

APR 2007 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

ACCU is an organisation of programmers who care
about professionalism in programming. That is, we
care about writing good code, and about writing it in
a good way. We are dedicated to raising the standard
of programming.
ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
ACCU members – by programmers, for programmers
– and have been contributed free of charge.
To find out more about ACCU’s activities, or to join the
organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of ACCU

accu
{cvu}

Volume 19 Issue 2
April 2007

Editor
Tim Penhey
cvu@accu.org

Contributors
Ian Bruntlett, Frances
Buontempo, Lois Goldthwaite,
Pete Goodliffe, Thomas Guest,
Jez Higgins, Garth Lancaster,
Günter Obiltschnig, Roger Orr,
Tim Penhey, Peter Pilgrim,
Matthew Wilson

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
David Hodge
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Thaddeus Froggley
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

TIM PENHEY,
EDITOR

Conference Time
ell, we are only a few months into the year, and I don’t know about
you lot but my New Year resolutions aren’t going too well. For
some reason even just eating less is a lot harder than it sounds.

As you all should be aware the ACCU spring conference is almost upon
us. And if you don’t live in Europe you might be reading this after it’s
happened already. I have to admit I love the conferences. I didn’t
always. The only reason I went to my first ACCU conference was to
see Bjarne Stroustrup, as I didn’t think there would be much chance of
me seeing him back in New Zealand. The next year I went because I’d
catch up with some colleagues who I had worked with. I didn’t get
much out of that conference. Then I didn’t go for a few years. I just
looked at the program and thought ‘Nah, that doesn’t sound that
interesting. Maybe next year.’ Then one year I had an epiphany. There
is a saying that goes something like ‘you become like those you hang
around’, and there were many people I respected and wanted to be more
like who go to these ACCU conferences. So I decided that I’d go with the
intent of interpersonal networking, and enjoying some interesting talks. It
is the talking and association that goes on in between the sessions, at
breakfast, at dinner, and at the bar, that you’ll often get the most worth out
of the conference. Yeah sure, some of the talks are interesting, and you’ll
learn a thing or two, but there is the immeasurable benefit that you get out of
just ‘hanging around’ people who you aspire to be like.
On a slight tangent, for those of you, like me, living on the other side of the
planet to Oxford, you’ll be aware that the cost of getting to the conference is
significantly more than the cost of entry. If we can get some more members close
to us, there is no reason not to aim for a southern hemisphere ACCU spring
conference. If there is enough interest I’m sure we can work something out, and
maybe we will see Bjarne over here after all.
Go to the conference, but hang around between the sessions, and in the evening.
Find out where people are going for dinner and ask to go along.

W

2 | | APR 2007

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

COPY DATES
C Vu 19.3: 1st May 2007
C Vu 19.4: 1st July 2007

IN OVERLOAD
Begin your reading with ‘Software Product Line Engineering
with Feature Models’ by Danilo Beuche and Mark Dalgarno.

DIALOGUE
27 Code Critique Competition

This issue’s competition
and the results from last
time.

30 Standards Report
Lois describes the work
ahead.

30 Regional Meeting
Frances Buontempo
reports on the London
regional meeting.

34 Technology Tidbits
Tim Penhey brings a
version control system to
our attention.

REGULARS
29 Book Reviews

The latest roundup from
the ACCU bookcase.

35 ACCU Members Zone
Reports and membership
news.

FEATURES
3 A Custom Event Layer for the ACE Reactor Framework

Matthew Wilson and Garth Lancaster describe a
mechanism for seamless insertion into event-based
hierarchies.

9 Professionalism in Programming #43: Playing by the Rules
Pete Goodliffe describes the rules that help him to play the
programming game.

12 A Guided Tour of the POCO C++ Libraries
Günter Obiltschnig explains the origins of POCO.

16 The Trouble with Version Numbers
Thomas Guest untangles the version numbering puzzle.

18 Libris Unity
Ian Brunlett talks us through some unofficial interfaces.

20 The World View of a Java Champion:
You Gotta Get On To Get Down
Peter Pilgrim introduces a new series and the Java user
group.

21 Adventures in Autoconfiscation #3
Jez Higgins concludes his series on GNU autotools.

A Custom Event Layer for the ACE Reactor
Framework

Matthew Wilson and Garth Lancaster describe a mechanism
for seamless insertion into event-based hierarchies.

Introduction
he Adaptive Communications Environment (ACE) [1] provides an
operating-system adaptation layer for I/O, timers, signals and
synchronisation based events, and offers several substantive

frameworks for the development of high-performing networking programs
in C++. The ACE Reactor framework operates on a call-back model [2],
whereby an event handler – an instance of a class derived from
ACE_Event_Handler – is registered with the reactor – an instance
(usually a singleton) of a class derived from ACE_Reactor – and receives
events about which it is interested via its overridden handler methods.
Figure 1 shows the basic relationship between the main actors in the
Reactor framework, and the methods primarily involved in the event
handling.
One area in which the functionality offered by the framework is lacking
is in support for rich ‘application’ events. For example, in a recent
middleware project, our design called for abstractions of the various
system events – both communications and logical – in the form of
‘notifications’, which are able to carry context information (see ‘Rich
events’ section).
A limited form of such event mechanisms may be layered over the Reactor
framework’s timer support, and this can work well in simple cases. But
using reactor timers leaves a lot to be desired in two important ways:

1. Supporting classes of events that may have multiple concurrent
instances, e.g. an IncomingUpstreamMessage event, requires
additional functionality to be layered over the existing timer event
support.

2. The caller-supplied argument supported by ACE – of type void
const* – facilitates the association of an object (pointer) with a
timer event instance. This must be used to associate any identifying
information with an event. But it will also be used by bona fide
timers of a given reactor instance. It therefore forces an undue
coupling between base and derived classes in event-handler
hierarchies, since there has to be some mechanism to ensure that an
arbitrary void* value used by the parent is not the same as an
arbitrary void* used by the child. This is fragile at best.

In this article we describe the ACESTL custom_event_handler class,
with which you can extend the ACE reactor framework with support for
rich, multi-instance application events without affecting the normal
reactor/timer event mechanism.

ACESTL’s custom_event_handler
The custom_event_handler class – part of ACESTL, a sub-project
of the STLSoft libraries [3] – is an abstract class that derives from
ACE_Event_Handler, and defines the additional overrideable method
handle_custom_event(). To use custom_event_handler, you
derive your handler class from it rather than from ACE_Event_Handler
directly, and provide an implementation of handle_custom_event();
all other handling can be carried out in exactly the same way it would in
a regular event-handler scenario. Figure 2 illustrates the relationships
between the various types; callback_hook and event_info are
internal structures that we’ll explain later.

The public interface of custom_event_handler is shown in Listing 1.
The constructor, protected because it is an abstract class, follows that
of ACE_Event_Handler in taking an optional reactor instance and an
optional priority for the event handler. This allows it to be plugged into an
existing architecture with no other code changes. The seven public
methods are for managing custom events, and will be explained shortly.
Custom events are scheduled for immediate or delayed actuation by the
two schedule_custom_event() overloads. Each takes an event code
(long) and an optional argument (void*). The three-parameter
overload also takes a delay parameter (ACE_Time_Value) that is the
time offset from the time of call, rather than an absolute time. They each
return a non-0 value (of the opaque type event_id) to indicate success,
and which also identifies the particular event instance. The code and arg
parameters, along with the returned event id are associated internally (via
a call to ACE_Reactor::schedule_timer()) with a timer instance
in the custom_event_handler’s reactor. Immediate events are
processed subject to the reactor instance’s next dispatch epoch.

T

MATTHEW WILSON
Matthew is a development consultant for Synesis
Sofware and creator of the STLSoft libraries. He is the
author of Imperfect C++ and Extended STL, volume 1
(both published by Addison-Wesley) and is working
on his next book, Breaking Up the Monolith. He can
be contacted via http://imperfectplusplus.com/

GARTH LANCASTER
Garth is the EDI/Automation Support Manager for
MBF Australia Pty Ltd, and bashful owner of a
bewildering spectrum of skills in software
development, integration and management. He can
be contacted via garth.lancaster@optusnet.com.au

Figure 1
APR 2007 | | 3{cvu}

Ind i v i dua l even t s may be cance l l ed by ca l l i ng
cancel_custom_event() and passing the event_id value returned
from schedule_custom_event(); you can optionally pass the
address of a variable to receive the arg associated with the event.
Alternatively, all the events of a particular event code may be cancelled
by calling cancel_custom_events() and passing in the event code.
The second overload takes a callback function and caller-supplied
parameter (to be passed back in each invocation of the callback function)
that allows the caller to retrieve the arg parameters for all corresponding
event instances before they are cancelled (See ‘Cleanup Sink Member
Function Template’). (There are two overloads, rather than using default
parameters, because the callback function and parameter are a logical pair;
passing a function but defaulting the parameter would, in most cases, be
a programming error.) The cancel
methods indicate failure according to the
standard ACE idiom by returning –1. (All
the methods follow the ACE convention
of returning -1 rather than throwing
exceptions.) Cancelling events that do not
exist (or have already been actuated) is
benign.
A custom_event_handler instance
is able to give information regarding its
p e n d i ng e v e n t s , v i a t h e
has_custom_event() overloads,
which take either the id of an event
instance (event_id) or the event code of
a group of events (long). They both
return the number of pending events that
match the given parameter; since event
i ds a re un i q u e w i t h i n a g i v e n
custom_event_handler instance,
the event_id overload returns either 0
or 1.
The remaining part of the interface is the
handle_custom_event() pure
virtual method. Derived classes must
override this method, which is then called
when a custom event is actuated, passing
the original event code and argument, and
the current time. It is declared private
to prevent any unwanted calls from
outside; this does not in any way affect the

ability of derived classes to override it, though they may elect to declare
their overrides protected if they want to chain them in a rich hierarchy.

Implementation

The first idea was simply to have each custom_event_handler
instance register timers for the events, with itself as the handler instance.
However, there are a couple of flaws in this logic, because derived classes
may still need to register their own timers. First, it would require the

class custom_event_handler
 : public ACE_Event_Handler
{
// Types
private:
 struct event_id_ {};

public:
 typedef ACE_Event_Handler
 parent_class_type;
 typedef custom_event_handler class_type;
 typedef event_id_ *event_id;
 typedef void (*cancelled_event_code_fn)(
 void *param, long code,
 event_id id, void *arg);
// Construction
protected:
 explicit custom_event_handler(
 ACE_Reactor *reactor =
 ACE_Reactor::instance(),
 int priority =
 ACE_Event_Handler::LO_PRIORITY);

Li
st

in
g

1 public:
 ~custom_event_handler();
// Operations
public:
 event_id schedule_custom_event(long code,
 ACE_Time_Value const &delay, void *arg = 0);
 event_id schedule_custom_event(long code,
 void *arg = 0);
 int cancel_custom_event(event_id event,
 void **parg = NULL);
 int cancel_custom_events(long code);
 int cancel_custom_events(long code,
 cancelled_event_code_fn pfn, void *param);
// Attributes
public:
 int has_custom_event(long code) const;
 int has_custom_event(event_id event) const;
// Overrides
private:
 // The callback function, to be implemented
 // by derived classes
 virtual int handle_custom_event(
 ACE_Time_Value const ¤t_time
 , long event_code
 , void *arg) = 0;
. . .
};

Listing 1 (cont’d)
Figure 2
4 | | APR 2007{cvu}

authors of derived classes to pass on unrecognised timer events to the
parent classes, something that is at once too easy to forget (or to lose in
maintenance) and also not part of established idiom in ACE event handler
classes [1].
Second, there is the possibility of clashes in the interpretation of the
handle_timeout() method. Because the custom event handler must
handle multiple event instances for a given event code, it maintains internal
associations between code and instances, as we’ll see shortly. It passes the
address of information structures to the ACE timer infrastructure as the
arg parameter in ACE_Reactor::schedule_timer(), and then (re-)
interprets this on behalf of derived classes into the real arg parameter
passed to custom_event_handler::schedule_custom_
event(). Hence, with the original design it would have been possible
that, for a given custom_event_handler instance, an arg given to a
bona fide schedule_timer() call coincided with the address of the

class custom_event_handler
{
 . . .
// Implementation
private:
 class callback_hook
 : public ACE_Event_Handler
 {
 public: // Construction
 callback_hook(custom_event_handler *ceh,
 ACE_Reactor *reactor, int priority)
 : ACE_Event_Handler(reactor, priority)
 , m_ceh(ceh)
 {
 ACESTL_MESSAGE_ASSERT(
 "reactor may not be null",
 NULL != reactor);
 }
 ~callback_hook()
 {
 reactor()->remove_handler(this
 , ACE_Event_Handler::ALL_EVENTS_MASK |
 ACE_Event_Handler::DONT_CALL);
 }
 private: // Overrides
 virtual int handle_timeout(
 ACE_Time_Value const ¤t_time
 , const void *arg)
 {
 return m_ceh->handle_callback_timeout(
 current_time, const_cast<void*>(arg));
 }
 private: // Members
 custom_event_handler *const m_ceh;
 // Back ptr to owner
 private: // Copy proscription
 callback_hook(callback_hook const &);
 callback_hook &operator =(
 callback_hook const &);
 };
// Members
private:
 . . .
 callback_hook m_callbackHook;
};

Li
st

in
g

2

This functionality is abstracted into the form of a member function
template of custom_event_handler, which overloads
cancel_custom_events(), as follows:

class custom_event_handler
{
 . . .
public:
 int cancel_custom_events(long code
 , cancelled_event_code_fn pfn
 , void *param);
 template<typename C>
 struct cancel_adapter
 {
 typedef cancel_adapter<C> class_type;
 cancel_adapter(C *obj,
 void (C::*pfn)(long, event_id, void *))
 : m_obj(obj), m_pfn(pfn)
 {}
 static void proc(void *param, long code
 , event_id id, void *arg)
 {
 class_type *pThis =
 static_cast<class_type*>(param);
 ((pThis->m_obj)->*(pThis->m_pfn))(code,
 id, arg);
 }
 private:
 C *const m_obj;
 void (C::*m_pfn)(long, event_id, void *);
 };
 template<typename C>
 int cancel_custom_events(long code, C *obj
 , void (C::*pfn)(long, event_id, void *))
 {
 cancel_adapter<C> adapter(obj, pfn);
 return this->cancel_custom_events(code
 , &cancel_adapter<C>::proc, &adapter);
 }

Granted this is a bit to swallow at first glance, but it facilitates the
following simplification for any and all client types.

class CancelHandler
{
public:
 void report(long code, event_id id, void *arg);
};
 . . .
CancelHandler cc;
mn->cancel_custom_events(101, &cc,
 &CancelHandler::report);

Cleanup sink template (cont’d)
Having to define a static / non-member function specifically to
translate the void* parameter back into a class instance pointer
can be onerous, particularly when it has to repeated for every type
that wishes to receive the notifications:

class CancelHandler
{
public:
 void report(long code, event_id id, void *arg)
 // This method would have to be provided in
 // every cancel handler
 static void report_proc(void *param, long code,
 event_id id, void *arg)
 {
 static_cast<CancelHandler*>(
 param)->report(code, id, arg);
 }
};
 . . .
CancelHandler cc;
mn->cancel_custom_events(101,
 &CancelHandler::report_proc, &cc);

Cleanup sink member function template
APR 2007 | | 5{cvu}

internal information structure, which could result in premature firing of the
custom event and tardy delivery of the scheduled timer, or vice versa. It’s
plausible that this might cause worse issues, i.e. crashes.
The answer to these significant drawbacks, therefore, is to insulate the
relationship between the reactor and the custom_event_handler
instance in a separate handler, in the form of a private member variable
of the nested class callback_hook, which also derives from
ACE_Event_Handler (as shown in Listing 2).
The callback_hook instance is associated with its containing
custom_event_handler instance in the latter’s constructor, as in:

custom_event_handler::custom_event_handler(
 ACE_Reactor *reactor, int priority)
 : parent_class_type(reactor, priority)
 , m_callbackHook(this, reactor, priority)
{}

The events are managed inside custom_event_handler in the form of
a map of maps (listing 3)
The inner map, of type event_map_type, associates an event Id with a
(smart) pointer to an event_info structure. The outer map, of type
event_code_map_type , associates an event code with an
event_map_type instance. Thus, event codes map to collections of
events, within each of which event Ids map to event information.
Hence, the caller-supplied event argument arg is maintained within the
event_info data structure managed by custom_event_handler.
The actual arg passed to schedule_timer() is the address of the
event_info instance for the given event. When the callback from the
ACE reactor is received by m_callbackHook (see Listing 2), it is passed
to custom_event_handler’s private handle_callback
_timeout() method (Listing 4). The arg is translated back into an
event_info pointer that is used to lookup the event information, before
delivering the event in a cal l back to the derived class via
handle_custom_event().

Examples
Listing 5 is an example custom event handler class that prints even
information to standard output. Listing 6 is a simple test program that
demonstrates scheduling and cancelling events, including cancelling
individual instances and cancelling all instances of a given code.
When executed, this program produces the following output:
Cancelled: param: 00000000; code: 101; id: 4; arg: 1002
handle custom event: code: 100; arg: 1000; t: 0
handle custom event: code: 102; arg: 1003; t: 0
handle custom event: code: 100; arg: 1001; t: 1000
handle custom event: code: 102; arg: 1005; t: 2109

Rich events
The recent networking middleware projects we mentioned earlier required
a rich event model, whereby multiple instances of each event type,
optionally carrying additional information, could be sent to recipients
throughout the system. These events, known as Notifications, were
generated in response to I/O events – e.g. incoming bytes generating an
InputUpstreamByteQueue notification – as well as used to manipulate the
logical state of the system – e.g. the supervisory component sending an
ActivateChannel notification to (re)start channels. This was readily

class custom_event_handler
 : public ACE_Event_Handler
{
 . . .
// Implementation
private:
 int handle_callback_timeout(
 ACE_Time_Value const ¤t_time
 , void *arg);
 . . .
// Members
private:
 struct event_info
 {
 long code; // event code
 void *arg; // custom event argument
 event_id eventId; // event id
 };
 typedef stlsoft::shared_ptr<event_info>
 info_ptr;
 typedef std::map<event_id, info_ptr>
 event_map_type;
 typedef std::map<long, event_map_type>
 event_code_map_type;
 callback_hook m_callbackHook;
 event_code_map_type m_entries;
};

Li
st

in
g

3

int
custom_event_handler::handle_callback_timeout(
 ACE_Time_Value const ¤t_time, void *arg)
{
 event_info const *entry =
 static_cast<event_info const*>(arg);
 event_code_map_type::iterator itc =
 m_entries.find(entry->code);
 ACESTL_ASSERT(m_entries.end() != itc);
 event_map_type &event_map = (*itc).second;
 event_map_type::iterator ite =
 event_map.find(entry->id);
 ACESTL_ASSERT(event_map.end() != ite);
 // Keep entry alive, until call completes
 info_ptr ep = (*ite).second;
 event_map.erase(ite); // erase event instance
 if(event_map.empty())
 {
 m_entries.erase(itc); // erase event code
 }
 return this->handle_custom_event(current_time,
 entry->code, entry->arg);
}

Li
st

in
g

4

class MyNotification
 : public
{
public:
 MyNotification(ACE_Reactor *reactor)
 : acestl::custom_event_handler(reactor)
 , m_start(ACE_OS::gettimeofday())
 {}
private:
 virtual int handle_custom_event(
 ACE_Time_Value const ¤t_time
 , long event_code, void *arg)
 {
 const ACE_Time_Value delta =
 current_time - m_start;
 std::cout << "handle custom event: code: "
 << event_code << "; arg: "
 << "; t: " << (delta.sec() * 1000
 + delta.usec() / 1000)
 << arg << std::endl;
 return 0;
 }
private:
 const ACE_Time_Value m_start;
};

Listing 5
6 | | APR 2007{cvu}

ac h i eved u s ing t he even t suppo r t o f
acestl::custom_event_handler.

Each recipient derives from the abstract class NotificationHandler
(L i s t i n g 7) , w h i c h i t s e l f d e r i v e s f ro m
acestl::custom_event_handler. NotificationHandler
insulates derived classes from the void* event arguments of
custom_event_handler, instead manipulating notification instances
via the INotification reference-counted interface (Listing 8).
INotification defines methods for retrieving notification-specific
information from an instance, and also supports the notification chaining.
Because the notification interface is reference-counted, we were able to
cache common stateless notifications – known as ‘Stock Notifications’ –

which meant that there was very little memory allocation and object
creation associated with the notification layer, even in very heavily loaded
servers.
This abstraction (see Figure 3) afforded us the ability to implement our
servers in an entirely event-based manner. For example, in response to
InputUpstreamByteQueue notification, the channel would invoke the
message parser on the contents of the input upstream byte queue. If a
complete and correctly formed message payload was contained therein, an
instance of the system protocol message would be created and enqueued,
and an IncomingUpstreamMessageQueue notification would be generated
and dispatched by the channel to itself. Conversely, if the channel
contained invalid data, a ChannelErrorState notification would be
dispatched to the server supervisor, which would log the situation and issue
ResetChannel and ActivateChannel notifications to tear down and then re-
establish the channel’s connections to its network peers.
Being based on custom_event_handler, the amount of code in this
notification layer is pleasingly small, and, once developed for our initial
requirements, was readily utilised to rapidly develop other server
components in our system as our requirements evolved (as requirements
are wont to do).

Summary
In summary, ACESTL’s custom_event_handler:

Provides a simple event interface, suitable for expansion by
application-specific custom event functionality.

static void cancel_proc(void *param, long code,
 event_id id, void *arg)
{
 std::cout << "Cancelled: param: " << param
 << "; code: " << code << "; id: "
 << reinterpret_cast<unsigned long>(id)
 << "; arg: "
 << reinterpret_cast<unsigned long>(arg)
 << std::endl;
}

int main()
{
 event_id id1, id2, id3, id4, id5, id6;
 MyNotification *mn = new MyNotification(
 ACE_Reactor::instance());
 assert(0 == mn->has_custom_event(100));
 assert(0 == mn->has_custom_event(101));
 assert(0 == mn->has_custom_event(102));

 id1 = mn->schedule_custom_event(
 100, (void*)1000);
 id2 = mn->schedule_custom_event(
 100, ACE_Time_Value(1), (void*)1001);
 assert(0 != mn->has_custom_event(100));
 assert(0 == mn->has_custom_event(101));
 assert(0 == mn->has_custom_event(102));

 id3 = mn->schedule_custom_event(
 101, (void*)1002);
 assert(0 != mn->has_custom_event(100));
 assert(0 != mn->has_custom_event(101));
 assert(0 == mn->has_custom_event(102));

 id4 = mn->schedule_custom_event(
 102, (void*)1003);
 id5 = mn->schedule_custom_event(
 102, ACE_Time_Value(2), (void*)1004);
 id6 = mn->schedule_custom_event(
 102, ACE_Time_Value(2, 100000),
 void*)1005);
 assert(0 != mn->has_custom_event(100));
 assert(0 != mn->has_custom_event(101));
 assert(0 != mn->has_custom_event(102));

 mn->cancel_custom_event(id5);
 mn->cancel_custom_events(
 101, cancel_proc, NULL);
 assert(0 != mn->has_custom_event(100));
 assert(0 == mn->has_custom_event(101));
 assert(0 != mn->has_custom_event(102));

 ACE_Reactor
 ::instance()->run_reactor_event_loop();
}

Li
st

in
g

6 class NotificationHandler
 : public acestl::custom_event_handler
{
public:
 . . .
 void PostNotification(
 INotification *notification);
 void PostNotification(NotificationId id);
 void PostNotification(Time const &delay,
 INotification *notification);
 void PostNotification(Time const &delay,
 NotificationId id);
 bool CancelNotifications(NotificationId id);
 int CancelAllNotifications();
 bool HasNotification(NotificationId id);
private:
 virtual int HandleNotification(
 NotificationId id
 , INotification *notification
 , NotificationHandler *sender) = 0;
 virtual int handle_custom_event(
 ACE_Time_Value const ¤t_time
 , long event_code, void *arg);
 . . .

Listing 7

class INotification
 : public IRefCounter
{
public:
 virtual NotificationId id() const = 0;
 virtual RC LookupValue(char const *name, long
&value) const = 0;
 virtual RC LookupValue(char const *name, void
*&value) const = 0;
 virtual RC LookupValue(char const *name,
string_t &value) const = 0;
 virtual RC LookupValue(char const *name,
INotification *&value) const = 0;
};

Listing 8
APR 2007 | | 7{cvu}

Can be plugged into any existing ACE_Event_Handler
hierarchies with no disruption whatsoever to existing functionality,
and requires only the overriding of one new (pure) virtual function.
Enables rich-object base notification frameworks to be built with
ease.
Avoids fragile interruption of application-oriented virtual function
overloads.
Behaves like a good ACE citizen, respecting conventions for return
codes, exceptions, memory, etc.

custom_event_handler is part of ACESTL, the STLSoft sub-project
for extending the Adaptive Communications Environment.

Acknowledgements
Thanks to Bjorn Karlsson, Kevlin Henney, Nevin Liber, Pablo Aguilar and
Walter Bright for reviewing the article, and helping us keep to the point.

Notes and References
1. The Adaptive Communication Environment project is located at

http://www.cs.wustl.edu/~schmidt/ACE.html.
2. C++ Network Programming, Volume 2: Systematic Reuse with ACE

and Frameworks, Douglas C. Schmidt & Stephen D. Huston,
Addison-Wesley, 2002

3. STLSoft is an open-source organisation whose focus is the
development of robust, lightweight, simple-to-use, cross-platform
STL-compatible software, and is located at http://stlsoft.org/.

Fi
gu

re
 3
8 | | APR 2007{cvu}

Professionalism in Programming # 43
Playing by the Rules
Pete Goodliffe describes the rules that help him to play the

programming game.

ncarcerated as I am in a software factory, I have to spend my days with
other programmers bashing out lines of carefully honed C++ code. To
make this bearable we’ve developed a system to help us get the job

done.
Well, you’ve got to have a system.
Sure, we have methods and methodologies. But sometimes that’s not
enough. We program in C++, using object oriented techniques, ‘modern’
C++ idioms, and the kind of flair and style that would put Huggie Bear to
shame if he now worked in the software business. We employ agile
programming, (we’re XP, daaaaaahling – it sounds so very fashionable).
We’re test driven, pair programmed, and continuously integrated up to our
eyeballs. All well and good.
Those are all basically just a set of rules – rules that we use to play the
programming game together: to describe how our team interacts, who does
what, and how to tell when we’ve won. (Just don’t try to describe the C++
off-side rule to a non-programmer.) These rules actually define the
programming game we play.
But sometimes all of these rules, good as they are, aren’t enough.
Sometimes the poor programmers need more rules. Really, we do. We need
rules that we’ve made ourselves. Rules that we can take ownership of.
Rules that define the culture and style of development in our particular
team. These needn’t be large unwieldy draconian edicts. Just something
simple you can give a new team member so that they can immediately play
with you. These are rules that describe something more than mere methods
and processes; they are rules that describe a coding culture – how to be a
good sportsman.
Sound sane? Well, we think so. Our team’s Tao of
development is summed up in three short
complementary statements. These statements are
now enshrined in our folklore, have been printed out
in large, friendly letters, and emblazon our
communal work area. They reign over all we do;
whenever we face a choice, a tricky decision, or a
heated discussion, they help to guide us to the right
answer.
Are you ready to receive our wisdom? Brace
yourself. Our three earth-shattering rules for writing
good code are:

1. Keep it simple

2. Use your brain

3. Nothing is set in stone

That’s it. Aren’t they great?
I could end the article here and leave the exegesis as an exercise for the
reader. But that would be cruel. I like to be succinct, but not cruel. So let’s
take a short stroll through the land surrounding these rules, see what they
mean to my team, and whether we can learn something from them to help
us write good code in the Real World.

1. Keep it simple
That sounds like an innocuous first rule, doesn’t it? And it sounds quite
easy to follow, too. Ah! How appearances can be deceptive...
There are two kinds of simplicity: the wrong sort and the right sort. Here
‘simplicity’ specifically does not mean: write code the easiest way you can,

cut corners, ignore the complicated stuff
(and hope it goes away), and generally be a
programming simpleton. Oh, if only it
meant that. Too many programmers out
there in the Real World do write ‘simple’
code like this. Some of them don’t even realise
that they’re doing it; they just don’t think enough
about the code they’re writing (and how things might go
wrong in it) to notice. Simplicity is never an excuse for
incorrect code.
Invalid ‘simplifying’ assumptions are easy to make, and (whilst they can
lead to less complexity in your head) inevitably lead to bugs. We must
always write robust, correct code. Each function must do exactly what’s
it supposed to. To the letter. Nothing less. And nothing more... that’s
simplicity. But I’m getting ahead of myself.
Instead of this wrong simple-minded ‘simplicity’ we strive to write the
simplest code possible. This is very different from disengaging your brain
are writing stupid code (see rule 2). It is actually a very brain intensive
pursuit – ironically, it’s hard to write something simple. It’s far easier to
let your code grow into that spaghetti-like ball of complexity [1].
If simplicity is our goal, what does it look like? Perhaps it’s easiest to
describe in terms of its counterpart: simple code is not complicated.
Complication comes in a number of guises. For example, unnecessary tight
coupling between code modules, too much code, verbose code,
complicated control flow, too much indirection [2], too many threads
(more than one?) running around the same code, and more, and more...
Unfortunately, we need to care about far more than just simplicity at the

code level. We must continually strive for simplicity
at many levels, across the whole software
development endeavour. For example, strive for:

Simplicity in design

Think again about your component coupling,
check the number of components in your
design, and the roles of those components.
The number of components and the nature of
their plumbing should be appropriate. Big
problems with many parts may require a large
number of components. Don’t be afraid of
this. Break things up if you need to – if they
need to be broken. But don’t split things into
a million components when it’s not necessary.

Simple designs appear elegant and cohesive. Because of their
simplicity, they can be quickly and clearly described, and easily
understood. Simple designs are easy to visualise.
Simplicity in lines of code

We started to scope this out already, but there’s an awful lot to
consider if you want to achieve true code simplicity. Sadly, a lot of

I

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@cthree.org
FEB 2007 | | 9{cvu}

it is subjective – down to a personal preferences and your sense of
aesthetics.
Simplicity in a bug fix

Ensure that you always fix a bug correctly; in the simplest way, not
with a mammoth workaround, or a superficial patch for a symptom
that leaves the ‘fix site’ in a mess and the root problem unaddressed.
This is really a special case of...
Simplicity in maintenance

First, consider whether your code is simple enough to be easily
maintained. Is it readable, comprehensible, modifiable – simple?
Then consider when you maintain a section of code whether you are
putting in the extra effort to ensure that your modification leaves the
code at least as maintainable, if not more so. Are you tacking more
stuff onto an existing tottering pile of flaky software, or are you
refining the internal code structure to create something better (and,
hopefully, more simple)?
Simplicity in process and documentation

Are you developing in a simple, lightweight, manner without
unnecessary layers of bureaucracy? Or do you have countless forms,
procedures, meetings, infeasibly large and incomprehensible Gantt
charts, sign-offs, and other unnecessary software voodoo dances?
Do you create documentation for all code that you write? Or is the
code simple enough to be its own clear documentation? Do you have
to write specifications for all work? Design proposals? Literate code
comments? Are any of these forming a duplication of information?
Duplication is the enemy of simplicity.

Simplicity is necessarily allied with sufficiency. You should work in the
simplest way possible and write the simplest code possible. But no more.
If you over-simplify, you will not be solving the actual problem. Our
‘simple’ solutions must be ‘sufficient’ or they are not solutions. But how
do you know what the right level of simplicity is?
I’ve only just scratched the surface of this topic, and simplicity is already
looking like pretty hard work. Phew. But be prepared: we’ll revisit this
theme in various guises as we look at rules 2 and 3.

2. Use your brain
Like many ancient texts, scholars could examine, re-examine, interpret, re-
interpret and try to intuit what this rule means and still not have agreed
upon an answer by the second coming. The problem is that different
programmers’ brains work in different ways. What seems obvious to one
person may not to another. That’s life.
But, given this rule’s blatant ambiguity and openness to misinterpretation,
it is still really very important. It’s far too easy to program without
engaging your brain. Really. It’s easy to just follow your fingers as they
bash out lines of code. It’s easy to get stuck in a rut trying to solve (what
you think is) the immediate problem, without really considering the bigger
picture, thinking about the code that’s around you, or even whether what
you’re typing is the right thing. Let’s admit it, we’ve all done it –
programming on auto-pilot.
So this rules tells us to stop and think about what we’re doing. Whilst that
might seem obvious, there are many subtle ways to program without brain
usage. For example, it’s easy to favour one design approach over another
just because you understand it best, and then plough onwards when it’s not
appropriate.

Use your brain is an empowering rule, too. You are allowed to use your
brain. If we both don’t know an answer, then your brain is as good as mine
– you can work it out. No one programmer owns any piece of code;
someone else might have started a component, but you can extend it and
make design decisions about it as well as anyone else (because, of course,
it’s nice simple code – isn’t it?)
Now sometimes following this rule involves an uncomfortable
phenomenon known as common sense. In general, programmers seem
curiously devoid of common sense. This is where forcible use of the brain
is useful. We must be constantly alert to check that we’re doing the ‘right
thing’.
This rule helps when:

You are performing code design. You must ensure that you
thoughtfully pick the most appropriate approach. What should I do
when faced with several decisions? Don’t blindly pick one;
thoughtfully chose the best alternative. And don’t make that single
decision, forget it, and then plough onwards. Keep using your brain
in the aftermath; whilst you work through its ramifications. Check
that your decision still makes sense. If it doesn’t then use your brain,
admit that you got it wrong, and back it out.

You don’t know an answer – don’t expect someone else to think for
you. Use your own brain. If you really don’t know where to start
with a problem, though, don’t waste time flapping about. Use your
brain. The right thing to do then is to ask others which direction you
should be headed in. How do you know when to ask, and when to
work it out for yourself? Use your brain!

You are about to check some code into source control. Stop! Have
you actually remembered to build it after that last modification?
Does it compile? Did you remember to test it? Does it work? Do all
the unit tests pass? Did you add new unit tests? Use your brain: don’t
check in code that doesn’t work. Don’t break things. Don’t make
things worse.

When you want to do the simplest thing, but you don’t know what
the simplest thing is. Sometimes it’s not always obvious. But use
your brain, work it out. And then use your brain – it’s a good idea to
run your plan past someone. Do they think it makes sense, too?

When you need to establish some new development processes and
practices, should you copy what you’ve heard works for other
people, or adopt the latest fashionable methodology? No! Use your
brain. Adopt the things that will work for you. Select processes with
just the right amount of ceremony. Avoid procedural duplication
wherever you can.

3. Nothing is set in stone
There is a strange fiction prevalent in programming circles: once you’ve
written some code then it is sacred. It should not be changed. Ever.
Somewhere along the development line, perhaps at the first check-in, or
perhaps just after a product release, the code is embalmed. It moves league.
It is promoted. No longer riff-raff, it’s digital royalty. The once
questionable design is suddenly considered above (or at least beyond)
question and becomes unchangeable. The internal code structure is no
longer to be messed around with. All of its interfaces to the outside world
are hallowed and mustn’t be changed.
Why do programmers think like this? Fear. There is a very real
apprehension of changing code that you don’t know entirely. If you don’t
understand it from the inside-out, forwards and backwards, if you’re not
entirely sure what you’re doing, if you don’t understand every possible
consequence of a change, then you could break the program in strange
ways or alter odd corner case behaviour and introduce very subtle bugs into
the product. You don’t want to do that, do you? So don’t tinker with the
code. Better safe than sorry.
That is pure nonsense. Code should never stay still. No code is sacred. No
code is ever perfect. How could it be? The world is constantly changing
around it. Requirements are always in a state of flux. Product version 2.4

Pete is giving a keynote presentation at this year’s ACCU
conference in Oxford. Come along on Friday morning and learn
more about This Software Stuff. There is a promise of custard and
spaghetti.

For more details, go to www.accu.org/conference.

ACCU Conference 2007
10 | | FEB 2007{cvu}

is so radically different from version 1.6 that it’s entirely possible the
internal code structure should be totally different. And we’re always
finding new bugs in our old code. If the code ever becomes a straight jacket
then you are fighting the software, not developing it. Plenty of people know
exactly what this feels like. And it’s not nice.
Of course, it is perfectly correct to fear breaking the code. Only a fool
would happily make changes without actually knowing what they’re
doing. So how do we reconcile these two stances? Although it sounds like
a nightmare – who could possibly work with code that is constantly
changing – there are a few key principles we adopt that really do make this
work. Some are practical code writing concerns, some are procedural
issues, and some are cultural. All are important:

First of all, we all want to improve our code. We all agree that it is
important. We all agree that it is necessary if we intend to build the
best products possible. And we all recognise that it is a continual
process.

All of the code that we write is pair programmed, or peer reviewed.
We don’t let any code into the source repository unless it’s been past
two sets of eyes, and so we can be confident that it is the best code
that we can currently write.

Pay attention now! Here’s the really important bit: All code is fully
unit tested. These unit tests are not an optional extra. They are an
integral part of our build process. Running them is not optional. It is
not even an extra step after building; you can’t actually create a final
executable in our build environment unless all the unit tests pass first
[3]. Harsh, but fair.

These unit tests are thorough, and correct. We know this because
they’ve been pair programmed or code reviewed. The unit tests are
absolutely essential to our development. They are our safety
harness. We have been able to make quite considerable refactors
safe in the knowledge that we haven’t broken anything, because the
tests tell us if we do.

We go to great lengths to write code that’s easy to change. It’s easy
to change because we always write simple code. Because we used
our brains to make the code clearly structured, and painless to
maintain. We write code that is actually designed to be changed. We
write code that doesn’t pretend to be perfect as it first arrives.

We adopt a common uniform coding style. We don’t have an
enormous ‘code style guide’ that says where every space and
bracket should go, but we do have a complete naming convention
(covering capitalisation, namespacing and the like) and a small set
of clear guidelines for laying out code. That makes our code very
easy to read and very easy to alter.
We don’t write code that contains subtle side effects, or is brittle in
the face of change. As soon as we see code that is like this, we will
refactor it mercilessly until it isn’t.

Fixing wrong, dangerous, bad, duplicated, or distasteful, code is
positively encouraged. In fact, it is expected. We don’t want to leave
weak spots lying around for too long. If you find code that is too
scary to change, then it must be changed!

Refactoring is encouraged. If you have a job that requires a
fundamental code change to get done properly then do it properly,
do the refactor.

No one ‘owns’ an area of code. Anyone is allowed to make changes
in any area.

It is not a crime to write the wrong thing. If someone changes your
code it is not a sign that you are weak, or that another programmer
is better than you. You’ll probably tinker with their work tomorrow.
That’s just the way it works.

No one’s opinion is considered more important than anyone else’s.
Everyone has a valid contribution to make in any part of the
codebase.

We reduce coupling and make all units of code as simple as possible,
with very clearly defined interfaces. This way, all the code makes
sense in isolation. Reduced coupling means that rebuilds do not take
forever, so the development cycle is short and feedback is quick.

This is backed up with continuous integration – a server continually
checks out and builds the code. If – heaven forbid – anything bad
slips through our process and breaks the build, we will find out about
it quickly. If there is a breakage then it’s everyone’s responsibility
to fix it. That’s our final safety net.

To work on our codebase you are expected to have nerves of steel
and not mind the ground changing underneath you. The code
changes quickly, get used to it.

Naturally, we pick our battles. We can’t possibly change all of the code
all of the time, and add more code to it at the same time. There is a certain
amount of technical debt that we live with until we get a chance to make
appropriate changes. But we factor that into our system. Debt becomes
work items that we plan onto our development roadmap, rather than forget
and leave to fester.
So you can see how we design change into the code; we expect nothing to
be set in stone. We do this is by adopting a certain coding style, a certain
development process, and a certain mindset. And it works. The code is
constantly changing. And each time we change it, it gets better – closer to
how it needs to be right now. But who knows, in a few months it might
look very different.
So there it is: the last of our three rules. Well, it’s the last one for the
moment. Nothing is set in stone.

Conclusion
What do these three rules prove? Nothing. But it’s good to have a system.
And it works for us. Sure, this isn’t radical stuff, and it isn’t going to enter
the cannon of divinely inspired software development wisdom. We
haven’t yet set the programming community alight. But we have written
a lot of good code, quickly.
These three rules describe our particular approach to writing software, and
as such a short summary they are actually very powerful. You can see how
our team organises code and collaboration around them. With them we’ve
defined our unique coding culture. They are ideals that we own,
collectively. We mutually enforce them. And they help us to write better
software. Together.
You can’t knock that.
Consider now how your team can take a greater collective ownership of
the code you create, and of the process you employ to create it. How can
you define your own, more healthy, programming culture?

Endnotes
1. But, of course, spaghetti code is far harder to maintain or fix. So is

this really easier?
2. Remember the famous programmers’ maxim: every problem can be

solved by adding an extra level of indirection? Many complex
problems can be subtly masked – and even caused by – unnecessary
levels of indirection hiding the problem. Beware! Especially if
reason for the existence of a level of indirection is not entirely clear.

3. But, you say, you could just comment out the tests to get an
executable. And you can. But you can’t check in the code like that.
Try slipping that one past a peer, or a code review. Our process
encourages – in fact it actually enforces – well-tested malleable
code. And we like it like that.

Pete’s book, Code
Craft, is out now.

Check it out at
www.nostarch.com
FEB 2007 | | 11{cvu}

A Guided Tour of the POCO C++ Libraries
Günter Obiltschnig explains the origins of POCO.

History and introduction
t all started in the early summer of 2004. Having just quit my job, I
prepared myself to do some consulting work and also thought about
writing a book. I spent the previous six years doing C++ development

on a number of different platforms (Windows, various Unixes and
OpenVMS – giving the state of C++ compilers on the various platforms
back then, this was quite an adventure), so I wanted to write down my
experiences in developing portable C++ applications. The best way to do
this, I thought, was to guide the reader of my book through the creation of
a C++ class library for cross-platform development. I had already written
such a class library in my previous job, so I had a long list of things that I
wanted to do ‘right’ should I ever get a second chance to design and write
a cross-platform class library. Well, the book gave me the rare second
chance, so, having enough time at my disposal, I started to work on my
class library – after all, first you need something to write about.
The first parts I developed were very basic – macros for identifying the
underlying operating system and C++ compiler, fixed-size integer types
and dealing with different byte orders. Next I delved into I/O streams and
wrote some template classes that made implementing my own stream
classes easier. A bunch of stream classes were next, including streams for
base64 encoding/decoding and for data compression/decompression using
zlib. Every class library for cross-platform development needs
multithreading abstractions, so these came next. By that time it became
clear to me that the resulting class library would be much more than just
a small abstraction layer for teaching how to write portable code. I was then
(and still am) a big fan of C++, but it was with some envy that I looked at
Java and C# developers and the comprehensive class libraries they had at
their disposal. I wanted something similar for C++. Sure, there were other
class libraries around, like Boost and ACE. However, ACE, to me, seemed
somewhat stuck in the 90’s, and Boost had lots of stuff in it that I did not
have a use for and none of the stuff I desperately wanted – networking and
XML, for example. Something had to be done. It was around October
2004, when POCO – the C++ Portable Components, were thus born. From
the beginning I planned to make the libraries available under an open
source licence. The first public release of POCO (0.91.1) was posted to
Sourceforge on February 21, 2005. With the release, I also made some
announcements at various internet forums and mailing lists, and people
actually started downloading my library. Sure, there were not that many
downloads at first, but still enough to keep me motivated. I also received
some encouraging feedback from users, and some even offered to help.
Fast forward to early 2007. POCO is now at release 1.3, containing well
over 550 classes, a community website for POCO users and developers is
available [1], and POCO is being used in various commercial and open
source projects. So, let’s have a look at what’s inside the POCO libraries.
POCO consists of four core libraries, and a number of add-on libraries. The
core libraries are Foundation, XML, Util and Net. Two of the add-on
libraries are NetSSL, providing SSL support for the network classes in the
Net library, and Data, a library for uniformly accessing different SQL
databases. Other libraries and applications are currently in development,
for example there is a C++ servlet container based on the Java Servlet
specification available in the POCO source code repository on

Sourceforge. POCO also has its own documentation generation tool,
named PocoDoc, also available from the repository.
POCO aims to be for network-centric, cross-platform C++ software
development what Apple’s Cocoa is for Mac development, or Ruby on
Rails is for Web development – a powerful, yet easy and fun to use
platform to build your applications upon. POCO is built strictly using
standard ANSI/ISO C++, including the standard library. The contributors
attempt to find a good balance between using advanced C++ features and
keeping the classes comprehensible and the code clean, consistent and easy
to maintain.

The Foundation library
The Foundation library makes up the heart of POCO. It contains the
underlying platform abstraction layer, as well as frequently used utility
classes and functions. The Foundation library contains types for fixed-size
integers, functions for converting integers between byte orders, an Any
class (based on boost::Any), utilities for error handling and debugging,
including various exception classes and support for assertions. Also
available are a number of classes for memory management, including
reference counting based smart pointers, as well as classes for buffer
management and memory pools. For string handling, POCO contains a
number of functions that among other things, trim strings, perform case
insensitive comparisons and case conversions. Basic support for Unicode
text is also available in the form of classes that convert text between
different character encodings, including UTF-8 and UTF-16. Support for
formatting and parsing numbers is there, including a typesafe variant of
sprintf. Regular expressions based on the well-known PCRE library [2]
are provided as well.
POCO gives you classes for handling dates and times in various variants.
For accessing the file system, POCO has File and Path classes, as well
as a DirectoryIterator class. In many applications, some parts of the
application need to tell other parts that something has happened. In POCO,
NotificationCenter, NotificationQueue and events (similar to
C# events) make this easy. Listing 1 shows how POCO events can be used.
In this example, class Source has a public event named theEvent,
having an argument of type int. Subscribers can subscribe by calling
operator += and unsubscribe by calling operator -=, passing a
pointer to an object and a pointer to a member function. The event can be
fired by calling operator (), as its done in Source::fireEvent().
I have already mentioned the stream classes available in POCO. These are
augmented by BinaryReader and BinaryWriter for writing binary
data to streams, automatically and transparently handling byte order
issues.
In complex multithreaded applications, the only way to find problems or
bugs is by writing extensive logging information. POCO provides a
powerful and extensible logging framework that supports filtering, routing
to different channels, and formatting of log messages. Log messages can
be written to the console, a file, the Windows Event Log, the Unix syslog
daemon, or to the network. If the channels provided by POCO are not
sufficient, it is easy to extend the logging framework with new classes.
For loading (and unloading) shared libraries at runtime, POCO has a low-
level SharedLibrary class. Based on it is the ClassLoader class
template and supporting framework, allowing dynamic loading and
unloading of C++ classes at runtime, similar to what’s available to Java
and .NET developers. The class loader framework also makes it a breeze
to implement plug-in support for applications in a platform-independent
way.

I

GÜNTER OBILTSCHNIG
Günter is the founder and managing director of Applied
Informatics and spends his rare spare time listening to
music, reading and running. His blog can be found at
obiltschnig.com.
12 | | APR 2007{cvu}

Finally, POCO Foundation contains multithreading abstractions at
different levels. Starting with a Thread class and the usual
synchronization primitives (Mutex, ScopedLock, Event, Semaphore,
RWLock), a ThreadPool class and support for thread-local storage, also
high level abstractions like active objects are available. Simply speaking,
an active object is an object that has methods executing in their own thread.
This makes asynchronous member function calls possible – call a member
function, while the function executes, do a bunch of other things, and,
eventually, obtain the function’s return value. Listing 2 shows how this is
done in POCO. The ActiveAdder class in Listing 2 defines an active
method add(), implemented by the addImpl() member function.
Invoking the active method in main() yields an ActiveResult (also
known as a future), that eventually receives the function’s return value.

The XML library
The POCO XML library provides support for reading, processing and
writing XML. Following one of POCO’s guiding principles – don’t try to
reinvent things that already work – POCO’s XML library supports the
industry-standard SAX (version 2) [3] and DOM [4] interfaces, familiar
to many developers with XML experience. SAX, the Simple API for XML,
defines an event-based interface for reading XML. A SAX-based XML
parser reads through the XML document and notifies the application
whenever it encounters an element, character data, or other XML artifact.
A SAX parser does not need to load the complete XML document into
memory, so it can be used to parse huge XML files efficiently. In contrast,
DOM (Document Object Model) gives the application complete access to
an XML document, using a tree-style object hierarchy. For this to work,
the DOM parser provided by POCO has to load the entire document into
memory. To reduce the memory footprint of the DOM document, the
POCO DOM implementation uses string pooling, storing frequently
occuring strings such as element and attribute names only once.

The XML library is based on the Expat open source XML parser library
[5]. Built on top of Expat are the SAX interfaces, and built on top of the
SAX interfaces is the DOM implementation.
For strings, the XML library uses std::string, with characters encoded
in UTF-8. This makes interfacing the XML library to other parts of the
application easy. Support for XPath and XSLT will be available in a future
release.

The Util library
The Util library has a somewhat misleading name, as it basically contains
a framework for creating command-line and server applications. Included
is support for handling command line arguments (validation, binding to
configuration properties, etc.) and managing configuration information.
Different configuration file formats are supported – Windows-style INI
files, Java-style property files, XML files and the Windows registry.
For server applications, the framework provides transparent support for
Windows services and Unix daemons. Every server application can be
registered and run as a Windows service, with no extra code required. Of
course, all server applications can still be executed from the command line,
which makes testing and debugging easier.

The Net library
POCO’s Net library makes it easy to write network-based applications. No
matter whether your application simply needs to send data over a plain
TCP socket, or whether your application needs a full-fledged built-in
HTTP server, you will find something useful in the Net library.
At the lowest level, the Net library contains socket classes, supporting TCP
stream and server sockets, UDP sockets, multicast sockets, ICMP and raw
sockets. If your application needs secure sockets, these are available in the
NetSSL library, implemented using OpenSSL [6]. Based on the socket
classes are two frameworks for building TCP servers – one for
multithreaded servers (one thread per connection, taken from a thread
pool), one for servers based on the Acceptor-Reactor pattern [7]. The
multithreaded TCPServer class and its supporting framework are also the

#include "Poco/BasicEvent.h"
#include "Poco/Delegate.h"
#include <iostream>
using Poco::BasicEvent;
using Poco::Delegate;
class Source
{
public:
 BasicEvent<int> theEvent;
 void fireEvent(int n)
 {
 theEvent(this, n);
 }
};
class Target
{
public:
 void onEvent(const void* pSender, int& arg)
 {
 std::cout << "onEvent: "
 << arg << std::endl;
 }
};
int main(int argc, char** argv)
{
 Source source;
 Target target;
 source.theEvent += Delegate<Target, int>(
 &target, &Target::onEvent);
 source.fireEvent(42);
 source.theEvent -= Delegate<Target, int>(
 &target, &Target::onEvent);
 return 0;
}

#include "Poco/ActiveMethod.h"
#include "Poco/ActiveResult.h"
#include <utility>
using Poco::ActiveMethod;
using Poco::ActiveResult;
class ActiveAdder
{
public:
 ActiveObject(): add(this,
 &ActiveAdder::addImpl)
 {
 }
 ActiveMethod<int, std::pair<int, int>,
 ActiveAdder> add;
private:
 int addImpl(const std::pair<int, int>& args)
 {
 return args.first + args.second;
 }
};
int main(int argc, char** argv)
{
 ActiveAdder adder;

 ActiveResult<int> sum =
 adder.add(std::make_pair(1, 2));
 // do other things
 sum.wait();
 std::cout << sum.data() << std::endl;
 return 0;
}

Li
st

in
g

1
Listing 2
APR 2007 | | 13{cvu}

foundation for POCO’s HTTP server implementation. On the client side,
the Net library provides classes for talking to HTTP servers, for sending
and receiving files using the FTP protocol, for sending mail messages
(including attachments) using SMTP and for receiving mail from a POP3
server.

Putting it all together
Listing 3 shows the implementation of a simple HTTP server using the
POCO libraries. The server returns a HTML document showing the current
date and time. The application framework is used to build a server
application that can run as a Windows service, or Unix daemon process.
Of course, the same executable can also directly be started from the shell.
For use with the HTTP server framework, a TimeRequestHandler
class is defined that servers incoming requests by returning an HTML
document containing the current date and time. Also, for each incoming
request, a message is logged using the logging framework. Together with
the TimeRequestHandler class, a corresponding factory class,
TimeRequestHandlerFactory is needed; an instance of the factory
is passed to the HTTP server object. The HTTPTimeServer application
class defines a command line argument help by overriding the
defineOptions() member function of ServerApplication. It also
reads in the default application configuration file (in initialize()) and
obtains the value of some configuration properties in main(), before
starting the HTTP server.

Conclusions and outlook
In the two and a half years since its birth, POCO has become a mature
citizen in the C++ library world. The project is actively maintained, and
the number of users and contributors is growing steadily. POCO is used
in a wide range of applications, from simple command line tools to steel
mill automation and building management systems. The POCO libraries
are licensed under the Boost licence, which makes them free for both open
source and commercial use. Support for POCO is available from the POCO
Community website, containing forums, a weblog and a wiki, as well as
from the poco-develop mailing list. Commercial support is also available.
POCO runs on all major platforms (Windows, various Unixes including
Mac OS X, Linux and some embedded platforms) and requires a
reasonably modern C++ compiler (Microsoft Visual C++ 2003 and
GCC 3.4 are fine).
Whenever you have to write a network-centric application in C++, you
should definitely consider POCO for the task. To get you started quickly,
POCO comes with a lot of sample code. A growing number of tutorials
and how-tos on the project website augment the reference documentation.
If you want to contribute to POCO, you are more than welcome. The
simplest way to contribute is by sending us feedback, feature requests or
bug reports. If you want to contribute code, we are always looking for
people willing to take over development tasks. And if you have an idea
for a new library or application based on POCO, we’ll be happy to host
your project on the POCO website.
And if you want to know what happened to my book – well, coding is much
more fun than writing about coding, so the book still sits half-finished
somewhere on my hard disk...

Acknowledgements
I would like to thank Aleksandar Fabijanic for being one of the first users,
and the first contributor to the POCO project, soon after the project’s debut
on Sourceforge.

#include "Poco/Net/HTTPServer.h"
#include "Poco/Net/HTTPRequestHandler.h"
#include "Poco/Net/HTTPRequestHandlerFactory.h"
#include "Poco/Net/HTTPServerParams.h"
#include "Poco/Net/HTTPServerRequest.h"
#include "Poco/Net/HTTPServerResponse.h"
#include "Poco/Net/HTTPServerParams.h"
#include "Poco/Net/ServerSocket.h"
#include "Poco/Timestamp.h"
#include "Poco/DateTimeFormatter.h"
#include "Poco/DateTimeFormat.h"
#include "Poco/Exception.h"
#include "Poco/ThreadPool.h"
#include "Poco/Util/ServerApplication.h"
#include "Poco/Util/Option.h"
#include "Poco/Util/OptionSet.h"
#include "Poco/Util/HelpFormatter.h"
#include <iostream>

using Poco::Net::ServerSocket;
using Poco::Net::HTTPRequestHandler;
using Poco::Net::HTTPRequestHandlerFactory;
using Poco::Net::HTTPServer;
using Poco::Net::HTTPServerRequest;
using Poco::Net::HTTPServerResponse;
using Poco::Net::HTTPServerParams;
using Poco::Timestamp;
using Poco::DateTimeFormatter;
using Poco::DateTimeFormat;
using Poco::ThreadPool;
using Poco::Util::ServerApplication;
using Poco::Util::Application;
using Poco::Util::Option;
using Poco::Util::OptionSet;
using Poco::Util::OptionCallback
using Poco::Util::HelpFormatter;

class TimeRequestHandler:
 public HTTPRequestHandler
{
public:
 TimeRequestHandler(
 const std::string& format): _format(format)
 {
 }

 void handleRequest(HTTPServerRequest& request,
 HTTPServerResponse& response)
 {
 Application& app = Application::instance();
 app.logger().information("Request from "
 + request.clientAddress().toString());
 Timestamp now;
 std::string dt(DateTimeFormatter::format(
 now, _format));
 response.setChunkedTransferEncoding(true);
 response.setContentType("text/html");
 std::ostream& ostr = response.send();
 ostr << "<html><head><title>HTTPTimeServer
 powered by “
 "C++ Portable Components</title>";
 ostr << "<meta http-equiv=\"refresh\"
 content=\"1\"></head>";
 ostr << "<body><p style=\"text-align: center; "
 "font-size: 48px;\">";
 ostr << dt;
 ostr << "</p></body></html>";
 }

Lis
tin

g
 3
14 | | APR 2007{cvu}

References
1. The POCO Community Website, http://www.pocoproject.org
2. The PCRE – Perl Compatible Regular Expressions Library, http://

www.pcre.org
3. The SAX Project, http://www.saxproject.org
4. The W3C Document Object Model, http://www.w3.org/DOM/
5. The Expat XML Parser, http://www.libexpat.org
6. The OpenSSL Project, http://www.openssl.org
7. Reactor – An Object Behavioral Pattern for Demultiplexing and

Dispatching Handles for Synchronous Events, Douglas C. Schmidt,
http://www.cs.wustl.edu/~schmidt/PDF/reactor-siemens.pdf

private:
 std::string _format;
};

class TimeRequestHandlerFactory
 : public HTTPRequestHandlerFactory
{

public:
 TimeRequestHandlerFactory(
 const std::string& format): _format(format)
 {
 }

 HTTPRequestHandler* createRequestHandler(
 const HTTPServerRequest& request)
 {
 if (request.getURI() == "/")
 return new TimeRequestHandler(_format);
 else
 return 0;
 }

private:
 std::string _format;
};

class HTTPTimeServer
 : public Poco::Util::ServerApplication
{

public:
 HTTPTimeServer(): _helpRequested(false)
 {
 }
 ~HTTPTimeServer()
 {
 }

protected:
 void initialize(Application& self)
 {
 loadConfiguration();
 ServerApplication::initialize(self);
 }
 void uninitialize()
 {
 ServerApplication::uninitialize();
 }
 void defineOptions(OptionSet& options)
 {
 ServerApplication::defineOptions(options);
 options.addOption(
 Option("help", "h",
 "display argument help information")
 .required(false)
 .repeatable(false)
 .callback(
 OptionCallback<HTTPTimeServer>(
 this, &SampleApp::handleHelp)));
 }
 void handleHelp(const std::string& name,
 const std::string& value)
 {
 HelpFormatter helpFormatter(options());
 helpFormatter.setCommand(commandName());
 helpFormatter.setUsage("OPTIONS");
 helpFormatter.setHeader(
 "A web server that serves the current date

 and time.");
 helpFormatter.format(std::cout);
 stopOptionsProcessing();
 _helpRequested = true;
 }

 int main(const std::vector<std::string>& args)
 {
 if (!_helpRequested)
 {
 unsigned short port = (unsigned short)
 config().getInt("HTTPTimeServer.port",
9980);
 std::string format(
 config().getString(
 "HTTPTimeServer.format",
 DateTimeFormat::SORTABLE_FORMAT));

 ServerSocket svs(port);
 HTTPServer srv(
 new TimeRequestHandlerFactory(format),
 svs, new HTTPServerParams);
 srv.start();
 waitForTerminationRequest();
 srv.stop();
 }
 return Application::EXIT_OK;
 }

private:
 bool _helpRequested;
};

int main(int argc, char** argv)
{
 HTTPTimeServer app;
 return app.run(argc, argv);
}

Listing 3 (cont’d)Li
st

in
g

3
(c

on
t’d

)

APR 2007 | | 15{cvu}

The Trouble with Version Numbers
Thomas Guest untangles the version numbering puzzle.

Introduction
oftware version numbers should be straightforward to implement.
Their sequencing is hardly subtle: version 1.0 is the first production
quality release; version 1.1 improves on it, version 1.2 is a little

better; and so on until we get to version 2.0, which delivers more
substantial changes. Then comes 2.1, then 2.2 ...
As anyone who has tried to implement such a scheme will realise, it can
be a surprising source of problems, and although these problems have been
tackled by many projects in many organisations there seems to be no
consensus on how to reach a solution. To give an example: deriving the
version number from the version control system is tempting, but ultimately
turns out to be unsatisfactory.
This article discusses the problems in more depth and presents a simple
solution. It goes on to argue that perhaps the emphasis on version numbers
is itself the problem, and one which requires a more radical solution.

A flawed versioning recipe
Here’s a sensible but flawed recipe for creating a versioned software
release. To make the discussion easier to follow, let’s suppose it’s version
2.0 we want to release. Let’s also suppose that a file named VERSION is
the sole point of version information for the software [1].

0. At some suitable point, branch the software to isolate the release
from noise on the main development trunk. Edit VERSION to read
‘2.0.0 RELEASE BRANCH’ and check this change in.

1. Create a build from the release branch.
2. Test this build.
3. If the tests pass, edit VERSION to read 2.0, check the change in,

and go to step 5.
4. The tests haven’t passed, so we need to fix all the bugs we’ve found

and return to step 1 (or even, in extreme circumstances, to step 0).
5. Tag the release branch. Checkout this tagged version of the code

and create our final release build from it.

The problems
There are several problems with this procedure.
I haven’t explicitly stated how the builds are being created and how they’re
being tested, but reading between the lines suggests that it’s a little ad hoc.
It could well be that one of the developers generates the builds from a
personal working copy, runs a few sanity checks, then throws the code
across to the test team for a more thorough thrashing.
Such an approach exposes us to an unacceptable level of human error.
Instead, we need a machine to ensure that our builds are clean and
reproducible. Before worrying about how we version the software, we
must ensure we have a build server to automatically generate builds for
us, and to run as many tests as a machine can on these builds, collating
and publishing the results. Inevitably, there will still be a need for manual
testing; but this build server should become the single source of builds for
the manual testers.

Even when this build server is in place and doing its job, the procedure
described suffers two major problems.

1. There is still too much manual intervention: somebody has to
remember to edit the VERSION file, and that somebody had better
get it right. Typically, as release dates close in, the pressure
increases, and editing fingers become less steady.

2. The final tagged build isn’t the build which actually passed all the
manual tests. We rebuilt it! What’s worse, we changed the code
before rebuilding – we changed the VERSION file, and we checked
the code out of the repository in a different way.

Keyword expansion
We might turn to our version control system to help us overcome the
manual intervention problem. Rather than edit a file by hand, shouldn’t the
version control system provide the version number directly? This is a
seductive argument but I’m going to suggest it’s wrong. Before explaining
why I think it’s wrong, let’s show how you can indeed derive a version
number directly from the metadata stored in the code repository.
To provide a concrete example let’s suppose we’re using Subversion for
version control. Here’s a typical Subversion repository layout:
 .
 `-- trunk
 | |-- file1
 | `-- file2
 |-- branches
 | |-- 1.0
 | | |-- file1
 | | `-- file2
 | `-- 2.0
 | |-- file1
 | `-- file2
 |-- tags
 |-- 1.0
 | |-- file1
 | `-- file2
 `-- 2.0
 |-- file1
 `-- file2

The trunk area is where most development goes on. When we want to
branch the code before making a release, we copy the trunk into the
branches area; and when we finally freeze the release, we tag it by copying
it into the tags area. To check out release 2.0 of the software we’d issue
the command:
 svn checkout svn://svnserver/tags/2.0

As you can see, the repository URL embeds the desired version string, 2.0.
If we want to get the VERSION file to reflect the URL it was checked out
from, we must enable keyword expansion and set its contents to read:
 $URL: $

When we update this file on the trunk, the magic $URL:‘ $ keyword
expands to read something like:
 $URL: svn://svnserver/trunk/VERSION $

When we copy this file to our 2.0 branch and update, we’ll see:
 $URL: svn://svnserver/branches/2.0/VERSION $

and in the tagged release area we get:
 $URL: svn://svnserver/tags/2.0/VERSION $

S

THOMAS GUEST
Thomas is an enthusiastic and experienced
programmer. He has developed software for
everything from embedded devices to clustered
servers. His website is http://www.wordaligned.org
Contact him at thomas.guest@gmail.com
16 | | APR 2007{cvu}

With some simple text parsing we can extract this information. Here’s a
minimal Python program which parses the repository URL it came from
in order to display version information.

#!/usr/bin/env python
def version():
 " Return the software version. "
 url = "URL"
 import re
 search = re.compile(
 "svn://svnserver/tags/([^/]*)").search
 match = search(url)
 return match.group(1) if match else
"Development"

print "Version:", version()

If this program has been checked out from a base URL svn://
svnserver/tags/2.0, running it yields the output:
 Version: 2.0

Running it checked out from the trunk, we’ll see:
 Version: Development.

Note, incidentally, that the CVS keyword designed for this purpose is
$Name$ – this keyword won’t even expand unless we checked out a tagged
version of the code.

A misuse of keyword expansion
Look at what’s happening here: we tag the software to ensure we can
recover exactly what went into a build; but by enabling keyword
expansion, the code we check out differs depending on the repository URL
we use to access it. By tangling the software with version control meta-
data we’re changing the very thing we want to
stabilise.

What gets tested anyway?
It may appear that some judicious use of
keyword expansion will help us automate the
software version generation, but as we can see,
it does so at the expense of amplifying the second problem – which I argue
us the more serious.
Let’s return to this second problem, then. We’ve created a chicken and egg
situation. We don’t want to award the software its final version number
until we’ve tested it; but the version number is part of the software, and
we can’t test the final version of the software until we’ve set its version
number. Which should come first?
We may convince ourselves that we’re making a fuss over nothing
important. How big a change is it to change the software version and
nothing else? A few text strings, perhaps; the contents of a dialog box.
Maybe it has an effect on the licence sub-system. Oh, and the
documentation too. Surely nothing much can go wrong with these simple
changes and a quick set of sanity checks should confirm they have been
correctly applied? If we’re really worried, we could always re-run the full
set of tests.
These arguments don’t convince me. When we get close to a release,
impatience and carelessness can set in. It would be foolish to think the
testers wouldn’t baulk at repeating the full set of system tests for no good
reason. And it would be equally foolish to assume the version change has
had no side-effects.

Build numbers and version numbers
Let’s question the assumption that applying the version number should be
the last step in the release procedure. Why is this?
Essentially it’s because we don’t want to have more than one version 2.0:
if a customer contacts us to report a problem with version 2.0 of our
software, then we’d better be able to identify exactly what it is they’re

running. Indeed, if the system testers report a problem with version 2.0 of
the software, we’d equally like to know which build they’re talking about.
If we fixed the software version at 2.0 and then continued to work on the
code until it reached release quality, how would we ever identify the real
version 2.0?
Note, though, that if we were prepared to allow our build server to generate
a unique build number for every build it produces, and to use this as our
version number, we’d have no problems. If build 1729 was the build which
passed the tests, then our release could simply be identified as version 1729
– with no change required. Unfortunately version numbers aren’t just
numbers; conventions dictate how their fields are interpreted, and a version
of 1729 flouts these conventions.

The best of both
The way to break out of this apparent conflict is simple. We must give up
on the idea of tying the version number to the version control system: it
just doesn’t work. Instead, we can adapt the build number idea to automate
our versioning as follows.

1. Again, a single file – VERSION, let’s say – must provide the single
source of version information. This file is version controlled, but
doesn’t use keyword expansion [2]. Instead, it will (generally) only
be modified automatically by the build system.

2. At the start of the countdown to release 2.0, this file reads 2.0.0.
Here, the leading 2.0 is the major and minor part of the version
number, and the trailing 0 is the build number.

3. From this point onwards, each time the build server produces a build
it uses up a build number. As a post-build step, the server edits the
VERSION file to increment the build number by 1, then checks this
change in, ensuring that no subsequent build can have the same
version number.

We now have the build server generating a
series of release candidates, each with its own
version number, 2.0.0, 2.0.1, 2.0.2, ... When a
release candidate meets the required quality
level it can be promoted to being a formal
release. This promotion is essentially a book-
keeping operation: the software may be tagged,

the deliverables may be archived; but whatever happens, there should be
no further change to the code, and what gets shipped will be identical to
what was tested.

Refinements
You’ll notice that the full version of the final 2.0 release is unlikely to be
2.0.0. If it took us another 29 builds to fix all the defects, we will ship 2.0.29
– a rather less attractive number. Typically, in most cases, we should
abbreviate the version number before presenting it to the user. You
certainly won’t see a press release announcing the completion of version
2.0.29!
Often, a three part version number is insufficient. It’s more common to
choose a number of the form 2.2.3.67, interpreted as: major version 2,
minor version 2, patch number 3, build number 67.
There is a convention (which I believe originates in the Linux community
[4]) to use odd minor version numbers for ongoing development and even
version numbers for released versions. Thus, while the release team are
knocking 2.0.x into shape, the development team continue with 2.1.x on
the trunk.
Scripts should be written to perform all the common operations: to create
release branches, to promote release candidates into full releases, and so
on. It’s important to have these scripts, and indeed the whole process, in
place well before the countdown to the final release.

Concluding thoughts
Even with the version numbers sorted out in the manner described, this can
be a painful way to develop software. In this article I’ve described ‘big

We’ve created a chicken
and egg situation . . .

Which should come first?
APR 2007 | | 17{cvu}

The Trouble with Version Numbers (continued)
bang’ releases – perhaps a single major release is made every year. In
between these releases the main trunk of the codebase is allowed to fall
short of release quality: things break and it’s only when we create a release
branch that we undertake to fix them. There’s too much dependency on a
team of manual testers to shake out problems, with the effect that the
software developers have neglected this duty.

Meanwhile, the sales and marketing team are busily hyping the next
release. It’s to be announced at an international trade show: How’s that for
an immovable deadline [5]?

Customers must be persuaded to upgrade but some fail to be excited by
the new 2.0 features, seeing instead a bunch of changes they don’t
particularly want. Instead they’d like to continue with version 1.0, which
is the version they purchased – though naturally they demand support and
bug-fixes.

Eventually the code base spreads over several branches which have
become increasingly laden with patches merged in all directions. The
version control system can handle it but can the developers? Although we
have several active versions of the software, it’s moving irrevocably into
maintenance mode.

It seems to me that the emphasis on version numbers and features is wrong,
and may indeed take some of the blame for this grim situation. It’s wrong
to risk the stability of the main development trunk and reserve branches
for stable code. Instead we should aim for a pristine trunk and use branches
for work-in-progress and experiments, so that at any point during
development, the tip of the trunk represents the best code we have.

It’s also wrong to create an environment in which customers cling to old
versions of software. Instead, we should consider upgrades from the outset,
and allow our software to migrate softly from version to version.

Notes and references
1. In other words, any part of the system which needs the version

number must derive it, either at build- or run-time, from this single
file. This typically includes the user interface, the documentation,
the licensing system. By enforcing a single point of version
information, we at least ensure consistency.

2. I also strongly recommend that keyword expansion is disabled for
all files in the repository, for the reasons described in this article and
also in [4].

3. ‘Keyword Substitution – Just Say No’, Thomas Guest
http://blog.wordaligned.org/articles/2006/08/02/keyword-
substitution-just-say-no

A brief article which argues that keyword expansion is a version
control mis-feature.

4. ‘Software versioning’, Wikipedia http://en.wikipedia.org/wiki/
Software_versioning
A discussion of version numbers including details of Linux kernel
version numbers.

5. ‘The Other Road Ahead’, Paul Graham, http://paulgraham.com/
road.html

An excellent essay in which Graham eloquently describes the
advantages of supplying a web-based software service. Here’s what
he has to say about a typical desktop software release process:
In the desktop software business, doing a release is a huge trauma,
in which the whole company sweats and strains to push out a single,
giant piece of code. Obvious comparisons suggest themselves, both
to the process and the resulting product.
IAN BRUNTLETT
Ian has been involved in broad spectrum of software
systems and languages. He works as a volunteer,
teaching people with mental health problems how to use
and program computers. He can be reached at
ianbruntlett@hotmail.com

Libris Unity
Ian Brunlett talks us through some unofficial interfaces.

K, what is an unofficial interface? For my example, I think it is easier
to describe rather than define. Imagine you’ve got an application that
you want to sell lots of copies of while also supporting customer

specific extensions. And you want to do it with one source code base.
The application I’ll discuss is (was) the Libris Opac / Unity / BNB. Libris
started up in 1993 and went broke in 1998. The final copies of the source
code CDRs and dataset DAT tapes are probably still sitting in a fireproof
safe in Talis, a competitor of Libris that bought the intellectual rights of
the system for £5000. To make discussion easier, I’ll refer to the family
of search engines as Unity, the flagship product of Libris.
Another of Libris’ programmers wrote a module to handle windows style
.ini settings files. To handle the multi-user aspects of Unity, some
functions were written on top of this module. In particular, I wanted to have
defaults specifiable by Unity when handling the .ini files. I just wanted
to say the C equivalent of ‘read this setting and here’s a default value for
you to return if the setting is missing’. I was particularly concerned about
getting support calls from Libris customer services staff on site wondering
why Unity was behaving the way it was. I figured that they’d have to be
reasonably familiar with the settings file – but that defaults would make
their jobs harder.
So I implemented the function GetSettingPutDefault. The caller
would invoke GetSettingPutDefault with both:

1. the name of the setting required
2. a default value.

If the setting didn’t exist then GetSettingPutDefault would do two
special things:

1. it would write/put the default value into the settings file
2. return the default value.

One of the unexpected bonuses of this was that if you deleted the settings
file, running Unity would result in a bare bones default menu system up
and running instead of catastrophically halting.
There are certain development projects that merit forking the source code
base and most people would say that supporting DOS (actually 32 bit
protected mode DOS, using the DOS4GW DOS extender) and the
Windows (in this case the WIN32 API as supplied by Windows 3.11,
Windows 9x and Windows NT 4 – and documented by Charles Petzold in
his book Programming Windows 95) would require a fork in the source
code base. As things turned out, using link-time polymorphism, clever
coding, a fancy makefile meant that the source code did not have to be
forked. Quite simply, the entire system sat on top of some unofficial
interfaces. There was an unwritten convention that Unity would only use

O

18 | | APR 2007{cvu}

DISPLAY.C and DISPLAY.H for handling screen display work. There
was another unwritten convention that DISPLAY.C would rely on a more
platform specific module such as DOSDISP.C to do the gritty displaying
of information.
C++ can enforce interfaces that are provided by base classes and their
offspring. I’m still coming to grips with the design ramifications of this
part of the language.
C, however, is a bit more tolerant of, say, laissez-faire interfaces. On the
other hand you can do this laissez-faire stuff in C++ too. When you’re
dealing with multi-platform code, you use the makefile to pass on flags to
the preprocessor and to decide which modules to compile and the
preprocessor to handle platform specific stuff like deciding which
implementation of a key function will get included in the application.
Unity initially ran on 33MHz 486s, DOS 6.2 and 4MB RAM. As time
progressed PCs became faster and memory capacities increased. The
earliest versions (1–3) of the search engines (let’s call them Opac as this
pre-dates Unity) ran in text mode and, to display anything they did a
system() call to do a type filename command where filename
was an ANSI text file with embedded control codes to change colours. And
they were real-mode DOS applications that were compiled using
Borland’s Turbo C++. And, if I recall this correctly, the Opac used a variety
of ways to display things on screen.
Opac V3 was where I came in. In December of 1993, the source code was
given to me with a copy of Watcom C++ and I was asked to port the Opac
to Watcom C++ and make use of the extra (extended) memory available
by DOS4GW. It was a mammoth task. No sooner had I got one module
compiling when another reared its head. The source modules were named
LIBRISX.CPP where X was the first name of what the module was meant
to do. When I got Opac V3 compiled and running – after a lot of hard work
– the next change request was to get it to compile using Watcom C, in
order to save about £5000 in Watcom licensing fees. After that, bit mapped
graphics hit town. Another Libris programmer working on a different
family of search engines, Libris Community Information, developed a
unique visual look to take advantage of a bitmapped display (256 bit
colours, 640x480 pixels). So the next task was to rewrite the Opac to have
a glitzy user interface identical in a similar style suitable for the Opac. So
all the code that wrote things on the screen had to be changed to use only
one way of displaying things on screen and to be done in a fashion that
encouraged porting to other operating systems. So DISPLAY.C was born
– it provided a ‘higher level’ of support, doing things like clearing the

screen, displaying text, changing colours and displaying images of keys
that were provided on special keyboards used by the OPAC. It in turn
called upon DOSDISP.C to do the technical stuff.
Later on, perhaps in late 1997, I was called upon to port Unity/Opac to
Windows. At the time, Windows programming meant MFC or WIN32. I
looked at both and figured WIN32 would give me more flexibility. So a
whole load of WIN32 specific code was written, to name WINDISP.C and
WINMICK.C (mouse handling) as part of the work involved. As it turned
out, the DOS4GW and WIN32 versions looked and ran more or less
identically.
How did I pull it off? Well, I turned Petzold’s WinMain on its head. Instead
of the Windows version of Unity having a message pump that waited for
messages (WM_CLOSE, WM_PAINT), I had Unity run pretty much like a
conventional procedural application. Basically, Unity wrote things on
screen (in this case a window) and, when it wanted keyboard or mouse
input, then it would call GetValidKCNUM which would 1) save a bit map
image of its own screen (to support WM_PAINT requests) and 2) look at
what Windows was telling it through the WIN32 GetMessage /
PeekMessage API calls (not sure if I remember the API names
completely correctly).
I explain link-time polymorphism like this: unofficially decide on a
convention, say that certain functions / structs

1. will act in a certain way
2. will be provided by certain modules (.C or .H files).

without compiler intervention.

Influences
1. The C standard library – made me think of things where something

could be coded to provide a standard API for different platforms.
Instead of having to rewrite everything.

2. Object Oriented Analysis by Coad & Yourdon. This, and some hard
work, enabled me to get a lot of benefits from structs.

3. The GNU C, YACC and AWK source files when I encountered
them for the first time, on the Sinclair QL.

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

If seeing your name in print isn’t enough, every year we award prizes for the best published article in C Vu, in
Overload, and by a newcomer.

Email cvu@accu.org or overload@accu.org
APR 2007 | | 19{cvu}

20 | | APR 2007{cvu}

PETER PILGRIM
Peter is a Java EE software developer, architect, and
Sun Java Champion from London. By days he works
as an independent contractor in the investment
banking sector.

You’ve Gotta Get On To Get Down
Peter Pilgrim introduces a new series and the Java User Group.

elcome to the first in a new regular series of articles that I am
writing for the ACCU, actually I am using Writely (or rather
Google Docs). I hope to expand of news going on a Java World

from a server-side point of view. I am the founder and the leader of a JUG,
a Java User Group, called JAVAWUG, which stands for Java Web User
Group. I started the group way back in May 2004 when I sent out an
electronic mail message to the Struts user mailing list. I asked first, if there
were any developers heading over to JavaONE the
worldwide developer conference organised by Sun
Microsystems in San Francisco, California. Second, I
asked, if there were any Struts users ready to meet up
regularly and form a user group in London. Our first
meeting took place at the infamous Waxy O’Connors
pub near Piccadilly. Since then I had the pleasure (and
sometimes displeasure) of organising 25 of these so-
called birds-of-a-feathers. We tend to meet up about
every two months or so. We had some very kind hosts
like Oracle, Sun, and Skills Matter provide a room
with audio/visual facilities so that JAVAWUG could
host professional-style presentations. It has been a
learning curve, indeed, learning how to lead a group of
disparate people. My hard efforts were rewarded when
I was confirmed in February into the Sun Java Champions program, and
that is now enough about me.
As a new Java Champion, my reign began with a troubling approach from
a fellow JAVAWUG member, who shall remain nameless, as he admitted
struggling to find that next IT Job. He asked me to call him at home at some
time. I did. We had an busy evening telephone call and I found out that he
had been out of work for while, but had considerable experience from
previous companies. I critiqued his CV. It had fallen into some common
traps: it was way too long and needed re-ordering to place the most recent
roles first, highlighting relevant experience. I was flummoxed as how I
could help him other than just give my advice. I realised that everyone had
some experiences of difficulty being on the so-called substitute’s bench.
It can be quite hard to accept this aspect of modern working life, especially
if you do not expect it and suddenly find out yourself there in that situation
(again). Think of all the financial, family and pride worries that most of
you will have had or will have. An idea dawned on me, and I pushed his
approach to the other JAVAWUG members through the mailing list, whilst
keeping his personal details confidential. We got a quite few responses and
we should have had a lot more. I was disappointed that all developers did
not chime in with helpful hints. I guess it must be quite hard to contribute
to the community. I concluded that the feeling of being jobless and without
contract is far too strong for some people to admit to or respond to, let alone
get embarrassed into. A long standing JAVAWUG member posted a
hyperlink as a ray of hope about the prospect of good calibre individuals
and the proverbial skills shortage (http://www.javaworld.com/javaworld/
jw-03-2007/jw-0305-jobs.html):

As new technologies continue to enter the business world, the demand
for these skills will continue to grow this year and beyond. Therefore,
wages will continue to increase as hiring managers put a premium on
candidates with these maturing skill sets.

This is fabulously great! Especially if you have those highly desired skills
already. If you don’t then you could say, ‘Woe is me!’, but you ought to
put your finger in the air and think about the skills that might be relevant
in the next year. However, almost everyone agrees it is very uncertain to
predict the future. Which relevant Java technologies will be winners? (Java
SDK 7, Groovy, JRuby, other Java compatible scripting languages, Java
EE 6, REST, SOAP, Grid Computing, EJB 4, AJAX, Dojo, Struts 2, JSF,

the JVM, the open sourcing of Java, etc.) The list of
might-be-relevant-technologies will never be
exhausted.
The year 1994 was an interesting year in the IT world.
It is best remembered by football sports fans for when
Brazil won the FIFA World Cup in the USA, but here
is an interesting statistic. At the very beginning of that
year there were only about 500 websites on the WWW,
but because of a release of browser called NCSA
Mosaic (the forerunner to Netscape Navigator), that
figure jumped to 10000 websites by the end of the year.
Suddenly the world stood up and listened. Web hosting
and design were born, and a whole first generation of
our relatively new industry began.

There are no easy answers, the moral of the story is not that the prediction
of the future is always uncertain, but you have to be ready to move, and
move fast, to catch the next wave in order to not be left behind. Being a
member of the Java User Group certainly helps you get that news faster
and also active participation in local and national forums. It’s your career
after all, so look after it as you do. See you next time.

Here are the URLs:
http://jroller.com/page/javawug
http://jroller.com/page/peter_pilgrim
https://java-champions.dev.java.net
https://jugs.dev.java.net/objectives.html
http://struts.apache.org
http://en.wikipedia.org/wiki/mosaic_(web_browser)
http://java.sun.com/javaone/
http://java.sun.com/javaee/

W

The World View of a Java Champion # 1

prediction of the
future is always

uncertain, but you
have to be ready to

move, and move
fast, to catch the

next wave

Adventures in Autoconfiscation #3
Jez Higgins concludes his series on GNU autotools.

Previously in Adventures in Autoconfiscation
n the preceding two episodes[1], I’ve described my picaresque journey,
taking my XML toolkit Arabica[2] from its wobbly homegrown build
system toward GNU Autotools, the magic behind ./configure;

make; make install. As I begin this article, I’m at the point where I
have a no-frills build going. Here I cover adding some flexibility to the
build, so it adapts to the presence or absence of third party libraries. Finally,
I’ll do what I said I’d do last time and examine whether the change to GNU
Autotools really did do what I hoped – let more people build Arabica on
more platforms more easily but with less fuss and effort on my part.
This isn’t the definitive guide to Autotools, it’s the how-I-did-it narrative
which I hope will inform and entertain.

Customising the build – config.h
The Arabica library builds on top of a third party parser library – expat[3],
libxml2[4] or Xerces[5]. The old build system required people to know
which library they had (or which of several they wanted to use), the
location of its header and shared object files, and set Makefile flags
accordingly. The flags were used to generate a C++ header file,
ArabicaConfig.h, containing a number of #defines. Those defines
were, in turn, used to pull in the appropriate library binding. There were
other flags too, which controlled things like wide character support, and
whether to use Winsock or ‘proper’ BSD sockets. Some were set on a
p l a t fo rm bas i s , some a t t h e u se r d i s c r e t i on . A t yp i c a l
ArabicaConfig.h looked like this:

 #ifndef ARABICA_ARABICA_CONFIG_H
 #define ARABICA_ARABICA_CONFIG_H

 #define ARABICA_NO_WCHAR_T

 #define ARABICA_NO_CODECVT_SPECIALISATIONS

 #define USE_EXPAT

 #endif

Autotools can produce a similar header file, setting flags for all the various
bits and pieces it has probed. All you have to do is ask, and you ask by add
the AC_CONFIG_HEADERS macro in configure.ac, as shown in
Listing 1.

A quick round of autoreconf and ./configure
 ...
 configure: creating ./config.status
 config.status: creating Makefile
 config.status: creating src/Makefile
 config.status: creating test/Makefile
 config.status: creating test/Utils/Makefile
 config.status: creating include/SAX/
 ArabicaConfig.h
 config.status: executing depfiles commands
 ...

gives an ArabicaConfig.h which looks like Listing 2.
All I need to do is get my Arabica specific defines in there, and I’m done.
This is the kind of thing you see configure scripts doing all the time, so I
assumed it must be straightforward.
You extend what configure looks for by writing your own Autoconf
macros. Autoconf macros are written in a language called M4[6]. Although
it’s been around since shortly after the dawn of Unix, M4 isn’t something
you encounter every day. As it turns out, you’re actually unlikely to
encounter writing Autoconf macros either. Almost every significant thing
you need to do in a custom Autoconf macro already exists in Autoconf
macro library, so you working at one remove from raw M4. You can write
your macros inline in configure.ac, but it’s more common to pop them
in an external file and just have the call macro in configure.ac. By
convention macro files go in a subdirectory called m4, where they’ll be
picked up automatically.
Autoconf macros have the general form

 AC_DEFUN([macro-name],
 [macro-body])

I
 /* include/SAX/ArabicaConfig.h. Generated
 from ArabicaConfig.h.in by configure. */
 /* include/SAX/ArabicaConfig.h.in. Generated
 from configure.ac by autoheader. */

 /* Define to 1 if you have the <dlfcn.h>
 header file. */
 #define HAVE_DLFCN_H 1

 /* Define to 1 if you have the <inttypes.h>
 header file. */
 #define HAVE_INTTYPES_H 1

 /* Define to 1 if you have the <memory.h>
 header file. */
 #define HAVE_MEMORY_H 1

 ... several other #defines I'm not actually
interested in ...

configure.ac
 AC_INIT([Arabica], [Jan07], [jez@jezuk.co.uk])

 AM_INIT_AUTOMAKE

 AC_PROG_CXX
 AC_PROG_LIBTOOL

 AC_CONFIG_HEADERS([include/SAX/
ArabicaConfig.h])
 AC_CONFIG_FILES([Makefile])
 ...
 AC_OUTPUT

Li
st

in
g

1
Listing 2

JEZ HIGGINS
Jez works in his attic, living the life of a journeyman
programmer. He is currently teaching himself how to
make balloon animals. In April last year, he became
ACCU Chair. His website is http://www.jezuk.co.uk/
APR 2007 | | 21{cvu}

The body can extend over several lines if necessary. Remember that
configure is a shell script. Custom macros in configure.ac are,
therefore, being expanded to shell script fragments, which become part of
configure. In that sense they are metaprograms, but I’m probably
making it sound more difficult that it is. It should be born in mind, however,
that the output of an Autoconf macro is shell script which will be run later,
possibly on an unknown platform. The Autoconf manual has extensive
guidance on writing portable shell script, but for common operations an
indepth understanding on quite how awk operates on Ultrix-1 isn’t
necessary. The following example should make this clearer.

Customising the build – finding an XML parser
Arabica builds on the expat, libxml2, or Xerces XML parsers. I need
my configure to script to find which of these are available. If there are
multiple choices choose amongst them.
The first job was to write a macro to look for expat. I started where most
programming endeavours start these days, by googling. It turns out that

searching for <package name> and m4 is a pretty reliable way of finding
an Autoconf macro that does, or at least more or less does, what you want.
There’s also an extensive collection of macros in the Autoconf Macro
Archive[7].
Rather than go through the tedious business of writing the macro, I’m
going to leap straight to the finished article (Listing 3) and highlight the
important parts.
It’s not that bad is it? Could be worse – modern conveniences like
subroutines and variable scoping don’t exist in shell script, after all.
This is more or less the canonical form for a macro which looks for a
library. First it searches for a known header, then if that’s found it tries to
link the library, by looking for a known function in that library. If the link
succeeds we can declare victory, in this case by setting a flag. When
configure reachs the end of script and the expat library was found,
HAVE_EXPAT is set and EXPAT_CFLAGS and EXPAT_LIBS point to the
header and library locations. If not, HAVE_EXPAT is not set.
The heavy l i f t ing here i s provided by the AC_ARG_WITH ,
AC_COMPILE_IFELSE, and AC_CHECK_LIB macros.
AC_ARG_WITH(package, help-string, [action-if-given],
[action-if-not-given]) describes an argument to the configure
script. If the user runs configure with --with-package or --without-
package options, run shell commands action-if-given. If neither
option was given, run shell commands action-if-not-given. The
option’s argument is available in the shell variable with_package. The
--without-package option is equivalent to --with-package=no.
In this case, if neither --with-expat or --without-expat is given,
I set the with_expat variable myself.
AC_COMPILE_IFELSE(input, [action-if-true], [action-
if-false]) compiles a program, running action-if-true if
successful, and running action-if-false otherwise. In this case I
just want to try and compile:
 #include <expat.h>

The ‘#’ character is the shell comment character, so I can’t use it directly.
Autoconf provides a number of quadrigraphs for special characters. The
quadrigraph for ‘#’ is the unpronouncable @%:@. If you need to check for
something more sophisticated than the mere presence of a header, perhaps
i t s p r e se nce and con t en t s t he AC_LANG_SOURCE and
AC_LANG_PROGRAM macros are useful here[8]. AC_COMPILE_IFELSE
doesn’t try to link.
AC_CHECK_LIB(library, function, [action-if-found],
[action-if-not-found]) tests whether a library is available by
trying to link a test program that calls function.
When the compiler and linker are invoked, the CXXFLAGS and LIBS
variables are used to pass the compiler and linker options. This is why the
macro keeps copies of the initial values of these variables, and resets them
at the end of the script. In a shell script all variables are global, so care must
be taken with special variables like these.
Working from this template, I wrote two further macros to check for
libxml2 and Xerces. The Xerces macro is slightly more involved because
Xerces is a C++ library. AC_CHECK_LIB plays rather fast and loose with
function declarations and is only suitable for checking functions in C
libraries. The C++ equivalent is:
 xerces_save_LIBS="$LDFLAGS"
 CXXFLAGS="$CXXFLAGS $XERCES_CFLAGS"
 LIBS="$LIBS $XERCES_LIBS -lxerces-c"
 AC_LINK_IFELSE([AC_LANG_PROGRAM(
 [[#include <xercesc/util/PlatformUtils.hpp>]],
 [[XERCES_CPP_NAMESPACE::XMLPlatformUtils
 ::Initialize()]])],
 [XERCES_LIBS="$XERCES_LIBS -lxerces-c"
 xerces_found=yes],
 [xerces_found=no])
 CXXFLAGS="$xerces_save_CXXFLAGS"
 LIBS="$xerces_save_LIBS"

AC_DEFUN([ARABICA_HAS_EXPAT],
[
 AC_ARG_WITH([expat],
 [--with-expat=PREFIX
 Specify expat library location],
 [],
 [with_expat=yes])

 EXPAT_CFLAGS=
 EXPAT_LIBS=
 if test $with_expat != no; then
 if test $with_expat != yes; then
 expat_possible_path="$with_expat"
 else
 expat_possible_path="/usr /usr/local /opt
 /var"
 fi
 AC_MSG_CHECKING([for expat headers])
 expat_save_CXXFLAGS="$CXXFLAGS"
 expat_found=no
 for expat_path_tmp in
 $expat_possible_path ; do
 CXXFLAGS="$CXXFLAGS -I$expat_path_tmp/
 include"
 AC_COMPILE_IFELSE(
 [@%:@include <expat.h>)],
 [EXPAT_CFLAGS=
 "-I$expat_path_tmp/include"
 EXPAT_LIBS="-L$expat_path_tmp/lib"
 expat_found=yes],
 [])
 CXXFLAGS="$expat_save_CXXFLAGS"
 if test $expat_found = yes; then
 break;
 fi
 done
 AC_MSG_RESULT($expat_found)
 if test $expat_found = yes; then
 AC_CHECK_LIB([expat],
 [XML_ParserCreate],
 [EXPAT_LIBS="$EXPAT_LIBS -lexpat"
 expat_found=yes],
 [expat_found=no],
 "$EXPAT_LIBS")
 if test $expat_found = yes; then
 HAVE_EXPAT=1
 fi
 fi
 fi
])

Li
st

in
g

3

22 | | APR 2007{cvu}

Adding the new macros to configure.ac , p receded by
AC_LANG([C++]) to indicated that test programs should be compiled
and linked as C++ rather than C gives Listing 4, and going through a round
of autoreconf and ./configure result in Figure 1.
The configure script can detect which XML parsers are available. Now to
communicate that to the build. I need to do two things; set a preprocessor
symbol in ArabicaConfig.h so I can pull in the approprate driver, and
have the Arabica library link to the parser library.
My ARABICA_HAS_* has macros will have set any or all of
HAVE_EXPAT, HAVE_LIBXML2, and HAVE_XERCES, together with a
matching pair of variables containing compiler and linker flags. I can write
a simple if ladder to set the outputs. But how to set those outputs?
The AC_DEFINE macro adds a symbol to the config header. It has the form
AC_DEFINE(variable, value, [description]) and is just what
we need.
To compiler and linker flags clearly need to be passed to the compiler and
linker. They are invoked by make, so the flags need to be set in the

Makefile. Autoconf AC_SUBST(variable, [value]) macro
performs variable replacement in the output files, substituting instances of
@variable@ with the value. This is the mechanism for getting the flags
from the configure script into the Makefiles.
Armed with these two macros, I wrote a further macro to select the parser

 AC_DEFUN([ARABICA_HAS_XML_PARSER],
 [
 if test "$HAVE_EXPAT" == "1"; then
 AC_DEFINE([USE_EXPAT], ,
 [define to build against Expat])
 AC_SUBST([PARSER_HEADERS], $EXPAT_CFLAGS)
 AC_SUBST([PARSER_LIBS], $EXPAT_LIBS)
 elif test "$HAVE_LIBXML2" == "1"; then
 ...
 else
 AC_MSG_ERROR([[Cannot find an XML parser
 library. Arabica needs one of Expat,
 LibXML2 or Xerces]])
 fi
])

and added it to configure.ac. I updated src/Makefile.am[9] to
add placeholders for the compiler and link flags
 ...
 AM_CPPFLAGS =
 -I$(top_srcdir)/include @PARSER_HEADERS@
 ...
 libarabica_la_LDFLAGS= @PARSER_LIBS@

And once more around the autoreconf and ./configure loop.
Towards the bottom of ArabicaConfig.h we find

 /* define to build against Expat */
 #define USE_EXPAT

Builds too (see Figure 2).
Readers with eidetic memories will spot that the long list of -D options

passed to the compiler have gone[10],
replaced by the ArabicaConfig.h header.
Sharpeyed readers will also spot the -lexpat
in the linker options, the result of the variable
of the AC_SUBST macro.

Customising the build – no Boost
The AC_DEFINE and AC_SUBST macros are
the two most common ways to customise and
configure your build, but sometime they can’t
quite get you were you want to be.
Arabica consists of several different pieces,
which stack on one another. At the bottom is
the a SAX layer, wrapping whichever library
configure finds. On top of that is a DOM
implementation, and on that is an XPath
engine. These different layers also have
different dependencies. The XPath engine
uses Boost, while the other pieces don’t. My
configure script should check for Boost, as
XPath can’t be built without it. Its absence
isn’t completely critical though, since the
other pieces can be built. In a case like this, a
preprocessor define, environment variable or
text substitution isn’t really going help. What
we need to be able to say is if this condition
appl ies , recurse the bui ld into these

configure.ac
 AC_INIT([Arabica], [Jan07], [jez@jezuk.co.uk])

 AM_INIT_AUTOMAKE

 AC_PROG_CXX
 AC_PROG_LIBTOOL

 AC_LANG([C++])
 ARABICA_HAS_EXPAT
 ARABICA_HAS_LIBXML2
 ARABICA_HAS_XERCES

 AC_CONFIG_HEADERS([include/SAX/
ArabicaConfig.h])
 AC_CONFIG_FILES([Makefile])
 AC_CONFIG_FILES([src/Makefile])
 AC_CONFIG_FILES([test/Makefile])
 AC_CONFIG_FILES([test/Utils/Makefile])
 AC_OUTPUT

Li
st

in
g

4

$./configure --help
`configure' configures Arabica Jan07 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

...

Optional Packages:
...
 --with-expat=PREFIX Specify expat library location
 --with-libxml2=PREFIX Specify libxml2 library location
 --with-xerces=PREFIX Specify xerces library location
 ...

 $./configure
 ...
 checking how to hardcode library paths into programs... immediate
 checking for expat headers... yes
 checking for XML_ParserCreate in -lexpat... yes
 checking for libxml2 headers... no
 checking for Xerces headers... yes
 checking for XMLPlatformUtils::Initialize in -lxerces-c... yes
 configure: creating ./config.status
 ...
 config.status: include/SAX/ArabicaConfig.h is unchanged
 config.status: executing depfiles commands
 ...

Fi
gu

re
 1
APR 2007 | | 23{cvu}

s u b d i r e c t o r i e s , o r b u i l d t he s e e xe c u t a b l e s . Au t o m a ke ’ s
AM_CONDITIONAL macro allows us to do exactly that.
At the end of my macro which checks for Boost[11], I have:

 AM_CONDITIONAL([WANT_XPATH],
 [test "$want_xpath" = "yes"])

and in tests/Makefile.am I have:

 SUBDIRS = Utils SAX DOM
 if WANT_XPATH
 SUBDIRS += XPath
 endif

Now, the build will only walk down into the XPath directory if the Boost
libraries are found.

Build targets for free – install
In addition to the build targets you specify, Autotools provides a number
of additional targets. Among the most useful are install, dist and
dist-check.
What is installed where are controlled by the Makefile.am
primaries[12]. A file named in a primary is installed by copying the built
file into the appropriate directory. So

 bin_PROGRAMS = hello

would be installed in $(bindir). By default configure $(bindir) is
/usr/local/bin, but that can be changed with a command line
parameter. Autotools can also install libraries and headers. Where the
platform requires, the install target will relink and take care of any other
platform specific jiggery-pokery.
Arabica is implemented mainly in header files[13], and I’m too pragmatic
(or lazy, take your pick) to try and keep Makefile.ams up to date with
a constantly changing list of files. Consequently, the built-in install
target won’t install my headers, because it doesn’t know about them.
Autoconf accounts for situations like this by providing hook points in the
built in targets. For Arabica, I can provide an install-data-local
target in my Makefile.am, and it gets called at the right point in the
install. (Listing 5).
This is a straightforward Makefile fragment. I find all the header files
(skipping Subversion directories) and copy them into $(includedir).
Autotools arrange for $(includedir) to be pointing to the correct
location.
Autoconf also provides a matching uninstall target. Politeness dictates
that if you use the install hook, you should also provide an uninstall
hook in your Makefile.am (Listing 6).
Autoconf includes a number of other built-in targets, including rules for
running tests, maintaining file dependencies, and packaging source files.
They all provide similar hook points.

 $make
 Making all in src
 make[1]: Entering directory `/home/jez/work/arabica'
if /bin/sh ../libtool --tag=CXX --mode=compile g++ -DHAVE_CONFIG_H -I. -I. -I../include/SAX -I../
include -I/usr/include -g -O2 -MT arabica.lo -MD -MP -MF ".deps/arabica.Tpo" -c -o arabica.lo
arabica.cpp; \
 ...
 /bin/sh ../libtool --tag=CXX --mode=link g++ -g -O2 -o libarabica.la -rpath /usr/local/lib -L/usr/
lib -lexpat arabica.lo InputSourceResolver.lo base64codecvt.lo iso88591_utf8.lo ucs2_utf16.lo
ucs2_utf8.lo iso88591utf8codecvt.lo rot13codecvt.lo ucs2utf8codecvt.lo utf16beucs2codecvt.lo
utf16leucs2codecvt.lo utf16utf8codecvt.lo utf8iso88591codecvt.lo utf8ucs2codecvt.lo
XMLCharacterClasses.lo
 ...
 ranlib .libs/libarabica.a
 creating libarabica.la
 (cd .libs && rm -f libarabica.la && ln -s ../libarabica.la libarabica.la)
 make[1]: Leaving directory `/home/jez/work/arabica'

Fi
gu

re
 2

 uninstall-local:
 @echo "--"
 @echo "Removing include files from $(includedir)"
 @echo "--"
 for inc in `cd $(srcdir)/include && find . -type f -print | grep -v \.svn`; \
 do rm -rf "$(includedir)/$$inc"; \
 done
 for dir in `cd $(srcdir)/include && find . -type d -print | grep -v \.svn`; \
 do rm -rf "$(includedir)/$$dir"; \
 done

Li
st

in
g

6

 install-data-local:
 @echo "--"
 @echo "Installing include files to $(includedir)"
 @echo "--"
 for inc in `cd $(srcdir)/include && find . -type f -print | grep -v \.svn`; \
 do $(INSTALL_HEADER) -D "$(srcdir)/include/$$inc" "$(includedir)/$$inc"; \
 done

Li
st

in
g

5

24 | | APR 2007{cvu}

Adding a custom target
In addition to the built-in targets, it’s also possible to add your own build
targets. You simply add the target and its rules to Makefile.am. Arabica
includes a target to build HTML class documentation

 docs:
 doxygen doc/arabica.dox
 @echo "-----------------------------------"
 @echo "Generated documents to ./doc/html"
 @echo "-----------------------------------"

Expected benefits
My decision to move to a new build system was driven by the fact that my
pile of Makefiles had become unworkable. They were increasingly
difficult for me to maintain, and difficult for people to use. I chose
Autotools expecting it to be able to

find Arabica’s prerequisites – at least an XML parser and optionally
Boost
identify whether wchar_t was supported
detect platform specific file extensions
track file dependencies
be at least as easy to maintain as my existing setup
stand a better than even chance of working on the random machine
that somebody has just downloaded my code to system

In short, it can. In the course of this article I’ve outlined macros that
identify Arabica’s prerequisites. Writing macros is straightforward, if
indeed a quick Google doesn’t find one for you. Autotools handles file
extensions automatically, along with lots of other platform specific details
I hadn’t even considered.
Since Arabica is mainly implemented in header files, as a developer I was
particular keen to have dependencies tracked automatically. The generated
Makefiles track dependencies extremely well. In the time I’ve been using
Autotools I’ve never been caught with a bad build.
Although there was a bit of ramp up to using Autotools, now that I have
the re la t ionshop be tween configure.ac , configure ,
Makefile.am and Makefiles clear in my head, I’ve found using it
extremely easy. Adding new executables to the build takes only a few
minutes. Modifying the build to include or exclude certain pieces I’ve also
found to be straightforward to implement. Since build options can be
exposed as configure script options, they are much easier for Arabica users
to access. They don’t need to fish around in a Makefile, they can just pass
an option.
My experience with building Arabica on different platforms, and the
reports I’ve had, tell me that a package that uses Autotools stands an
extremely good chance of building on some arbitrary machine.
Importantly, the configure script allows problems to be identified and
reported before we even attempt to compile a link. A message which says
‘Can not find an XML parser library. Arabica nees one of Expat, LibXML2
or Xerces.’ is much clearer than a screen full of compiler errors caused by
a missing header file, or unresolved link error.
For all the criteria I set myself, switching to Autotools has been a success.

Unexpected benefits
Since my initial release of an autoconfiscated Arabica package last
September, I’ve discovered a number of other benefits that I hadn’t
expected or even considered.
One thing I hadn’t expected is that I’m finding Makefile.am files much
easier to maintain than Makefiles. Arabica is under relatively energetic
development, and so I’m adding new things to the build reasonably often.
Despite years of working with Makefiles, I could rarely get one right first
time. Makefile.ams are much more concise, and I get them right more
often than not. Once I’ve added a new source file, say, Autotools also takes
care of dependency tracking, installation, and source file packaging for me.

Packages built with Autotools do tend have a lot of files scattered
about the place.

Here's an overview.

That's before running configure - the files that ship in the source
package. Somebody building your package will run configure, and
discover a few more as a result ...

File Description

AUTHORS

NEWS

README

ChangeLog

Text files that automake expects to find.
The GNU Project has guidelines about their
use, but I simply created stubs directing
people to my website.

COPYING

INSTALL

Again text files automake expects to find,
and can provide for you. The COPYING it
provides contains the text of GNU General
Public License, for which you may want to
substitute an alternative. The provided
INSTALL provides general instructions on
using configure, building, and installing.

configure.ac The Autoconf source file used to generate
configure.

aclocal.m4 A generated copy of the m4 macros used by
configure.ac.

configure The (enormous) shell script that examines
your system, its header files, libraries, and
compiler, before generating a set of system
specific Makefiles.

config.guess

config.sub

depcomp

missing

Support shell scripts used by configure.
config.guess and config.sub provide the
canoni al system type - e.g. i686-pc-cygwin.
depcomp is a script with compiles a
program while also capturing its
dependencies. missing acts as a stub for
GNU programs which might not be present
(e.g. yacc, or the autotools themselves),
aiming to keep the build going if possible.

install-sh Script to install a program, library, or
datafile.

ltmain.sh Part of libtool, providing general library
building services.

Makefile.am Automake source used to generate
Makefile.in

Makefile.in Template which configure will use to
generate the Makefile

File Description

config.log configure’s extensive log of the checks it
has run, what it found, and how it has
expanded its variables.

config.status A script created by configure which
generates the output files, creating
Makefiles from Makefile.ins. Usually run by
configure itself, but can also be run
manually to recreate the output files if
necessary.

libtool Another script created by configure, this is a
system specific library builder. It is called
from the generated Makefiles.

Makefile The Makefile configure created from the
Makefile.in

What are all those files?
APR 2007 | | 25{cvu}

I save time both because updating the Makefile.am is easier, and
because it does more work for me.
As someone with a history of producing not-quite-correct tarballs, I’ve
found the built-in dist and dist-check targets to be invaluable. The
dist target creates source tar.gz, tar.bz2 and zip files, using the
Makefile dependencies. Dist-check provides extra peace of mind. It
bundles up the source files, then unbundles them and tries to build the
package. I love it.
According to Sourceforge’s statistics, Arabica is now getting more
downloads. A new release always did bring a spike in traffic, but I do seem
to be seeing a sustained increase in the number of downloads. I don’t know
who or where most these new downloaders are or what they’re doing, but
that’s part of the fun.
Autotools makes cross-compilation straightforward. People are building
Arabica for embedded platforms, with some success. I’m pretty sure my
previous system, if not active hostile to cross-compilation, didn’t make
things any easier.
When build fails, the emails I have had show that people tend to blame
themselves. They write emails containing phrases like: I’m sure it’s
something I’ve done and if you could point me in the right direction. Prior to
autoconfiscating Arabica, I received perhaps five emails in six years about
gett ing the package build on new platforms. Subsequent to
autoconfiscating Arabica, I’ve received six in the last six months. What’s
more, in every case but one getting the build going has been
straightforward even without my having access to the platform in question.
What this shows, I think, is that people find the ./configure; make; make
install incantation comforting. It sends a message that the package author
knows what they’re doing, and that sends good messages about the
package itself. Arabica’s initial impressions were good, rather than off-
putting. A reliable build means people can concentrate on finding out
whether Arabica can actually help them do what they want. If the build
doesn’t work for whatever reason, people feel it can be fixed, simply
because they see Autoconf build working so often.

So was it worth it? Would I do it again?
Yes and yes, although I wouldn’t necessarily recommend it universally or
unequivocally. For existing systems that work already, I wouldn’t
recommend you change simply for the sake of changing. For systems
where portability isn’t a consideration, or where the build is
straightforward, I wouldn’t necessarily consider Autotools as my only
choice.
For something like Arabica, code intended to be built on a number of
different platforms, then I think I would now reach for Autotools first. For
systems where the build is fluid, where things are coming in and out of the
build often, I’d consider Autotools because I’ve found it easy to maintian.
In cases where the build needs to be customisable, for whatever reason
(missing header file, basic vs full options , etc), I’d also Autotools a strong
candidate.

And it’s goodnight from me
And that’s more or less it. In the course of these three articles, I’ve sprinted
through my migration to Autoconf. I’ve discussed what Autoconf is and
what it does. I’ve given examples of common Autoconf operations. Finally
this month, I’ve looked at examples of the various ways to modify the build
through preprocess symbols, variable substitutions in Makefiles,
conditional targets, and by customising built-in targets.
My experience with Autotools has been, and continues to be good. Should
you choose Autotools in the future, hopefully these articles will help you
have a similar experience.

Notes and references
1. CVu Vol 18 Number 6 and Vol 19 Number 1
2. Code available from http://www.jezuk.co.uk/arabica
3. http://expat.sourceforge.net/ Expat was originally written by James

Clark, a real XML big brain, and is widely used. It’s my XML parser
of first resort.

4. libxml2, the GNOME XML parser, http://www.xmlsoft.org/
5. Xerces-C, an Apache project initially donated by IBM, http://

xml.apache.org/xerces-c/
6. See http://www.gnu.org/software/m4. m4 seems to go back to early

in Unix history, but I'm not aware of it being widley used outside of
Autoconf. The GNU version is still active though, with the latest
release as recently as last November.

7. Autoconf Macro Archive contains over 500 macros, indexed by
category, http://autoconf-archive.cryp.to/

8. See the Autoconf manual, http://www.gnu.org/software/autoconf/
manual/, particularly the index of macros at http://www.gnu.org/
software/autoconf/manual/html_node/Autoconf-Macro-Index.html

9. See last time for an overview of Makefile.am files.
10. Again, see last time.
11. Derived from the AX_BOOST_BASE, from http://autoconf-

archive.cryp.to/ax_boost_base.html
12. Makefile.am primaries, and this significant of the prefixes in

primary names were discuss last time.
13. Currently over 150 header files.
26 | | APR 2007{cvu}

Code Critique Competition 45
Set and collated by Roger Orr.

lease note that participation in this competition is open to all
members, whether novice or expert. Readers are also encouraged to
comment on published entries, and to supply their own possible code

samples for the competition, in any common programming language, to
scc@accu.org.

Last issue’s code
My thanks to the donator of this piece, who would like to remain
anonymous – but you know who you are.
This is a scaled down version of some production code which was longer
and slightly more tortuous.
Feed the program (assume here built as run.exe or run) with arguments
like:
 run foo bar baz

And it prints:
 f,o,o
 b,a,r
 b,a,z

Please critique this code, suggesting how the writer could improve their
coding technique.

#include <iostream>
#include <iterator>
#include <string>
#include <sstream>
#include <vector>

using std::cin; using std::cout;
using std::ostream_iterator;
using std::stringstream;
using std::string; using std::vector;

int main(int argc, char *argv[])
{
 vector< string > names(
 argv + 1, argv + argc);

 size_t written = 0;
 while(true)
 {
 stringstream output;
 bool added = false;

 if(written == names.size())
 break;

 string name = names[written];
 for(int index = 0; index != name.size();
 ++index)
 {
 output << name[index];
 if(index < name.size() - 1)
 output << ",";

 if(written > names.size())
 continue;

 added = true;
 }

 if(!added)
 break;

 cout << output.str() << "\n";
 ++written;
 }

 cin.get();
 return 0;
}

Critiques

From Nevin :-] Liber <nevin@eviloverlord.com>

To be frank, I really don’t like this code. It’s messy. Some issues off the
top of my head:

Too much copying (and pointless memory [de]allocation). The
names are copied from an array of C strings (argv) into a vector of
std::strings. Why? Then each name is comma-fied into a
std::stringstream, which is then converted to a
std::string for output to a std::ostream (std::cout).
Ugh.
Too much arbitrary control flow. Two nested loops, four ifs, two
breaks and one continue make it difficult to see the execution
path through the code. Which means it is easy for a latent, subtle bug
to hide in the code. It is hard to reason about the code and it is a
maintenance nightmare.
No Separation of Concerns. The code which comma-fies a word is
intertwined with the code that moves from one word to the next.
This functionality needs to be decoupled.
Too many unnecessary artifacts. Things like using std::cin and
using std::ostream_iterator are in all likelihood left over
from previous attempts at implementing this. It is even hard to see if
the statement if(written > names.size()) continue;
is from an old implementation or if some intended functionality is
missing (because it is impossible for written to ever be greater than
names.size()).

Personally, I’d just chuck the code and start over:

#include <iostream>
std::ostream& Commafy(const char* line,
std::ostream& out = std::cout)
{
 const char* delimiter("");
 for (; *line; ++line)

P

ROGER ORR
Roger has been programming for 20 years, most recently
in C++ and Java for various investment banks in Canary
Wharf. He joined ACCU in 1999 and the BSI C++ panel
in 2002.
He may be contacted at rogero@howzatt.demon.co.uk
APR 2007 | | 27{cvu}

 {
 out << delimiter << *line;
 delimiter = ",";
 }
 return out;
}

int main(int argc, char* argv[])
{
 if (argc) for (++argv; *argv; ++argv)
 Commafy(*argv) << '\n';
}

Yes, that’s it. :-).
A few notes:

Commafy: There are two ways to think about how to comma-fy a
string s of length N: either put a comma after each of the characters
in the range [0..N-2], or put a comma before the characters in the
range [1..N-1]. Picking the latter model simplifies the code; I’d
rather not have a special case for strlen(s) < 2 if I don’t have to.
In addition, I parameterised the output stream, as I can see this
function being used for other streams (files, std::stringstreams, etc.).
main: The C++ Standard (section 3.6.1) makes a number of useful
guarantees about argc and argv:

0 <= argc
0 == argv[argc]
 0 != argv[a] (when 0 < argc, for all a in the range
[0..argc-1])

I take advantage of that to iterate through all the command line parameters.

From Michal Rotkiewicz <michal_hr@yahoo.pl>

The code seems to be correct from the reliability point of view: there are
no memory leaks, memory violations and so on.
I will try to point out what may be changed to make this code more readable
and I will improve its performance.
At first I would like to clean this code as a few instructions are not
necessary:

1. ostream_iterator is not used so both #include <iterator> and
using std::ostream_iterator may be removed. It pays to
remove unnecessary headers in terms of compilation time: less
headers = less code to compile = faster compilation.

2. #include <string> is unnecessary as long as we have
sstream included.

3. if (written > names.size()) continue may be also
removed as this condition never becomes fulfilled. Variable written
is increased as the last instruction of the while loop and it’s
compared with names.size() at the beginning of the while
loop. Therefore while loop is broken faster than if
(written>names.size()) is true.

It’s nice that only necessary classes from std namespace are introduced.
Global namespace shouldn’t be polluted with unnecessary classes.
It’s worth mentioning that type of index variable should be size_t not
int. In case of long strings int may not be big enough to store its length.
Let’s move to the performance:

1. storing the input in the vector is not necessary. All vector’s benefits
are not used. It serves as a plain table in this case. All we need we
have placed in *argv[].

2. stringstream object is unnecessary as characters may be printed
directly from *argv[].

Taking these two points into account we have code like this:

#include <stdio.h>

int main(int argc, char *argv[])
{
 int j=0;
 for (int i=1;i<argc;i++)
 {
 j=0;

 while(argv[i][j]!='\0')
 {
 printf("%c",argv[i][j]);
 if(argv[i][j+1]!='\0') printf("%c",',');
 j++;
 }
 if (j!=0) printf("%c",'\n');
 }
 return 0;
}

This code is almost twice as fast as the original one (checked under
Cygwin). Despite getting rid of vector and stringstream, I used
printf as it works faster than cout. I have tried to use cout and have
sync_with_stdio turned off but it didn’t help as much as printf.

Commentary
The original code is somewhat obese – it contains one or more variables
that have no real purpose and tests that are unnecessary. Both of the
solutions come in at just over 1/3 the number of characters, which shows
the amount of redundancy present in the original solution.
I am interested in the effect that a poor algorithm has on code complexity
– sometimes a minor reworking of the approach can simplify the code. In
this example I find the test before writing the delimiter is unclear:
 if(index < name.size() - 1)

A recent discussion on accu-general showed there are a number of different
approaches to this general problem. I personally like Nevin’s approach of
always writing a, possibly null, delimiter although some seem to find it
counter-intuitive when they first come across it.
One common danger with refactoring code however, is of breaking the
existing behaviour. This is especially true of boundary conditions. In the
code provided, an empty string is a special case as it results in the added
variable remaining false, and terminating the loop early. Consider
execution of the program where one of the arguments supplied is empty:

 C:>run abc "" def
 a,b,c

Neither of the critiques supplied produce this output –but interestingly they
produce different output from each other!

Nevin’s code produces:
 C:>run abc "" def
 a,b,c

 d,e,f

Michal’s code produces:
 C:>run abc "" def
 a,b,c
 d,e,f

It is by no means certain whether the behaviour of the original code was
actually desired, but the fact that there is variable called added does suggest
28 | | APR 2007{cvu}

that this behaviour, odd though it might seem, might have been as
designed. One of the difficulties with modifying poorly written code is
trying to decide which of the behaviours of the code are expected, which
are bugs, and which are bugs the rest of the code relies on.

The winner of CC 44
Both the entries had slightly different behaviour from the original code,
so I was tempted to forgo awarding a prize this time round! However, the
competition is for the critique and both entrants made useful comments
about the original code. I picked the winner of CC 44 as Nevin, mostly
because his solution splits the functionality out into a separate function
Commafy and I consider that sort of refactoring to be a very helpful
example to the original writer of the code.
If Nevin could contact me on scc@accu.org to arrange his prize –
unfortunately I have had bounces from the email address as supplied.

Code Critique 45

(Submissions to scc@accu.org by 1st May)
I am building a random sentence generator which will construct a sentence
from four arrays containing verbs, nouns, etc. The sentence is built by using
a random index for each of the arrays. There is one slight problem –- the
three calls in my test program produce exactly same value! If I run the
program again I get a different sentence, but again repeated three times.
Of course, I want three different sentences within the same run.

I’ve tried to follow the code through with a debugger, but it does produce
different sentences when I single step through the code. Can anyone help
me out?

#include <string>
#include <vector>

class RandomSentence
{
public:
 RandomSentence() { sentence.resize(6); }
 void createRandomSentence();
 std::vector<std::string> & getSentence()
 { return sentence; }

private:
 std::vector<std::string> sentence;
 static std::string article[5];
 static std::string noun[5];
 static std::string verb[5];
 static std::string preposition[5];
};

#include <time.h>

void RandomSentence::createRandomSentence(){

 int randNum;

 for(int i = 0; i <= 5; i++) {
 srand(time(0));
 randNum = (rand()%5);
 switch(i){

 case 0:
 sentence[i] = article[randNum];
 break;

 case 1:
 sentence[i] = noun[randNum];
 break;

 case 2:
 sentence[i] = verb[randNum];
 break;
 case 3:
 sentence[i] = preposition[randNum];
 break;

 case 4:
 sentence[i] = article[randNum];
 break;

 case 5:
 sentence[i] = noun[randNum];
 break;
 }
 }
}

std::string RandomSentence::article[5] =
 {"the", "a", "my", "your", "his"};

std::string RandomSentence::noun[5] =
 {"pig", "cup", "phone", "TV", "letter"};

std::string RandomSentence::verb[5] =
 {"ate", "sat", "flew", "ran", "lay"};

std::string RandomSentence::preposition[5] =
 {"by", "in", "with", "over", "on"};

#include <iostream>

int main()
{
 RandomSentence rsc;
 for (int i = 0; i < 3; i++)
 {
 rsc.createRandomSentence();
 for (int j = 0; j != 6; j++)
 {
 std::cout << rsc.getSentence()[j];
 if (j == 5) std::cout << std::endl;
 else std::cout << " ";
 }
 }
}

You can also get the current problem from the accu-general mail list (the
next entry is posted around the last issue’s deadline) or from the ACCU
website (http://www.accu.org/journals/). This particularly
helps overseas members who typically get the magazine
much later than members in the UK and Europe.

Prizes provided by Blackwells Bookshops and Addison-Wesley
APR 2007 | | 29{cvu}

30 | | FEB 2007{cvu}

Standards Report
Lois Goldthwaite brings news from the C standard committee.

mmediately following the ACCU Conference, the international C++
standard committee (WG21) convenes for a week-long meeting at the
same Paramount Oxford Hotel. As the hosts, ACCU are grateful for the

generous financial assistance provided by sponsors Google and Adobe
Systems. If you meet someone from these organisations at the conference,
please make a personal expression of appreciation for their support of this
important work. And if you want to see in person what happens at a WG21
meeting (in a nutshell: geek-speak to the limit!), please write to
standards@accu.org for details.
And following the C++ committee meeting, the C standard committee
(WG14) convenes its semi-annual meeting in London, April 23-27. This
event is hosted by ACCU member Neil Martin of TFJ Ltd, and sponsored
by accounting firm SumIT (UK) Ltd.
The focus of the WG21 meeting is on new features for C++0x – and we
have committed that ‘x’ means ‘9’. That means there is a lot of work on
the agenda. According to the timetable agreed last October, by October
2007 a Final Committee Draft has to be ready for voting. This will be a
revised version of the ISO/IEC 14882 C++ Standard with all major features
in near-final form. The Registration Document which was submitted for
balloting last fall contains several ‘placeholder’ paragraphs promising a
new feature but not listing full details in precise standardese language. By
October those features need to be baked into near-final text. There will be
comments from National Standards Bodies to resolve, and then the really-
final text, called a Final Draft International Standard (FDIS), goes to
another ballot, planned to begin after October 2008. Each voting cycle
takes several months, and official publication introduces yet more delays
at the end. This sounds like a lot of red tape, and it is, but ISO/IEC standards

are expected to be valid for a period of years, so quality and broad
consensus are important.
In order to meet the timetable commitment, WG21 has called an extra
week-long meeting in July, and added a sixth day to the schedule for the
October meeting. So committee members are working hard, but even if you
do not attend WG21 meetings you can still contribute to make this standard
the best one achievable. All working documents are available from the
WG21 web page at http://www.open-std.org/jtc1/sc22/wg21/. You can
po s t y ou r c o m m e nt s o n t he i n t e rn e t n e w s g r ou p s
comp.lang.c++.moderated or comp.std.c++. Or you can submit them to
your national standards body, which in the UK can be reached by writing
standards@accu.org. In fact, the UK C++ panel welcomes comments from
everyone, even if not resident in the UK.
WG14 is not in the middle of an active revision of the ISO/IEC C standard,
but on the agenda is a discussion of whether it is time to embark on one.
And, finally, here is another blatant plug for our sponsors:

www.google.com
www.adobe.com
www.sumituk.co.uk

I

LOIS GOLDTHWAITE
Lois has been a professional programmer for over 20 years.
She is convenor of the C++ and Posix standards panels at
BSI. One of her hobbies is representing the UK at
international standards meetings!
Lois can be contacted at standards@accu.org.uk

Regional Meeting
Frances Buontempo reports from the London regional meeting.

he third monthly meeting of the ACCU in
London took place at Lehman Bros in
Canary Wharf on the thirtieth floor,

providing a spectacular view of the city.
Twenty-one people made it this time, including
some, soon to be, new joiners which is
encouraging.
The talk was a taster of a session to come at this
year’s conference – ‘C++: Why bother?’ given
by Russel Winder. It was explained that the
‘Why bother?’ title was intended to be
ambiguous for the evening, allowing discussion
of the alternatives to C++ and the benefits of
C++, though the title of the conference talk may
swing in one direction or the other. The aim was
to get people thinking and discussing
programming language choices.
A variety of languages were considered.
Dynamic languages such as Python are coming
to the fore now in many areas. Functional
programming languages also got a mention on
the way, though few present had used them for
production code.

The discussion lent towards the view that C++’s
importance will continue to diminish in
mainstream desktop/server application areas,
but there will still be a place for it for some time
to come, particularly in systems and the
embedded world, though C is an alternative here.
The speaker, who didn’t really get into the meat
of what he’ll be presenting at the ACCU
conference, personally holds the stronger view
that C++0x will probably do more to kill C++
than save it.
Specific downsides of C++ were then explored.
It was suggested that, because Linux, and all its
important services and libraries, are written in C,
trying to write C++ against it (specifically using
the STL), there is an ‘Impedance mismatch’
between containers, strings etc.
Mention was made of overly complicated
constructs and particularly long error messages
from template code that won’t compile, though
this was acknowledged as an implementation
problem rather than something dictated by the
standard. It was also noted that there are a variety

of C++ implementations which vary
(provocatively put as ‘several C++s’), partially
due to intimate relation between the language
and the hardware it must run on. This has the
plus side that OSes and anything hitting the
hardware must be written in C or C++.
The bigger picture was briefly taking into
account: language choice can sometimes be
driven by business decisions. For example,
would a business swap to taking on contractors
who knew a specific language to get a job done
rather than write in the language that legacy code
is in and that their current employees know?
Mention was made of COBOL still being hidden
in the depths of many database calls. How do
you decide the best language for a program
anyway? How do you allow domain experts to
get involved more easily? Are we aware of how
many programmer there are (including anyone
who has ever written a VBA macro)?
And then the projector shut itself down, clearly
signalling we were out of time and should retreat
to a nearby waterhole.

T

Software Development
Implementing Lean Software
Development
By Mary and Tom Poppendieck,
published by Addison Wesley,
276 pp, ISBN 0-321-43738-1

Reviewed by: Pete Goodliffe

Highly recommended.
The Poppendiecks’ latest
book sits in Addison
Wesley’s ‘Kent Beck Signature Series’
which immediately gives it a reputation
to live up to. And so it does.
This is their second book on ‘lean’
software development, and is in many ways a
follow-up to its predecessor. There is a small
amount of overlap in the two books’ material,
but only enough to recap the old ground before
the authors provide new perspectives on what it
means to perform ‘lean’ software development.
They present a way of looking at ‘agile’
development in terms of the ‘lean’ ideas
emerging from the 1980s/90s manufacturing
and logistics disciplines. In doing do, the authors
draw heavily from the pioneers of this
movement: Toyota (or, as they were, Toyoda
Automatic Loom Works). They provide insights
into the lean methodology this company
developed, and how it affected their entire
company ethos, workflow, and their interactions
with outside companies. They dig below simple
observations of processes and procedures to
understand the underlying motivations that
made ‘lean’ work for Toyota.
The Poppendiecks apply this skillfully to the
realm of software development.
Clearly not all of the manufacturing practices
would move over to our world wholesale; they
provide a pragmatic application to software
development. They explain how the unique mix
of qualities in ‘lean’ development can benefit us,
and how to made it all work in practice, not how
not to attempt a half-baked version of ‘lean’
development.
The authors do not present their material as ‘this
is how to do it’. They provide a set of ways to

think about how to apply it. Topics covered
include quality issues, building healthy teams
(not just ‘work groups’), when and how to make
the correct decisions and trade-offs, and studies
on processes and workflow.
The book is practical, engaging, very well
written, and clearly comes from a background of
substantial experience. Throughout the book are
real world stories from the authors’ experience
and case studies of real companies doing ‘lean’
in the Real World.
Each chapter is rounded of with a set of
challenging questions to get you thinking about
the development process your team currently
uses, and how to improve it.

Understanding Enterprise SOA
by Eric Pulier and Hugh
Taylor, ISBN: 1932394591, pub
Manning Nov 2005

Reviewed by Peter Hammond

According to the back
cover blurb, the authors are
a technology evangelist
and a marketing executive.
It shows. There is a brief
mention at the beginning that service
oriented architecture is not the same
as Web Services, and that there are
no ‘magic bullets’. It then spends the rest of the
book telling us how SOA (read Web Services)
is going to save us all from the evils of expensive
software engineering, and even help to cure
cancer (I kid you not, page 82).

Various parts of the book expose either a lack of
understanding of the software engineering
process, or a degree of simplification that is truly
misleading. It seems to suggest that simply by
exposing interfaces via a web service,
components can be changed at will with no
software development effort to integrate them,
and that change control and software
maintenance are made cheaper. It even suggests
that web service components can be deployed on
a different platform without porting effort (page
155). It spends several pages talking about
benefits of SOA that are actually benefits of
open standards, and makes no mention of how
SOA is supposed to help if there does not happen
to be an open standard for your application yet.
Instead there is an implication that using web
services standards to pass your messages means
that the other side will just understand them, as
if by magic.
This book may be useful if you have decided that
a Web Services architecture is appropriate, and
you need to convince non-technical
management. If you are looking for a balanced
or detailed introduction to the technology, look
elsewhere. Not recommended.

Design
Designing the Obvious
Robert Hoekman Jr, New Riders,
pp246, ISBN: 032145345X

Review by: Simon Sebright

The first thing that grabs one
about this book is the cover.
It looks like a search option
on a web page, but cut down
to the minimum. The subtitle
is A common sense approach to web application

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website
which contains a list of all of the books currently available. If there is something that you want to review,
but can't find on there, just ask. It is possible that we can get hold of it.

After you've made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous “not recommended” rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
APR 2007 | | 31{cvu}

design. It is the result of the author’s experiences
in working with web applications, that is web
sites which actually allow you to do something,
as opposed to view people’s intimate details or
see pictures of their dogs.
The tone of the book is pretty informal and
straightforward. It largely boils down to
relatively few concepts. At the end of the day,
only put in what is absolutely necessary, the idea
being that this simplicity is best for the users.
They don’t want bells and whistles confusing
them or getting in the way.
There are several examples of good and bad
websites, some from the author's own
endeavours, along with little stories about how
features got simplified.
As someone getting into web application
development, I found the overall message very
informative and inspiring. He advocates a lot of
agile-like techniques, and encourages informal
processes over documentation. The best piece of
advice I found was to cut down the first delivery
of a system to bare essentials. Throw away all
the other suggestions and then see what users
really want as extra features when they use the
system.
Over all I would recommend the book as an
empowering mechanism for anyone getting into
web application development. I am sure the
messages could have been delivered in far fewer
pages, but it’s an easy read. One criticism – there
is no technical information. For example, he
mentions a ‘trick’ using divs to implement the
expand inline pattern, but doesn’t give any help
or references about how to do that. Excellent
index.

Beginning Relational Data Modeling,
2nd Edition
by Sharon Allen and Evan Tracy
(1-59059-463-0), Apress

Reviewed by Paul Thomas

Recommended.
If you already have a
technical grounding then
you may find this a little
light. It’s a wordy
introduction that goes a long
way into the subject without requiring too much
attention to the mathematical side. If that’s just
what you’re after, then you could do much
worse. The writing has a nice, easy style that will
keep you interested. And just because the
presentation has a light touch, doesn’t mean
there is a lack of substance.
There were some occasions when I felt more
background was expected of me as certain
subjects were introduced. But on the whole, it
does a nice job of starting at near zero and
building up. The subject matter is broad so you
get a good grounding in the basics but you
certainly aren’t left with only a skin-deep
knowledge by the end. The material is pretty
much up to date too.

This book has a lot going for it in terms of style,
but what impressed me most were the examples.
They are real-world and taken to quite some
level of detail. There are the usual suspects or
sales and order tracking. But the main example
– the one taken from concept to physical reality
(and then some) – revolves around a card game.
Not only does this keep you from zoning out, it
helps you think of data-based systems where
you wouldn’t normally.
Buy it if you want something to read rather than
a reference book or course text book.

Aspect-Oriented Analysis and Design:
The Theme Approach
by Siobhan Clarke and Elisa
Baniassad, Addison-Wesley,
Object Technology Series, 366
Pages

Reviewed by Simon Sebright

This is an academic book.
The authors are academics,
and the contents of the book
are distillations of their research. It reads
academically in that it is very factual, self
consistent and dry. There is a lot of UML.
They present a combination of their work into
aspect-oriented techniques, which they call the
theme approach. It consists of two parts –
Theme/Doc and Theme/UML. They constantly
refer to these as ‘tools’ and that they can
regenerate diagrams, and extend UML, but I
didn’t see anything saying if or where one could
acquire these tools, so I assume they are in
development, which reinforces the academic
nature of this.
The theme approach is to treat all concerns in the
requirements as themes. Theme/Doc allows you
to associate requirements with themes and
identify aspect or cross-cutting themes. Theme/
UML is a UML extension allowing you to
design the themes in UML and combine them
using various notations into a final model.
There are a couple of case studies used in the
book, a mobile multi-player game, a mobile
phone system and licensing. I didn’t really get
the feeling that these were really presenting me
with full solutions, but they get the point across
of how to identify aspect themes.
This is really quite leading edge stuff, and
wouldn’t be directly useful without the tool
support they seem to have. Also, it all ends in a
UML model, and then you have to create the
code, making it all seem a little pointless. The
idea was to have code represent the
requirements more closely, but their process
ends only with a model, and you have to make
decisions about how that gets implemented.
True, if you use an aspect-oriented language you
can benefit from whatever aspects it supports.
I decided to review this to learn a bit about
aspects, and I certainly did. But, I found the book
somewhat repetitive. They have a style of telling
you something in overview, telling you in detail
and then telling you with example.

In summary, well written but quite narrow in
scope.

Java
Agile Java Development – with Spring,
Hibernate and Eclipse
by Anil Hemrajani, Developer's
library, ISBN: 0672328968

Reviewed by: James Roberts

This book is impressively
ambitious. To give a
description of Java
development is a full book
on its own. To throw in a
description of Hibernate, Spring and Eclipse at
the same time sounds like a recipe for disaster.
Given these reservations, I was pleasantly
surprised!
None of the constituent technologies is
described in a huge amount of detail. There is
enough there to allow one to decide whether it
is worthwhile looking further (and also a list of
alternatives to each component should you
decide to try out other approaches for your
development).
The development approach described is XP
based, and shows the development of a web-
based application, right the way through initial
definition of the functional requirements,
through design and code and automated testing.
Inevitably, given the number of topics in the
book each one gets a very lightweight treatment,
but this does allow a good overview of how all
these technologies might be used together in a
real project. The author includes some personal
insights and opinions interspersed throughout
the main body of the text. These were generally
interesting, and added another dimension to the
book.
There were a few niggles. For example, why
write test code which outputs println
messages on error, why not assert? There was
a bit too much of the ‘this is the way that we do
it, and the result is bound to be a massive
success’ for my liking, a useful chapter might
have been on handling niggles and disasters that
happen after the code is written.
However, on the whole I think that this book
would be useful for someone who has Java
coding experience (which is assumed by the
author), but perhaps hasn’t used one or more of
the other technologies covered. Recommended.

Java Concurrency in Practice
by Bruce Goetz at al,
ISBN 0321349601, Addison-
Wesley

Reviewed by Paul Thomas

Highly
recommended.
There are two ways
of looking at this
book: one is as a
32 | | APR 2007{cvu}

guide to the java.util.concurreny.*
packages introduced with Java 1.5, the other is
as a treatise on modern multi-threaded
programming in Java. The two go hand in hand,
of course: the concurrency package was added
as a result of JSR-133 – the Java Community
Process work on threading and memory model.
If you want to get fully up to date with
multithreading in Java, then you really should
take the time to read this book. It covers just
about every aspect of threading from the general
issues of concurrency to the specifics of
implementing custom synchronisers using the
AbstractQueuedSynchroniser base
class. In fact, I’d go further and say that if you
are interested in concurrency at all, regardless of
the language you use, then you should read this
book. It’s more than just teaching you how to use
some Java classes. Topics such as composability
of thread safe classes can apply to all modern
program design. And I don’t think I’ve come
across a book that deals with testing
multithreaded classes before.
It wouldn’t work as a reference book, but mine
will be sitting on the desk for some time. It needs
to be read and re-read. If you want to flick
through looking for a specific example, the
examples of broken code are clearly labelled
with a sick-face motif. Just a little detail, but one
that could make all the difference!
As well as covering the technical details of
threading, locking and memory models, the
book is filled with snippets of information about
the implementation of JVMs. One example is
the discussion of the relative merits of explicit
locks vs. implicit locking via ‘synchronized’.
Not only are we shown profiling data to show
how the techniques scale, but we are told how
work on Java 6 has drastically changed the
situation for the better. The authors don’t just
state that atomic variables are lighter than locks
– they explain in great detail why it might be so.
This sort of detail makes the difference between
knowing a subject and really understanding.

Spring in Action
Craig Walls and Ryan
Breidenbach Manning, ISBN:
1932394354

Reviewed by: James Roberts

To cut to the chase, I am a
big fan of this book. I have
used it as a reference while
coding, while it also clearly
explains the topic at a beginner’s level.
It starts by explaining how Spring can be used
for Inversion of Control and Aspect oriented
programming. The code examples used to
illustrate the text are short enough to copy and
use (although, I would have liked to see links to
a web-site which I could have downloaded the
examples from – just to save typing effort). The
authors include enough details to ensure that the
book remains useful as reference material as
well as an introductory text – without bogging
down the reader who is reading for the first time.

Later chapters cover topics such as integration
with other technologies, such as JDBC (or
Hibernate or iBatis), transaction control and the
Spring MVC (model view controller)
framework for the web layer. Although the
authors clearly have preferred solutions for
object-relational frameworks (Hibernate),
presentation layer (Spring MVC) and remoting
(RMI), alternatives are given, and their use
explained with a fair amount of detail.
I felt that this book was well written, being both
easy to understand at an introductory level, and
detailed enough to be useful as a reference. The
prose style is clear throughout, without
skimping on detail.
Highly recommended.

C++
The C++ Standard Library Extensions:
A Tutorial and Reference
Written by Pete Becker,
published by Addison Wesley

Reviewed by Anthony
Williams

I had high hopes for this
book, as Addison Wesley
is a respected publisher of
C++ books, and Pete
Becker is project editor for
the next edition of the C++
Standard, and has contributed a lot
of time and effort into the
development and publication of the Technical
Report described in this book. Unfortunately, I
was sorely disappointed. Subtitled A Tutorial
and Reference, I feel that this book fails to meet
either goal.
A key part of a reference book is the index, and
for a reference to a library I would expect every
function, class and macro to be in the index. This
is not the case. For example, many of the type
traits classes are not in the index, and the only
reference in the index to the unordered (hash)
containers by name is to the header synopsis in
the appendix rather than the chapter which
describes them. Not only that, but some of the
entries are just wrong: the only index entry for
result_of is for page 141, but result_of is
not mentioned until page 142, and that is only a
cross-reference to the real section, which starts
on page 148.
Having the reference material interspersed
amongst the descriptive text and examples
makes it really hard to use this book as a tutorial.
It has no narrative flow, which makes it hard to
read in a linear fashion. Exercises are included
at the end of each chapter, but they often require
that you’ve read and inwardly digested the
reference material, rather than following on
from a nicely explained tutorial. For many
functions, there is just a terse summary of its
operation followed by some example code, with
little in the way of descriptive text explaining

what the function does, and why one might want
to use it.
A final, minor note: in my copy, the print quality
is really poor. Some of the text is supposed to be
black on grey, but in my copy it comes out as
grey on slightly-paler grey, which is really hard
to read. This varies from page to page, and might
just be particular to this copy; I’ve never had this
problem with Addison Wesley books in the past.
Overall, I’m glad I didn’t pay the full cover price
for this book, and I don’t think I’ll ever refer to
it again. Instead, I’ll use the actual TR1 draft
(available from http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2005/n1836.pdf) for
reference, and the boost docs/examples as
tutorial notes, since just about every component
from TR1 is based on a boost library.
Not recommended.

.NET and Mono
Understanding .NET
by David Chappell, Addison
Wesley, ISBN: 0321194047,
pp317

Review by: Simon Sebright

Recommended (for the
intended audience). This
book is indended as a ‘big-
picture introduction’, and
largely succeeds. It doesn’t go into much detail,
and has but a few code snippets.
It’s broken into chapters on CLR, Languages,
Class Library, ASP, ADO and Distributed
Applications. Basically, if you want to do
anything regarding .net, be it architect or lead a
project, do the programming, etc., you need to
be familiar with all the material in this book.
It was well-written and quite readable, and being
familiar with .net already, it was a case of
nodding along, but with the occasional twigging
and new angles on things.
Throughout the book are little extra sidebars
where the author considers the pros and cons of
.net and other things, mostly java. They are
largely unconclusive pieces, saying it’s a good
thing that there is competition between java and
.net.
It would be a good place to start to get to grips
with .net, but probably of little value to the
already-initiated, although if a copy is available,
it might pay to ream through it to keep you in
touch.

General Technology
How cool stuff works
by Ted Smart, published by
Dorling Kindersley,
ISBN 1405308370

Reviewed by Ian Bruntlett.

To coin a phrase, this is a
APR 2007 | | 33{cvu}

‘popular technology’ book. It is hard backed, A4
sized and runs to 256 pages, lushly illustrated. It
splits technology in to 6 chapters – Connect,
Play, Live, Move, Work and Survive. Each
section is split up into two page spreads
illustrating a particular invention.
For example the ‘Connect’ chapter covers the
following inventions – Microchip, Mobile
Phone, Fibre optics, Digital Radio, LCD TV,
Toys Gallery, Voice Recognition, Pet translator,
Iris scan, Neon, Links gallery, Internet, Video
link, Satellite and ‘What Next?’. The other 5
chapters are just as interesting.
To complement the main text, there is a slim
reference section with a timeline – showing
when certain things were invented, a
‘groundbreakers’ section which highlights the
work of key inventors and a ‘techno terms’
section which acts as a glossary.
I regard this book as recommended reading for
anyone interested in technology. If you like this
book then read Tomorrow’s People by Susan
Greenfield.
Conclusion: Recommended.

Switching to VoIP
by Ted Wallingford, O'Reilly,
ISBN 0-596-00868-6, pp477

Reviewed by Mark
Easterbrook

Not recommended.
VoIP is a
technology that has been
touted as the ‘Next Big

Thing’ for at least 10 years now. All but a few
slow cases in the marketing department have
now realised that it is a technology with a slow
and gradual take-up and is never going to be a
gold-rush. There are three main areas where
VoIP has made some in-roads: technology savy
computer users taking advantage of cheap or
even free long distance calls over the Internet,
companies replacing ageing voice or data
infrastructure using the upgrade as an excuse to
converge their communication and data
networks, and large telecom companies
replacing their core networks. Add to this the
companies developing and manufacturing VoIP
equipment and we have four diverse domains
with very different requirements, constraints,
budgets, and understanding.
From this fragmented VoIP world I have failed
to identify the target audience for this book. The
large telecom companies and equipment
manufacturers are too close to the bleeding edge
to benefit from printed source material that is at
best several years out of date due to the long lead
times in book publishing.
Most of the book’s hands-on technical content
concerns the Linux-based Asterisk PBX
(Private Branch Exchange) application and
covers installation, configuring and
programming. The interface equipment required
is only available through specialist suppliers and
the small market makes it relatively expensive,
limiting its appeal to a few hard-core Linux fans.
The technical detail is too low level for most
commercial organisations and the sections
aimed at this audience, such as RoI estimates,

are too few and far between to be worth buying
the book for.
The author does provide a good grounding in
VoIP concepts, and even has several chapters
that are good tutorial material. Unfortunately
this is interspersed with the Linux-Asterisk
specific detail so that using the book as an
introduction to VoIP is difficult. The material is
also very US-centric limiting its usefulness to
those not working in areas of the world using
ANSI telecoms standards, this despite the author
claiming otherwise in the introduction.
Overall this book tries to do too many things on
too many levels and fails to achieve any of them.
The author is obviously very knowledgeable on
the subject and the content matter of the book is
good. It is just that that it does not all belong
together in the same tome. The Linux-Asterisk
part needs its own dedicated book, as I believe
it has. The tutorial on VoIP needs to consider a
non-US audience, and to drop the advocacy,
resulting in a much slimmer volume. Finally,
there is a need, only just touched on here, for a
good guide for the SME thinking of moving to
a VoIP and covering the solutions available off-
the-shelf and not DIY.
34 | | APR 2007{cvu}

Technology Tidbits by Tim Penhey
I’d like to take just a few words to mention a version control system
(VCS) that many of you have probably never heard of. I say many
because I know some ACCU folks who are using it. The VCS in
question here is called Bazaar [1]. Bazaar is an open source VCS
written in python. Bazaar, like most well liked VCSs, has a three letter
acronym ‘bzr’. The big difference between Bazaar and other popular
open source VCS alternatives like CVS and Subversion is that Bazaar
is a decentralised VCS[2].
An advantage of having a decentralised VCS is there is no requirement
to have a ‘central repository’, and creating a new bazaar branch is
exceedingly simple [3]. Bazaar is also optimised for branching and
merging, to the extent that many people create branches for bug fixes.
From a technology point of view, one of my favourite things about
Bazaar is that the main developers spent a lot of time working on the
underlying model, deciding that it is better to get the model right first,
and then work on optimising for speed. By the time that this is in print,
the current released version of Bazaar will be 0.15.
Bazaar has a concept of a repository. In this repository is a set of
revisions. Revisions are created when the user ‘commits’ changes.
Effectively a revision has one or more parent revisions, and the
changes that happened in that revision. Each revision also has a unique
identifier. A branch can be thought of as a view into the repository. A
branch is a directed acyclic graph (DAG) of revisions, where the left-
most traversal of the graph from the latest revision up is called the
revision history and gives revision numbers. Other revisions that are

part of the branch but not part of the history are considered the
ancestry. Working with branches in this manner make branching and
merging an exercise in graph theory.
You can work with Bazaar in a number of different ways [4], but the
way that we use it at work is like this:

There is a recognised mainline development branch
When you are starting a piece of work you branch from this in
your local repository
You work and commit to the local repository
When you have finished, you push your work to a central server
and your code gets reviewed
When the code has passed review it can go through the
automated landing procedure. This is a process that gets your
branch, merges it with a copy of the development branch, and if
it merges cleanly the full test suite is run. If and only if it passes
is your code merged into the mainline development branch.

I find that this works exceedingly well. I hope you decide to check it
out. I think it is pretty cool.

References

1. http://bazaar-vcs.org
2. http://bazaar-vcs.org/TheBigPicture
3. http://bazaar-vcs.org/QuickHackingWithBzr
4. http://bazaar-vcs.org/Workflows

accu ACCU Information
Membership news and committee reports
View From The Chair
Jez Higgins
chair@accu.org

My first job after leaving
university was at another
university. It was an
interesting and rather fun
experience for all kinds of reasons, but
particularly because I worked in a research
department. Even though I was on the technical
rather than academic staff, I was encouraged to
pursue my interests, even if not directly
applicable to my work, there was a budget to
provide the hardware and software tools I
needed, I had access to a pretty well-stocked
library which also subscribed to a number of
journals and magazines, and there were lots of
interesting people to talk to. I probably didn’t
take as much as advantage as I might have, but I
learned an awful, awful lot in a very short time.
Then I start doing ‘proper’ jobs for ‘proper’
software companies. Initially, I was keen to
work for a big consultancy. All those people,
doing all that stuff. It must be great! Think what
I could learn. The reality was, and you can
probably see where this is going, rather
different. There were lots of people, doing a
certain amount of stuff but not many people
seemed to be having much fun, and the work
wasn’t particularly interesting. More
dramatically, there was no culture of learning.
Very few people had any books on there desk,
and the nearest I got to a technical journal was a
week-old copy of Computing.
This is part of the my ‘career narrative’, and part
of the reason why I joined ACCU. It was a place
(the conference) and a thing (the journals) where
people where interested and interesting. While I
won’t claim that every article as left me
swooning with unalloyed joy or that every
conference session leaves me breathless with
excitement, ACCU has been and remains an
important part of my social and professional
programming life. Not every one will feel quite
the same, but I hope it’s a common sentiment.
In my first View From, I talked about wanting to
extend ACCU’s reach, that we can't be the only
‘programmers who care’, and that there must be
more of us out there. I’ve been Chair for nearly
a year now, and while there are still no levers[1],
I’ve got a handle on how things work. Assuming
the membership re-elects me at the AGM, I want
to spend the next year really trying to get on with
growing ACCU’s membership. It’ll be good for
us already here, and good for those we find, I
have no doubt. Efforts like the London meetings
and opening up Overload on the website will
really start to take off, I think, but there’s clearly
more that we can do. Allan and I will be holding

a ‘growing the membership’ BOF session at the
conference. Do come along if you can.

Membership Report
David Hodge (retiring)
accumembership@accu.org

I am retiring from this post at
the AGM in April, having
done it for 10 years.
I leave with the membership
at around 900 which is almost the same as when
I started. During that time the hishest we had was
1100, the lowest 820.
I wish you all well.
The job of Membership Secretary is being taken
over by Mick Brooks who has been doing large
parts of the job since November and I feel
confident that he will be able to manage the web
based system as I did the PC based system.
Mick Brooks
accumembership@accu.org

As David mentions, I’ve been working with him
in the last few months with plans to take over the
membership job at the AGM (hopefully I’ll be
elected – please vote for me!). I want to thank
David, not only for the guidance and support he
has given to me as I’ve been getting to grips with
the job, but also for all the work he has put in on
behalf of the membership in the previous ten
years.
David will leave us having specified and helped
implement and test the new membership system,
which works closely with the new website. The
rest of the credit belongs to Tim Pushman, who’s
built and integrated the system while ensuring
that new member sign-ups were working during
the busy period just before the conference early-
bird discount ran out. The new system means
that, when you’re logged into the website, you
can now access new options on your Account
Information page. These allow you to manage
your mailing and handbook settings, and will let
you renew your membership at the appropriate
time. If you haven’t logged in recently, please
login and have a look. Any member who’s
forgotten how to access the website, or is having
any other trouble with these features shouldn’t
hesitate to contact me.

Officer Without Portfolio
Allan Kelly

When I first joined the
ACCU committee, our
meetings seem to ramble on
forever. Most of the time it
didn’t feel like we were
actually doing anything.
Instead we spent our time
trying to work out who had the cheque book,
why the journals were late (again) and isn’t the

website awful. Come the 5.30pm deadline, when
we had to run for our trains, we just cut scope
and the things further down the meeting agenda
were dropped.
Well that was then and this is now. This is the
New ACCU. Meetings deal with business,
things get done, the website is fixed (and
outsourced), we know who has the cheque book,
we spend our time discussion things like
membership growth and local chapters, and for
the first time in memory the accounts will be
ready for the AGM. This year the accounts will
be prepared by professional accountants and in
the near future we will probably outsource the
whole job, freeing the treasurer from
administrative trivia.
For the last two years I’ve concentrated on
getting the website sorted. The new website has
been live for a year now and it still looks fresh.
Like any good development changes are now
incremental. David Hodge, Mick Brooks and
Tim Pushman have done a great job of creating
an online membership system that should be live
by the time you read this. Tony Barrett-Powell
now has Overload available as individual
HTML articles (hopefully live by the time you
read this) and the book review system has been
re-invigorated.
The website is carrying a few GoogleAds at the
moment. These do not bring in lots of revenue
but they do enough to pay for our site hosting.
The book database has not been such a great
financial success but with a new push on book
reviews we hope to turn this around. Before you
next buy a book please think about going to
Amazon or Blackwells (UK or USA) via the
ACCU website and we’ll get a small cut. Jeff
Bezos won’t miss the money but every little
helps the ACCU.
It all starts to look like the website is done. We
haven’t moved the mailing lists over yet but I
will not bore you with the details. We are going
to try again, hopefully they will have moved by
the summer. Then it will be big red switch time
for our trusty server, Brian. (Hopefully the US
Chapter will also find the time to merge into the
new site soon.)

So what next?
ACCU looks more like a professional
organization. Still we suffer from a lack of
volunteers. We need people to write journal
pieces, to edit our journals, run the committee
and fill the empty posts like Advertising and
Publicity officer. The solution is quite simple:
we need to grow our membership.
If we can grow our membership many of our
existing problems will simply go away. With
more people to fill the posts the committee will
function better, with more authors writing for
the journals the material shortage will disappear,
with more people reading the journals our

[1]In-jokery abounds, see CVu 18-3
APR 2007 | | 35{cvu}

accuACCU Information
Membership news and committee reports
REVIEWS

advertising revenue will increase. We don’t
need to (and probably don’t want to) grow very
big. Doubling our membership from 850 today
to 1700 should be enough.
Personally I don’t think this is a difficult
problem. This is equivalent of every ACCU
member recruiting one new member. Filling the
post of publicity officer is going to be key. A few
press releases, a few more mentions on The
Register, Slashdot and similar will soon bring in
the members.

Creating local chapters will help too. Things are
happening here too. A London chapter of the
ACCU is slowly emerging, all credit to Paul
Grenyer here; Bristol ACCU’ers have tried their
hand at the odd meeting and the Cambridge boys
are thinking about following the lead. For all this
we have to thank Reg Charney for his inspiring
speech at the ACCU conference last year.
There are plenty of other opportunities for local
chapters too. Statistically Reading/Slough
should be a prime candidate for a chapter too.

Hopefully we will see some more overseas
chapters too. Switzerland, and specifically
Zurich, looks like a great opportunity.
The ACCU is looking in great shape just now. I
hope to be elected to the ACCU committee for
another year at the AGM next month. I also hope
you will all join the committee and me in
growing the ACCU membership over the
coming year.
36 | | APR 2007{cvu}

If you read something in C Vu that
you particularly enjoy, you disagree
with or that has just made you think,
why not put pen to paper (or finger
to keyboard) and tell us about it?

	Conference Time
	A Custom Event Layer for the ACE Reactor Framework
	Playing by the Rules
	A Guided Tour of the POCO C++ Libraries
	The Trouble with Version Numbers
	Libris Unity
	You’ve Gotta Get On To Get Down
	Adventures in Autoconfiscation #3
	Code Critique Competition 45
	Standards Report
	Regional Meeting

