

JUN 2007 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
ACCU members – by programmers, for programmers
– and have been contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Volume 19 Issue 3
June 2007

Editor
Tim Penhey
cvu@accu.org

Contributors
Silas Brown, Kevin Dixon, Lois
Goldthwaite, Pete Goodliffe,
Simon Gray, John Lear, Roger
Orr, Ric Parkin, Simon Sebright,
Simon Trew

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
David Hodge
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Thaddeus Froggley
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

TIM PENHEY,
EDITOR

When should code be
allowed to die?

s many of you know I spent quite a few years working in London.
For most of that time I was working for investment banks. One of
the reasons that I wanted to leave was that I kept coming across

the same problems. Not exactly the same problems, but similar
enough that the work was starting to become repetitive.
Personally I have a really low bordem threshold. It is one of the
reasons that I’m not into computer games and don’t have any games
consoles when I have many friends that do, and they enjoy them. I just
get bored with them. I get bored at work too. This is why I went
contracting – to get a change every now and then.
The problem that kept popping up was not wanting to allow code to die.
Instead companies wanted to keep it on a respirator, feed it
intravenously, and hope it keeps living. Sometimes you just need to start
afresh, pull the plug and let the old code go. However this is never a
popular opinion in corporate circles. There are many risks when starting
again, not to mention the possibility of falling behind a competitor.
Companies don’t like moving developers from bug fixes and incremental
improvements to a new green fields project that will probably fail.
So, what can we do? When is a good time? What is the best way to mitigate the
risks? Personally I believe that some systems just require some love, and radical
refactoring, to breathe new life into them. Others could benefit from side by side
development, creating the new system while allowing the old to limp along.
Each is different.
I left the UK because I kept seeing systems that should have been laid to rest long
ago, and companies and managers that couldn’t see it. Now I’m sure NZ has
similar systems, but thankfully I’m not working on them.

A

2 | | JUN 2007

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

COPY DATES
C Vu 19.4: 1st July 2007
C Vu 19.5: 1st September 2007

IN OVERLOAD
Begin your reading with ‘The Policy Bridge Design Pattern’ and
‘Live and Learn with Retrospectives’.

DIALOGUE
28 Standards Report

Lois brings news from the
C standard committee.

29 Code Critique Competition
This issue’s competition
and the results from last
time.

REGULARS
38 Book Reviews

The latest roundup from
the ACCU bookcase.

39 ACCU Members Zone
Reports and membership
news.

FEATURES
3 Scripting C++ Objects

Kevin Dixon, Simon Gray, John Lear and Simon Trew
make C++ more dynamic.

8 Proactive Laziness
Simon Sebright explains why it’s good to be lazy.

12 Professionalism in Programming #44:
How professional are you?
Pete Goodliffe helps us to work out our skill level.

14 Stand and Deliver
Ric Parkin discovers that talking at the conference can be
fun.

16 Customising a Diskless Linux
Silas Brown finds alternative tools.

18 ACCU Conference 2007
Pete Goodliffe rounds up a retrospective of this year’s
awesome ACCU conference.

Scripting C++ Objects
Our new gang of four makes C++ more dynamic.

o application is an island. And no team of developers can ever hope
to provide all the functionality their users require. Although it is
relatively easy to exchange small chunks of data between

applications using the clipboard, this doesn’t go far enough.
The solution to these problems is to provide an API for your application
so that users can write their own solutions to particular problems. But what
language, or languages, should that API use? In many cases, for CVu
readers especially, the application will be written in C++. To expect users
to be conversant in C++ to develop extensions is clearly not going to win
any friends. This is typically an area where scripting languages such as Perl
and Python are widely used. These languages are relatively easy to get
started with, and many computer users are familiar with their use.
The question then becomes how to link the scripting language to
application code. Fortunately this is a fairly well trodden path and there
are a number of solutions already available to us:

SWIG
Attributed C++
IDL
The Preprocessor

SWIG
The Simplified Wrapper and Interface Generator [1] is a free software tool
that makes it possible to build a scripting API onto C++ programs. SWIG
is a compiler, of sorts, that takes C++ declarations, in the form of an
‘interface file’ and turns them into C code that acts as the binding between
the scripting language and the application code. SWIG supports many
scripting languages.

Attributed C++
The aim of Attributed C++, as introduced into Microsoft’s C++ v.7.0
(Visual Studio .NET) was to allow functions and classes to be attributed
with metadata within the program itself, rather than requiring a separate
pre- or post-processing stage. These attributes produced hidden code
which, for example, wrapped datatypes and provided interface shims.

IDL
An Interface Description Language is used to describe an interface in a
language-neutral way. The most common IDLs are those used for
Microsoft’s COM and in CORBA.

The C++ Preprocessor
The typical C and C++ program has function declarations in header files
and definitions in separate files. When brought together by the
preprocessor, these usually form a ‘translation unit’ as defined by the
Standard, i.e. a complete component that can be parsed by the compiler
with no reference to external information.

Other factors affecting the choice of approach
At Accelrys, our Materials Studio™[3] application allows the user to run
remote jobs both on Linux™ and Microsoft Windows™ servers. As
calculations initiated by a script often take a considerable time to complete,
the scripts should be runnable under both these operating systems. We
needed a portable interface between our C++ code and the script.
Scripting was to be added to portions of a large existing application by a
small team. The approach chosen could not require large-scale refactoring,
as the test burden alone would be prohibitive. We planned that future
releases would involve a wider pool of developers, not all of whom would
have knowledge of the implementation mechanism and so we needed to
allow as natural a C++ style as possible.

Comparison of the above
Looking at the above options, we decided to discount Attributed C++.
Though it reduces the amount of IDL and associated overhead, it is not
portable and its buggy implementation has in the past ruled out its use in
a production system. Also, the hidden code produced by the attributes is
not easily discoverable and the attribution cannot be extended arbitrarily
to user-defined attributes.
With the C++ preprocessor, the split between the declaration and definition
files leads to much redundancy, exacerbated when small delegation
functions are used. To add an extra layer of duplication by way of pre- or
post-processing compounds this. We have also found from experience that
the separate pre- and post-processing tools tend to have special rules that
disallow writing in a natural C/C++ style.
Looking at the two remaining options the choice is not clear cut; both of
them having their strengths and weaknesses. SWIG is the front runner. Its
main benefit is its support for multiple target languages. But the extra
mapping files that must be written increase the development and
maintenance overhead. The danger always is that the application code
moves on and the interface description is not kept synchronised. And the
larger the API, the bigger this issue becomes – this solution does not scale.

N

JOHN LEAR
John has been developing software in C++ on
various platforms for the last 14 years. At Accelrys,
he works on client development and infrastructure,
hopefully making life easier for other developers.
He can be contacted at jlear@accelrys.com

KEVIN DIXON
Kevin has been developing scientific applications in
C and C++ since 1991, filling in the gaps with Perl.
He is currently modelling polymers and other large
molecular systems. He can be contacted at
kdixon@accelrys.com

SIMON TREW
Simon started his career as a software engineer in
the defence industry. After graduating from UMIST,
he produced object-oriented databases, before
joining Accelrys. He can be contacted at
strew@accelrys.com

SIMON GRAY
Simon is an escaped experimental physicist who
was spotted around financial programming for a
few years before finding a more natural home
writing scientific software. He can be contacted at
Simon.Gray@Physics.org
JUN 2007 | | 3{cvu}

The synchronisation issue applies to IDL as well. Though IDL does have
its advantages, enforcing a good separation of interface from
implementation, there are more downsides: It is not easily portable to other
platforms and it forces a very unnatural programming style on the C++
implementation. For instance:

1. Values cannot be returned but are specified as reference parameters
in a method's argument list.

2. The datatypes available are limited to PODs and cannot be easily
shimmed into wrapping RAII types without costly copying.

3. Interfaces can only use raw IDL types rather than safer wrapped
types.

4. Implementations cannot throw exceptions for errors. This leads to
excessive flow-of-control code cluttering the implementation.

5. Interfaces cannot use qualifiers such as const.
Ideally, a solution would allow the API methods and properties to be
declared within the source code of the API itself. In fact, tying the two
together creates a tight development feedback loop where the API
declaration cannot help but match its implementation, otherwise it won’t
even compile.

Rationale
The ability to write scripts to perform calculations within our application
had been a long-standing user request. Since the application is written as
a collection of COM objects (using the XPCOM [2] libraries for portability
to Linux), these initial requirements could have been met by providing Perl
modules to bind to our internal COM objects. There was concern that this
would prevent us from changing our internal implementation in future and
make supporting other scripting languages no easier, so we needed a more
flexible approach.
Our application is already built as a series of COM components which
implement a datamodel and calculation engines. To give users direct
access to these would constrain future development, so our scripting
framework calls through an abstraction layer. This allows us to change the
underlying implementation and datamodel more freely in future as, if
necessary, adaptation can be handled by this layer. Consistency of
interfaces and hiding of implementation methods are also enforced
through the abstraction layer.
The datamodel exposes many of its properties as key/value pairs. Rather
than having to know which properties are exposed like this, and passing
the key to a single get or set method, the abstraction layer coupled with
the forwarding mechanism described later lets us expose these as object
properties, with a get or put method for each one.

The COMLite approach
None of the previously described solutions gave the right combination of
flexibility with low maintenance costs and ease of use, so we decided to
pick the best techniques from what was on offer to craft our own solution.
Our novel implementation comprises three main parts:

1. A set of macros and templates that allow metadata to be easily
injected into a portable C++ program using a natural style that is
fully checked at compile-time.

2. A binding from that metadata to a language-independent, platform-
neutral calling convention (in our case, COM).

3. A binding from that calling convention to a particular scripting
language (in our case, Perl).

This approach (illustrated in Figure 1) allows APIs to be developed that
are easy to use and maintain in isolation from the target language binding
while still being platform neutral and useable from other C++ code in a
natural way.
The choice of calling convention is fairly arbitrary. We chose COM as it
is already used extensively throughout the Materials Studio application. It
could easily be replaced, with SOAP say, if desired. The choice of Perl was
arrived at via marketing surveys and discussions with our user base.

COM/IDispatch recap
COM is clearly a Microsoft technology. However, XPCOM, which is a
Mozilla project, gives the cross-platform capability that we require. The
COM facilities used are limited to interfaces and component factories.
IDispatch is one of the two core interfaces that form COM, IUnknown
being the other. IUnknown is fine for statically-bound languages such as
C++ that go through a compilation phase. Scripting languages are
generally not compiled and statements are only interpreted immediately
prior to their execution. IDispatch provides an interface where clients can
dynamically discover the abilities and properties of objects at runtime.
This gives us everything we need to create any new APIs for scripting
support.
The IDispatch interface can be split into two parts. The first is related to
processing COM type libraries which will not be covered here. The second
section, and that used by COMLite, is all about discovering the methods
and properties available on an object at runtime and causing them to be
executed. This process takes a two stage approach:

1. Do you know about this method/property? If yes, give me a token by
which to identify it.

2. Call the method/property identified by this token, possibly with a
bunch of arguments.

Step 1 is achieved through a call to GetIDsOfNames and step 2 is
achieved by calling Invoke, both on the IDispatch interface. Paraphrasing
their real signatures, this has the form shown in Listing 1.
For every known name mentioned in the call to GetIDsOfNames a token
known as a DISPID is returned. This token is used by subsequent calls to
Invoke to identify the function or property accessor to be called. The
names array contains the function name plus any named arguments used.
(Named arguments are beyond the scope of this article and it will be
assumed that cNames is always 1.) Flags are used to identify the context

typedef unsigned int DISPID;

DISPID[] GetIDsOfNames(const char *names[],
 const unsigned int cNames);
 //number of values in names[] array.

VARIANT Invoke(const DISPID dispIdMember,
 const unsigned int wFlags,
 // call reason, eg. property get
 // or property set.
 const DISPPARAMS *pDispParams,
 // array of arguments.
 EXCEPINFO *pExcepInfo,
 // rich error information passed
 // out on error.
 unsigned int *puArgErr);
 // index of the parameter
 // that caused the error.

Listing 1
Figure 1
4 | | JUN 2007{cvu}

of the call: a function call, a property setter or a property getter. The
DISPPARAMS structure contains the arguments to the function in the form
of an array of VARIANTs. The final two parameters are used to pass out a
rich error structure to indicate that an error occurred during the handling
of the call. If no error occurred, the result of the call (if any) is returned in
the VARIANT.
Through sequential calls to GetIDsOfNames and Invoke, client code
can call methods and get/set properties on the serving object. The client is
also allowed to cache the results of calls to GetIDsOfNames; the interface
description requires that once a token has been handed out, it remains valid
until the serving object dies. However, scripting clients are often ill-
advised to cache the tokens as it can be hard to track whether they truly
refer to the correct serving object.
The dynamic discovery of functions and properties means that an object
can invent new behaviour during its lifetime. For example, it might
delegate some calls to other objects, completely unknown to the client.
This semblance of dynamic classification can become quite powerful
when calls are delegated to other objects which also implement
IDispatch. It is novel for C++ and most other OO languages, where an
object’s shape (i.e. its class) is fixed at construction time, which generally
means fixed at compile time and at design time too. We discuss this in more
detail later.

C++ to COM binding
One of the annoyances with writing COM classes is the need to
specify the same information in several places – notably, in the
IDL, the header file containing the class declaration, and the .cpp
file containing the class implementation. (Admittedly we could
simplify this by writing all definitions inline.) Although the IDL is useful
for automatically generating a type library, it can become cumbersome to
keep it all up to date. It also means that every interface (dual or IDispatch
based) has to be named.
Scripting languages are typically weakly typed and gain no benefit from
having these separate interface descriptions since they talk exclusively in
terms of IDispatch and ITypeInfo. In fact, all interfaces can just be
IDispatch based (often called dispinterfaces).
To provide a COM mapping for a C++ class we use a set of macros,
templates and other classes that allow the same information as would be
found in IDL to be defined in a convenient way purely in C++. This
information is provided at the point of definition for each function, thus
keeping all the information together.
This information is then made available to the implementation of
GetIDsOfNames and Invoke to provide the type information on the fly
at runtime and also implement the marshalling of the input parameters.
So in practice, how does this look? See Listing 2.
The IDispinterfaceImpl class implements all the methods of
IDispatch and delegates calls to Invoke to the implementation in the
derived class. The curiously recurring template pattern is used to access
information contained in the derived class. IDispinterfaceImpl is
declared as follows:

 template<typename impl>
 struct IDispinterfaceImpl : IDispatch
 {
 typedef impl impl_class;
 //Implementation of IUnknown
 ...

 //Implementation of IDispatch
 ...
 };

The basic implementation of IUnknown will not be covered here. The
IDispatch implementation uses the function and property accessor
information declared within the class. These declarations form two distinct
sections. The first section declares the property accessors and functions.
The second section injects the type information into the base class. (Note:
This example gives only a static type example. Dynamic classification will
be covered later.)
First of all, there is no real difference between the PROPGET, PROPPUT
and METHODx variants of the DECLARE_XXX macro. Its use aids

readability, it allows the injection of the Get and Set ‘warts’ for the C++
function name and finally it allows us to specify the wFlags that need to
be matched against those supplied by the client code. These macros simply
defer to the DECLARE_FUNCTION0 and DECLARE_FUNCTION1
implementations:

#define DECLARE_PROPGET(com_name, prop_type) \
 DECLARE_FUNCTION0(com_name, prop_type, \
 Get##com_name, property_get)

#define DECLARE_PROPPUT(com_name, prop_type) \
 DECLARE_FUNCTION1(com_name, void, \
 Set##com_name, prop_type, value, property_put)

#define DECLARE_METHOD0(ret_type, com_name) \
 DECLARE_FUNCTION0(com_name, ret_type, \
 com_name, method)

The DECLARE_FUNCTIONx has number of tasks to perform:
1. Create a structure to hold the static type information and type

marshallers.
2. Populate that structure with the type information.
3. Create a normal C++ function declaration so that the actual

implementation code may follow.

The DECLARE_FUNCTIONx macro is written as shown in Listing 3.

This code fragment has introduced a number of supporting types that
would not normally be visible to the API writer. The most important of
these is the call_info class. This template class acts as a repository for
the information pertaining to a single function or property accessor. It also
contains a C++ member function pointer to the function that will be used
when satisfying the call, as shown in Listing 4.
The mem_fun_ptr class is simply a template class to provide some
convenient type definitions:
template<class impl_class>

class Atom : public IDispinterfaceImpl<Atom>
{
public:
 DECLARE_PROPGET(Name, std::string) const {...}
 DECLARE_PROPPUT(Name, std::string) { ... }
 DECLARE_METHOD0(void, Delete) { ... }
 ...
 BEGIN_CLASSINFO(Atom)
 CALLINFO_PROPGET(Name)
 CALLINFO_PROPPUT(Name)
 CALLINFO_METHOD(Delete)
 ...
 END_CLASSINFO
};

Li
st

in
g

2

The dynamic discovery of functions and
properties means that an object can

invent new behaviour during its lifetime.
JUN 2007 | | 5{cvu}

struct mem_fun_ptr
{
 typedef void (impl_class::*value_type)();
 typedef VARIANT (*dispatch_fn_ptr)(
 impl_class*, value_type,
 param_infos::positional_params_type &,
 const call_info<impl_class> &);
};

The param_infos class contains information about the parameter types
used a function call. In this example, as the function takes no parameters,
it is empty. The DECLARE_FUNCTION[1-x] variants of this macro
simply populate this structure with information pertaining to the type and
name of the parameter.

The final supporting class used here is the Dispatcher. The
Dispatcher is simply a function object whose sole role is to make the
function call.
This information is then injected into the class’s type information in the
CLASSINFO section. This information is again constructed statically,
using the type information provided by the methods defined by the
DECLARE_XXX macros (Listing 5).
Listing 6 shows the final level of aggregation, class_info, that contains
information for all property accessors and functions defined in a class, the
stream insertion operator being used to allow the easy addition of the
information for individual property accessors and functions.

Using the constructs described in this section we are able to build up
extremely rich metadata describing the class and its methods. This
information is then used at runtime to satisfy requests through calls to
GetIDsOfNames and subsequent Invokes.

#define BEGIN_CLASSINFO() \
 static const call_info<impl_class>* \
 get_call_info(const std::string& name, \
 kind reason = unknown) \
 { \
 static const class_info<impl_class> info = \
 class_info<impl_class>()
#define CALLINFO_METHOD(name) \
 << get_info_method_##name##()
#define CALLINFO_PROPGET(name) \
 << get_info_property_get_##name()
#define CALLINFO_PROPPUT(name) \
 << get_info_property_put_##name()
#define END_CLASSINFO() \
 ; return info.find(reason, name); \
 }

Listing 5

#define DECLARE_FUNCTION0(\
 com_name, ret_type, cpp_name, kind) \
 static mem_fun_ptr<impl_class>:: \
 dispatch_fn_ptr \
 get_dispatcher_##cpp_name##() \
 { \
 return &dispatcher<impl_class, ret_type, \
 0>::dispatch<void>; \
 } \
 \
 static const call_info<impl_class> \
 *get_info_##kind##_##cpp_name##() \
 { \
 static const variant::type return_type = \
 static_cast<variant::type>(\
 variant_wrapper_traits<ret_type> \
 ::variant_type); \
 \
 static const param_infos params \
 = param_infos(); \
 \
 static call_info<impl_class>:: \
 mem_funcptr_type const fn = \
 reinterpret_cast<call_info<impl_class>:: \
 mem_funcptr_type>(\
 &impl_class::cpp_name); \
 static call_info<impl_class> const info = \
 call_info<impl_class>(kind, return_type, \
 cpp_name, params, fn, \
 get_dispatcher_##cpp_name##()); \
 return &info; \
 } \
 \
 ret_type cpp_name()

Li
st

in
g

3

template<class impl_class>
struct call_info
{
 typedef typename mem_fun_ptr<impl_class>::
 value_type mem_funcptr_type;
 typedef typename mem_fun_ptr<impl_class>::
 dispatch_fn_ptr dispatch_fn_ptr;
 call_info(kind reason,
 variant::type return_type,
 const std::string& name,
 const param_infos ¶ms,
 mem_funcptr_type funcptr,
 dispatch_fn_ptr dispatcher) :
 m_kind(reason), m_return_type(return_type),
 m_params(params), m_funcptr(funcptr),
 m_dispatcher(dispatcher)
 {}
 ...
};

Li
st

in
g

4

template<class impl_class>
struct class_info
{
 typedef std::map<std::pair<kind, std::string>,
 const call_info<class impl_class> *>
 call_infos_type;
 class_info& operator<<(
 const call_info<class impl_class>*
 call_info)
 {
 m_call_infos.insert(
 call_infos_type::value_type(
 call_infos_type::key_type(
 call_info->m_kind, call_info->m_name),
 call_info));
 return *this;
 }
 const call_info<class impl_class>* find(
 kind reason, const std::string &name) const
 {
 call_infos_type::const_iterator found;
 if (reason == unknown)
 found = find_if(m_call_infos.begin(),
 m_call_infos.end(), a_predicate(name));
 else
 found = m_call_infos.find(
 call_infos_type::key_type(reason, name));
 return (found == m_call_infos.end())
 ? 0 : found->second;
 }
 call_infos_type m_call_infos;
};

Listing 6
6 | | JUN 2007{cvu}

A call to GetIDsOfNames must return a unique identifier, or DISPID,
for a given name. Should that same name be asked for in the future, the

same DISPID must be returned. Using the information we have in the
class_info structure, it is easy to satisfy these requests. A unique
DISPID can be assigned by simply incrementing a count each time a new
name is encountered and the relationship to the name stored in a map (see
Listing 7).
The final step is the implementation of Invoke. Invoke is called with
the previously handed out DISPID and any arguments supplied by the
caller (see Listing 8).
Most of the work is delegated to the call_info class which was setup
by the DECLARE_XXX macro in the implementation class (see Listing 9).
This has a number of tasks to perform:

1. Marshall the input parameters, supplied as Variants in the
DISPARAMS structure, into the native C++ types specified.

2. Call the function.

The call to make_actual_params unpacks the DISPPARAMS structure
into a simple vector of VARIANTs. The dispatcher is then responsible for
converting those types into their natural C++ types. The dispatcher for a
function call is templated on the actual C++ arguments for that function
call and this how the VARIANTs get unpacked. A Dispatcher class has
the following form:

 template<class impl_class, typename ret_type,
 unsigned params> struct dispatcher;

Using template specialisation an actual Dispatcher for a single
argument function call would look like Listing 10.
Using a simple table of traits classes allows conversions to be specified
independently and extended as required. Here as an example traits class
for unpacking type ints:

template<> struct variant_wrapper_traits<int>
{
 typedef const int wrapper_type;
 enum { var_type = VT_I4 };
 static int get_value(
 const VARIANT &v) { return v.intVal; }
};

Observations on the implementation
The example here covers a very simple subset of what is possible. The
number and type of parameters supported can easily be extended by adding
to the macro definitions and type traits table. In over a year’s worth of use
we have only come up with one situation that required the support of more
than three function parameters. The macros can also be extended to support
a number of extra facilities.

Different variants of C++ functions can be defined dependent upon
whether the parameter has an in (const ref) or out (pointer) attribute.

template<typename impl>
 struct IDispinterfaceImpl : IDispatch
{
 ...
 //IDispatch support
 typedef std::map<std::string,
 DISPID> dispid_map;
 static dispid_map m_dispids;
 static DISPID m_nextDispId = 0;

 //Implementation of IDispatch
 DISPID[] GetIDsOfNames(const char *names[],
 const unsigned int cNames)
 {
 DISPID retval[] = { DISPID_UNKNOWN };
 // first check if this name has been
 // seen before

 if(m_dispids.find(names[0]) !=
 _dispids.end())
 {
 retval[0] = m_dispids[names[0]];
 }
 // otherwise see if the class_info
 // knows anything
 else if (get_call_info(names[0]))
 {
 dispid_map.insert(std::make_pair(names[0],
 ++m_nextDispId));
 retval[0] = m_nextDispId;
 }
 return retval;
 }
};

Li
st

in
g

7 template<class impl_class>
struct call_info
{
 ...
 VARIANT Invoke(impl_class* instance,
 const DISPPARAMS *pDispParams)
 {
 //Unpack the DISPPARAMS
 std::vector<VARIANT> actual_params(
 make_actual_params(pDispParams));
 //Make the call
 return m_dispatcher(
 instance, actual_params, *this);
 }
};

Listing 9

template<typename impl_class>
 struct IDispinterfaceImpl : IDispatch
{
 ...
 VARIANT Invoke(const DISPID dispIdMember,
 const unsigned int wFlags,
 const DISPPARAMS *pDispParams,
 EXCEPINFO *pExcepInfo,
 unsigned int *puArgErr)
 {
 const call_info<impl_class>* const info =
 static_cast< const call_info
 <impl_class>*>(impl_class::get_call_info(
 dispIdMember, wFlags));

 if (info)
 {
 try
 {
 return info->Invoke(
 static_cast<mpl_class *>(this),
 pDispParams);
 }
 catch(...)
 {
 // Setup call-specific error information
 }
 }
 //Setup generic error information
 }
};

Li
st

in
g

8

JUN 2007 | | 7{cvu}

Scripting C++ Objects (continued)
Including help text for use in type library generation.
Supporting virtual functions in C++.

There are also a significant number of plus points in using this approach.
As can be seen, it is very straightforward to create a class with a
dispinterface. Also, the DECLARE_XXX macros declare a normal C++
function that can be called directly from C++:

 std::string atomName(atom->GetName());

Code can also be separated into public, private and protected sections for
C++ clients.

Coming in Part 2...
The first part of this article has shown how to provide a platform-
independent and language-neutral calling convention based on metadata
contained in C++ objects. In the second part, we will show how to use these
features and provide a target language binding for Perl. We will also
demonstrate a novel technique for reducing verbosity in the target
language which also facilitates the API’s implementation through C++
mixin techniques.

Acknowledgements
The authors would like to thank their colleagues at Accelrys for their
valuable editorial contributions to this article.

References
[1] SWIG – http://www.swig.org
[2] XPCOM – http://mozilla.org/projects/xpcom
[3] Materials Studio –5.5 http://www.accelrys.com/products/mstudio

template<class impl_class, typename ret_type>
struct dispatcher<sink, ret_type, 1>
{
 template<typename p1_type> VARIANT dispatch(
 impl_class* sink,
 const std::vector<VARIANT> ¶ms,
 const call_info<impl_class> &info)
 {
 typename variant_wrapper_traits<p1_type>::
 wrapper_type wrapper_p1(
 variant_wrapper_traits<p1_type>::get_value(
 params[0]));
 typedef ret_type (impl_class::*func_ptr)
 (variant_wrapper_traits<p1_type>::
 wrapper_type);
 return sink->*(

reinterpret_cast<func_ptr>(fn))(wrapper_p1);
 }
 ...
}

Li
st

in
g

10
Proactive Laziness
Simon Sebright explains why it’s good to be lazy.

Introduction
his article describes a pattern I have recognized in real life as well
as development process and implementation.

Proactive Laziness refers to doing something up front to avoid problems
later in time. The key thing is that the up-front activity is something
different to the downstream activity, it instead facilitates it. As such, it is
different to the pattern which might be called ‘Keeping on top of things’.
For example, we all have to pay bills. Paying a bill early is the same activity
as paying it too late, so does not count (even though paying late might have
penalties attached) as Proactive Laziness. Rather, it is simply keeping your
affairs in order. However, setting up a direct debit is Proactive Laziness,
because it is a different activity. In this case, the up-front activity
automatically ensures that the desired result occurs.
Of course, without the Proactive Laziness device, in the real world, we can
have benefits simply by keeping on top of things – making payments,
opening post, buying enough milk for your tea. In the development world,
this keeping on top of things can become difficult, if not impossible, and
has a tendency to distort. For example, not using RAII classes means
tracking all exit points of a function, notwithstanding the fact that
exceptions can occur in some languages.

Often, the upfront activity requires more effort than the initial problem it
is avoiding, but has the ability to solve the problem multiple times, thus
as time goes by, the payback period is exceeded and we start to gain.
I want you to go away from this article thinking what you can do better in
your work, where you can save time and money by putting in place
practices which help you help yourself. Things which mean you can leave
for home in the evening with a feeling of confidence, and drink your beer
in peace.
Be Proactively Lazy!

Domains

This is an article for technical people, so most of the domains are to do
with software development. I also look first at a few real-world examples
to show that this pattern is not purely about writing code. I then move on
to look at development process, development itself and lastly user
interfaces.

T

SIMON SEBRIGHT
Simon has been programming for 10 years, mainly in
multi-tier C++ application development. Recently, he
has been designing and developing web- and
database-based application using C# and asp.net.
He can be contacted at simonsebright@hotmail.com
8 | | JUN 2007{cvu}

Mechanisms

For each example, I have identified the main mechanism underlying its
ability to be proactive. It turns out that there are common mechanisms in
the domains identified:
Availability Having information available when needed
Automation When something occurs automatically – we set something up,
and it happens how and when it should.
Deterrent The next best thing to Enforcement, where we try to stop bad
things happening
Enforcement Stopping the things we don’t want to happen from happening,
usually by design
Flexibility Offering components which when combined together create
more numerous, powerful and elegant solutions than otherwise possible
when functionality is locked up in one entity

Real world examples
Here are some things you may or may not do in day-to-day life which fall
under the practice of proactive laziness.

Direct debit payments

As mentioned in the introduction, taking the time to set up an automatic
payment mechanism means you will never forget to pay your bills on time
and thereby avoid incurring penalties.
Mechanism Automation – automation of the desired payment activity. You
rely on the systems of your suppliers and financial institutions to make the
correct payments at the correct time.
Risk You have to trust the suppliers and financial bodies controlling the
transactions. Personally, I am quite happy with the service I have had over
the many years I’ve been using it.

Store phone number in address book

We often need to ring new people. If you have the number either on screen,
a business card, or just a piece of paper, you need to type it into your phone.
Taking the time to add it to the address book before you call the person
means that you won’t have to remember it any more, or take the time to
retype it, or risk losing it. (Often a mobile phone will keep a record of calls
made, so you might be able to retrieve it later, but they usually drop off
the list after time).
Mechanism Availability – we always know we can retrieve the phone
number whilst using the device in question.
Risk Of course, you could forget the phone with the number stored on it,
change the chip, it might break, etc. The number may also change; only a
central updated repository can deal with that.

Shopping list

If you go shopping for something, particularly household shopping where
many items need to be purchased at once, then make a shopping list. That
way, you don’t have to remember everything and run the risk of forgetting
things you need, or wasting money on things you don’t.
It’s best to make the list as the time goes by from the last shopping trip, as
it becomes apparent that things will be needed. You might have another
fixed list for things you always need such as milk, eggs, bread, etc. to avoid
clutter.
Mechanism Availability – the list of things needed is collated in one place.
An alternative is to go round the shop looking at everything deciding
whether or not you need it. The latter works better for people living alone!
Risk List could be lost, difficult to read or ambiguous. Also, if this list is
rigidly applied without intelligence, we don’t cover the cases of lack of
availability, special offers, spontaneous decisions on meal plans, etc.
Application in software This can be a way to introduce performance
increases in applications. A computer does not get bored if you tell it to
visit every item and see if it’s needed, but as the number of items increases,
so does the time to find out. If a process keeps a separate list of things to

process, then if that list is a small fraction of the total available, we can
potentially save a lot of time.

Development process examples
These are things we do in the process of producing software. It might be
part of a methodology or an actual activity. The general aim is to make
sure that the process is robust and reproducible.

Turn up compiler warnings

The compiler is your friend. It will tell you when you are doing things
which might cause errors in your program. Turn up the warning level to
maximum. Ideally, do this at the start of a project and compile with no
warnings. I recommend even in the middle of a project that this is a good
practice and have often taken the time to eliminate warnings. Comment
out unused parameters and use appropriate casts where truncation may be
occurring (or change the datatypes).
One problem here is library headers. Warnings coming from them are not
in your control. Some environments allow you to introduce #pragma
statements to suppress these. Do not suppress warnings globally in your
own code though (apart from rare annoying ones that can never be relevant
for you, for example the Microsoft performance warning on converting
BOOL to bool).
That time when you don’t refer to a caught exception local variable might
be a bug – as you won’t be referencing the nature of the error. That time
you don’t reference a parameter might mean you incorrectly implement a
function.
Mechanism Enforcement – you use a tool which tries to limit your misuse
(intentional or otherwise) of the language.
Risk You bypass it by ignoring warnings on too large a scale with
#pragmas.
You become blasé about putting in C-style casts whenever a narrowing
conversion or similar is diagnosed.

Treat warnings as errors

Stop yourself cheating, or new colleagues unknowingly breaking your
clean build. Tell the compiler to treat warnings as errors, and you simply
won’t be able to build a non-clean code base. Again, it is best to do this
up front and have a clear strategy for library files.
Mechanism Enforcement – like turning the warning level up, only this time,
you are not allowed to proceed without warnings being addressed.

TDD (Test-Driven Development)

Take the time to introduce tests which your code passes as you develop.
In terms of proactive laziness, this means you have a much better time
when you make changes to the code, including refactoring. You don’t have
to manually run through tests, or analyse in so much detail to be certain
that you haven’t broken anything.
In addition, you have provided some level of documentation of your code,
and may find that by writing it from a client perspective, that the interfaces
are cleaner and easier to use than by starting to write functionality in the
cpp files.
Mechanism Enforcement – the code has to pass the tests to proceed through
the process of check-in and build. Ideally, the build process should
automatically run the tests and fail if any test fails.

Automatic builds

By writing a script to get from source control and build your releases, you
eliminate the risk of forgetting to check in files, or having local copies of
extra files which affect the result when you test your own code on your
machine.
Only ever release (even to internal recipients) products which have been
compiled from a labelled version of the source code. This way, you can
always be sure what they got, and can repeat it in the future.
JUN 2007 | | 9{cvu}

In addition, incorporating automatic tests as part of the build detects
problems early, particularly it might pick up on issues caused by code
integration, if developers have not been building their changes against the
latest codebase.
Mechanism Enforcement – you cannot deliver a version of the product if
the files have not been checked in properly, or if the code has build errors
Risk In some cases, missing code may not cause a failed build, particularly
where classes perform some kind of self-registration. In this case,
automated tests will help, because they should cover all the cases your
product is designed to handle.

Development implementation examples
Finally, when writing code, whether the design of core interfaces in a large
system, or the minutiae of a particular function, do what you can to prevent
things from going wrong, being misused, etc.

Encapsulation

This is one of the classic tenements of OO (Object Orientation). Objects
are instances of Classes, and classes can have both data members and
function members (in some languages Properties and others too). This
means we can bundle pieces of data with the functionality required to
manipulate it, and stop other functionality misusing it. We only expose the
functionality we want the client to use, thus abstracting the implementation
details away.
Taking the time to encapsulate data and functionality means that you know
who can and can’t use it. When members become non-public, you can
write your code with certainty that abuse is difficult. At least your intention
has been clearly signalled, if someone does nasty things to get at your data,
it’s their own fault if things go wrong.
Avoid set functions ‘just for completeness’, have the interface of a class
truly reflect what you want it to do, not what it could possibly do given
the data members you have. See the ‘Easy to use, hard to break’ section
below.
Mechanism Enforcement – you cannot access member data or functions
which are marked as private, and only derived classes will be able to access
protected members.
Risk It may be the case that some functionality hidden
from clients may at some future point really be
needed. Particularly where frameworks are built, and
therefore the end functionality is not known, it can be
tempting to expose more than is strictly necessary. For
example, the framework MFC is notorious for having
protected and even public data members. The wider
the applicability of a framework, the more this is
likely to happen.
Of course, if you are writing your framework to use
yourself, you can keep things as tight as possible until
particular requirements arise which change things.

RAII classes

RAII (Resource Acquisition Is Initialisation) refers to using the scope/
lifetime of objects to automatically control access to a resource. In this
case, the ‘resource’ is anything which might need special handling, usually
with respect to clearing up when we have finished with it, for example,
freeing up memory, closing a file, releasing a mutex, etc.
In a language with deterministic destruction, like C++, one can wrap pairs
of function calls in a class, one occurring in the constructor, the other in
the destructor. For example open/close, lock/unlock, new/delete. These
symmetrical pairs then automatically get invoked when an object is
constructed in a scope, and when it is destructed at the end of scope
In an exception-enabled program, they are in fact required for correct
function, because you can’t be sure that you will ever reach the line of code
which does the clearing up.

In a language with non-deterministic destruction such as C#, you can use
the using construction. This is a lot messier than the C++ constructor/
destructor mechanism because you have to implement IDisposable. This
interface only has the Dispose() function on it, but to implement it
properly involves being aware of finalizers being called multiple times,
and taking into account the fact that the client may forget to use the using
construct at all. One nice feature of the C++/CLI language here is that the
C++-style destructor of a managed class automatically gets the using
construct equivalent set up, and automatically implements IDisposable
properly, so you can use it from other .net languages.
Mechanism Automation – by simply declaring an instance of a RAII class
in a scope, you automatically get the resource cleared up when and
however the scope is exited.
Risk These classes are intended for use on the stack, so that the stack
unwinding mechanism at scope exit invokes the destructors. Someone
might allocate an instance on the heap, and it may then not get destructed,
and probably at the wrong time. You can protect against this by overriding
operator new for that class to either be not implemented/private, or throw
an exception or anything else which would cause the misuser to struggle.

Easy to use, hard to break

When developing a class, you must strive to make that class easy to use.
[1] That is understandable – you want the clients to adopt it, and therefore
having a clear interface, with minimal complexity is a good idea. The
functions they call should be as obvious as possible, and you should strive
to avoid compulsory sequences. For example, use a one-stop constructor
rather than a default constructor followed by an initialisation function.
Hard to break takes this a step further. You want to minimize the chance
that your users will either inadvertently or deliberately misuse your class.
Therefore, take the time to protect it from improper use.
Devices include cutting down the interface to the bare minimum, or not
publicly inheriting from an implementation-biased base class. Derive from
NonCopyable if you don’t want your objects to be copied.
If it’s a base class, make the constructors protected and make the destructor
either pure virtual or protected.
Where the language supports it, make classes either abstract or sealed so
that correct class hierarchies are enforced. C++ users can make the

destructor pure virtual to designate an abstract class.
Marking constructors and possibly the destructor as
protected achieves a similar effect.
Be careful of implicit conversions and make
constructors explicit where appropriate.
For value classes, be sure to implement the expected
functionality in a standard way. Constructors,
assignments, etc. should be canonical in form, ‘Do as
the ints’!
Proactive use of const on both method signatures and
parameters will help to avoid inadvertent change of
state where not necessary, as well as giving clear

indication of intent.
Mechanism Enforcement – by deliberately restricting the things someone
can do with your class to those things which it intended to do, you enforce
correct use. In addition, by offering an interface which is clean and easily
understood, you encourage people to use this class and not attempt to roll
their own.
Risk If the interface is too restrictive, people may be put off using it. In the
case where there is an alternative (for example direct access to an OS API),
this may be worse than having a more powerful wrapper, because they will
stick to what they know, with all the inherent risks of memory
mismanagement, etc.

Refactor

How many times have you seen code copied and pasted? Here is a prime
chance to factor out a common function. Doing so takes the risk out of

minimize the
chance that your
users will either
inadvertently or

deliberately
misuse your class
10 | | JUN 2007{cvu}

copying that code incorrectly, or needing to make future changes in all
places.
Other forms of refactoring also fit the proactive laziness bill, particularly
if you have a test suite built up.
As I mentioned in an Overload article [2], factors such as having access
to files in the source control system can be a hindrance to this kind of
activity, particularly where functions need to be added to header files, or
new files added to the project in the case of a new class.

Mechanism There is a mixture of ways in which refactoring helps. For
example factoring common snippets into a function acts a Deterrent of
error when coding something needing it next time. This is a lesser form of
Enforcement, because you cannot stop the developer copying and pasting
again.
Risk Any code changes pose a risk. Incorrect implementations or simply
reaching some limit on something may cause failure. Having a set of tests
for your code will help to stop this. Indeed, when used as part of TDD ,
Refactor is an encouraged part of the process.

Separation of algorithm and data

C++ developers will know (or should know) the standard library. One of
the mainstays of this is the relationship between containers and algorithms.
By abstracting storage behind a common interface (use of iterators), we
can write any number of algorithms to do things with ranges of data. For
example, we can sort, find, and perform calculations based on a sequence
of data.
This may seem at odds with the idea of encapsulation, which tries to keep
functionality and data together. It isn’t, though, because the actual storage
mechanisms of the various containers (e.g. vector, map, string), is still
encapsulated, we just offer a common interface for running through the
sequence of elements in the form of iterators.
Thus, developers have a handy library of functions they can apply the
containers that come with the standard library, or containers they may write
(through the use of the iterator concept, a little like writing an adapter
for a class). In addition, algorithms can be compounded to make more
powerful functionality
Mechanism Flexibility – this is achieved through separation of concerns,
allowing us to combine things more freely.
Risk Having generic algorithms could lead to inefficiencies if the data
structure could be more efficiently operated on with greater knowledge.
To combat that, certain containers might offer their own versions of
specific algorithms. std::map offers find() for example.

User interface
HCI (Human-Computer Interaction) is a large subject. There is much
literature on usability, but some points in particular are relevant to this
discussion, because some effort from the UI designers, or developers can
help prevent the user getting into error situations, thus saving them and
your support function time and effort.

Poka-Yoke devices

Taken from the Japanese car industry, this concept (pronounced ‘POH-kah
YOH-keh’) is a family of mechanisms which seek to stop error conditions
happening in the first place. The Toyota car manufacturing company
sought to find ways to reduce the number of mistakes happening on the
production line. They identified common problems (such as missing bolts,
welds not made, etc.) and then thought of mechanisms by which these

could be spotted up front. Then, the situation was fixed at source, avoiding
costly downstream action.
We can take the same idea and apply it to user interfaces. If there is a piece
of data which has to be in a particular format, ensure that is the case before
processing it. E.g. if the user needs to enter an integer, you can restrict the
characters enterable into a text field to those. Masked text boxes can be
used to ensure data is in a pre-defined format. Or, one step later, you can
validate the fields on a form before accepting it. When done best, this does

not let you submit a form which contains
incorrect data. It should be accompanied by a
suitable help message somewhere (preferably
close to the source of error) to let the user know
what they have done wrong.
Mechanism Enforcement – you make sure the
user can only enter correct data before
attempting to process it.

Risk You can be over-restrictive if you don’t analyse the situation well. For
example, expecting telephone numbers in a country-specific format is bad
if that application is to be used by people abroad. Similarly, not all
countries have a zip or postal code, and they are not all the same format.

Undo/redo

This is now something users expect in a normal product running on their
machines, but is only just becoming more widespread in web-based
applications. It allows the user to backtrack a sequence of actions, and if
so, to replay them again. These actions could be editing a document, or
navigating to a different web page in a browser.
Mechanism Flexibility – by allowing the user to explore in the confidence
of being able to get back to where they came from

Conclusion
We have seen several examples of ‘Proactive Laziness’; where we take
steps up front to think how we might do something better or avoid problems
in the future. When we do so, we set in place more security about how
things will be executed or used in the systems we are involved with.
There are many more examples in many more domains. However you work
or live, have a think what you can do today that saves you time not just
tomorrow, but the day after and the day after that…

References
[1] Parkin/Meyers – Semantic Programming, ACCU 2007 Conference

by Ric Parkin, referring to one of Scott Meyers' Item 18 in Effective
C++ - Make interfaces easy to use correctly and hard to use
incorrectly

[2] ‘Up Against the Barrier’, Overload 75 October 2006

However you work or live, have a think what you
can do today that saves you time not just
tomorrow, but the day after and the day after that…
JUN 2007 | | 11{cvu}

Professionalism in Programming # 44
How ‘professional’ are you?
Pete Goodliffe helps us to work out our skill level.

o how ‘professional’ a developer are you? Are you an awesome
codesmith? Or can’t you code for toffee? Are you a vastly
experienced veteran, or a fresh-faced recruit? Are you a

conscientious über-programmer who only ever produces robust,
verifiable, bug-free code? Are you an coding imbecile who only ever
creates embarrassing software spaghetti? Or are you somewhere in
between?
Up until today, there was no real way to be sure. Sure, you could ask
someone’s opinion – but how well do your colleagues really know you?
Heck, they still think that the bugs you put in your code were accidents
(obviously, you were only injecting flaws to test their powers of
observation, and to ensure that the QA process is working adequately).
You could just decide how marvellous you are for yourself. But, let’s be
fair, you might be a bit biased. Or far too modest.
So it’s hard to gauge how professional you really are.
But fear not! Goodliffe swings to the rescue with a simple five minute quiz
that will categorically determine how good a programmer you are. The
answers are accurate to sixteen decimal places and five character flaws.
Don’t say I’m not good to you.
Grab yourself a drink and a comfortable seat and plough through the
following test. (You’ve heard of doing test-driven programming, haven’t
you? If you complete this test then you can claim to be one step beyond
that: a test-driven programmer. Stick that on your CV and smoke it.)

The questions
Work through all three of the sections below, and for each question mark
the answer that applies to you most. When you get to the end, use the score
table to work out your overall score (um, your ‘unique professional
qualification scale rating identifier’). Then refer to the description section
at the end to find out exactly how marvellous (or not) you are.

Section 1: Personal

1. Are you an excellent programmer?
a) Yes
b) No
c) I don’t know

2. Do you have:
a) Boy bits
b) Girl bits
c) Not entirely sure

3. Do you have a blog?
a) No
b) Yes
c) Yes, and I host it on my own server
d) What’s a blog?

4. How do you prefer to communicate?
a) Talking, like God intended
b) Phone, like God intended for ugly people
c) In writing (with a quill and pig’s blood if possible)
d) Email, so I have an audit trail to shirk blame
e) Instant messaging
f) VOIP (I like anything with a SHOUTY acronym)
g) Video conferencing
h) Morse code

5. When did you last wash?
a) This morning
b) This week
c) This month
d) I can’t remember
e) None of your business

6. Who is this?
a) Her Majesty The Queen of England
b) His Majesty Bill Gates
c) Linux Torvalds
d) F. P. Brooks

7. How would you describe your eating habits?
a) I eat a little bit
b) I venture a cautious nibble
c) I take a byte
d) I eat my own words
e) Eh?

8. How do you learn about new techniques?
a) Google
b) Wikipedia
c) C Vu and Overload (or other magazines)
d) I buy books when I need to
e) I don’t need to learn anything new. I know programming.

Section two: Programming

9. What is programming most like?
a) An art
b) A science
c) Engineering
d) A craft
e) A game
f) A way to pay the bills

10. Which OS do you use regularly?
a) Windows
b) Mac OS
c) Linux
d) Unix
e) Other
f) 2 of the above
g) 3 or more of above

S

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@cthree.org
12 | | JUN 2007{cvu}

11. Which OS do you program on regularly?
a) Windows
b) Mac OS
c) Linux
d) Unix
e) Other
f) 2 of the above
g) 3 or more of above

12. Your coding style:
a) Fast and furious: there’s code flying around all over the place
b) I shoot from the hip: I write what comes to mind as it comes to

mind
c) Slow and steady: I think carefully and hone each line precisely
d) Test-driven: as long as the tests pass, it’s good
e) Coding? Eek! Run away as fast as you can.

13. You’re stuck. Your first reaction is to:
a) Ask someone for help
b) Google it
c) Ask someone to ‘pair program’
d) Ignore the entire problem, and feign surprise when someone

files a bug report
14. You need to add some new variables to a function. What do you call

them?
a) a, b, c
b) tmp, tmp2
c) foo, bar, baz
d) elephant, flamingo, duck

15. You need to look at someone else’s code. Do you:
a) Involuntarily vomit
b) Relish the opportunity to learn from someone else’s coding style
c) Open source files tentatively, and try not to make any

modifications
d) Get someone else to do it

16. There’s a nasty bug. Do you:
a) Ignore it. Call it a feature.
b) Ignore it and hope someone else fixes it
c) Try to fix it as quickly as possible, with minimum impact on

what you were doing
d) Drop all other work until you’ve found and fixed it

17. Have you done any assembly programming?
a) Yes, as part of a programming course
b) Yes, for fun
c) Yes, as part of a main programming task
d) It’s all I ever do
e) Assembly? Is that like Meccano?
f) What’s Meccano?

18. Which programming language is better?
a) C
b) C++
c) Java
d) C#
e) Anything on .NET
f) Python
g) Ruby
h) Any dynamic language rocks
i) Any static language rocks

Section 3: Process, teams, and other tedium

19. How well do you cope with team work?
a) I can drink with the best of them
b) Other people frighten me
c) I’m the best programmer I know
d) As long as they do what I say, everything will be OK

20. Which source control system do you use?
a) What’s source control?
b) None
c) Visual Source Safe
d) CVS
e) Subversion
f) Another client/server system
g) Another distributed system

21. How do you check code in to your source control system?
a) I check in little and often, as I work
b) I save up big chunks of work, and check it all in at once
c) I only check in when the code builds OK
d) I only check in when the code works
e) Source control? No, still not with you.

22. When do you release software?
a) When it’s ready
b) Late
c) The schedule says we’ll ship next Monday. So next Monday it

is, then.
d) The schedule says we’ll ship next Monday, but we all know that

it’ll slip about a month. Or two.
e) The schedule says we’ll ship next Monday, but we all know that

it’ll slip about a year. Or two.
f) We’re continually releasing
g) We’re continually release high-quality non-beta versions

23. Your methodology of choice:
a) Waterfall (we’re old school)
b) Iterative and incremental (we’re modern)
c) Agile (we’re fashionable)
d) Whatever – we just kinda do it till it works (we’ve not got a clue)

Scoring
So you got through all the questions. Well done! Now add up your score
using the table overleaf.
JUN 2007 | | 13{cvu}

If you had any sense, you’d’ve abstained from answering some of the
questions. But if you didn’t you must now include those scores in your
total! So what score did you get?
They say that there are 10 types of programmer. The ones that understand
binary, and the ones that don’t. In the Real World there are actually a few
more. Find out what kind of programmer you are here:
I lost count: You are a muppet. You are either far too embarrassed about
your score to admit it, you couldn’t be bothered to add it all up, or you’ve
got a brain like a sieve. If it’s the last then get a pocket calculator, or grow
more fingers. Otherwise, try harder next time.
Less than zero: You are a liability. Take a long hard look at yourself in a
mirror. You are almost certainly a massive danger to the world of coding.
Consider a change of career. You’ll never make it as a rocket scientist, but
perhaps a travelling circus might have oportunities for people of your
calibre.
0-25: You are a programming Luddite, a Neanderthal. But as long as you
recognise that then all is not lost. Keep learning. Keep trying. Keep
practising. If you’re lucky, you’ll avoid a career in management.
25-44: You show great promise, but you have room for improvement. As
long as you never get complacent with your current skillset, or think that
you’ve learnt all there is to learn, you’ll have a long, happy, successful
programming life ahead of you. Keep it up.
45-55: You are a liar. No one’s that good.
More than 55: You can’t add up.

That’s all, folks!
So there you are. You now know how much of a social misfit or a
programming god you are. Go forth and recurse.

A B C D E F G H I

1 0 2 3

2 1 1 0

3 1 2 3 3

4 0 2 3 2 2 1 0 0

5 3 2 0 1 2

6 0 0 0 0

7 0 1 2 3 -3

8 2 2 3 3 0

9 2 2 2 2 2 0

10 1 1 1 1 1 2 2

11 1 1 1 1 1 2 3

12 2 1 2 1 0

13 2 2 2 0

14 0 0 0 0

15 1 3 1 0

16 0 0 1 2

17 1 2 2 1 0 -4

18 -3 -3 -3 -3 -30 -3 -3 -3 -3

19 3 1 0 0

20 -1 -100 0 1 2 2 2

21 3 1 2 3 0

22 2 1 2 1 1 2 3

23 2 2 2 0

A B C D E F G H I

Pete’s book, Code
Craft, is out now.

Check it out at
www.nostarch.com

Professionalism in Programming (continued)
RIC PARKIN
Ric learnt BASIC on a teletype attached to a mainframe in
1980 and has been programming professionally since
1991, mainly using C++. He believes that programmers
should continually strive to be lazy and is always on the
lookout for ways to get a computer to do the work for him.

Stand and Deliver
Ric Parkin discovers that talking at the ACCU conference can

be fun.

ive minutes to go. How did I get to be here? How will it go? Will the
audience get to double figures? Do I have a point to make? Agggh,
they’ll hate me!

Rewind six months to September and my monthly one-to-one meeting with
my line manager. ‘So have you any objective you’d like to suggest?’.
‘Well, the ACCU has just asked for submissions for talks for the
conference. Perhaps I should try to think of a topic and put it forward?’.
‘OK, good idea’.
I mean, how hard could it be?
Two days later, and still no ideas. Tim wanders over, giggling. ‘Have you
seen this?’ and he shows me a Google Codesearch for a silly programming

error where parameters are passed in the wrong order. ‘Pah’ I snort ‘if only
the signature was more typesafe, that wouldn’t even compile! Hmm’.
I realised that this chimed in with an idea I’ve had for a while, but never
really seen articulated before. Perhaps... A couple of hours later I’ve a title,
a quick description, and hardest of all, the speaker biography. And off it
goes. What have I done?

F

14 | | JUN 2007{cvu}

Starting to put it together
I do nothing for a while but vaguely think of ideas, then around the start
of November, the email arrives: they’ve accepted it, the mad fools!
So I start to collect ideas from two different directions – lots of examples
that I feel might illustrate my point; and a rough outline of the sort of stages
I think my talk should take in. I’ve done a single article for the ACCU
Journals before, and it took a long time to come together. The single most
important breakthrough was finding a cohereant ‘narrative’ that acted as
a scaffold upon which the rest of it would hang. Once that is there, the rest
flows really easily.
Christmas? That’s when the three weeks outstanding holiday has to be used
up. At least I’ll get a lot of my talk done.
Riiiight!
I did a bit more of the background ideas, but not much more
Then I got back to work and found the next email – time slots had been
allocated. Overall I think it was good news – first slot after the first morning
keynote. Hooray, I’ll be fresh, not hungover, and alert! Bad news, so will
my audience. And a hint of doom – while no rooms had been allocated, a
rough track system was in place with the relative announcements: my talk
was so general, it was placed first. If the layout was like the previous
conferences, that means I’m in a big room, perhaps 100-200 people?
EEEEEK!
Really time to get going. So by the start of March I had a big load of slides
ready. But could I get up and do it? Well, I’ve done small scale
presentations to a few collegues and found I could do them although with
a certain amount of hyperactive bouncing. Perhaps I could do better?

Write and rewrite
So I went on a two day presentation course. It was mainly aimed at doing
formal pitches, but showed up a lot of things I should be aware of: damn
that video camera! But I now knew to try and restrain the handwaving lest
it distract from the points I was trying to get across, and how best to position
the visual aids around you. And most interesting in this PowerPoint-centric
world – that you should tell your audience what the next slide is going to
show them. And of course, it’s good to have pauses – it gives the audience
time to think about what you’ve just said, and you time to think about what
to say next.
I came out with some great things I could use, and I did them straight away.
I completely rewrote my talk, mainly to pull all the detail I needed to say
down into ‘cheat notes’ and off the slides – they were there to introduce
the ideas, not to do them to death. That was my job!
I knew to avoid excessive slide transistion animations, so made sure the
few there were simple, non-distracting, and had a point to make.
And in the last few days, I tried to introduce pictures. A million code-
drenched slides made for a fairly dull talk but getting something colourful
in can really emphasise a point. But be careful of overdoing it, and I tried
to make sure the pictures were relevant.
But I missed the deadline for materials to be on the CD. I had really set
that as a personal deadline so felt failure, but also knew that what I’d just
improved meant the CD would have had the rough alpha. If I’d had a better
idea of my talk up front or done it to multiple groups, then yes it would
have been there, but this was new!
But most of all, I needed the self-confidence that I’d be able to do it – get
up and talk for an hour and a half to people who really knew their stuff.
Daunting, but achievable so long as you believed you could do it.

Look! No hands!
Ah, toys! In my presentation course, we had to talk about a talk that
someone had done that had really made an impact. I remembered Herb
Sutter at an ACCU conference where he’d used a wireless gadget to change
his slides – no more wandering over to the laptop, hitting the wrong button

etc, and the slides behind would emphasise the point he was making as he
said it without a pause. Neat.
So I got the company to get us one. Which partially died after one use, but
the main next button worked. And as a tool, it really worked – I just put
it in my pocket, and just touching my leg as if I’d dropped my hands
naturally would go to the next slide, leaving both hands to point at the
screen, audience etc
I know you are meant to do this but I avoided practicing much. I had the
opportunity to do it to people at work, but made excuses – I needed
encouragement I could do it and positive feedback, and was fearful of a
full criticism. But I needed timing help – I’ve seen people with far too few
slides, or far too many struggle against the time slot. So I practiced in front
of my girlfriend to get some idea, and the night before in the hotel, to get
detailed timings of how close I was. Thankfully it didn’t seem too far off,
although I was worried my 41 slides in 90 minutes would be too many
with the amount of explaining I would going to do. But best of all, going
through it properly in front of a mirror, made what I could say easier to
remember.
And a few final last minute changes crept in past midnight...

Show time!
I was up ridiculously early to get breakfast and help set up our company
display stand, but also to make sure I had everything I needed. I even
slipped out of the preceeding keynote to get to my room and see what was
there. I moved the screen from the inevitable centre-stage to stage right,
and set up a flip chart stage left. This would leave me in the middle so I
would be speaking centre stage, which after all is where most of the talking
would happen. And lots of mucking around with PowerPoint to try and get
it to go to the next slide on both the main screen and my notes. This should
be basic functionality but I could’t get it to work for ages.
And then someone walked in with fifteen minutes to go! I hide. Two more
come in. Five to. Is that it? Then the world goes mad and about a hundred
people cram into a room for sixty-five.

Time to do it....
...I was nervous – I don’t naturally like public speaking, who does? – but
something kicked in and it just flowed. Yes, I missed bits I meant to say,
but who else knew that? A few interruptions, but good questions and I
managed to answer them, even the one that spotted the syntax error –
fortunately solved by a suggestion two slides further on!
And then finish a little early for lunch, which kept people happy
It always seemed a little odd to me when people went up to the speakers
after a talk, and now it happened to me! The first was to ask how I changed
the slides (respect to the gadget!), others to get copies of the slides – more
requests turned up via email. Some good discussions of things I’d
suggested, and a couple of well-observed critisisms of techniques. Best of
all were the comments that ‘I’ve been trying to tell my company that!’, and
a reference to my talk in another session later that week [Roger Or] – pity
he forgot who said it.

Go on, you know you want to
Would I do it again? Sure. Just need to to find a good idea, plenty of time
to hone it, and the self confidence to do it again. But the second time will
be easier now I’ve done it – I know some of the thngs to do better – really
start earlier, better techniques, practice more, better song and dance
routines.
What do I get out of it? A damn good line on my CV; confidence that people
I respect actually care to listen, and even agree with me; and a cheap way
to actually go to the conference if I had to pay for myself. Fortunately my
current employer is happy, but I’ve been places in the past where it would
have really helped me go. And most of all, it was surprsingly fun to do.
Would I recommend it to someone else? Yes!
JUN 2007 | | 15{cvu}

Customising a Diskless Linux
Silas Brown finds alternative tools.

ost readers will have heard of Knoppix (www.knoppix.net), a live
bootable Linux CD. As long as you can boot a system from CD,
getting a full-featured Linux desktop is simply a matter of booting

from the Knoppix CD and waiting; no hard disk access is required
(although if you want it can access the hard disk and even install itself to it).
The main problem with Knoppix is that, unless you have a great deal of
RAM, it is almost constantly accessing the CD, which means it’s quite
slow (bad for demos) and the CD-ROM drive is always occupied (and if
that drive is on a laptop’s docking station then you can't take the laptop
out of the docking station).
Puppy Linux (www.puppylinux.org) is a smaller live Linux CD which
loads itself entirely into RAM (as long as the system has more than 128M)
and then runs completely diskless, unless you want to save your work, and
if you do then you can save it to a USB key and dispense with mechanical
disks altogether apart from at bootup. You can even boot from USB if the
BIOS supports it, but many old systems don't.
Running a system entirely from RAM does have its advantages. For one
thing, hard disks are fragile. If you’ve ever wanted to hold a laptop at an
angle or carry it around when it's running, but have been afraid of causing
disk crashes, then running without the disk may be useful (just remember
to shut down the disk by typing hdparm -y /dev/hda, or even take it
out of the system altogether before booting from CD). Hard disks are also
one of the first things to break in a laptop, so Puppy can let you use a laptop
that’s otherwise broken (unless you want to replace the hard disk, but I’m
tempted to think that it’s a false economy to throw expensive new
components at old laptops). The CD itself is needed only during the bootup
and can thereafter be freed up or removed.

Unbootable PCMCIA
A problem is that Puppy’s hardware detection is not as comprehensive as
that of Knoppix. On some systems (like Sony Viao laptops where the CD-
ROM is a PCMCIA device in the docking station) Puppy cannot detect the
CD that it is booting from, which makes things difficult. Like many live
CD Linux systems, Puppy first uses the BIOS to load a small ‘initial RAM
disk’, and then from this RAM disk it loads kernel modules and other
software that will help it to access the rest of its filesystem on the CD. This
latter stage fails if it’s a PCMCIA drive (and the DSL distribution doesn’t
do much better; it just complains of not being able to find its KNOPPIX
filesystem, although Knoppix itself has been able to boot from PCMCIA
since at least version 3.4 which was released in 2004, so perhaps its
derivatives like DSL haven’t been keeping up with its developments). You
might have thought that, as Puppy runs entirely in RAM, all its data can
go on the initial RAM disk without the need for a second stage, but it does
need to do some sanity checking before loading everything (for example
there is an option to run from disk if RAM is very short) and another
problem is complications in kernel support for RAM disks.
You can put the Puppy files on a USB device and, if the system cannot
boot directly from USB, use the CD for the first stage of the boot and let
it find the rest of the system on USB (specify PMEDIA=usbhd at the boot
prompt, or edit the text file on the CD image to make this the default). This
works, but it means the USB device must be connected all the time (it

doesn’t just load itself and dismount the device like it does with CD), and
in some cases you can’t take the laptop out of its docking station without
breaking the USB connection and hence crashing the system. Moreover
in many cases old hardware is very slow at running Puppy from USB. So
I wanted to try customising the CD.

Customising the initial RAM disk
I started by going back to Puppy version 1.x which is simpler and has more
in the initial RAM disk. Its scripts are programmed to look on the RAM
disk for the usr_cram.fs file which contains the rest of the system, and
to check on the CD as a fallback. So if that usr_cram.fs file could be
added to the initial RAM disk then the kernel won’t need to be able to see
the CD drive to find it. The old 1.x releases can be hard to find for download
these days, but I managed to get version 1.09 (Community Edition) via
distrowatch.com. On another Linux box, I mounted the ISO file (the CD
image) with the loop option (-o loop). (It’s useful if you can make lots
of directories to act as mountpoints, because we will be doing quite a few
loop mounts.) After mounting the ISO file, I found image.gz (the initial
RAM disk) and copied it to a different directory (necessary because ISO
filesystems are always mounted read-only), then decompressed (gzip -
d image.gz) and mounted ‘image’ with the loop option (it’s in ext2
format). Then I created a file just large enough to hold both usr_cram.fs
and the decompressed RAM disk image (plus a little for overheads), ran
mke2fs on that file to make a filesystem and mounted it with the loop
option as well, and copied everything from the first image plus
usr_cram.fs into the new image. Finally I unmounted everything,
gzipped the new image, and created a replacement ISO for the CD. This
last step was a bit subtle due to the requirement to make the CD bootable
(and you can’t just append a session to a multisession bootable CD because
the boot information has to be in the LAST session, so you still need to
consider booting); I eventually figured out that the required parameters are:
 mkisofs -no-emul-boot -boot-load-size 4 -boot
 -info-table -b isolinux.bin -c boot.cat -o
 isofile.iso to-cd/

where to-cd is the directory containing the files to go on the CD –
boot.msg, image.gz, isolinux.bin, isolinux.cfg and
vmlinuz – obviously usr_cram.fs isn't needed now it’s included in
image.gz.
There are a couple more subtleties however. Firstly, the Linux kernel (at
least the version that Puppy uses) needs to be told the size of the RAM disk
at bootup, and if you’ve made it bigger then you need to tell the kernel so.
You can specify this either at compile time or on the kernel command line;
obviously the command line is better because it avoids having to configure
and compile a replacement kernel. Either type in a full command line at
boot, or (more convenient) edit isolinux.cfg before you make the ISO
filesystem. The parameter to set is called ramdisk_size and you should
set it to a little bit higher than the number of kilobytes of the uncompressed
ima ge (n o t t he c om pr es sed im age) . Fo r e xam pl e , s e t
ramdisk_size=72000 on the append lines of isolinux.cfg.
Secondly, Puppy’s /sbin/init is a shell script which copies the
contents of the RAM disk into a different filesystem called tmpfs (which
can, among other things, grow and shrink more easily) before passing
control to the all-in-one embedded Linux utility ‘busybox’ to do the real
init. If you look in /sbin/init you’ll see a whole block of cp -a
commands, and the new usr_cram.fs file needs to be added to that
block, otherwise it won’t be copied to the tmpfs and the later scripts won’t
see it. This addition to /sbin/init should be done from within the

M

SILAS BROWN
Silas is partially sighted and is currently undertaking freelance work
assisting the tuition of computer science at Cambridge University,
where he enjoys the diverse international community and its
cultural activities. Silas can be contacted at ssb22@cam.ac.uk
16 | | JUN 2007{cvu}

mounted image before doing the previously-mentioned umount, gzip
and mkisofs.
However, on a 128M machine, a 72M RAM disk is too big, because at
bootup, the compressed image is read into RAM and decompressed into
another part of RAM, which means the RAM has to be big enough to hold
both the compressed and the uncompressed versions at the same time, as
well as the kernel code. Otherwise the kernel will probably hang (but you
might get a diagnostic with some versions). So we need to cut down the
size a little, and that basically means cutting down usr_cram.fs.

Customising /usr
Looking at the name and some of the comments, you might think that
usr_cram.fs is a CramFS filesystem, but it isn’t. As can be seen from
/etc/rc.d/rc.sysinit in image.gz, the Puppy developers
switched from CramFS to SquashFS and didn’t update all the references.
So you will need SquashFS to edit usr_cram.fs.
At the time of writing, SquashFS has yet to be integrated into the standard
Linux kernel, but it is available as a patch from squashfs.sourceforge.net
or you might be able to use your distribution’s package management. Once
you’ve installed it, make sure to turn on the SQUASHFS option and
compile (and if you set it to build as a module, do a modprobe
squashfs). Then you will be able to mount the usr_cram.fs file with
the loop option.
As the squashfs mount is (like an ISO mount) read-only, you will need to
copy it in its entirety to another directory before you can start customising.
Then you might want to do du -h to see how the space is currently being
used. When you have finished customising, you will need to use the
mksquashfs utility, which just needs as parameters the source directory
and the resulting file which in our case will be called usr_cram.fs.
If you just want to put usr_cram.fs on the CD then you’re done; just
run the mkisofs command with the boot options as above. If you want
to put usr_cram.fs on the initial RAM disk (as I did) then you will also
need to follow the above steps for customising that RAM disk after you
have created the new usr_cram.fs. It wasn’t too difficult to get /usr
down to just over 100 megabytes, which led to a usr_cram.fs of about
40 megabytes and a ramdisk_size value of 56000 was adequate; this
meant a 128M system could boot the CD (and have RAM left over once
is has freed the memory after its decompressing and copying).

Back to Knoppix
While I had a working Puppy 1.09 system that boots entirely from the
initial RAM disk, the next problem was that I needed a more up-to-date
kernel and userspace utilities to be able to do what I wanted with certain
USB devices. I could have taken a Puppy 2 system and tried to do the same
customisation, but it would be much more complicated (look at Puppy 2’s
/sbin/init script to see what I mean).
However, the original Knoppix (which, as mentioned before, knows how
to boot from a PCMCIA drive) is also capable of booting entirely to RAM,
if you have enough RAM. If you don’t, then you can create a ‘re-mastered’
version of Knoppix, somewhat like creating your own version of DSL but
with a more up-to-date version of the Knoppix boot process as a base.
There are re-mastering instructions available for Knoppix at http://
www.knoppix.net/wiki/Knoppix_Remastering_Howto but it’s still rather
difficult to get Knoppix down to size especially if you want X11. However
you probably don’t need all the different X servers and fonts, and in some
applications you can even do without a window manager and basic X
clients as long as you make an /etc/X11/xinit/xinitrc that does
something sensible (this is probably the best place to put application-
specific startup logic when you’re on a stripped-down system). Also,
Knoppix’s compression is better than that of Puppy Linux, and it doesn’t
have to go in the initial RAM disk, so you don’t have to get it down to 100
megabytes; you can aim for 200-250 megabytes (excluding /proc) if you
want it to fit in 128M RAM. You can save the last few megabytes by
removing the Debian packaging infrastructure and documentation,
although it’s probably best to leave this until last and take a backup first.

Finally you’ll be wanting to change the default boot commandline (at least
to add the toram option); to do that you need to edit isolinux.cfg in
the boot directory before making the CD image.
Re-mastering a small version of Knoppix takes longer than customising
Puppy 1. The Knoppix option involves a 700+ megabyte download, a write
to a CD-R (the downloaded image is too big to fit on a 650M CD-RW, and
so you won’t be able to test that it boots on old hardware that can’t read
your CD-R; you have to wait until you have the small re-mastered version
before you can try it), at least two reboots of your working Linux system,
about 4 gigabytes of spare hard disk space, a lot more packages and files
to trim down (you can start saving space fairly quickly but after a while it
becomes harder and harder to figure out what else you can safely do
without), and a longer-running compression process at the end. The good
news is that the remastering instructions still mostly work with old
versions, so if you already have an older version of Knoppix on CD then
you can (if it does what you want) re-master that instead of downloading
a new one. So if Puppy 1 can do what you want then you might be better
off sticking with that, otherwise start with a version of Knoppix that works.

Other remarks
Note if you are booting any live CD that some older laptops have drives
that can read DVDs and CD-RWs but not CD-Rs; other systems can read
CD-Rs but not CD-RWs. So if you don’t know what hardware you’ll be
facing, it’s best to have both types of CD as well as a USB key.
Running a system entirely from RAM is certainly very fast, although if the
system’s RAM is limited then you can’t do too much in it (don’t try
compiling the Boost libraries). However, I can think of a few applications:

when you need to use a laptop at an unusual angle, such as on a
lectern while giving a speech. Many lecture and conference facilities
are laptop-friendly but there are instances when they’re not, and
running with the hard drive turned off takes away some of the worry.
as a rescue tool that’s faster than Knoppix (but it’s best to have
Knoppix as a backup in case Puppy doesn’t work)
when you want to minimise noise as much as possible, and you
already have quiet fans (or are running a laptop whose fan is off
most of the time) so the hard drive is the loudest thing, it can be good
to work without it (however, modern hard drives are quieter than
they used to be)
when you’re on a budget and need to make the most of old hardware

If you are very well-funded then you could run a high-capacity solid state
drive instead of a hard drive, or even a DRAM drive functioning as a hard
drive, but that's for very high-end applications (and is priced accordingly)
whereas the boot-to-RAM live CD approach makes more sense on more
common hardware.

Sting in the tail
I mentioned above that if you’re stuck on an old laptop where Puppy can’t
see the CD-ROM drive, then you could use USB for the second stage of
the boot, but that this might mean you can’t then take the laptop out of its
docking station because it would break the USB connection. I thought I
was setting up one of those laptops, but after I had done everything, I found
that there was in fact another USB port on the opposite side, and that this
other port was not obstructed by the docking station and therefore you
could plug a device into it and don’t have to break the connection when
you take the laptop out of its docking station. So on that particular laptop
I could have saved a lot of trouble by simply customising Puppy 2’s default
boot parameters (and perhaps adding a few lines to the Xsession script or
something) and making sure there is a USB key with the rest of the system
inserted into the right slot, and it would still be able to come out of its
docking station after the inital boot (and sooner at that, although
application start-up may be slower) and moreover it would be much easier
to administrate. It’s rather annoying to realise that you just wasted about
2 days’ work just because you didn’t notice a second USB slot. Oh well,
at least the experience might be useful in other situations.
JUN 2007 | | 17{cvu}

ACCU Conference 2007
Pete Goodliffe rounds up a retrospective of this year’s

awesome ACCU conference.

nother year rolls around, and another ACCU conference has been
and gone. And what an excellent event it was. One of the hallmarks
of the ACCU is that it is a participatory organisation, and the

conference is an exceptional example of this. It is an incredible event –
with world-renowned speakers, an electric atmosphere, and plenty of
things going on. It’s hard to not be stimulated, and you could never claim
to be bored!
This year the conference moved venue to Oxford’s Paramount Hotel,
which was almost universally agreed as a great improvement over previous
locations. This venue offered were bigger conference rooms and more
breakout rooms, more space to mill around in, aircon, (Oh yes! Aircon!
That works!), and sports facilities, too.
The programme was as wide and varied as ever, an incredible mix of
programming technique, methodology, design, and more. This year’s
keynote speakers were Mary Poppendieck (the renowned Lean Software
Development expert), Hans Boehm (a leading C++ authority), Mark
Shuttleworth (found of the Ubuntu project), and Pete Goodliffe (just some
guy!). The sessions covered topics from C++ to Python (to Groovy, to C#,
to...), from development practices to historical computing, from designing
to testing, from tools to techniques. There was a full timetable of
presentations, “birds of a feature” sessions, technology demonstrations,
evening entertainment (including the infamous Grumpy Old Programmers
panel discussion), and plenty of socialising (and drinking – more on this
later). The programme also boasted a banquet on Friday evening, a lively
Vi vs Emacs squash competition, and a competition to win an X Box (and,
it should be remembered, a copy of Code Craft). Phew! It’s no wonder that
after a few days most delegates had over-exerted their brains, their
stomachs, and their ability to stay awake.
As ever, to give a flavour of the event for those who couldn’t attend, to
encourage those who are thinking about it next year, and to act as a memory
jog for those who are still recovering from the conference, here are some
write-ups from various attendees. These are little tastes of what people
thought of the event (the good and the bad), summaries of some of the
things that went on, and synopses of the sessions that were attended.

Paul Grenyer <paul.grenyer@gmail.com>
For me the conference gets better every year! That’s how I’m going to
justify saying this was the best conference ever. The new venue was nice,
but lacked the character and location of the Randolph (no free booze for
me this year either). It was good to be able to park the car easily and nearby,
though, and as we went in large groups the taxi into Oxford never cost more
than £2 each.
I talked to a lot of people at the conference this year and there were two
things I heard consistently:

Those who weren’t already on accu-general find it very difficult to
get on and assume that they are, but that the traffic is low as they
don’t receive any emails. I think something must wrong with the
sign up process.

The ACCU is still perceived as the Association of C and C++ users
and it’s certainly true that, although other languages are creeping in,
the majority of the conference is still C++ focussed. I think we need
to seriously change our perception. Not just of the conference, but
of the association. Maybe even a name change. Even if you refer to
it as just the ACCU (or the horrid “aque”), you can never get away
from explaining what it used to stand for. I don’t think C++ is dying
yet, but other languages are growing and most people agree we want
our membership to grow.

Every session I went too was very well presented. Particular highlights for
me are Pete Goodliffe’s key note (where does he get his material?), Andrei
Alexandrescu’s ‘Choose your Poison: Exceptions or Error Codes’ and of
course Russel’s attempt to write off C++. Was I convinced? Not in the
slightest, but it was very entertaining and Aeryn got a back-handed plug,
so I can’t complain. I must thank Kevlin for plugging Aeryn too and the
rumours of me giving Peter Sommerlad a hard time about CUTE in his
session are slightly exaggerated.
Roll on next year...

James Slaughter <slaughter@acm.org>
This was the sixth ACCU conference I’ve attended. Though I’m not
currently employed, I didn’t hesitate to book my place for the four full
days, as I’ve always found the event to be exceptional value for money –
and a lot of fun! This year certainly didn’t disappoint on either count. There
seemed to be a healthy mix of new and familiar faces, both as speakers
and as delegates, and all the talks I saw were of a high calibre.
There are three things that don’t seem to get any easier from year to year:
picking which sessions to attend when there are so many to choose from,
getting a table at the Pizza Express on Cornmarket Street, and going to bed
at a sensible time. One of the “big-name” speakers in particular made two
of those exceptionally hard this year, and the new location didn’t help with
the other, but I can’t really complain! Next year’s conference has a lot to
live up to, and I’m looking forward to it.

Semantic Programming (Ric Parkin)

Ric Parkin’s talk was a welcome reminder that sometimes a little bit more
effort spent on a function or class’s interface can make code more readable
and often safer. The talk consisted entirely of practical measures to
improve code written in C++; Ric started his presentation with an
illustration using memset, adeptly demonstrating that even a function this
simple is prone to accidental misuse in real-world code, before leading the
packed room through a surprising number of ways to exploit features of
both the language and of modern development environments to reduce this
likelihood for an equivalent function.
After exhausting the memset example, Parkin proceeded to a variety of
others, always emphasizing that the best possible outcome is one in which
incorrect code doesn’t compile. The audience remained interested
throughout and occasionally contributed alternative techniques for a topic
that was clearly both important and familiar to them.

Fingers in the air: a gentle introduction to software estimation
(Giovanni Asproni)

Giovanni Asproni’s often light-hearted presentation tackled the potentially
dull topic of estimating project time-scales in a way that captivated the

A

18 | | JUN 2007{cvu}

audience. Asproni’s talk combined insight, common sense and anecdotes,
and his audience responded likewise with interesting comments and
questions throughout, including those of whether producing estimates is
really addressing the underlying problem and who should be involved.
The session covered concepts such as the difference between estimates and
commitments, and made much of the degree of uncertainty with respect
to progress. Various techniques for producing and interpreting the amount
of work remaining and tracking work to date were discussed, along with
advice for managing situations where commitment to other projects and
time ‘lost’ due to external factors is hard to predict.

Anna-Jayne Metcalfe<anna@riverblade.co.uk>

Wednesday: Tar'ed and Feathered

The first keynote session was ‘The Software Development Pendulum’
with Mary Poppendieck. The conference hall was packed, and we managed
to find a couple of seats near the front. Mary presented an interesting
history of software development – and in particular some of the early
failures. A recurring theme was that the vision for larger systems has
consistently been at or beyond the limits of the hardware and software
capability of the time. One thing which came out very strongly was the
contrast between large systems, smaller systems and software products –
the latter are not prone to failure in the same way, and indeed my own
experience bears this out – none of the projects I’ve worked on have failed,
and all have been delivered. At the end of the
session Mary touched on Lean Software
Development, which is something I feel we
should explore further.
Nex t up wa s ‘C oach ing So f twa re
Development Teams’ wi th Michael
Feathers. This was a session I’ve been
looking forward to. Michael is the author of
Working Effectively with Legacy Code, a
book which I’ve found phenomenally useful
in bringing Visual Lint under unit test and
using TDD techniques to develop the product further. His topic for this talk
was how to coach teams to to use agile and quality centric techniques to
help teams improve their processes and thus the quality and fitness of their
products. Invariably, a central topic of this talk was human behaviour, and
how it can affect team dynamics. The values and motivations of team
members are something a coach must recognise in order to achieve their
aims. Changing the values of an organisation in a significant way is
extremely difficult (and therefore likely to fail), but building on the values
of a team and/or its organisation can be very successful. It was very notable
that the approach presented was analytical rather than human centric.

When a delegate asked
how to formally evaluate
the values of the team I
couldn’t help thinking that
something fundamental
was being missed. To
understand a team, you
have to know them – and to
do that you need to meet
them both in and out of
t he i r eve ryda y
environment – in other
words get to know them as
peop l e a s we l l a s
professionally. I couldn’t
help thinking that much of
the t e chn iques be ing
presented were ones I’ve
been using for some time,
but it was useful to see it

disseminated in a structured setting, nevertheless.
After a relaxed lunch and chat out on the grass we headed back in for the
first of the afternoon sessions – ‘Reviewing the C++ Toolbox: Identifying
tools that support Agile development in C++’ with Alan Griffiths. During
the introduction he identified the wide variation of tools in C++, with no
consensus between groups (or even teams!) as to which tools are best
suited for each role. This was an interactive session – the idea being that
delegates would share their experiences of tools in particular domains and
suggest alternatives:

Build systems/source control/continuous integration
Test frameworks
Refactoring
Code documentation
Modelling + round trip
Editors/IDEs
Code analysis
Debugging
Instrumentation/coverage/profiling/performance analysis

We broke into 6 groups to discuss various areas from the list above. I must
have stuck my hand up once too often, because I ended up leading (with
another developer who worked on QA C++ until recently) the group

discussing code analysis. It’s the first time
I’ve presented in front of a group of peers for
some time, and to be honest I was not too
sure how well I came across at the time – I
felt quite nervous, but it seemed to go down
well.
Nex t up was ‘L in t i ng So f twa re
Architectures’ with Bernhard Merkle.
We’ve been talking with Bernhard by email
over the last couple of weeks, so this is a
session we’ve been looking forward to. The

focus of this talk was architectural analysis, and in particular at tools which
can be used to automate such analysis. The need for such tools is of course
a result of the phenomenon of ‘architectural decay’ – a problem which
should be familiar to any developer who has had to maintain working
software systems.

Architectural analysis works on layers, graphs, subsystems,
components, interfaces etc., and assesses metrics such as coupling,
dependency etc. as well as things like consistency analysis and
detection of anti-patterns.
Consistency analysis is based on the premise of comparing the
codebase with a ‘gold standard’ model. Key to this sort of analysis
is of course how results are presented (to be honest, the same
considerations apply in code analysis).
A further analysis type described was Rating of architecture,
which assesses characteristics such as cycles, coupling, stability and
the presence (or hopefully absence) of anti-patterns.

Afterwards everybody gradually congregated in the hotel bar to socialise.
As tends to happen, a consensus on where to go next gradually arose, as a
result of which by 8pm a bunch of us were piling into taxis for the trip into
town. The initial plan was to eat at the Randolph, but as ever things changed
at the last minute and we found ourself in the Eagle and Child waiting for
the remainder of our contingent, where good food, much beer (and the
occasional red wine) flowed amid an equal volume of hilarity.

Thursday: Forgive me Father, for I have singleton'ed

(or: ‘When patterns meet anti-patterns, do they annihilate?’)
We had a late start this morning, skipping the opening session because we
needed a break after the marathon yesterday (I crashed out with a headache
at 6pm yesterday, only waking up to go to the bar to eat at 8pm).This
morning we met up with a couple of other developers at breakfast and had

the vision for larger systems
has consistently been at or

beyond the limits of the
hardware and software

capability of the time
JUN 2007 | | 19{cvu}

a l ively discussion
about multithreading,
the idiosyncrasies of
development tools and
network compilation
techniques (as seen in
Inc red ibu i l d) . We
found the discussion
v e r y u s e f u l – i n
particular it helped us
to focus some ideas on
f u tu re ve r s io ns o f
Visual Lint – and in
p a r t i c u l a r o n t h e
po t en t i a l f o r
integration with build
a nd c on t i nu o us
integration systems.
The first session this
morning was ‘Choose
y o ur po i son :

Exceptions or Error Codes?’ with Andrei Alexandrescu. Coming from a
Win32 background as we do, I suspect we tend to use the latter a little too
much, so we saw this as an opportunity to learn an alternative viewpoint.
Andrei’s delivery was humorous and entertaining. One early point was that
in many cases it can actually makes sense to implement both schemes in
a library. Ultimately, the consumer is best placed to evaluate which scheme
is appropriate for a given situation. Another way is to categorise into soft
errors and hard errors. The former can safely be ignored; the latter cannot.
Another consideration is the state of the system – if the system is left in
an undefined state, an exception is almost certainly appropriate. The old
C standard library function atoi() was used as an example of a library
function designed without consideration of error conditions – neither has
an error code return nor throws an exception on failure,
instead returning 0 (arguably the most common return
value!) on error. Andrei presented four solutions to return
error information:

Set a global state (the ‘errno’ approach). This
approach (also used in Win32 as GetLastError())
is easy but has big issues with threading and makes
error handling far too optional for many tastes
Encode the error code as a reserved return value. A
reserved value conveys very little information, and cannot support
centralised handling. It also requires error values to be reserved in
the normal return code, which is not possible for atoi(), for
example
Encode the error information as a value of a distinct type (an error
code). This approach (commonly used in Win32) works quite well
but does not lend itself to centralised handling – its success is
entirely reliant on the caller checking the returned error code
Exceptions (effectively ‘covert return values’). Exceptions are good
at supporting centralised error handling. Local handling is also
possible, but more long winded.

A key consideration is that only certain callers understand certain errors –
the local caller may not, but a higher level method which ultimately
invoked it may be better placed to understand the context of the error. The
converse can often be true. From a personal perspective, I have to say that
debugging exceptions is not as easy as it could be, and furthermore if you
use exceptions you must ensure that declared exceptions are caught
somewhere (far too many developers don’t, sadly).The top three issues
with exceptions discussed were:

Metastable states – the user must ensure transactional semantics, or
the system can be left in an undefined state.
Local handling is unduly verbose.
They are hard to analyse and debug.

Andrei then presented an intriguing proposal – an alternative approach
which combines some of the better characteristics of both. I won’t go into
it further other than to say it was an intriguing proposal involving a
template type called Likely<T>.
During the lunch break the Perforce guys were hosting a sponsor session
called ‘Branching and Mergine without a Safety Net’. We went along out
of interest (SourceSafe really is showing its age now, and we’re always on
the lookout for new tools) and I’m very glad we did. The delegates’ pack
(a rather useful ACCU 2007 bag containing lots of flyers and a rather fat
A4 pad) also includes a CD with a fully functional 2-user copy of Perforce,
so I dare say we’ll try it out when we get the chance.
After lunch the world and his dog squeezed into a far too small room for
what turned out to be a highly entertaining session by Kevlin Henney
entitled ‘Pattern Connections’ (incidentally, the title of this post is a quote
from the session if you didn’t realise it). I can’t even begin to do it justice
here. Suffice it to say that if you get a chance to see him present – just go!
Kevlin is apparently a brilliantly entertaining speaker at the best of times,
and today he was definitely ‘on form’.
Next I headed for the session ‘Test Driven Development with C# and
NUnit’, which was actually an extract from Learning Tree 511 course
(.NET Best Practices). We had a very small contingent for this session, but
at least that meant we could feel the air conditioning for a change!
Encouragingly, I found that the vast majority of the content of the session
covered topics and practices I was already familiar with. As a result, I
didn’t learn much, but it was a useful confirmation that we are heading in
the right direction with TDD. Given that we only started using it back in
December, that is extremely encouraging. During the break we
congregated at the Perforce stand for a brief hands on demo of their
product; effectively a follow up from their sponsor presentation earlier.
Suffice it to say that we were very impressed with what we saw, and we
are quite likely to ‘jump ship’ from VSS in the reasonably near future as
a result.

After the break was ‘Grumpy Old Programmers – The Ultimate IT Chat’
or (more accurately) ‘We Want Beer!’. This was a freeform, irreverent and
very funny discussion, frequently interrupted by calls of ‘More beer!’ from
the panel.

Friday: What do you mean, it's morning?

Suffice it to say that this morning we were a bit slow! The first session
this morning was ‘This Software Stuff’ with Pete Goodliffe (the author of
Code Craft) – a light-hearted but incisive look at what developers who care
about their trade should be doing. Appropriately, this session was anything
but serious, which was I think exactly what we needed after the fun of last
night. If you get a chance to hear Pete speak, I’d highly recommend going.
Just remember to ask him about the fizzy milk and alphabetti custard...
After the interval I headed for the Cherwell Suite for ‘Global – Yet Agile
– Software Development’ with Jutta Eckstein. The session discussed
techniques for running Agile processes in large and often geographically
dispersed software teams. Obviously, these have major implications for
communication – a keystone of agile methodologies. One key point that
emerged was that the natural tendency to structure a large team around
functional blocks is one which runs counter to the agile aim of keeping the
system working at all times and delivering each feature complete
throughout the system at the end of each iteration or sprint. The project is
of course far more likely to succeed if a team or subteam is given complete
responsibility for a feature all of the way from requirement to acceptance.

the natural tendency to structure a large
team around functional blocks is one which
runs counter to the agile aim of keeping the

system working at all times
20 | | JUN 2007{cvu}

there is very little open source software out
there which has sufficient support and active
development to be used in a defence
environment

The session discussed various considerations and techniques for
overcoming the many hurdles which a distributed agile team faces.
Communication and synchronisation is key; how you do it (IM, phone,
video conferencing etc.) isn’t particularly important – but it must happen
– and ultimately, there is no substitute for face to face contact. It was an
interesting session, and although I’ve not worked in such an environment
I think I can visualise the issues clearly.
Over lunch there was a Visual C++ session with Steve Teixeira, the Group
Programme Manager for Visual C++. The session started with an informal
poll, which illustrated how many people in the room are using Visual C++,
how few people are using managed code. and the reasons (versioning,
distribution etc.) why they are using native code rather than managed.
Steve stated that the first priority of the Visual C++ team was native code,
followed by enabling interop to allow use of newer technologies from
Visual C++. This is illustrated by the roadmap for Visual C++ Orcas and
beyond:

Renewed investment in native libraries (MFC/ATL)
Making it easier to interoperate between platform paradigms
Innovation in areas such as concurrency etc.

Interestingly, Steve admitted MFC and ATL have been neglected by
Microsoft since managed code emerged. That is now recognised within
Microsoft as a mistake and is changing. As a result we can expect to see
significant new functionality in the native frameworks (e.g. WPF support
in MFC) in future Visual C++ releases. We can also expect significant IDE
improvements in future. C++ IDE support is currently lagging behind
those for managed code at the moment, and (interestingly enough) the
Visual C++ team see managed IDEs as their ‘productivity competitors’
rather than the functionality offered by add-ins such as Visual Assist. The
new Visual C++ features in Orcas include:

MFC support for new Vista common controls (sysLink, IPv6
compatible network address control, split/drop button and command
link.
Vista UAC support in IDE and projects. Interestingly, the
registration of ATL components is now by default in
HKEY_CURRENT_USER rather than HKEY_LOCAL_MACHINE.
New Vista SDK and APIs.
STL/CLR – an STL which can be used from managed code, and
allows STL interfaces to be used to work with managed collections.
A marshalling library to make marshalling data between native and
managed types.
Metadata based incremental managed builds and concurrent module
compilation (improved dependency checking).
.NET framework multi-targetting (i.e Orcas can target both .NET
2.0 and 3.5).
The C++ class designer is back! Unfortunately, in Orcas it is read
only – you can’t edit class diagrams for C++ projects in this version,
only view them.
ATL Server is now shared source on CodePlex (it is no longer
Microsoft proprietary).
The removal of Win9x targeting. Orcas built projects can target
Win2k and above only.

Sadly, Orcas will not include MFC support for the TaskDialog() API.
To me, this is very disappointing given that we really should not be using
MessageBox() in new projects (WTL 8 already has it, incidentally).
The session finished at almost exactly 2pm so I rushed upstairs to Peter
Hammond’s 45 minute ‘Open Architecture vs Open Source in defence
systems’ session, which I thought might be interesting given my past
experience. The core theme of the session was that in most cases the reality
is that there is very little open source software out there which has
sufficient support and active development to be used in a defence
environment. Projects such as MySQL really are the exception rather than
the rule. As ever, there is no magic bullet.
In the evening those of us who weren’t booked in for the Speakers Dinner
(a tad expensive at £50 per head, we thought) wandered off in different
directions to eat/drink/be merry. Beth and I walked into Wolverton with a
couple of the guys for a gorgeous meal at the Trout. Yum.

Saturday: A Qt way to eat breakfast

At breakfast time yesterday morning we were sitting in a conference room
listening to a seminar by Trolltech – the people behind the Qt cross
platform C++ framework. Although we use WTL for our current projects,

we are always looking to learn new techniques – and
of course the lack of cross platform support is the big
Achilles heel of frameworks such as WTL (and of
course MFC). It was an interesting presentation, and
although we don’t have any direct application for it at
the moment, it is certainly something we will bear in
mind for the future.
The first session of the day was ‘Towards a Memory
Model for C++’ with Hans-J. Boehm from HP Labs.

Multithreading is increasingly important in modern software systems, and
the difficulties of writing multithreading support are well known. Java and
C# define threads as a core part of the language, but even there getting the
semantics of threading right is exceptionally difficult. C++ (as ever)
presents a different set of problems and considerations, and traditionally
C++ has addressed this using libraries. Hans discussed why this is not
adequate, using Pthreads and the Win32 threading model as illustrations.
The impact of these failings is clear – multithreaded development in C++
is harder (and more error prone) than it needs to be.As a result of this efforts
are under way to ensure that the C++0x standard will define a memory
model describing
visibility of memory
accesses to other
threads. Herb Sutter
is leading a similar
effort for Microsoft
platforms, and the
intention is that the
outcomes of the two
e f fo r t s w i l l be
compatible. That can
only be good news
for C++ developers.
The deta i l of the
p r o po s a l s w a s
beyond the scope of
the session, but one
obvious point is that
a standard threading
API will be provided
as part of the C++0x
language. The full proposal for this area of the standard can be read on the
web at: http://www.hpl.hp.com/personal/Hans_Boehm/c++mm.
After a short break we both headed to the Bladon suite for ‘Better Bug
Hunting’ with Roger Orr. The session started with an introduction
discussing the high cost of bugs and the wide variation in the effectiveness
of individual developers at finding bugs quickly and not introducing
JUN 2007 | | 21{cvu}

unnecessary bugs in fixing them. Bugs come in many forms, ranging from
inconsistent or non-standard UI and badly specified feature, to poor
performance or instability. These are however, only symptoms – the root
causes are often more subtle defects or flaws. A simple approach to bug
hunting might include:

Understand the system and how it works
Reproduce the failure. Unit testing can help a great deal here
Identify where the problem really is – not just where the symptom is
Change one thing at a time
Keep an audit trail (so you know what you changed and why)
Canvass views from others on the defect and possible fix
If you didn’t fix it, it ain’t fixed. Don’t be tempted to ‘hide it under
the rug’

More typically, it goes something like this:
Hope it goes away
Blame someone else
Open a debugger and poke around in the vague hope of finding
something
Try random changes to see if the bug goes away
Fix the symptoms, but ignore the underlying defect.

Obviously, being able to reproduce the bug is absolutely key, and often
developers have very limited information to go on. This increases costs and
makes it less likely that the developer will correctly identify the root cause.
Communicating to testers and end users what information is required when
a defect is identified is essential. An obvious improvement is to write
scripts or code to collect the supporting information we need in order to
triage the bug. Included in this category are of course the ubiquitous crash
dumps. Log files also have their place – but only if the logs are easy to
find and their contents are comprehensible. A bad log message is worse
than none at all. Any defect may relate to others which are already
documented. As a result it is always worth looking for patterns in the defect
tracking database. Even when you think you’ve identified the cause, it is
worth taking a step back. Could there be another possible cause? Is your
fix really the right one or do you need to look a bit deeper? Some classes
of defects are of course much harder than others:

You can’t reproduce the defect
The defect affects widely separated blocks of code
Memory corruption
Timing related
Environment related (e.g. permissions)
It was not the fault you thought it was.

Some techniques which can be used to increase effectiveness include:
Adding tracing
Refactoring areas of the code where you think the defect may lie

Running the system under a virtual machine in a configuration
which is representative of that on which the bug was previously seen
Deliberately stressing the code to see if the failures match the
observed symptoms
Use static or dynamic analysis.

When the cause of a bug is identified, it makes sense to take a step
back to determine how to more easily identify and fix bugs of this
class.

After a brief and Spartan lunch (all the hotel provided were a few
sandwiches) I headed back to our room to rest for a while. Conferences
really are exhausting! The final session of the conference was ‘C/C++
Programmers and Truthiness’ with Dan Saks, an entertaining look at how
both the general public and developers (who really should know better)
will give ‘gut instinct’ precedence over contrary evidence. Dan’s major
example was the placement of const in variable declarations (i.e. whether
you should use const T * or T const *), a cause he’s been fighting
for some years. It got interesting when Herb Sutter and Bjarne Stroustrup
both got involved in the discussion... Personally, I think we’ve got bigger
battles to fight. There are far too many developers out there who don't even
use const, and with the trickle of people from languages without const
(for example C#) into ocasasional C++ coding I keep running across this.
It is not likely to get better in the foreseeable future.

Mark Dalgarno <mark@software-acumen.com>
This was my first ACCU conference, a bigger affair than my usual SPA

conference with a stronger focus on C / C++ /
Java talks, although like SPA there is a good
selection of sessions on general software
deveopment issues.

Chaos aids learning – coaching software
development teams

Of the four sessions I attended on Wednesday I
got the most from Michael Feathers talk entitled ‘Coaching Software
Development Teams’. This presented a number of techniques that Michael
has used when working with software development teams over the past few
years.
Michael began by describing the role of coach as a person who helps a team
produce a desired effect – so ‘coaches aid and provoke change’, and a big

Ewan Milne <ewan.milne@gmail.com>

This year’s conference was a big event for several reasons: we
marked the tenth anniversary of the event, moved to a new venue,
and attracted of highest turnout, around 380 delegates. As many of
you know, it was also my last in the role of Chair. From next year,
Giovanni Asproni will be chairing the event, and I will stay on as a
member of the conference committee, most likely for the next two
years.

Over the past four years I have gained an enormous amount of
satisfaction from being at the centre of such an exciting event, the
people I have met and the ideas that have been generated have
been incredibly stimulating. But for the conference to stay fresh I
feel it is important for me now to take a step back. Not to mention
that I am looking forward to enjoying accu2008 in a more, shall we
say, relaxed mood. Each year I promise myself I will do better at
sitting still for whole 90 minute periods at a time: I rarely manage it,
though this year I probably managed to be in sessions nearly 50%
of the time, perhaps.

I must stress that organizing the conference is emphatically not a
one man job. I need to thank Francis Glassborow, my predecessor,
for developing the conference form its inception ten years ago, and
everyone who has helped as part of the conference committee:
Giovanni, Allan Kelly, Kevlin Henney, Alan Lenton, Tim Penhey and
Andy Robinson. Also my wife who has been tremendously patient
over the demands on our spare time, and I cannot forget Julie
Archer, who has actually worked harder than anyone else to make
sure the event has gone from strength to strength in recent years.

Highlights of this year’s conference? Being so closely involved with
the programme, I am always loathe to pick favourites. But one
speaker did unmistakably stamp his mark on the event this year, in
the bar as much as the lecture room. So much so that a new word
was coined: I was one of many to find myself one evening Lakosed
(verb: to find oneself in an advanced state of inebriation, having had
large quantities of tequila thrust upon one by a loud, persuasive
New Yorker).

From the Conference Chair

both the general public and developers (who
really should know better) will give ‘gut instinct’
precedence over contrary evidence
22 | | JUN 2007{cvu}

part of their work is to find teachable moments i.e. occasions where the
team can learn from some individual or team issue.
This learning is best achieved in tension / release cycles where a problem
gradually emerges and starts creating tension within a team and then a
solution is found and the tension is released. Letting a team discover for
itself the solution leads to a significantly better (learning) result than
providing a solution for them and the biggest problems (chaos) lead to the
biggest learning experiences. One audience member compared this to the
selling process – whereby a customer finds for themselves how a tool or

service can address a problem they may not have fully known about or had
a name for.
Some of the techniques Michael identified include:

Go Sideways – When problems don’t yield to pressure, help people
switch gears by showing them a similar or smaller problem. Often
this helps the original problem yield.
Ask the room – If a team is tempted to break a rule then ask them
to huddle in the centre of the room to discuss the problem. This helps
build a cohesive team and builds a strong sense of how the team
works and is also a good way of identifying hidden talents within the
team as great designers and leaders can emerge from these
discussions.
Make it physical – Take the abstract and make it tangible. Michael
cited the example of a team that had reorganised their desks so that
the QA people sat around the build machine. Developers had to
physically walk a gauntlet to contribute code to the build and the
presence of the QA people reinforced the goal of only checking in
high-quality code.
The Flounce – Identify a hidden problem by asking pointed
questions, soliciting comments and then ending with silence. This
builds tension until the team eventually puts a name to the problem
(release).
Push in the water – Ask people to go beyond their limits and try
atypical solutions. Can have great results but take care to be
supportive if necessary and handle breaches of
organisational behaviour with care.

Michael also talked about the ethical and personal
issues involved in coaching – talking about issues
like whether every intervention should be ‘above
board’ for example. James Coplien (in the audience) noted that in his
experience teams would still react positively if they knew the facts and so
there was no need to hide things from them.
In terms of audience demographics there are certainly more people from
the embedded space here at ACCU than at SPA. I guess this is a strong
reflection of the C / C++ roots of ACCU and the types of organisations
(still) using these languages. However there were a few familiar faces at
the event including Giovanni Asproni and Kevlin Henney, Charles Weir
and John Pagonis.
The evening was rounded off with a sponsor reception and then around 40
of us descended on Pizza Express much to the concern of the staff. I met
up with Bernhard Merkle to quiz him on his session on ‘Linting Software
Architectures’ and it turns out he has a background in Model-Driven
Development and Software Product Lines and worked with Axel Uhl, one
of my ‘Code Generation 2007’ keynotes, on ArcStyler.

Simplicity in Software

Day 2 of the ACCU Conference saw me at Peter Sommerlad, Kevlin
Henney, and Giovanni Asproni’s session on the value of simplicity in
software development.

This was a workshop session with the aim of working towards a Manifesto
for Software Simplicity along the lines of the Agile Manifesto. With a keen
and knowledgeable audience we stood a high chance of success...
Kevlin, Peter and Giovanni began by talking about their previous work in
this area and what brought them together for this session, for example Peter
is hosting a wiki on the topic.
As background to the workshop, the Laws of Simplicity, as formulated by
John Maeda, were introduced:

Reduce – Shrink, hide, embody (by abstraction) to
make things simpler.
Organise – Make a system of many appear fewer. (The
system then becomes easier to abstract and has a higher
degree of regularity). Patterns / Themes, Grouping and

Clustering are key tactics here.
Time – Savings in time feel like simplicity. When you deal with
something, if you can save time by dealing with it in an easy way (or
automating it) then things are simpler.
Learn – Knowledge makes everything simpler – build models of
domains to make your life simpler – you can identify patterns that
you've solved before etc.
Differences – Simplicity and complexity need each other – contrast
makes simplicity appear good.
Context – What lies in the periphery of simplicity is definitely not
peripheral. If you understand the context then you can make things
simpler – if you don’t then you can’t. Defining the (domain) rules
can help communicate ideas and improve learning.
Emotions – More emotions are better than less. Individuality comes
through simplicity – making things simpler is inherently creative
and satisfying. Emotions have an impact on what you think is
simplest in a given context. Acknowledges humanity in coding
activity. Gut reactions to code based on expertise and experience.
Trust – In simplicity we trust. You trust things to do the work you
expect them to do – but if they’re complex you don’t trust them. If
you don’t trust stuff then you make things more complex by erecting
elaborate barriers between things.
Failure – Some things can never be made simpler. Recognising that
you can’t make something simpler saves time (and so makes things

simpler).
The One – Simplicity is about subtracting the obvious and making
it meaningful.

Three Key Patterns were also presented:
away – More appears like less by simply moving it far, far away.
(This relates to levels of abstraction).
open – Openness simplifies complexity. Leads back to learning.
power – Use less, gain more. Less code => more software.

After the introduction we divided into groups for a bit of brainstorming
around our beliefs about simplicity in software and then reviewed and
discussed what each group had come up with.
My own best contribution was ‘Simplicity is Satisfying’; other things that
resonated around the room were (paraphrasing):

Duplication is anathema to simplicity, cut and paste is evil – a good
argument for (software) reuse.
Automation is good because of time-saving and its capability to hide
complexity – rewriting poor code is leads to more simplicity than
refactoring it.

Duplication is anathema to simplicity, cut
and paste is evil

What lies in the periphery of simplicity is
definitely not peripheral
JUN 2007 | | 23{cvu}

Doing one thing well leads to simplicity, constraining scope is good
– there could be some relevance for people developing Software
Product Lines.
Component / Library / Compiler complexity is favoured over code
complexity. Code should be human readable. It’s interesting that
compiler was named specifically here – I wonder if a generalisation
can be made in favouring tool sophistication over code complexity?
We believe in not crossing bridges until we come to them (in case
you don’t have to) – there was an interesting discussion here around
the trade-off between planning and simplicity.
Design by contract makes things simpler – both by making
assumptions explicit and by providing a form of contractual
framework that enforces consistency and simplicity.
Dynamic languages are preferable to static languages (for
simplicity) – a theme that also emerged at SPA 2007.

The full session outputs are now available on Peter’s wiki.

Generative Programming in the large – applied meta-
programming

The highlight of Day 3 of the ACCU Conference (for me at least) was
Schalk Cronjé’s talk on ‘Generative Programming’. Schalk has run a
sequence of sessions at past ACCU conferences and this session focussed
on the real problems of applying Generative Programming. His focus on
doing things with today’s tools and on practical problem solving was a
welcome change. According to Schalk, C++ Generative programming is

a vastly untapped field.
Schalk began by noting that many engineers build components with little
reuse potential. This leads to excessive time when adapting the software
for another system. Sometimes when developing there may be artefacts
that you can reuse or generate to save time later. You just need to think
about this when starting out.
One question he is commonly asked is – ‘Is it too difficult?’. His answer
is that this isn’t the issue; the problem is usually motivation. If the
semantics are correct then the concepts are straightforward. An audience
member noted that the organisation must value code reuse in order to
implement these approaches.
As an example of creating generative library Schalk described the process
of building a rule evaluator: Web and mail protocols are very different but
there is an essential need to provide a custom, optimised evaluator for
different protocols. I’m hoping that Schalk will write up his talk for the
Code Generation Network so I’ll miss out the technical details here and
focus on some of his general comments.
Schalk began by noting that Generative C++ can lead to a large number
of configuration classes or meta-classes being generated – it is not
uncommon to work with 50+ tag classes within a single type list. Effective
integration of meta-programming, compile-time paradigms and run-time
paradigms is required. Typical problems if done wrongly in C++ are code
bloat or long symbolic names. In some cases you can't always use a pure
template-driven approach.
Schalk uses the Boost libraries for meta-programming as he feels this is
the only practical C++ meta-programming environment and all his
examples made use of Boost. In particular the Boost metaprogramming
preprocessor has a number of macros to deal with the complexity of
generated C++ (e.g. commas between typenames in templates). Use of
Boost is also in line with Schalk’s ‘Principle of least surprise’ – stick to
what other people have been doing especially in a pretty new field.
After taking us through 5 idioms for C++ Template Metaprogramming
Schalk closed his session with a number of observations:

Generative Programming pushes C++ skills beyond the knowledge
of existing practitioners. This explains the slow uptake of such
techniques and also raises the question of how to recruit people with
these skills?
Compiler time reduction is a big issue – his current builds run at
around 45 minutes – and what happens if you hit a compiler error
after this amount of time? Some compilers also can’t deal with the
complexity of some of the generated programs.
Introducing a new technology can be political:

Some people will have a mental block about the technology
There is a distrust of tools

Generative Programming teaches very good skills outside the C++
domain Separation of generative stuff from non-generated stuff
Am I in the wrong language? (Schalk’s answer – Yes)

The problem is that languages aren’t good enough to solve these
complex problems.
Some languages are easier to generate in than others. An
audience member – not me – noted that ‘All languages will
become Lisp eventually.’

Generative Programming in C++ shows requirements for future
languages:

Powerful syntax
Simplicity of expression

Mobile convergence – it’s nice because there’s so
much of it...

I took part in Charles Weir’s ‘Supporting Many Platforms’
session at the ACCU conference yesterday.
Charles heads up Penrillian, a company specialising in

porting applications between mobile platforms and between different
implementation languages.
The first question was ‘why port? why not just start again from scratch?’.
The answer is that rewriting from scratch is in most cases very expensive,
it’s almost impossible to reimplement from a specification (or rather to
rewrite the specification from what you’ve implemented). Furthermore,
while you’re rewriting you’re not advancing and so you lose time in which
other software may be moving forward in the marketplace. (Internet
Explorer overtook Netscape while Netscape was being rewritten.) In a
Software Product Line setting you have to produce so many product
variants that it’s simply not practical to rewrite from scratch each time.
Charles presented three key techniques to perform the porting process:

Code Triage – Begin by dividing the codebase to be ported into
‘portable code’, ‘potentially portable code’ (which would be
portable if it was refactored) and ‘platform-specific code’ (examples
of this are typically found where the code talks to the outside world
– e.g. device hardware, networks, UIs etc.). Charles also noted that
this triage process implies some architectural decisions to minimize
the size of the non-portable code.
Refactoring to produce portable code – Much code could be
portable if it was refactored – business logic and rendering code are
prime examples. Typical issues Penrillian have encountered include
UI event handlers that do business logic, rendering code for a fixed-
size screen, communication interfaces that aren't abstracted.
Test-driven porting – Changing code introduces bugs and so you
need a safety net. The process used at Penrillian starts by ensuring
that the code is under test on the original platform. When this has
been achieved logging is used to record calls and responses at the
points where the program calls non-portable code. This logging data
is then used to generate mock objects to mock-out code for your new
platform. Once you have this in place you can begin your
reimplementation of platform-specific code safe in the knowledge
that your safety harness will catch any problems in your new
implementation.

We believe in not crossing bridges until we
come to them (in case you don’t have to)
24 | | JUN 2007{cvu}

Charles concluded by noting the two worst mistakes when porting:
Thinking something isn’t needed when you port – it usually will be.
Not using testing to support your construction process.

At the end of the talk I asked everyone what his or her thoughts were on
device convergence in the mobile space. I’ve participated in a few of the
sessions run by Cambridge Wireless’s Mobile Games group and these
always seem to end with the hope for greater convergence in the device

space. As I’ve previously noted, 50% of the development budget for a
mobile game can be consumed by porting costs.
The first observation was that convergence is nice because there’s so much
of it. More seriously it was also observed that vendor lock-in relies on
divergence and it’s my own view that the pressures operating in this market
will force continued fragmentation in device platforms and capabilities.
The forces for convergence are simply not strong enough yet...
Penrillian has a number of links to mobile porting resources on their web
site at http://www.penrillian.com/porting.

Nicola Musatti <Nicola.Musatti@fastwebnet.it>

Semantic Programming – Ric Parkin

Ric’s presentation wasn’t focussed on introducing revolutionary
techniques, but rather on reminding his audience to take advantage of tried
and tested ones. The heart of it was the idea that by defining new, specific
types for our function parameters we can take advantage of the compiler’s
help in spotting common mistakes. Ric started off with the following
example:

memset(&buffer, sizeof(buffer), 0);

Here the filler character and the buffer size have been swapped. By
wrapping these parameters in specific classes such as:

class BufferSize {
 public:
 explicit BufferSize(std::size_t s) : siz(s)
{}
 operator size_t() { return siz; }
 private:
 std::size_t siz;
};

and declaring memset as:

void *memset(void *s, FillerChar c, BufferSize n);

we make it necessary to specify the argument type exlicitly as in

memset(&buffer, FillerChar(0),
 BufferSize(sizeof(buffer)));

so that the compiler will issue an error message if we get the argument
order wrong. This could be further improved by combining the buffer
pointer and the buffer size in a single class. In some cases even enums are
enough to improve arguments’ type safety.
All in all, Ric’s was an interesting and well delivered presentation, full of
sound common sense. Note that I made these examples up as I don’t have
Ric’s notes and so I can’t present the original ones. They should be very
close, though.

Supporting Many Mobile Platforms: Making Your Killer App
Dominate the Mobile World – Charles Weir

This was another low rocket science, high common sense presentation.
Despite its title, the topics Charles presented were of wider application than
the mobile world. His approach to porting is very pragmatic: you start by
examining the code (“triaging” in Charles’s terms) to distinguish the parts
that are presumably directly portable, from those that could be made
portable with relatively little effort, e.g. by reordering and those that would
require a full rewrite. Then you write or extend your test suite, to ensure
that your refactoring doesn’t break anything. All this takes place on the
original platform. At this you factor out the portions of code that are
inherently non portable and replace them with mock objects that simulate

Kevlin Henney <kevlin@curbralan.com>

Tension had been building throughout the conference, and a final
showdown on Friday night was inevitable. Tim ‘Hobbit Feet’ Penhey
and Pete ‘Foot Craft’ Goodliffe had been competing at one event or
other all week. Tim ‘emacs’ Penhey had trounced Pete ‘vi’ Goodliffe
three times: downing a pint the fastest on Wednesday night, the
Xbox competition on Thursday evening, and the vi-versus-emacs
squash tournament on Friday before the conference dinner.

And so it came to pass that the Annual Boat Race appears to have
been instituted. Tim ‘Massed Armies of Middle Earth’ Penhey and
Pete ‘10,000 Monkeys’ Goodliffe captained teams of sturdy, hard-
drinking geeks or, failing that, anyone who happened to be around
and was foolish enough to say ‘yes’ (which is how this reporter came
to be embedded in the event).

In the spirit of all good grudge matches, a theme was chosen, and
what could be more traditional than a language war? Pete ‘C++’
Goodliffe compiled the static languages team and Tim ‘Python’
Penhey scripted the dynamic languages team.

The rules were quite simple but most of the participants proved to
be simpler, so much explanation and re-explanation was needed.
Two teams of eight lined up on opposite sides of a table, with one
pint of beer in front of each competitor. Under starter’s orders –
Allan Kelly quickly adding this position of responsibility to his CV –
the first drinker downs a pint and then, relay style, each successive
drinker knocks back a pint, starting only once the previous drinker
in line has completed, with completion indicated by placing the
empty glass upturned on one’s head and then slamming (but not
smashing) it against the table. The team captains were the last in
line and would sprint for the finish. The crowd surrounding the table
were variously bemused, amused or attempting to express the
algorithm in STL.

I ended up as the pole-position drinker on the dynamic languages
team, where I was hoping that the cost of my average performance
would be amortised by better drinkers further down the line. And this
almost happened! The dynamic languages team gave a pretty
consistent performance, and were even ahead by a person/pint at
one point. However, the static languages team managed to
overcome their leaks and put in an impressively optimised
performance towards the end of their pipeline, ultimately handing
victory to their team captain, Pete ‘I’ve finally beaten Tim at
something!’ Goodliffe.

There were a number of performances worthy of note. A key stage
in the static team’s pipeline optimisation was Richard Harris, who
seemingly teleported his beer from glass to stomach without
apparently having it pass through any point in between. Richard
admitted later that he was a bit of a ringer as he used to race pints
(which I’m presuming is harder than racing pigeons due to
questions of spillage, mobility and evaporation, amongst other
issues). Another key moment for that team was Dietmar Kuehl’s
speed draining of his glass. This was all the more impressive
because Dietmar does not normally drink: he put his speed down to
his dislike of beer, so he wanted to get it over with as quickly as
possible. All this meant that Pete started his pint before Tim. In a
French-Connection-eat-your-heart-out high-speed chase, Tim
almost caught up, losing only by a fraction of a second. At the other
end of the scale on the static languages team, was Jason
McGuiness’s apparent desire to represent COBOL whilst all around
him were emulating the performance of C, C++ and Fortran. Jason
enjoyed a leisurely pint, which would have been more
understandable had the beer been better.

Of course, this event was about speed. Endurance and distance
awards for the conference go, without question, to John Lakos. But
that’s another story or ten. The conclusion is that Tim ‘Eat my shorts’
Penhey can still drink faster than Pete ‘Attend my keynote’
Goodliffe, but that team events are more fun and offer more
opportunities for levelling the playing field (as well as the players).
The scene is now set for the Second Annual Boat Race!

The First (Unofficial) Annual Boat Race
JUN 2007 | | 25{cvu}

just enough of the non portable code to let you run your tests. At this point
you are ready to port your code to the destination platform and fix what
breaks, basing on your test results, which should by now run unmodified
on the source and destination platform When you have the portable code
in place you’re ready to proceed with the rewrite of the non-portable parts.
This approach helps you avoid what Charles described as one of the worst
possible mistakes, i.e. the full rewrite. According to Charles (and not only
him!) by restarting from scratch you risk losing all that subtle knowledge
that invariably gets embedded into the code as an application evolves and
you tie all your resources in an all or nothing venture, effectively making
it impossible for you to respond to your competition’s moves. Another
interesting session, pleasantly delivered.

Mark Easterbrook <mark@easterbrook.org.uk>
This was the year the ACCU went into space – figuratively: Rockets,
computers in space, and even a spaceman in the form of Mark Shuttleworth
featured. This year was also a new venue and I saw none of the problems
that marked previous out-of-town venues, mainly due to a fleet of taxis
ferrying delegates between the hotel and Oxford town centre. Apparently
the organisers are considering a shuttle bus service for next year, which
will make things even easier. There was just one negative comment, but a
big one, the hotel just didn’t seem to be able to get food to the delegates
at lunchtime. Some wag even mentioned going back to the Randalf for the
food! ACCU2007 also seemed to be much more Anglo-German centric
than previous years: the lack of a Python track reduced the European
presence and the North Americans seemed to be more subdued than usual
– were they perhaps outclassed by a certain New Zealander, or have most
of them been to Oxford so many times they are becoming Anglicised?
There were several new faces presenting this year, but none made their
presence felt than John Lakos who not only tried to buy the bar dry but
introduced a new verb into the ACCU language: “To be Lakosed”. Yet
again the conference committee have done an excellent job and I look
forward to next year.

Semantic Programming – Ric Parkin

Ric starts by using memset(&buffer, sizeof(buffer), 0) to
show that although compilers are good at checking syntax they fail to spot
semantic problems even in strongly typed languages unless the
programmer encodes semantic information into types. The presentation
covered ways to do this and discussed the extra work required compared
with the gain in correctness of the code. This was a useful presentation for
anyone working with C, C++ or similar languages.

C++ has no useful purpose – Russel Winder

The provocative title resulted in a packed room for this discussion of typed
languages versus dynamic languages, with occasional diversion to
traditional “scripting” and functional languages. Russel defused the
audience by stating the aim of the 90 minutes was to decide if the title
should end with a question mark or exclamation mark, and thus the
audience decides. A clever ploy as this means the title is either a statement
or a loaded question and thus biased against C++. Languages such as
Python will always win out over heavyweight languages when given small
problems such as will fit onto a presentation slide and thus the type of
problem Russel used to try and prove his point. Despite the agenda, many
an interesting 90 minutes raising many serious points about all types of
languages.

Choose your Poison: Exceptions or Error Codes? – Andrei
Alexandrescu

The choice of exceptions or error codes is not only difficult, but it is a
design time decision meaning that it needs to be resolved early (early
binding), often before enough information is available to make the right

decision. After comparing and contrasting error codes and exceptions,
Andrei introduced a technique that allowed the choice to be deferred.
Especially powerful was the way in which the decision on how to handle
an error in library code could be made by the library user.

Introduction to Component-Level Testing – John Lakos

Although an “introduction” talk, this was introduction at maximum
velocity and covered an amazing amount of material in two 90 minute
sessions. John started with highlighting the importance of component
testing in large systems and showed how the wrong dependencies can
undermine the whole testing system. This was followed by illustrations as

to why white-box testing is essential and that why the
implementation should drive the test data. He ended
looking at test coverage: given that it is not possible to test
everything, how should testing be ordered to maximum
coverage whilst minimising test cases.

The appliance of science… – Andrei Alexandrescu

Andrei covered four subjects from computer science that may be useful in
production programming. Dynamic Programming is about optimisation by
turning exponential solutions into polynomial and has practical uses in
searching. Then he looked at the downsides of Garbage Collection if added
to a language such as C++, which means a loss of performance if extra
memory is not available. The third subject was Machine Learning for when
the function is not known and has to be determined by training. Finally
Transaction Memory which applies atomic and roll-back semantics at the
memory-CPU interface.

Network Programming – Alan Lenton

This was a look at the lower levels of network programming and evolved
into an interesting discussion group showing that despite libraries that are
supposed to take the hard work out of network there is an interest in the
details. Alan is a games developer so there was a particular bias towards
the special needs of network games, but nevertheless useful information
for anyone moving away from HTTP and similar well known uses of
networks.

Better Bug Hunting – Roger Orr

At last year’s conference Roger told us how to put bugs into our programs.
This talk was about finding them. This was a well presented talk on an
important subject that was both entertaining and practical. I think even the
most experienced bug hunter went away with something new. At least for
those who made the mistake of being elsewhere, Roger provides excellent
notes.

Chris Southern <cdsouthern@theiet.org>
As ever, there is room for imrovement, and Chris wasn’t universally happy
with the event.

Professionalism in Participation

As an old timer, and having attended a few other conferences and training
courses, I appreciate the audience engagement I associate with the ACCU
conference. There is nothing quite like the dialogue between a speaker and
the relevant member of the ISO panel sitting in the front (or back) row.
Back row is good, then they have to be loud enough for all to hear, and
less experienced.
Now we come to the grumpy old programmer bits.
There is a world of difference between active participation and disruption.
I heard at least two complaints, and of course I have my own, we also had
disruptive non-participation.
Why should we care? The conference must not be considered
unprofessional. Companies will not send staff, sponsors would leave. The
financial viability of the conference would be compromised. On an
individual level one might rather have the speaker at least get to even if
not through the interesting looking last third of their talk.

There is a world of difference between active
participation and disruption
26 | | JUN 2007{cvu}

What should we not do? Lose the essential nature of the conference, vague
as such a concept might be. Expect everybody to wear suits. Expect nobody
to wear a suit. Enforce a vow of silence.
What can we do? Strive for active participation rather than disruption of
course. Keeping the banter for the bar and the coffee breaks.
Active participation:

Asking for clarification of a difficult point
Observing that something is illegal or undefined
Pointing out a missing inversion

Disruption:
Anticipating the thrust
Attempting to demonstrate that you understand the slide
Pointing out a missing brace or parenthesis
Attempting to reverse the speaker’s position mid-presentation
Me-too war stories

Now I am quite aware that this is more of a continuum than a clear divide.
However, I think that there are things we all can do to steer our behaviour
towards participation and away from the disruptive. We must recognize
that humour on the part of speakers is part of a good speaker’s technique
and not an invitation to tell our own jokes. We should wait a few slides,
or for an obvious signal of a change in topic before asking about a missing
implementation detail or if a missing concept had been considered. If one
is not willing to show non-comprehension, do not ask the question.
The last point deserves a few more words. It is tempting to frame a question
in a leading fashion, even if you are not actually guilty of the sin of
attempting to demonstrate your intelligence. After all, if you did
understand it, you look less of a fool. But you could be mistaken for one
of those awful sinners, or introduce an erroneous and possibly confusing
explanation. Now the speaker has to do twice as much work. First they have
to leave their own frame of reference to understand your statement and then
produce the correct explanation. A good speaker would have produced the
original restated and clarified given a much simpler question. We have lost
three ways. The question took too long to ask, was probably more difficult
to answer and other listeners may now have the incorrect explanation
mixed into their understanding of the talk.
If you feel so strongly that a speaker needs to reverse their position, how
about an article for C Vu?
Last Grump. Disruptive non-participation was my bugbear. The small
rooms were frequently crowded and having chairs occupied by attendees
who were coding, surfing or using email struck me as plain rude. I am not
saying that people misjudged the presentation level and rather than leave
started to doodle electronically and quietly. No, some went equipped, and
typed hard and loud.

David Carter-Hitchin <david@carter-
hitchin.clara.co.uk>
I enjoyed the conference this year immensely, much more than I thought
I would. I came to the pre-conference day to learn about Agile development
with Kevlin Henney which was really useful. Kevlin adopted the Test
Driven Development (TDD) approach which was a revelation to me and
something I will definitely use in my working day. I’ve only been to one
other ACCU conference before so I haven’t got much to compare it with
like-for-like, but it was by far the best conference I’d been to anywhere.
There is a real sense of community in the ACCU and it was nice to see
some old familiar faces. I thought the talks were really good – they started
off a bit slowly to begin with, but towards the end I was hard pressed to
choose between two or three really interesting ones. I chose to stick mainly
with the C++0x track, as I thought it wise to start getting up to speed with
changes that will hit us in the next few years. Alan Griffith’s open talk
on C++ tools was very interesting and useful too. John Lakos’s talk on
testing was brilliant. I enjoyed some of the keynotes – especially Pete
Goodliffe’s as it is a rare thing to hear anyone talk about the ‘human side’
of programming. There were a lot of big names this year, largely due to

the C++ ISO committee
which was convening the
week a f t e r t he
conference, so that made
things extra special. I was
chatting to PJ Plauger at
one time – it was only
afterwards that I realised
he wrote a book with
Brian Kernighan and is
p r e s i de n t o f
D inkumware ! Fo r
anyone who didn’t go,
who perhaps found the
cost prohibitive, I would
say to them that the price
is definitely worth it, and
plenty of people stayed in
cheaper accommodation
nearby to help with the
costs. For anyone who
seriously can’t afford it, but really wants to come then there are discounts
available if you are prepared to do a talk...
Looking forward to ACCU 2008 already.

Conclusion
Phew! There you have it – a view of the ACCU 2007 conference from the
floor. As ever, our thanks go to the organisers (the conference committee,
the speakers, and Julie and her team at Archer Yates for organising it so
smoothly).
We hope to see you there next year!
JUN 2007 | | 27{cvu}

28 | | JUN 2007{cvu}

Standards Report
Lois Goldthwaite brings news from the C standard committee.

he international C++ and C standards committees met in Oxford and
London in April, each for a week, and both enjoyed productive,
successful meetings. The UK was represented by four delegates at

the C committee (WG14), and by what must be a record thirteen at the C++
committee (WG21). The Force is strong in us!
WG21 buckled down to the task of putting together a Final Committee
Draft document for international balloting at the end of the year. We are
at the hard graft stage of converting lots of wonderful ideas into precisely-
worded specifications. You can see the newly-revised Working Draft at
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2284.pdf.
Among the new items: a comprehensive reworking of all the standard
library clauses to embrace the techniques known as ‘rvalue references’ and
‘move semantics’. In a nutshell, these techniques are used to provide a
significant speedup of code in circumstances which previously required
making a full copy of a short-lived variable, such as a temporary or
function return value. Now instead of copying, the library code simply
extracts the internal contents of the temporary and inserts them directly
into the variable which will be around a while. The same techniques can
of course be used in your own code, once C++0x compilers become
available.
Through a <system_error> header, C++0x will provide better
integration with diagnostics reported by operating system APIs (for
example, ECONNREFUSED and ECONNRESET relating to sockets).
A new language feature (and one which caused a second set of updates to
the library clauses) is variadic templates. These use an ellipsis syntax to
indicate that an arbitrary number of template arguments can be used:
 template <class... Types> class tuple;

This removes the need to write a large number of overloaded templates
with different numbers of template parameters, as at present.
The Oxford meeting also voted to seek ISO approval of a new standard
for the mathematical special functions which were published in TR 19768,
the ‘Technical Report on Library Extensions for C++’ (http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf). These provide C
and C++ bindings for the functions defined in ISO 31-11, ‘Mathematical
signs and symbols for use in the physical sciences and technology’. The
other bits of TR 19768 have been incorporated into the standard library
for C++0x, but the package of special maths functions was considered too
large and too specialised to be imposed on every implementation. On the
other hand, there is a sizeable scientific and engineering community
interested in using these functions, free qood-quality implementations
exist, and there was no wish to let the work which has gone into this
document be lost. Moving this library into a stand-alone international
standard of its own may set a precedent on how standard C++ can expand
to serve other communities in future.
Several times Bjarne Stroustrup urged WG21 to avoid making timid
decisions about the development of C++. ‘If we had not taken the bold step
into the unknown in 1995 of adopting STL,’ he said, ‘I bet half of us would
not be in this room today.’ His exhortations persuaded the committee to
incorporate several useful libraries into C++0x which otherwise would
have been delayed until a future Technical Report.

Not only is C++ evolving, but we can also expect to see a new version of
the C standard in a few years’ time. WG14 spent a whole day in London
discussing what C99 got right and where it fell short, and establishing
priorities and principles to guide the work.
Some C99 features, such as the bool type, // comments, expanded
compiler limits, and variable declarations anywhere in a block, have been
widely adopted by vendors and users. Takeup of other aspects, in particular
the new types and functions in support of numerical programming, has
been disappointing. Several vendors commented that they have not put
much effort into implementing these because their customers have not
demanded them. If it were not that Posix compliance requires a C99
compiler, there would be even less interest. This focus on numerical
programming came from the perception in the late 1990s that C’s main
competitor was Fortran, and the language had to become more like Fortran
to serve the needs of its community. Today there are other languages in
competition with C, and other programming problems are at the forefront
of attention.
Unusually for a standards body, there was a general willingness in WG14
to prune some current features from C1x, as well as add new ones to
address new problems that have become prominent since C was invented
over 30 years ago. Topping the list of those new concerns are threading,
dynamic libraries, and above all security. Embedded environments are a
major market for the C language. Improving portability of code across
compilers and chip architectures would provide a valuable service to these
programmers.
Philosophically, WG14 showed no inclination to follow WG21’s example
and be bold in expanding the C language. Their traditional conservative
emphasis on standardising only existing practice with implementation
experience will continue.
Before embarking on the C99 revision, WG14 adopted a charter (http://
www.open-std.org/jtc1/sc22/wg14/www/charter) reaffirming the
fundamental principles of the original drafting committee. Briefly:

1. Existing code is important, existing implementations are not.
2. C code can be portable, and C compilers have been implemented for

a wide variety of computers and operating systems.
3. C code can be non-portable; the ability to write machine-specific

code is one of the strengths of C.
4. Avoid ‘quiet changes’.
5. A standard is a treaty between implementor and programmer.
6. Keep the traditional spirit of C:

a) Trust the programmer.
b) Don’t prevent the programmer from doing what needs to be

done.
c) Keep the language small and simple.
d) Provide only one way to do an operation.
e) Make it fast, even if it is not guaranteed to be portable.

In these days when security holes are discovered and exploited every day,
people look a bit askance at 6a and 6b. Maybe ‘trust but verify’ should be
the new motto. Or ‘trust those who are trustworthy’. Or even just ‘a
language should not be accident-prone’, or perhaps ‘the language should
be verifiable’. Twenty, or even ten, years ago you didn’t have to worry
about Russian gangsters hacking into your toaster and turning it into a
spam bot. On the other hand, maybe we should just recognise that C is the
way it is and not handicap programmers too much.

T

LOIS GOLDTHWAITE
Lois has been a professional programmer for over 20 years.
She is convenor of the C++ and Posix standards panels at
BSI. One of her hobbies is representing the UK at
international standards meetings! Lois can be contacted at
standards@accu.org.uk

Code Critique Competition 46
Set and collated by Roger Orr.

lease note that participation in this competition is open to all
members, whether novice or expert. Readers are also encouraged to
comment on published entries, and to supply their own possible code

samples for the competition (in any common programming language) to
scc@accu.org.

Last Issue’s Code
‘I am building a random sentence generator which will construct a sentence
from four arrays containing verbs, nouns, etc. The sentence is built by
using a random index for each of the arrays. There is one slight problem
– the three calls in my test program produce exactly same value! If I run
the program again I get a different sentence, but again repeated three times.
Of course, I want three different sentences within the same run.
I’ve tried to follow the code through with a debugger, but it does produce
different sentences when I single step through the code. Can anyone help
me out?’

#include <string>
#include <vector>

class RandomSentence
{

public:
 RandomSentence() { sentence.resize(6); }
 void createRandomSentence();
 std::vector<std::string> & getSentence()
 { return sentence; }

private:
 std::vector<std::string> sentence;
 static std::string article[5];
 static std::string noun[5];
 static std::string verb[5];
 static std::string preposition[5];
};

#include <time.h>

void RandomSentence::createRandomSentence(){

 int randNum;

 for(int i = 0; i <= 5; i++) {
 srand(time(0));
 randNum = (rand()%5);
 switch(i){
 case 0:
 sentence[i] = article[randNum];
 break;

 case 1:
 sentence[i] = noun[randNum];
 break;

 case 2:
 sentence[i] = verb[randNum];
 break;

 case 3:
 sentence[i] = preposition[randNum];
 break;

 case 4:
 sentence[i] = article[randNum];
 break;

 case 5:
 sentence[i] = noun[randNum];
 break;
 }
 }
}

std::string RandomSentence::article[5] =
 {"the", "a", "my", "your", "his"};
std::string RandomSentence::noun[5] =
 {"pig", "cup", "phone", "TV", "letter"};
std::string RandomSentence::verb[5] =
 {"ate", "sat", "flew", "ran", "lay"};
std::string RandomSentence::preposition[5] =
 {"by", "in", "with", "over", "on"};

#include <iostream>

int main() {
 RandomSentence rsc;
 for (int i = 0; i < 3; i++) {
 rsc.createRandomSentence();
 for (int j = 0; j != 6; j++) {
 std::cout << rsc.getSentence()[j];
 if (j == 5) std::cout << std::endl;
 else std::cout << " ";
 }
 }
}

Critiques
You will notice that we have a lot of critiques this issue – many thanks to
all the readers who put finger to keyboard! All the entrants identified the
main problem correctly, so in an attempt to reduce repetition I have
‘refactored’ the solutions to extract the common analysis, and then left
under each author’s name the additional points they raised.

The initial problem (from Jim Hague’s entry)

Programs that work perfectly under the debugger but fail when run
normally are one of those distressing facts of programming life. The
introduction of the debugger into the environment can cause many subtle
changes in the program execution environment, any of which may make
the bug not go away, but change symptoms.

P

ROGER ORR
Roger has been programming for 20 years, most recently
in C++ and Java for various investment banks in Canary
Wharf. He joined ACCU in 1999 and the BSI C++ panel
in 2002.
He may be contacted at rogero@howzatt.demon.co.uk
JUN 2007 | | 29{cvu}

Before charging blithely onwards to other debugging techniques, first
apply the most important debugging tool available to you; think carefully
about what is going wrong, and see if you can come up with a way you
could intentionally make the program behave that way. In this case, the
program is outputting the same sentence three times on each run. Did you
run the program more than once? If so, you’ll see that the sentence does
change between runs. And you also know that if you single-step through
the program the sentence will change within a run. Now, for the same
sentence to be output, the sentence generator must be using the same
random numbers each time. But somehow the sequence of random
numbers the program is getting does change over time. So a close look at
code associated with getting random numbers is a possible line of enquiry,
particularly there is anything time-related there.
So Suspect No. 1 must be the call srand(time(0)). Checking the
documentation for srand(), you’ll find it sets the seed used by rand().
This isn’t the place for a full discussion of randomness – for that, I’ll refer
you to any good algorithms text. Briefly, rand() works by taking a seed
value, permuting it, returning the permuted value and keeping that value
as its seed for the next call. If you don’t call srand(), or call srand()
at the start of the program with a fixed value, then rand() will return the
same sequence of random numbers on each run of the program. This can
be rather useful in debugging.
So the immediate cause of the problem is that the random seed is being
re se t t o t he va lue r e t u rned by time() on e ach ca l l t o
createRandomSentence(). That value will only change once per
second. Calling srand(time(0)) is a common way of setting the
random seed to a different value on each program run, but should happen
only once, typically at program startup.

Headers (from David Carter-Hitchin’s entry)

The placement of #include <iostream> above main() is rather odd,
since it would prevent cout being used in the class (if that was required).
Generally header includes are best clumped together right at the top of
source files. The same goes for <time.h> – this should be at the top and
it should also be <ctime> as time.h is the C header, not the C++ one.
[Ed: Having got headers out of the way, I’ve omitted them from the entries
below to save space.]

From Reg. Charney <charney@charneyday.com>

To fix the problem, you need to change the seed value for the pseudo
random number generator. The easiest way is to use a high resolution
timer, if one is available (perhaps something that works on internal clock
‘ticks’). This may be implementation defined. However, this means only
one or two lines need to change.
Another way of doing this is to move the call to time() outside the loop,
save the value, and use an incremented value as the seed. Thus,
for(int i = 0; i <= 5; i++) {
 srand(time(0));
 randNum = (rand()%5);

becomes:

time_t curTime; // place to store current time
time(&curTime); // get the current time in
 // seconds and store it in curTime
++sentenceNum; // increment sentence number
 // (see below)
for (int i = 0; i<= 5; i++) {
 srand(curTime+sentenceNum+i); // guaranteed to
 // change the seed (see note below)
 randNum = (rand()%5);

As you can see, this solution depends on the sentence number. This is easy
to fix in this application. In the definition of the RandomSentence class

make one basic change: add the following static declaration to the private
part of the class:
static unsigned int sentenceNum = 0;

(for older compilers the initialization may need to be separated out)

From Ian Bruntlett <ianbruntlett@hotmail.com>

After referring to my copy of C in a Nutshell for information about
rand() and srand() I modified the method RandomSentence::
createRandomSentence() so that the call to srand() could be
moved into main(). srand() guarantees ‘For each value of the seed
passed to srand(), subsequent calls to rand() yield the same sequence
of ‘random’ numbers’.
I modified main() to call srand() with the seed value of time(0).
Without that, every invocation of this program would behave as if
srand(1) had been called resulting in the program printing the same
strings time and time again.

class RandomSentence {

public:
 RandomSentence() { sentence.resize(6); }
 void createRandomSentence();
 std::vector<std::string> & getSentence()
 { return sentence; }

private:
 std::vector<std::string> sentence;
 static std::string article[5];
 static std::string noun[5];
 static std::string verb[5];
 static std::string preposition[5];
};

void RandomSentence::createRandomSentence(){

 int randNum;

 for(int i = 0; i <= 5; i++) {
// IRB:- This is the smoking gun :)
// srand(time(0));
// std::cout << "Would call srand "
// << time(0) << std::endl;
 randNum = (rand()%5);
 switch(i){
 // rest of function as before
 }
 }
}

// article, noun, verb, prepositions as before

int main() {
 srand(time(0));
 std::cout << "main : does call srand " <<
 time(0) << std::endl;

 RandomSentence rsc;
 for (int i = 0; i < 3; i++) {
 rsc.createRandomSentence();
 for (int j = 0; j != 6; j++) {
 std::cout << rsc.getSentence()[j];
 if (j == 5) std::cout << std::endl;
 else std::cout << " ";
 }
 }
}

30 | | JUN 2007{cvu}

From Silas S. Brown <ssb22@cam.ac.uk>

In this application, you could just move srand() out of the loop. Put it
a line earlier than where it is, or even put it at the beginning of main().
In applications where you need more genuine randomness (i.e.
cryptography) then you will need to do something stronger (e.g. /dev/
random or OpenSSL libraries) but that is beyond our scope.
Other hints about the code:

1. The getSentence() method is pointless as it is. You might as
well make sentence a public member, because getSentence()
offers no constraints like const to justify having the method. I
recommend writing const std::vector<std::string> &
getSentence() const instead (if you don’t know what const
means and why it’s used then please read about it).

2. There are rather a lot of number 5’s in the code. If this changes then
you’ll have an awkward time. You could write something like:
enum { NumWordsOfEachType = 5};

and then use NumWordsOfEachType everywhere, but it might be
better to support different lengths for the different arrays – why not
make them all vectors and call rand() modulus the length of the
vector? (see STL documentation on vectors for how to get this)

3. Related to this, you don’t really need that switch. You could have an
array of references to vectors, i.e.

const std::vector<std::string>& sentencePattern[] =
{article, noun, verb, preposition, article, noun};

Then for each element of sentencePattern, dereference it with
[] to get the vector of words from which you can pick a random
element.
Doing it this way makes it much, much easier to change things: not
only can you have different numbers of each type of word (most
languages have a lot more nouns than determiners for example) but
also you can quite easily change the sentence pattern. You could
even make sentencePattern a vector, and you can (if you want)
have several different sentence patterns that are picked at random.
All of that would be rather difficult with the switch. (If you really
feel like doing something advanced, try generating sentences
recursively using clauses and noun phrases and so on, but I won’t go
into that here.)

From Jonas Hammarberg <hammarberg@computer.org>

To get it working you just need to move the initialisation of the random
generator. Preferable into main(), before the line RandomSentence
rsc . Al te rna t ive ly you can p lace i t in the cons t ruc tor of
RandomSentence. The latter approach has a drawback as the generator
might be initialized several times by different constructors but in your very
specific case it would work.
A point of critique would be your naming of the class. Honestly, does it
really produce a sentence (as you need to do quite a lot of work to print it
out)? Another point would be the knowledge needed in main to extract
each word – you have to know the exact number of words.
I took the liberty of writing an alternative solution. It’s of course done ‘my
way’ but please note with what ease you can extract a random sentence,
just get it. ;)
If we look at the method for getting a sentence (I merged get and create)
we see that I have gotten rid of the switch-statement. A switch does
have its place, but it shouldn’t be your first answer to a problem.
You might also notice that I’ve no ‘magic numbers’. Actually, you can
have different number of samples for each atom. Yes, I’m using macros
as in this case it removes a number of possible typing errors (misspelling,
mixing arrays etc).
Now I need to take the dogs for a walk so I’ll have to leave the rest of the
analysis in your hands. Please also remember that most sentences start with
a capital letter. ;)

char* articles[] =
 {"the", "a", "my", "your", "his"};
char* nouns[] =
 {"pig", "cup", "phone", "TV", "letter"};
char* verbs[] =
 {"ate", "sat", "flew", "ran", "lay"};
char* prepositions[] =
 {"by", "in", "with", "over", "on"};

class RandomSentence {
public:
 RandomSentence() {
#define NUMBER_OF_ELEMENTS(a) \
 (sizeof(a) / sizeof(a[0]))
#define COPYSAMPLE(a) \
 stringvector(a, a + NUMBER_OF_ELEMENTS(a))
 articles_ = COPYSAMPLE(articles);
 nouns_ = COPYSAMPLE(nouns);
 verbs_ = COPYSAMPLE(verbs);
 prepositions_ = COPYSAMPLE(prepositions);
#undef COPYSAMPLE
#undef NUMBER_OF_ELEMENTS
 }

 std::string getSentence() {
 std::stringstream ss;
 ss << capitalize(article()) << " "
 << noun() << " " << verb() << " "
 << preposition() << " " << article()
 << " " << noun() << ".";
 return ss.str();
 }

private:
 typedef std::vector<std::string> stringvector;

 stringvector articles_;
 stringvector nouns_;
 stringvector verbs_;
 stringvector prepositions_;

 std::string capitalize(const std::string& s)
 { return s.empty()? s : std::string(1,
 std::toupper(s[0])) + s.substr(1); }

 size_t rnd(const size_t range)
 { return rand() % range; }

 std::string word(const stringvector& a)
 { return a.empty()? "" : a[rnd(a.size())]; }

 std::string noun() { return word(nouns_); }
 // ditto for articles/verbs/prepositions
};

int main(void) {
 std::srand((unsigned int)std::time(NULL));
 RandomSentence rsc;
 for(int i(0), end(3); i != end; ++i) {
 std::cout << rsc.getSentence()
 << std::endl;
 }
 return 0;
}

From Peter Pichler <peter.pichler@sophos.com>

On a broader scale, the code seems a bit too complicated for such a simple
task. The use of OOP is superfluous for something that is essentially a
procedural problem. You do not need to keep the intermediate result when
you can print them right away. The use of a switch inside a loop increases
JUN 2007 | | 31{cvu}

the l ine count by add ing no obvious benef i t . The method
getSentence() is not named properly for what it does.
There are some style issues too. Mixing #include with lines of code,
inconsistent brace style, declaring local variables outside the scope they
are used in. Also, createRandomSentence() could be combined with
the RandomSentence constructor. The function main() is correctly
declared as int, but does not return a value. [Ed: this is in fact valid for
main] Finally, there is one article/pronoun missing in each generated
sentence, before the last noun.
My solution is below. I have taken the liberty of increasing the vocabulary.
Like the original, it still produces mostly meaningless sentences, but it
achieves it with a much simpler code. It can be simplified even further,
but probably at the expense of a reduced readability by a novice
programmer.
static const char * article[] =
 { "the", "a", "my", "your", "his", "her" };
static const char * noun[] =
 { "pig", "cup", "phone", "TV", "letter" };
static const char * verb[] =
 { "ate", "sat", "flew", "ran", "lay",
 "walked", "stray" };
static const char * preposition[] = {
 "by", "in", "with", "over", "on", "beyond" };

const char * getWord (
 const char *dictionary[], int dictSize) {
 int r = rand() % dictSize;
 return dictionary[r];
}

#define GW(x) getWord(x, sizeof x/sizeof x[0])

void printSentence () {
 std::cout << GW(article) << ' '
 << GW(noun) << ' '
 << GW(verb) << ' '
 << GW(preposition) << ' '
 << GW(article) << ' '
 << GW(noun) << std::endl;
}

int main() {
 srand((int)time(0));
 for (int i = 0; i < 3; ++i)
 printSentence();
 return 0;
}

From Jim Hague <jim.hague@acm.org>

Job done? That depends. Since you’ve been inspecting the code anyway,
you should always be on the lookout for opportunities to make
improvements to the code, particularly if you found the code difficult to
understand for no good reason. But just before a release isn’t the time to
start making big changes; in this case, file a bug to remind you to come
back later.
My first observation is that the class RandomSentence could be better
named. A RandomSentence object isn’t of itself a random sentence; it’s
a means of generating a random sentence. I’d rename the class
RandomSentenceGenerator.
Next, the class interface is somewhat curious. You need to call
createRandomSentence() to generate a sentence and then
getSentence() to get the sentence just generated. I’d consider
collapsing them into getSentence() , so that each call to
getSentence() returns a new random sentence.
I’m also concerned about the return value from getSentence(). It
returns a vector of words in the sentence. Does it really need to, or could
it just return a single string containing the sentence? That’s what I would

immediately expect from a method called getSentence(). If you really
do need each word i nd i v i dua l l y , I ’ d c a l l t he me t hod
getSentenceWords().
The code as it stands contains a worrying number of magic numbers, 5’s
and 6. Bare numbers are worrying in code. They make it brittle, likely to
break on a small change. For example, the code in main() assumes that
it always gets a vector of 6 words, never more, never less. A small change
to the generator would break it. In this case 6 should be replaced by the
size of the vector. Raw numbers also make it harder to reason about what
the code is doing. There’s a particularly dangerous 5 in the for loop in
createRandomSentence(); 5 is used almost exclusively to mean the
number of entries in each word array, but here it’s counting up to the
number of words in a sentence. At the very least I’d create a constant
WORDS_IN_SENTENCE and use that throughout the class when referring
to the number of words in a generated sentence.
The code assumes that the number of articles is the same as the number of
verbs, the number of nouns etc. This seems unnecessarily restrictive.
Should this generator be a class? C++ doesn’t force you into the object
world if it isn’t appropriate. The generator class isn’t doing much here; the
possible words are fixed, and the whole class could be easily replaced with
a single function. Or the code could be rearranged so that word lists could
be supplied externally; in that case having different generator objects with
created with different word lists would be an appropriate use of classes.

From Thaddaeus Frogley <tfrogley@climaxgroup.com>

The author may also consider a change from time (which returns a number
of seconds) to the use of clock, which returns sub-second accurate timing
(CLOCKS_PER_SEC), but this would most likely still not work as
expected, since multiple instructions can be executed in a single
CLOCKS_PER_SEC, and there is no guarantee that sufficient time will
have passed in a single iteration of the loop for the return value of clock
to have changed. Had the author done this in the first place he may have
encountered the scary world of ‘debug builds work, release builds do not’,
or even worse ‘it works on my (slow) laptop, but when my client runs the
program (on fast server platform) it doesn’t work’.
That said, I believe it’s traditional to explore design improvements in the
CVu code critiques, and not just explain the bug and provide a fix.
In this case the design issue that is most closely linked to the authors bug,
is the use of c library functions with hidden global state, this is to say, calls
to rand/srand.
I would advise programmers who are writing classes that need a source of
random data to accept parameterisation of that data source, probably by
defining a random number generator base class within their framework,
and having pointer or reference to it passed in as an argument to their class
constructor, or perhaps via template parameterisation. This allows
isolation of specific random number sources for specific uses, and enables
better flexibility during debugging or unit testing, by allowing guaranteed
reproducibility by for example, taking ‘random’ numbers from a
predetermined source (say a debug-random file), whilst allowing deployed
builds to use true random number sources from entropic hardware sources.
The finer details of how to implement such a scheme are, of course, left
as an exercise for the reader.

From Nevin :-] Liber <nevin@eviloverlord.com>

Bias: there is a subtle issue here, in that the distribution of random numbers
being used will be slightly biased. rand() returns a value that is uniformly
distributed across [0..2^^32-1]. Because 5 is not a power of 2, rand()%5
will bias towards the lower numbers of the range [0..4]. Removing this bias
is non-trivial.

Encapsulation: class RandomSentence doesn’t really encapsulate
much of anything useful. Its only non-static member variable is
sentence, which is just a cache of the result of calling
RandomSentence::createRandomSentence(). Its static
data are just implementation details. This class can easily be
replaced with a function.
32 | | JUN 2007{cvu}

Coupling: RandomSentence::createRandomSentence
‘knows’ that there are only five words in each of the sentence parts
(article, noun, etc.). main() ‘knows’ that the sentence structure
consists of exactly six words. If any of that changes, code all over
the place needs to change, too.
Efficiency: On one hand, the C-string literals are converted to
std::strings, for an efficiency penalty and no benefit. On the
other hand, RandomSentence::getSentence() returns a
reference to sentence, which can be more efficient but at high cost
of exposing an implementation detail, thus breaking encapsulation.

My solution:
template<typename T, std::size_t N>
T* begin(T (&array)[N])
{ return array; }

template<typename T, std::size_t N>
T* end(T (&array)[N])
{ return array + N; }

template<typename T, std::size_t N>
std::size_t size(T const (&)[N])
{ return N; }

// http://graphics.stanford.edu/~seander/
// bithacks.html#RoundUpPowerOf2
unsigned powerOf2Ceil(unsigned v) {
 --v;
 v |= v >> 1;
 v |= v >> 2;
 v |= v >> 4;
 v |= v >> 8;
 v |= v >> 16;

 return ++v;
}

unsigned randCeil(unsigned v) {
 unsigned roundUpPowerOf2(powerOf2Ceil(v));
 do {
 unsigned r(rand() % roundUpPowerOf2);
 if (r < v) return r;
 }
 while (true);
}

typedef std::vector<char const*> Words;

Words createRandomSentence() {
 static char const* const article[] = {
 "the", "a", "my", "your", "his",
 };

 static char const* const noun[] = {
 "pig", "cup", "phone", "TV", "letter",
 };

 static char const* const verb[] = {
 "ate", "sat", "flew", "ran", "lay",
 };

 static char const* const preposition[] = {
 "by", "in", "with", "over", "on",
 };
 static Words articles(
 begin(article), end(article));
 static Words nouns(
 begin(noun), end(noun));
 static Words verbs(
 begin(verb), end(verb));

 static Words prepositions(
 begin(preposition), end(preposition));

 static Words const* const structure[] = {
 &articles, &nouns, &verbs,
 &prepositions, &articles, &nouns,
 };

 Words sentence;
 sentence.reserve(size(structure));

 for (Words const* const* w =
 begin(structure); w != end(structure);
 ++w) {
 Words const& part(**w);
 sentence.push_back(
 part[randCeil(part.size())]);
 }
 return sentence;
}

int main() {
 srand(time(0));

 for (int i = 0; 3 != i; ++i) {
 Words sentence(createRandomSentence());
 if (!sentence.empty()) {
 std::copy(&sentence.front(),
 &sentence.back(),
 std::ostream_iterator
 <Words::value_type>(std::cout, " "));
 std::cout << sentence.back();
 }
 std::cout << std::endl;
 }
}

Notes:
begin(), end() and size() are simple helper functions for
using arrays in ways similar to STL containers.
powerOf2Ceil(v): This function returns the smallest power of 2
not less than v (assumes 32-bit 2s complement machine with v > 0).
It will be used to remove the bias in calculating the random number.
(I grabbed this off the Internet; credit is in the comment.)
randCeil(v): This function removes the bias in rand() % v.
Basically, it makes sure that the mod happens with
powerOf2Ceil(v), and then throws away any values greater than
or equal to v.
typedef std::vector<char const*> Words: Because all
the words are generated from C-string literals, I store a sequence of
words as a std::vector<char const*>. If some future version
of this program needed to store them as std::strings (say, a
version that read the word lists from a file), all I would have to
change is this typedef to reflect that, and the rest of the code
would still just work.
createRandomSentence(): This function returns a randomly
generated sentence every time it is called.
article, noun, verb, preposition: These static arrays have
unspecified sizes. That way, if one wants to change the number of
words in any of those categories, all one has to do is add or remove
words from the array.
articles, nouns, verbs, prepositions: In order to allow for
each of the categories to contain different numbers of words, each
category of words needs to be stored in a container whose size can
be queried. Words is one such container.
JUN 2007 | | 33{cvu}

structure: In the quest to be more data driven, structure describes
the sentence structure. The function just iterates over structure, picks
a random word from each category, and appends it to sentence.
srand(time(0)): This is at the top of main, and only called once
to seed the random number generator.
std::copy(): This line copies all but the last word to
std::cout, appending each word with a " ".

From John Penney <J.Penney@servicepower.com>

In his commentary on CC44, Roger noted that both solutions had slightly
different behaviour to the original code. I reflected back to the start of my
week at ACCU 07, when I attended a Test Driven Development (TDD)
workshop run by Kevlin Henney, and further back to an excellent book I
looked at last year, Working Effectively with Legacy Code by Michael
Feathers. In this book Feathers (who was also at ACCU07) suggests a
number of strategies for getting nasty legacy code into the comforting arms
of a unit test.
So I thought I’d take a different approach to tackling CC45: can we use
unit tests to find and fix the bug? Doing so would then give us a framework
to carry out further non-functional refactorings suggested here and by other
Code Critiquers – safe in the knowledge that we haven’t changed
functionality.
Making the code unit-testable

Just last week a colleague said (of our simulated annealing algorithm) “Oh,
we can’t unit test that – its results are random”. And this is indeed a problem
with the code supplied: it behaves in a random way. (Let’s just ignore the
fact that it’s actually currently quite random and that what you actually
want it to be very random! Every run gives different results, but all the
sentences produced in a run are the same.) How can you unit test code
that does random stuff? Well in this case we can decouple the
responsibility for random-number generation from the responsibility for
sentence-building. This first change we have to do without the aid of our
unit test safety net, so we want to change as little as possible. The simplest
change I could think of doing was to pass the six random numbers which
generate sentence indices in as parameters instead of having them
generated inline, so:

typedef int SentenceIndices[6];
void RandomSentence::createRandomSentence(
 const SentenceIndices& sentenceIndices){

 int randNum;
 for(int i = 0; i <= 5 ; i++) {
 //srand(time(0));
 //randNum = (rand()%5);
 randNum = sentenceIndices[i];
 switch(i){

Getting some unit tests in place!

Now we have something we can unit test. Maybe you have a unit test
framework to hand… even if you don’t think you do, you do! As Kevlin
Henney demonstrated, plain ol’ assert will do:

#include <cassert>
void testNormalSentenceConstruction() {
 RandomSentence rsc;
 const SentenceIndices indexSet1 =
 {0, 0, 0, 0, 0, 0};
 rsc.createRandomSentence(indexSet1);
 assert(rsc.getSentence().size() == 6);
 assert(rsc.getSentence()[0] == "the");
 assert(rsc.getSentence()[1] == "pig");
 assert(rsc.getSentence()[2] == "ate");
 assert(rsc.getSentence()[3] == "by");
 assert(rsc.getSentence()[4] == "the");
 assert(rsc.getSentence()[5] == "pig");

}

Now you can write a few of these tests – but there’s a lot of repetition here
(every character up to column 40 in fact, on later lines). Let’s refactor our
tests, so we end up with a rather more elegant-looking test as follows:
#include <cassert>
std::string buildSentence(int i1, int i2,
 int i3, int i4, int i5, int i6) {
 RandomSentence rsc;
 const SentenceIndices indices = {i1, i2, i3,
 i4, i5, i6};
 rsc.createRandomSentence(indices);
 const std::vector<std::string>& s =
 rsc.getSentence();
 return s[0] + " " + s[1] + " " + s[2]
 + " " + s[3] + " " + s[4] + " " + s[5];
}
void testNormalSentenceConstruction() {
 assert(buildSentence(0, 0, 0, 0, 0, 0) ==
 "the pig ate by the pig");
 assert(buildSentence(4, 4, 4, 4, 4, 4) ==
 "his letter lay on his letter");
 assert(buildSentence(3, 0, 1, 1, 2, 1) ==
 "your pig sat in my cup");
 assert(buildSentence(1, 2, 3, 3, 2, 0) ==
 "a phone ran over my pig");
}

Bug? What bug?

Now you can write lots of these tests and they’ll all pass. Why? Because
the code has no bug in it… we took it out in our very first refactoring! Think
back to the original published version of RandomSentence. Being a
battle-scarred veteran, my suspicious eyes were drawn to the statement
srand(time(0)) . H e r e ’ s a s o l u t i o n t h a t r e - us e s t he
buildSentence() method we wrote above to support our unit tests:

int main() {
 testNormalSentenceConstruction();

 srand(time(0));
 const int numSentences = 3;
 for (int sentenceNum = 0 ;
 sentenceNum < numSentences ;
 ++sentenceNum) {
 std::cout << buildSentence(
 (rand()%5),(rand()%5),(rand()%5),
 (rand()%5),(rand()%5),(rand()%5))
 << std::endl;
 }
}

Don’t ttop (thinking about tomorrow)

We don’t want to stop now, just having fixing the bug. Let’s take advantage
of that useful unit testing and refactor the code to make it as clean,
maintainable and simple as possible. Here are some ideas:

Rename i and j with nice names like wordNum etc.
Be more scrupulous about const-ness. For example, make
RandomSentence::getSentence() const and declare
randNum at the point of use, and make it const:
const int randNum = sentenceIndices[5];

Think about the role of the classes: RandomSentence looks to me
a lot more like a RandomSentenceGenerator
Those C arrays of words could become STL containers which can
then be of different sizes (you’re currently constrained to choosing
exactly 5 words in each class).
34 | | JUN 2007{cvu}

Prefer ++i to i++ (aka Don’t Pessimize Prematurely – use the
prefix ++ operator as a matter of course)
Add some tests to exercise the indices in SentenceIndices being
out of bounds (<0 or >6) and then add the protection to your class.

Each of these changes is best made in small steps, running the unit tests
through each time to confirm you’ve not broken anything.
I hope you can see that by working in this cyclic manner the code moves
a long way away from the original, becoming simpler, more elegant and
acquiring new functionality as it goes, yet all the time maintaining
functional integrity.

From Jean-Marc Bourguet <jm@bourguet.org>

Now, we can go in either of two directions: the design of your program
and the use of random numbers in C++. Even if I think that there are things
to be commented in the design, I won’t do it as I can come with several
alternative designs and I don’t know enough about the context to decide
which is best.
The first thing you may want to do when using a pseudo-random number
generator in a program is to inform the user of the seed used to initialize
it – for example in a log file – and allowing the user to set the seed – for
example with an argument to main(). Even if most users won’t take
advantage of that feature, it will enable you to debug problems which
depend on the generated sequence.
Then, there are some problems when you try to reduce the range of the
generated numbers. The easiest way is to use the remainder operator as you
have done it. It works well enough in most cases but you need to be aware
of two caveats.
The first caveat is common to whatever generator you use. If the number
of cases you are interested – five here – is not a divisor of RAND_MAX+1,
you’ll get the small values generated more often than the bigger one. How
much more often? That depends on the respective values, the bigger
RAND_MAX is, the smaller is the bias. If you were using a dice – with a
RAND_MAX of 5 – 0 would be generated twice as often as the other 4 cases.
The only way to cure this is to drop some values.
The second problem is that some popular pseudo-random number
generators generate numbers whose less significant bits are ‘less random’
than the most significant one. Using the remainder operator uses precisely
those bits. In the worst case I’ve seen was using rand() % 2 and get an
alternating sequence of 0 and 1. Now, the library providers are aware of
this and usually take some corrective measures, but you can take care of
it by using a division instead of a remainder.
The code I use to reduce the range is the following:

int alea(int n) {
 assert (0 < n && n <= RAND_MAX);
 int partSize = n == RAND_MAX ? 1
 : 1 + (RAND_MAX-n)/(n+1);
 int firstToBeDropped = partSize * n
 + partSize;
 int draw;
 do {
 draw = rand();
 } while (draw >= firstToBeDropped);
 return draw/partSize;
}

It takes care of these two issues and also won’t trigger overflow if
RAND_MAX happens to be equal to INT_MAX.
Note that if those issues – especially the second – are important to you,
you probably don’t want to rely on a generator of unknown quality. The
technical report on library – and boost, and probably the next standard –
provides additional way to get random numbers. There are several
generators using known algorithms, and interfaces to provide some
standard distributions. Using them, the function above could be rewritten
as this:

std::tr1::mt19937 generator;

int alea(int n) {
 std::tr1::uniform_int distribution(0, n);
 return distribution(generator);
}

From Joe Wood <joew@aleph.ndo.co.uk>

Hi, sure I’ll have a look for you, but I should warn you before we begin
that I’m not a C++ programmer. But it’s late and the lab is nearly deserted
so let’s see what we can do.
On the subject of the call to srand, time should be called with a NULL
parameter to return the current time not 0. Yes, I know and you know that
NULL has a value of 0, but logically they are different. Also srand expects
an unsigned parameter not a time_t type, so let’s add a cast. Hence the
call now looks like:
srand((unsigned)time(NULL)). You need to add cstdlib to your
list of includes, to get access to the NULL macro. Incidentally, it is generally
best to put all your includes at the top of file, ideally grouped by (say)
system, project, local and then alphabetically. By the way, I see you are
mixing old style .h headers with new style headers, really it is best to use
the new style headers.
On the matter of file structure, as this is only an exercise its probably OK
to put the entire program in a single file, but really we should put the
declaration of class RandomSentence into one (header) file, the
implementation of RandomSentence into one or more files as required
for ease of development and our software configuration policy and finally
a separate file for the main function.
Now the function createRandomSentence looks rather complicated.
Ah, I see, you are constructing a sentence with the grammar {sentence :=
article noun verb proposition article noun}, and for each part of speech you
have chosen one at random from their respect ive arrays in
RandomSentence. But you don’t need the loop and the switch statements
they just obscure what is really a simple sequence. Let’s create a macro
called RANDNUM which takes an array as a parameter, then the entire for
block can be replaced by

sentence[0] = RANDNUM(article);
sentence[1] = RANDNUM(noun);
sentence[2] = RANDNUM(verb);
sentence[3] = RANDNUM(preposition);
sentence[4] = RANDNUM(article);
sentence[5] = RANDNUM(noun);

which is pretty close to what our grammar looks like. Now we need to sort
out the definition of RANDNUM. Basically it wants to be something like
“Take in an array and return a random element from that array”. But why
have you made all the string arrays in RandomSentence the same size?
Ah, so that you can use

randNum = (rand()%5);

in your loop. Its not a good idea to just drop ‘magic’ numbers into your
code, use a macro instead because this eases maintenance. Now that we
have got rid of the loop and introduced the RANDNUM macro, we don’t need
to limit ourselves to all the arrays being the same length, but we need to
know the length of the individual arrays. Unfortunately, this is one of C++
weaknesses, arrays do not carry knowledge of their length with them unlike
container classes in the STL for example vector. However we can get
round this by defining our RANDNUM macro as

#define RANDNUM(X) \
 ::randNum(X, sizeof(X)/sizeof(X[0]))

and then we can create the function randNum as follows
JUN 2007 | | 35{cvu}

static std::string randNum (
 std::string * choices, size_t count) {
 return *(choices+(rand()%count));
}

Which probably needs some explanation. The local function randNum
takes in an array (of strings) and a length, it then returns a random element
from that array. The macro RANDNUM calculates the length of the array as
“total size of(array)/size of(first element of array)”. I would put the
d e f i n i t i o n o f RANDNUM j u s t be fo r e t h e f un c t i o n
createRandomSentence and undefine it just after.
Now we can handle different sizes for the various parts of speech.
Alternatively we could make the data member sentence into a single
std::string, and use RANDNUM with the append operator+=. We
would have to decide if a single extra space at the end of sentence was
acceptable, this is not clear.
The need for the macro RANDNUM would be removed if arrays carried their
length, or we used vectors, but I don’t know now to initialise a vector from
an aggregate, and using the naïve approach of inserting elements into a
vector inside a loop would result in two copies of the data. Not a problem
in a small program but it won’t scale well.
Better yet, we could construct a vector of pairs (not a provided C++ type),
something like (in pseudo C++)

const std::vector<pair> grammar =
 {a(article), a(noun), a(verb),
 a(proposition), a(article), a(noun)};

and then we could just iterate over the grammar.
I t s h o u l d be no t e d t ha t t he s t r i n g r e t u rn e d b y
RandomSentence::getSentence allows full access to the member
sentence, fixing this would require the additions of a number of consts,
and is deemed beyond the scope of this exercise and my knowledge.
There is no need to specify the sizes of the parts of speech arrays in
RandomSentence nor in the actual data initialisers as the compiler is
much better at counting than most people, and it reduces program coupling.
I would however declare the arrays as const.
Finally we can make a few small changes to main. In the outer for loop,
just after the call to createRandomSentence we should add the line

std::vector<std::string> & sentence =
 rsc.getSentence();

which saves several unnecessary calls to getSentence. I think it is
always a good idea to put braces around statements in for and if statements
etc. because later editing is unlikely to cause nasty surprises in the
execution flow. Personally, I would rewrite the inner loop as

size_t last_word = sentence.size()-1;

// all words bar the last are followed by a space
for (size_t j = 0; j < last_word ; j++) {
 std::cout << sentence[j] << " ";
}
// last word is followed by end of line
std::cout << sentence[last_word] << std::endl ;

But that’s just a personal choice. It would be nice since sentence is a vector
to use iterators, but I don’t know how to specify the range begin(),
end()-1.

From David Carter-Hitchin <David.Carter-Hitchin@rbos.com >

Looks like this student has fulfilled Knuth’s prediction: ‘Every random
number generator will fail in at least one application.’ (Donald Knuth,
1969).

At first sight the code looks reasonably structured and well written.
Concentrating on the student’s complaint first of all, the error comes to
light pretty quickly. At this point I would explain to the student how
pseudo-random sequences work. Namely using a seed value and by
applying modular arithmetic to that seed to get the next number in the
sequence. This would allow the student to understand that nature of
pseudo-random numbers and the importance of resetting the random seed
only once (or when appropriate). In simulation software it is often useful
to set the random seed to the same value at the start of each batch of
simulations, in order to get reproducible and comparable results. In the
case of the random sentence generator, a different seed each time seems
appropriate.
One must also consider that the sequence of such values can only ever be
pseudo random. To quote one of the founding fathers of modern
computing, John Von Neumann: ‘Anyone who considers arithmetical
methods of producing random digits is, of course, in a state of sin.’ (1951,
‘Various Techniques used in connection with random digits’ in Monte
Carlo Method) (1)
Von Neumann worked at RAND, which spent a lot of time and money
developing methods to artificially generate random numbers (besides lots
of other things, like the development of Game Theory as applied to nuclear
warfare).
For the program above, the choice of random number generator is
insignificant, but for large scale scientific programs, for example, choices
become much more critical. A good overview of methods is discussed in
Chapter 7 of Monte Carlo Methods in Finance by Peter Jaekel, and
googling for ‘random number generator comparison’ produces 42 million
hits.
So much for pseudo randomness. The rest of the code seems a little bulky
for what it does. The switch statement in createRandomSentence()
seems way over the top, considering the values of i will be the same for
each call. In other words it’s equivalent to:

sentence[0] = article[rand()%5];
sentence[1] = noun[rand()%5];
sentence[2] = verb[rand()%5];
sentence[3] = preposition[rand()%5];
sentence[4] = article[rand()%5];
sentence[5] = noun[rand()%5];

Which is much more compact and readable. Admittedly it is perhaps less
flexible than a switch, which is maybe what the student had in mind.
The magic number 5 should be a constant at the top of the program, for
ease of maintenance. Sentences start with capital letters and end with full
stops, so these need to be incorporated.
Finally the structure of the program doesn’t allow for any flexibility of
random sentence structure – i.e. you always get ‘article noun verb
preposition article noun’. It might be more interesting to have a stock of
say ten or so common sentence structures and then apply appropriate words
into those structures from particular sets. One way to do this would be to
store all the nouns (for example) into a vector and put that into a global
word map with ‘noun’ as the key. Something like this:

std::map<std::string,
 std::vector<std::string> > words;

std::vector<std::string> > nouns;
nouns.push_back("Fred");
nouns.push_back("apple");
nouns.push_back("throttle");

words["noun"] = nouns;

Then a random sentence structure could be picked which would look
something like:
36 | | JUN 2007{cvu}

std::string structure1 = "verb!";
 // e.g. "Swim!"
std::string structure2 = "noun verb noun"
 // e.g. "Dog eat dog."

The tokens in the structure would then be looked up in the words map and
a random element of the vector of words be chosen for the resulting
sentence.
(1) Monte Carlo Method, US Department of Commerce, National

Bureau of Standards, Applied Mathematics Series 12, June 1951.

The Winner of CC 45
The bug was fairly obvious, but the fact that it didn’t appear when single
stepping the program with a debugger does make it a lot harder for novice
programmers to resolve the problem. I picked Jim as the winner this time
as I consider his advice that the best debugging tool is to think was the best
key to cracking the problem.
I also liked John and Jean’s different approaches to making the use of
rand() reproducible for testing.

Code Critique 46

(Submissions to scc@accu.org by 1st July)

‘I have built a simple singleton for logging and it seems to work, but I had
to add a call to clear() the file stream after open() to get it to work
properly. Does anyone know why this call is needed – I think my
compiler’s standard library has a bug?’
Please answer this question, but don’t stop there…
// Logger.h
#include <string>
#include <fstream>

class Logger
{
public:
 static Logger * instance(
 std::string dest = "logfile.txt");
 ~Logger();
 void write(std::string);
private:
 static Logger * theLogger;
 std::ofstream f;
};

// Logger.cpp
#include "Logger.h"

Logger * Logger::theLogger;

Logger * Logger::instance(std::string dest)
{
 if (! theLogger)
 theLogger = new Logger;
 theLogger->f.open(dest.data());
 theLogger->f.clear(); // << Help – why??
 return theLogger;
}

Logger::~Logger()
{
 if (this == theLogger)
 theLogger = 0;
 f.close();
}

void Logger::write(std::string line)
{
 f << line << std::endl;
}

// Example.cpp
#include "Logger.cpp"

int main()
{
 Logger::instance("example.log")->
 write("Starting main");
 //
 Logger::instance()->write("Doing stuff");
 //
 Logger::instance()->write("Ending main");
 delete Logger::instance();
}

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU website
(http://www.accu.org/journals/). This particularly helps overseas
members who typically get the magazine much later than members in the
UK and Europe.

Don’t forget to get your entries in
by 1st July to scc@accu.org

Prizes provided by Blackwells Bookshops and Addison-Wesley
JUN 2007 | | 37{cvu}

38 | | JUN 2007{cvu}

The Unicode 5.0
Standard
By the Unicode Consortium,
published by Addison-Wesley
ISBN 0-321-48091-0

Reviewed by Derek Jones

This book contains the latest
version of the Unicode Standard, including all of
its annexes, for a total of 1,417 pages (plus a
CD).
If you have any interest in using European
character sets you might be able to get away with
using one or more of the ad-hoc methods that
were invented before Unicode came along.
However, the computing world jumped on the
Unicode bandwagon nearly 10 years ago and if
you plan to create text in any non-English
language you will probably use Unicode and
will need a copy of its standard. Buying this
book is the most cost effective way of obtaining
the Unicode Standard. As far as I could tell all
of the material on the CD (text versions of all of
the Unicode data files) is available on the
Unicode web site.
The book is a lot more than a collection of
numbers and the corresponding visual
representation of the characters they denote.
There is extensive discussion, on a per language
basis, of the problems associated with encoding
the character sets of planet Earth (a proposal to
support Klingon was rejected). This edition
contains significantly more background
material than earlier editions, but has shrunk
from an A4 page size to something slightly
smaller.
Individual characters rarely exist in isolation,
they are combined to form words, sentences and
paragraphs. The problems associated with
creating and using subsets of the Unicode
characters (ie, those belonging to a particular
language, or combination of languages, such as
inserting an English quotation, in English, into
a character sequence representing another
language) are covered in great detail. The detail
is so great it is possible to create an
implementation from it.
People not creating an implementation, wanting
fewer pages and more background might like to

check out Unicode Demystified by Richard
Gillam, also published by Addison-Wesley
ISBN: 0-201-70052-2.

Comparative Book Review
C++/CLI: The Visual C++
Language for .NET
By Gordon Hogenson, published
by Apress

ISBN-13: 978-1-59059-705-7
ISBN-10: 1-59059-705-2

Pro Visual C++/CLI and
the .NET 2.0 Platform
By Stephen R. G. Fraser, published
by Apress

ISBN: 1-59059-640-4

Review by Richard Elderton

Microsoft Visual C++ 2005
Express is one humdinger of an integrated
development environment, what is more, you
can download it free of charge from Microsoft.
Once one has it, one naturally thinks ‘How can
I make maximum use of this thing? And what’s
CLR all about?’ I have echoes in my mind of
people saying to me ‘You know boy, your
trouble is that you are always trying to run before
you can walk!’ But surely, if one has no interest
in running, one is unlikely to care much about
walking either. I confess though, my classic C++
is still at the toddler stage. But what better time

to start thinking about a major new extension to
the C++ language?
For those you don’t know, CLI (Common
Language Infrastructure) is an ISO/ANSI
(language standard) specification for a virtual
machine environment in which to run
executables. The CLI specifies a ‘standard
intermediate language’, which for .Net is the
Microsoft Intermediate Language. The
intermediate code is compiled by a just-in-time
compiler at runtime, so the target machine has
to have a version of the .Net Framework
installed as a component of the Windows
operating system. Microsoft’s implementation
of the CLI is known as the Common Language
Runtime (CLR).
Since C++/CLI is essentially a superset of ISO
standard C++, I innocently assumed that I would
cover the gap that separates them with one small
step, but it turns out that a giant leap is required,
and you need expert guidance for setting the
correct glide slope and velocity on landing.
(Strictly speaking, this may be found in the Help
system for Visual C++ 2005 Express, but that’s
like entering a centrifuge unless you know what
you are doing already.)
The Mullah Lippman thinks C++/CLI is a jolly
good idea, whilst the Chief Mufti Stroustrup has
declared it to be an ungodly tendency:

The wealth of new language facilities in
C++/CLI compared to ISO Standard C++
tempts programmers to write non-portable
code that (often invisibly) become [sic]
intimately tied to Microsoft Windows…
…CLI is ‘language neutral’ only in the
sense that every language must support all
of the CLI features to be ‘first-class’ on
.Net.

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website
which contains a list of all of the books currently available. If there is something that you want to review,
but can't find on there, just ask. It is possible that we can get hold of it.

After you've made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous “not recommended” rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops

[continued on back page]

accu ACCU Information
Membership news and committee reports
View From The Chair
Jez Higgins
chair@accu.org

As I write this, New Year's
resolution still unfulfilled[1], I
still haven't recovered from
this year's conference.
Attending the conference s exhausting, because
it just doesn't let up. You go from session to
session to session, and in the gaps in between
you talk. You talk about the sessions you been
to, the session you plan to go to, what you're
working on, what you will work on, that time
when you both were on that job out in Germany
and the infrastructure team ... It would be pretty
tiring even if you didn't then sit up half the night
drinking and talking some more. But you do, and
it seems entirely natural and sensible at the time,
because this is the one of the few opportunities
we get to meet people we only otherwise know
through articles or email lists. The discussion
and story-swapping that goes on cements those
friendships and builds "technical trust" (a phrase
I've just made up, but hopefully you understand
what I mean).
While the physical after-effects only take a day
or two to overcome (even for those of us foolish
enough to play squash[2]), the mental effects
take that much longer to recover from. In fact,
recover isn't even be the right word. Absorb
maybe, or internalise. With a programme as
varied as the ACCU Conference has, you don't
take away a well-defined little collection of
related information. Instead you carry away a
smogasbord of session material, combined with
all the conversations you had (both relevant and
not). This great ball of "stuff" takes time to
digest, to pick apart, to find and follow the
threads of. Some pieces will take longer than
others. I've already bought and am reading three
books because of sessions I attended, but I know
that months, maybe even years, later some
snippet will come back to me when I need it.
From the outside, it might appear that the
conference is some enormous booze-up, when
it's really a deep and life changing experience.
No, really!
To close, I'd like to thank all you who were able
to attend this year's AGM. It was my first time
in the chair and I didn't make as good a job of it
as I might, but I think the issues discussed and
decisions taken will work out well for the
organisation. On behalf of the officers and
committee I'd like to thank you for electing or
reelecting us, and for the confidence you show in
us.
ACCU confers on honarary memberships on
members who have made a particular and long-
standing contribution to the organisation. This

year, the AGM recognised David Hodge, who
stood down as membership secretary. David was
membership secretary for 10 years, meaning for
many, perhaps even most, of us he was our first
point of contact with the organisation. In the
time I've been involved with the committee he
has been as solid and as reliable a person as you
could wish for. His service to ACCU can not
really be measured, and on behalf of the
membership I would like to again thank David
and wish him a long and happy retirement.

Membership Report
Mick Brooks
accumembership@accu.org

I'm struggling to find something to say for my
first report as membership secretary proper. I
think I'll choose to interpret that as indication
that all is going well. The new membership
system continues to work well, and we have
close to 1000 members after the traditional rush
of new subscriptions before the conference.
Now we're in a comparative lull. Elsewhere in
this issue, our new publicity officer has lots of
ideas to increase awareness of the ACCU. Can
you do your bit? Do consider mentioning us to
your friends and colleagues. If you know a group
of likely recruits and want to evangelise, drop
me or David a line: we'd be happy to send spare
journals and flyers for you to wave around.
As always, send details of contact info changes
to me, and let me know if any of the journal
mailings fail to reach you.

Publicity Officer
David Carter-Hitchin
publicity@accu.org

It is a great shame that there are many IT
professionals who have never heard of the
ACCU. It is one thing to know about the ACCU
and have decided to not be a member, but it is an
entirely different thing to not be a member
because you've never heard about the
organisation. I have spoken to numerous C++,
Java, Python, C# programmers who have never
of the ACCU, and I believe a fair proportion of
them would be interested in joining and finding
out what we're all about. I think it is much more
common for a programmer to be ignorant of the
ACCU's existence than not. This must change.
It is for this reason that I have put myself
forward for the role of publicity officer, as I
believe every person involved with IT and
programming in particular should have heard
about the ACCU and know broadly what it
constitutes. I have come to the ACCU relatively
late in my career, and I wish I'd known about it
earlier as I believe it is an immensely valuable
organisation that fosters excellence in
programming through various activities. It has

certainly helped me in ways that outstrip the cost
of the annual membership fee.
You can help in advertising the ACCU. At the
bottom of your e-mail, in your signature, please
put the following message (or something
similar):
ACCU - http://www.accu.org/ - Professionalism
in Programming
Do this now, don't leave it until tomorrow when
you might forget! If you wish to put a few more
lines in describing what we do, then that's great
too. If you run a website, or know people who
do, see if you can put a link to the ACCU site
from your site. Also tell all of your friends and
colleagues when you have an opportunity to do
so - the power of personal recommendation is
not to be underestimated! You can also help me
by volunteering a small amount of your time - I'll
talk about this in a moment.
Spreading the word about the ACCU will attract
more members which will have several notable
benefits:

1 More quality CVu and Overload articles,
on more diverse subjects.

2 More book reviews.
3 More mentors.
4 The ACCU will have more funds which

will empower it to do more things. There
are a large number of possibilities here,
for example to provide scholarships,
enhance the magazine content (perhaps
with a DVD), put on more events and so
on. Money buys a lot of things!

5 To diversify and enrich the membership.
The ACCU will benefit from attracting
members from diverse fields which are
perhaps poorly or not at all represented at
the moment and also to increase the
numbers in those areas which are well
represented. You can never have enough
of a good thing. Attracting good people
who care about what they do within IT is
really what the ACCU is about.

To this end, I will putting a publicity campaign
together over the coming months. This will
consist of targeting obvious organisations such
as:

Software Houses
Universities
Recruitment and Training Companies
Other programming organisations (e.g.
USENIX, MSDN) Banks and other
corporates.

I will sending out a fair number of letters, but I
may also need volunteers to help place flyers in
strategic locations or to talk to local students (for
example). If you can help with this, then please
get in touch via the e-mail address below.

[1] CVu 17.1
[2] But for the good! Emacs roolz!
JUN 2007 | | 39{cvu}

accuACCU Information
Membership news and committee reports
REVIEWS

I will also be seeking to set up reciprocal
arrangements with other conferences such as the
BoostCon. The idea is that we give them a space
at our next conference in exchange for a space at
theirs. For this to happen I am going to need
help, as I can't cover all the conferences on my
own! If you would like to go to a conference to
represent the ACCU can you please get in touch
with me and I'll keep your details on file for
when the time comes.
I will also be looking to get a slot on Radio and
perhaps even something on TV. I don't have
many contacts in this area, so if you do, then let
me know.
Finally if you have any other ideas for how we
can spread the word, then please get in touch.
40 | | JUN 2007{cvu}

Dare I risk my mortal soul? Well, I think its
worth a serious look. Whilst classic C++
programming is a more ‘pure’ form of the art,
programming with C++/CLI promises to be an
easier, more productive and practically useful
activity, apart from the fact that its primary
purpose is to produce applications which target
the .Net platform, which is all about
interoperability between different programming
languages.
There seem to be few books catering to the C++/
CLI novice, certainly none within a day’s
march, but I found two possible titles on
www.apress.com: C++/CLI: The Visual C++
Language for .NET by Gordon Hogenson, and
Pro Visual C++/CLI and the .NET 2.0 Platform
by Stephen R. G. Fraser.
The publisher’s promotional blurbs for these
books are very similar, making it difficult to
make a rational choice between them. The ‘Pro’
in Fraser’s title suggests that it might be more
difficult to digest, but the larger page count
(961) suggests that it might have more
comprehensive coverage of the subject, and /or
have more detailed explanations. This book
would have cost me £45.59 from Amazon.
I plumped for Hogenson’s book initially. It has
a total page count of 448 and cost me £29.44,
new, from Amazon. It is an unusually
comfortable tome to handle, for one describing
a computer programming language.
This book serves well as an introduction to C++/
CLI programming, but the author makes no
pretence to its being fully comprehensive. He
assumes the reader to be proficient in classic
C++, or another language targeting .NET. The
book is billed as addressing the .Net Platform
version 3.0 (which is a superset of version 2.0),

but as far as I could tell, the author does not
expound on any of the extra class libraries it
contains (chiefly concerning 3D vector
graphics, communication between applications,
task automation, and digital identities).
By chapter four, I was finding this book very
hard work. I then discovered that you can buy
PDF versions of many Apress titles, including
Pro Visual C++/CLI, from their web site. A
paper book with over 900 pages has got to be a
pretty cumbersome thing to handle, and since
my laptop computer keeps me warm in the
winter, I thought I would give the PDF a try. It
cost me £18.33.
This book does have a larger scope than
Hogenson’s. Fraser, for instance, has a lot to say
about the very significant topic of Windows
Forms, whereas Hogenson mentions it only
briefly. Despite the ‘Pro’ in the title, Fraser’s
book takes things at a more leisurely pace and is
kinder to the less experienced reader.
After a while I got used to this rather unnatural
way of reading a book and appreciated the ease
with which you can find references and copy and
paste material into a notes file. If my laptop had
enough grunt to drive MS Visual C++ 2005
Express I could try out the sample programs as
well. Of course, I could do this on my desktop
PC but after the day’s work I have usually had
enough of sitting at a desk.
Quite early on I needed to understand the
concept of ‘member properties’ – one not used
in classic C++. Hogenson’s multi-faceted
explanations were beyond my comprehension
until I had read Fraser’s. In only a few sentences
he satisfied my curiosity and I was able to
proceed, whilst accepting that I would need to
return later.

Fraser shows screen shots of program output;
this saves you the trouble of trying out stuff
yourself (except in cases where you just don’t
believe him), since it adds a touch of realism.
Hogenson lists program output as printed text
between horizontal rule lines; this has the
advantage of being more legible.
Fraser’s PDF book is fairly stuffed with typing
errors. I noted 30 in the first 156 pages (is this
more than the national average?). They do force
one to think about what the author really means,
which is not a bad thing, but it can become
irksome.
Hogenson’s errors are more difficult to spot and
fewer on the ground (averaging one per 28
pages, in the first few chapters). Being a senior
Microsoft technical writer, he may care more
about that kind of thing.
In conclusion, the electronic Fraser has been
better value for money, whilst Hogenson’s book
is still entertaining when I am too far away from
a mains power receptacle to give life support to
my old laptop. Now that summer’s coming on I
just might buy Fraser’s paper version too.

Bookcase (continued)

	When should code be allowed to die?
	Scripting C++ Objects
	Proactive Laziness
	How ‘professional’ are you?
	Stand and Deliver
	Customising a Diskless Linux
	ACCU Conference 2007
	Standards Report
	Code Critique Competition 46

