

FEB 2007 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

The ACCU is an organisation of programmers who
care about professionalism in programming. That is,
we care about writing good code, and about writing it
in a good way. We are dedicated to raising the standard
of programming.
The ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
ACCU members – by programmers, for programmers
– and have been contributed free of charge.
To find out more about the ACCU’s activities, or to join
the organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of the ACCU

accu
{cvu}

was out for dinner with a friend some nights back, and we got to talking
about ACCU. I was trying to explain what it was all about and why it is
a good thing. He asked me “Are you looking to expand the

membership?” I thought that was a funny question, and answered “Yes,
of course.” He looked at me square in the eye and said “So what is your
mission statement?” And there he had me somewhat stumped. I
blurted out something about “professionalism in programming” and
he nicely pointed out that what I said wasn’t anything close to a
mission statement. The next day I was talking with Jez, the chair
(ACCU chair, not ‘a’ chair), and spent a little time searching out how
to make a mission statement, and looking at other companies’ and
organisations’ mission statements. After a few, occasionally
humourous, exchanges I came up with the following that I’d like to
throw out there to the association:

To improve the standards of practising programmers through
association and mentoring.

Now does that sound like something that some of your co-workers or
employers might be more interested in? I was talking to a co-worker of
mine, mentioning ACCU and the “professionalism in programming” tag
line, and he came back with “Do you need professionalism in
programming?” I think this shows a distinct lack of understanding of
professionalism, but we need to combat that up front in order to make ACCU
more appealing to the programming masses.
For those of you who are not aware, there are a few new books available that are
authored by members of your association. Pete Goodliffe’s book, Code Craft, is
now available from No Starch Press, a new edition of Russel Winder’s book,
Developing Java Software, is out and Matthew Strawbridge’s new book is called
Netiquette. I think that a little self promotion in C Vu is a good thing as it lets you
know that your association has very talented and dedicated members.
Lastly I’d like to wish all our members a happy new year. I feel it is time for a
little personal disclosure. Here are a few of my new year’s resolutions:
1.Eat less and exercise more
2.Don’t wait until a few days before the submission deadline before writing
articles
3.Get conference talk written well before the conference

I
Volume 19 Issue 1
February 2007

Editor
Tim Penhey
cvu@accu.org

Contributors
Lois Goldthwaite, Pete Goodliffe,
Jez Higgins, Derek Jones, Roger
Orr, Tim Penhey, Simon Salter,
Emily Winch

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
David Hodge
accumembership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Thaddeus Froggley
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

TIM PENHEY,
EDITOR

A Mission to Increase Numbers

2 | | FEB 2007

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

COPY DATES
C Vu 19.2: 1 Mar 2007
C Vu 19.3: 1 May 2007

IN OVERLOAD
‘Managing Technical Debt’ by Tom Brazier, ‘Exceptional
Design’ from Hubert Matthews and much more!

DIALOGUE
20 Obfuscated Code
 Competition

The result of the
Christmas competition.

21 Standards Report
Lois bring news from the
standards committee.

22 Code Critique Competition
This issue’s competition
and the results from the
last one.

REGULARS
29 Book reviews

The latest roundup from
the ACCU bookcase

36 ACCU Members Zone
Reports and membership
news

FEATURES
3 Professionalism in Programming

Pete Goodliffe continues his series.

5 The Book List
Tim Penhey sets a python on the ACCU book list.

7 The Two Sides of Recruitment
Simon Salter and Emily Winch look at recruitment at
CherSoft.

9 A Python Gotcha
Silas Brown revisits an old problem and finds a solution.

10 Adventures in Autoconfiscation #2
Jez Higgins steps us through becoming autoconfiscated.

14 Developer Beliefs About Binary Operator Precedence
Derek Jones concludes the report on his experiment.

FEB 2007 | | 3{cvu}

Programming is...
Pete Goodliffe has a surprise revelation about programming

and monogamy.

don’t spend all of my time pontificating about programming, writing
books and articles. Sometimes I actually write some code. Hard to
believe, I know. But it’s true. You have to find a way to pass the time.

These days I’m working almost exclusively in C++, although I keep my
hand in a few other languages because it’s a bad idea to ever let your brain
stick in one gear. However, using C++ in anger for many years (sometimes,
quite literally in anger) has been a great deal of fun, and a very enlightening
experience. So much so, I realise that I now have a love/hate relationship
with the language. It’s gorgeous, in a sick-and-twisted kind of way. Old
C++ hacks know what I’m talking about.

Oh! For an easy life...
I don’t hate C++. It just annoys me sometimes. It’s intelligent, deep,
expressive, powerful, and great fun. But it’s not perfect. C++ is a very
sharp tool and, like all sharp tools, it has sharp edges. Often you can wield
the language to produce incredible, expressive code in an way that no other
language can match. And (hopefully not quite as) often, you accidentally
cut yourself on one of its sharp edges and end up mumbling something
involving expletives and “stupid flipping C++”.
These mumbled expletives don’t prove that C++ is a bad language
(although some would claim that they do). It’s just a language that you have
to learn to live with. A language that you have to understand well to work
with properly. You must grok how it works under the covers, and what
makes it tick. You can work in many other languages without making such
a serious commitment.
And then it occurred to me...
Programming in C++ is just like marriage. It’s great. It’s rewarding. But
it requires work. You can’t expect to breeze into C++ programming and
for everything to be perfect. For your code to be great with no effort. For
your life to be as easy as it was in a less committed programming
relationship. It just doesn’t pan out like that. You have to work at it. Put
some effort in.
But it’s worth it.
Sure, there are a few people who just seem to click with C++, who never
have any problems with it. But they are few and far between. And they’re
probably not in a real programming relationship with C++; it’s just a
superficial arrangement without any really deep interaction going on.
Programming for convenience.
You have to be careful how you treat C++. It’s a fickle beast; it gives you
many wonderful and exciting techniques to play with. And in doing so it
simultaneously gives you plenty of rope to hang yourself with. With
templates come unfathomable type-related error messages. With multiple
inheritance comes greater potential for bad class design and the ‘deadly
diamond’. With new and delete come memory leaks and dangling
pointers.
Does this mean that C++ is bad? That we should ditch C++ now and all
use Java or C# instead? Cripes, no! Some programmers argue for this, but
I think it’s a very misguided and myopic viewpoint. Sometimes there is a
place for a ‘programming for convenience’ relationship. And often there
isn’t. You don’t get anything in life for free; you must expect to invest
something costly to achieve a fulfilling relationship. It’s hard to live with
someone (or something) day-by-day, to share your most intimate
(programming) thoughts, and to not get upset with them occasionally. You
can expect a certain amount of friction as you get close and become

accustomed to one another. Any relationship
leads you along a path of constant learning about
each o ther , of working out how to
accommodate each other’s foibles, and how
to bring out the best in each other.
Admittedly, C++ isn’t going to put much
effort into learning about you, but many
clever people (the guys who designed and
standardised the beast) already did.
The fact that many professional programmers would
rather earn a fortune without having to think or learn
about the language is a sad thing, but that’s what
leads to so much bad C++ code. C++ doesn’t like people
to take advantage of it, or to treat it without respect. Bad
programmers dash out C++ code without engaging their
brains, and the result is a mess (whether they realise it or not). Those guys
simply shouldn’t be writing in C++; there are plenty of other languages
they can prostitute themselves with. And there are many programmers who
have divorced C++ as their first language and taken up with a younger,
more glamorous alternative. (It’s always a big ego boost to be seen with a
young trophy language on your arm. Is this the programmers’ equivalent
of a mid-life crisis?) [1]
Of course, it’s not just C++ that suffers from programmers who are not
prepared to invest the appropriate level of commitment to live in happy
union with the language. It’s just one of the languages that tends to show
the signs of neglect quickly, and that tends to make it’s feelings known
early on. You know when some C++ code has been neglected. (You come
home late one time too many via an indirected pointer, and find your object
inside the dog. And try as you might, you can’t see what you’ve done to
offend the language.)
So, C++ demands love and attention. You have to commit to it to be able
to produce fulfilling code. But, you know – that’s why I love it! When you
give it the time and attention it deserves, you can do some quite amazing
things in C++. To temper this you have to constantly think about what
you’re doing, and take responsibility for your work. It’s tempting to use
cool language features for feature’s sake, or employ hi falutin idioms
because they’re cute. But the good programmer knows the correct,
pragmatic, approach. When to let loose and when to hold back. As the
mighty Spiderman was told: with great power comes great responsibility.
C++ gives you the power. You supply the responsibility.

Cultivating your language relationship
There are still column inches to use up, so can we flog this metaphor any
further? Can this programming/marriage comparison teach us anything
useful? Well, perhaps it can.
There are a few generally accepted hallmarks of a healthy marriage. They
can shed some light on a healthy relationship with C++. In fact, they’re
descriptive of a healthy programming approach in general, since very little
of this is specific to C++. A good marriage requires:

I

Professionalism in Programming # 42

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@cthree.org

4 | | FEB 2007{cvu}

Love
OK, let’s start with the mushy stuff. For a marriage to succeed, the
partners must like each other, value each other, and want to spend
time with each other. There must be a level of attraction. They must
love each other.
Most code monkeys program because it’s their passion. They love
to write code. And they usually pick a language because they
genuinely love it. Perverse, perhaps. But true. Now, many people are
forced to use C++ at work because the existing codebase is written
in it – in this sense they enter an arranged marriage. At home they’d
rather tinker with a cool bit of Ruby or Python. Remember, some
arranged marriages work perfectly well. Some do not.
How much does your appreciation of a language shape the quality
of the code you write, or the way you’ll improve your skills working
with it? How much of this is born from acceptance and a growing
familiarity?
Commitment
These days commitment is not a
fashionable word. With the erosion of the
value of marriage in modern society,
people have come to expect to be able to
jump out of a ‘committed’ relationship as
easily as they can enter into it. But that’s
not healthy by any means.
To become an expert programmer in any given language, or with
any technology, you must have a commitment to learn about it, to
spend time with it, and to work with it. You can’t be selfish and
expect it to pander to your every need, especially when it is
specifically designed to suit many diverse situations and
requirements.
Commitment may also mean that you have to sacrifice. You must
give up some of your preferred ways of living and working in order
to accommodate the other party. C++ has particular idioms and
ways of working that suit it best. You might not like them, or would
prefer to work in other ways. But if they are the definition of ‘good’
C++ code then they are the idioms you should adopt.
Does your commitment to writing good code in the current language
supercede your desire to do things your own way? Good code or an
easy life? It’s all about commitment.
Communication
In a good marriage you constantly communicate. You share facts,
feelings, hurts and joys. You don’t just talk at a superficial level as
you would to acquaintances you meet in the street, but at a real heart-
to-heart level. It’s deep. You share things with your partner that you
would share with no one else. This kind of communication requires
an immense level of trust, acceptance and understanding.
This isn’t necessarily easy; men and women communicate in very
different ways. Communication can be very easily misconstrued or
misinterpreted. It takes a huge effort to communicate successfully in
a marriage. It’s something that you have to pay attention to and make
a constant effort with. Communication is very much a skill that you
learn, not just something you can or can’t do.
The act of programming is entirely about communication. The code
we write is as much a communication of the intent of our program
(both to ourselves and to other programmers who might pick it up) as
it is a list of instructions for a computer to execute.
In this sense, we communicate both to the language – to tell it what
to do, in a clear, concise, unambiguous, correct way – and we also
communicate to others using the programming language as the
medium. Good communication is a vital (and often lacking) skill in
high quality software developers. It takes a huge amount of effort, and
constant attention, to do this well.

Patience
Good marriages don’t appear overnight. They are cultivated over
time, bit by bit. They grow. Gradually. In our fast food culture we
have learnt to expect everything now, instant food, instant cash,
instant downloads, instant gratification. But relationships never
work like this.
It’s the same with our programming relationship. You can learn of
the existence of a language in an instant. You might even have an
instant attraction. Programming lust. But it can take a lifetime to
master a language fully, to be able to honestly claim that you really
know how to write ‘good’ code in it. It can take a long time, and an
awful lot of patience, until you fully appreciate the beauty of a
language.
Shared values
A strong glue thing that holds many relationships together is a
common sense of morals, values and beliefs. For example, research

shows that couples with shared strong
religious beliefs are far more likely to stay
together than those without them; it acts as
a solid foundation to build the relationship
upon.
If you don’t agree with C++’s basic values
– that many facilities and idioms are
available, but cost you nothing if you don’t
want to use them, that multiple inheritance

can be a healthy and useful design tool, that templates can tame vast
amounts of complexity (as well as introducing their own kind of
complexity) – then you’ll always have a skewed relationship with
the language.

Illuminating. But no metaphor is perfect. Is fidelity as important to healthy
C++ as it is to a healthy marriage? No. It is actually very useful to ‘play
the field’ and mess around with other languages on the side. Make C# your
mistress, and Python your muse. It’ll teach you more about different
programming skills and techniques, and help you to avoid getting stuck in
a programming rut.
Or is that actually very like marriage? I’ll leave that for you to decide...

Conclusion
Sometimes it’s really useful to anthropomorphise the things you work
with. To try to get yourself into ‘their’ mindset. Learn to think like C++
does. To empathise with the confounded language. Yes, it’s freakish. (And
quite clearly ‘wrong’ – just don’t tell your friends down the pub. Or your
psychoanalyst.) But it is a genuinely enlightening exercise.
This colourful marriage metaphor shows us that knowledge of a
programming language isn’t all there is to programming. Consider how
you work with your tools, the kind of relationship you have with them.
Good programmers think about more then mere lines of code, or an isolated
code design. They care about how they use and interact with their tools,
and how to get the best out of them, as much as they care about simple
fact-based knowledge of them. Good programmers don’t expect quick-fix
answers to problems, but learn to live with and appreciate the strong- and
weak points of their tools. They commit to a life with them, and invest time
and effort getting to know them. They appreciate and value them.
So... what languages and tools do you work with? And what tenuous
metaphors can you concoct for your life with them?

Endnotes
[1] How many people ditch their first relationship in the hope of trading

it from something that requires
less maintenance, only to
discover that the replacement
model is just as fickle, equally
as hard to live with, and not as
fulfilling?

Pete’s book, Code
Craft, is out now.

Check it out at
www.nostarch.com

you must have a
commitment to learn

about it, to spend time
with it, and to work with it

FEB 2007 | | 5{cvu}

The Book List
Tim Penhey sets a python on the ACCU book list.

s most of you know, ACCU has books that are available for review.
These books are made available by wholesalers and publishers in the
hope that good reviews will increase the sales of the books. I’m not

going anywhere near the topic of terrible books, or ones that should never
have made it to print. The point of interest as far as I am concerned right
now is that ACCU gets books to review. These books need to be recorded,
handed out for review, and if all goes to plan, reviews sent back for
publication in C Vu and the ACCU website.
For argument’s sake, lets consider that we are storing the list of books as
a comma separated value (CSV) file. It isn’t really, but it was fairly easy
to export it as CSV for the purpose of the exercise.

What do we want to do?
As far as dealing with the books for ACCU, there are a number of things
that we are interested in:

1. Which books need to be displayed on the web as available for review
2. Which books have been hanging around for a long time and not been

claimed
3. Which books were sent out some time ago and does not have a

review yet

Answers to each of these questions trigger other events:
1. Update the web site with new books shown and claimed books

removed
2. Send emails to accu-general suggesting people review the “older”

books (hopeful, I know)
3. Chase up people for timely reviews

As well as being able to answer these questions, we also want to be able
to add new books easily, and remove books once review have been
published and added to the ACCU review website. (Backslashes have been
added to Figure 1 by me to show line continuation.)

What we have here are the following values stored as CSV:
1. Title
2. Author
3. Publisher
4. ISBN
5. Year of publication
6. Date book was added to the list
7. Who has claimed the book
8. When they claimed the book

As you can see for the above two values, we don’t have values yet for who
claimed the book or when.

The preliminary work
Firstly, let’s create a class to encapsulate our books.

Notes on Listing 1
For Linux systems it is a common idiom to execute the python as
defined in the environment rather than hard coding a particular path.
Classes are defined using the class statement. The name following
class (Book in this case) is the name of the class, and the names
in the parentheses are the base classes. Python can handle multiple
inheritance, and base classes are defined by a comma delimited list.
Also defining object as a base class makes the class a “new” style
class. “Old” style classes are generally considered deprecated, but
since the behaviour is subtly different, they could not have been
removed without breaking code that already existed.
__init__ is the constructor for the class. The variable scoping
rules for python do not include object variable lookup, so all
references to instance variables are explicit. Functions defined at the
class level that are intended to be used as member functions take
self as the first parameter (compare that with C++ implicit this).

Both reviewer and date_claimed
are optional parameters. If the
parameters are not passed into the
constructor, then the default value is
used.

Creating an instance of a class is just like
calling a function, with the return value being
the initialised object.

>>> import booklist
>>> book = booklist.Book('A title', 'The author',
'Publisher', '123-45678', '2006', '2006-12-31')
>>> book.title
'A title'
>>> book.reviewer is None
True

A

Annotated Python # 2

TIM PENHEY
Tim believes in choosing the right tool for the job. After years
of hard core C++ hacking he’s found that some things are
just easier in Python. He can be reached at tim@penhey.net

tim@slacko:~/Desktop$ head -2 stocklist.csv
"Web Accessibility – Web Standards and Regulatory Compliance", "Various", \
"Friends of Ed", "1-59059-638-2",2006,02/10/2006,,
"The Official Ubuntu Book + CD","Various", "Prentice Hall","0-13-243594-2", \
2006,02/10/2006,,Fig

ur
e 1

#!/usr/bin/env python

class Book(object):
 def __init__(self, title, author, publisher,
 isbn, pub_year, date_added,
 reviewer=None, date_claimed=None):
 self.title = title
 self.author = author
 self.publisher = publisher
 self.isbn = isbn
 self.pub_year = pub_year
 self.date_added = date_added
 self.reviewer = reviewer
 self.date_claimed = date_claimed

Listing 1

6 | | FEB 2007{cvu}

Now that we want to be able to create a list of books based on the contents
of the file. So now we’ll create another class.

class BookList(object):
 "Holds the list of books"

We looked at some basic file functions in the last article: open, read,
readlines and close. One way to address the problem is to read the
lines in from the file, and split the string on commas. Then you hit the
problem of embedded commas in strings and it no longer seems like such
a wonderful idea. Luckily there is a module in the python library for
dealing with CSV files. Unsurprisingly it is called csv.

Note on Listing 2
The reader created is an iterable object, and returns a list of parsed
fields.

Conveniently we ordered the parameters of the constructor for the Book
to be the same order that they are stored in the CSV file. These could then
be passed as:
 book = Book(line[0], line[1], line[2], line[3],
 line[4], line[5])

Python has an inbuilt operator for lists that does exactly this:
 book = Book(*line)

So the loading function could be simply:
class BookList(object):
 "Holds the list of books"

 def load_csv(self, filename):
 "Read the CSV file and create books"
 books = []
 reader = csv.reader(open(filename))
 for line in reader:
 books.append(Book(*line))
 self.books = books

Task 1: Filtering out claimed books
Filtering a list is a very simple task in Python. Especially when we are
accepting or rejecting values with a simple boolean test.

Note on Listing 3
The [...] notation is called list comprehension. It provides a
simple syntax for constructing a list from another list. It does not add
any functionality into the language that was not there prior, but does
make it syntactically shorter and more understandable. The list
comprehension statement here could also be written long hand as:

result = []
for book in self.books:
 if not book.reviewer:
 result.append(book)
return result

Task 2: Books that have been hanging around
unclaimed
We could tackle this problem a number of ways, but the easiest is to work
with some form of date object. Currently the date_added attribute of our
Book class is a string. Again the Python library comes to the rescue with
the datetime module. The datetime.date class is great for
interacting with, but mildly a pain when converting from a string to a date.
The datetime.date class is constructed with a year, month and day. A
disadvantage of loosely typed languages is that you can’t overload on
parameter type. One way that python resolves this is to provide class level
factory functions like datetime.date.fromtimestamp. In order to
get from a string to something that we can use to construct a date object
we can either handle the parsing of the string ourselves or use a library
function.

>>> book.date_added
'02/10/2006'
>>> import time
>>> time.strptime(book.date_added, '%d/%m/%Y')
(2006, 10, 2, 0, 0, 0, 0, 275, -1)

Readers who are familiar with the C function strptime should notice a
little familiarity here. The resulting tuple from time.strptime is year,
month, day, hour, minute, second, week day, year day, and a daylight
savings value. For the week day, Monday counts as 0, and after checking
my calendar I can confirm that the 2nd of October 2006 was indeed a
Monday.
The constructor for the Book class can be modified slightly as shown in
Listing 4.

Notes on Listing 4
We are only interested in the year, month and day part of the return
value.
Again the list expansion for parameters is handy.

To identify the older books is now just a matter of looking for available
books that were added earlier than a specified date.

Notes on Listing 5
today is a class function for returning a datetime.date instance
for the current local time.
You cannot subtract an integer from a date object, just other date
objects (which yield a timedelta object) or timedelta objects
(which yield other dates).
The source list with list comprehension can just as well be a return
value from another function.
date1 < date2 is true if date1 precedes date2 in time.

>>> import csv
>>> reader = csv.reader(open('stocklist.csv'))
>>> for line in reader:
... print line
...
['Web Accessibility - Web Standards and
Regulatory Compliance', 'Various', 'Friends of
Ed', '1-59059-638-2', '2006', '02/10/2006', '',
'']
<<-- snipped results -->>

Lis
tin

g 2

def available_books(self):
 return [book for book in self.books if not
 book.reviewer]

Lis
tin

g 3

date_added = time.strptime(
 date_added, '%d/%m/%Y')[:3]
self.date_added = datetime.date(*date_added)

Listing 4

def older_books(self, day_count):
 cut_off_date = (datetime.date.today() -
 datetime.timedelta(day_count))
 return [book for book in
 self.available_books()
 if book.date_added < cut_off_date]

Listing 5

FEB 2007 | | 7{cvu}

Task 3: Finding overdue reviews
The fundamental reasoning behind giving out books is to get reviews in
return. Giving out books and not getting reviews is as good as standing at
the corner of an intersection handing out money to passers by. What we
want is some way to easily find out who has had which book for a long
time (for some fairly arbitrary value of “long”).
Firstly we need to change our book class again to have the date_claimed
attribute also a date instance. Since there is the possibility that there isn’t
a value, we need to check that too.

Notes on Listing 6
One advantage of a dynamically typed language is the ability to
change the type of a variable. Here we go from a string that contains
a possible date value, to a parsed tuple, and from that to the date
instance.
The date_claimed value here is either None (or other false value
passed in), or a valid date instance.

All we have to do now is to do more date arithmetic to find out how long
the people have had their books. Listing 7 contains a couple of additional
methods added to BookList.

Note on Listing 7
1. today is a static method on for the class datetime.date. Similar to a

C++ static function of a class.

Next time
We now have a handy script that gives us a few useful functions that we
can play with, but it is far from really useful. The next steps to look at will
be one or more of the following:

1. Reading and writing Open Doc format documents rather than the
CSV files (dealing with zip files and XML reading and writing).

2. Adding and removing books from the list in an easy way. You don’t
always want to have to type in all the details of the books, especially
when there is a web based API that you can use to get all the book
details just from the ISBN number (using simple HTTP web
services, XML parsing for the results).

3. Automating emails for those naughty reviewers that have been a
little lax in getting the reviews in on time (python’s email libraries).

Perhaps after all this we might even have something that will be really
used.

def __init__(self, title, author, publisher,
 isbn, pub_year, date_added,
 reviewer=None, date_claimed=None):
 # snipped rest of the constructor
 if date_claimed:
 # string -> tuple
 date_claimed = time.strptime(date_claimed,
 '%d/%m/%Y')[:3]
 # tuple -> date
 date_claimed = datetime.date(*date_claimed)
 self.date_claimed = date_claimed

Lis
tin

g 6

def claimed_books(self):
 return [book for book in self.books
 if book.reviewer]

def books_with_overdue_reviews(
 self, review_time_in_days=60):
 today = datetime.date.today()
 review_time = (
 datetime.timedelta(review_time_in_days))
 return [book for book in self.claimed_books()
 if (today - book.date_claimed) > review_time]

Listing 7

The Two Sides of Recruitment
Simon Salter and Emily Winch look at recruitment at CherSoft.

Part 1 – by Simon Salter
resh out of college I applied for a job with a large company, ICL, to
be a designer. I liked designing things, always have, and I thought
designing large gate arrays in a big company might be for me. They

invited me for an interview. I was to travel there the day before and stay
at a hotel. They laid on a dinner event for all the candidates. We got to meet
some of the ICL people, saw a short presentation and languished in the free
bar. As an impoverished student this was great. Even worth cutting my hair
for. Nice room. Good food. Chatted with the other candidates until quite
late.
Next day I was given a pile of tests to do. Not technical stuff but strange
psychometric things designed to reveal my true persona. After lunch,
which was also pretty good, they asked if I wanted to be a Production
Engineer. So I said no and went home.
Now I quite enjoyed the visit to ICL but came away with the general notion
that although they had put a lot of time, money and effort into recruitment
that they had somehow missed the point. I felt as if I’d been processed by
a system and found lacking.
Much later I applied to the British Antarctic Survey to work at one of their
research bases. Two years, one small base, eighteen people. This time I

expected psychometric tests and other sorts of physiological evaluations.
But there was none of it. Instead they spent a lot of time carefully
explaining just what I was letting myself in for. The basic premise was that
if I understood them, how they worked, what would be expected of me,
what life is like down South and then still wanted to go I’d probably be
fine. You can’t just up and leave from an Antarctic base if you decide you
don’t like it. You are taken there and then the ship comes back a year later
for a visit and then a year after that to take you home. That is pretty much
it so far as commuting possibilities go. So picking the right people is really
important. What I realised was that the recruitment process has to be a two
way process. If someone is right for the job then quite often the job is right
for them as well.

F

SIMON SALTER AND EMILY WINCH
Simon is a software developer who created CherSoft in 1994 to provide
navigation software to the marine market. He can be contacted at
simon@chersoft.co.uk.
Emily is mostly a software developer, but sometimes she writes and gives
training courses, and sometimes she juggles flaming torches. Emily can be
contacted at emilyw@chersoft.co.uk

The Book List (continued)

8 | | FEB 2007{cvu}

The two years in Antarctica were great and now, a few more years down
the road, I am part of a small software company. I’m involved with
recruiting again but this time from the other side of the desk. Obviously I
am very keen to learn from my earlier experience. Well, I think its obvious
anyhow. The company philosophy is very much concerned with
professionalism and quality. To this end we view employing a programmer
as a long term proposition. Immediately this seemed to put us at odds with
much of the industry so, like the good programmers we are, we decided
to devise our own recruitment strategy.
Here is a simple recruitment algorithm: find a candidate, test for technical
competency, test for ability to fit into company. What I find interesting
about this algorithm is that the three steps are not independent. In fact, for
us, it is only the last point that is the real test and everything else is just
working up to it.
On a daily basis we receive many CVs via agencies. These do not even get
read. This is not just because the agencies are parasitic warts on society
but mainly because we want people that can think for themselves and are
self-motivated. Writing a CV and searching the Internet is not difficult. It’s
not difficult if you have the independence of thought and creativity to be
a good programmer. Certainly it is not so difficult as to justify costing a
third of your first year’s salary. There is really just the one pot of money
from which we are going to pay recruitment costs and salary. So if the
recruitment costs are high – guess what?
CVs are great fun. You would not believe some of the daft things people
write. Personally I am not too interested in subjective stuff like ‘I am a great
guy and everyone likes me’. It is too easy to say and rarely has any
supporting evidence. It may be true but really we’re going to have to find
that out for ourselves. Instead I look for hard facts. What and when. Basic
qualifications and experience. Why are you looking for a job just now? So
you have 12 years experience C++, 3 of Fortran and 6 years on some
assembler that I never heard of. This does have some value but if I add up
all the years experience and deduce that you must be well over a hundred
years old then the value gets diluted a bit. Some personal information can
be useful. If you are going to work here then we are going to have to like
you as well. Strange hobbies are fine. No hobbies is a bit worrying.
Occasionally we receive a CV which states the candidate’s IQ. I don’t think
this is a very intelligent thing to do.
Technical competency. What makes a good programmer? Well the easy
answer is that I don’t know.
However, one way to spot a good
programmer is that they write good
programs. This is the basis of the
next stage in our recruitment
process. Please will you write us a
program? Only a short one. Just a
few hours work. We’ve been doing this for years and find it incredibly
useful. Software, good software anyhow, requires a strong creative input.
So when you write code you always put something of yourself in it. I think
you can often tell a lot about someone from looking at the code they write.
Our coding test is pretty straightforward: write a PIN generator. However,
as with most programming problems, there are many ways to tackle this.
Over the years we’ve seen many from the brilliantly clever to the
downright ludicrous. However, what we also see is something of the way
that someone tackles a problem. How they think almost. We can tell a lot
about how well someone will fit in with the company by looking at their
code.
The best code was that which fitted the way we work. No big surprises
there. However I do mean the way we work and not the elusive ‘good
code’. We didn’t expect code which would immediately fit into our
libraries but we felt we could spot code which showed that potential. Once
you accept that crafting code is creative and individual then you can start
to look beyond issues such as correctness and efficiency and see something
deeper about the person that wrote it. I can usually spot who wrote what
code in CherSoft just from the style.
So by this stage we have ascertained that the candidate has suitable training
and experience. Also that they can write good code and we like the way

they tackle problems. All that really remains is to decide whether we like
them or not. This is not the one sided thing that it sounds like. For the most
part it consists of doing our
best to explain who we are
and what we do. We’l l
introduce them to other
people in the company and
t a l k a bou t work ing
conditions, holidays and that
sort of stuff. Programmers are a funny bunch and often have strong
opinions about working conditions. The really good programmers are
typically far more concerned with the what and how of working than with
salary. Sometimes I think this part of the recruitment process might be best
done down the pub over a few beers. Eventually we all go off and make a
decision. Not immediately. It seems best to mull over things for a few days.
This works for us. We do get and keep the people that we want. Including
Emily.

Part 2 – by Emily Winch
At the beginning of 2006, CherSoft recruited me. I was particularly
impressed by their novel approach to the task of recruitment, and how it
worked well for me as an applicant as well as for them as an employer.
Not only were they able to find out a lot about me before committing to a
job offer – they helped me to find out a lot about them. Unlike with most
other job applications, I was happy that I had enough information to make
my own decision – do I want this job or not?
I first heard of CherSoft when I posted my CV to the accu-contacts mailing
list, and they replied. Since it’s not possible to read accu-contacts without
first joining the ACCU, I knew that at least one person at CherSoft was a
member – which told me that the company values good engineering and
continuing professional development. The fact that they were handling
recruitment internally rather than using agencies told me that they saw it
as a core part of the business rather than an ancillary function to be
outsourced.
Of course, as soon as the email arrived through accu-contacts, I went to
look at the CherSoft website. Unusually for a corporate site, it went into
some detail about the company’s philosophy and way of working – while

still seeming as though it could have
been written by a human being
instead of a Marketing Department.
By now, I was doubly convinced
that it was a good idea to apply for
the pos i t ion , desp i t e a l ong
commute which would ordinarily
have discouraged me altogether.

When I did apply, I was asked to write a short program for them. This
impressed me for two reasons. Firstly, it was evidence that when CherSoft
said that they valued good engineering, they really meant it. Secondly, it
gave me confidence in the ability of the rest of the team. Any idiot can read
a book about C++ and learn enough to answer a couple of questions about
virtual functions. I don’t want to work with idiots!
Finally, after I’d submitted my program and various CherSoft staff had
inspected it, I was asked to an interview. By this time, I had enough
information about the company to be fairly sure that I wanted the job. Even
so, Simon was very careful to explain the company culture and values
during the interview. I’ve heard plenty of managers give fantastic-
sounding speeches before, only to find out that they were so much hot air
– but in this case, the fact that Simon is a director of the company gave me
some confidence that the values he was describing were those of the
company itself, rather than of a manager with the right ideas but without
the power to implement them.
By the time CherSoft offered me the position, I felt that I had all the
necessary information to make the decision – Is this company right for me?
Would I enjoy working there?
Reader, I took the job.

Strange hobbies are
fine. No hobbies is a

bit worrying.

Occasionally we receive a CV which
states the candidate’s IQ. I don’t think

this is a very intelligent thing to do.

FEB 2007 | | 9{cvu}

A Python Gotcha
Silas Brown revisits an old problem and identifies a solution.

n C Vu 15.2 (February 2003), A Python Project, I wrote code that
included the following:

def overlaps(self,start,schedule,direction):
 if self.invisible: return 0
 if not schedule.bookedList: return 0
 count = 0
 # Skip over all events that finish before we start
 while schedule.bookedList[count][1] <= start:
 count = count + 1
 if count >= len(schedule.bookedList): return 0
 # Does this event start before we finish?
 if (schedule.bookedList[count][0] <
 start + self.length):
 # We have an overlap
 if direction < 0:
 # Make sure we finish before it starts
 backwards = (start + self.length -
 schedule.bookedList[count][0])
 return self.overlaps(start - backwards,
 schedule, direction) + backwards
 else:
 # Make sure we start after it finishes
 forwards = schedule.bookedList[count][1]-start
 return self.overlaps(start + forwards,
 schedule, direction) + forwards
 return 0 # No overlap

This code proved to be the slowest thing in the application by far – all those
recursive calls were duplicating a lot of work that had already been done
(skipping over irrelevant events had to be done all over again for each
recursive call). As the application ran too slowly, I re-wrote the above
using a loop instead:

def overlaps(self,start,schedule,direction):
 # Returns how much it has to move, given 'start'
 # direction is +1 or -1 - which way to move
 # (return value is always unsigned)
 if self.invisible: return 0 # never has to move
 bookedList = schedule.bookedList
 if not bookedList: return 0
 count, toMove = 0, 0
 if direction == -1:
 count = len(bookedList) - 1
 while True:
 if direction == 1:
 while bookedList[count][1] <= start:
 # finishes before or as we start
 # - irrelevant
 count += 1
 if count >= len(bookedList):
 return toMove
 if (bookedList[count][0] <
 start + self.length):
 # starts before we finish
 forwards = bookedList[count][1] - start
 toMove += forwards
 start += forwards ; continue
 else:
 while (bookedList[count][0] >=
 start + self.length):

 # starts after or as we finish - irrelevant
 count -= 1
 if count < 0: return toMove
 if bookedList[count][1] > start:
 # finishes after we start
 backwards = (start + self.length -
 bookedList[count][0])
 toMove += backwards
 start -= backwards ; continue
 return toMove

A bit longer, but much faster. But there is a subtle problem with the above
when it is dealing with floating-point numbers that can cause an infinite
loop, and it took me a long time to spot it. (I knew that the program
sometimes crashed and an interrupt showed that it was in this method, but
I wrongly assumed that the fault was in code that repeatedly called this
method rather than in the method itself.) In the line
 backwards =
 start+self.length-bookedList[count][0]

there is a subtraction that calculates the difference between
start+self.length and bookedList[count][0]. It could be that
this difference is very small (say, 1e-15) and this is more likely than you
think if lots of similar events are being added. A couple of lines later, that
difference is subtracted from start, and it is not impossible that floating-
point rounding will be such that such a small number makes no difference
at all to the value of start, which will mean the next iteration of the loop
will try to do the same thing and so on, creating an infinite loop. It seems
that Python under Windows is somehow more susceptible to this than the
Linux version, perhaps because of different default precisions.
(At least, my app crashed much more frequently under Windows than
Linux, which was slightly annoying because I had to battle with a Windows
box before I could reliably reproduce the problem.)
In this application it suffices to add the hack
 backwards = max (backwards, 0.1)

(suitably commented, of course), but in general you should avoid taking
the difference between two possibly-similar floating point numbers and
then trying to add this to some other number on the assumption that the
addition will definitely change the number – if it’s non-zero but small then
the larger number might not be changed at all.
(Note: The line dealing with forwards is less likely to go wrong, because
the small difference is then added to one of the arguments of the
subtraction, rather than to some other number.
However, it’s probably a good idea to fix that one too.)
(Note 2: This bug was present in the old version of the code also, but in
that version you’d get a stack overflow rather than an infinite loop.)

I

SILAS BROWN
Silas is partially sighted and is currently undertaking freelance work
assisting the tuition of Computer Science at Cambridge University, where
he enjoys the diverse international community and its cultural activities.
Silas can be contacted at ssb22@cam.ac.uk

10 | | FEB 2007{cvu}

Adventures in Autoconfiscation #2
Jez Higgins steps us through becoming autoconfiscated.

ast time [1] I sketched, in rather breathless terms, a brief history of my
XML toolkit Arabica [2] and its evolution. I discussed why I decided
to replace Arabica’s wobbly build system with something more

reliable. The “something more reliable” was, I declared despite a previous
failed attempt some years ago, GNU Autotools. In this article, I describe
how I made the change and examine whether it really did do what I’d hoped
– let more people build Arabica on more platforms, more easily but with
less fuss and less effort on my part.
This isn’t the definitive guide to Autoconf, it’s the how-I-did-it narrative
which I hope will inform and entertain.

An Autoconf, Automake, Libtool Fly-past
So what is Autotools? Autotools is actually three things – Autoconf,
Automake, and Libtool. As far as I can tell Autotools isn’t an official name
for this little trinity, and while you can use one without the others, in reality
nobody does. Autoconf, Automake, and Libtool provide the magic behind
the familiar “./configure; make; make install” incantation.
When you run ./configure, you’re running a shell script which probes
your system for various bits and pieces. With the information gathered, it
processes a number of templates to generate output files. Those files are
usually (but not necessarily exclusively) Makefiles, and a header file
commonly called config.h.
Autoconf is the tool that generates the configure script. The autoconf
command looks for a file called configure.ac, processes the macros it
contains and a fresh configure script pops out the end. Configure.ac
macros are written in a language called m4 [3]. m4 is probably unfamiliar,
but isn’t difficult to get the hang of. Autoconf includes an extensive library
of macros and writing your own is straightforward.
Automake is a Makefile generator. Well, almost... it’s a Makefile template
generator. Automake looks for a file called Makefile.am, from which
it creates a Makefile.in, based on the macros it finds. Later, configure
will use the Makefile.in to generate a Makefile.
Libtool looks after the oddities of building, linking, and loading static or
shared libraries. It takes care of invoking the compiler and linker properly,
as well as installing libraries and binaries which use the libraries according
to your platform’s conventions. It will, for example, relink after
installation if required. In my experience, once you’ve added the
appropriate macro to configure.ac, you don’t actually have to do
anything with Libtool directly. Configure will build a shell script called
libtool, specific to your setup, which your Makefiles will invoke as and
when.
In addition to the autoconf and automake commands I’ve already
mentioned, the various Autotools packages include several other
commands [4]. They manage some of the other support files used to
generate configure, or when configure is run. Changes to configure.ac
or a Makefile.am might require any or all of these commands to be run,
and in the correct order. Fortunately, there’s an uber-command to manage
all that for you, autoreconf [5].
I may not have made it entirely clear, but Autotools are developer tools.
Once the configure script and Makefile.in files have been

generated, they become part of the source distribution. People building
your source obviously need have a compiler, but they do not themselves
need Autotools.
That’s the overview, and is as much (in fact slightly more) than I knew
when I started converting Arabica from its wobbly collection of Makefiles
to Autotools.

Building Arabica
The Arabica package includes the Arabica library itself, several test
executables and a number of sample applications. Clearly since the
executables use the library, the library must be built first. It requires either
the Expat, libxml2, or Xerces XML parser, and needs to include different
source files according to the parser used. Executables using Arabica’s
XPath or XSLT engines need a recent version of Boost [6]. The test
programs can be built in both narrow and wide string versions, although
not all platforms [7] support wide strings.
As prerequisites and build options go, Arabica isn’t particular extreme, but
it’s awkward enough to have played a part in prompting my move to
Autotools.
The Arabica source lay out is relatively conventional:

 /
 /include
 /src
 /tests/SAX
 /DOM
 /XPath

 /examples/SAX
 /DOM
 /XPath
 ...

Arabica is primarily implemented in header files, so the bulk of the source
sits in include. The library source of around 20 files, mainly code
conversion facets, sits in /src.

Starting small
After discarding my existing Makefiles, I had a big pile of source and no
way to build it. My initial goal was to use Autotools to build the Arabica
library. I wasn’t going to worry about prerequisites, I’d simply assume they
were there, nor would I worry about building anything else.
I spent a little time, only an hour or so, reading the configure.ac and
Makefile.am files used in a few packages I’d recently built from source.
Not surprisingly, I found smaller library packages like Expat more
informative than the enormous tool suites like GCC. Finally I plugged
configure.ac into Google, which pointed me to the Autoconf manual
[8]. Reading the manual hadn’t helped a great deal last time around, but
both the manual and my comprehension skills have increased since then.
The manual states that the order in which configure.ac calls macros
is not generally important, but must contain a called to AC_INIT to get
started and a called to AC_OUTPUT at the end. We’ll come to those in a
moment. The suggested configure.ac layout is
configure.ac:
 AC_INIT(package, version, bug-report-address)
 information on the package
 checks for programs

L

JEZ HIGGINS
Jez works in his attic, living the on-and-off life of a
journeyman programmer. Before work, he swims; after
work, he walks the dog. In April, he became ACCU Chair.
His website is http://www.jezuk.co.uk/

FEB 2007 | | 11{cvu}

 checks for libraries
 checks for headers
 checks for types
 checks for structures
 checks for compiler characteristics
 checks for library functions
 checks for system services
 AC_CONFIG_FILES([file ...])
 AC_OUTPUT

That’s a lot of checks to think about, which wasn’t what I really wanted
to do. So what’s the smallest configure.ac you can write?
configure.ac:
 AC_INIT([Arabica], [Jan07], [jez@jezuk.co.uk])

Let’s try that.
 $ autoreconf
 $./configure

It worked! It worked in as much as I got a configure script, and the script
ran. Note that the M4 quote characters are [and].
Since I’m building a library written in C++, I need to initialise Automake,
find a C++ compiler, and set up libtool.

configure.ac:
 AC_INIT([Arabica], [Jan07], [jez@jezuk.co.uk])

 AM_INIT_AUTOMAKE

 AC_PROG_CXX
 AC_PROG_LIBTOOL

Macros starting AC_ are Autoconf macros while
macros beginning AM_ are Automake macros,
descr ibed in the Autoconf or Automake
m anua l s [9] . The exce p t ion i s
AC_PROG_LIBTOOL, which is the macro to setup
Libtool [10].
Running that gave the output in Listing 1 ...
Ah-ha. Not so good. The missing files are shell
scripts used by configure during a build. They are
included in the Automake package, and running
automake --add-missing pulls them into
your source tree by adding symbolic links. I take the
view that symbolic links that point out of a source
tree really don’t mix with sensible source control
procedures, and so removed the symlinks and
copied the files across.
I created an empty Makefile.am, and re-ran
autoreconf. This produced Listing 2.
Well, I didn’t forget, I just hadn’t yet. See Listing 3.
AC_CONFIG_FILES(file) p r imes the
AC_OUTPUT macro to create ‘filename’.
The file is created by copying an input file (by
default, filename.in), substituting variables as
it goes. For Makefiles, automake creates the
Makefile.in from Makefile.am. I don’t know
exactly how or when this happens, but it does. I
have faith. See Listing 4.
I’m curious as to why these missing files weren’t
picked up last time around, but I ran automake -
-add-missing anyway. Since Autotools were
developed for the GNU project, they expect certain

things – NEWS, README, etc – to conform to GNU standards. It is possible
to relax this requirement [11], but I didn’t bother. Be aware that the
COPYING file automake creates for you is the GNU General Public
License, as you may want to substitute another license.
It took me a while to find where ltmain.sh should come from.
I discovered that autoreconf also has an option to create or copy the
missing support files.

$ autoreconf --install
$ autoreconf
$./configure
checking for a BSD-compatible install...
 /usr/bin/install -c
checking whether build environment is sane... yes
checking for a thread-safe mkdir -p... /usr/bin/
 mkdir -p
checking for gawk... gawk
checking whether make sets $(MAKE)... yes
checking for g++... g++
... 85 other lines snipped ...
configure: creating ./config.status
config.status: creating Makefile
config.status: executing depfiles commands
$ make
make: Nothing to be done for 'all'.

Well, that looks almost convincing. Now to get it to build something.

$ autoreconf
configure.ac:6: required file `./config.sub' not found
configure.ac:6: `automake --add-missing' can install `config.sub'
configure.ac:3: required file `./missing' not found
configure.ac:3: `automake --add-missing' can install `missing'
configure.ac:3: required file `./install-sh' not found
configure.ac:3: `automake --add-missing' can install `install-sh'
configure.ac:6: required file `./config.guess' not found
configure.ac:6: `automake --add-missing' can install
`config.guess'
automake-1.10: no `Makefile.am' found for any configure output

autoreconf-2.60: automake failed with exit status: 1

Listing 1

$ autoreconf
automake-1.10: no `Makefile.am' found for any configure output
automake-1.10: Did you forget AC_CONFIG_FILES([Makefile]) in
configure.ac?
autoreconf-2.60: automake failed with exit status : 1

Listing 2

configure.ac:
 AC_INIT([Arabica], [Jan07], [jez@jezuk.co.uk])
 AM_INIT_AUTOMAKE
 AC_PROG_CXX
 AC_PROG_LIBTOOL
 AC_CONFIG_FILES([Makefile])
 AC_OUTPUT

Listing 3

$ autoreconf
Makefile.am: required file `./INSTALL' not found
Makefile.am: `automake --add-missing' can install `INSTALL'
Makefile.am: required file `./NEWS' not found
Makefile.am: required file `./README' not found
Makefile.am: required file `./AUTHORS' not found
Makefile.am: required file `./ChangeLog' not found
Makefile.am: required file `./COPYING' not found
Makefile.am: `automake --add-missing' can install `COPYING'
configure.ac:6: required file `./ltmain.sh' not found
autoreconf-2.60: automake failed with exit status : 1

Listing 4

12 | | FEB 2007{cvu}

Getting the library built
So far I’ve been working the root directory of my source tree. The Arabica
library source sits in the src subdirectory. I’ve no particular aversion to
recursive Makefiles, so I want my top level Makefile to call src/
Makefile. Since automake is creating my Makefiles, I’ll need
Makefile.am and src/Makefile.am.
The top level Makefile.am is straightforward. Subdirectories are
specified using the SUBDIRS variable. You can specify a number of
directories, and they will be visited in the order given. The subdirectories
don’t have to contain Makefile.am, only Makefile, which allows
third-party party packages to be included in the build. At the moment, I’m
only interested in the one subdirectory.

Makefile.am:
 SUBDIRS = src

Running autoreconf, configure and make -
 $ make
 Making all in src
 make[1]: Entering directory '/home/jez/arabica/
 src'
 make[1]: *** No rule to make target 'all'. Stop.
 make[1]: Leaving directory '/home/jez/arabica/
 src'
 make: *** [all-recursive] Error 1

I’m on the verge of actually building something. What goes in src/
Makefile.am? Automake uses a combination of variables and naming
conventions to describe what a Makefile should build. A variable which
tells automake what is being built is called the primary. The
_LTLIBRARIES primary declares libraries that are built with libtool.

src/Makefile.am:
 lib_LTLIBRARIES = libarabica.la
 libarabica_la_SOURCES = arabica.cpp \
 SAX/helpers/InputSourceResolver.cpp \
 ... other source files ...

Automake defines a number of Makefile targets automatically, including
install. The lib prefix on the _LTLIBRARIES primary says that the library
should be installed in Automake’s libdir. Libdir usually points to the
system’s library path (e.g. /usr/local/lib), unless overriden by
passing an option to ./configure. Other prefixes include pkglib and

noinst, to install to a package specific directory or to mark the library
as not installed, respectively.
Note how the name of the library to build becomes the prefix of the
_SOURCE variable giving its source files. Here, I’ve listed the C++ source
files located in the src directory, but the library also uses a number of
header files from the include directory. A large number, actually, which
I was too lazy to list in its entirety. Instead I decided simply add the
include directory to the compiler include path. Additional flags can be
passed to the compiler (or more correctly the preprocessor) using the
AM_CPPFLAGS variable.
The backslash character \ is, as in normal Makefiles, the line continuation
character.

src/Makefile.am:
 AM_CPPFLAGS = -I$(top_srcdir)/include [12]

 lib_LTLIBRARIES = libarabica.la
 libarabica_la_SOURCES = arabica.cpp \
 SAX/helpers/InputSourceResolver.cpp \
 ... other source files ...

Now the src/Makefile.am looks complete, the final job is list it
configure.ac so that src/Makefile will be created.
configure.ac:
 AC_INIT([Arabica], [Jan07], [jez@jezuk.co.uk])

 AM_INIT_AUTOMAKE

 AC_PROG_CXX
 AC_PROG_LIBTOOL

 AC_CONFIG_FILES([Makefile])
 AC_CONFIG_FILES([src/Makefile])
 AC_OUTPUT

After another round of autoreconf/configure/make now gives
Listing 5.

Goal!
It’s worked. The library has built. I actually became momentarily light-
headed when this happened. Even though I’ve been using make and
writing Makefiles for years now, I generally start a new Makefile by
copying an existing one because I don’t usually get them right from a
standing start. And here I was, after only an afternoon’s work, with a

 $ make
 Making all in src
 make[1]: Entering directory `/home/jez/work/arabica'
/bin/sh ../libtool --tag=CXX --mode=compile g++ -DPACKAGE_NAME=\"Arabica\" -DPACKAGE_TARNAME=\"ara
bica\" -DPACKAGE_VERSION=\"Jan07\" -DPACKAGE_STRING=\"Arabica\ Jan07\" -DPACKAGE_BUGREPORT=\"jez@jez
uk.co.uk\" -DPACKAGE=\"arabica\" -DVERSION=\"Jan07\" -DSTDC_HEADERS=1 -DHAVE_SYS_TYPES_H=1 -DHAVE_SYS
_STAT_H=1 -DHAVE_STDLIB_H=1 -DHAVE_STRING_H=1-DHAVE_MEMORY_H=1 -DHAVE_STRINGS_H=1 -DHAVE_INTTYPES_H=1
-DHAVE_STDINT_H=1 -DHAVE_UNISTD_H=1 -DHAVE_DLFCN_H=1 -I. -I../include -g -O2 -MT arabica.lo -MD -MP -MF
.deps/arabica.Tpo -c -o arabica.lo arabica.cpp mkdir .libs
 ... other source files ...
 ar cru .libs/libarabica.a arabica.o InputSourceResolver.o base64codecvt.o iso88
591_utf8.o ucs2_utf16.o ucs2_utf8.o iso88591utf8codecvt.o rot13codecvt.o ucs2utf
8codecvt.o utf16beucs2codecvt.o utf16leucs2codecvt.o utf16utf8codecvt.o utf8iso8
8591codecvt.o utf8ucs2codecvt.o XMLCharacterClasses.o
 ranlib .libs/libarabica.a
 creating libarabica.la
 (cd .libs && rm -f libarabica.la && ln -s ../libarabica.la libarabica.la)
 make[1]: Leaving directory `/home/jez/work/arabica'
 make[1]: Entering directory `/home/jez/work/arabica'
 make[1]: Nothing to be done for `all-am'.
 make[1]: Leaving directory `/home/jez/work/arabica'

Lis
tin

g 5

FEB 2007 | | 13{cvu}

configure script that seemed to actually be configuring and working. I’d
been developing using Cygwin [13], so I verified my new configure script
on Ubuntu Linux, FreeBSD, DragonflyBSD and GNU/Darwin boxes [14].
It worked and the library built on all of them. I went for a lie down.

Building everything else
The library was built, but did it actually work? Time to build the test suite.
The build needs to recurse down into the tests subdirectory and again
into its subdirectories. I added tests to the SUBDIRS variable in the top
level Makefile.am, and created a tests/Makefile.am which
specifies the next SUBDIRS level. I added extra AC_CONFIG_FILES calls
to configure.ac.
Building a program using Autotools is very similar to building a library,
but you use the _PROGRAMS primary rather than the _LTLIBRARIES
primary.
test/Utils/Makefile.am:
 noinst_PROGRAMS = utils_test

AM_CPPFLAGS = -I($top_srcdir)/include
 LIBARABICA = $(top_builddir)/src/libarabica.la
utils_test_SOURCES = utils_test.cpp \
... more source ...
utils_test_LDADD = $(LIBARABICA)
utils_test_DEPENDENCES = $(LIBARABICA)

Since this is a test program and does not need to be installed, I’ve given
_PROGRAMS the noinst prefix [15]. As with libraries, the _SOURCES
variable lists the program’s source files. Extra libraries that a program
needs to link are given in the _LDADD variable. It is sometimes useful to
have a program depend on some other target which is not actually part of
that program. This is done using the _DEPENDENCIES variable. I’ve
included libarabica as a dependency to ensure the program is relinked if
the library is changed. Note how it’s also possible to declare your own
variables in a Makefile.am, in this case LIBARABICA.

So does it work?
 $ autoreconf
 $./configure
 ... stuff ...
 $ make
 ... more stuff ...
 $ test/Utils/utils_test.exe
 StringTest

 OK (7 tests)

It does.
It sounds silly to say it, but I felt smugly pleased with myself once I had
the libraries and the test suite building. For so long, I’d found, as a user,
Autotools to be a fantastic thing, because the “./configure && make &&
make install” incantation just worked. As a developer, I’d regarded it as a
strange and scary beast. As my test cases passed, the beast was slain.
Compared to my previous build system things had already improved,
because Arabica was now a package that would build out-of-the-box on
all the platforms I had to hand. My page long set of build instructions [16]
could be thrown away, replaced with a three item long bulletted list.
I wasn’t yet at one with Autotools yet, but I was comfortable enough and
now had the confidence to start extending the build to look check which
XML parser was available, whether the Boost libraries were available and

so on. I’ll walk through some of that next time, as well as looking at some
of the expected and unexpected benefits of converting to Autotools.

References
[1] CVU Vol 18 Number 6
[2] That’s Arabica, your No 1 choice for slinging XML with C++, http:/

/www.jezuk.co.uk/arabica
[3] See http://www.gnu.org/software/m4. m4 seems to go back to early

in Unix history, but I’m not aware of it being widely used outside of
Autoconf. The GNU version is still active though, with the latest
release as recently as last November.

[4] autoheader, for example, which generates a skeleton config.h, and
aclocal which builds a local copy of the various m4 macros used
in configure.ac

[5] Actually in the course of writing this article, I discovered that the
dependencies are included in the generated Makefile, so running
make at the top level will also prompt a rebuild if required.

[6] http://www.boost.org/, but you knew that. Specifically it uses the
fantastic parser framework Boost.Spirit, and the rather handy
lexical_cast.

[7] Platform here means operating-system+compiler+library.
[8] Autoconf manual, http://www.gnu.org/software/autoconf/manual/

autoconf.html
[9] Automake manual, http://www.gnu.org/software/automake/manual/

automake.html
[10] Libtool manual, http://www.gnu.org/software/libtool/manual/

libtool.html
[11] Strictness, http://www.gnu.org/software/automake/manual/

html_node/Strictness.html#Strictness
[12] $top_srcdir is a predefined autoconf variable, which is the

relative path to the top-level source directory. Autoconf and
automake define quite a number of variables like this, pointing to the
source directory, the build directory, and so on. Unless a variable’s
purpose isn’t clear from its name, I won’t highlight them further.

[13] Cygwin is a Linux-like environment for Windows. http://
cygwin.com/

[14] Virtual boxes mostly. VMWare is a wonderful thing.
[15] Programs to be installed usually use the bin prefix.
[16] Given last time.

Arabica was now a package that
would build out-of-the-box on all the
platforms I had to hand

14 | | FEB 2007{cvu}

Developer Beliefs About Binary
Operator Precedence

Derek Jones concludes the report of his experiment.

Introduction
his is the second part of a two part article describing an experiment
carried out during the 2006 ACCU conference. The first part was
published in a previous issue of C Vu [1]. This second part discusses

the remember/recall assignment statement component of the experiment.
See part 1 for a discussion of the experimental setup.
The format of the task performed in this part of the experiment is very
similar to the memory for assignment statements portion of the experiment
performed at the 2004 ACCU conference [2]. See the write-up of that
experiment for some of the common details omitted here. That experiment
attempted to measure the impact of identifier length, measured in syllables,
on subjects’ ability to remember assignment
statement information over a short period of
time. Experience with running the 2004
experiment showed that subjects sometimes
used a strategy of remembering identifiers
by storing information on their first letter
rather than the complete identifier spelling.
The identifiers used in the 2006 experiment
were chosen to investigate the performance
differences caused by identifiers sharing a
common first letter and having a similar
sounding spoken form.
The identifiers used in the 2006 experiment all contained letter sequences,
having the form consonant-vowel-consonant, that could be spoken as a
single syllable. For some problems all of the identifiers started with the
same letter, while for other problems the initial letter of each identifier was
different but the last two letters were the same.
Within commercial source code a variety of different kinds of character
sequences are used for identifiers. Some are recognizable words or
phrases, some abbreviated forms of words or phrases, while others have
no obvious association with any known language (e.g., they may be
acronyms that are unknown to the reader). Reading involves converting
these character sequences to sounds and it is to be expected that subjects
memories of an identifier will be sound based, rather than vision based.

Characteristics of human memory
The human short term memory subsystems are a gateway through which
all conscious input data input must pass. They have a very limited capacity
and because new information is constantly streaming through them, a
particular piece of information rarely remains within them for very long.
Information in short term memory is either quickly lost or stored in
another, longer term, memory subsystem.
An experiment performed at the 2004 ACCU conference [2] investigated
the impact on subject performance of identifiers that required more of less
short term memory resources. Experience with this experiment suggested
that subjects used a variety of strategies to help improve their performance.
One strategy was to remember the first letter of an identifier, rather than
a representation of the complete letter sequence. The identifiers used in this

experiment were chosen to investigate the impact of shared letters on
subject performance; they either share the same first letter on the last two
letters (in this latter case the spoken forms rhyme).
The following are some of the factors that studies have been found to effect
subject performance of memory for lists of information. These factors are
also likely to have some impact on subject performance in this experiment.

People pay particular attention to the initial part of a word [3] [4]
(this enables them to start looking up a word in the mental lexicon
while its remaining sounds are being heard).
A decrease in word list recall performance for similar sounding
words [5] [6]. It is believed that the similarity causes confusion

between the various word sound
sequences and a subsequent failure to
correctly retrieve the original
information.
The extent to which the information
to be remembered is already stored in
longer term memory subsystems (i.e.,
known letter sequences such as
words).
The time delay between seeing the
information and having to recall it

(because the remembered information degrades over time),
A capacity limit on the total amount of information that can be
remembered and shortly afterwards recalled or recognized,
For known words, their frequency of occurrence, with better
performance in many tasks for high frequency words (i.e., those that
have been encountered very frequently by a subject) compared to
low frequency words [7].
Neighbourhood effects [8]. Words that differ by a single letter are
known as orthographic neighbours.
Both the density of orthographic neighbours (how many there are –
mine has 29 (pine, line, mane, etc.)) and their relative frequency (if
a neighbour occurs more or less frequently in written texts) can
affect performance.

Spotting the identifier that did not appear in the earlier list of assignment
statements is a recognition problem, while remembering the value
assigned in a recall problem. Studies have found that recognition and recall
memory have different characteristics [9].

Ecological validity
For the results of this experiment to have some applicability to actual
developer performance it is important that subjects work through problems
at a rate similar to that which they would process source code in a work
environment. Subjects were told that they are not in a race and that they
should work at the rate at which they would normally process code.
However, developers are often competitive and experience from previous
experiments has shown that some subjects ignore the work rate instruction
and attempt to answer all of the problems in the time available. To deter
such behaviour during this experiment the problem pack contained
significantly more problems than subjects were likely to be able to answer
in the available time (two people did answer all problems).

T

DEREK JONES
Derek used to write compilers, then got involved with static analysis and
now spends his time trying to figure out developer behaviour. Derek can be
contacted at derek@knosof.co.uk

developers are often
competitive ... some subjects

ignore the work rate
instruction and attempt to
answer all of the problems

FEB 2007 | | 15{cvu}

The structure of the problem used in this experiment follows a pattern that
is often encountered when trying to comprehend source code: see
information (and try to remember some of it), perform some other task and
then perform a task that requires making use of the previously seen
information.
Taken as a whole the constant repetition of exactly the same kind of
problem rarely occurs in program development activities. The constant
repetition provides an opportunity for learning to occur, i.e., subjects have
the opportunity to tune their performance for a particular kind of problem.
The issue of learning and problem solving strategies used by subjects is
discussed below.

Generating the assignment problems
The problems and associated page layout were automatically generated
using a C program and various awk scripts to generate troff, which in
turn generated postscript. The identifier and constant used in each
assignment statement was randomly chosen from the appropriate set and
the order of the assignment statements (for each problem) was also
randomized. The source code of the C program and scripts is available
from the experiments web page [10].
Due to a fault in the generation script the first 10 problems for each subject
all used sets of identifiers where the last two letters of each set of identifiers
were the same. The intent was that the same randomisation algorithm be
applied to the choice of identifiers to use for all problems.

Selecting identifiers and integer constants
A sufficient number of letter sequences were created so that subjects would
rarely encounter the same sequence. In all 40 different words and 40
different nonwords were used (dues to an oversight cub appeared both in
a set of words and a set of non-words), see the following word list. This
meant that the same identifiers would start to repeat after every set of 20
problems.
The impact of different kind of letter sequences is the primary concern and
we want to maximise the impact of differences due to this factor. This
means minimising the impact of other kinds of information (mostly integer
constants) on subject performance. A good approximation to short term
memory requirements is the number of syllables contained in the spoken
form of the information. Choosing single digit integer constants containing
a single syllable minimises their impact on short term memory load.

For simplicity it was decided that identifiers would consist of a sequence
of three letters following the pattern CVC. The letter sequences were
grouped in sets of four such that, they were all either English words or
pronounceable English non-words, and either:

had different first letters and rhymed (i.e., in the last two letters were
the same),
shared the same first letter and did not rhyme (i.e., the last two letters
did not share any common letters).

No checks were made for nonwords, in English, that might be words in
other languages that might be known to subjects.
For the letter sequences used in this experiment there was no STM capacity
advantage to remembering just the letter of a word. The spoken form of
single letters are represented by a single syllable (except w, which contains
two) and each of the letter sequences used was pronounceable as a single
syllable. However, there is a potential advantage to only remembering the

first letter when the set of identifiers sound alike. Using this strategy would
remove the possible confusion caused by similar sounding identifiers and
eliminate a potentially significant source of performance loss.
The following lists the sets of four, three letter sequences used for
identifiers appearing in the assignment part of each problem. The
identifiers appearing in a single row were used to create one complete
assignment problem. The letter sequence cub was mistakenly used in both
a row of words and a row of non-words.

The nonwords have a variety of characteristics, including: sen/cen
different spelling same spoken sound, cin sounds like sin a word, fot could
be remembered as foot + CVC pattern, roz rozzer slang for policeman (at
least in British English) or abbreviation for rosalyn. While these issues
might be important at some level, they don’t seem to have had a measurable
impact on the results.
Assignment problems were created in groups of 20. Each group of 20 used
one of the rows of identifiers. The identifiers used in each assignment
problem were selected by randomly choosing an unused row. Three of the
identifiers in the row were randomly selected to be used in the list of the
three assignment statements to be remembered. The fourth identifier was
used as the not seen identifier.

Selecting integer constants
The integer constants chosen were 4, 5, 6, 8, and 9 (the digit 7 was not used
because its spoken form has two syllables). They all have approximately
the same frequency of occurrence in source code (it is within the same
order of magnitude, see figure 1) and other contexts, and have a spoken
form containing a single syllable.

Threats to validity
Experience shows that software developers are continually on the look out
for ways to reduce the effort needed to solve the problems they are faced
with. Because each of the problems seen by subjects has the same structure
it is possible that some subjects will have detected what they believe to be
a pattern in the problems which they attempt to use to improve their
performance.
While the general format of problem used commonly occurs during
program comprehension, the mode of working (i.e., paper and pencil) does
not. Source code is invariably read within an editor and viewing is
controlled via a keyboard or mouse. Referring back to previously seen
information (e.g., assignment statements) requires pressing keys (or using

cat mat hat pat

hen pen men ben

din pin sin kin

hop pop top mop

cub rub tub hub

dat lat wat gat

gen ren sen cen

nin rin zin cin

dop gop vop rop

fub lub wub cub

dad den dip dog

lap led lip lot

pat peg pin pod

sat sir sow sum

wad web wit won

fep fis fot fum

km kig kod kus

ras rit roz ruc

tep tid tor tul

vek vib vom vup

software developers are
continually on the look out for ways
to reduce the effort needed to solve
the problems they are faced with

16 | | FEB 2007{cvu}

a mouse). Having located the sought information additional hand
movements (i.e., key pressing or mouse movements) are needed to return
to the original source location. In this study subjects were only required
to tick a box to indicate that they would refer back to locate the information.
The cognitive effort needed to tick a box is likely to be less than would be
needed to actually refer back. Studies have found [12] that subjects make
cost/benefit decisions when deciding whether to use the existing contents
of memory (which may be unreliable) or to invest effort in relocating
information in the physical world. It is possible that in some cases subjects
ticked the would refer back option when in a real life situation they would
have used the contents of their memory rather than expending the effort
to actually refer back.
While subjects were told that they are not in a race and that they should
work at the rate at which they would normally process code, it is possible
that some subjects followed this request and some did not. A consequence
of this is that the distribution in the numbers of problems answered, and

perhaps the accuracy of the results, may be different than would have
occurred if all subjects had reacted in the same was to the instructions.

Results
It was hoped that at least 30 people (on the day 18) would volunteer to take
part in the experiment and it was estimated that each subject would be able
to answer 20 problem sets (on the day 23.8) in 20-30 minutes (on the day
20 minutes). Based on these estimates the experiment would produce 600
(on the day 429) individual answers.
A total of 429 sets of assignment statements were remembered/recalled
giving a total of 1,716 answers to individual assignments. The average
number of individual answers per subject was 95.3 (standard deviation
38.8), the average percentage of answers where the subject would refer
back was 26.3% (standard deviation 26.7), and the average percentage of
incorrect answers 8.9% (sd 9.5).

The plot on the left depicts number of line of code read against number of years of professionally experience. The plot on the right
depicts the number of lines of code read against the number of lines of code written, for each subject. The size of the circle indicates
the number of subjects specifying the given values. In those cases where subjects listed a range of values (i.e., 50,000-75,000)
the median of that range was used.

Fig
ur

e 2

Occurrences, in the visible form of various applications written in C, of integer constants having specific values [11].

Fig
ur

e 1

FEB 2007 | | 17{cvu}

The average amount of time taken to answer a complete problem was 50.4
seconds. No information is available on the amount of time invested in
trying to remember information, answering the parenthesis sub-problem,
and then thinking about the answer to the assignment sub-problem (i.e.,
the effort break down for individual components of the problem).
While STM recall performance drops very quickly after the information
is no longer visible (studies have found below 10% correct within around
8 seconds in many situations [5]). Even the fastest subject took over 25
seconds per complete problem and so recency effects will be minimal.
The raw results for each subject are available on
the experiments web page [10] (they are in the file
results.ans ; in format ion on subjec t
experience has been removed to help maintain
subject anonymity).
The following subsections break down the
discussion of results by individual subject and by
kind of identifier used in the assignment
statements.

Subject experience
Traditionally, developer experience is measured in
number of years of employment performing some
software related activity. However, the quantity of source code (measured
in lines) read and written by a developer (developer interaction with source
code overwhelmingly occurs in its written, rather than spoken, form) is
likely to be a more accurate measure of source code experience than time
spent in employment. Interaction with source code is rarely a social activity
(a social situation occurs during code reviews) and the time spent on these
activities is considered to be small enough to ignore. The problem with this
measure is that it is very difficult to obtain reliable estimates of the amount
of source read and written by developers. This issue was also addressed
by studies performed at previous ACCU conferences [13] [2].
It has to be accepted that reliable estimates of lines read/written are not
likely to be available until developer behavior is closely monitored (e.g.,
eye movements and key presses) over an extended period of time.
Part 1 of this article contained a plot of precedence problems answered
against years of experience. Given that a complete problem required

subjects to answer both assignment and precedence problems this plot is
actually a combined count of problems solved. No break-down is available
on the time spent on the two different kinds of problem subjects were asked
to answer.

Subject strategies
Discussions with subjects who took part in the 2004 experiment uncovered
that they had used a variety of strategies to remember information in the
assignment problem. The analysis of the threats to validity in that

experiment discussed the question of whether
subjects traded off effort on the filler task in order
to perform better on the assignment problem, or
carried out some other conscious combination of
effort allocation between the subproblems. To
learn about strategies used during this experiment,
after ‘time’ was called on problem answering,
subjects were asked to list any strategies they had
used (a sheet inside the back page of the handout
had been formatted for this purpose).
The responses given to the strategies question
generally contained a few sentences. The majority
of responses dealt with the assignment part of the

problem, with three subjects also giving information about the precedence
problem (e.g., “I always use parentheses”, “... I tried to be consistent, but
not very hard”, “Didn’t worry too much about task.”).
The strategies listed consisted of a variety of the techniques people often
use for remembering lists of names or numbers. For instance, number word
associations, merging words into a larger word (e.g., penlenmen),
reordering the sequence presented into a regular pattern (e.g.,
alphabetical), inventing short stories involving the words and numbers.
The difficulty of integrating nonwords into these strategies was a common
comment.
From the replies given it was not possible to work out if subjects give equal
weight to answering both parts of the problem, or had a preference to
answering one part of the problem.
No subject listed a strategy that was based on the visual appearance of the
identifiers or numbers.

Number of problems answered by the 18 individual subject against the percentage of different kinds of answers. Left plot: cross
for would refer back, bullet for incorrect answers and box for correct answers; right plot: cross for would refer back, triangle for
percentage of correct answers for all cases where a numeric answer was given (i.e., would refer back answers were excluded
from the percentage calculation). In both plots subjects, on the x-axis, are ordered by their would refer back percentage.

Figure 3

developer interaction
with source code
overwhelmingly

occurs in its written,
rather than spoken,

form

18 | | FEB 2007{cvu}

Individual subject performance
For each subject, figure 3 plots the percentage of each kind of answer they
gave (in both graphs subjects are ordered by the percentage of would refer
back answers they gave). The left plot is based on the percentages for all
answers, while the triangles in the right plot are the percentage for those
cases when a numeric answer was given (i.e., correct and incorrect answers
only are used to calculate the percentage).
If subjects randomly guess answers to questions they cannot recall the
answers to, then (given that only five possible numeric values were used
and no value occurred more than once in the same problem):

If subjects knew no answers and randomly guessed the three
answers, then it would be expected that 0.7 of the three guessed
questions (23%) of individual assignment questions would be
answered correctly.
If subjects knew one answer and randomly guessed the other two
answers, then it would be expected that 0.5 of the two guessed
answers (25%) for that problem would be answered correctly.
If subjects knew two answers and randomly guess the last answer,
then it would be expected to be correct 33% of the time.

Those subjects who gave few would refer back answers had a performance
that was significantly better than that of random guessing. The analysis for
those subjects who gave many would refer back answers and had a high
percentage of correct answers is more complex. If these subjects randomly
guessed the numeric answers they did give, the percentage correct would
be very similar to that achieved when no would refer back answers were
given. In this case the number of correct answers given by these subjects
is significantly better than that of random guessing.
Possible reasons for this difference in performance, between subjects,
include differences in subject’s general approach to answering problems
(e.g., in the case of would refer back the amount of risk they are willing
to accept that the answer they are thinking of giving is incorrect) and
differences in ability.
Looking at the right graph in figure 3, we see that:

subjects 1-8 were generally certain of the answer in the sense that
they gave few would refer back answers (less than 23%) and that
this certainty was mirrored in the significantly higher than random
percentage of correct answers (average 91.8%),
subjects 9-10 gave a higher percentage of would refer back answers
than subjects 1-8, but also had a high percentage of correct answers
(95.4%),

subject 11 might be grouped with the first 10 subjects or subjects 12-
13. This subject's percentage of correct answers is very close to that
of subject 6 (78% vs. 77.6%), however the number of would refer
back answers is more than four time greater (i.e., closer to that of
subjects 12-13),
subjects 12-13 gave would refer back answers to just over 25% of
questions and the two lowest percentage of correct answers (68.5%
and 50.7% respectively),
subject 14, like subject 11, could belong to one of two subject
groupings,
subjects 15-18 gave would refer back answers to over 50% of
questions. While these subjects also had a high percentage of correct
answers (average 93.6%), this may be because they only gave
answers in those cases where they were very certain (had they taken
more risk they may have given more incorrect answers, or perhaps
additional correct answers).

Self-knowledge, metacognition, is something that enables a person to
evaluate the accuracy of the memories they have. Subjects who gave many
incorrect answers (i.e., subjects 12 and 13) did not accurately evaluate the
state of their own memories of previously seen information (i.e., they
overestimated the accuracy of their memories). It is also possible that
subjects who gave many would refer back answers also showed poor
metacognitive performance (i.e., they underestimated the accuracy of their
memories and would have mostly given correct answers had they risked
a numeric answer). However, it is not possible to make this claim from the
available data.
Were different subject’s performance comparable through out the
experiment? Perhaps a subject who answers a greater number of questions
is more likely to give incorrect or would refer back answers. A least squares
fit of the data (see figure 4) suggests that subject’s who answered more
questions gave more would refer back responses and more incorrect
answers. However, these results fail a statistical significance test at the 5%
confidence level (i.e., it is not possible to claim that subjects who answered
more questions gave more would refer back and incorrect answers).
In the 2004 experiment there was no significant difference in performance
between subjects who answered a few questions and those who answered
many. However, the small number of unique identifiers used in the 2004
experiment and the ordering of the assignment statements both provided
an opportunity for learning to occur as subjects answered more questions.
In the 2006 assignment problems there does not appear to be any

The percentage of would refer back answers (crosses, least squares straight line) and incorrect answers (bullet, least squares
dashed line) plotted against the total number of problems answered by each subject. The left graph is based on the first half of
the answers given by each subject, the right graph on the second half of the answers given. Each cross and bullet represents a
single subject.

Fig
ur

e 4

FEB 2007 | | 19{cvu}

opportunity for subjects to improve their performance by learning as they
answer more questions.

Performance changes over time
If subject performance was consistent for all problems answered, it would
be expected that the percentage of correct answers for the first few
problems answered would be the same as for the last few problems.
The data for figure 4 was created by dividing the answers given by each
subject into two equal sized parts, i.e., the first half of the answers given
by each subject and the second half of the answers given. A difference in
the slope of the least squares fit would indicate that subject performance
changed over time. Unfortunately these results fail a statistical significance
test at the 5% confidence level and it is not possible to draw any
conclusions from differences in the slope of the least squares fit.
As previously stated the first 10 problems all used sets of identifiers that
followed a single pattern. It is possible that subject performance for
identifiers following this pattern was sufficiently large that it biased the
results for the set of first half answered. It is also possible that there are
significant effects involving both kinds of identifiers and early/late
answers and that they cancelled each other out because a random ordering
was not used.

Impact of different kinds of character sequences
This experiment was designed to look for differences in subject
performance for different kinds of identifiers.
Each identifier appeared once per set of 80 assignment statements. Based
on expected subject performance, it was anticipated that most identifiers
would be seen once, with only a few identifiers being seem twice by the
faster subjects. Thus there was no opportunity for learning of individual
identifiers to take place.
Figure 5 gives a break down of performance for the different kinds of
identifier. While it is tempting to try and read small differences in
performance from these results, the variations are swamped by differences
in individual subject performance (vertical bars denote the standard
deviation for each average and they overlap significantly because the
standard deviations are all relatively large).

Comparison of 2006 results with 2004
How do the results of the 2004 and 2006 experiment compare? Both ran
for 20 minutes and subjects completed an average of 22.7 problems in 2004
and 23.8 in 2006.
The would refer back percentages in 2004 were around 30%, correct
answers around 60% and incorrect answers around 10%. These
percentages are very close to the average percentages in 2006. Given that
many of the 2004 identifiers contained three syllables (i.e., made greater
calls on STM resources) the similarity between subject performances in
the two experiments suggests that limited STM resources were not one of
the primary factors affecting performance.
The filler problems used in the two experiments varied in the calls they
made on cognitive abilities. The 2004 problem required holding
information in STM and using it to solve an if-statement problem
while the 2006 problem required making use of existing knowledge to
solve a problem that only required a small amount of information to be held
in STM.

Conclusion
Based on both years of employment and the claimed number of lines of
code read/written the subjects taking part in the experiment had a
significant amount of software development experience.
The number of years of software development experience is likely to have
a high correlation with a subjects age. While cognitive performance has
been found to decrease with age [14] [15], age does not appear to have been
a factor affecting the number of questions answered in this experiment
(however, most subjects are likely to be younger than the age at which
studies have found a significant age decrease in performance; i.e., 50s and
over).
There was no significant difference in performance for the different kinds
of identifiers used in this experiment. Any minor variations that might exist
were swamped by differences in individual subject performance.
The most significant factors affecting assignment problem performance all
seem to have their root in the mental characteristics of individual subjects.
These characteristics are likely to include short term memory capacity
limits, metacognitive (self-knowledge) ability, and degree of risk aversion.

The percentage of would refer back, correct and incorrect answers for each kind of identifier, averaged over the individual
respective percentage for all subjects. In the right plot, the percentage for correct and incorrect answers is based only on answers
where a value was given (i.e., would refer back answers were excluded from the calculation). The vertical bars denote the standard
deviation for each average (they overlap significantly because the standard deviations are all relatively large).

Figure 5

20 | | FEB 2007{cvu}

Future experiments need to investigate whether subjects giving many
would refer back answers have less ability of remember information or are
not able to reliably evaluate the accuracy of the memories they have.

Further reading
For a readable introduction to human memory see Essentials of Human
Memory by Alan D. Baddeley. A more advanced introduction is given in
Learning and Memory by John R. Anderson. An excellent introduction to
many of the cognitive issues that software developers encounter is given
in Thinking, Problem Solving, Cognition by Richard E. Mayer.

Acknowledgments
The author wishes to thank everybody who volunteered their time to take
part in the experiment and those involved in organising the ACCU
conference for making a conference slot available in which to run it.

References
1. D.M.Jones, ‘Developer beliefs about binary operator precedence’ in

C Vu, 18(4):14-21, Aug 2006
2. D.M.Jones, Experimental data and scripts for short sequence of

assignment statements study, http://www.knosof.co.uk/cbook/
accu04.html, 2004

3. H. F.Chitiri and D. M. Willows, ‘Word recognition in two languages
and orthographies: English and Greek’. Memory and Cognition,
22(3):313-325, 1994.

4. M. Taft and K. I. Foster. ‘Lexical storage and retrieval of
phymophemic and polysyllabic words’. Journal of Verbal Learning
and Verbal Behavior, 15:607-620, 1976.

5. A. D. Baddeley, ‘How does accoustic similiarity influence short-
term memory?’ Quarterly Journal of Experimental Psychology,
20:249-264, 1968.

6. V. Coltheart. ‘Effects of phological similarity and concurrent
irrelevant articulation on short-term-memory recall of repeated and
novel word lists’. Memory & Cognition, 21(4):539-545, 1993.

7. M. Steyvers and K. J. Malmberg. ‘The effect of normative
contextual variability on recognition memory.’ Journal of
Experimental Psychology: Learning, Memory, and Cognition,
29(5):760-788, 2003.

8. S. Andrews. ‘The effect of orthographic similarity on lexical
retrieval: Resolving neighborhood conflicts.’ Psychonomic Bulletin
and Review, 4(4):439-471, 1997.

9. J. R. Anderson, Learning and Memory, John Wiley & Sons Inc,
second edition, 2000.

10. D. M. Jones. Experimental data and scripts for developer beliefs
about binary operator precedence. http://www.knosof.co.uk/cbook/
accu06.html

11. D. M. Jones. The new C Standard: An economic and cultural
commentary. Knowledge Software Ltd, 2005.

12. ". T. Fu and W. D. Gray. ‘Memory versus perceptual-motor
tradeoffs in a blocks world task.’ In Proceedings of the Twenty-
second Annual Conference of the Cognitive Science Society, pages
154-159, Hillsdale, NJ, 2000. Erlbaum.

13. D. M. Jones. ‘I_mean_something_to_somebody.’ C Vu 15(6):17-
19, Dec. 2003.

14. A. S. Gilinsky and B. B. Judd. ‘Working memory and bias in
reasoning across the life span.’ Psychology and Ageing. 9(3):356-
371, 1994.

Obfuscated Code Competition
ast issue we set, as a one-off, a slightly different competition – the
challenge of writing the most obfuscated program to print the words
of ‘The 12 Days of Christmas’.

Why do people take part in an obfuscated competition? It provides an
opportunity to explore the esoteric corners of a language (and its
compilers), to demonstrate how clever or devious you are, to point out
issues of style in an ironic fashion and lastly to give you a safe place to
deposit that terrible code you’ve been burning to write for weeks…
Sadly, although Tim and Roger both enjoy obfuscated code competition
entries, only one of the readers of CVu sent in an entry. So many thanks
go to Lars Hartmann <lars@hartmannix.dk> for his entry; which is written
in SML.

(fn
G => let fun
O 0 = [] | O n = (12-n,27-n)::O(n-1) fun
D l z [] = z | D l z (x::xs) = D l (l z x) xs fun
J 0 x = hd x | J n x = J (n-1) (tl x) fun
U [] xs = xs | U (y::ys) xs = y :: U ys xs in map
print(map(fn
L => implode(map(fn
A => chr(ord(A)+10))(explode L)))(map(fn
C => J
C G)(

U [12,0,13,14](D U [](map(fn(n,s)=>
 let fun th 13 = [] | th s=s::th(s-1)in
 12::n::13::th(s)end)(O 11))))))end)
["_hij\^V", "i[YedZ\^V", "j^_hZ\^V",
 "\\ekhj^\^V", "_\\j^\^V", "i_nj^\^V",
 "i[l[dj^\^V", "[_]^j^\^V", "d_dj^\^V",
 "j[dj^\^V", "[b[l[dj^\^V", "jm[b\\j^\^V",
 "Ed\^Vj^[\^V",

"ZWo\^Ve\\\^V9^h_ijcWi\^Vco\^Vjhk[\^Vbel[\^V]Wl[\^V
je\^Vc[\^@",
 "W\^VfWhjh_Z][\^V_d\^VW\^Vf[Wh\^Vjh[[$\^@\^@",
 "WdZ\^V", "jme\^Vjkhjb[\^VZel[i\^@",
"j^h[[\^V\\h[dY^\^V^[di\"\^V",
 "\\ekh\^VYWbb_d]\^VX_hZi\"\^V",
"_l[\^V]ebZ\^Vh_d]i1\^@",
 "i_n\^V][[i[\^VW#bWo_d]\"\^V",
 "i[l[d\^VimWdi\^VW#im_cc_d]\"\^@",
 "[_]^j\^VcW_Zi\^VW#c_ba_d]\"\^V",
 "d_d[\^VbWZ_[i\^VZWdY_d]\"\^V",
 "j[d\^VbehZi\^VW#b[Wf_d]\"\^@",
 "[b[l[d\^Vf_f[hi\^Vf_f_d]\"\^V",
 "jm[bl[\^VZhkcc[hi\^VZhkcc_d]\"\^V"
]

L

Developer Beliefs About Binary Operator Precedence (continued)

FEB 2007 | | 21{cvu}

Standards Report
Lois Goldthwaite brings news from the C standard committee.

s promised in the last standards column, most of this one will talk
about news from the international C standard committee. Since C99
was issued, the committee has deliberately confined its work to

clarifying defects in its phrasing and writing technical reports, which can
suggest recommended practice or optional extensions, but which are not
normative (part of the actual standard).
However, discussions at the semi-annual meeting in Portland pointed out
that the standard C language has now fallen behind the current state of
technology in compiler development. Virtually all major C compiler
developers have developed extensions to the language which go well
beyond the Standard. Meanwhile, the C++ committee is concentrating on
features to support the near and medium future of programming, especially
in a world where multi-processor computers and extensively multi-
threading programs will be the norm. Therefore it is time to think seriously
about revising the C standard, a process which takes about five years under
ISO procedures. The group has not yet committed to starting the revision
process, but does see the need to start planning for a revision.
The committee is compiling a list of suggested extensions, A full day at
the London committee meetings (April 23-27 this year) will be devoted to
sifting through these suggestions and writing a charter to guide the work.
The criteria for sifting these proposals will be heavily weighted toward
existing practice, features that are already in wide use. The committee is
disappointed that adoption of C99 has been rather slow, and wants to avoid
standardising features that will not be used.
Multi-threading and security features are probably a certainly for inclusion
in some form, once a revision gets underway. The GNU C extensions,
discussed at http://gcc.gnu.org/onlinedocs/gcc-4.1.1/gcc/index.html
#toc_C-Extensions, have already been put on the agenda for discussion in
April. The C committee has been closely following some of the
developments in the C++ language and will not miss a chance to enlarge
the common subset between the languages when new features fit ‘the spirit
of C’.
Additional proposals from outside the committee are welcome (if you have
a proposal and do not know how to submit it, please write to
standards@accu.org for further information).
Although active revision of the C standard has been off the table until now,
the committee has been laying the groundwork for expanded existing
practice, through official Technical Reports. The three latest of these can
be found at http://www.open-std.org/jtc1/sc22/wg14/www/docs/post-
portland-2006.htm. TR 24732, Extension for the programming language
C to support decimal floating-point arithmetic, contains formal language
for supporting base-10 floating point hardware directly (as opposed to the
widespread binary floating point capabilities).
Also on the C committee website is a draft of TR 24731-2, proposing new
C library functions which dynamically allocate memory for the values they
read in or return. These may be considered more robust than the functions
listed in TR24731-1, which have an extra parameter indicating the size of
a buffer which has been previously allocated.
One other decision made in Portland will help developers write more
robust programs – the gets() function will be officially deprecated in
future. This function reads characters from stdin into a buffer until it sees
a newline character or end of file. But it is a potential security hole, because
it has no way to prevent unexpected input from overrunning the buffer. The
Posix standard also will be making gets() ‘obsolete’ – an
implementation must provide it, for backward compatibility, but it is
emphatically not to be used in new code.

Turning to C++ committee news, members will be extremely busy this
year in the drive to put out a Committee Draft revised standard by the end
of the October meeting. The convenor has called an additional full WG21
meeting July 15-20 in Toronto, in addition to the previously scheduled
April and October meetings. The library subgroup will hold an ad-hoc
meeting January 22-24 near Chicago, and another ad-hoc on the new
concepts feature will take place February 22-23 in Mountain View,
California. The April 15-20 WG21 meeting will take place in Oxford the
week after the ACCU conference. If you are interested in sitting in on a
session to see the committee in action, or if you want to get involved with
the UK standards panel, please write standards@accu.org for more
information.

A

LOIS GOLDTHWAITE
Lois has been a professional programmer for over 20 years.
She is convenor of the C++ and Posix standards panels at
BSI. One of her hobbies is representing the UK at
international standards meetings!
Lois can be contacted at standards@accu.org.uk

Virtually all major C compiler
developers have developed

extensions to the language which
go well beyond the Standard.

22 | | FEB 2007{cvu}

Code Critique Competition 44
Set and collated by Roger Orr.

lease note that participation in this competition is open to all
members, whether novice or expert. Readers are also encouraged to
comment on published entries, and to supply their own possible code

samples for the competition (in any common programming language) to
scc@accu.org.

Free book!
I thought I’d highlight the fact that the prize for the winning entrant of each
competition is a free book, thanks to the sponsors above and Francis
Glassborow who liaises with them. Entrants also get their name in print,
which can impress your friends and family!

Last issue’s code
This code is designed to provide a simple encryption of plain text, and
main is a test harness than encrypts and then decrypts the text. There seems
to be a problem with displaying the encrypted text for strings with spaces:
 crypt "a test"

Please comment on the specific bug and the code as a whole.
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

void strreverse(char *src, char *dest) {
 int i=0, j;
 for(j= strlen(src)-1; j>=0;j--)
 {
 dest[i++] = src[j];
 }
}

bool encrypt(const char *input, char *output, bool
encode) {
 char buffer[80] = {0};
 const char *src = input;
 char *dest = buffer;
 srand(strlen(src));
 int seed = rand();

 while (*src)
 {
 int minVal,maxVal;

 minVal = maxVal = 0;
 int charVal = (int)*src;

 if(charVal >= 33 && charVal < 48)
 {
 minVal = 33; maxVal = 48;
 }
 else if(charVal >= 48 && charVal < 58)

 {
 minVal = 48; maxVal = 58;
 }
 else if(charVal >= 58 && charVal < 65)
 {
 minVal = 58; maxVal = 65;
 }
 else if(charVal >= 65 && charVal < 91)
 {
 minVal = 65; maxVal = 91;
 }
 else if(charVal >= 91 && charVal < 97)
 {
 minVal = 91; maxVal = 97;
 }
 else if(charVal >= 97 && charVal < 123)
 {
 minVal = 97; maxVal = 123;
 }
 else if(charVal >= 123 && charVal < 127)
 {
 minVal = 123; maxVal = 127;
 }
 else if (charVal < 33 || charVal > 126)
 {
 return false;
 }

 int range = maxVal - minVal;
 int key = maxVal % range;
 int delta = range - key;
 if (encode)
 {
 if(charVal < maxVal - key)
 sprintf(dest, "%c", (charVal + key));
 else
 sprintf(dest, "%c",(charVal - delta));
 }
 else
 {
 if(charVal >= minVal + key)
 sprintf(dest, "%c", (charVal - key));
 else
 sprintf(dest, "%c",(charVal + delta));
 }
 *dest++;
 *src++;
 }
 *dest = '\0';

 char revBuffer[80]={0};
 strreverse(buffer,revBuffer);
 strcpy(output,revBuffer);
 return true;
}

int main(int argc, char **argv)
{
 for (int i = 1; i < argc; i++)
 {
 char *input = argv[i];

P

ROGER ORR
Roger has been programming for 20 years, most recently
in C++ and Java for various investment banks in Canary
Wharf. He joined ACCU in 1999 and the BSI C++ panel
in 2002.
He may be contacted at rogero@howzatt.demon.co.uk

FEB 2007 | | 23{cvu}

 char output[80];
 encrypt(input, output, true);
 printf("%s\n", output);
 encrypt(output, input, false);
 printf("%s\n", input);
 }
}

Critiques
From John Appleby-Alis <John.Appleby-Alis@celoxica.com>
The problem displaying encrypted text for strings containing spaces is due
to the encrypt function only handling strings that are composed of
characters with ASCII code values within the range 33 to 127. Google for
‘ASCII lookup table’ and you will find that the space character has an
ASCII code value of 32.
The encrypt function returns false on failure, but your test harness fails
to inspect this return value, and so prints the contents of an uninitialised
array instead of reporting the encrypt function failure.
Here are the other more general issues I spotted in your code.
You are using fixed length arrays to store strings with lengths specified by
the input to your program. You have no guarantee that the input strings
will fit inside the fixed length arrays. This makes your program vulnerable
to buffer overrun bugs. If I pass a string longer than 79 characters to your
application it might crash (in fact it does on my system). There are (as
usual) many different ways to address this problem. One is to allocate
buffers of variable length yourself on the heap using new and delete (or
malloc/free if you must), better would be to use the stl vector class
which has an array compatible interface and will manage heap memory for
you automatically.
 std::vector<char> buffer (strlen (input)+1);
My preferred approach though would be to redesign your code a bit. Your
encrypt function operates on characters one at a time and with no
dependency between them. I see no reason why you shouldn’t modify the
input to encrypt in situ, removing the need for buffers to hold intermediate
values altogether.
There is a lot of repetition in your code that you could roll up into a loop.
The long chain of if else statements could be expressed like this:

const int values [] =
 {33, 48, 58, 65, 91, 97, 123, 127};
const size_t values_size =
 sizeof (values) / sizeof (values [0]);

for (size_t i = 0; i < (values_size-1); ++i)
{
 if (charVal >= values [i] &&
 charVal < values [i+1])
 {
 minVal = values [i];
 maxVal = values [i+1];
 }
}

The final else if which tests for charVal outside the acceptable range
of character codes doesn’t fit inside this loop though. You can still reuse
the contents of the values array to test for this, rather than repeating
constant integer literals in your code.

if (charVal < values [0] ||
 charVal >= values [values_size-1])
 return false;

You use sprintf to append characters to a buffer. As I mentioned earlier,
you don’t need to use an intermediate buffer at all, but the use of sprintf

here is serious overkill anyway because you can just assign the value
directly. Instead of
 sprintf (dest, "%c", (charVal + key));

say
 *dest = charVal + key;

You forgot to make the src parameter const in the strreverse function,
but the fact that you used const on the input parameter to encrypt
suggests you already know this is a good idea.
The seed variable in encrypt is never used. When I turned on all
warnings from my compiler (gcc 4.0.3) it spotted this straight away.
Your use of printf in main is overkill. Both printf and scanf have
to parse and interpret the format string you pass to them. Since you're not
actually producing formatted output, use the less expensive puts function
instead.

From Calum Grant <calum.grant@sophos.com>
The algorithm implements a “simple monoalphabetic substitution cipher”
to encrypt a string of text. The encrypt() function maps each character
to a new character, then calls strreverse() to reverse the string. Be
aware that this cipher is very easy to crack.
The first problem is that the encrypt() function is quite long and should
be split up. It is actually a std::transform followed by a
std::reverse. A look-up table could be used to map characters, which
is simpler, more flexible and very efficient:

const char encrypt_table[TABLE_SIZE] = {...};
const char decrypt_table[TABLE_SIZE] = {...};

We also need to handle characters that exceed our TABLE_SIZE, since
unfortunately we can’t assume chars are 8-bit. In your code you reject
certain characters and fail silently. The character 32 (ASCII space) is not
handled, which results in your bug. You don’t need a failure case, though
we probably want to leave out of range characters unchanged.
Now we come to a serious issue: you don’t have a key. Your ‘key’ variable
is completely misnamed. encrypt() should use a key, which could just
be a look-up table. Instead of passing a bool into encrypt(), you can
pass in a pointer to the appropriate look-up table.
In your code, the seed variable is not actually used and the while loop
could be replaced by a for loop, or, even better, a std::transform in
C++. You should avoid hard-coded values in your code, and to be truly
portable you can’t even assume ASCII. Don’t use sprintf() to write to
a pointer, instead you can just write *dest = You allocate fixed-
length arrays for intermediate results, which can quite easily lead to a
buffer overrun. Never make up a size and hope that an array will be large
enough.
You can just encrypt the memory ‘in-place’, with no memory allocation,
no unnecessary copying and a smaller ‘working set’. We need to keep an
eye on performance for encryption. You can write a version of
strreverse() that operates in place on a single array (this is an
exercise), or just use std::reverse() in C++.
You could pass the length of the string to encrypt(), which allows it to
work on binary data.
void encrypt(char * data, std::size_t size,
 const char * table)

To ensure that key is the expected size, we could introduce an auxilliary
class for the key (which could then serve as a functor), or just do the
following:
 void encrypt(char * data, std::size_t size,
 const char(&table)[TABLE_SIZE])

24 | | FEB 2007{cvu}

From David Carter-Hitchin <David.CARTER-HITCHIN@rbos.com>
Initial Exploration of the code

1. First thing to note is that the code looks like C and has C-style
headers. However, upon compilation with GCC’s gcc command, it
fails on line 13, which contains the bool datatype. I suppose some
C compilers may implement this datatype for you, but strictly
speaking bool is only part of C++, so rolling the g++ compiler over
the code results in an executable. So far so good! This quirk
(inclusion of bool in C-code) should have been commented by the
student as a non-standard feature – or alternatively note that this was
a C++ project written mostly in C-style (for historical reasons
perhaps).

2. When running the binary with several test cases reveals this code
implements a primitive Caesar cipher, where plaintext letters are
shifted by a fixed number positions along the alphabet, so here ‘a’ is
shifted 19 characters to ‘t’, ‘g’ to ‘z’ and ‘h’ wraps around the end
of the alphabet to become ‘a’. Similarly ‘A’ becomes ‘N’, ‘M’
becomes ‘Z’ and ‘N’ becomes ‘A’. Numbers seem to work in a
similar manner too. Entering some non-alphanumeric characters
works sometimes, e.g. ‘&’ becomes ‘)’ (ASCII 38 and 41) and ‘%’
becomes ‘(’ (ASCII 37 and 40). So we expect ‘ ’ (ASCII 32) to
become ‘#’ (ASCII 35), but no such luck. On my terminal in comes
out as ‘y’ with an umlaut followed by a ‘3/4’ character, followed by
a German double s.

Code Analysis
Time to look at the code. After a minute or so the error is pretty obvious
– one of the ranges of characters starts at ASCII 33 (!) and not at 32 (space).
Unfortunately the fix to this isn’t as simple as altering the range from 32
instead of 33, as if we do that then the statement int key = maxVal
% range; sets the key to 0 as 32 is an exact multiple of the range 32 to
48 (16), which is bad news as this means the following characters would
not be ‘shifted’ (SP = space):

This is perhaps why the student amended the code to skip over the
problematic value of 32. To solve this we need an additional step to check
if the key is zero and, if it is, set it to something sensible (such as the middle
of the range).
So lines 31 onwards become:
 if(charVal >= 32 && charVal < 48)
 {
 minVal = 32; maxVal = 48;

line 58:
 else if (charVal < 32 || charVal > 126)

new lines after 64:
 if (key == 0) {
 key = range/2;
 }

With these changes, the code at least does what it’s supposed to:
[io]-> ./crypt "a falling apple"
xeiit(zgbeety(t
a falling apple

General Code Critique
As it stands the code is pretty ‘raw’. It doesn’t carry a single comment,
which is very bad news for anyone trying to understand it, including the
person who wrote it when they come to look at it after a few years! That
said, the choice of variable names seems to be ok and reasonably

understandable. The code is reasonably formatted and includes are in
sensible places and so on. Apart from the error with spaces, the code
essentially works, but there are a number of defects.
Design-wise the code is pretty strange. For example, it is odd that the
ASCII set is split up into separate ranges and the ‘rotations’ are done within
those ranges. This means that a lot more code is required to do the same
job, than if we treated the entire printable ASCII set as one range, i.e. from
‘ ’ (32) to ~ (126). Caesar ciphers are very weak anyway, so why make it
even weaker by always using numbers for numbers, letters for letters and
symbols for symbols? Perhaps this was part of the specification; perhaps
it was just some evil teacher making the poor life of a student more
difficult. Rewriting this so that the entire set is treated as one block, we
get a much more compact encrypt function:

while (*src)
{
 int charVal = (int)*src;

 if (charVal < 32 || charVal > 126) {
 return false;
 }

 int minVal = 32;
 int maxVal = 127;
 int range = 95;
 int key = 32;
 int delta = 63;

 if (encode)
 ... [as before]

Also the output is far less amenable to ‘casual decryption’:
 [lon0020xuc]-> ./crypt2 "a falling apple"
 %,00!?'.),,!&?!
 a falling apple

It is very common in cryptography to use a substitution letter for either
something unprintable or spaces. So instead of bailing out of the
encryption, it would be better to substitute in a letter such as X, which
would make it obvious to the reader of the decoded message that this was
outside the scope of the encryptor. So we have:
 if (charVal < 32 || charVal > 126)
 charVal = 88;

Resulting in ASCII 8, Backspace, (for example) becoming X in plain and
w in crypt:

 [lon0020xuc]-> ./crypt2 "a falling apple^H"
 w%,00!?'.),,!&?!
 a falling appleX

There are numerous other problems with the code:
the buffers used are fixed at 80 chars. If the input exceeds this, we
get unpredictable behaviour. In one run I found that a portion of the
test was displayed in plaintext. Another run core-dumped. To fix
this the student could malloc the required amount of memory, or
simply use a std::string, which does all that size management
for you.
It is inefficient to cast the current character to int, just to inspect its
ASCII value; it would be easier to just use the value of src[0]
directly, since chars are really bytes in disguise.
It is inefficent to build up a result char array and reverse it - much
quicker to write the results into the final result array in reverse order.
The code needs to decide if it’s C or C++. If it’s C++, the headers
and output commands need updating and obviously it should make

32 SP 33 ! 34 " 35 #

36 $ 37 % 38 & 39 '

FEB 2007 | | 25{cvu}

use of STL. If it’s pure C then it needs to get rid of bool, by using
an int or a char instead.
main doesn’t actually check the return status of encrypt or
decrypt.
Could be argued that two functions for encrypting/decrypting istead
of one make for a clearer design.
The random seed is never used, and should be removed if it’s not
needed.

From Balog Pál <pasa@lib.hu>
I’ll not go down to philosophical issues of what ‘simple encryption’ means;
let’s just assume the letter-substitution combined with rev is okay for the
task. First I scan only the function signatures, to have a picture, with a
‘reader’ hat on. Here’s how I would decrypt the signatures if they appeared
in my program:
 void strreverse(char *src, char *dest);

src will be a 0-terminated C-style string (called just string in the rest), that
will be modified in some cases. dest will receive the output producing
src in reversed order, zero-terminated. Probably if dest is null, output will
go to src doing in-place reverse, otherwise src and dest shall not
overlap. If src is NULL, behaviour is unguessable.
 bool encrypt(const char *input, char *output,
 bool encode);

This function will convert plaintext and cyphertext. The final bool
parameter will order the direction true being encode, false decode.
We’ll have a string in input that will be converted to output. The source is
never modified, the destination shall not overlap. Result of conversion is
returned: true means success, false means failure, for that case state
of output is unguessable – assumed indeterminate. The function would be
better named crypt, as encrypt suggests one direction contradicting the
direction param.
For both functions the caller is responsible to pass a destination buffer that
has enough space to hold the output.
Then I think of the test cases for verification. We certainly have to encrypt
and decrypt and compare the final result with the original plaintext. And
do that with strings of various length (including length 0, 1 and ‘very long’)
and composition (including generation of all possible 1-character long
strings as a trivial test).
Now let’s see the actual test harness in main. Even at the first glance it
looks lousy. Fixed 80-char length buffer, no check of function result, no
compare.
And we immediately see two easy ways to crash the program: we can
supply input long enough to overrun the 80-char output buffer, or provoke
encrypt to fail, and then the code will still use the indeterminate buffer
content for further processing. Later we’ll see that is exactly what happens
with “a test” input: the space character is outside the legal range, encrypt
fails, but indeterminate garbage is still passed to a following sprintf as
a zero-terminated string.
Back to the implementation. strreverse turns out to work quite
differently than we deduced from the signature. It actually works from
src to dest, so the correct signature would have const char * src.
Then I see no reason to have i and j outside the for. And the most
important problem: the output string will not be zero-terminated. Keeping
as much as possible of the original, I’d write the implementation this way:

// src and dest must not overlap!
void strreverse(const char *src, char *dest)
{
 for(int j=strlen(src)-1 ; j>=0 ; --j)
 *dest++ = src[j];
 *dest = 0;
}

Or just use an ‘in-place’ reverser with a single argument, unless we really
need to keep an original intact. That would remove the need of an output
buffer, and attached constraints of being large enough and not overlapping.
(swap can be inlined if we want to keep it C99).

#include <algorithm>
void strreverse(char * str)
{
 for(int i = 0, j = strlen(str)-1; i < j ;
 ++i, --j)
 std::swap(str[i], str[j]);
}

The crypter function starts pretty ugly. Again a fixed-len buffer, then
srand and seed that is not used for anything at all, within the loop
introducing variables without initialization, then immediately use
assignment, and a chain of similar-looking code just crying for some
abstraction.
As a start I’d want to move most of the code in the loop to a separate
function mapChar() as what happens is actually the characters are
substituted. For the simple case it would be

 char mapChar(char in, bool encrypt);

But we notice from the code that not the whole character range is handled.
So, unless we come up with sensible support of the whole range (I see no
reason for restriction), we must pass back the error status. It can be a special
value of char that can’t be result of mapping – 0 looks good – or we return
bool, and pass in a pointer/ref for the resulting char. Taking the first idea
what remains of the encrypt function:

 bool crypt(const char *input, char *output,
 bool encode)
 {
 char * dest = output;
 for(;*input; ++input, ++dest)
 {
 *dest = mapChar(*input, encode);
 if(0 == *dest)
 return false;
 }
 *dest = 0;
 strreverse(output);
 return true;
 }

Those who like code with least lines could even write the loop as:

 for(;*input; ++input)
 if(0 ==(*dest++ = mapChar(*input,encode)))
 return false;

but others would find that less easily readable. [Ed: I removed some spaces
to get the single liner to fit in the column format] Note what we gained up
to here:

1. code is small and readable
2. no more local buffers introducing extra constraint on length
3. though it’s an accidental side-effect, on error return the output string

is 0-terminated. We might even specify it as a postcondition
The only thing left is implementing mapChar. I would probably just use
a static table of 256 characters, and return the proper entry:
 const char encr_tab[256] = { 0, ... };
 const char decr_tab[256] = { 0, };

 char mapChar(unsigned char in, bool encrypt)

26 | | FEB 2007{cvu}

 {
 return in[encypt ? encr_tab : decr_tab];
 }

(note : the actual initialiser for this mapping would be something like
"\0
\0\0\0\0\0\0\0\0$%&'()*+,-./!"#8901234567<=>?@:;NOP
QRSTUVWXYZABCDEFGHIJKLM\]^_`[tuvwxyzabcdefghijklmno
pqrs~{|}")

The tables can be generated by a simple program. The decryption table can
be generated from the encryption table (decr_tab[encr_tab[i]]
= i). The encryption table can be generated at startup as well, if we
include a proper function and we can even pass it a key – so it finally
deserves the title ‘encryption’ as simple as it is. Anyway, here’s a mapper
for the original behaviour:

char mapChar(unsigned char in, bool encode)
{
 static const int ranges[] = {0, 33, 48, 58,
 65, 91, 97, 123, 127, 256};
 // keep sorted, with 0 and 256 at sides!
 int min, max;
 for(int i = 0; ; ++i)
 if(in >= (min = ranges[i]) &&
 in < (max = ranges[i+1]))
 break;

 if(min == 0 || max == 256)
 // those ranges considered illegal...
 return 0;

 const int range = max - min;
 const int key = max % range;
 // arbitrary consistent pick...
 const int delta = encode ? key :
 range - key; // up or down?
 const unsigned char res = in + delta;
 return res < max ? res : res - range;
 // adjust turnaround
}

How is it better?
all the redundancy with the range check is removed. Just try to add,
remove or change a range, and see how many places need update in
the original and here
we streamlined the cases, so we have just one point where
encryption and decryption differs to see it’s a proper inverse. And
turnaround code is no longer duplicated

Other problems with the original code that just disappeared:
sprintf to %c could be simply *dest =
*dest++ has an excess *

If someone wonders why the code worked with strreverse not
terminating the string: the ={0} initialiser of buffer actually causes it zero-
filled, so as long as we write less than 80 characters, there will be a 0 at
the end. I was also shocked by the practice of overwriting strings pointed
by argv[i], but the standard says that is okay.

From Michal Rotkiewicz <michal_hr@yahoo.pl>
This encryption/decryption method resembles the Caesar method, where
each letter is shifted by 3, i.e. ‘a’ becomes ‘d’, ‘b’ becomes ‘e’, ‘c’ becomes
‘f’ and so on. When we are approaching to the end of alphabet we ‘wrap’
encrypted letters: ‘x’ becomes ‘a’, ‘y’ becomes ‘b’ and ‘z’ becomes ‘c’ and
so on.
In the presented code the encryption/decryption algorithm is a little bit
more complicated:

1. there are seven ranges and each range has different shift value
(variables key or delta depending if we have to do wrapping or not:
wrapping is done when charVal+key>=maxVal)

2. encrypted text is reversed
Each letter is converted from char to ASCII value and then we check in
which range it is. ASCII value of the ‘space’ is 32 and it is not within any
range therefore encrypt function ends with return value false.
At first sight it may be obvious to extend first range by changing 33 to 32:

if (charVal >= 32 && charVal < 48)
{
 minVal = 32; maxVal = 48;
}

But it’s wrong. Let’s calculate range, key and delta:

 int range = maxVal - minVal // 48 - 32 = 16
 int key = maxVal % range // 48 % 16 = 0
 int delta = range - key; // 16 - 0 = 16

It means that every character in the range ‘space’ - ‘/’ (ASCII values 32 -
47) won’t be encrypted as all of them fulfill if (charVal < maxVal
- key) and because key=0 then charVal+key (in the sprintf) is in
the fact charVal+0. There are several ways of solving this problem. I
will present here two of them.

1. The simplest way is to check whether key equals 0 and if so change
it to any value between 1 and range. It may be hardcoded or
calculated like this:

 int key = maxVal % range;
 if (0 == key) key = range - 1;

2. In this approach we may extend the upper limit of the first range to
49. Then first two ranges are determined as follow:

 if (charVal >=32 && charVal < 49)
 {
 minVal = 32; maxVal = 49;
 }
 else if (charVal >= 49 && charVal < 58)
 {
 minVal = 49; maxVal = 58;
 }

Then for the first range we have:

 int range = maxVal - minVal // 49 - 32 = 17
 int key = maxVal % range // 49 % 17 = 15
 int delta = range - key; // 17 - 15 = 2

Having above ‘space’ is encrypted to ‘/’.
But by extending the range we included character ‘0’ which previously
belonged to the second range. We don’t know how the encryption
requirements looks like (if any). Maybe there is some reason for having
all characters 0-9 in the separate range. If there is such requirement we have
to change we calculate the key: it may be for instance explicitly provided
for every range.
That’s all about algorithm. The rest of my comment is regarding code
itself:

1. Program may crash if input string is longer than 80 characters. There
is no any check whether this condition is violated. To cope with it
we may either check input string length or allocate memory
dynamically. I prefer the second approach, as it seems to be more
flexible.

FEB 2007 | | 27{cvu}

We have to remember that if we are deleting dynamically allocated
memory pointer in the instruction delete, *ptr must point to the
beginning of the memory. Therefore I introduced const char *
const ptr that is set to the beginning of the array. As it’s a const
pointer we are sure that it not moved.

2. Argument char *src of the strreverse function may be
declared as const char *src.
It’s good practice to declare as const all arguments that are not
changed within function.

3. Lines:
 srand(strlen(src));
 int seed = rand();

are unnecessary as seed variable is not used.
4. Instead of reversing buffer to the revBuffer and strcpy it to

output we may use output as a second argument of the strreverse
function.

5. In main function return value of the encrypt function should be
checked.

Taking into account points 1-5 and extending first range code looks like:

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

void strreverse(const char *src, char *dest) {
 int i=0,j;
 for(j=strlen(src)-1; j>=0;j--) {
 dest[i++]=src[j];
 }
}

bool encrypt(const char *input, char *output,
 bool encode) {
 const char *src=input;
 int inputLength = strlen(src);
 char *dest=new char[inputLength+1];
 const char * const ptr = dest;
 while(*src)
 {
 int minVal, maxVal;
 minVal=maxVal=0;
 int charVal=(int)*src;
 if (charVal>=32 && charVal<49)
 { minVal=32; maxVal=49; }
 else if (charVal>=49 && charVal<58)
 { minVal=49; maxVal=58; }
 else if (charVal>=45 && charVal<65)
 { minVal=58; maxVal=65; }
 else if (charVal>=65 && charVal<91)
 { minVal=65; maxVal=91; }
 else if (charVal>=91 && charVal<97)
 { minVal=91; maxVal=97; }
 else if (charVal>=97 && charVal<123)
 { minVal=97; maxVal=123;}
 else if (charVal>=123 && charVal<127)
 { minVal=123; maxVal=127;}
 else if (charVal<33 || charVal>126)
 {
 delete [] ptr;
 return false;
 }

 int range=maxVal-minVal;
 int key=maxVal%range;
 int delta=range-key;
 if (encode)
 {

 if (charVal<maxVal-key)
 sprintf(dest,"%c",(charVal+key));
 else
 sprintf(dest,"%c",(charVal-delta));
 }
 else
 {
 if (charVal>=minVal+key)
 sprintf(dest,"%c",(charVal-key));
 else
 sprintf(dest,"%c",(charVal+delta));
 }
 *dest++;
 *src++;
 }
 *dest='\0';
 strreverse(ptr,output);
 delete [] ptr;
 return true;
 }

int main(int argc, char **argv)
{
 for(int i=1;i<argc;i++)
 {
 char *input=argv[i];
 char *output = new char[strlen(input)+1];
 bool ret = encrypt(input,output,true);
 if (ret == false)
 {
 printf("Invalid character\n");
 delete [] output;
 return 1;
 }
 printf("%s\n",output);
 ret = encrypt(output,input,false);
 // Below check may be omitted as assuming
 // that algorithm is correct we are sure
 // that all characters are in valid
 // ranges.
 if (ret == false)
 {
 printf("Invalid character\n");
 delete [] output;
 return 1;
 }
 printf("%s\n",input);
 delete [] output;
 }
}

Commentary
This code slightly horrified me when I first saw it because it was wrong
on so many levels!
Firstly, it was really just C code although it was being compiled as C++
code (all it needed was #include <stdbool.h>). One problem with
C++ is that many people still write C in it – if C compatability is not
required I prefer to write in idiomatic C++ because this allows me to use
more of the power of the language and the library; in this case for example
my preference would be to make the function take std::string
arguments rather than character pointers to avoid the problems with fixed
length buffers without burdening the code (or the caller) with explicit
memory allocation.
Secondly the algorithm used had an unstated restriction on the range of
input characters supported – hence the presenting problem of failing to deal
properly with the embedded space. Of course, when used to encrypt
passwords. It also uses a very trivial cipher that provides almost no real
security; Caesar ciphers are easy to crack and one that breaks the input into
several disjoint ranges is even easier.

28 | | FEB 2007{cvu}

Thirdly the code had lots of duplication that could be reduced either by
using a lookup table or by changing the algorithm to use a single range.
Duplication is usually bad because it affects readability, maintainability
and performance.
Fourthly the code was not very efficient – the unnecessary use of
sprintf(), the double copying of characters at the end of encrypt and
using printf() in main() rather than puts(). Premature optimisation
is bad, but these seem to me to be some good examples of so-called
‘premature pessimisation’.
Finally the test code in main() relied on manual inspection of the output
by the programmer rather than checking the return codes and output values
automatically.

The Winner of CC 43
I found it hard to pick a winner for this competition since all the entries
gave a good critique of the code and each one covered most of the problems
in the example. Eventually I picked the winner of CC 43 as Balog Pál,
partly because I particularly liked the brief discussion about what should
be in a minimal set of test cases.

Code Critique 44
(Submissions to scc@accu.org by 1st March 2007)
My thanks to the donator of this piece, who would like to remain
anonymous – but you know who you are.
This is a scaled down version of some production code which was longer
and slightly more tortuous.
Feed the program (assume here built as run.exe or run) with arguments
like:
 run foo bar baz

And it prints:
 f,o,o
 b,a,r
 b,a,z

Please critique this code, suggesting how the writer could improve their
coding technique.
#include <iostream>
#include <iterator>
#include <string>
#include <sstream>
#include <vector>

using std::cin; using std::cout;

using std::ostream_iterator;
using std::stringstream;
using std::string; using std::vector;

int main(int argc, char *argv[])
{
 vector< string > names(
 argv + 1, argv + argc);

 size_t written = 0;
 while(true)
 {
 stringstream output;
 bool added = false;
 if(written == names.size())
 break;

 string name = names[written];
 for(int index = 0; index != name.size();
 ++index)
 {
 output << name[index];
 if(index < name.size() - 1)
 output << ",";

 if(written > names.size())
 continue;

 added = true;
 }
 if(!added)
 break;

 cout << output.str() << "\n";
 ++written;
 }

 cin.get();
 return 0;
}

You can also get the current problem from the accu-general mail list (next
entry is posted around the last issue’s deadline) or from the ACCU
website (http://www.accu.org/journals/). This particularly
helps overseas members who typically get the magazine
much later than members in the UK and Europe.

We need you!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are
no magazines. We need articles at all levels of software development experience; you don’t have to
write about rocket science or brain surgery.

What do you have to contribute?
What are you doing right now?
What technology are you using?
What did you just explain to someone?
What techniques and idioms are you using?

If seeing your name in print wasn’t enough, every year we award prizes for the best published article
in C Vu, in Overload, and by a newcomer.

Prizes provided by Blackwells Bookshops and Addison-Wesley

FEB 2007 | | 29{cvu}

C and C++
Secure coding in C and C++
by Robert S. Seacord,
published by Addison-Wesley,
ISBN 0-321-33572-4.
Reviewer: Ian Bruntlett
This book draws upon
(nearly 18000) software
vulnerability reports made
to CERT/CC and the
relatively small number of
software defects that cause these problems.
Before I started reading this book I thought I was
pretty much on top of the problems:

When dealing with arrays, always pass the
size of the array (as a size_t) as well as
a pointer to the array.
Avoid unsafe C library routines (use
get_s not gets, strcpy_s and
strcat_s instead of strcpy and
strcat). If strcpy_s or strcat_s
are unavailable then either (1) use your
own drop in replacements – in the past I
wrote my own, strcpyterm and
strappend or (2) use someone else’s
such as BSD’s strlcpy and strlcat.

I was surprised that the use of typedefs wasn’t
dealt with more closely. In particular, if you are
working on a large application that will get
ported to different architectures, some
application specific type choices are best dealt
with by using a typedef. To give a more
concrete example when 16 bit integers were no
longer big enough for the Libris OPAC search
engine, I had to (1) go through all the code used
replacing certain int declarations with
TotBook_t and (2) use a #define
PF_TOTBOOK for use in sprintf calls. By
having a typedef and #define it made the
software more supple with regard to future
developments.
The main topics are “strings”, “pointer
subterfuge”, “dynamic memory management”,
“integer security”, “formatted output” and “file
I/O”. I was particularly pleased to see

production quality code in a book – on pages 293
and 294 there were some string sanitization
functions. This book was both interesting to read
and enlightening.
At the back of the book is a “Recommended
Practices” book this is useful but I think a “quick
reference” section would have been helpful
here.
VERDICT: Recommended.

Data structures and alogrithm
analysis in C++. Third edition.
by Mark Allen Weiss, published by Addison Wesley,
586 pages. IBSN 0321397339
Reviewer: Frances Buontempo.
This book provides a thorough introduction and
in depth look at how to define the complexity of
an algorithm and then goes on to look a various
structures including lists, stacks, queues and
trees. The algorithms encompass sorting,
disjoint set classes (i.e. equivalence relations)
and graphs. Various techniques such as greedy
versus divide and conquer, randomised and
backtracking algorithms plus dynamic
programming are detailed. A clear, in depth
explanation of amortized analysis is presented
and finally other specialised data structures such
as splay trees, red-black trees, skip lists, other
trees, traps, and pairing heaps are covered.
Prior to this, the book starts with a hit and run
overview of C++ (including classes,
std::vector and std::string, pointers,
parameter passing, templates and functors) and

mathematics (exponents, logarithms, series,
modular arithmetic and proofs). Prior to starting
a computer science course, a friend with
advanced-level school mathematics background
worked through the revision mathematics
session with me. Suffice to say it served as a
good basis of things to learn but was too sparse
and terse to be of any use other than as a pointer
to which topics to pursue in another book. The
same is true of the C++ introduction, though the
author lists all the right books for a C++ rookie
to buy and read.
Introductory chapter aside, this book is very well
written, and given the in-depth technical
content, a pleasure to read. The algorithmic
analysis gives detailed mathematical proofs, for
example of the complexity of operations on a
variety of data structures. Without a strong
mathematical background or some
determination, this could prove heavy going but
worth it. The illustrations frequently manage to
convey some complicated ideas with clarity.
There is enough sample code to build examples
to pursue the ideas further, but this does not
distract from the main narrative as can happen
with some books.
The majority of the material covered in this book
is probably amply covered elsewhere (Knuth
springs to mind). Nonetheless it pulls together a
neat selection of ideas and presents them in a
format that can be read in a few (determined)
sittings. The introductory chapter will be little
use to beginners and of limited value for those
in the know, but apart from that this is a good
book.
Recommended with the reservation: buy if you
can afford it and don’t already have Knuth or
similar, or have Knuth and can't manage to read
it from cover to cover but wanted to.

Bookcase
The latest roundup of book reviews.

If you want to review a book, your first port of call should be the members section of the ACCU website
which contains a list of all of the books currently available. If there is something that you want to review,
but can't find on there, just ask. It is possible that we can get hold of it.

After you've made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous “not recommended” rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Bookshops

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops

30 | | FEB 2007{cvu}

C#
Accelerated C# 2005
by Trey Nash, published by
APress,US (31 Aug 2006), 401
pages (paperback). ISBN:
1590597176
Reviewer: Paul Grenyer
I was expecting this book to
be a lot like Andy Koenig
and Barbara Moo's
Accelerated C++, but for
C#. It bears almost no resemblance at all which,
although disappointing, doesn’t make this a bad
book. Well, not all of it anyway.
I found the first three chapters dull and boring.
This was probably because I’ve read a number
of introductory books on C# over the last few
months and usually look forward to getting
straight into some code (just like in Accelerated
C++), rather than going over the details of .Net.
These details are important, but do they really
require 3 chapters over 33 pages?
Chapter 4, Classes, Structs and Objects, is where
it all starts happening. From this point on the
book is informative, detailed in a good way and
interesting. The chapter on interfaces and
contracts is particularly good, with some
emphasis on how interfaces define contracts.
This book, like so many others, mentions the
singleton pattern. I’ll begrudgingly permit the
suggestion that there's nothing intrinsically evil
in ‘mentioning’ singleton. However, yet again
there is absolutely no mention of the downside
of using the singleton pattern. When you
consider that in the view of many of the best
developers these downsides are considered so
bad that singletons are avoided at all costs, this
is a fairly large flaw in the book.
The final chapter is entitled ‘In Search of C#
Canonical Forms’. This is 50+ pages of effective
C# type items. The item that sticks out as being
wrong is the suggestion that using the NVI
(Non-Virtual Interface) interface is a good thing.
Some people, including Herb Sutter, agree that
NVI is a good thing. Many of the rest of us think
it adds unnecessary code overhead and the need
for strangely named protected methods. Again,
only one side of the argument is given.
I think that overall this is a good book. The
author knows his stuff and is good at presenting
it for the most part. Personally I would like to see
the first three chapters reworked and shortened,
the singleton pattern either dropped or both sides
of the argument given and the final chapter
replaced with a reference to Wagner’s Effective
C++.

C# Precisely
by Peter Sestoft and Henrik I. Hansen, published by
the MIT Press, ISBN 0-262-69317-8, 204 pages
Reviewer: Silvia de Beer
The back of the book claims ‘This book is
intended for readers who know Java and want to

learn C# and as a quick reference for anyone
who wants to know C# in more detail than that
provided by a standard textbook.’ The book
presents the entire C# 2.0 programming
language, including generics, iterators and
anonymous methods. It excludes most of the
extensive Microsoft.NET framework class
libraries except threads, input/output, and
generic collection classes.
The layout of this book is special in the way that
all even pages are used to explain the language
concepts in theory and all odd pages are used for
examples. The idea behind this is nice, but does
not always work out that well. Sometimes the
even page is difficult to understand, and can only
be completely understood after reading the
examples. Sometimes the examples do not cover
all the theory, and do you keep wondering about
other cases. The examples consist of little bits of
code, and the output is not always given in the
explaining text, so for a thorough understanding
you should really execute the code yourself to
verify your understanding. I would rather use
this book as a quick reference, because to use it
as a tutorial can be a bit hard, not everything is
immediately understandable if you are new to
C#. I had difficulties understanding some
theoretic pages, because some forward
references to concepts specific to C# are used. I
had difficulties in understanding some of the
theoretic explanations like delegate and yield.
To learn C# one would need much more exercise
to use it properly than just reading this book. For
example, 6 pages on the subject of threading do
seem too little to me on such a complex and error
prone subject.

Software Development
Agility and Discipline Made Easy
by Per Kroll & Bruce MacIsaac,
published by Addison-Wesley,
ISBN: 0-321-32130-8
Reviewer: Paul Thomas
Recommended.
This one differs from the
huge array of introductions
to the RUP in that it seems
to be mostly apologising for
not being XP. The high priests of the Unified
Process were caught off guard by the sudden
surge in popularity of the ‘Agile’
methodologies. It was a surge they helped to
cause by pushing woefully bad case tools and
venerating the process too highly (which is, after
all, their main source of revenue) but there is
always a danger of the pendulum swinging too
far the other way. So they did what every
threatened business does these days, they
heavily re-branded and blamed customers for
misinterpreting their message. There are
passages in the book that hint at this: you are
advised not to go looking through pre 2005
versions of the RUP for example.

This is the first I’ve seen of the newly re-branded
RUP and, apart from the defensive tone, it seems
pretty good. Although there are hundreds of
process books available, they are almost always
enormous tomes of lore or highly personal
opinion pieces. This has the benefit of decades
of process research behind it but is light enough
to start using it after a weekend reading in the
right places.
The core of the book is 20 practices (like the
recipes in the popular ‘cookbook’ format) that
managers can cherry pick to get them started.
Not only that, but each practice can be applied
in varying levels of severity. There is even a
graphical key to show you how agile or
disciplined you’ll become by following the
advice. As you’d expect, it’s a little buzzword
heavy.
I’m making light of the spin associated with the
process industry but the truth is that I like this
book. It has just about everything you need to get
going in digest form and is thick with references
if you want to progress. Sure there’s a heavy bias
toward the IBM/Rational world view, but
there’s plenty of coverage of other
methodologies like XP, Scrum, Crystal. All in
all, it looks like a good way in if you really want
to improve things and it won’t lock you in to a
tool chain too early.

Dynamics of Software Development
(2006 edition)
by Jim McCarthy and Michele McCarthy, published
by Microsoft Press, 199 pages, ISBN: 978-0-7356-
2319-4
Reviewer: Pete Goodliffe
Rating: Recommended
This is a reissue of a classic software
development tome originally released in 1995. It
was a worthwhile read then. Time has been kind
to it, and a lot of the points discussed are still
perfectly relevant 11 years on. In fact, the
McCarthy’s ideals can clearly be seen as
precursors to many fashionable ‘agile’
disciplines.
The original book presented a series of ideas and
rules of thumb to help shape better dynamics in
software development teams and processes.
These items ranged over the lifetime of the
development process: from the ‘opening
moves’, through shipping, and the launch, and
beyond. It also provided an appendix on hiring
and keeping good people.
This 2006 edition reproduces the original book
and adds a little extra material (28 new pages,
added to the original 150-odd). It introduces
some very superficial updates to the original
material: mostly the addition of cross-references
to the new material.
The ‘old’ 1995 book content has been largely
left alone and called Part 1. The book therefore
has an slightly odd structure: the original book’s
appendix is reproduced at the end of part one,
BEFORE part two’s new 2006 material. There
is a kind of logic here.

FEB 2007 | | 31{cvu}

The authors originally intended to weave all of
the items into a richer tapestry in subsequent
editions. The rules don’t interconnect as much as
they could. The 2006 update doesn’t touch the
old material, and so doesn’t attempt to complete
this weaving. This edition adds three new rules
of thumb, and then provides a fantastically brief
summary of the McCarthy’s ‘The Core System
3.0’ – a process/system for interacting teams as
described in their 2002 book Software For Your
Head.
To be honest I felt this ‘Core Protocol’ stuff was
a total waste of time. The material is presented
so briefly – a mere summary of another book –
that without any proper discussion it serves to
confuse and baffle the reader more than add any
value. It’s 20 pages of quick overview and
bulleted lists. As it’s about 3/4 of the entire
‘new’ material, it doesn’t makes a compelling
case for buying the new edition.
The book includes CD ROM with a video Jim
McCarthy giving his famous ‘23 1/2 Rules of
Thumb’ presentation, upon which the book is
based.
This is a good book, but I was left with the
feeling that a more substantial update could have
been very interesting. This edition seems like a
release for marketing purposes alone. If you
don’t already own the original book, then it’s an
interesting read; for historical purposes as much
as anything else. If you do have it, read that copy
again, and spend your money elsewhere.

Java
Review of Java Regular Expressions
by Mehran Habibi, published
by Apress 2006, ISBN
1590591070
Reviewer: Christer Lofving
This is maybe the first book
from Apress that I DO not
really like.
Even a brief look around the
pages reveals that the author
must have been either short of material, or there
was a narrow deadline to keep.
Maybe both of them ?
Because something of a world record in spaces
and abundant code must have been hit here. For
example, the print out function being identical
all the time, is being repeated at the end of every
example.
Furthermore, because it’s Java this is about, and
because the target group is not novices, in most
cases 5-10 lines of code would be sufficient.
Instead 1-2 pages are used for every single code
sample. Even worse is that some of the
introducing examples import abundant code.
For example you can find this

import java.util.regex.*;

Note that the imported-by-default
java.lang.string is enough to compile and
run the actual sample! Can seem to be trivial, but
is still confusing when learning a new Java
concept.
An other known trick to increase the number of
pages is to copy-and-paste a language API, and
pretend it to be a chapter of its own. That trick
is tried here at least half ways. The
java.util.regex API is inserted after a very
long introductory chapter. However, some
useful explanations for that package are
included, not to be found found in the original
Java doc.
So, there are glimpses of light in the book.
There are accurate and detailed step by step
explanations following all regex syntax. And the
pedagogic approach to advance from very
simple to finally advanced examples is a good
one.
Maybe much of the problems is not about the
content itself ?
One rather gets the feeling of a movie uncut by
the director, or why not a manuscript released
while still being a draft.
The topic at hand, the excellent support for
regular expressions from Java 1.4 is appealing
indeed. An alternative (and cheap) way of
learning regular expressions is to use the
excellent, free tutorials on http://www.regular-
expressions.info/.
And if you want a book, Mastering regular
expressions from O’Reillys is the Bible. Now in
its third edition (2006) and expanded to include
special chapters for Perl, NET, Java and more.
At the best this title can aid as a complement
when learning regular expressions, but not
more.

Eclipse: Building Commercial-Quality
Plug-ins (2nd Edition)
by Eric Clayberg, Dan Rubel,
published by Addison-Wesley
Professional; 2 edition (March
22, 2006), Paperback: 864
pages, ISBN: 032142672X
Reviewer: Derek M Jones
Eclipse is an open source
IDE written in Java. The
architecture of the system is
such that virtually all of its functionality is
implemented using plug-ins. This book claims
to help programmers build commercial-quality
plug-ins. Presumably commercial-quality is
meant to imply high quality, but other that a
discussion on how to test plug-ins this book does
not discuss commercial or quality issues.
This book will appeal to people who like lots of
hand holding. I could have done without being
told how to navigate down a list to find the
option I needed to click (in some cases
accompanied by a snapshot of the menu
hierarchy). The over 800 pages could have been
significantly reduced by removing a lot of
superfluous code snippets and the oh so many

two sentence synopses of API methods (this is
what online documentation is for).
The book covers version 3.1 and 3.2 and I
suspect that its detailed navigation tips and
screen shots might not be portable to later
versions.
The text is readable, if somewhat long winded,
and there is an extensive index. Distilled down
to 200 pages this book could be a useful
accompaniment to the online documentation.

Internet and Email
The Google Story – Inside the hottest
business, media and technology
success of our time
by David A. Vise, ISBN 0-4050-
5371-2.
Reviewer: Ian Bruntlett
This is a business story, not a
technology HOWTO. It tells
of Google’s remarkable
success, the uncanny business
sense that keeps it one step
ahead of Microsoft and offers
snippets of information about the company. One
day in the future, someone will write a book on
how Google’s army of PCs cooperate to provide
search results so ably.
As well as telling the Google story, it describes
how Brin & Page are setting out to improve the
world we live in, armed with billions of dollars.
They’ve so many novel ideas that I can’t list
them all – buy or borrow this book to find out
more.
As a bonus to the book, Appendix I provides
useful Google search tips, Appendix II the
Google Labs Aptitude Test and Appendix III
Google’s Financial scorecard.
VERDICT: Recommended.

Cyber Spying
by Ted Fair et al, published by
Syngress, ISBN 1 931836 41 8,
439 pages
Reviewer: Silvia de Beer
I was severely disappointed
in this book. From the title
of the book I guessed that
this book was about how to
protect your computer from
being spied upon, e.g. by Internet spy ware etc.
This is not the case, the book is basically about
how to spy upon other people in your household,
how to spy upon their internet use, what email
they type, what messages they send with various
instant messaging services. These other people
can either use the home computer, or use their
own laptop or computer on the home network.
This book was like reading the Marie Claire, and
not technical at all. It was about how you could
suspect your spouse having an extra-marital
affair, or how you could suspect your child of

32 | | FEB 2007{cvu}

drug abuse etc. An indication of the Marie-
Claire style of the book is the many examples
like “Between their junior and senior year Greg
confessed his love and proposed to Camille. She
accepted....”
The book explains various ways how you could
read someone’s emails without him knowing, if
you know his password, how to guess his
password, how people use the same login for
various accounts. To indicate the technical level
of this book: chapter three of the book explains
what a directory and a file are. The book talks
about various software tools like keystroke
loggers and sniffers, how to remove programs
from the start menu or uninstall list by editing
the registry, how to cover your spying. Playing
around with the registry editor does not seem to
be a good idea to me if you have only as little
technical knowledge as the book assumes.
Chapter 10 (Advanced Techniques) explains
what ARP (Address Resolution Protocol)
spoofing is, possibly un-understandable by a
non-technical reader.

Web Accessibility: Web Standards
and Regulatory
Compliance by various,
published by Friends of ED,
ISBN 1-59059-638-2
Reviewer: Silas S. Brown
The chapters of this book
were contributed by many
different authors, and the
type, quality and relevance
of the content varies enormously from chapter to
chapter. Although there are passing references
from some chapters to others, overall it feels
more like reading a set of conference
proceedings than a unified book. The authors
sometimes seem to disagree with each other and
this can be confusing. For example, should one’s
Web accessibility effort revolve around lengthy
law-book stuff, or would it be better to
understand the underlying issues? Is there any
point in automated testing? Does ‘accessibility’
include catering for a variety of devices and
operating systems, or just for expensive
commercial Windows-only screen-reading
software? Should ‘skip to content’ links be
visible or not? It all depends which chapter you
read, and the book’s target audience may find
that unhelpful.
There are some gems in this book if you can find
them. The chapter on stylesheets is good and the
chapter on accessible scripting has some good
points, and the introduction is very reasonable if
you can put up with the American jokes. But
why do technical books have to be two inches
thick to sell? Couldn’t some of those extra
chapters be more concise and to the point?
Couldn’t there be more co-ordination between
them? (Chapter 16 tries to tell you what HTML
is as if you didn’t know anything about
technology, but would you have got that far if
you didn’t?)

The cover prominently says ‘Mac and PC
compatible’, so why is so much of the text
Windows-only? There is much discussion of
Windows accessibility software (and some of
bundled features), but absolutely no mention of
the Mac’s accessibility, which has improved
greatly in recent years and ought to be at least
acknowledged if you’re going to write on and on
about Windows in a book with a ‘Mac’ label on
it. And although IBM people were involved in
the book, mentions of Linux are infrequent,
brief, and arguably inaccurate.
The printing could be better too. Why not reduce
those big margins to allow for a clearer font?
Some figures are confusing, and it seems the
authors weren’t told they’d be printed without
colour. There are misprints too. And a label on
the front says that an accessible HTML version
of the book is available, but they won’t tell you
the URL; they just tell you to go hunting for it
on the publisher’s site. This practice is a great
example of NOT helping accessibility. When I
did manage to find it, I was told that I had to pay
for it (having obtained a paper copy of the book
doesn’t exempt this).
I must point out the following piece of extremely
bad advice. Chapter 12 (which is about using
Adobe’s tools) recommends OCR-ing court
documents as ‘searchable images’, which means
the results of the OCR are hidden behind the
original image. This is great for searching, but
it is extremely risky practice if you’re involved
in making court documents accessible, because
it amounts to running them through an OCR
program without even glancing at that
program’s output before you give it to someone
who depends on it. Would you want that done to
your legal documents?
I don’t want to give this book the ‘not
recommended’ tag because it does have some
good points. But sadly it has serious bad points
too, so be careful.

SpamAssassin
by Alistair McDonald (2004)
ISBN 1-904811-12-4 pp221
Reviewer: Mark Easterbrook
Conclusion:
Recommended
The subtitle of this book is
“A Practical Guide to
Configuration,
Customisation, and Integration” and it lives up
to this admirably. The first few chapters cover
what is Spam, where it comes from, how it is
sent, and methods used to detect and classify it.
All this provides grounding so that by chapter
six – Installing SpamAssassin, the reader is well
acquainted with the characteristics of spam and
how to use SpamAssassin to fight it. There are
two sides to a good anti-spam installation:
integration with the mail system in use and the
configuration of the spam rules. For the former
the book provides a step-by-step guide for the
most common mail system and should prove no

problem as most of these are fairly mature
products. In contrast, configuration of
SpamAssassin is addressing a rapidly moving
target requiring constant attention paid both to
the profile of spam and ham the users are
receiving, and the type and methods of
unwanted email being generated. The book does
a good job of covering the topic, but an efficient
anti-spam filter requires knowledge of how
spam has evolved since the book was published
and how it will evolve in the future. Although
SpamAssassin is a best-of-breed today, it is a
victim of its own success and already the
spammers are working out how evade it, so it is
possible that the book could suddenly become
very dated. Until that happens, this is an
essential book for anyone trying to hold back the
flood of unsolicited email.

Lucene In Action
by Erik Hatcher and, Otis
Gospodnetic, ISBN:
1932394281 Paperback: 421
pages
Reviewer: Derek M Jones
Lucene is an open source
search engine written in
Java (it requires that the
pages to index and search
have already been
collected, eg, by a web crawler such a Nutch).
To be exact Lucene is a search engine library
containing classes and methods that
programmers can call to create their own
customized search engine.
This book is essentially a ‘how-to’ guide for
creating a search engine using Lucene. I found
it to be very readable and the extensive code-
snippets were on the whole useful (ie, not just
padding).
The discussion starts with how to index web
pages, the various tradeoffs involved and how
the various Lucene options can be used to tune
an index to have the desired characteristics. This
is followed by a very interesting discussion of
how to parse the search queries, dealing with
issues such as what constitutes a token and
possible ways of dealing with various forms of
the same root word (e.g., past/future tense,
singular vs. plural). Subsequent chapters deal
with more advanced topics including extending
the search engine, performance testing, parsing
common document formats and the book ends
with a discussion of various applications
(written by people involved with implementing
these applications). The thickness of the book is
kept down by not duplicating the online
documentation by including a detailed listing of
the API.
If you are building a search engine using Lucene
this book is a must have. Even if you don’t plan
to build your own search engine this book
provides a fascinating discussion of the nut-and-
bolts issues involved in creating one.

FEB 2007 | | 33{cvu}

Understanding AJAX: Using Javascript
to create rich internet applications
by Joshua Eichorn, published
by PrenticeHall
Reviewer: Tim Pushman
There are many
technologies that get hyped
by the media and Ajax even
had a catchy name that
didn’t sound like an
acronym (although it is). But
even more impressively, it was a real technology
that worked, in fact had been in use before the
media discovered it. It was first described nearly
two years ago and the defining application of it
is the GMail webmail site. Since then a rapidly
growing industry of frameworks and sites have
sprung up based on Ajax.
Joshua Eichorn has been using Ajax since its
inception and has an excellent grasp of the
concepts involved. Although the book is about
using Ajax, another title would have been
Building Rich Internet Applications, as that is
his primary focus in the book.
The book starts by giving a background to Ajax
and how it fits into existing web development,
not as something completely new, but to
complement and improve what we already do.
There is quick run through of making some
simple home brew Ajax enabled pages using
various techniques for passing data back and
forth to the server before moving on to
integrating it into existing applications.
One of the common threads throughout
Eichorns book is using the technology to
improve the users experience and there a couple
of substantial chapters devoted to that with a
strong focus on usability.
Part 2 of the book describes a selection of
libraries and frameworks for Ajax. Eichorn is a
developer of one of the libraries mentioned but
he doesn’t favour it in particular, the treatment
of all libraries is fair. There are three small
sample applications developed here, using a
selection of the libraries facilities. It’s this
section of the book which could be dated quite
quickly in that the libraries could disappear or be
superceded, but the descriptions are written in a
way that also details the decisions made on what
to use and how to implement it. And as a
developer himself, there is a good section on
debugging the applications.
Finally there are three appendices giving a brief
rundown of the existing libraries and
frameworks, their strengths and weaknesses,
with web site addresses. This is probably a good
starting place for choosing a library. He also lists
the licenses they are distributed under, an
important point.
The book is well put together, with very few
typos and edited to a high standard. The index
is a little thin but usable (you get access to the
searchable online Safari edition for 45 days
when you purchase the book). Eichorn’s writing
style is very clear and readable. He does assume

that you have a good understanding of HTML,
DHTML, Javascript and HTTP protocols. All
the server side code is in PHP but should be
easily transposed into Perl or Ruby if needed.
I would have liked a little more on the internal
details of how Ajax works but that is not
essential for creating Ajax web sites. On the
other hand, I appreciate the fact that he hasn’t
felt to pad it out with descriptions of how to
setup your webserver and what HTML is.
My other reservation is that some of the chapters
on specific libraries will be out of date quite
quickly. This is nearly half the book, but on the
other hand he has picked mature libraries that
will probably be around for a while, so that may
not be too much of a concern.
If you have a clear understanding of web
development and want to start using Ajax on
your web sites, this book is Recommended.

Miscellaneous
NO-NONSENSE guide to SCIENCE
by Jerome Ravetz, published by
Verso in association with New
Internationalist/Amnesty
International, ISBN 1-84467-503-3
Reviewer: Ian Bruntlett.
This book discusses science
from the anti-science lobby to
the pro-science lobby,
discussing this spectrum with
enviable objectivity. It quotes Bill Joy’s GRAIN
acronym – standing for Genomics, Robots,
Artificial Intelligence and Nanotechnology. The
downfall of science is given an acronym, M&M
– Malevolence & Muddle – and its counterpart,
SHE – Safety, Health & Environment – is
introduced. The old, applied science is shown to
have relatively few uncertainties whereas a new
extreme PNS – Post-Normal Science – is
introduced.
Conventionally, science is taught as a subject
that moves inexorably from one discovery to
another. This book details some of the errors
made by key scientists in history – this does not
belittle them, it makes them more human and
makes their discoveries shine even brighter.
The industrialisation of science from small
science to big science to mega science is
discussed. The biopiracy committed by some
unscrupulous corporations is discussed – misuse
of science is an issue that cannot be swept under
the carpet these days.
Although computer science may or may not be
a science, ICT may be moving from being an
“applied science” to a “Post Normal Science”
(PNS) where the stakes and uncertainties are
high.
The role of political structure and high finance
are discussed in a chapter on “Science and
democracy” which has the following set of
questions about new technology:

Who needs it?

Who will benefit from it?
Who will pay its costs?
What happens when it goes wrong?
Who will regulate it, how and on whose
behalf?

This book concludes with the old assumptions,
the political questions and a table of personal
questions so the reader can evaluate their own
contribution to science.
VERDICT: An interesting read

The NO-NONSENSE guide to WORLD
HISTORY
by Chris Brazier, published by
published by Verso in association
with New Internationalist/
Amnesty International, ISBN 1-
85984-355-7
Reviewer: Ian Bruntlett.
This is an attempt to tell the
history of the world in 40,000
words (136 pages plus a 7 page chronology). If,
like me, your history lessons covered Ancient
Greece, Imperial Rome, Persia as Ancient
History and the history of Europe as, well,
History, this book is full of things your History
teacher didn’t tell you about. This book will also
tell you about civilisations in Africa, China and
India and how the far flung reaches of the globe
were colonised by people crossing “land
bridges”, formed when the sea levels lowered or
by conventional sailing, long before Europe
“discovered” the rest of the world.
There are a lot of startling facts/theories to learn
from this book, so much so, I’ll end this review
to say “buy it and have your misconceptions
blown away”.
VERDICT: An interesting read.

Electronic Brains / Stories from the
dawn of the computer age
by Mike Hally, published by Granta Books,
ISBN 1-86207-839-4,
Reviewer: Ian Bruntlett.
This book charts the development of the
first electronic computers in parallel
across the world after World War II. Contrary to
popular belief this took place in Britain,
America, Australia and the then Soviet Union.
It also discusses the development of mechanical
computers.
First of all the mechanical computers are
chronicled – the Codex Madrid, Pascal’s
Arithmetic Machine, Babbage’s Engines,
Scheutz’s machines, Hollerith'’s tabulators and
Zuse’s machines.
The early computer applications were either
military (shell trajectories etc) or weather
forecasting. Also computing started off with
“controversy, falling-out, setbacks, smears,
financial mis-management” – something the
industry still hasn’t grown out of. Later on the
census departments and payroll departments all
started using computers.

34 | | FEB 2007{cvu}

Chapter 4, “When Britain led the computing
world” describes the work of many but Alan
Turing and Maurice Wilkes both stand out from
the crowd. This was a temporary advantage, soon
to be outstripped by America’s economic might.
Chapter 6, “Leo, the Lyons computer” describes
how Lyons started as a wholly owned subsidiary
of a tobacco company. Lyon’s the tea company
had a company culture of self-sufficiency in
order to maintain high levels of quality. So it is
not surprising that the company built its own
computers for data processing work – so the
LEO (Lyons Electronic Office) was born,
This book also discusses the parallel invention
of computers in the Soviet Union – in the
Ukraine the MESM (Small Electronic
Calculating Machine) was developed from the
ground up with little in the way of resources.
Also in the USSR another system, the STRELA
was developed. The M-1 was developed using
copper oxide diodes, making it probably the
worlds first computer to use semi-conductor
logic. Not only was the USSR not benefiting
from cross-fertilisation but the USSR’s different
teams were more interested in with competing
with each other instead of co-operating.
Innovative Soviet computing came to an end
when the powers that be made a political choice
to go for IBM 360 compatibility(!).
Chapter 7, “Wizards of Oz”, describes the
sometimes parallel evolution of computer
facilities in Australia.
Chapter 8, “Water on the brain” discusses the
MONIAC, a hydraulic computer that
graphically illustrates the flow of money in an
economy, developed in New Zealand by Ben
Phillips. He made ground-breaking work in
economics in his career.
Chapter 9, “Its not about being first: The rise and
rise of IBM” describes the conditions that
Thomas J. Watson worked under at NCR (a
rapacious company if there ever was one) before
setting up IBM, after he got his hands on one of
his employer’s companies, CTR (Computing-
Tabulating-Recording), in the late 19th century.
In 1924 CTR was renamed IBM and all of
Watson’s experience shaped the development of
IBM. Watson demanded absolute loyalty from
his staff and gave them absolute loyalty in
return. The global success of IBM’s machines
resulted in their subsidiary, Dehomag, providing
the administration equipment used to organise
the Holocaust.
After the war, Thomas Watson Jr took over the
reins from his father and moved IBM away from
mechanical systems to electronic computers,
starting with the IBM 701. Later on he bet the
farm on a family of compatible computers, the
IBM 360 and the company came to dominate the
market – even the Soviet Union, in the cold war,
the authorities scrapped their own designs and
produced their own IBM clones.
For readers who want to delve deeper into the
history of computers a bibliography is provided.
VERDICT: Highly recommended.

The Binary Revolution – The history
and development of the computer
by Neil Barrett,
ISBN 029784738-4.
Reviewer: Ian Bruntlett.
This book tries to answer a
number of interesting
questions about computers
and our culture(s). They are
“What is a computer?”, “How
did computers develop?”,
“How do computers work?”, “How are
computers programmed?”, “What do operating
systems do?”, “Where did the internet come
from?”. It also tackles posers such as “Putting
the internet to work”, “Problems with
computers” and “The future of computing”. It is
an ambitious book, dealing with underlying
foundations and principles, the maths and
physics involved when a computer is being used.
It gets one or two things wrong, though. It refers
to PCs being 32 bit, overlooking the 64 bit
revolution (the Intel Itanium or PowerPC or
AMD64 should have given the author some kind
of a hint). It also states that the Apple Macintosh
was 6800 based – it wasn’t, it was actually based
on the 68000 based family. One of its sources of
information is www.wikipedia.org
I like this book and the examples did seem clear
when I read them but that’s probably because
they're already preaching to the converted. The
true test of this book’s mettle is when you give
it to an inquisitive friend or relative who wants
to understand computing. And, if you know
someone who is going to study computing as a
prelude to a career in the industry, it would be
kind of you to give them a copy of this book.
Verdict: Recommended but please do note that
it does make the occasional mistake.

Serious Creativity – Using the power
of Lateral Thinking to create new
ideas
by Edward de Bono, published by Harper Collins,
ISBN 0-00-255143-8
Reviewer: Ian Bruntlett.
This book is split into three parts - 1) The need
for creative thinking, 2) methods of lateral
thinking and 3) applying creative thinking.
de Bono argues that brainstorming, while
initially useful, is no match for the application
of better creative thinking techniques. His work
is built on the premise that the brain is a self-
organising pattern-making system. His goal is
not to improve the skills of artistic creativity but
to deal with the creative skills that change
concepts and perceptions via the behaviour of
self-organising information systems. He argues
that creativity is not just making things better but
is a way to make full use of information and
experiences.
Conclusion/Verdict – buy and study his
previous work, “Lateral Thinking” by this
author first. Then, when you want to move on,

buy this book – it is an excellent Post-Lateral
Thinking book.

Enterprise Services for the .Net
Framework
by Christian Nagel, publihsed
by Addison Wesley, part of the
Microsoft .Net Development
Series, 539 pages
Reviewer: Simon Sebright
In short, for the target
audience, this book is
recommended.
It is about the features of .Net and the Microsoft
operating systems which allow enterprise-scale
applications to be built, with such
considerations as distrubution, performance,
fail-safety, transaction integrity, and so on.
Chapters cover concurrency, .net remoting,
COM interop, data access, transaction services,
compensating resource management, state
management, queued components, loosely-
coupled events, security, and deployment.
There are 15 chapters, the first being an
introduction, 14 being a forward look at what’s
coming, and 15 being a case study. Throughout
the book, code samples are given to illustrate the
concepts being described. In general, I found
these to be straightforward, and it was good that
they all formed part of the larger case study
(although there was potential for confusion in
places as similar class names were in use for
different parts of the system). I did not actually
try any of them, or the whole case study, but my
impression was good.
Starting off, I got a bad feeling when in chapter
1, all sorts of concepts were thrown at the reader.
It didn’t seem to make much sense, and I began
to think it would be a difficult 540 pages. But,
after that, the remaining chapters were good,
each explaining one particular feature, what,
why, how and with simple code examples.
Options available in each case were clearly
explained, and I got a good understanding of
what each chapter was saying.
Some experience of the .net environment and
programming in it is necessary, as there is a lot
of detail to cover. On the other hand, if I were to
decide to implement a system such as a queue
component, I think I would use this book as a
springboard, and find other sources of
information to give me a really detailed picture.
From reading the book, I would feel fairly
comfortable about using the MSDN as a primary
source of detailed information, but reserve the
right to order a more specific book.
One minor niggle was that in each double-page,
the left page has at the top the name of the book,
the right page the name of the chapter.
Personally, I generally know what book I am
reading, so would have preferred the more
detailed sub-chapter section to be available
there.
Also, like most books I have read recently, the
index was not great, more of an alphabetical list

FEB 2007 | | 35{cvu}

of terms, instead of a comphrensive matrix
allowing me to find something even if I didn’t
know exactly what it was.
I couldn’t even see a reference to Visual Studio
in there!
Still, the book is recommended.

The Definitive Guide to GCC
by Willian von Hagen,
published by Apress, 550
pages, ISBN: 1-59059-585-8
Reviewer: Pete Goodliffe
Rating: Recommended
This book is a rarity in the
market right now: a tutorial
on how to use the popular
GCC family of compilers. Given the remarkably
large user base of GCC (which is due to its
quality, its open source licencing model, and –
probably most significantly – its price), it’s
surprising how few books there are about it.
Hagen provides a fairly comprehensive ‘howto’
for GCC; this is not a language tutorial.
There is already a large body of adequate free
documentation on the net about GCC, and all the
answers are usually available for patient people
who are competent with Google. But it’s always
useful to have this information collected into
one well-organised authoritative source, and
that’s what we have here.
This is a large, comprehensive book. It’s easy to
read: well written with a clear layout and
sensible organisation. It has a useful index,
which is very important in a reference book like
this.

Unfortunately, it’s fairly Linux-specific. It’s a
real shame not to include more information of
the flavours of GCC installation available on
Windows, and this limits the book’s market
somewhat.
This book is now in its 2nd edition. It has been
updated to cover the GCC 4.x series of
compilers (which are vastly improved over the
3.x series described in the first edition). This
update strips out all coverage of the previous
versions, which is actually a shame; some details
on older GCC versions might have been a useful
aside – they still see a lot of use in specific
installations and will for some time yet.
This edition contains new material, and presents
the content in a far better order (for example: the
chapters on building and installing GCC have
moved from the very beginning towards the end
of the book; most people have GCC available,
or can install it very easily, without needing to
build manually anyway).
Unlike first edition, there is a separate chapter
for language supported by GCC (C, C++,
Fortran, Java – the book pragmatically skips
Ada coverage). Whilst this is undoubtedly
simpler for someone who is only interested in a
particular language, there’s an amount of
duplication inherent in this approach, and this is
where a lot of the book’s bulk (literally) is held.
The two chapters on autotools (autoconf,
automake, and libtool) have moved over
from the first edition. I think that these really
shouldn’t have been included at all. This is a
book about GCC, not about the arcane twists
involved in packaging software for random

Unix-like operating systems. The information
just isn’t relevant and is mostly fluff. There are
better books on autotools than the 46 pages of
coverage provided here.
However, the second edition adds some
advanced topics that are genuinely useful:
building and using cross compilers and
alternative C libraries. These chapters are good
forays into the subject, as far as they go. But if
you’re doing anything so complicated that you
need to read up on this (usually some form of
embedded work) then these chapters alone will
not be sufficient. They do, though, serve as a
very good introduction and will set up for some
more intelligent web searching and
experimentation afterwards.
If you’re using GCC 4.x (but not for Ada) and
would like a printed reference then this book
comes recommended. If you’re happy with the
documentation that comes with GCC then this
book isn’t a must-have. If you’re considering
GCC for embedded applications then this book
might provide some useful insights to get you
going.

36 | | OCT 2006

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Jez Higgins
chair@accu.org
It seems to have become the
tradition for columnist,
pundits, sundry celebrities,
politicians, and so forth, to
issue New Year’s messages. Looking back at
the year gone by is a popular subject, as is
predicting what might happen in the year to
come. The laziest (or most unimaginative)
simply throw out a list of resolutions.
This is the fifth View From The Chair I’ve
written, and so far none have reached the editor
before the copy deadline. In fact I don’t think
any of them have actually been written before
the deadline. This year I resolve to get at least
half in on time.
I’ve been saved from the embarrassment of
finishing there by being able to announce that
bookings are now open for accu2007, the 10th
anniversary ACCU Conference. We (and by
we, I mean Ewan and the conference
committee, not that I’ve started referring to
myself in the plural) have, as ever, a enormous
pile of great stuff lined up this year, from
keynotes featuring Mary Poppendieck, Mark
Shuttleworth and our own Pete Goodliffe,
through another diverse and highly engaging
programme featuring tracks on development
for mobile devices, dynamic languages, Java,
C#/.NET, and two days discussion of the
Future of C++ from the world experts
gathering for the ACCU-hosted ISO standards
meeting taking place the following week. The
closes with a rare appearance from Dan Saks,
one of the speakers at the first conference in
1997.
This year’s conference will be at a new
location, the Paramount Oxford Hotel. Moving
away from the Randolph wasn’t an easy
decision, but the Paramount’s modern
conference centre with ample public space, not
to mention air-conditioning should, at the very
least, make the event more comfortable for
everyone. Although my own racquet skills are
minimal, I’m hoping to organise an emacs vs vi
squash tournament. That should put that
particular question to bed once and for all.
While I’ll be travelling to Oxford by train, I
know many of you will be pleased to hear the
Paramount not only has a car park, the car park
is large enough to actually park your car in.
Full programme and booking details are on the
website at http://accu.org/conference.
It’s going to be good. See you there..

Membership Report
David Hodge and
Mick Brooks
accumembership@accu.org
Please note the change of
email address for
membership, all email to the
old address will be soon be dumped in the trash
bin (99.99% spam).
Membership at the end of 2006 was 38 up on
last year at 884.
Yechiel Kimchi recently asked on the Accu-
General list where he could find an electronic
list of ACCU members. The answer is that
currently he can’t – the information is only
made available to members in the 2006
Members Handbook. His query was well-
timed, since the committee have been
discussing this situation recently, with a view
to making a proposal at the next AGM (in
April, during the conference). The issue is
whether an electronic copy of the information
should be made available to members, and, if
so, whether the paper handbook should be
printed and distributed at all. We’d like to hear
what the membership feel about this, so we can
make a representative proposal.
Currently the handbook is printed once a year,
and each member receives a copy. It has the
names of every member of the association, and
contact details (postal and email addresses) for
those who haven’t chosen to withold this
information. Use of this information for
commercial purposes is forbidden. How would
you feel if this was made available as a PDF on
a members-only section of the website? What
if the info were made searchable, so that you
could easily find all the members in your town,
or country? If you don’t currently withhold
your details, would you feel more inclined to
do so if they were going on to the website? Do
you make use of the printed handbook, and
would you miss it if it were to go?
Any of your thoughts on this would be much
appreciated: raise them on accu-general, or
please email them to me
(mick.brooks@gmail.com), David or any
member of the committee.

Website report
Tim Pushman
A year’s end look at the statistics for the
accu.org site. Not for those with an allergy to
numbers!
The site was reborn about 10 months ago, in
February 2006, and at the end of the year I take
a look back at how many folks dropped by and
where they came from.

Altogether about 85,000 visitors have passed
by and read a total of 920,000 pages, resulting
in 4,250,000 hits and pulling down about 20Gb
of bandwidth.
Monthly averages vary between 6,000 to 8,000
visitors a month. The average visitor reads
about 6 pages.
Saturdays are the low days for the site, with
only about 20% of the visitors of a weekday,
although we have a few Sunday surfers, with
Sunday getting about 40% of a normal day.
Overall our visitors are definitely surfing from
work. Most visitors are from Britain, Europe
and the USA, with quite a few from India and
Australia. Since putting the journals online
they’ve been downloaded about 4,500 times,
the most popular being Overload 75 (700
downloads) and Overload 74 (470 downloads).
The most popular area of the site is definitely
the book reviews, with about 150,000 page
views.
None of these stats include robots and spiders,
which have, between them, indexed 720,000
pages and used 4.7Gb of bandwidth.
Alexa ranks the accu.org at about 400,000
(which given the millions of sites, is
respectable). Speed of the site puts it in the top
30% with an average page load time of 1.4secs.
You can see the ACCU details here.
In June I split off the access gateway into its
separate subdomain, partly in order to keep the
statistics separate. The gateway transports
about 1Gb of data every month except during
school holidays, when it drops to about half.
And almost nothing on weekends. USA and the
UK predominate here, but there are also a lot of
users from Spain and Saudi Arabia.
Overall 80% of our visitors claim to be using
Windows, with about 7% on Linux and 2.7%
on Macs. Internet Explorer is used by 60% and
Firefox by 25%.
I hope that in 2007 we can persuade even more
visitors that we have something worth looking
at and that it is a useful and worthwhile thing to
join the association. There is a lot that can be
done to make this site a valuable resource for
programmers wherever they are and whatevery
they program in, it just takes a few volunteers
to step up and help out. So, if you have some
spare time or even just some ideas, let us
know!

