short-cuts (like building on top of a previous release to save having
to compile all the source files). Ensure that releases are started early
enough in the day to prevent a last minute rush and panic.

B There must be sufficient time to sanity check a release before it has
to be handed on.

B The releases procedure should be audited and managed adequately.

Admittedly, that was rather hand-wavy list of ideals. But it’s all important
stuff and key to a reliable, robust software release procedure.

In the next article we’ll start to look at the mechanics of the software release
process. This was the relaxing part — next time we’ll pick up our shovels
and dig a big hole for ourselves! B

Endnotes

[1] Terms here vary, but the intent is usually the same. Some teams call
the gold master the production release, for example. The term “gold
master” hails back to the production of vinyl music records, where
the original moulds that records were pressed from were plated with
gold to preserve them.

[2] Talways worry that the kind of engineer who likes to be called a
buildmaster is likely to be the kind of person who likes dressing up
in a cloak and a pointy hat. But maybe that’s just my weird
preconceived notions.

Pete’s book, Code Craft, is out now. There are lots of
questions in it, but they’re mostly quite sensible. There
are a lot of monkeys, too.

Check it out at www.nostarch.com

AUG 2007 I{cvu}| 5

{cvu}

that for everything. This works too, but thumb-drives are, if nothing else,
prone to getting lost.

The alternative is to have a local repository on the laptop, which gets
synchronised with my server repository when I have a network connection.
For simple things, exporting from the laptop repository, and then checking
that whole export into the main repository works just fine, but it loses all
the change history associated with the laptop repository. Retaining that
info can be done, but it’s quite frankly more trouble than it’s worth.

Newer versions of Subversion (1.4 and above) have svnsync, which allows
mirroring of a repository to a slave, but the slave is read-only. This is fine
for backups and mirrors, but not for remote check-ins.

“Iwant’ volume 1

So what I’m really saying here is that I want a VCS significantly like
Subversion, but which allows me to merge changes from one repository
to another. Specifically, which allows me to check-in locally on my laptop,
and then merge those changes, with the version history, to another
repository when I’ve got a network connection.

This functionality is actually planned (in some form) for future Subversion
releases, but that particular future is a long way off. Also planned for
Subversion in the medium term are improved

Fentures deseribed fo Bazaar in more dost \WINAN 1 WAL from my VCS
and what the next
person wants may not
be the same things

below. As with decentralised working, these are
features that Bazaar gives me today.

Back on topic

So I hear about the Bazaar VCS. Where
Subversion is a centralised system, Bazaar is a
distributed one. When people start talking about
something being “distributed”, I tend to start thinking about “massive
complexity” and get just a bit cautious. To be honest, I was initially
interested in hearing more because I know precious little of distributed
version control; I didn’t really register the fact it could help me with my
disconnected laptop problem until after I’d heard more about it. There’s a
lesson in there, I think...

Bazaar is really more accurately described as de-centralised. The
distributed nature of Bazaar repositories is a side effect of this. Instead of
a single repository to which commits take place, a project versioned under
Bazaar may have many repositories, each with many branches. It was this
point — which I’ll cover in a bit more detail — which first struck me about
how Bazaar might help me overcome my particular problem.

The other thing that struck me about this “distributed” Version Control
System was its simplicity. In terms of usage it is very Subversion-like, a
deliberate design goal of the Bazaar development effort, and requires little
in the way of set-up. Not things I expected from a “distributed” system!

The inevitable comparison

So here we get right down to it: why do I think Bazaar is a suitable
replacement for my beloved Subversion? The answer, of course, must be,
because it does some things I want that Subversion doesn’t do, and it does
all the things I like about Subversion as well as Subversion does, or better.

Naturally, what I want from my VCS and what the next person wants may
not be the same things, and therefore Bazaar (or Subversion, or any system
for anything, for that matter) is not ideal for everyone. Mark Shuttleworth,
the founder of Ubuntu and outspoken advocate of Bazaar, has interesting
views on this, see his blog [6].

For me, the following aspects persuaded me that Bazaar was the way
ahead.

As I’ve already mentioned, this was the “one thing” I wanted that
Subversion doesn’t (yet) support — the ability to check in to a local
repository and be able to merge those changes to another repository when

6 I{cvu}| AUG 2007

it’s convenient to me. Bazaar’s de-centralised way of working supports
this need directly, without resorting to scripts or hackery or third party
tools. It is, in fact, the preferred approach to version control in Bazaar.

A branch can be made from any published repository. “Published” really
means you can see it; it may be made available as a shared folder on a
network, via an http server (no special tricks — it’s just a file system), an
ftp server or via Bazaar’s built-in BZR protocol [7].

For my purposes, [use a shared drive between Windows-based computers.
My home PC is named ‘Churchill” on my home LAN, and it has the main
(HEAD) repository. It shares the repository folder, c: \dev, on the
network as dev. My laptop, called ‘Attlee’, connects to my LAN when
I’'m at home and also shares ¢ : \dev as dev.

The basic work flow is that I would branch from the main repository to
my laptop. On my laptop at a command prompt:

bzr branch \\churchill\dev c:\dev\root

The arguments are the [from] repository, then the [to] directory. I can
now disconnect the laptop and take it on the train, checking in my changes
as I go.

Note there is no need to check-out the newly created branch. In Subversion
(for example), a branch is just a copy of some part of the development tree
inside the repository. To work on the branch, you
check out the branch, and check-in against it. In
Bazaar a branch is the local repository, although
it also supports what are called “bound
branches”, which behave more like a centralised
system like Subversion. In the common case, the
repository is a magic folder in your working copy
area, called .bzr. Bazaar supports a separate
location for the repository, too.

When I return home and reconnect my laptop to the network, in a command
prompt on my home PC I can enter:

bzr merge \\attlee\dev\root -d c:\dev

The -d argument specifies the location to merge into. The default (no -d
argument) is the current directory. This command brings all my changes,
with history, back into the trunk. If I know (and I usually do, because I'm
the only programmer in my house :-) there are no changes to the trunk on
Churchill when I want to merge, I can instead perform the update to trunk
from the laptop:

bzr push \\churchill\dev -d c:\dev

The -d argument in this case is the location to push from. As with merge,
it defaults to the current directory. The push command will fail if the trunk
has diverged — i.e. it contains changes which have not been merged to my
laptop branch. Push differs from merge in that it makes the target directory
a mirror of the source.

As with all good VCS systems, Bazaar has status, diff and log
commands which do the expected things, including seeing the differences
between two branches, and showing the log for a specific file on a branch.
Of course, in the case of Bazaar, they are different repositories, but it helps
to just think of a branch in a Bazaar-managed project as just a branch in
say CVS or Subversion. The only difference is that accessing a particular
branch might require network access.

In any case, for my common uses, that’s it! How easy is that?

Smart merging
I can already hear at least the Subversion users reading this asking “how
do I perform subsequent merges when I make changes in the branch?” The
answer is similarly easy: exactly the same thing as before:

bzr merge \\attlee\dev\root
Note the lack of revision numbers here. The default behaviour of Bazaar
is to merge in all changes since the most recent merge — Bazaar remembers
when that merge took place, so there is no need to specify the base revision.
You can of course explicitly specify the range of a three-way merge:

bzr merge -r 10..51 \\attlee\dev\root

{cvu}

Conflicts occurring as a result of a merge are handled in the same way as
with Subversion; conflicted files must be explicitly resolved, before they
can be committed.

A primary reason for my moving to Subversion from CVS was its support
for moving directories and files around the repository. Even a mild
refactoring of a development tree could cause copy and delete headaches
for CVS, and Subversion provides that facility natively, so I can just
rename stuff as [go.
But it’s far from perfect in Subversion, either. The main problem is that,
under the hood, Subversion just does a copy and delete. OK, so whereas
in CVS such a (manual) operation would lose all the revision history,
Subversion keeps that information, so I can look at a log of a file and see
that it was moved from x to d at revision n. The main problem comes when
merging between branches having different renames, and Subversion tries
its best, but gets unstuck in some circumstances. Try this in some of your
favourite VCSs:

B Create a folder test
Create files filel and file2 in test
Check in to trunk
Create a branch from trunk

On the trunk, change £ilel then check in

On the branch, rename test and change £ile2, then check in
m Merge back from the branch to trunk

With Subversion, my modifications on trunk to £ilel were lost,
overwritten during the merge. Using Bazaar this worked just fine, merging
changes into the renamed directory.

Bazaar makes item renaming a first class operation, and tracks those
changes transparently so that merging between branches with different
renames “just works”. It may result in conflicts, but that’s an inevitable
result of rename support under these circumstances. I would much rather
have to resolve conflicts than silently lose information!

All the other stuff I like about Subversion

Bazaar has only a few commands, with simple to understand arguments,
a policy it inherits (deliberately) from Subversion. There are commands
like rename, copy, move, commit, update and blame, which do just
what you’d expect.

Can it he that perfect?

Of course not. There are trade-offs you need to decide upon when choosing
any important tool, and certainly Bazaar has its faults. It is not always as
quick as some other VCS tools, but only you can decide whether that
matters. For my own small projects the difference isn’t even noticeable.

The documentation is adequate but not fantastic; one of the greatest
strengths of both Subversion and CVS is the quality of their
documentation. I’m sure the Bazaar development team will get there in
time. It’s still young enough to be a moving target anyhow.

Related to its youth and Linux based heritage is the lack of UI tools for a
Windows platform, such as Tortoise for CVS and Subversion. A
TortoiseBZR project is underway, which I think will aid the take up of this
fantastic tool no end.

The prime directive of Bazaar

Low barriers to participation. That’s it — in other words, keep it as simple
as possible. Bazaar is pretty much just one command line client. Simplicity
oozes from Bazaar, and drives everything it does. Rename support “just
works” because that makes life easy for the developer. It’s related to the
Smart Merging provided by Bazaar, which in turn is related to the
distributed nature of Bazaar. These things didn’t get implemented by
accident, they are all part of the philosophy of Bazaar which is about
developer collaboration, and making that easy. Bazaar lives up to this

philosophy admirably. Bazaar is free software, with a lively and vibrant
developer- and user-community, and takes its name from the Bazaar
Development Model, characterised in Eric S. Raymond’s essay The
Cathedral and the Bazaar [8].

For my needs as a sole-developer it’s very nearly perfect. Bazaar would
also be suitable for my work in a team of developers, because it supports
several ways of working, and doesn’t impose a single use-case on you. For
example, it is possible to use both a central repository for Bazaar and lock-
step-commit as if it were CVS or Subversion. In team where some or all
the developers work at home or off-site, Bazaar wins again, for the same
reason as it does for me and my laptop, especially if remote access inward
through a corporate firewall is technically or politically difficult to
implement.

Bazaar is so easy to get, so easy to install and so easy to use for simple
things, I think I’d even recommend it for newcomers to revision control,
because it has no need for a server or separate repository, and you can just
work with it in-place with your development. All in all, this is my
“developer’s choice” tool for 2007 :-) m

References

1 Subversion: http://subversion.tigris.org

2 CVS: http://www.nongnu.org/cvs/

3 Pete Goodliffe, ‘Effective Version Control’ (Professionalism in
Programming #40) CVu vol. 18.5, October 2006.

4 Bazaar: http://bazaar-vcs.org/ At the time of writing, version 0.17

has just been released.

http://subversion.tigris.org/roadmap.html

Mark Shuttleworth at http://www.markshuttleworth.com/

7 Bazaar doesn’t really have the concept of user authentication: it
assumes that can be done on the filesystem itself. Therefore, if you
have permission to write to a directory, you are a committer.

8 http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-

Join the
ACCU

visit
WWW.accu.org
for details

AN W

AUG 2007 | {evu}| 7

{cvu}

A Brief Introduction to Cygwin

Silas Brown finds alternative tools.

NU/Linux is a good operating system, especially for developers — it

has so many useful tools immediately available, and it’s relatively

easy to hack and tweak how things work, besides other advantages.
But there can be problems.

Linux is excellent at supporting old hardware; in fact it can extend the life
of old hardware considerably, which is good for the environment and for
your time — a good stable distribution will run for many years with minimal
maintenance once it has been set up. But for new hardware things can be
different, especially if it’s non-standard and the specifications haven’t
been released to the public; in this case there can be a time lag before the
Linux developers can catch up. For example when a company loaned me
one of their brand-new laptops for a temporary work contract, and I tried
putting a Knoppix bootable Linux CD into it, try as I might I could not get
Linux to use its Ethernet card properly, and neither could anybody else who
had that particular model of laptop according to my web searches.

The included copy of Windows XP was already working OK with the
hardware, but I was very limited in the applications I could use with my
partial sight. Thankfully with a modern TFT display I don’t have to worry
quite so much about always choosing colours that won’t hurt, but if you
need large fonts then Windows is not very good. The only way to reliably
enlarge all the fonts is to change the display’s resolution and/or DPI
setting, but then a lot of dialogues won’t fit on the screen and won’t scroll.
This means you can’t get at the buttons, so you have to keep temporarily
changing the resolution back and squinting, that is unless you have a spare
thousand pounds to invest in a top-notch screen magnifier program but that
will only last until the next version of Windows. If I were spending that
amount, I’d rather just buy a Mac or a Linux box which can do it anyway.
I managed to use the applications that the company wanted me to use to
get onto their intranet, but beyond that I just couldn’t get on very well
without some decent software from the Unix world to help me out.

Enter Cygwin. Cygwin has advanced a lot since I last looked at it (which
wasn’t all that recently) and it now comes with an installer and lots of
packages that are reminiscent of a Linux distribution. This makes for a very
easy way of putting a Unix world onto Windows and running it safely and
at full speed. Besides all the compilers, interpreted languages like Python,
and command-line tools, there are things like TeX, X11 and associated
programs, LyX, netpbm, XEmacs (although the Cygwin version doesn’t
include as many features as if you download it separately), and a host of
other things that can be made ready to go by checking a box in the installer.

rocket science or brain surgery.
What do you have to contribute?

THE ACCU NEEDS]

YOU

8 [{cvu}| AUG 2007

Overload, and by a newcomer.

I found I could get going quite quickly once Cygwin was installed. It gives
you ahome directory in Windows’ Documents and Settings folder,
and makes it look like a Unix home directory. The full contents of the disk
drives are available as /cygdrive/c, /cygdrive/d etc, and Cygwin
also sets up a Unix-like file structure (/usr/bin etc.).

You can run either Cygwin or Windows programs from the shell, and there
are only a few minor gotchas — for example, if you try ‘gcc’-ing a C
program and expect the binary tobeina . out thenit’s not, it’sina . exe.
Also, if you run a Windows native program from within Cygwin then it
can occasionally crash unless you first change to the directory of the
Windows native program, and then you have to be careful about how you
specify pathnames on its command line. In the case of The GIMP I found
that the best thing to do is to move the files you want into GIMP’s program
directory and load them from there. But all these things can be worked
around and I haven’t run into anything major yet.

You cannot run Linux binaries directly; you have to recompile everything
on Cygwin, which can be difficult if you need a large complex package.
Thankfully, Cygwin already includes many such packages so you don’t
have to compile them (just check the check boxes in the installer). If the
program you want is not included in Cygwin then it may have a Windows
port anyway, which you can often install whether or not you have Cygwin.
Most of the major free software projects do this, and they’re often better
than non-free Windows programs, so it’s worth looking.

There are other useful downloadable Windows utilities, such as PuTTY
for SSH and SCP (Cygwin includes SSH but it seems it doesn’t yet include
SCP for some reason), and CutePDF which lets you print to PDF from any
Windows application. However I’'m glad I have a Linux box as well so I
don’t want have to set up absolutely everything on that laptop, just the most
useful things.

So it seems that Windows on fast hardware can be made to be nicer. And
hopefully soon the driver developers will have caught up and it will be
fairly easy to move back to Linux. ®

B What are you doing right now?
B What technology are you using?

SILAS BROWN

Silas is partially sighted and is currently undertaking freelance work
assisting the tuition of computer science at Cambridge University,
where he enjoys the diverse international community and its cultural
activities. Silas can be contacted at ssb22 @cam.ac.uk

C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about

B What did you just explain to someone?
What techniques and idioms are you using?
If seeing your name in print isn’t enough, every year we award prizes for the best published article in C Vu, in

For further information, contact the editors: cvu@accu.org or overload@accu.org

Paul Grenyer explains the CCNet Web Dashboard.

CruiseControl.Net Weh Dashhoard

n part 1 of ‘Continuous Integration with CruiseControl.Net’ [1] I
described creating a simple, but effective, continuous integration
configuration for Aeryn [2] using CruiseControl.Net.

Another feature of CruiseControl.Net [3] is the Web Dashboard. The

documentation describes the Dashboard as follows:
The CCNet Web Dashboard Application is used for reporting a wide
range of information. At one end of the scale it reports summary details
of all projects in your organisation and at the other it can give specific
metric output for any specific build.

Features of the Web Dashboard include:

B Multi-project, multi-server support — one Web Dashboard
deployment can report over all the CCNet projects in your
organisation so there is no need for multiple instances of a web
application.

B A significant set of ‘plugins’ to support various reporting and
configuration features.

® Plugin API supports custom features at various groupings of build,
project, etc.

B Plugin API supports a complete code interface, enabling
significantly richer plugins than were available with the old web
application.

In this part, [am going to look at some of the Web Dashboard features and
at getting the standard web interface installed.

CruiseControl.Net Weh Dashhoard features

The Dashboard is accessed via a web browser by specifying the name of
the CruiseControl.Net server and the ccnet virtual directory (for
example, http://localhost/ccnet/). The Dashboard has four views: Farm,
Server, Project and Build. The default view, Farm, is shown in Figure 1.

The CruiseControl.Net documentation can be accessed via the link from
any view. The location bar near the top of the page shows the user where
they are and allows navigation.

The Farm view shows all the projects that are running on the server and
their status and allows them to be stopped and started or a build forced.

There is a link to the CCTray installer. This is useful when
CruiseControl.Net is first deployed to a team. Each team member should
have CCTray installed on their local machine and this is an ideal way to
distribute it.

£) CruiseControl. NET - Mozilla Firefox
File Edt View Hstory Bookmarks Tools Help

-5 &

ﬁ \u http:/fAocahost/cenet/ViewFar mReport.aspx "l l>] "‘

ruiseControl.NET
NUOUS INTEGRATION SERVER X
Documentation

2.1.7
Farm Report Refresh status
Download CCTray
Last
Build
Label

Last Build CCNet

Status

Project
Name

Servers
lacal

Server Last{blld Activity Messages Admin

local Aeryn Success 22”7'”5'12 4 Running Slesping

6:52:49

ThoughtWorks

There is also a link to the Server view and the Project view can be accessed
by clicking on the project name.

The server view gives access to the server logs and server information.
Being able to access the server logs via the Dashboard negates the need to
go onto the server when configuration and build issues need to be
investigated. The Dashboard could be improved by showing the server log
in real time.

The server information page lists the servers in the system and the
CruiseControl.Net software version.

Project view

The project view is accessed by clicking on a project name from the Farm
view. It gives a list of all the recent builds for the project. Successful builds
are colour coded green and unsuccessful builds are colour coded red.

There are links to the most recent build report, the project statistics (if they
have been implemented), the server log and the project configuration from
cenet.config.

The Build view is by far the most useful view. Primary it shows the results
of latest builds. This is especially useful if for some reason emails are not
being sent out or if emails have been deleted and previous build results
need to be checked as the build report shows exactly the same information
as generated by the email publisher.

¥ CruiseControl. NET - Mozilla Firefox
Fle Edt View History Bookmarks Tools Help

-

ﬁ |u http //Iocalhost/ccnet/server/local/pro]ect/Aeryn/bu\\d/|" D] IIGl-

=7 "JCruiseControl.NET
CONTINUOUS INTEGRATION SERVER]
Documentation

217
BUILD SUCCESSFUL

Project: Aeryn

Date of build: 12/05/2007 16:52:42

Running time: 00:01:19

Integration Request: IntervalTrigger triggered a build (IfModificationExists)
Last changed: 2007-05-12 16:51:47

Last log entry: Fixed I5_EQUAL_DELTA nest

Previous

Build Report
wiew Build Log
NUnit Details
Uit Timings
NARE Gutput
ARt Timings
FxCop Report
NCover Report
Simian Repart
Fitnesse Report

Recent Builds
2007-05-12 16:52:49 (4)

Some of the other features of the build view are the build log, which shows
the output from the build. The NUnit details and timings which show the
results from running any NUnit tests and the output and timings for any
NAnt builds. There is also support for third party analysis tools such as
FXCop [4] and NCover [5] that I intend to cover in future articles.

Mo Tests Run
This praject doesn't have any tests

PAUL GRENYER

Paul has been a member of the ACCU since 2000. He
founded the ACCU Mentored Developers and serves on the
committee. Paul now contracts at an investment bank in
Canary Wharf.

AUG 2007 I{cvu}| 9

{cvu}

Installing Internet Information Services

The Dashboard is implemented in ASP.Net and requires Microsoft’s
Internet Information Services [6] to run on the same machine as
CruiseControl.Net. IIS is included as a package with Windows XP
Professional, but is not installed by default. It can be installed via the
Windows Component Wizard which is opened by pressing the Add/
Remove Windows Applications button on the Add or Remove Programs
window accessed from the Windows Control Panel. Put a tick in the
Internet Information Service (ISS) box and click next (Figure 3). When the
setup has finished click Finish.

To test that ISS is installed and working, open a web browser and enter
the URL http://localhost/ (you can also use the host name or IP address).
If everything has worked a page will be displayed with the message: Your
Web service is now running. Windows XP Professional includes version
5.1 of IIS. Later versions have a different default page with a similar
message.

&gﬁ Currently instaled programs:

O Show updates Sort by: [Name v

Change or Ir> —
Remove i o 2.0 &
Programs Windows Components Wizard gl |

Windaws Companents f=2 |
% You can add of rsmove components of Windaws <P) lnermove |
Add MNew |]
Programs | To add or remove & component. click the checkbox. & shaded box means that only
i patt of the component wil be installed. To see what's included in & component, click 65.13VB
Dietails.
@' | Comporers: 0.11MB
AddRemove | & Intemnet Explorer 00MB A
Windows | ¥Z Intemet Informati 5] l41.00MB
Comporents | (] B4 Management and Monitaring Taoks 20M8
[] 52 Message Queving 00MB
|
@ i %] "% WSN Funlreer n7MA_ ¥ 10.55MB
Description: Includes Web and FTP supgart, along with suppart for FrontPage., 27.35MB
Set Program | transactions, Active Server Pages, and database connections.
Access and | Total disk space required 3.3 MB L 26.00MB
Detsil !
Defaults | Space avalable on disk: 922973 MB
| 6.45MB
| [<Back || Mew> | [cancel || 05EMB
T 16 menam ¥

Some people consider IIS a security risk so it is important to make sure
you are also running the latest Microsoft Windows updates and check with
the relevant system administrators before installing it.

If IIS was installed prior to CruiseControl.Net and the default install
options were not changed, then the Web Dashboard will already be
configured for IIS. If IIS was not already installed or the right install
options were not selected, the easiest way to configure the Dashboard is
to rerun the CruiseControl.Net installation. This will create the necessary
IIS virtual directory.

Start by backing up ccnet.configand ccnet.exe.config from the
CruiseControl.Net server directory (usually located in C:\Program
Files\CruiseControl.NET). The Dashboard only installation should
not overwrite the existing configuration, but it is better make a backup just
in case.

1. Run the CruiseControl.Net
CruiseControl.Net website.

MSI installer from the

10 [{cvu} | AUG 2007

2. On the Choose Components screen uncheck CruiseControl.net
Server and Examples (leaving only Web Dashboard checked).

3. Leave the Additional Components screen unchanged (ensuring that
Create virtual directory for Web Dashboard is ticked).

4. Complete the installation.

To check that the virtual directory has been setup correctly, make sure
CruiseControl.Net is running from the command line or as a service (the
Dashboard works with either) and then go back to the web browser and
enter the URL http://localhost/ccnet/. IIS must be configured for ASP.Net,
so this will bring up the source for the default Dashboard ASP page which
begins:

<!--

Note to people reading source code -
CruiseControl .NET includes an HttpHandler which
handles all .aspx requests. This file,
default.aspx, should never be processed by 'normal’
ASP.NET and is here just as a page to explain
configuration problems

-—>

There are instructions on the CruiseControl.Net website for manually
configuring the Dashboard for IIS, but they’re not particularly
comprehensive and using the installer is much easier.

When multiple versions of .Net are installed, IIS needs to be configured
to use a particular version. To do this open a command prompt and go the
directory (e.g. v2.0.50727) of the .Net version to be used, which is usually
in C: \WINDOWS\Microsoft.NET\Framework and type:

aspnet_regiis.exe -i

aspnet regiis.exe is an ASP.Net registration tool. The -i
parameter, according to the help, installs Asp.net and updates the
scriptmaps at the IIS metabase root and for all scriptmaps below the root.
Existing scriptmaps of lower versions are upgraded to the same version.
The Dashboard and ISS configuration is now complete. Going back to the
web browser and refreshing to re-entering http://localhost/ccnet/ will bring
up the Web Dashboard. m

References

1 Integration with CruiseControl.Net - Part 1, available from:
http://accu.org/index.php/journals/1371
http://www.aeryn.co.uk/

http://ccnet.thoughtworks.com/
http://www.gotdotnet.com/Team/FxCop/
http://www.ncover.org
http://www.microsoft.com/windowsserver2003/iis/
default.mspx

AN N AW

Scripting C++ Ohjects

Our Gang of Four bless COM with perl.

independent and language-neutral calling convention based on

metadata contained in C++ objects. In the second and concluding part
we show how to provide a target language binding for Perl. In addition,
we describe a novel technique for reducing verbosity in the target language
that also facilitates the API’s implementation through C++ mixin
techniques.

Perl to COM hinding
Extending Perl

We make the COM objects accessible to Perl by creating an extension
library. This consists of a DLL exporting C++ functions which bind the
Perl calls to the COM methods and some convenience functions in Perl.
We derived this from a published extension which adds OLE support on
Windows [1], removing excess functionality and modifying to call our
COM libraries. This allowed us to rapidly prototype the scripting and we
learned valuable lessons from this approach, but the refactoring work was
extensive and we are likely in future to build extensions from scratch.

T he first part of this article demonstrated how to provide a platform-

You can run the Perl utility h2xs [2] to generate the framework for a new
extension. The generated files include a . pm package to contain the
convenience functions and a . xs source file for the C++ binding code. The
.xs file is preprocessed to add function interfaces and variable
marshalling code ready for compilation with your usual compiler. In its
simplest form, it contains little more than SWIG-style declarations of your
library functions, but you can add complete function definitions in C++.
Since there can be only one . xs file per extension, and the Perl header
files define some macros which interfere with C++, it pays to factor out
the pure C++ parts into other files and leave only the interface functions
in the . xs; otherwise it quickly becomes unwieldy.

The XS preprocessor also generates Perl code which locates and loads the
extension DLL when a script imports the class package. Once the DLL is
loaded, it calls the BOOTSTRAP function exported from the . xs file. You
can add your own initialization code to this function; for instance, it could
make the COM system ready for the script to access objects.

Creating Perl ohjects

The various classes exported by our COM libraries are represented by a
single Perl class called COM, which appears polymorphic by virtue of the
C++ forwarding mechanism.

Perl has three basic datatypes: scalars, arrays and hashes. A scalar variable
can hold an integer, floating point or ASCII string value, or it can be a

reference to another datatype or even a block of code. Typing in Perl is
weak and it will silently convert a scalar value between its possible types
according to context. Arrays are vectors of scalars and hashes are maps
with string keys and scalar values.

An object variable is represented by a scalar which is ‘blessed’, that is,
tagged with a package name; the package name is associated with a set of
functions which form the class methods. The instance data is often stored
directly in a hash referenced by the scalar, which makes it easy to
implement the class purely in Perl code. However, we needed to define
objects which bind to our C++ classes, so we implement some methods in
the compiled part of the extension.

Class definition is not completely formalised in Perl, but it is conventional
to provide a function called new in the package to act as the class
constructor. In our case, new takes a single parameter, which is the
ProgID (a string uniquely identifying the COM class to be created). A
COM object of this type is created and the resulting smart pointer is
retained. A new Perl hash variable (HV) is also created and blessed into
the COM package. All Perl variables representing the C++ objects are of
this class, although it would be possible to subclass the Perl objects
according to the COM class if this proved useful. A new entry in a locally-
defined lookup table associates the HV with the COM pointer so that the
COM object can be retrieved when methods are called against the Perl
object. Finally, we make a new Perl scalar variable (SV) which references
the HV and return this to the script.

Perl variables are reference counted. Their scoping rules are similar to
C++’s, so for instance a variable declared in a code block will drop out of
scope at the end of the block. When this happens, the class’s DESTROY
function is called; our implementation of this reduces the reference count
on the COM object to ensure that resources are released as soon as possible.

Calling methods

Now that we have an object variable, we want to call methods against it.
Any methods known at build time can be mentioned explicitly in the . pm
or the . xs, but the COM interface methods are discovered at run time and
we cannot list them in the extension. Instead, we can implement a general
method called AUTOLOAD. An unrecognized method call such as

$atom->Translate ($x, Sy, $z);

will be passed to AUTOLOAD, along with the parameters $x, $y, $z. In our
extension, AUTOLOAD is implemented in Perl for ease of writing and it
passes the call onto a C++ function called Dispatch — Listing 1.

Kevin has been developing scientific applications in
C and C++ since 1991, filling in the gaps with Perl.
He is currently modelling polymers and other large
molecular systems. He can be contacted at
kdixon@accelrys.com

JOHN LEAR

John has been developing software in C++ on
various platforms for the last 14 years. At Accelrys,
he works on client development and infrastructure,
hopefully making life easier for other developers.
He can be contacted at jlear@accelrys.com

SIMON GRAY

Simon is an escaped experimental physicist who
was spotted around financial programming for a
few years before finding a more natural home
writing scientific software. He can be contacted at
Simon.Gray @ Physics.org

SIMON TREW

Simon started his career as a software engineer in
the defence industry. After graduating from UMIST,
he produced object-oriented databases, before
joining Accelrys. He can be contacted at
strew@accelrys.com

AUG 2007 1{cvu}| 11

{cvu}

package COM
{
sub AUTOLOAD {

my $self = shift;
$AUTOLOAD =~ s/.*:://o;
$self->Dispatch ($AUTOLOAD, my $retval, @_);
return S$retval;
}

}

The $AUTOLOAD variable contains the name of the method, prefixed with
the class name (COM: :); the class name is removed before Dispatch is
called. @__is a list of the parameters passed to AUTOLOAD.

The Dispatch function in turn calls GetIDsOfNames to convert the
method name to a DISPID. If the method is found, it is called through
Invoke; otherwise, an error message of the form "unrecognized
at line 31"; is sent back to the user.

function 'Translate'’

The standard Win32 implementation of Invoke (and our variations)
requires the parameters to be passed as VARIANTs. We create a vector of
VARIANTSs and populate them with mapped versions of the input Perl
variables. Note that Invoke expects this array to be in the opposite order
from how the variables are listed on the Perl stack, so that the first
VARIANT represents the right-most argument in the Perl parameter list.
The VARIANTS live until the Invoke call returns, after which their
contents are released before control returns to the script.

The type mapping of the parameters is quite naive: a variable containing
a floating point value is stored in the VT_R8 (double) member of the
VARIANT, an integer is placed in the VT_I4 (long) and a string is
converted to a BSTR and placed in the VT_BSTR member; an array
reference is unpacked and inserted into a new SAFEARRAY as that is how
our COM components pass arrays, though another implementation might
casily pass a reference to a std: : vector.

We can use this naive approach because the Invoke function will fine-
tune the parameters to better match the COM method interface. From
examining the Perl variable, we might know we have a floating-point
number but we don’t know enough about the COM method to determine
whether this should be a float or a double; we certainly wouldn’t want our
script to have to specify this as we would lose the advantages of weak
typing. Invoke has access to the COM method interface definition and can
do some further type translation. For instance, it can convert an integer (or
even a string containing a textual representation of a number) to a float
without complaint if the C++ function requires it.

If Invoke succeeds, the retval VARIANT is unpacked and mapped to a new
Perl variable for return to the script.

If one of the Perl parameters is a reference to a simple datatype (as can be
specified in the script with a backslashed variable: \$atom), the
typemapping code takes this to indicate that the COM interface is
expecting an [out] parameter; we take care to distinguish such a reference
from an object instance, which is a reference to a blessed hash variable. In
this case, the Invoke VARIANT is expected to contain a reference to a
second VARIANT which will itself be populated by the COM method; on
return from Invoke, the value in the second VARIANT must be sent back
into the corresponding Perl variable. Although we can therefore call
through interfaces featuring [out] parameters, we have decided not to use
such interfaces in our applications. Instead, we make use of Perl’s ability
to return multiple values from a subroutine as an array, to keep the scripts
simple. A COM method returning multiple values can fill the [retval]
VARIANT with a SAFEARRAY object, which is mapped into a Perl after the
Invoke call.

Flexible environments

Although the script can create COM objects of any type for which the
ProgID is known, in practice we restrict the use of the new function to a
single class, the Application. Other objects are created and accessed
through methods on the Application. The Application is

12 [{cvu} | AUG 2007

implemented with singleton data members so that scripts running in the
same process can create several Applications and yet access the same
contained objects.

The benefit of this is that we can control the Perl environment without
affecting the script. The script is usually run from within our server
application, which has a Perl interpreter embedded in it. The server creates
anApplication object and initializes its children, which can be adjusted
to suit the server environment. When the script makes a new
Application, it gains access to the Application’s children.
However, it is equally possible to run the script outside of the server, using
a standard Perl installation. This allows us to reuse the server components
and scripts within another of our applications, a workflow manager which
coordinates disparate programs by running scripts within its own
environment. A second use of this flexibility is that the scripts can be run
from a Perl debugger: users gain the ability to debug their server scripts
without us having to build an expensive debugging application.

Conversely, we now have the option of embedding a Python interpreter in
the server, which will run alongside the Perl interpreter. Once again, since
the underlying COM objects are shared between the scripts, it will be
possible to interleave Perl and Python scripts; a customer may prefer to
write in Python, but they will be able to use their own scripts in conjunction
with Perl scripts posted on our scripting forum.

What has been covered so far will easily support a rich API. Dynamic
Classification, or Forwarding as it became known, is a fairly simple idea
but came to be significantly more powerful than originally anticipated. The
first form of forwarding is how it was originally anticipated to be used.
Typically, if one has a significant object hierarchy, there will be a certain
amount of navigation that is required to get from a reference you have to
a function or property you want to access. This leads to long chained
function calls:

$x = $myObj->GetTheWibble->DoIt->FooBar->Length;

Our aim was to reduce the verbosity and therefore make the scripting
object model simpler to understand. This would be achieved by
ascertaining context from the previous calls that have occurred and simply
forwarding, or passing on, the calls from one object to another. A simple
example is similar to that used by Excel for the currently active worksheet.
A call:

$workbook->Cell (0,0) ;

would be forwarded on to the active worksheet object for it to deal with.
Another benefit of this idea is the ability for the target object, the workbook
in the previous example, to delegate to the implementation in a completely
different object without this being apparent to the script writer. This allows
us to develop mixin classes to implement particular areas of functionality
that can be reused.

To implement forwarding a class’s type information is updated to contain
an extra piece of information which causes GetIDsOfNames to call an
additional function that returns a dispinterface which is then queried for
the requested name. For example, consider the previous script example,
the Workbook class would look something like Listing 2.

class Workbook :
public IDispinterfaceImpl<Workbook>
{

public:
. .I.DECLARE_PROPGET (ActiveSheet, Sheet *) const;
éﬁ(.;IN_CLASSINFO (Workbook)
E.‘C.)I.RWARD_TO_PROPGET (ActiveSheet)

END_CLASSINFO
};

{cvu}

Cell would not be found during a query of the Workbook classes type
information. The final forward declaration means that the ActiveSheet
property is retrieved and Get IDsOfNames for Cell called on the Sheet
object.

The second form of forwarding turned out to be the most powerful. Rather
than working with context, this forwarder is in many ways similar to the
default clause of a switch block. If a call cannot be satisfied through the
API of the current object, the call is forwarded to a default method that is
able to look at the name of the property/method called and decide what to
do with it.

This gives the ability to look into application metadata to satisfy the call.
This allows an ‘Expando Property’ configuration without having to use a
different syntax for these properties over that used for the set of properties
known a priori (Listing 3).

class Atom :

{
public:

public IDispinterfaceImpl<Atom>

BEGIN_CLASSINFO (Atom)

FORWARD TO_ METHOD (ExpandoPropertyHandler)
END_CLASSINFO
IDispatch *ExpandoPropertyHandler () const;
}i

The ExpandoPropertyHandler method simply returns an
intermediate object whose sole responsibility is to lookup property names
and support accessor requests. It only needs to support a very basic subset
of the IDispatch interface. To keep it simple, this is handled through a
base class that simply stubs out the methods that aren’t used. A basic
implementation of GetIDsOfNames delegates the allocation of a
DISPID for the property name to the GetIDOfName method in the
derived class (Listing 4).

The final point of flexibility given through forwarding is the ability to
examine the arguments and types to a named function or property accessor

class ExpandoPropertyImpl
public BasicIDispatchImpl

{
public:
DISPID GetIDOfName (
const std::string& propertyName) ;
VARIANT Invoke (const DISPID dispIdMember,
const unsigned int wFlags,
const DISPPARAMS *pDispParams,
EXCEPINFO *pExcepInfo,
unsigned int *puArgErr) ;
}i

VARIANT ExpandoPropertyImpl::Invoke(...)
{
VARIANT ret_val;
if (wFlags == PROP_GET)
{
ret val = GetPropertyForID (dispIdMember) ;
if (pDispParams->cArgs !'= 1 &&
ret val.vt == VT_DISPATCH)
ret val->ppdispVal->Invoke (DISPID VALUE,
) 6
}
else if(wFlags == PROP_PUT)

return ret_val ;

and then decide what to do. It is important to note at this point that COM
does not support function overloading so this behaviour could not be
supported through the declarative style used with COMLite. This aspect
is implemented during the Invoke call (Listing 5).

This approach is very similar to the idea of default methods as used in
VisualBasic. The example given here shows how verbosity can be reduced
in a user’s script without reducing readability. For example, without the
overloading on parameters the following script text would be required:

my $atom = $molecule->Atoms->Item(0) ;

but by overloading the arguments we can elide the Item call:

my $atom = $molecule->Atoms (0) ;

The only requirement for this is that a special DISPID is used to identify
the method to be called by default.

A class can contain any number of active forwarders. This convenient
technique allows a class to implement one aspect of an object’s behaviour,
such as Expando Properties, and that class be reused through forwarding
to provide mixin style behaviour. As with all techniques where magic
happens, cf. operator overloading in C++, care must be taken so that a
consistent and unsurprising API is produced.

Frosting

Having built the basic COM interfacing extension, we can use some of
Perl’s advanced capabilities to ensure that the scripts remain easy to write
and do not reveal the complexities of our underlying datamodel.

Deferred call to allow indexed property access

We wanted to make it easier to access the cells in our spreadsheet
component. The COM object exposes methods get_Cell ([in] int
row, [in] int column, [out, retval] double value) and
put_Cell([in] int row, [in] int column, [in] double
value) which would be called in the script like this:
my $energy = S$workbook->Cell (4, 2);
$workbook->Cell (4, 2, $energy);

Notice that the put__and get_ warts are missing from the Perl calls; the

Invoke function decides which COM method to call according the

number of parameters it is passed (two for get_Cell, three for

put_Cell).

We felt that the setting call would be more clearly expressed as
$workbook->Cell (4, 2) = $energy;

The left-hand side of the assignment involves a call to the AUTOLOAD
function; this was interpreted as a syntax error until we marked AUTOLOAD
as an ‘lvalue’ [3] function.

There remained a problem with deciding which method to call: Perl parses
the left-hand side as a call to the two-parameter Ce11 method and therefore
inappropriately selects the get_Cell method. We considered changing
get_Cell to return a new ‘Cell’ object which would be a reference into
the workbook, capable of being assigned to or of returning the cell value
according to context. However, this would have entailed a new class for
each type of assignable property and the code would have to reside on the
C++ side, an approach which was deemed too intrusive and was rejected.

Fortunately, Perl provides the powerful concept of tied variables.

tie my $invoker, 'DeferredCallTie',

$deferredCall;

This creates an object $invoker of class DeferredCallTie, which
implements three methods: a constructor called TTESCALAR and read and
write accessors FETCH and STORE. (Listing 6)

AUG 2007 | {evu}| 13

{cvu}

package DeferredCallTie;
{
use Exporter;
use base qw(Exporter) ;
use Scalar::Util gw(refaddr) ;

Data members for 'inside-out' class.
my %deferredCall; # Instance of DeferredCall
which we control.
Constructor; stores the DeferredCall,
which it will later invoke.
sub TIESCALAR {
my ($class,
$deferredCall # DeferredCall object which
we will invoke.
) = @_;
my $SnewObject = bless \do{
my $anon_scalar}, $class;
my $selflId = refaddr $newObject;
$deferredCall{$selfId} = $deferredCall;
return $newObject;

Calls the method in an rvalue context.
sub FETCH {

my ($self) @_;

my $selflId = refaddr $self;

return $deferredCall{$selfId}->Call() ;

Calls the method in an lvalue context,
which assumes that the method is a propput
taking $value as the new property value.
sub STORE {
my ($self,
Svalue
) = @_;
my $selfId = refaddr $self;
$deferredCall{$selflId}->PutProperty ($value) ;
}
The destructor removes this object from
the class hash.
sub DESTROY
{
my ($self) = @_;
my $selfId = refaddr $self;
delete $deferredCall{$selfId};

We changed the AUTOLOAD function so that instead of immediately calling
the Dispatch function and passing its return value back to the script, an
object of type DeferredCall saves a description of the method call (its
object, the name of the method and a list of the input parameters); the call
to Dispatch is deferred until the calling context becomes clear. This
DeferredCall is in turn wrapped in a new DeferredCallTie, which
is returned to the script (Listing 7).

Now when the script assigns the energy to the worksheet cell, it calls
DeferredCallTie: : STORE with the energy variable as a parameter.
Since STORE is necessarily called in an 1value context, it knows to call
DeferredCall: :PutProperty and the put_Cell method is
correctly selected. Conversely, when the script reads the cell value, it goes
through DeferredCallTie: : FETCH; this has no new parameters to
add, so the two-parameter method get_Cell is selected through the
normal call to Dispatch. If the DeferredCall is wrapping a method
call rather than a property accessor, it will be constructed in a void context:

$workbook->ClearCell (4, 5);

14 [{cvu} | AUG 2007

sub AUTOLOAD

lvalue {
my $self = shift;
$AUTOLOAD =~ s/.*:://o;

This defers the call until we have the
full context.
my $deferred = new DeferredCall ($self,
$AUTOLOAD, @_);

If we're called in void context, we need to
call the method now, as there is nothing in
the caller to prompt the tie to do so.
if (!'defined wantarray) {

Sdeferred->Call;

return;
}
Otherwise, wrap the deferred call in a tied
scalar which calls the method once the
context is resolved.
tie my $invoker, 'DeferredCallTie', $deferred;
We cannot use "return" in an lvalue context,
instead we Jjust mention the value.
$invoker;

In this case, there is no value access to prompt the DeferredCallTie
to invoke the method, so AUTOLOAD does it directly.

Perl supports operator overloading at the class level; this allows us to
provide useful behaviour without having to write bespoke functions on our
COM objects and we can make our objects behave the way the client would
naturally expect. For instance, printing a Perl class object usually gives
something like this:

print $atom;

> COM=HASH (0x2b07984)
which is ugly and not very informative to the user. The hex number is the
address of the Perl hash variable wrapping our COM object, so different
Perl variables referring to the same COM object print different values.

We overload the string conversion operator so that it prints the type and
the address of the underlying COM object (Listing 8).

AddressOf and TypeOf access the C++ object and are implemented in
the extension. The same object now prints as:

print $atom;

> Atom [0x0045alc4]
and a test of equality of the Perl variables (which uses the string
conversion) will correctly return true if they refer to the same wrapped
object.

package COM;

{

[N}

use overload => \&ConvertToString;
sub ConvertToString {
my $self = shift;
my $address = AddressOf ($self) ;
if ($address) {
return sprintf "%s [0x%08x]",
TypeOf ($self), S$address;
}
else {
Null objects evaluate to
allow this: if (Sobject)
return 0;

'false' to
{$Sobject->Action; }

{cvu}

The Perl script writer needs to access the extension somehow and this is
achieved by using a Perl module that bootstraps it. By using certain Perl
idioms it is possible to make this process largely transparent to the script
writer. A number of special subroutines can be present in a module. They
are called automatically by the Perl runtime as a result of a use package
declaration and they act as package constructors and destructors. The
INIT method is used to perform any initialisation required by the module.

Creating objects

New C++ objects are created using the COM package function new and
passing the ProgID of the type of object to be created:

my $atom = COM->new ("Atomistic.Atom")

However, this is not particularly novice programmer friendly. Our
approach was to expose an object model that follows the style used by
Microsoft Office applications. The root object in this case is of type
Application and is automatically created during the INIT method
described previously.

Access to all other objects then follows from this root. New objects are
created using a factory method on an existing object:

my $atom = $document->CreateAtom("Si", ...)
Selective exposure through the Exporter

The final component that we use is the Perl Exporter. This package controls
the external visibility of symbols declared within a package. The
Application object, created during by the INIT function, is simply
exported into the MyAppsAPI namespace. Since virtually every call into
our API would start with $Application we provided a number of
functions to provide deeper access into the object model to reduce
verbosity. Our package declaration then looks something like:

package MyAppsAPI;

use Exporter;

our QISA
our QEXPORT
our @EXPORT_OK

qw (Exporter) ;
qw ($Application) ;

aw (
Documents Tools Settings etc.);

To again reduce the amount of verbiage, we group the contents of
EXPORT_OK into a tag that makes it easy for the script writer to import
everything into their script:

our 3%EXPORT_TAGS = ('all' => [QEXPORT OK]);
Using all of these techniques means that to get access to MyAppsAPI
functionality simply requires a single line of Perl:

use MyAppsAPI qw(:all)

This technique still gives the flexibility to require the package name be
specified if name clashes occur. Notice also that the contents package are
very small and require little, if any, maintenance.

This article has outlined the basics of a novel implementation of an API
suitable for using from a scripting language, such as Perl or Python. The
core implementation allows the API writer to write code easily in a native
C++ style.

The approach of using an independent wire representation (COM) also
means that additional scripting languages can be supported through
writing an independent language binding should there be customer
demand.

The above techniques were used to develop the scripting feature in the
recent successful commercial release of Materials Studio. In addition we
are now using it to drive automated regression tests and as part of our
integration with alternative consumer applications. B

[1] Win32::OLE — http://search.cpan.org/~jdb/libwin32-0.26/OLE/lib/
Win32/OLE.pm

[2] Perl XS — http://perldoc.perl.org/perlxstut.html

[3] Perl lvalue — http://perldoc.perl.org/perlsub.html#Lvalue-subroutines-
Ivalue-subroutine%?2c-lvalue

Get Ready for the AGGU 2008 Conference

“My fellow ACCUers, ask not what your conference can do for you,
ask what you can do for your conference”.

Freely adapted from John F. Kennedy.

It might seem too early to think to the next ACCU conference — after
all it will be in April next year — however, at the time you will be
reading this the call for proposals will be out, and the conference
committee will be already busy deciding various aspects of the
program (keynotes, tracks, etc.).

Despite all the hard work, there is still something the committee cannot
provide: your contribution.

In fact, the “big names” make only part of the program, and some of
the most successful sessions are the ones presented by practitioners
who may not be very famous, but have very interesting and useful
things to say (Allan Kelly wrote already something along these lines
in 2006 in his blog [1]).

Presenting at a conference can be challenging — speaking in public is
never easy, especially for first timers, and doing it in front of an
audience of experts is even more difficult — but is also very rewarding.
Ric Parkin’s article [2] gives a very good description of what it is like.

Furthermore, if you get a proposal accepted you have the right to attend
the conference at a discount price, and your boss may be more inclined
to give you the time off and pay for it — not to mention the fact that it
looks very good on your CV.

Ifnone your proposals is accepted —unfortunately, we have limitations
of space and time — you still win: you will have learnt something new,
and also have the material for one or more articles on CVu or Overload.

Personally, I think all the above are good enough reasons to give ita try.

All you need to do now is to check out the conference web-site for the
details (http://www.accu.org/conference), then prepare and send your
proposals at conference@accu.org. I’'m looking forward to receiving
them, and to seeing you all in Oxford next April.

Giovanni Asproni
Conference Chair

References
1 Kelly, Allan, http://blog.allankelly.net, April 2006
2 Parkin, Ric ‘Stand and Deliver’, CVu, June 2007

AUG 2007 | {cvu}| 15

{cvu}
Introduction to Lua

Renato Forti introduces another scripting language.

ua is an embeddable scripting language. It was born in 1993,
ldeveloped by Roberto Ierusalimschy, Waldemar Celes and Luiz

Henrique de Figueiredo at Lua.org, a laboratory of the Department of
Computer Science of PUC-Rio (the Pontifical Catholic University of Rio
de Janeiro in Brazil).

Today Lua is widely used in all kinds of applications and is considered a
general-purpose language. Application types include: industrial
applications, ethernet switches, distributed business applications, image
processing, bioinformatics, web development, games and so on.

Some projects that use Lua [1]:

® Far Cry, a first-person shooter. Lua is used to script a substantial
chunk of the game logic, manage game objects (Entity system),
configure the HUD and store other configuration information.
(http://www.farcry-thegame.com/)

B Adobe Photoshop Lightroom uses Lua for its User Interface
(http://www.adobe.com/products/photoshoplightroom/)

B Lua Player is a port designed to run on Sony Computer
Entertainment’s PlayStation Portable to allow entry-level
programming. (http://www.luaplayer.org/)

Lua was designed to be small, simple, portable, extensible and very
powerful.

Lua is written in ANSI C, so can run on a variety of operating systems,
including MS Windows, Unix, Mac OS9, Mac OSX, PlayStation, X-Box
(yes, Lua is used a lot in Game Development), ARM, RISC, IBM Main
Frames and a lot of others. For this article I will be using LUA on MS
Windows.

Lua is free, open source (distributed under a liberal license — MIT license
— http://www.lua.org/license.html), you can use it in your commercial
applications at absolutely no cost.

‘When this article was written the the latest version of Lua was 5.1.1; you
can download it from: http://www.lua.org/download.html

Building Lua
After downloading you will need to unpack lua-5.1.1.tar.gz. [use
WinRar to this. You can use your favourite compression utility program.

I will build Lua using Visual Studio 2005, but you can use any compiler
that supports ANSI C.
I extracted the contents of the compressed file into the directory
c:\temp\lua-5.1.1. To build, invoke your ‘Visual Studio 2005
Command Prompt’:

> cd \temp\lua-5.1.1\src

> ..\etc\luavs.bat
This will build Lua creating: 1ua51.d11, lua51.1ib and lua.exe
(stand-alone interpreter) in <lua dir>\scr.
Note: to build on UNIX, or for other build details see <lua
dir>\INSTALL file Setting

RENATO FORTE

Renato Forte is a C++ programmer who works at
Vegas Card, a financial company located in
Brazil. He can be contacted at re.tf@acm.org

16 [{cvu} | AUG 2007

Lua overview

&
Configure environment a
Iwill now use the stand-alone interpreter to dive ‘*‘:‘\
into Lua. I will make a batch file to automate +

execution of the interpreter and make my life :
easier, and I will use Notepad++ to edit my Lua script.
You can get Notepad++ from http://sourceforge.net/projects/notepad-
plus/. The batch file needs to reside in the same directory as Lua, in my
case c:\temp\lua-5.1.1\src or, if you wish, you can add <lua
dir>\src to your PATH.

The batch file contains:

lua test.lua
pause

Firstview

Create a TXT file in this directory and name it test.lua, open it in
Notepad++ and write:

print("------- ")
print ("Hi Lua!");
print("------- ")

Save, press F5 or choose Run on Notepad++ Menu and select test .bat,
or run your test.bat directly. You will see:

C:\temp\lua-5.1.1\src>test.bat

C:\temp\lua-5.1.1\src>pause
Pressione qualquer tecla para continuar.

Note that I didn’t end the last line in test.lua with a semicolon. Lua
needs no separators between consecutive statements; for example, this is
valid in Lua:

a =10 b =20 c =30 d = 40 e = 50 print(a+b+c+d+e)

The result is the same if you use semicolons:
a=10; b = 20; ¢ = 30; d = 40; e = 50;
print (at+b+c+d+e) ;

However using semicolons is more readable/elegant.

There are no type definitions in Lua. Lua is a dynamically typed language.
Each value carries its own type. (Listing 1).

As well as number, Boolean, string and nil, Lua has four other basic types
and they are: table, function, thread and userdata.

Lua doesn’t have the concept of class. You can simulate this concept using
metatables, but this is out of scope for this discussion.

About comments. In Lua you can comment your code using - - for a single
line, and for multi-line comments using:

- [

multi-line

comment

--11

{cvu}

x = 10;
print(type(x)); -- print number

x = true;
print(type(x)); -- print boolean
x = "oitti";

print(type(x)); -- print string

x = nil;

print(type(x)); -- print nil
-—[I

type (x) function returns the

type name of an value.
--11

Number
This type represents real numbers.

x = 10;
y 10e+10
z =0.4

print (x+y+2z) ;

Possible boolean values are true or false. If the boolean not is
initialized it carries nil, and if you test it you will get false.

if (x == true) then
print ("TRUE") ;
else
print(x);
end

x = true;

if (x == true) then
print ("TRUE") ;
else
print(x);
end

Lua is case sensitive, so TRUE is a variable name but true is a reserved
word.

Nil
Allundefined variables in Lua have the valueNil.Nil is used to represent
the absence of a defined value.

String is a sequence of characters and it can contain escape sequences (like
C):

x = "1 - line 1\n2 - line 2\n3 - line 3\n";
print(x);

Available escape sequences are shown below.

\b back space \t tab
\f feed \ backslash
\n new line \' double quote

\r return \ single quote

You canuse [[and]] to enter multi line strings:

x = [[

1 - line 1
2 - line 2
3 - line 3
117
print(x);

Tahles
Table is like a std: :map, see Listing 2.

x = {}; -- create table

x[1] = "oi";

x[2] = "hi";

print(x[1]);

y = {};

y["oi"] = 1;

y["hi"] = 2;

print(y["hi"]);

print(y.hi); -- same thing as last line

Operators
Lua has arithmetic, relational, logical and concatenation operators.
B Arithimetic

Lua provides seven arithmetic operators, shown in the table below.
Listing 3 shows an example of their use.

+ binary addition A exponentiation

- binary subtraction % modulo

*

multiplication - negation

/ division

x ,y, z=10, 20, 30;
print (x+y+z); -- 60
print(x-y-z); -- -40
print (x*y*z); -- 6000
print(x/y/z); —- 0.016...
print(x*2); -- 100

print (x%y%z); -- 10

® Logical

The logical operators are: and, or and not. These operators always
result in true or false.

All logical operators consider nil as false and anything else as
true (Listing 4).

X ,y, z=10, 20, nil;
print(x and y); -- 20
print(x and z); -- nil
print(x or y); -- 10
print(x or z); —-- 10
print(not y); -- false
print(not z); -- true

B Relational

The relational operators are:

< |greater than >= |greater than or equal to
> |less than == |equal
<= |greater than or equal to ~= |not equal

AUG 2007 | {evu}| 17

{cvu}

These operators always result in true or false, as shown below:

erlz=lol

print(x>y); —-
print(x<y); —-
print (x>z),; --

20, nil;

false

true

attempt to compare nil with
number

B Precedence

higher
A not - (unary) *
/ % + -
< > <=
>= ~= == and
or
lower
print (10+410*242); -- 50
-- 1is like
print (10+(10*(272))); -- 50
Loons and conditionals

Let’s start with i £. The i £ statement works like the C statement, first test
the if part then execute either the then part or the else part (the else
part is not needed, it is optional). You need to finish i £ with end
(Listing 5).

Lua has no switch statement, instead elseif is used to get similar
functionality (Listing 6).

The while statement behaves as you’d expect with the loop only being
executed if the condition evaluates to true. (Listing 7)

In repeat the body is always executed at least once. (Listing 8)

The for works as usual, but with some percularities, and it has two
variants, the numeric and the generic £or (Listing 9). This loop will
execute 10 times, start at 10, finish at 1, and decrement -1 each time
through the loop.

The generic loop uses integrator functions and I will not illustrate these in
this article.

Functions
In lua, functions can return one or more values. (Listing 10)

In the last line T used . . between result_aand " + "; this is the way
to concatenate two or more strings. If you want to concatenate numbers,
you must use spaces between . . and the numbers:

print(5 .. 5);

-- print (5..5); this will cause error.

Now we have a small background in ‘Lua’ structure and in the next article
I will dive into C API. m

Note
1 Source: Wikipedia - http://www.wikipedia.org/,

a, b = true, false;
if(a ~= b) then
print("a isn’t equal to b")
end
x, y = 10, 20
if(x > y) then
print("x > y")
elseif (x < y) then
print("x < y")
end
X, Y=Y, X/ =
if(x > y) then
print("x > y")
elseif (x < y) then
print("x < y")
end

swap x for y

a=1;

if a == 1 then
print("1")

elseif == 2 then
print("2")

elseif a == 3 then
print("3")

elseif == 4 then
print("4")

elseif a == 5 then
print("5")

elseif == 6 then
print("6")

end

a=1;
while a do

print(a) ;

a = a+l;

if(a == 10) then a = false end;
end

a=20;
repeat
print(a) ;
a = a+l;
until a >= 10

for i=10, 1, -1 do
print (i)
end

Lua.org - http://www.lua.org/uses.html

Bibliography
Roberto lerusalimschy, Programming in Lua — 2nd ed.
(http://www.inf.puc-rio.br/~roberto/pil2/),
ISBN 85-903798-2-5
Lua.org: http://www.lua.org/
Mailing list: http://www.lua.org/lua-1.html
Community: http://www.lua.org/community.html
Wikipedia,

http://en.wikipedia.org/wiki/Lua_%28programming_language%29

18 [{cvu} | AUG 2007

-- very simple function that return 3 values
function add(a , b)

return a, b, a+b;
end

—--call function
result a, result b, result ab = add(4, 5);

print(result a .. " + " result b .. " =" result_ab);

The Web Links listed here may not be valid in the future.

{cvu}

Lois Goldthwaite brings news from the recent WG21

meeting in Toronto.

in July to work on the draft of the revised standard known so far as

C++0x. This was an extra meeting in addition to the two previously
scheduled for 2007, so for the first time in a number of years there was no
corresponding C committee meeting in an adjacent week.

We did, however, have a full-day meeting of the Posix/C++ Study Group
before WG21 got underway. This body, meeting under the auspices of the
IEEE, is looking at the feasibility of drafting a formal binding between
C++ and the Posix operating system. The Posix standard mandates system
calls expressed in C, but there are other documents specifying how Fortran
and Ada code can access system services. With WG21 planning to add
language and library support to C++ for multithreading and error
diagnostic messages, and perhaps other system-related functionality, no
one wants to see two incompatible standards competing for the same
programming community.

T he international C++ committee, WG21, met in Toronto for a week

There is strong agreement on objectives, although some disagreement on
the technical details, particularly over the subject of cancelling a running
thread. Under the latest C++ proposal, cancellation only happens if the
cancelled thread cooperates; in Posix a thread has no option when it is told
to ‘die die die!” On the other hand, there is still hot controversy in WG21
over the mechanisms for thread cancellation, so nothing has been decided
yet.

The latest version of the Posix specification can be found at www.open-
std.org/jtc1/sc22/open/n4217.pdf. The C++ library proposal discussed in
Toronto is http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/
n2320.html, although there will likely be a revised proposal available by
the time you read this.

Members of the UK C++ and Posix standards panels will be participating
in developing the ‘Posix++’ binding; if you are interested in taking part,
please write to standards@accu.org for more information.

During the rest of the week, the C++ committee worked flat out to meet
their objective of producing a draft standard suitable for balloting by the
end of the next WG21 meeting early in October. A number of proposals
were voted into the working paper — these are a few of them:

B A new keyword, decltype, which can query the type of an
expression. This is handy in writing generic functions.

B A reworking of the definition of POD, which stands for ‘Plain Old
Data’, a data structure which has the same layout and behaviour as
it would if defined in the (plain o0ld?) C language. POD types are
useful because they can be operated on by both C and C++

while (you,care about

& =
&s¥overload

WWLACTU.080

functions, but to achieve C layout compatibility C++ has imposed
serious restrictions on their behaviour (for example, if a class or
struct has any user-defined constructor it does not qualify as a POD).
The new rules address layout and behaviour separately, so there
need be fewer compromises with good design in order to achieve
interoperability with C.

® The ability to ‘delete’ a function signature, so that invoking it will
result in a compiler error. Historically, if you wanted to prevent
instances of some class from being copied, you would have to
declare the signature of a copy constructor for the class, mark it as
private access, and not provide an implementation. This would
cause either a compiler or linker error if the invalid copy constructor
was invoked. Not only was this non-intuitive and hard to teach, it
disqualified the class from being usable in circumstances where a
POD was required. In C++0x, the programmer’s intent can be
clearly stated:

X (X const &) = delete;

and any attempt to copy an instance is an error, hopefully
accompanied by a clear message as to why. Other member
functions, and even stand-alone functions, can also be marked as
deleted and uncallable.

Another bit of new syntax explicitly directs the compiler to create a special
member function — the primary use case is to reinstate a trivial default
constructor which has been suppressed by declaration of another
constructor. Being able to reinstate the trivial default constructor is
essential to the PODs proposal discussed previously. But this syntax could
be used simply as documentation that the compiler-generated default
member functions are being used deliberately.

m A library performance enhancement enables objects to be
constructed directly into position in one of the standard containers,
whereas C++98 requires existing objects to be copied into
containers. Not only does this help runtime speed, it makes it
possible to have collections of types which cannot be copied at all.

® The library group is also adding the capability to catch and store an
exception for later examination and rethrow, perhaps even in a
different thread.

Other things that were discussed but not have yet been adopted include an
extensible syntax for defining compile-time literal values of user-defined
types, lambda expressions, and a syntax for attaching attributes, such as
alignment specifications (another new feature), to objects.

Despite the amount of work accomplished in Toronto, even more remains
to be done by the end of the next meeting, and serious thought is being
given to extending the schedule rather than risking a sloppy job through
hurrying to meet a deadline. If this happens, C++09 would refer to a revised
standard which completed its final balloting in that year, but publication
would probably not happen until 2010. The decision on whether to ship or
slip will be made in Kona in October. ®

LOIS GOLDTHWAITE

Lois has been a professional programmer for over 20 years.
She is convenor of the C++ and Posix standards panels at
BSI. One of her hobbies is representing the UK at
international standards meetings! Lois can be contacted at
standards @accu.org.uk

AUG 2007 I{cvu}| 19

{cvu}

A round-up of the latest ACCU regional events.

ACCU South Coast
Report from Peter Hammond (pdhammond@waitrose.com)

The ACCU south coast group has started holding meetings on the fourth
Thursday of every month. Gail Ollis kindly volunteered to set things off
in May with a reprise of her ‘Advocating Agility’ presentation from the
conference, this time without the voice troubles that hampered her in
Oxford. The Winnie the Pooh analogy clearly struck a chord with the
audience, and there was lively discussion during the talk and afterwards
over a glass in the social club bar.

At June’s meeting, Mark Easterbrook gave a talk on the short message
service on GSM networks, with the snappy subtitle ‘hw txt wks’. This was
a very interesting talk, which shed some light on how the mobile networks
extract money from us, and what happens to those texts that never arrive.

The next two meetings will be on the 26th July and 23rd August, also at
the East Christchurch sports and social club. Details of speakers are to be
confirmed, look out for announcements on the accu-general and accu-
southcoast mailing lists.

ACCU London
Report from Alian Kelly (allan@allankelly.net)

The ACCU London chapter was back in July having missed a month in
June. Aviv Handler from Co-herence (http://www.co-herence.com/)
talked about the role and importance of the Product Manager. This was not
a technical talk but it was highly relevant to software developers.

For those who don’t know, a Product Manager undertakes inbound
marketing, that is, they go out and talk to customers and potential
customers about what problems they have. They add to this knowledge of
technology and company intentions and, as if by magic, product the market
requirements for a software product. Some Product Managers also perform
outbound marketing — that is they arrange the marketing of the product that
is products, although strictly speaking this is Product Marketing.

Again this month we used a new location for the meeting. This time 7 City
Learning (http://www.7city.com) not far from Liverpool Street station. We
have the ACCU publicity officer David Carter-Hichin and Paul Shaw of
7 City to thank for this and might well use the location again.

After the meeting we returned to a close-by pub. Unfortunately half the
City seemed to have been involved in a fun-run and had booked all the pubs
for receptions so we ended up in Wagamamas.

ACCU London will skip a month in August because so many people will
be on holidays. We intend to be back in September and are in the process
of arranging speakers. If you have any ideas for a speaker please let me
know.

The other big change coming up for ACCU London is the loss of Paul
Grenyer. Paul founded ACCU London when he moved from Norwich.
Now that he is returning to Norwich, we are losing him. We in London
owe a big thanks to Paul.

Our next meeting will be on Thursday 20 September when Pete Goodliffe
— author of Code Craft — will be talking. We hope to be in the Liverpool
Street area again. Watch ACCU General for the announcement or
subscribe to the ACCU London mailing list (details on the website).

20 [{cvu} | AUG 2007

ACCU Cambridge
Report from Ric Parkin

ACCU Cambridge had a meeting on the 5th of July, and if I say so myself,
was a great success!

Approximately 25-30 people turned up to DisplayLink’s hilltop offices.
The rain made the famed Cambridge Rooftop View somewhat blurred, but
an excellent hour talk from Pete Goodliffe on the different sort of ‘Code
Monkeys’ entertained the masses. The audience participation part,
deciding on designing a space probe in three minutes and ‘What Monkey
are You’, added some initially nervous but ultimately fun intermissions.

The general feeling at the end was that we’ll do another next month — the
first Thursday of August looks likely, and DisplayLink should be okay to
host again — and Ric Parkin has been volunteered to do an update of his
ACCU talk on ‘Semantic Programming’.

Thanks all who came — your enthusiasm IS important.

JOIN ACCU

]f accu

L SEEL il [-

You've read the magazine.

Now join the association |'|‘
dedicated to improving your b
coding skills.

ACCU is a worldwide non-profit
organisation run by
programmers for programmers.

Join ACCU toreceive our bi-
monthly publications C Wu and
Overload. You'll also get
massive discounts at the ACCU
developers' conference, access
to mentored developers
projects, discussion forums,
and the chance to participate
in the organisation.

How to join
Go to www.accu.org and
click on Join ACCU

Membership types

Basic personal membership
Full personal membership
Corporate membership

What are you waiting for? Student membership

professionalism in programming
www.accu.org

4

Gode Critique Gompetition 43

Set and collated by Roger Orr.

members, whether novice or expert. Readers are also encouraged to

Please note that participation in this competition is open to all
comment on published entries, and to supply their own possible code

// Logger.h
#include <string>
#include <fstream>

class Logger
{
public:
static Logger * instance (
std: :string dest = "logfile.txt");
~Logger () ;
void write(std::string);
private:
static Logger * thelogger;
std: :ofstream £;

};

// Logger.cpp
#include "Logger.h"

Logger * Logger: :theLogger;

Logger * Logger::instance(std::string dest)
{
if (! thelLogger)
thelLogger = new Logger;
theLogger->f.open(dest.data())’
theLogger->f.clear(); // << Help - why??
return thelogger;

}
Logger: : ~Logger ()
{
if (this == thelogger)
thelLogger = 0;
f.close();
}
void Logger: :write(std::string line)
{
f << line << std::endl;
}

// Example.cpp
#include "Logger.cpp"

int main()

{
Logger: :instance("example.log")->
write("Starting main");
//
Logger: :instance () ->write("Doing stuff");
//
Logger: :instance () ->write("Ending main");
delete Logger: :instance() ;
}

samples for the competition, in any common
programming language, to scc@accu.org.

Lastissue’s code

I have built a simple singleton for logging and it seems to work, but |
had to add a call to clear () the file stream after open () to get it
to work properly. Does anyone know why this call is needed — | think
my compiler’s standard library has a bug?

Please answer this question, but don’t stop there...the code is in Listing 1.

Critiques
From Nevin :-1Liher <nevin@eviloveriord.com>

The bugs
Let us look at

Logger * Logger::instance(std::string dest)
{
/...
theLogger->f.open(dest.data())
theLogger->f.clear(); // << Help - why??
/]
}

The first bug is extracting the C style string from dest; dest.c_str(),
not dest.data () should be used to do so, as only the former is
guaranteed to \0'-terminate what it returns.

Every time Logger: :instance (.. .) is called, it attempts to open a
file. The first call succeeds. The second and subsequent calls fail, because
£ already refers to an open file. [Side note: it doesn’t matter whether or
not dest is the same or different between calls, as it is in this code; the
open still fails.] Because it fails, it performs a setstate (failbit) on
the stream, and all subsequent writes are blocked until that bit is cleared.
This is why the author needs theLogger->f.clear ().

Other issues
Inmain (), there is the line:
delete Logger::instance() ;

While I do applaud the author for cleaning up his resources, this is not the
way to do it. Besides the encapsulation provided by Logger being broken
(after all, why should main () know or care that the singleton is allocated
on the heap), Logger does not clean up its internal state. Notably,
Logger: : theLogger now points to a non-existent object; subsequent
calls to Logger: :instance (. ..) could result in a crash.

The way it is currently implemented, there is no runtime polymorphic
choice to make on what logger to instantiate, so it need not be allocated in
the heap. We could do what is done in the Meyer Singleton (there isn’t
just a single Singleton pattern out there, all with different tradeoffs) and
use a static variable inside a function, which is initialized the first time the
block containing the variable is entered.

Roger has been programming for 20 years, most recently
in C++ and Java for various investment banks in Canary
Wharf. He joined ACCU in 1999 and the BSI C++ panel
in 2002.

He may be contacted at rogero @ howzatt.demon.co.uk

AUG 2007 1{cvu} | 21

{cvu}

One question the author needs to ask: is a singleton really necessary?
Singletons tend to complicate the design, and since they are essentially
global variables in disguise, they suffer most of the drawbacks of glo-
bals (tighter coupling, harder to test, harder to extend, less flexible,
etc.). Would a global variable have been sufficient? Better yet, is there
a way to pass an instantiated logger to the folks that need it? That
being said, for the purpose of this critique, | am going to assume that
the author has sound reasons for wanting a singleton, and will move on
to explore implementing a better one.

In a real application, Logger: : instance () (without a parameter)
could be called a lot. The way it is implemented, each time it is called it
creates and destroys a temporary std: : string (sometimes involving a
heap operation, depending on the implementation of std: : string) of
its default parameter. Also, Logger: :write(std::string line)

makes an unnecessary copy of line. Some people might consider this stuff
to be premature optimisation; I consider it to be avoiding premature
pessimization, as it doesn’t take much engineering effort to improve it.

So what would make a better singleton in this case? I will apply the
Principle of Separation of Concerns: classes which manage resources
should be distinct from the resources themselves. Refactoring the code so
that the logger itself is a distinct class from that which enforces its
uniqueness, I come up with this design (class LoggerSingleton
replacing the author’s class Logger):

class LoggerSingleton

{
class LoggerImpl
{
void operator delete (void¥*) ;
std: :ofstream £;
public:
explicit LoggerImpl (char const* dest)
f (dest) {1}
void write(std::string consté& line)
{ £ << line << std::endl; }
void write (char const* line)
{ £ << line << std::endl; }
}i
public:

static LoggerImpl* instance (char const* dest
= "logfile.txt")

{ static LoggerImpl logger (dest) ;
return &logger; }

static LoggerImpl* instance(std::string
consté& dest)
{ return instance(dest.c_str()); }

LoggerImpl* operator->() const
{ return instance(); }
LoggerImplé& operator* () const
{ return *instance(); }

};

Notes on LoggerSingleton:

B LoggerImpl: I have chosen to make LoggerImpl a private class
of LoggerSingleton to limit access to it only
LoggerSingleton can create it, hold on to a pointer to it, etc.,
while all of its public member functions (remember, constructors are
not considered member functions) can be called by anyone who can
get a pointer/reference to the object.

22 [{cvu} | AUG 2007

B LoggerImpl: :operator delete (void¥): this is private and
unimplemented, in order to change those uses where client code
does a delete LoggerSingleton: :instance () into a compile
time error. Technically, this violates Separation of Concerns; it is
only in there because the original code calls delete on the instance.

B LoggerImpl::LoggerImpl (char const*): Takes the
destination file as a C style string, and initializes the ofstream using
a member initializer.

B LoggerImpl::write(...): Toavoid a pessimization, there are
two versions of write: one which takes a C style string, and one
which takes a std: : string by const reference.

B instance(char const*): This implements the Meyers
Singleton (using a static variable inside a function, as alluded to
earlier. This singleton pattern was first introduced by Scott Meyers.
It also has the side benefit of not requiring a .cpp file if all the code
is inlined in the class). Also, to avoid a pessimization, instance takes
a C style string as a default parameter. That way, subsequent calls
only pay the penalty of passing a pointer (which could get optimized
out) instead of creating a temporary std: : string.

B instance(std::string consté&): This function is for
interface compatibility with the old Logger class. The
std: :string is passed by const reference instead of by value to
avoid making an unnecessary copy. It calls
LoggerSingleton: :instance (char const*) because that
is the function which owns the actual object.

B operator->() const& LoggerSingleton::operator*
() const: While not strictly necessary, these are convenience
functions. Accessing the object via

Singleton: :instance () ->write("blah")

is pretty clunky. With these functions, a variable declaration such as

LoggerSingleton alLogger;
/]
aLogger->write ("blah") ;

could be used to access the object more convienently. This
declaration could be local, global, or a static in a header; they all
give access to the same singleton object through a pointer like
interface.

From Peter Hammond <PeterHammond@haesystems.com>

The simple answer to the question “why is the call to clear () needed”
is that the code is attempting to open an £stream object that is already
open, which is illegal. It is stated in section 27.8.1.3-2 of the standard [1],
but neither MSDN [2] or Josuttis [3] mention it, so you could be forgiven
for not knowing.

The more interesting question is how did you come to be reopening the
file in the first place? If the open () had succeeded, then all but the first
write to the log would have gone to the file logfile.txt, which is
probably not what was intended. The problem is that the design lacks both
symmetry and encapsulation; encapsulation because the logic is spread out
over several places, and symmetry because the opening and closing of the
file are not logically paired. It should be unusual in well-written C++ to
use fstream: :open () or £stream: :close () explicitly, relying
instead on the constructor and destructor to manage the underlying file for
you.

There is no user-defined constructor for the Logger class, which ought
to raise an alarm in a class that is managing a resource — in this case, the
file. The destructor is defined, but has a rather unusual test for self in it.
This is particularly strange since the point of singleton is to ensure that only
a single instance of the class gets constructed: this == thelLogger
ought to be an assertable pre-condition. Also, it is a general characteristic
of implementations of the Singleton pattern that they do not get deleted,

{cvu}

but simply leak at the end of the application, since there is nothing to clean
them up.

The optional presence of the string argument on the instance method shows
up another drawback of the singleton pattern, namely that if non-default
initialisation is required, something has to be responsible for initialising
it, which brings in a system-level dependency.

A better design would be to let the Logger class’s constructor and
destructor to manage opening and closing the file, and give the instance
method the sole responsibility of managing that instance. An
implementation using these techniques is given in listing 1.

References

[11 The C++ Standard (BS ISO/IEC 14882:2003), Wiley, Chichester,
UK, 2003.

[2] Microsoft Developer Network 2003 edition.

// Logger.h
#include <string>
#include <fstream>

class Logger

{

public:
static Logger * instance (

std: :string dest = "logfile.txt");

void write(std::string);

private:
~Logger () ;
Logger (std: :string dest) ;
static Logger * thelogger;
std: :ofstream £;

};

// Logger.cpp
#include "Logger.h"

Logger * Logger::theLogger;

Logger * Logger::instance(std::string dest) ({
if (! theLogger)
thelLogger = new Logger (dest);
return thelogger;

}

Logger: :Logger (std::string dest)
f(dest.c_str())

{}

Logger: : ~Logger ()

{}

void Logger: :write(std::string line)
{ f << line << std::endl;

}

// Example.cpp
#include "Logger.h"

int main()
{
Logger: :instance("example.log")->
write("Starting main");
//
Logger: :instance () ->write("Doing stuff");
//

Logger: :instance () ->write("Ending main");

[3] NJosuttis: The C++ Standard Library: A Tutorial and Reference,
Addison-Wesley, Reading, MA, 1999

From Stephen Love <stephenlove@south-staffs-water.co.uk>
(co-authored by Steve Love and Nigel Dickens)

“It is indeed a most unwelcome shower, Watson.” My good friend
Sherlock Holmes peered through the smoke of his pipe with a perceptible
— and mischievous — glint to his eyes.

“I am aware, Holmes, that the number of your clients has been, well, let
us describe it as having been not overwhelming, of late,” I remarked
perhaps a little unkindly, “and I fear that this observation is unworthy of
you. I realise that you will have seen the telegram from Asquith inviting
me to the cricket match this afternoon, and that the rain will indeed cause
a cancellation of the event.” In truth, neither of us had been given reason
to leave our rooms at 221b Baker Street for nearly two weeks. This
enforced idleness, so alien to the nature of my friend, was beginning to irk
us both.

Expecting a crestfallen and sulky response, I was preparing a sweetener
for my acidic remark when Holmes leaped from his armchair, his eyes still
gleefully ablaze. Chuckling, he re-filled his pipe from the slipper on the
mantelpiece, and lit it so vigorously I was sure all the tobacco would be
smoked before he could resume his seat. “My dear Watson, I was in fact
unaware you had contemplated the weather. My bemoaning of the
inclement conditions was entirely selfish.”

This puzzled me, for as I have already noted, no clients had visited for quite
some time, and nothing in the mail had excited any interest in my
companion, who rarely left Baker Street without some definite purpose.
“You have an engagement, then?”

“You are luminous today, Watson, but no, not really an engagement. It
seems my reputation for solving little programming problems has
expanded, just as any reputation I may have for other more obviously
criminal ones has appeared to contract.” [Interested followers may like to
look up our previous engagement of the kind in CVu 12/5, September
2000].

“A programming problem, Holmes?” I enquired, bewildered. “Surely
nothing the weather has to offer could inconvenience you in that regard?”

“Quite the reverse, I’m afraid,” he replied ruefully, once again seating
himself before the fire, concentrating on keeping his pipe alight. “I perhaps
do not practice the programming problems as diligently as I should,
particularly in regard to C++ code such as this.” He took a note from his
jacket pocket and passed it to me. “My copies of those illustrious
references by Stroustrup, Josuttis and Langer and Kreft — which are such
an invaluable aid to me — are on loan to Mycroft, who occasionally finds
such skills called upon by our government. I’m sure copies could be found
at the library, however, but even I am unwilling to venture out in this
downpour.”

“Surely there must be material enough here to make a start, Holmes,” |
admonished him. “I have a few thoughts of my own.”

“Yes, I rather thought you might!” Holmes declared, laughing. “Very well
then, let’s hear what you’ve determined already.”

“Ignoring, for the moment, matters of style,” I began, eliciting a short laugh
from Holmes, “what immediately strikes me as wrong is the deletion of
an object that doesn’t get created anywhere. A little investigation shows
that the creation using new occurs hidden away in the instance ()

method. This asymmetry looks to be an obvious source of potential bugs,
as does the rather curious logic in the destructor itself. It seems to me that
the file object used to write to the log gets closed once on destruction, but
opened every time the log is written to.”

“Excellent stuff, my dear Watson, and you’ve reached right to the heart of
the matter, as always. And what of your matters of style, may I ask?”

Warming to my subject, I continued. “I might well ask whether the author
of'this code comes from a background of a different language, perhaps C#.
I suggest perhaps the author was schooled in C# or something similar, and

AUG 2007 | {cvu}| 23

{cvu}

has come to C++ with the idioms of that previously learned language in
mind.

“What leads me to this observation is primarily the parameter declarations
of the member functions of the Logger class, but there are other
indications. When passing strings or objects of a type that may be
expensive to copy, it is common for functions in C++ to accept arguments
by constant reference. In C# of course, all objects are implicitly passed by
reference, and so the issue does not arise. Accepting string arguments by
value causes an unnecessary copy of the string contents each time the
function is called, even in the case of the default arguments to the
instance () method.”

“Bravo,” encouraged Holmes, “you are certainly on form this afternoon.
What else do you deduce from the code?"

Now, the habits and mannerisms of my companion had become extremely
familiar to me in our years of friendship, and all the more acutely due to
our enforced close proximity of recent weeks; it was therefore clear to me
that my exposition had aroused Holmes’ own interest in the topic, and that
he was eager, even impatient to apply those of his powers I have
documented at length in other tales. Sensitive to the sometimes-fragile ego
of my friend, I demurred. “I believe I can ascertain nothing further from
this code.” I passed the listing back to him, and proceeded to light my own
pipe.

After a few moments, Holmes put the note on the occasional table beside
his chair, and contemplated the ceiling. “You’ve done exceedingly well,
Watson, and I fear you rather underestimate your own powers.” At this,
he looked briefly at me, and I confess I must have done rather well at
looking modest, so gratified was his expression. He continued:
“Nevertheless...nevertheless. I think there is more that can be gleaned from
this short snippet.”

With his habitual air of one giving a lecture (and please do not
misunderstand me, as always it was a pleasure to see him so absorbed in
something other than his tiny syringe during such a quiet time for his
professional abilities), Holmes stood beside the fireplace, one arm on the
mantel, his other hand gripping his long-stemmed pipe using it for all the
world as if it were a conductor’s baton.

“I believe you have hit directly upon the truth that the author of this code
is more comfortable with a different language, although I suggest Java
rather than C#. The lack of an initial capital for the member function names
suggests so, and Java is more commonly taught as a first language, but I
would not swear my life to it. In any case, it is of no importance.

“What is rather more — well perhaps sinister is too strong after all, let us
say ‘of concern’ — is the indication that the author is more used to an
environment in which memory is automatically managed, that is to say a
garbage collected environment. Either C# or Java would both fit this
description, along with several others. There are two indicators for this,
one of which you have already identified: the manual deletion of the logger
object at the end of main () suggests it may have been added as an
afterthought. The second indicator reinforces the first, the setting of the
theLogger member variable to zero. This is a common practise in a
garbage collected environment as a strong hint to the runtime that the
object is no longer referenced.

“It is interesting to note, in passing, the use of zero rather than NULL or
one of'its cousins. This, along with the style of header-file inclusion (note
there or no . h suffixes for the standard library headers), the explicit stating
of the std: : namespace rather than a using directive, and correct
declaration of main () all suggest an author who has tried hard to write
this code the correct way.”

“All of that is very clear, Holmes, and I believe you’re quite right about
author’s desire to write the code correctly, but what about the direct
question? Why the need to clear the stream after opening it? I still cannot
fathom that.” It may be that you would accuse me of disingenuousness in
my earlier attempt at preserving my friend’s pride, but I was genuinely
puzzled upon this point.

“Well, Watson, for the answer to that question I am afraid I shall have to
resort to the formal authorities. I perceive that an abatement to the rain is

24 |{cvu} | AUG 2007

upon us, and I shall take the opportunity to make my visit to the library.
Do you wait here, my dear chap, on the off-chance that we have a visit from
another client! I shall be back within the hour.”

And with that, Holmes perched his best topper on his head, wrapped his
cloak about his shoulders and, cane twirling, departed for town, leaving
me with my pipe and the early evening papers.

True to his word, Holmes returned just an hour later, doffing his hat to Mrs
Hudson on her way out. “Ah!" I exclaimed, “Your timing is as impeccable
as ever. Mrs Hudson has been kind enough to bring tea and I believe the
buttered scones shall be all gone if you’re not quick about it!”

Holmes hung his cape, hat and cane on the stand by the door, and rubbed
his hands together, clearly eager for the repast. “I didn’t quite miss all of
the rain, Watson, as you see, so I shall enjoy some tea and cake before I
make my report on what was, if | may be just a little presumptuous, a very
enlightening afternoon.”

With the last of the tea poured, and the plate of scones empty, we both lit
cigarettes and retired to the arm chairs by the fireplace. Holmes, in typical
style, enjoyed the smoke for a minute or two, deliberately making a show
of his efforts.

“It’s been quite some time since I looked into C++, as you know Watson,
and it really has been a refreshing experience to once again consult the
honest authorities in this domain.”

“It’s a stroke of good luck you weren’t caught ‘consulting’ someone else
by Lestrade,” I remarked with a grin.

“Hah! Yes, you’re quite right! A pretty picture he would have painted!
Nevertheless, it is quite as wrong to ignore one’s shortcomings as to be
modest of one’s strengths, so if I admit to referring to Stroustrup’s The
C++ Programming Language, Langer & Kreft’s Standard C++
10Streams and Locales and Josuttis’ The C++ Standard Library, 1 feel no
worse for it!

“But I digress. I think we have an answer for our friend, but it may not be
the one he or she was expecting. The root cause of the problem in the code,
I believe, is the use of a Singleton class to manage access to the log. I have
noticed this Singleton’s hand in a number of problems of this kind, Watson,
and it is indeed responsible for much pain and distress among programmers
in all languages.

“Indeed I have been engaged during this intolerable Iull in preparing a
small monograph on the matter as something so malignant should not be
permitted to persist unmolested.

“The primary crime committed by the Singleton is that it is a global
variable, in disguise. This in itself causes difficulties with exception- and
thread-safety, and additionally can cause code to become convoluted just
to make it work! Observe the way our friend must manually delete the
internal content of the Logger class. In a similar vein, notice the Logger
class containing an instance of itself, surely a great source of errors. I will
pick on one — in the destructor, checking this against the static member
variable is a trick which I think highlights what I believe to be confusion
brought on, in the end, by the use of a Singleton. The instance () method
of Logger creates a new Logger object, which is the one and only instance
which can have its destructor run. In that destructor, it checks needlessly
to see if it is the instance, and if it is — as it always will be — effectively
sets its own this pointer, aliased as the static theLogger variable, to
Zero.

“The alternative is to make the logger class a real object, with a normal
instance, and just through this most of our difficulties vanish.” At this
Holmes produced a pen and began to scribble.

“Consider this alternative,” he said, passing his notes to me. (Listing 3)

“Note that, despite the fact it is not a Singleton, there is still only one
instance of the log object. Also note there is no need for a destructor, and
that the file will open and close to match the lifetime of the log object which
owns it. It is for this reason [have not taken the extra step of only depending
on a std: : ostream reference, and having that passed in to the Logger
itself.

{cvu}

#include <string>
#include <fstream>

class Logger
{
public:
Logger(const std::string & dest =
"logfile.txt");
void write(const std::string &);
private:
std: :ofstream £;

};

Logger: :Logger (const std::string & dest)
£(dest.c_str())
{}

void Logger::write(const std::string & line)

{
f << line << std::endl;

int main()

{
Logger log;
log.write("Starting main");
//
log.write("Doing stuff");
//

log.write("Ending main");

“The primary difference this would make to real code is that instead of
other functions and classes accessing the Logger: : instance ()

directly, they would have to be told about the existence of the log by having
a reference to it passed in to them, say via a constructor.”

“But what would stop those classes or functions from creating new
instances of the log, thereby breaking the rule that the Singleton pattern
enforces, that there can only ever be one instance?” I asked.

“Ah, well that would require a change in the design, but it would certainly
not be for the worse. Imagine that Logger is a pure abstract class, with
the write () method pure virtual, implemented in a separate class to
which only main () has access. The benefits of this are two-fold: clients’
functions and classes who require access to the log depend only on the log
itself, and have no need to know about file streams and such, and they can
work with any instance of the log which satisfies the Logger interface —
which may include ‘do-nothing’ or ‘mock’ instances for testing, or logs
which communicate over a network. The possibilities become endless
instead of, well, singular!”

I'was gratified that my friend’s attention had been drawn long enough from
chemical stimulants to produce this result, but there was still one remaining
question. “There is one point, Holmes, upon which you could satisfy my
curiosity,” I remarked in as off-hand a way as I could manage.

“Well, Watson, what is it, then?”

“The author’s original question — why the need for the call to clear ()
each time the instance () method was called?”

“Ah yes!” he cried, “I had almost forgotten, since I removed the need for
it anyway.” I was hard-pressed to suppress a smile at this. “Attempts to
open an already open file stream will fail, in much the same way as for a
door. Calls to open () must be matched exactly with calls to close (),
which is why the constructor of a file stream taking a c-string file name
automatically open the file, and why the destructor closes it. Therefore,
without the call to clear (), only the first call to instance () would
successfully open the file, and I suspect the original program’s output —
before the extra call to clear () was added to make the output match the
expectation — was just ‘Starting main’.”

“Regarding monographs,” I ventured “have you made any progress on
your dissertation regarding paramaterisation from above?” This was rash
of me I know but in the glow of success I dared to bring up this unfinished
business. Holmes’ dark eyes flashed, then with barely concealed relief he
turned to face the door to our chambers.

“Now this has been a most diverting and illuminating problem, Watson,
but I think — unless you have further questions? — that we must turn our
minds to more serious matters, for I do perceive the heavy footstep of Mr
Gregson of the Yard on our landing, and I feel certain he has come to
consult on matters far different from those we’ve been discussing.”

Commentary

The original code has a number of problems in addition to the one
presented by the programmer; and it is hard to decide which is the biggest
such problem.

The original issue was a question about the need for clear (), which is
a good example of a bad fix. The call was needed to recover from the error
condition caused by opening the file on every call to instance () butthe
additional line simply hides the original fault. There are various ways of
helping empower the programmer to resolve this sort of issue for
themselves; for example getting them to do a walk through what the code
actually does when executed.

There are various implementation issues

m the code makes explicit use of open () and close () on the stream
which, as Peter says, is ‘unusual’ in well-written C++ as it is
common to simply use on the ctor and dtor.

passing strings by copy where a const reference is more usual
creating a string for the no-arg call to instance ()

incorrect use of data () rather than c¢_str (). This is quite a
common bug, which is not helped by the existence of some other
string classes where this is the right method to call!

However, I feel the design issues are bigger in this case, such as:

® writing your own logger is usually less effective than using one,
such as log4cxx, which is typically more configurable and has better
performance

B s asingleton the right pattern for the logger? Ihad hoped to provoke
Kevlin Henney to write an entry on ‘parameterise from above’ —
perhaps another time! Even when the answer to the question is
‘yes’it is still often better to split the class up, as Nevin did.

m there is no error handling (eg if the log file won’t open logging fails
silently)

the code makes no attempt to be threadsafe, should it?

there is a problem with a ‘resurrecting’ logger if something calls the
instance method after the initial logger has been deleted

The Winner of CC 46

All three entries did a good job of solving the issue presented by the
programmer and providing solutions with varying degrees of change to the
original code.

I'am awarding the prize for the best critique to Steve & Nigel for their entry;
it not only covered a lot of ground technically but was entertaining at the
same time.

Code Critique 47

(Submissions to scc@accu.org by Sep 1st)

“I have this small program here and am wondering why, when compiled
with full optimisation it does not produce any output at all? It works fine
without optimisation.”

AUG 2007 | {cvu}| 25

{cvu}

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int tab[13][20]1={
{0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
{0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
{0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,
{0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,
{¢,0,0,0,0,1,0,0,0,0,0,1,1,1,0,0,0,1,0,
{0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,
{1,0,0,1,0,0,0,1,0,1,0,0,0,1,1,0,0,1,0,
{0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,0,
{0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,1,0,0,0,
{¢,90,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,2,
{0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,
{0,0,0,0,1,1,0,1,1,0,0,0,0,0,1,0,1,0,0
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1

int tabx[13][20];
int sumy[20];

int licz(char *konfig)
{
int i,n,1l,el,ile=0;
char c;

memset (&sumy,0,sizeof (sumy)) ;
memset (&tabx,0,sizeof (tabx)) ;

for (i=0; i<=12; i++)

for (n=0; n<=19; n++) {
c=konfig[i];
l=atoi (&c) ;
el=1l*tab[i] [n];
if (el>0) sumy[n]=sumy[n]+el;
tabx[i] [n]=el; }

for (n=0; n<=19; n++)
if (sumy[n]==3) ile++;
return(ile) ;

}

int ilel (char *s)

{
int i,n=0;
for (i=0;i<=12;i++) if (s[i]=='1l') n++;
return(n) ;

26 [{cvu} | AUG 2007

PRPOOKRrROHKHOOOOO
e e e o e o o o o o

~
o

-

~

void main ()
{
char komb[13];
int al,a2,a3,a4,a5,a6,a7,a8,a9,aa,ab,ac,ad;
int xx,w,ile;
for (xx=0;xx<=4;xx++)
for (al=0; al<=l; al++)
for (a2=0; a2<=l; a2++)
for (a3=0; a3<=l; a3++)
for (a4=0; ad<=l; ad++)
for (a5=0; a5<=1l; a5++)
for (a6=0; a6<=l; a6++)
for (a7=0; a7<=1l; a7++)
for (a8=0; a8<=l; a8++)
for (a9=0; a%<=1l; a9%++)
for (aa=0; aa<=l; aa++)
for (ab=0; ab<=l; ab++)
for (ac=0; ac<=l; ac++)
for (ad=0; ad<=1l; ad++)
{
sprintf (komb, "$d%$d%$d%$d%d%d%d%d%dsdsdsdsd",
al,a2,a3,a4,a5,a6,a7,a8,a9,aa,ab,ac,ad);
w=licz (komb) ;
ile=ilel (komb) ;
if ((w==1) && (ile<=3))
{
printf ("%$s\t%d\t%d\n",
komb,w,ile) ;
}

Please try to help the programmer find the answer to this question (and
future ones).

You can also get the current problem from the accu-general mail list (the
next entry is posted around the last issue’s deadline) or from the ACCU
website (http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much
later than members in the UK and Europe. B

Prizes provided by Blackwells Bookshops and Addison-Wesley

The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website
which contains a list of all of the books currently available. If there is something that you want to review,
but can't find on there, just ask. It is possible that we can get hold of it.

After you've made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous “not recommended” rating, you are entitled to another book completely free.

Software Development
Maven: A developer's notebook

by Vincent Massol & Timothy
0'Brien, published by 0'Reilly,
191pages. ISBN: 0-596-00750-7 Maven

A Develepars
‘odqiccd

This book is a soft cover
edition and contains no CD.
This book is a hand on guide
for Maven 1.0.

The book has a nice layout and reads well. Every
paragraph has a number of sections.

m Task to perform

® How do I do that?

® What just happened?
® What about?

A paragraph describes a task and how to perform
that task. Every step, including the output, is
shown, so you know exactly what to do and what
to expect. Besides the actual steps, they give a
brief explanation what you just did and
sometimes they give some alternatives to the
chosen tools. E.g. SVN is explained, but they
also give a brief explanation how to do this with
CVS.

The book is organized in six sections:
B Maven Jump-Start
® Customizing Maven
B Multiproject Maven
B Project Reporting and Publishing

B Team collaboration with Maven
B Writing Maven Plug-ins

It starts with setting up a Maven environment.
This part is quite extensive. It takes you by the
hand installing Maven and how to start with a
project. How to use Maven behind a proxy and
it helps you use Maven on a project. Eclipse,
source control and project documentation (and
more) are all clearly explained. In the next
chapter they dive deeper in the configuration of
your Maven project. By developing self defined
goals and by tweaking property files for the
plug-ins you get the desired result. In the third
chapter you learn how to create multiple
artifacts with a Maven installation. This is of
course without duplicating anything. The fourth
chapter is about reporting. They talk you
through multiple reports where one report task
already showed you how to do it. So there are
some wasted pages here. The chapter about team
collaboration shows you how to use Maven with
multiple users, so that every user has the same
environment. Personally I don’t think this is
really important, because some pages ahead they
are talking about CruiseControl. Unfortunately,
I couldn’t get CruiseControl working properly.
I don’tthink that the book is wrong. I did execute
the task on a machine with anewer configuration
(the book was printed in June 2005). The last
chapter is about writing your own plug-ins with
jelly, a scripting language. Jelly is replaced with
Java in Maven 2.0. The appendix shows the
plug-ins used in the book and how to install
them. Although I appreciate that they list all the
plug-ins, the rest of the appendix isn’t worth the

paper.

be added to the list

® Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk

® Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk

blackwells.extra@blackwell.co.uk

The following bookshops actively support ACCU (offering a post free service to UK members
—if'you ever have a problem with this, please let me know — I can only act on problems that you
tell me about). We hope that you will give preference to them. Ifa bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can

m Blackwell’s Bookshop, Oxford (01865 792792)

Unfortunately the book is dated. The version for
Maven used in the book doesn’t work anymore,
so I worked with version 1.1 beta 3. Also the site
generation and CruiseControl didn’t work
properly although I downloaded the source code
from the website.

The book itself is very good. I like the clear
explanation of the tasks performed and the task
driven approach. The book gets you up and
running in no time. It’s a pity that they don’t
have a version of all the tools (and a repository
for Maven) on their website. The book would
have stood the test of time. If they updated the
book I would buy the book, but this version is
not recommended.

Why Software Sucks... and what you
can do about it

by David Platt, published hy
Addison Wesley, 242 pages, ISBN:
0-321-46675-6

Review by James Roberts

This book attempts to be a light-
hearted summary of faults of L
computer software — with a

certain amount of outraged rant regarding
examples of poor design (i.e. even when the
software works as it was supposed to, it is harder
to use than it really ought to be). The prose is
very easy to read throughout, with some humour
(not laugh out loud, as the blurb on the back
claims, but not bad).

BAVIE 5. PLATT

The author has one basic message, which is
reiterated with various examples throughout the
book: ‘know your user, for he is not you’. This
works well as a leitmotif — the constant
repetition being a useful underlining of the
message.

An interesting (possibly intentional) feature of
the book was that I felt that the early chapters
applied to me directly. For example asking me
to think about the way user interfaces are
designed, with a good summary of security and
privacy issues from a real-life, “‘what will people
really do’ perspective. In particular I thought
that the security chapter was excellent, as the
author took a pragmatic view of balancing
security versus usability rather than insisting on
unrealistic (but notionally very tight) levels of
security at all times.

Later chapters, describing programmers in
rather extreme and stereotypical ways, left me a
bit cold. Nothing wrong with stereotyping
programmers as such — but I couldn’t see how
these chapters were aimed at improving

AUG 2007 I{cvu} | 27

{cvu}

software. [would certainly have preferred to
have had more chapters along the lines of the
first few — its not as if there is a shortage of
examples of poor software design in the world.

In summary, generally a good book. However,
it is let down by lack of focus in a couple of the
later chapters. Perhaps these are subjects that Mr
Platt is more interested in than me. Know your
user — for he is not you. Indeed.

by Rick Evan der Lans, published
by Rddison Wesley, 1025 pages +
CD, ISBN: 0-321-30596-5

Review by James RobertsPages

This book is designed as an
tutorial for SQL. It does a
good job of explaining the
functionality of SQL in a step
by step manner. Each of the points explained by
the book is liberally illustrated with examples
and student exercises. In particular the book
does very well in highlighting the behaviour of
null columns — explicitly highlighting how nulls
are handled in its explanation of individual SQL
features. Query syntax is formally described as
it is introduced (BNF), which is also echoed in
the appendix.

INTRODUCTION TO

S OIL

FOURTH EDITION

As the introduction highlights, there is a wide
selection of SQL implementations, each of
which takes a different compromise with respect
to the standard. The author picks MySQL as a
reasonably full and available example SQL
engine — and does a good job of highlighting
areas where other implementations are
substantially different. The book comes with a
CD containing a version of MySql and the
WinSQL user interface tool. In my opinion these
are a good pair of tools to use for learning the
basics of SQL.

On the downside, I found the book’s style
difficult to skim read — many of the points are
introduced by example, and are not highlighted
typographically. Although this is quite
reasonable for the tutorial function of the book,
it would make it less useful as a reference book
after the first reading. Also, I found that on some
of the non-interactive elements (transaction
control and isolation levels for example) the
book was a little hazy and could have been a
little better explained.

However, as a basic introduction to SQL this is
a pretty good book — although as it comes in at
over 1000 pages, I would probably recommend
a book on weightlifting as a necessary
precondition to its use.

Speech Processing for IP Networks:
Media Resource Control
Protocol (MRCP)

by Dave Burke, published by John
Wiley & Sons (2007), 354

pages. ISBN 978-0-470-
02834-6 ._d@i

Review by lvan Uemlianin ‘\ (™

Highly Recommended
28 [{cvu} | AUG 2007

Publisher’s website: http://eu.wiley.com/
WileyCDA/WileyTitle/productCd-
0470028343 .html

Author’s website: http://www.daveburke.org/
speechproc.html

Media Resource Control Protocol (MRCP) is a
new IETF technology which provides a standard
internet interface to speech processing resources
like synthesis (i.e., text-to-speech) and
recognition. This interface involves an acronym
soup of other IETF and W3C standards
including SIP, SDP, RTP, SSML, SRGS,
NLSML, and PLS. Although MRCP is stable
and in use in the wild, to date there has been no
tutorial or documentary material other than the
IETF specifications.

This book will come as a double relief to anyone
working in the area: first that such material has
arrived, and second that it is of such high quality.

The book is in five parts, progressing from
background material, through the mechanics of
MRCP, to an example of MRCP and Voice XML
in action.

Part I gives background on MRCP and speech
processing in general. The chapter on speech
processing is best regarded as interesting
supplementary (i.e., optional) reading, though a
few references to more solid literature are given.
The chapters on MRCP provide a worthwhile
historical and architectural context.

Part Il explains the nature of MRCP sessions. An
MRCP session is a complex entity, involving the
Session Initiation Protocol (SIP) and the Session
Description Protocol (SDP) to set up two
separate channels: a media session running over
the Real-time Transport Protocol (RTP) to carry
the audio data, and a control session running
over TCP to carry control messages in MRCP
message format. Consequently, this section
carries a lot of responsibility.

Part III covers the xml formats used in the bodies
of the MRCP control messages: i.e., Speech
Synthesis Markup Language (SSML), Speech
Recognition Grammar Specification (SRGS),
Natural Language Semantics Markup Language
(NLSML), and Pronunciation Lexicon
Specification (PLS). As you can imagine, this
section is tedious but necessary.

Part IV describes the resources that an MRCP
server can provide: synthesiser, recogniser,
recorder, and (speaker) verifier.

The final Part V introduces VoiceXML,
describes how VoiceXML and MRCP interact
and demonstrates this interaction with a small
application example.

Three so-called appendices give overviews of
the deprecated MRCP version 1, HTTP and
XML.

The writing is clear and direct, and the coverage
is comprehensive, thorough and explicit
throughout. Although the book is not explicitly
split into ‘tutorial” and ‘reference’ sections, it
fulfills both uses admirably. It is authoritative
and dependable.

Virtually every topic covered has an explicit
example: from just a snippet of XML or an SIP
message header, to fully annotated
walkthroughs of SIP or MRCP client/server
sessions. These examples are never overlong
and are always to the point.

There are a couple of minor errors in chapter 2
on the basic principles of speech processing:

B pl2 & p31:itis not possible to produce
sounds that are simultaneously voiced and
unvoiced (e.g., the sound associated with
‘s’ in ‘is’, pronounced like a ‘Z’). The
example given is a voiced fricative, the
noise (i.e., aperiodic acoustic signal)
being caused not by devoicing, but by
constriction in the vocal tract.

® pl4 Figure 2.3: the items labelled
allophones (possible phonetic variations
within a phoneme) are actually triphones
(ordered sets of three phonemes).

These errors are very minor and do not obstruct
understanding. As chapter 2 is probably the only
dispensible part of the book I imagine few
readers will even come across them.

The appendices are ‘so-called’ because they are
not actually appended to the book: they are
available only as PDFs from the author’s
website [2]. With the ‘appendices’ on HTTP and
XML it’s no great loss, but Appendix A on
differences between MRCP versions 1 and 2 is
important and should have been included in the
real book.

My only real disappointment is that the code
from the walkthrough examples is not available
for download. These walkthroughs are
effectively verbatim transcriptions of MRCP
sessions and as such would be extremely useful
to people developing or testing related software.

MRCP is a very new technology and this book
its only substantial documentation, barring the
IETF’s RFCs. Apart from a couple of minor
quibbles this book is the model of what a first
book on a new technology should be like. I
recommend it highly to anyone working on
speech processing over IP, or indeed to anyone
thinking of writing a book on a new technology.

References

[1] http://www llaisdy.com/static/tech/mrcp/
index.html

[2] http://www.daveburke.org/speechproc.html

Hardware Verification: Methods and
Systems in Comparison

by Thomas Kropf,
published by
Springer (1997),
348 pages. ISBN
3940634754
Review hy Colin
Paul Gloster
This book is not
intended for newcomers to hardware
verification. I had been lectured for less than a
semester each in VDM (for specification, and

Lecture Netes in
| Computer Sclence

Formal
Hardware
Verification

{cvu}

not necessarily for hardware); Z (as for VDM);
and PVS (for hardware verification) before
reading this book.

In each chapter, an advocate of a rival tool
applied it to a subset of the same examples from
IFIP WG 10.5 as the book’s other tools for the
sake of comparison. Some chapters contained
code for these comparisons, others contained
only prose thus thwarting comparison. Some
coauthors admitted that their techniques are
inferior for some of these examples. The
appendix documenting the examples is
incomplete referring to the Internet but the
editor advised me ‘Finally it became so outdated
that we took it from the internet’.

One example is called both ‘Benchmark 17° (on
Page 69) and ‘Benchmark 11’ (on Page 71). This
is one of many spelling errors in all chapters

(except for the well spelt COSPAN chapter) so
people involved in verification make mistakes.

Bad identifiers abound, e.g. on page 93: ‘X, Y,
Z are disjoint sets of variables, viz. the input,
state, and output variables respectively.’ By the
next page I couldn’t remember which was the
input; the state; nor the output.

Familiar characters are used bizarrely.
Additionally inconvenience is caused due to the
unusability of most of these characters in source
code. E.g. on page 13: a capital T sans serif
‘represents an inconsistent or both-true-and-
false truth value’. In fairness, ASCII notations
outside of this book also have unconventional
meanings (e.g. * for multiplication instead of
convolution).

On page 144 a long, error-prone piece of code
(<< v[2], vI[3], ., vInl:= v[1],
v[2], ., v[n-1] >>)is dismissed
partially because ‘syntactically it is clumsy and
not easy to generalize to an arbitrary value of n’
but its replacement is sorely lacking a loop:

<< v[2]:= v[1] > +

<< v[3]:= v[2] > +

<< v[n] = v[n-1] >> +

After reading this book, I did not feel that I
would choose a tool I did not already know.

I1Boss 4.0 The Official Guide

by Marc Fleury, Scott Stark,
Norman Richards, published by J 4
published by Sams Publishing, ki,
2005, 634 pages. ISBN 0-672-
32648-5

Review by Andrew Marlow
Not recommended.

The chapters are not grouped

in sections and they have a standalone
feel (which I comment on later in this
review), so to mention what the book

<

covers one has to mention all the chapters. These
are, in order: installing and building the JBoss
server, the JMX micro-kernel, naming,

transactions, EJBs, messaging, connectors and
security on JBoss, web applications, MBean
services miscellany, the CMP engine, web
services, hibernate and Aspect Oriented
programming.

It certainly seems from the table of contents that
the book will be a comprehensive reference
work. However, appearances can be deceptive.

This book has a misleading title. It is not a guide
to JBoss. It assumes a lot of knowledge about
J2EE and J2EE servers and dives right in to how
to configure JBoss without explaining much
about what JBoss is or how you would use it to
develop, deploy and administer a J2EE
application that uses JBoss.

Ahighlevel of understanding of J2EE and JBoss
are prerequisites for reading this book. This
alone is insufficient to give the book a ‘not
recommended’ rating. The other reasons are
poor idea and factual presentation, excessive
and unhelpful XML listings, poor structure and
insufficient introductory and explanatory
material.

First, even if the book is not a JBoss guide I
would expect some introductory material that
explains what JBoss as a whole is for and what
the main purpose of each component is. This
was lacking.

The presentation is poor throughout. The vast
bulk of the book is page after page of XML
configuration file fragments. This gives the
impression that it has been hastily thrown
together with XML given at every opportunity
in order to pad the book. The diagrams that show
certain nodes for a particular part of an XML
configuration also seem to be padding and are
very poorly produced. The print is sometimes
tiny, far too small to read. This also applies to
many of the UML diagrams. Some of the
diagrams look like they were done in colour
originally and much larger and then later a
decision was made to photo-reduce them and
produce them in black and white. One part of the
text even asks the reader to refer to the ‘blue
part’, but all the diagrams are done using a dark
grey shading. This adds to the impression of low
quality.

The explanations are very superficial and there
is hardly anything that helps to place the facts in
context. The lack of detail gives me the
impression that the main focus is to cover the
XML configuration parameters. In several
places where one would hope to find some detail
or background one is referred to an external
specification (e.g for JBossMQ, JCA
(connectors), JSP 2.0 (Tomcat), and Hibernate
documentation).

The writing style also seems to be quite dry.

Finally, the book seems to lack structure. The
table of contents seems to divide things up well
but the chapters actually turn out to be quite
distinct. There is nothing to link them together
or show the reader where things are leading.
Each chapter also lacks structure as it typically
has a one or two paragraph introduction to the

topic (insufficient) followed directly by page
after page of poorly produced XML with
insufficient supporting explanations. This lack
of structure renders the book unsuitable as a
reference tool. The standalone approach to each
chapter means that the book as a very uneven
flow. The early chapters are gruelling, with
details on the JBoss micro-kernel architecture
being covered in the second chapter. Other later
chapters, such as the ones on security and
messaging are alittle lighter. The one I found the
easiestand most informative was the last chapter
on Aspect Oriented Programming (AOP).

The book is available on-line
(http://docs.jboss.org/jbossas/jboss4guide).
Some people feel, as I do, that is can be worth
buying a book that exists on-line, so that one can
annotate the hard-copy. However, in this case it
is probably not worth it. This is because there is
so much tutorial information missing and the
information that is purely related to which XML
configuration parameters there are for a given
component can just as easily be found using the
online documentation. Some chapters are
extremely light, and the reader is referred to the
main documentation for the component (e.g the
Hibernate chapter is only five pages long and
refers you to the book Hibernate in Action by
Manning). This is another reason to prefer the
online documentation.

by Chris Richardson, published poy ——
by Manning 2007, ISBN 1-
932394-58-3

Review by Christer Lofving

Since the (at least to some
people in the J2EE world)
unexpected decline and fall
of EJB 2.0, I have had a
feeling of a shortage. Not a shortage of alternate
technologies, but of appropriate information
about them. I am thinking about ‘hardcopy’
alternatives to the scattered knowledge (mainly
in Web forums) about stuff like Hibernate,
Spring, EJB 3.0 and Ibatis. OK there are some
good titles out there, about Spring and Hibernate
for example. But so far I haven’t noticed any
effort to give a more complete overview of the
different J2EE lightweight APIs, nowadays
growing up like dandelions in the ashes after the
EJB Colossus. And there is indeed nothing that
could aspire for the epithet ‘Bible’. Maybe that
situation is to an end by this publication. The
title itself, POJOs in action, is misleading. It
implies to be only about the simple, yet
canonical, Java bean with its getter and setter
methods. But nothing could be more from the
truth. Almost every author of technical books
nowadays make acknowledgements to his/her
family, thanking them for their support and
patience. In this case I believe there IS some
substance in the dedications. Because a very
pedantic effort has been done to create detailed,
yet simple to follow, examples to highlight what
the text is about all over the pages. With some
experience of Java and J2EE you can easily

AUG 2007 | {cvu}| 29

POJOs
INACTION

{cvu}

follow along the code, without writing anything
by yourself. The whole approach is something
between developer/architect, and I am
convinced both categories would profit from
reading it. Hibernate is covered to an extent that
you almost not need any other book about it. EJB
3 is explained in a far better way than for
example in IBMs ‘red books’, and the chapters
about persistence and transactions in this ‘new
world’ feel almost invaluable. One drawback, (if
it now really is a drawback), is that it feels
unsatisfactory to read only a single chapter.
Let’s suppose you want to know more just about
facade design. It doesn’t give enough
information to read only that part. Therefore,
this book should be read in its entirety, and it
really deserves it. For a developer educated in
the EJB 2.0 paradigm, moving to more
lightweight J2EE APIs, I can’t imagine any
better way to get up-to-date than getting a copy
of this. Still, the target group is more or less
experienced J2EE developers, and a pure
beginner in J2EE will soon get lost.

Recommended.

Design Patterns in Java

by Steven John Metsker and ~
William C. Wake, published by . |}|;:.< 1GN
Rddison-Wesley, ISBN: 0-321- PATTERNS

33302-0
Review by Omar Bashir

Positives: A must read book
for intermediate Java
programmers who are
increasingly moving into or involved in module-
level design. A very interesting book for all Java
developers and pattern practitioners as it
presents an alternative classification of patterns.

INJAVA

Negatives: Verbose with unnecessary details at
times. Demonstrates the application of patterns
using a complicated example from a rather
specialised domain.

When faced with a design problem, prudent
developers normally spend a considerable time
trying to figure out which pattern to use.
Implications of using inappropriate patterns
range from an inflexible design to complicated
control flows resulting in a rigid and brittle
implementation. This book will help developers
in answering the which pattern question.

Authors present an alternate and a finer grained
classification of GoF’s patterns that may help
developers chose the right patterns for their
design problems. Instead of the three classes
presented by GoF (Creational, Behavioural and
Structural), this book presents 5 classes. These
are Interface, Responsibility, Construction,
Operation and Extension. Patterns have been
classified through their intents and in some
cases, the authors have had to provide a deeper
interpretation of the pattern intents to justify this

30 [{evu} | AUG 2007

classification and the inclusion of patterns in
their respective classes. This finer grained
classification helps map a particular design
problem to an appropriate class, from where it
is relatively easier to find the right pattern.

While being structured, the book has an informal
expression that may make it easier for some
readers. The book contains numerous exercises
or challenges, solutions to which are provided at
the end of the book and are helpful in practising
the concepts explained in the book. Where a
pattern being discussed is similar to other
patterns, authors discuss the circumstances
where one would be more applicable than
others. Rather than simply demonstrating the
implementation of patterns using Java as a
programming language, authors go to some
length in explaining classes and interfaces
available as a part of J2SE that provide the basis
of implementation of some patterns within a
Java application.

The book mostly uses examples from a single,
rather more specialised, application domain of
firework manufacturing and operation. Because
this is a relatively specialised domain, authors
have had to provide a significant amount of
domain knowledge in the book. This has made
the book a bit lengthy and requires the readers
to understand the domain before understanding
the problem the example attempts to solve. It
may not be possible for many readers to deal
with two unknowns concurrently. It would have
been better to use an example from a relatively
more familiar application domain.

The description of some patterns in this book
deviates slightly from the GoF’s description.
This particularly relates to pattern participants
and their relationships. A typical example of this
is the description of Mediator. This necessitates
reading this book in conjunction with the GoF’s
Design Patterns book where the participants and
their relationships promote a higher degree to
reusability and flexibility. Finally, a couple of
patterns, namely Facade and Builder have not
been explained adequately. The example to
explain the Facade does not highlight the
advantages of using a Facade.

I'would recommend this book. The finer grained
classification makes the application of patterns
more intuitive for developers. Implementation
of patterns in Java has been adequately
addressed. However, a study of patterns as
described by GoF is also required in conjunction
with this book. GoF’s book provides an in depth
description of the individual patterns whereas
this book classifies them appropriately that
helps developers select suitable patterns for the
design problems they encounter. Furthermore,
this book explains the implementation of these
patterns in Java, which will be helpful for junior
and intermediate-level Java developers.

Windows and .NET

Pro Visual C++ 2005 for C#
Developers
by Dean C Wills, published by

Apress, 379 pages. ISBN-10:
1590596080

Review by: Simon Sebright

This appears to be one of four
books in the Apress Visual
C++ 2005 series. It’s really
about C++/CLI, not C++, i.e. the new context-
sensitive keywords, etc. that Microsoft have
built into C++ and the compiler/linker to allow
you to write for the .Net environment in
something that feels a bit like C++.

Its point of view is to explain to C# developers
what they can do with C++/CLI and aims to
point out subtle as well as major differences.

I found the overall structure of the book rather
vague, as he himself'says it’s not supposed to be
a step-by-step guide, but a collection of things
he thinks are useful to know. As such, I can’t
really recommend this book as a reference.

The first part of the book is more technical,
covering core language concepts with lots of
nice code examples in the two languages,
particularly pointing out where the same syntax
might mean different things.

In the middle, we have a random digression to
cover code for supposed interview questions, for
example calculating the optimum choice of
letting nearly-unbreakable light bulbs fall from
a building. This I felt was rather just showing
off, because his answers used no features of C++
of note, and were basically C in disguise.

I was less satisfied with the second, ‘Advanced’,
section of the book. It covers generics,
templates, and then moves on to nitty gritty C++,
including the preprocessor and ‘Native C++’.
The latter is woeful, allocating more time to
stdlib.h than stl, and with more example
code than text. His main st1 example uses
deque, should be vector in my opinion as the
container of default choice. 1ist has a cursory
mention, as does auto_ptr, which apparently
can help you if you forget to call delete.

I was rather put off in the first place because
there is an introductory section not only about
the author, but about the technical reviewer, not
something I have seen before!

To summarise, an interesting first half if you
want to know a bit about how C++/CLI and C#
compare (for example C++-style destructors
map on to IDispose), but the rest is a red
herring. I won’t give the book a not
recommended status, because there is enough
good material in there, though.

Oh, and you can buy the companion eBook for
$10 — what a cheek!

[continued on back page]

Membership news and committee reports

View From The Chair

lez Higgins
chair@accu.org

At this year’s Annual General
Meeting, I and the committee
inadvertantly triggered
considerable discussion over
the appointment of the :
Association’s Honorary Auditor. The initial
proposal to appoint a new firm of accounts was
rejected. I will just note that accounts
themselves were accepted subject to
clarification, which will be covered in a later
piece. There then followed a discussion over the
meaning of auditing and the role of the Honorary
Auditor.

The constitution itself, in article 7.11, says

The Honorary Auditor shall be appointed by

the Annual General Meeting.
This is, depending on your perspective, either
helpfully flexible or unhelpfully vague. The
meeting seized the helpfully flexible
opportunities. While, in the past, Honorary
Auditor had been taken to be an external
accountant, following discussion from the floor,
the AGM instead chose to appoint a member
from outside the committee as Honorary
Auditor:

The association appoints Ewan Milne as

auditor, to inspect the prepared accounts.
There was some further discussion, concluding
with a further motion from the floor

The committee should consider those
constitutional changes that might be required in
order to regularise the accounts.

Following discussions with the committee, we
have arrived at the following.

Role of the honorary auditor

During the preparation of the end of year
accounts, any external accountants will be
dealing with the Treasurer and/or the Chair. The
accountants are, however, ultimately employed
by and are acting for the membership. Clearly,
it’s impractical for the accountant to report to
every member. Instead the accountant is
responsible to the Honorary Auditor, who acts
on behalf of the membership.

We do not believe it necessary for all
correspondence to be copied to the Auditor, but
copies of the financial statements and end of
year accounts will be sent to the auditor prior to
the AGM. End of year accounts must be
approved by both the Chair and the Honorary
Auditor before presentation to the membership
at the AGM.

If, at any time, the accountants feel there are
unresolved questions or outright suspicious
behaviour in the books, they should report their
concerns directly to the Honorary Auditor. The
Honorary Auditor can then make any necessary
investigation or take any necessary action.

Should instructions given by the Chair or the
Treasurer be in conflict with instructions given
by the Honorary Auditor, the Honorary Auditor
is the higher authority.

Clearly there’s a bootstrapping issue. The Chair
will make the initial contact, introducing the
Honorary Auditor to the accountant, outlining
the accountant’s responsibility to the Auditor
and so on. Thereafter, changes to those
arrangements may only be made by the
Honorary Auditor.

Appointment of the auditor

While not formally adopted in a motion, the
AGM discussion endorsed the model used by
voluntary organisations in Holland, outlined by
Aschwin Marsman. The organisation appoints
two people as auditors. Each auditor is
appointed for a two year term, but the
appointments are staggered. Each year,
therefore, one auditor steps down and is
replaced. Ewan will stand for the position of
Auditor again at the 2008 AGM, on the
understanding that he will stand down in 2009.
He will seek another person to stand with him,
to be appointed until 2010.

The preparation of the accounts is the job of the
committee. Currently, the day to day
management of the accounts is handled by the
Treasurer. The Association’s accounting year
runs to the 31st of December. The 2006
accounts were prepared by Lowson Ward of
Birmingham, and the committee expects to use
them again to prepare the end of year accounts
for 2007. The appointment will be reviewed

with the Honorary Auditor following the AGM.

Changes to the constitution

Since the constitution simply says the the
Auditor will be appointed by the AGM, we do
not believe that any changes to the constitution
are necessary. The arrangements for appointing
the Honorary Auditor and their role can be put to
the AGM and adopted as a motion. Should
future circumstances require a change in
arrangements, the AGM can adopt a new
motion.

We trust these proposals make sense, and will
meet with the Assocation’s approval at the 2008
AGM. Should you wish to discuss them please
do contact Ewan at auditor@accu.org or Jez at
chair@accu.org.

Mick Brooks
accumembership@accu.org

August was previously the end of our fixed
membership year, and so many of your
memberships are soon due for renewal. The
label on the front of your journal mailing has

your expiry date, and you will be emailed
reminders as that date approaches (unless
you’ve opted out of receiving emails). This may
be the first time you’ve had to renew via the new
website — it should be simple to use, but don’t
hesitate to contact me if you have any trouble.
The website also has a newly activated feature —
once logged in you’ll be able to update your
contact and mailing details yourself. Finally, if
anyone’s interested in receiving a £5 discount on
their membership, contact me for details of how
to set up renewal by standing order.

A number of members have mentioned social
networking sites, particularly Facebook and
LinkedIn, to me recently. We’ve been
wondering how closely ACCU should work
with the ACCU groups that have been started on
some of these services. I’'m interested to hear
your thoughts about this, so please email me any
ideas about how we can use these groups to
support your involvement in ACCU.

Wehsite Report

Allan Kelly
publicity@accu.org

The end and the
heginning

Is it two years or three that

I’ve been reporting on the ACCU website
project? It started when I joined the committee
(2003?) and I thought it would be interesting to
write an ‘officer without portfolio’ report. Then
I took on the challenge of re-developing our
website and it all went from there.

Since then I’ve reported on our first attempt — a
failed outsource project — and the more
successful second — a successful outsource
project. And all the twists and turns: book
database, advertising, CVu online, Overload
online, etc. etc. Well this report brings the
project to and end. Yes there are a few loose
ends to tie up but essentially I now consider the
project done, and thus I won’t be writing any
more website reports, and [will be stepping back
a bit.

This month (July) saw the transition of the
ACCU mailing lists onto the new server. Rather
than the lists being hosted on old Brian — hidden
under someone’s desk at de Montfort University
—the lists and the website live on a shinny server
somewhere in a data centre in New Jersey. They
are largely managed out of Germany by Tim
Pushman, a long standing ACCU member and
our chosen sub-contractor to develop the
website and everything else.

The website is not an end to itself. It is great to
have a shinny new website but the real
motivation for re-developing it was something
else. We need a good website for two reasons.
Firstly it is our face to the world, it shows the
world that the ACCU is alive and tells them what

AUG 2007 1{cvu} | 31

Membership news and committee reports

we do. Second, the website is a platform for us
to conduct ACCU activities. The move of the
mailing lists completes this platform.

I had hoped that the new website would bring in
more members. It seems to have brought in a
few more but not the hundreds or thousands I
would have like to see. To my mind this just
goes to prove that while a revised website was
necessarily, by itself it is not enough, we need to
use the platform to attract more people.

So what next? Well I think David Carter-
Hitchin and Seb Rose, as Publicity Officer and
Advertising Officer respectively, should have
some ideas here. The website can serve to
generate advertising and increase our profile. |
expect great things from David and Seb!

The ACCU also has to decide what the role of
‘Electronic Communications Officer’ is these
days. Steve Dicks has done an admirable job of
keeping the old systems up and running for as
long as I can remember. The committee needs

to work out what roles we have in place to
manage the new website.

Then there are few loose ends to tidy up on the
website, around mailing lists, membership, etc.
The committee officers responsible can work
with Tim directly on this.

And as for me... well I feel a sense of
achievement. The end of this project has
coincided with several other events and I’ll be
glad to reclaim my time. As some people know,
a few months ago I declared myself an
independent consultant specialising in helping
companies improve their development activities
(more on my company website
www.softwarestrategy.co.uk). I really need to
devote more time to this project.

Second, at this year’s EuroPLoP conference I
was elected co-chair. End to end this is a three-
year commitment covering two conferences.
(Kevlin Henney and myself are EuroPLoP
regulars, several other faces are familiar from
ACCU conferences but I always hope more

ACCU’ers should get involved in the patterns
community. If you feel like trying your hand at
pattern writing, or just want to join in the
conference, get in touch or look at the EuroPLoP
website http://hillside.net/europlop/).

I’m not resigning from the ACCU committee
just yet, although I may do as the EuroPLoP
work builds up. But I do intend to take a
backseat on the website from here on.

Finally, I’'m hoping that I’ll be able to get back
to writing for Overload. My period running the
website project has coincided with my writing a
book (O, since you asked, it’s called Changing
Software Development and should be out in
January 2008 from John Wiley & Sons.) The
book has taken most of my writing time and the
website my ACCU time, so hopefully... no
promises.

Bﬂﬂk HE“iEWS (continued)

NET Internationalization

by Guy Smith-Ferrier, published
by Addison-Wesley, 630 pages. | ner
|SB"_“]. 032134‘384 Internationalization

S e gy Gt gl
Review by Simon Sebright .net
Recommended

B e

This is a very strong book on mﬁf
the subject of i118n B .=
(Internationalization) of .Net

projects, be it forms or web applications. It
covers issues in good depth, with much detail
and a commanding writing style.

Along with the book are online code examples
and tools. I haven’t looked at these, but from the
snippets in the book, they look to be well written.
The tools are essentially extensions to the Visual
Studio toolset for dealing with 118n of projects.

The book is full of interesting examples where
different languages and cultures bring new
concepts to challenge the developer. For
example, calendars where there are not
necessarily 12 months in a year, or left-to-right
issues, or cultures where there is more than one
way to sort strings.

The 118n issue covers good practice even in non-
localised programs. Not hard-coding things,
using resource files effectively, etc., so I learned
some useful things even though I am not
working on this issue directly.

Index pretty good, although admittedly the only
term I actually wanted to look up wasn’t there.

32 [{cvu} | AUG 2007

Again, recommended. Evenifyoudon’thavean
i18n issue to deal with, it’s good to know the
concepts presented in this book

by Erik Brown, published by
Manning, 803 pages. ISBN-10:
1932394656

Recommended with
reservations

NDOWS
‘_m FORMS
4 INACTION

This book aims to get you up
to speed with WinForms 2.0
using C#. It takes you through most of the usual
things you need to worry about — menus and
other tool strips, common dialogs, custom
dialogs, controls (buttons, text, etc.), calendars,
progress controls, ‘bells and whistles’, custom
controls, explorer views, MDI, data binding, and
odds and ends (printing, drag and drop, web
browsing, settings, deployment).

Throughout the book, he focusses on one central
application, a photo-album editing suite,
although he does occasionally uses other
examples where this application is not suitable
to demonstrate something. Generally, this works
well, and I even thought of creating such an app
myself (I wasn’t convinced by some of his code
design!) based on this work. Sometimes it grated
a little though, and in comparison with another
windows forms book I have recently read, it has
pros and cons.

One thing I really liked was the fact that the
example code was not riddled with stupid
commentssuchas // Create a widget;next
line Widget w = new Widget() ;. We can
well do without that style, and this book uses a
format of describing the code in the book with a
two-column table, which works well.

I didn’t try to download and compile any of the
code, but generally, I saw very few mistakes in
the printed version. Some of the techniques he
uses (returning early if parameters are null, for
example) are not my thing, but it generally made
sense.

Ithought the coverage of databinding was rather
weak, a case where limiting things to the
application under development didn’t work that
well.

But, most topics were covered with what
appeared to be a good command of the subject.
I had recently read another good book on this
subject, and was pleasantly surprised to read
new things here, and also sometimes better
explanations of concepts.

Overall — recommended with reservations.
Those reservations are that certain subjects are
dealt with rather lightly, for example, data
binding, printing, deployment. But, these are
major topics in themselves, and no book on
WinForms can cover everything in detail. The
concepts are here. Finally, the index is pretty
comprehensive.

	Why write for ACCU?
	Please release me
	The Bazaar Thing
	A Brief Introduction to Cygwin
	Continuous Integration with CruiseControl.Net
	Scripting C++ Objects
	Get Ready for the ACCU 2008 Conference
	Introduction to Lua
	Standards Report
	Regional Meetings
	Code Critique Competition 45
	Bookcase

