

OCT 2006 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

The ACCU is an organisation of programmers who
care about professionalism in programming. That is,
we care about writing good code, and about writing it
in a good way. We are dedicated to raising the standard
of programming.
The ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
ACCU members – by programmers, for programmers
– and have been contributed free of charge.
To find out more about the ACCU’s activities, or to join
the organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of the ACCU

accu
{cvu}

The Winds of Change
n case you have been living in a cave and don’t know what’s
going on, C Vu has a new editor. The last issue was Paul’s last
and I’d like to thank him for all the hard work and time he

invested in ACCU. I guess I’ll find out just how much time it all
takes in the coming months. When the editorialship was first
mentioned to me I thought “Ha ha, yeah, right”. I had seen Alan
Griffiths (editor of Overload) article hunting in action. It looked
quite stressful. However, I found that I couldn’t get the idea out of
my head. The more I thought about it, the more I liked the idea. I
thought that this was something that I could do to really contribute
to the ACCU community.
I was out at lunch yesterday with two other ACCU members and
one’s work colleague. Throughout the course of conversation I
asked him if he was an ACCU member. Disturbingly he said “No,
I’m not qualified”. Somehow he seemed to have got the opinion
that ACCU is for the elite only. Perhaps the only ACCU members
he knew were at the top of their field? I don’t know. However, I
did set him straight on that point. I see ACCU as especially good
for those who are not yet elite but want to get better. This does
highlight a small problem – “How do we get the ACCU message
out there?” I’m sure there are many potential members out there
who just don’t know we exist. By comparison, how many people
have seen the BCS adverts on The Register website?
Many, if not most, of us are extremely busy professionals with little time for
keeping up with technologies outside our own arena. I see C Vu as a source of
information about languages or tools that are outside your normal use. A place to
get an overview, or sample usage, that may spread the use of interesting
technologies.
I would also like to take a moment to apologise to you, our readers, and to
Francis Glassborow. You may have noticed that Francis’ Scribbles was missing
from the last issue. This was due to an unfortunate editorial oversight and I feel
compelled to apologise publicly. So, sorry to you, and sorry Francis. The missing
column is in this issue along with an extra addition that Francis has penned.
I’d like to thank all the contributors and reviewers for this, my first edition as
editor. Here it is, I hope you like it.

I
Volume 18 Issue 5
October 2006

Editor
Tim Penhey
cvu@accu.org

Contributors
Ian Bruntlett, Mark Easterbrook,
Francis Glassborow, Lois
Goldthwaite, Pete Goodliffe,
Roger Orr, Tim Penhey

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
David Hodge
membership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Thaddeus Froggley
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

TIM PENHEY,
EDITOR

2 | | OCT 2006

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

COPY DATES
C Vu 18.6: 1st November 2006
C Vu 19.1: 1st January 2007

IN OVERLOAD
This month in Overload, you can read: ‘Up Against the Barrier’ by Simon Sebright,
‘Inventing a Mutex’ by George Shagov, ‘C++ Unit Testing Easier: CUTE’ by Peter
Sommerlad and ‘From CVS to Subversion’ by Thomas Guest.

DIALOGUE
21 Student Code Critique

Entries for the last
competition and this
month’s question

28 Francis’ Scribbles
More from Francis
Glassborow’s desk

30 Mailbox
Readers’ letters and
emails

31 Standards Report
Lois Goldthwaite keeps
us updated

REGULARS
31 Mental Gymnastics

Another puzzle to
exercise your minds

32 Bookcase
The latest roundup from
the ACCU bookcase

35 ACCU Members Zone
Reports and membership
news

FEATURES
3 More Real Life Experiences of a Software Engineer

Simon Sebright on finding work

4 Information Poverty
Ian Bruntlett asks: Are you information poor?

6 Complacency in the Computer Industry
Julian Smith has something to get off his chest...

7 Premature Optimisation
Mark Easterbrook looks at some old code

10 Effective Version Control #2
Pete Goodliffe continues to describe good version control
practices

13 Threads and Shareable Libraries
Roger Orr tackles posix threads on Windows

16 Header Checker
Tim Penhey demonstrates the ease of Python

More Real Life Experiences of a
Software Engineer

Simon Sebright on finding work.

ome time ago, I wrote in C Vu [1] about my experiences in the job
market after being made redundant. I thought I’d continue the story
where I left off. Not so as to bore you all with my own personal

history, but to hopefully strike a common note with those of you who might
have been in similar situations. I won’t be patronising and say that it’ll be
alright for you, just wait and see. No, au contraire, your guardian angel may
have nodded off, or you might just not be very lucky.
I had applied in vain for several jobs. Every two weeks, I had to go to the
job centre in the local town and sign on. After six months, the money runs
out, but you can still get national insurance contributions paid in the UK.
It was very demeaning. Every time, the consultant, or whatever they are
called, would do a search for jobs in my registered fields. Every time, they
drew a blank.
I usually came prepared with a printout of all the online applications I had
made, and email applications, etc. They never bothered to want to see it,
so I became a little lax with it all.
But, one time, a single job vacancy did appear. I nearly fell off my chair
when they told me the company – the one I had worked for in my first
position as a software engineer several years ago.
Of course, I had no choice but to apply for the job. I said that I had worked
there before, and would naturally contact them. Still, they wanted to be sure
and rang the company.
I phoned them myself later in the day and spoke to my previous boss. I
had emailed him a couple of times after being made redundant, but having
no reply, decided not to continue bugging him. I did think it strange, but
you never know. It turned out that he had switched to a different email
address as he was getting too much spam, but he didn’t disable the old
account, so I never got a delivery failure. He was surprised to find me out
of work and said, yes, they had a vacancy and got very excited about the
prospect of having me back again.

Here we go
I became very excited too. Somebody up there wanted me to get back to
work, and not too far away in a nice cosy town. Great! I was to head over
later in the week for a chat (interview as far as the job centre was
concerned). The day came, and I drove over, looking smart but casual. I
spent a fair time explaining what I had done in the meantime and trying to
impress on them the value of my experience in other companies, as well
as joining ACCU and other personal developments. It all went
swimmingly well, and I left with a spring in my step, waiting to hear by
the end of the week if they would offer me anything concrete, having
already mentioned salary requirements.
The end of the week came and went, and I dismissed it as the usual semi-
chaotic nature of the boss there. So, I rang the next week to see what
conclusion they had arrived at. They had decided that I was too
experienced for the position they had in mind. There was already at least
one very experienced person there (whom I had in fact helped to mentor).
I guess they meant I was simply too expensive.
The phone call had a that negative sinking feeling about it until he
mentioned the word “contract” in the sense that they had assumed I was
only interested in a permanent position, given I had a house and family,
etc. to look after. No, I said, anything will do! So it was decided they would

have another think at their end if there was a parcel of work I could do for
them.
Yes, there was! I effectively accepted the three month contract in the next
phone call, to start ASAP. Phew, some money to bring the overdraft back
into the black.

Dilemma
However, the next day I had a phone call from the agent through which I
had applied for a contract, at a company we will call a large British
company in the aerospace sector. They were going to offer me a three
month contract, with possibility of extension. A bit more money too, what
to do now? I tend to play things fairly straight, and I try not to let people
down. I explained to the agent that I had the opportunity of a contract
ASAP, could the other company wait a bit?
No, was the reply, 4 weeks tops to allow for the security clearance process
to take place (an extra bonus point for that, too). I rang the local company
boss and explained the situation. He sensibly said that I had no real choice
but to take the other offer. However, we agreed that I would do a lesser bit
of work for him in the 4 weeks, and would work longer hours and weekends
to do it.

Thus, I had gone from no job to two in the space of a week. I had a hectic
month, August if I remember. It was very hot, for the UK, and I didn’t care
that the old car didn’t have air conditioning. I got the job done, refactoring
some code I’d written for them several years ago to use as a starting point
for a conversion utility between a standard format and their own internal
file format.

One down, one to go…
And so, after a weekend of wrapping up the little project, I zoomed down
the M5 (a British motorway going from Birmingham to Exeter) the next
Monday morning full of anticipation. Oh, and I was a bit peeved because
I now had to wear a tie.
On the first day, my team leader was not actually there, so I sort of got
looked after by another. The software product I was to contribute to was
part of a large communication system. There was a lot the people there took
for granted about the program and the surrounding infrastructure, and it
was a steep learning curve, with most of the eureka moments coming from
my own endeavours, rather than any purposeful guidance. On the other
hand, working for such a behemoth of a company meant that I wasn’t really
expected to do much for some time.

S

SIMON SEBRIGHT
Simon has been programming for 10 years, mainly in multi-
tier C++ application development. Recently, he has been
designing and developing web/database-based applications
using C# and asp.net. He can be contacted at
simonsebright@hotmail.com

Somebody up there wanted me to
get back to work, and not too far

away in a nice cosy town.
OCT 2006 | | 3{cvu}

More Real Life Experiences of a Software Engineer (continued)
Contracting options
I had asked a few friends what they would advise to do about getting paid
for the contracts. Most seemed to be seasoned contractors, and had their
own companies. As this was potentially only short, I didn’t want the hassle
of such an arrangement, so opted for an umbrella company for the first
month with the old company, and then a managed company scheme. The
agent had recommended a couple of companies of accountants he had dealt
with. I made my choice on the basis of the perceived competence and
politeness of the first people I spoke with from each. So, I ended up with
a particular firm who had a scheme where I would have my own company,
but they would (for a fee) set it all up and administer it, and pay me.
Switching from the umbrella scheme they had to the individual company
scheme didn’t go all that smoothly. During one phone call I had, they said
that they had just been discussing my case as an example of how to manage
the transition from one to the other. In other words, they knew it wasn’t
working.
After a couple months of late payments, the whole thing got going, I just
filled in an online timesheet on the agency’s website. This was then
authorised by my line manager. I still had to fill out a paper form and fax
to the accountant company, who would then invoice the agency, who…

Extensions
Everybody had been saying that I would of course get an extension with
such a big company. People remain contractors for years. That didn’t help
when I was sitting at my desk just before Christmas not knowing for sure
if I would be here in the New Year.
I was fortunate enough to be extended, first by another three and then six
months. A year or so later, some contractors were not extended.

End game
I was extended, however, and spent the best part of 20 months there before
I myself handed in my notice and moved over to Germany, where my wife
and children had gone some time before me. It was somewhat ironic. She
(herself being German) had wanted to go there to become a teacher (there’s
more to it than that, all German bureaucracy) to secure our family’s income
after my redundancy, which started all this. And now, I had to give up a
reasonably lucrative position, and go and seek my fortune on the German/
Swiss border.
That’s for another time.

Notes and references
1. “On not being a software engineer”, C Vu, August 2003, Volume 15

No 4.
On Information Poverty
Ian Bruntlett asks: Are you information poor?

n article of mine, “On Killer Apps”, appeared in C Vu February 2006
(18.1). If you haven’t read it, I recommend you do so – it’s only half
a page so won’t take long to read.

In particular I suggested that in order to produce a killer app then two
conditions (which I have now named Killer App Fundamentals for
convenience) need to be satisfied.

1. A fertile technology base.
2. The economic opportunity to shine.

I’d like to point out that the Killer App Fundamentals are based on my
personal perspective and, say, aren’t universal truths.
The Killer Apps article generated some queries from Kevlin Henney (KH),
the technical reviewer:
One question I had, though, was hinted at but unanswered, from your
perspective. You mentioned a relationship between success and failure,
pointing out that you keep working throughout the failures without noticing
them. The killer question is: do you recognise the failures or genuinely
remain blind to them? I think this is actually a critical (quite literally) point.
What role does that knowledge or blindspot/denial play?

There are known knowns;
there are things we know we know.

We also know there are known unknowns;
that is to say we know there are some things we don’t know.

But there are also unknowns;
the ones we don’t know we don’t know.

Donald Rumsfeld

“…do you recognise the failures or genuinely remain
blind to them?”
How does one recognise failure? People with mental health problems are
said to possess insight if they realise that things are going wrong. Similarly,
I.T. staff working on a project can either possess insight or be in denial
when things are going wrong. If one is information poor then you increase
the risk of being in denial. Even if, with insight, you do recognise that a
project is failing, it is not always obvious what the problem or solution is
– success has many parents and failure is an orphan.
Sometimes the degree of success a project has/had can only be assessed
after time has passed, when one learns new things, especially of
information poverty.

“a relationship between success and failure” -
information poverty
Lack of insight caused by being information poor (bad or non-existent text
books, lack of knowledge about the ACCU or similar organisations, not
having accu-general to get help from more experienced developers) –
results in projects failing, despite the best of intentions.

A

IAN BRUNTLETT
Ian has been involved in broad spectrum of software
systems and languages. He works as a volunteer,
teaching people with mental health problems how to use
and program computers. He can be reached at
ianbruntlett@hotmail.com
4 | | OCT 2006{cvu}

{cvu}

Sometimes I noticed the problems early on but decided to carry on coding
anyway – because I knew of no other way to react – I was information poor
from a project management point of view.

Immersion vs information poverty
I think I’ve got a point here: immersion is the other side of the coin marked
“information poor”. It is possible for an information rich project to fail but
that failure should be caused by other problems – lack of a common
consensus (analysis paralysis / disruptive politics with the key
stakeholders) or poor design. The difference between being immersed in
the river instead of being inundated is the difference between swimming
and drowning. The trick is knowing how to swim so that you don’t drown.

The internet age: information wealth, attention poor
vs information poverty
I suggest there’s more than one type of information. There is the
information that tells you about something (informative) (e.g. The Linux
Documentation Project) and then there is the stuff that separates the wood
from the trees (directive) (e.g. the ACCU’s book reviews). For years I have
relied on the ACCU book reviews to decide which books to buy. While
reading earlier versions of this article, Kevlin Henney found a quote which
tackled matters from the information wealth point of view:
What information consumes is rather obvious: it consumes the attention

of its recipients. Hence a wealth of information creates a poverty of
attention, and a need to allocate that attention efficiently among the over-

abundance of information sources that might consume it.
 Herbert Alexander Simon, economist, Nobel Laureate (1916-2001).

Other good quality directive sources of information would be Google
News, The Register, Slashdot, The Linux Weekly News etc.
The On Killer Apps article has changed things for me – I now have greater
insight in how some things work and why some things didn’t quite work.
Once I wrote the article I essentially had a revelation – re-evaluating the
past, with greater insight. At night I would run downstairs to write extra
notes – the article literally made me lose sleep.
While I talk about programming failures, the same ideas could be applied,
I believe, to design failures. An information-poor programmer can be
handed a textbook. An information-poor designer lacks maturity as well
as information – this is not so easy to cure. Once you’re reasonably safe
with the technology immersion and programming, the other low hanging
fruit on the tree are 1) analysis and 2) design. Membership and
participation in ACCU have helped me a great deal with Analysis, Design
and Implementation of systems. I wrote the Overload September 2000
article on User Defined Types because the laws of physics broke down for
me in 1999 (first major psychotic episode) and I wanted to document my
abilities so that if it happened again I would be able to restore my IT skills
from “backup”.
Being information poor kept me on a capability plateau, peering over the
edge with my hot SuperBasic and 680x0 macro assembly skills asking –
is this all there is to software development? With the 1) Linux Kernel
books, and 2) the inclusion of GNU C/C++ compiler, bash, sed and awk,

Perl, Python with the Linux operating system I now know that there’s a
lot of things out there.
For failures, you’re experiencing problems in the project. The question
becomes: is this a manifestation of the usual IT project problems or are we
heading to a project failure? The On Killer Apps article raised the question
of have you immersed yourself in the technologies required or are you
facing a technology gap? It is no good immersing yourself completely in
the technology base, systems analysis or design of the project – as well as
entering in the river for a length of time, you need to be able to swim. The
IT swimming requires taste and skill – unlike the physical activity of
swimming.
You and I are essentially immersed in state of the art C or C++, through
membership of the ACCU, reading books (recommended by the ACCU)
and attending conferences (hosted by the ACCU) – noticing a trend here.
You can immerse yourself in the C/C++ books held in your local library.
However the quality of the library’s information will not be as high as the
ACCU’s information.

One example was when I was using the Psion Archive database 4GL. I
could write short applications OK but 1) I had not been introduced to
procedural decomposition (weak coupling and high cohesion) and 2) IIRC
Archive only had procedures, not functions. The resulting tar pits did not
cause commercial damage – they were experiments at home – but it made
me realise that I had a gap in my knowledge – in particular that big projects
were much more risky than small projects.
Another example was my first job as part of my university’s sandwich year.
I was offered a job by Grand Metropolitan Brewing’s Systems department,
based on two weeks’ experience at University writing a system with other
people. I was a bad choice because I 1) had no idea how to work as a team
2) only had two weeks’ dBase 3+ experience at Uni – without access to
the manuals. My project leader never really understood why I seemed to
spend loads of time pouring through the Ashton Tate manuals. And I didn’t
realise just how bad I was until decades later.

To conclude
Enough about my experiences. Reread the On Killer Apps article and write
up your experiences for C Vu.

an information-poor designer lacks
maturity as well as information –

this is not so easy to cure

I talk about programming failures,
the same ideas could be applied, I
believe, to design failures

immersion is the other side of the
coin marked “information poor”
OCT 2006 | | 5

Complacency in the Computer Industry
Julian Smith has something to get off his chest...

 think the computer industry (both closed and open-source) is exhibiting
an astounding lack of understanding about the serious problems that
plague it. There is a passive acceptance of complexity and duplication

that makes working in this industry deeply unsatisfying.
An example: C++. A while ago, I decided to stop attending the UK C++
panel’s meetings, because I couldn’t see anything fundamentally new
being done. Instead, adding fairly simple features (such as initialisers or
chained-constructor) to C++ was requiring enormous amounts of time and
energy from equally enormously talented and dedicated people, because
C++ is such an insanely complicated language. And this despite the best
efforts of Stroustrup et al to keep C++ as simple as possible. The classic
example is the issue of name-lookup. In C++, name lookup is simply
ridiculously complicated – I would be
very surprised if even a dozen people
in the whole world understand it
properly (I am certainly not one of
them).
To help navigate the complexity that
today’s programming involves, we
turn to books. There are some
excellent ones such as Meyers’
Effective C++/STL that stand out amongst the rubbish that is deposited on
the industry, but I wonder whether Meyers and others are actually doing
us a disservice. In effect, they make it possible for us to muddle along with
current languages and development systems when we should really be
throwing them out and doing things properly.
I’ve thought for a long time that Effective C++ is basically an admission
that C++ is a mess. That C++ is a mess is not a particularly novel idea of
course, it’s well known and there are good reasons for why it is as it is.
Meanwhile, Effective XYZ is written to explain how to avoid the pitfalls
in the language and new kludges are invented (I’m afraid I include Boost’s
various meta-programming libraries here). But it’s not as though there are
any significantly better alternatives around, and it’s not just programming
languages that are rubbish. More generally, there are hundreds of
incompatible build systems around, we’re stuck with an antiquated
hierarchical file system design, and computers still go wrong far too often.
Books spend hundreds of pages talking about the importance of using
abstract interface classes and making only leaf-classes concrete, despite
this involving so much boiler plate code that your header files double in
size. Object orientation with methods owned by classes was proclaimed
for years as the solution to all programming problems, despite manifestly
not working in many situations; whole books are written explaining how
to hack classes with methods so that they don’t bite you too often or too
badly. The existence of the horrific GNU autoconf/automake tools
allows Unix vendors to get away with putting their header files in different
places and offloading the resultant incompatibilities and needless
complexities onto developers.
Every so often, I read something about Smalltalk or Lisp systems that had
development systems that appear to be everything that we want today, have
wanted for years but still don’t have, but were around decades ago. Things
like incremental compilation, modification of running code, reflection etc.
were around and understood then. Meanwhile, this sort of thing simply
cannot be done in C++ because the grammar is almost impossible to parse
in batch fashion, never mind in an incremental way. Java was a massive
opportunity, but appears to simply have made a different but roughly
equal-sized set of mistakes. On the plus side, languages like Python seem
rather well designed and potentially allow one to spend the majority of

one’s effort solving real problems, but I wonder whether they are really
much better than the state of the art 20 years ago?
I think what I’d like to see is some admission from the industry (and that
includes us) that the current state of affairs is a massive embarrassment to
us all. I’d like it to be written in something very large and brightly-coloured
that somehow things have gone badly wrong when writing a database
system for a few million tax payers in the UK costs millions of pounds,
and doesn’t actually work, despite the fact that all of the fundamental
technical problems of concurrency, transactions etc., were solved decades
ago.
What should happen when a problem is solved (i.e. understood) in
computing, is that the solution should be disseminated, and we should all

move on to new and interesting
things. Instead, we see people saying
“wow” when a Java applet displays
an animation. People had the same
reaction twenty years ago when BBC
micros or Spectrums displayed the
same rotating cube. I worked for a
company a few of years ago where we
were trying to write a system where a

web page written in HTML contained some Javascript, which talked to a
Java program which talked to some C++ which made a COM call across
a network to a server. It was a nightmare involving thousands of lines of
hand-written code, but the actual problem being solved was mind-
numbingly simple. I fear that thousands of people are engaged in similarly
pointless activities, when they could be doing something new and/or
useful.
Consider the rise of GNU/Linux and the BSDs. Many people find that a
Linux server is much easier to maintain than a Windows one; things like
Samba and Apache work fairly well and have allowed Linux/BSD to be
adopted significantly. But have a close look at Linux (or any other Unix).
I think it’s incredibly crude. After modifying a configuration, you have to
manually restart the relevant process. You have to manually set up some
sort of backup system, none of which ever do exactly what you want. There
is an increasingly complicated package system to avoid the DLL-hell
problem. If you want to maintain previous versions of files, you have to
set up and use CVS or subversion, which is hardly straightforward. KDE
and Gnome look nice and work fairly well, but they take enormous
amounts of resources and fundamentally don’t do anything new compared
to Windows or Apple’s equivalents. Being sure that a Unix system is safe
against intrusion is distinctly non-trivial.
I can hear people replying with “but you can do that with xyz”, “choice is
important”, “if you don’t know what you’re doing, you shouldn’t be doing it”.
My answer is that ordinary non-technical people want to do all of the things
mentioned in the previous paragraph, but they cannot. I want to do them
too, but they are a solved problem, so I should not need to spend time on
them – I’d rather spend time trying to work on something new or different,
not being the ten-millionth person to read the CVS man page and master
its idiosyncrasies. Windows, to its credit, tries to simplify these tasks, but
we all know that it doesn’t work particularly well either. Francis

I

JULIAN SMITH
Julian's non-programming interests include violin playing and
cycling in the Himalayas (http://op59.net/, jules@op59.net). He
recently co-founded Undo Software (http://undo-software.com/)
where he works on the undodb bi-directional debugger.

a nightmare involving thousands of
lines of hand-written code, but the
actual problem being solved was

mind-numbingly simple
6 | | OCT 2006{cvu}

Complacency in the Computer Industry (continued)

Living with Legacy Code # 2
Glassborow’s recent book starts from the premise that
anyone should be able to write a computer program.
Similarly, anyone should be able to use computers safely
and efficiently without having a nightmare getting access
to old emails when transferring from one computer to a
new one.
The rant is almost over. I shall finish by claiming that what we really need
is to start over. Yes, really start over. Forget about the books that talk about
how to avoid program crashes by never deriving from a class that doesn’t
have a virtual destructor, or having containers of pointers. Design a
language where the compiler figures out what to do in order to be safe. If
you give it a decent grammar, you can spend all the man years that would
be spent on a C++ parser, on code analysis that generates faster code than
the equivalent C++. Forget about teaching people about the importance of
saving regularly under numbered filenames in case something crashes or
you make a mistake; instead, design a file system where everything is
automatically version controlled and backed up. Hey, you could even get
rid of the Save button! Rather than writing yet another build system, try

to think more generally and consider what a dependency tree is and how
it could be integrated with the file system/backup system; consider what
cache does, and think how it could be generalised. Don’t write or use yet
another widget system, try to abstract things a lot more – consider how
widgets in a window are grouped, but so are files in a directory, or emails
from a particular person, and try to figure out an abstraction that reflects
these similarities.
I have a few ideas about these issues, some of which I’m developing at the
moment. It’s not easy, and there are many things that I don’t know how to
do properly, but I think that the important thing is to realise that things
could be so much better, otherwise we are stuck in a world where
eventually nothing new will ever be thought about, let alone done.

anyone should be able to use computers
safely and efficiently
Premature Optimisation
Mark Easterbrook looks at some old code.

here are many coding techniques that can make life difficult for the
legacy code maintenance programmer, and near the top of my
“dislike” list is premature optimisation. This is where the original

programmer is coding for efficiency instead of maintainability, but is
concentrating at the code level and manages to achieve neither.
In the real-time and embedded world many programmers come from an
assembler background and learn a higher level language on-the-job as they
code their first large C project. Trying to apply assembler language
optimisations to C usually results in both code bloat and lots of unsafe
casting, resulting in a bug-ridden and fragile system.
One of my clients had such a system, originally written mostly by
graduates and hardware engineers that, although they were very good
engineers, had little experience writing large systems in C. The application
was a multi-card embedded system that was mostly message driven both
for handling the system payload and for OAM (Operations, Administration
and Maintenance) operations. Optimisation started with the design of the
message header structure:
typedef struct msg_tag {
 union {
 char *ptr;
 char data[4];
 } data;
 byte start;
 byte end;
 . . .
} msg;

The . . . represent other fields that are not important for this discussion,
making the structure 8 bytes. If the message payload is up to 4 bytes, then
it can be held in the header instead of allocating a message buffer. In an

embedded system with limited memory and therefore a restricted number
of message buffers, it must have seemed worthwhile to trade some
simplicity for efficiency.

Encoding
To create and send a small payload:
msg mymsg;
mymsg.start=0
mymsg.end=0;
mymsg.data.data[mymsg.end++]=MSG_HEARTBEAT
mymsg.data.data[mymsg.end++]=proc_id;
send_msg(&mymsg,other_card);

and to create and send a larger payload:
msg mymsg;
mymsg.start=DEFAULT_MSG_OFFSET;
mymsg.end=mymsg.start;
mymsg.data.ptr=get_msg_buffer();
mymsg.data.ptr[mymsg.end++]=MSG_SETTIME;
mymsg.data.ptr[mymsg.end++]=time_now>>24;
mymsg.data.ptr[mymsg.end++]=time_now>>16&0xff;
mymsg.data.ptr[mymsg.end++]=time_now>>8&0xff;
mymsg.data.ptr[mymsg.end++]=time_now&0xff;
send_msg(&mymsg,other_card);

T

MARK EASTERBROOK
Mark is a software developer working with embedded
systems, high performance/reliability/availability
systems, operating systems and legacy code. He can
be contacted at mark@easterbrook.co.uk
OCT 2006 | | 7{cvu}

Decoding
Once the message has arrived at its destination, it needs to be decoded, as
shown in Listing 1.
As it was believed that function calls in C have a high overhead, all the
“special cases” to deal with short and long payload types were in-line code
and appeared in almost every source file. A lot was cut-and-paste, the rest
was coded by hand to introduce mutations such as <=3 instead of <4.

Analysis
With the development of a new
sys tem, some poor des ign
decisions only start to look really
bad after so much code has been
written it is too expensive to go
back and change them. At the
point I got involved, the system
had been in the field for several
years and each new feature added
had to test for this message
header optimisation.
After creating a regression test framework, it seemed a good investment
for the future to remove the small message special case, or at least factor
it out into a few common functions (or macros, if function call overhead
was still considered a problem). The few original coders who were still
around argued that removing it would slow the system down, so some
analysis of the messages was in order:

Of the many hundred possible messages [1], only three were 4 bytes
or less.
Of the three possible short messages, two were used for card-to-card
and only one for process-to-process on the same card.

All card-to-card messages needed to be encapsulated, which increased the
size, and therefore had to use a message buffer. The card-to-card
communications module had to test each message and copy small
messages into a message buffer.
So all that work, thousands of lines of inline special case code, quite a few
bugs, and a maintenance nightmare, all so that just one message type
doesn’t need to have a message buffer allocated for it.

Further optimisation
The message header structure was always allocated locally, usually on the
stack, and therefore had to be passed to functions by value. Rather than let
the compiler generate the most efficient copy, the programmers knew
better so passed a pointer and performed the copy manually, as shown in
Listing 2.
The target architecture was 68000 based, so non-word align accesses were
safe, albeit slow. Although I never had time to measure it, I would have
been very surprised if the int32* cast was faster than a memcpy() or
structure copy, both of which would be easier to read and could be resilient
to changes to the message structure.

Message handling revisited

The message code handling in this application has so many problems apart
from the premature optimisation that it is worth picking apart a bit more:

1. The code assumes get_msg_buffer() does not fail. The whole
driving force behind the previous discussion is a limited supply of
message buffers so that failure is a real possibility. A failure returns
NULL, which will immediately cause a bus error – on the surface this
is a good thing because this is a dual redundant system and if some-
thing goes wrong it is better to failover to the hot-standby than try
and recover from a crippled state. In practice, the system only ran
out in two scenarios:

Memory leak. On a
system with limited
memory, this would be
detected fairly early in
development so is not a
production problem.
High message load.
Unfortunately a fail-
over needed some
buffering of messages,
so it couldn’t work

reliably at maximum load. If the active card failed in this way,
the hot-standby would shortly follow.

This was a design error in not considering graceful degradation
under high load and relying on the dual-redundancy to handle every
failure condition.

2. The encode and decode are not symmetrical. This was endemic
throughout the system with byte-by-byte, cast element-by-element,
and cast whole structure being freely mixed throughout the system.
Whenever a message structure was changed, every instance of
encode and decode needed to be changed manually to match.
Missing one would produce a difficult to detect bug.

3. The flag to indicate if the message was a small message or not was
implicit in the end value: 0-3 small, 4-255 large, and the end value
was the item that changed the most. As the flag meant the difference
between interpreting the union as a pointer or data, the code was
very fragile. Many messages were close to an end value of 255 so
every increase in size need to be checked for overflow.

4. There was no sanity checking of messages, so an inbound message
consisting of a byte stream was cast to a structure or sequence of
built-in types in the hope that it was always correctly formatted.

msg mymsg;
char *data;
uint32 *newtime;

if (get_msg(&mymsg)) {
 if (mymsg.end < 4)
 data = mymsg.data.data;
 else
 data = mymsg.data.ptr;
 switch (data[mymsg.start]) {
 ...
 case MSG_HEARTBEAT:
 newtime=(uint32*)(&data[mymsg.start+1]);
 set_time(*newtime);
 break;
 ...
 default:
 DEBUG("Invalid message: %d\n",
data[mymsg.start]);
 }
 if (mymsg.end > 3)
 ret_msg_buffer(mymsg.data.ptr);
}

Li
st

in
g

1

send_msg(msg *inmsg, byte card)
{
msg outmsg;
uint23 *inmsg_quick_copy=(int32*)&inmsg;
uint23 *outmsg_quick_copy=(int32*)&outmsg;

outmsg_quick_copy[0]=inmsg_quick_copy[0];
outmsg_quick_copy[1]=inmsg_quick_copy[1];
 . . .

Listing 2

thousands of lines of inline special
case code, quite a few bugs, and a

maintenance nightmare, all so that just
one message type doesn’t need to have

a message buffer allocated
8 | | OCT 2006{cvu}

5. Messages did not contain any versioning information despite the
requirement for live upgrades. The only way to change a message
format was to create a new message type and support both the old
and new messages depending on the version of software in the
partner card.

There is also some credit due:
1. The message was built starting at an offset

(DEFAULT_MSG_OFFSET) so that if it needed to be encapsulated or
needed a routing header added, it could grow from the beginning
without having to shuffle-copy it within the buffer.

2. The begin and end formed a half-open-range with all the
advantages it brings such as begin==end means empty, end-
begin is size, etc.

3. Debug versions of the message buffer allocation/deallocation and
the message send and receive functions used unused parts of the
buffers to record statistical data and markers so that a snap-shot or
crash memory dump of the message buffers provided valuable data
about how the system was performing and gave early warning about
buffer overruns.

Lessons learnt
There are a number of lessons that can be learnt from this code.

1. Don’t optimise (yet)

The original authors were not familiar with the first and second rules of
optimisation (1st: Don’t optimise, 2nd: Don’t optimise yet). Their attempts
at writing more efficient code were at odds with the tools they were using:
Modern compilers have very sophisticated optimisers. These are more
likely to work given small simple sequences of code rather than “clever”
tricks with multiple paths and duplicate code.
Most CPUs now have pipelines, out-of-order execution and both
instruction and data caches. These work best with small code and minimal
branches, neither of which result from programmer code-level
optimisation.

2. Measure, don’t guess

Empirical evidence has shown many times that it is difficult to guess in
advance the lines of code that account for the largest amount of execution
time, and this case was no different. Making sure that optimisations are
applied only after careful measurement has a number of advantages:

Initial effort can be directed towards making the code readable,
maintainable, and correct, instead of wasting time failing to make it
fast.
Deferring optimisation until later means that if there are no
performance issues, no effort needs to be expended on it.
Instrumentation and measurement is a lot less interesting than
coding fast and clever code, and therefore is a deterrent to premature
optimisation.

3. Choose one encode/decode scheme and keep to it.

Message decoding and encoding can easily become very messy and
unmaintainable if not well designed:

The encode and decode should be symmetrical, preferably using
identical data definition methods.
The closer they are in the code, the less likely they are to diverge in
method and style.

Provide a method of checking a received byte stream message before
“casting” it to local data structures. Often a simple length check is
sufficient.

4. Consider message versioning

If one side of a messaging path can be upgraded without the other, then
message versioning needs to be designed in from the start:

Make data fields large enough for likely future use.
Ensure that mismatch versioning can work, either by negotiating a
common version, or by making later versions of messages
backwards compatible.
Consider including a version number in each message.
Text based and TLV (Tag-Length-Value) message encodings are
much easier to upgrade than plain binary structures.
Don’t use byte sized messages codes unless you are absolutely sure
you won’t need more than 256.

Conclusion
Premature optimisation is a problem that many programmers suffer from,
yet can easily be avoided with a bit of fore-thought and help from some
more experienced developers.

Notes
[1] Although there were only 255 possible message codes, 0xff was

reserved for expansion, allowing another 255 message codes to be
allocated using the next byte.

join the accu

How to join
Go to www.accu.org and

click on Join ACCU

Membership types
Basic personal membership

Full personal membership
Corporate membership

Student membership

You've read the magazine.
Now join the association
dedicated to improving your
coding skills.

The ACCU is a worldwide non-
profit organisation run by
programmers for programmers.

Join ACCU to receive our bi-
monthly publications C Vu and
Overload. You'll also get
massive discounts at the ACCU
developers' conference, access
to mentored developers
projects, discussion forums,
and the chance to participate
in the organisation.

What are you waiting for?

professionalism in programming
www.accu.org
OCT 2006 | | 9{cvu}

Professionalism in Programming # 40
Effective Version Control #2
Pete Goodliffe continues to describe good version control

practices.

his is the second instalment of this series investigating version
control. Last time we laid the groundwork, establishing what version
control is and why it is an indispensable part of the development

process. We saw the basic mechanics of VCS usage and learnt the
important version control mantra: simplicity is a virtue.
In this part we’ll delve more deeply into the version control quagmire.
We’ll look at how to manage version controlled repositories, and how to
work correctly with source code that is held under source control.

Managing the repository
We start by looking at issues surrounding your version control server and
the repositories held within it. We’ll consider repository contents and file
structure, and look at how we access repositories from development
machines.

4. Create the right repositories

When do you create a repository? If you’re starting from scratch then this
isn’t a difficult question. But even at this stage there’s an important choice:
what do you call the repository? Do you name it after:

the new project’s cryptic codename,
the released product name (which might not yet be known),
the code framework’s name (if there is such a thing),
the company name, or
your favourite colour?

In different situations each of these answers could be right. You can only
answer this question with a pragmatic eye on the future. Are future projects
likely to build upon these code files (that is: is the next project is an
evolution of this one), and so will it be held in the same repository? Will
future projects be entirely separate work, or might they share some parts
of the current code? Will future work on the same project need to go in
this repository, or in a different one? Your future intentions give clues to
the right choice of repository name, and obviously determine which
repository your subsequent projects end up in.
When you eventually grow more than one repository, keep them on the
same server if possible. It’s the simplicity rule again: it will be more
obvious where to find them.
See items 6 and 7 for more on repository creation policy.

5. Structure your repository thoughtfully

It’s important to get your repository structure right: you’ll be working with
this beast for a long time. Of course, a good VCS allows you to easily move
things about [1] but that’s no excuse to not (try to) get it right first time.
Aim for perfection – it can’t hurt! You’ll save reorganisation time later on.
A good structure sets the standard for how easy the repository is to work
with. Projects inevitably grow over time, and there is a tendency for the
repository to become large, unwieldy and hard to understand. People graft
blobs of code into random places without thinking. A good initial structure
will prevent the worst effects of code entropy.

Consider these structural issues:
Partition well. Arrange the code into logical
directories. Don’t be afraid of creating
structure to manage things – it doesn’t make
using the source tree any harder. Have at least
one directory per component, per platform, etc.
Do, however, resist the urge to over-structure.
You know you’ve done this when nested
directories start to hide the code. Good directory
structure simplifies the check-out of a part of the
project.
Establish filename conventions for all files. Define a consistent
capitalisation, and mandate that file names reflect their contents.
Create conventions for where source code files go, where common
include files go, and where test harnesses, shared libraries,
applications and other assets go.
Keep it all under constant review and management. Check that
people haven’t made a mess (they’ll get up to all sorts of mischief
when you’re not looking). Tidy up and reorganise as necessary. A
little constant care and attention will prevent a big headache later on.

All codebases, like gardens, need active maintenance, with caretakers to
carefully tend and weed the borders. Plant the right repositories, and look
after them well.

6. Manage third-party code

It’s not unusual for your software to rely on code from other people that
is shipped in source form, whether it’s some open source code, or stuff
written by subcontractors. This code needs treating differently from your
normal code, or you could accidentally tie yourself up in knots. You must
track the external upgrade releases, and integrate them with any code
modifications that you’ve make locally.
There are countless bad ways to do this, and an established best practice:
using vendor branches. We’ll look at branches later on (in items 16-19, in
the next issue of C Vu), but here’s vendor branches in a nutshell:

Create a branch for the third party source package. Name it after the
package (with no version number)
Import the first release into that branch.
Tag the release (include the version number in the tag name).
Use that branch in your build tree.
If you need to make a modification to the vendor’s code (perhaps to
fix a bug you’ve found) then create a new development branch for
the package, and commit your changes there. Now use this branch
in your build tree.
When the vendor sends you a new release, import it onto the vendor
branch, and tag the new release (with the new version number in the
tag name).
Merge the vendor branch on to the corresponding development
branch – this will merge their changes with yours. (If they’ve fixed
the same bug you may have some conflicts to resolve).

Think about what third party code you put into vendor branches. If a
package is justifiably part of the compilation environment and you won’t
ever modify it then it makes sense to leave it out of your build tree and
make it an installation prerequisite.

T

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@cthree.org
10 | | OCT 2006{cvu}

7. Share code

Some parts of your code will be libraries or common components shared
across a number of projects. Put these in well-defined places that clearly
show they are shared (see item 5):

Chose a directory name in the repository that highlights shared code
(common is frequently used to denote ‘common’ code).
Or put it in an entirely different repository that is specifically for
shared code.

There are pros and cons to each approach. A different repository makes
project check-out harder, whereas a ‘common’ directory full of shared
components that aren’t used in every project makes your repository larger.
Chose whichever makes most sense for you.
Be careful with code that might one day be shared but isn’t yet. Don’t put
it in a shared area until you know that it will be used on more than one
project. (It’s that simplicity rule again). Don’t design code for multiple
clients if there never will be one than one – you’ll be wasting effort.

8. Store the right things

So you have a shiny new VCS set up and ready to go. You have a repository
structure. What are you going to put in it? There are two answers:
Answer one is store everything. Store all project artefacts. Everything in
your build tree that’s required to create your software must be checked in.
Starting with an appropriately configured build machine, with the correct
OS and compilation environment (build tools, standard libraries, etc, plus
sufficient disk space) [2], one simple check-out operation should get you
a good buildable source tree. That means your repository must include:

all source files,
all build files (makefiles, IDE setup),
all configuration files,
all graphics/data files, and
any third party files

required to create the final software.
Answer two is store as little as possible. You do have to store a lot of stuff.
But don’t put include any unnecessary cruft. It will confuse, bloat, and get
in the way. Keep the file structure as simple as you can. Specifically:

Don’t store IDE configuration files or cache files (i.e. precompiled
header files or dynamic code information, ctags files, user
preference settings files, etc).
Don’t store generated artefacts – you needn’t check-in object files,
library files, or application binaries if they are a result of the build
process. You needn’t even check in automatically generated source
files. Binary files from other companies (e.g. driver files, or third
party dlls) might justifiably live in your repository, though.

Sometimes you’ll see that generated files do get checked in: if they are
particularly hard to generate or take a long time to create. This decision
must be made very carefully – don’t pollute your repository with
unnecessary rubbish.
Should you version control the software release images? Some shops put
all their releases into a repository. This is usually a separate ‘release’
repository; the binaries do not really belong beside the source files.
However, consider archiving these in a simple static directory structure
elsewhere. Version control does not buy you much when recording less
dynamic file structures for posterity.

9. Treat the repository with respect

There is a clear separation between the code repository and your checked-
out working copy. What you do to your working copy doesn’t affect the
repository in any way. Do what you want with it, treat it as a digital punch-
bag. It’s fine; you won’t hurt anyone else. But be careful how you commit
the changes you make (see item 13) and remember that you can’t handle
the repository as you can a working copy.

The repository is the centre of the universe for your source code;
everything revolves around it. One silly change or careless file operation
could easily destroy all your hard work. Never furtle around in a repository
by hand without wearing the right protective clothing (including
reinforced underpants). A repository’s physical contents on disk are
designed to be opaque and are not for human access. These things are
notoriously brittle to tampering; one little edit could easily screw things
up. Or, worse still, could break something very subtle that will only bite
you years later. Hard. Some VCSs are even dependant in the repository’s
physical location – you can’t move them around easily.
Mere mortals should have their access to the VCS server restricted to
insulate them from their own evil urges. No one ever intends to break the
repository. But every now and again, a quick rummage in its innards seems
like a perfectly good idea: safer and easier than a more complex client
command invocation. But the consequences could be dire…
Several times I’ve seen a VCS administrator resort to restoring a backed-
up copy of a repository because a gung-ho developer tried to be clever and
remove the evidence of their careless check-in by modifying the repository
by hand. It’s not safe and it doesn’t work – especially when people could
be running the engine (accessing version control) whilst you’ve popped
the hood. Work gets lost. People get inconvenienced. You look stupid.
Don’t do it.

10. Administrate your repository well

Repositories obviously don’t spring up out of the blue, and they don’t work
by magic. Someone makes them when the need arises (see item 4), and
keeps them well oiled to ensure smooth operation. In item 9 we saw that
developers shouldn’t tinker with the inner workings of the VCS. Enforce

this by separating the world into two classes,
the developer proletariat (who clearly do all
the important work, but are physically
prevented from access to the VCS’s inner
sanctum) and the administrator bourgeoisie
(who set the rules and police the state).
The administrator’s jobs are:

Perform privileged version control admin (i.e. create/remove/
maintain repositories).
Set up backups of every repository. Ensure these backups run
smoothly. Test them from time to time. [3]
Maintain access privileges so the right people can see/edit the right
bits of code.
Define secure access routes to the repository. Enable secure off-site
VCS use too, if necessary. (Take care to lock down unnecessary
routes into the repository – more open doors mean more security
risks. If you want to keep your proprietary code under wraps then
security issues are very important.)

This isn’t just an exercise in bureaucracy. It’s important to have a set of
well-defined VCS administrators. That way people know who to run to
when they have a problem. That way, when something does go pop, it’s
clear whose responsibility it is to sort out the mess.
Have stand-ins (deputy administrators) to avoid the danger of losing all
your admins to a flu bug on a particularly bad hair day for your VCS.

11. Have a migration plan

You might have a lot of code that you’re trying to migrate into a new VCS.
Don’t do it without thought: this code was important and how you get it
into a new repository will determine how much use you’ll get out of the
amassed version control history.
You have two migration options: to retain the old version control history,
or to take a baseline of the project and import that into the new VCS.
There’s no right answer: this depends on how easy migration is, and how
much access to the legacy code you’ll need in the future (don’t forget that
it will always be available in the old VCS if you ever need to perform some
archaeology). If the new VCS doesn’t provide repository conversion tools

one silly change or careless
file operation could easily
destroy all your hard work
OCT 2006 | | 11{cvu}

then a full history import requires a lot of manual legwork. This may be
prohibitive.
There is a good middle-road strategy: to import the oldest version of code
you will ever need access to (choose this point carefully). Make this the
first commit to your new repository. Now import a copy of the very latest
version of your code over this, and begin new work from here. If you ever
need to perform bugfixing on an older version of the software (a version
that isn’t in the new VCS), then you can create a bugfix branch from the
historical first import, import that release’s source tree (out of the old VCS)
into the branch, and then work on the bugfix down there.
This isn’t supremely elegant, but it works well enough.

Working with code
These items describe how to work with version controlled code: both the
way you should write it and the way you should handle it.

12. Manage your working copies

Your day-to-day VCS interaction takes place through the working copy –
your checked out copy of the repository’s files. To use your VCS well, you
must use the working copy well.
A working copy is a personal thing. Only one person can use each working
copy: don’t share them. Don’t export them over a network filesystem – this
can confuse VCS operations. Even if it’s mechanically OK to share a
working copy, and two people working in the same directory won’t
terminally confuse your version control system, sharing can cause all sorts
of confusion. If another person updates the tree without you realising, the
world has changed and you don’t know about it. The effects are far worse
if they perform an update whilst you’re doing a build. That’s a sure-fire
recipe for disaster.
Similarly, don’t fiddle with someone else’s working copy without letting
them know. Perhaps Fred went home in a rush and left the repository in a
broken state, so you need to check-in a file he missed, or unlock something
he reserved. Without the discipline and manners to tell Fred what you’ve
done, you will confuse him in the morning, and might even cause him to
make another VCS mistake later.
Update your working copy frequently so that you are always working with
the repository’s state-of-the-art. Working days (or even hours) behind
bleeding edge can lead to problems. If the APIs or code that you depend
on change then your checked-in code might break the build. Of course, this
depends on project maturity and the stability of the module APIs (you
should always aim for stable APIs).

13. Make considered modifications

The act of developing code is a series of modifications to the source tree.
This is the building block of VCS. However obvious it seems, make the
right changes and consider how they affect the repository. Never ever
check in code that will break the source tree – this will cause every
developer using the repository untold grief; no one else can test their own
work because they can’t build any software. Breaking the tree is a criminal
offence in many development shops, with consequences ranging from
public humiliation to corporal punishment.
The simple process is: make a change, test it builds, test it works, check it
in. In that order. Always. When you’re dashing out the door to catch a bus
it can be very tempting to rush a check-in of code that ‘should work’. Take
it from me: it rarely does.
There is one situation in which you can safely ignore this advice: when
you’re working on a personal branch (see item 16, in the next installment)
and can be assured that no one else is relying on it to work.
Layout changes are frustrating in a version controlled source tree. A layout
change hides other modifications – when you browse the version history
important changes will be lost in a sea of whitespace alterations. For this
reason, avoid making gratuitous changes unless absolutely necessary; and
then never do it alongside ‘real’ code modifications.

14. Have a good check-in strategy

The check-in commits your carefully made modifications to the repository.
With the modified files you supply a textual description of what has changed
– the log message. To ensure that the information in the repository is
maximally useful, always provide good log messages. A good message
includes: a brief summary and the detailed reasons for the change. It also
describes the level of testing performed (e.g. does the code build, does it
work properly, and does it pass the unit tests). If you’re fixing a fault, include
the bug number for cross reference. The description must be clear with
enough background to make sense. Don’t describe each individual change,
or which files were changed – the VCS will record this automatically.
The best check-in strategy is little and often. Make small steps and commit
them to the repository before making the next change. Don’t accumulate
a week’s worth of work before you check in. You’ll suffer many problems:

It’s harder to track the changes made in the code
The rest of the code repository could have changed massively
between your updates. You new work might not be valid any more.

Before you check in any code, first test it against the latest version of the
repository – this will ensure that your new code won’t break the build.
Other components it depends on might have changed between your
working copy updates, causing your new work to be erroneous.

15. Put the right things in your files

A lot of this is good development practice. Ensure that it’s easy to find
things in the repository, and make sure that file names match their contents.
Never make a KitchenSink.c.
Many VCSs provide a facility to helpfully modify the source file content
when it’s committed, using keyword expansion. For example: include the
text Id in a code comment somewhere, and on check-out this keyword
will be updated with information including the author’s name, and the date
of last modification. Keywords look cute, but they are evil and should be
avoided; they cause all sorts of problems, including odd file comparisons
(often the keyword shows as a change between revisions, when it is not
really an important change).
Even worse than Id is Log – a keyword that expands to the entire
revision history of that file. There is never a good excuse for using this
keyword, and typing it should be punishable by death. Don’t do it. The log
information gets in the way of the code, and is a duplication of information.
Why should the file contain the exact information the repository records?
Some development shops like to maintain a text file containing the revision
history of the repository. With every check-in you must edit this history.
It is an odd practice – duplicating the VCS! Don’t maintain by hand what
the tool automatically does for you. If you can’t get the information out of
your VCS in a form you like, write a script to do it for you (see item 22,
also in the next installment).

Next time...
Next issue will see the final instalment of this series. We’ll look at good
practices for branching and labelling your code, how to merge code safely,
and how to use version control in your product release procedure. Until
then, keep it simple...

Notes
[1] Most VCSs do, with CVS as the notable exception.
[2] This configuration must also be controlled – not necessarily

version controlled, but documented clearly and
unambiguously. Why not place that document under version
control, though?

[3] It’s essential to test the backups, otherwise when you need to
restore a repository you could be sadly disappointed.

keywords look cute, but they are evil
and should be avoided
12 | | OCT 2006{cvu}

Threads and Shareable Libraries
Roger Orr tackles posix threads on Windows.

came across a problem moving some code from Unix to Windows and
thought some of the issues raised might be of general interest.
The Unix programs used a shared library to provide some optional

functionality and this had been working fine on Linux/Solaris. The shared
library performed some asynchronous functions, like logging, and used
pthreads to provide the threading model. I wanted to extend the target
architectures supported to include the Windows platform.
There were three possible approaches that I considered.

1. Use cygwin [1] to give a ‘Linux API emulation layer’ or ‘Linux-like
environment’ on Windows. Alan Griffiths (and others) object to
Cygwin describing itself as an ‘emulation’; be that as it may,
Cygwin does provide a very familiar environment for programmers
coming to Windows from Unix.

2. Use pthreads-win32 [2] to provide the threading functions I needed
on Windows (this library is LGPL-licensed).

3. Port the codebase to use Windows APIs.
The first approach was the easiest, as the make files and compiler settings
were compatible with Linux, but it required target machines to have
cygwin installed. I wasn’t entirely sure I wanted this restriction (apparently
you can get away with copying a single DLL but I’ve not been able to verify
that this is officially supported).
The second approach seemed better: pthreads-win32 is a fairly mature
library which seems to have a good record and it can be linked with the
program or shipped as a single DLL to the target machines.
The last approach was not favourable as there was quite an overhead in
producing (and maintaining) a separate code base for two different
platforms. Obviously I could abstract away some of these differences – but
this would effectively be trying to write the code for one of the first two
approaches on my own!

Problem discovery
The initial work went very easily. I downloaded pthreads-win32 from
Redhat; then copied pthread.h, sched.h and semaphore.h into my
include directory and pthreadVC2.lib into my library directory.
There was a little bit of work to set up a Visual Studio compatible build
environment but the code (including the pthreads code) just compiled and
ran without any problems – at least at first.
However, problems occurred with a program that dynamically loaded the
shareable library. The program worked fine until it unloaded the library,
at which point it just hung. Ctrl-c and Ctrl-break didn’t stop it either;
I had to use task manager to kill the process. One of the times I was killing
the program this way I noticed that the column for ‘Threads’ (selectable
using View->Select Columns->Thread count) was showing four threads,
not the two I was expecting. Further investigation revealed that the thread
count went up by one each time I pressed Ctrl-c or Ctrl-break. What
was going on?
It looked like some sort of multi-threaded deadlock was occurring and my
initial thought was that I had found a bug in pthreads-win32. So I decided
to try out cygwin, hoping that this environment would not have the same
problem. I was fairly quickly able to compile my shareable library and test
program using gcc on cygwin. I discovered though that the behaviour of
the program was exactly the same – even down to creating extra threads
when I typed Ctrl-c – so it looked like something more complicated was
going on than just a bug in pthreads-win32.

I tried to attach the Visual Studio 2003 debugger to the hung process, but
wasn’t able to get it to connect successfully. It simply didn’t debug – and
if I tried to break into the process I got a dialog box saying :
 Unable to break into the process 'testwindows.exe'.
 Please wait until the debuger has finished loading,
 and try again.

I tried again, this time starting testWindows.exe under the debugger
rather than attaching when the program surfaced. When it hung I tried to
break into the program and got a message box saying:
 The process appears to be deadlocked (or is not
 running any user-mode code). All threads have been
 stopped.

I was however able to view the list of threads – one thread was inside
thread_join() and the other was inside __endthreadex.
I abandoned the Visual Studio debugger as it wasn’t helping me resolve
the issue and reached for a different tool – WinDbg. This is one of the
Microsoft Debugging Tools [3] and gives a lower level, but sometimes
more informative, view of your process than the Visual Studio toolset. This
time I hit pay dirt. When the test program hung I attached WinDbg and
got the following couple of lines embedded in the output from the
debugger:
 Break-in sent, waiting 30 seconds...
 WARNING: Break-in timed out, suspending.

This is usually caused by another thread holding the loader lock.
I executed the WinDbg command !locks and it displayed the following:
 CritSec ntdll!LdrpLoaderLock+0 at 77FC2340
 LockCount 2
 RecursionCount 1
 OwningThread f38
 EntryCount 2
 ContentionCount 2
 *** Locked

 Scanned 102 critical sections

At this point the debugging session had provided enough information for
me to understand what was the cause of the problem.
The Windows API uses a per-process lock internally (as the output from
WinDbg shows this lock is defined inside ntdll.dll, the lowest level
user-space library in the system). This critical section is locked while
loading and unloading shareable libraries and this same lock is also used
during thread exit. (There is more information about this lock on MSDN
[4].)
My program was calling FreeLibrary and the implementation of this call
locks the loader lock and then calls the DLL entry point to notify the DLL
that it is being unloaded. The C++ runtime hooks into this call in order to
run destructors for any static objects including the destructor for the
‘theWorker’. This destructor signalled the asynchronous thread to exit (by
setting timeToEnd to true and waking the thread up) and then joined
against the thread. However the thread exit also needs the internal loader
lock (since thread detach is notified to shared libraries using the same
mechanism as when unloading libraries).

I

ROGER ORR
Roger Orr has been programming for 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf. He joined ACCU in 1999 and the BSI C++
panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk
OCT 2006 | | 13{cvu}

A classic deadlock has occurred: the main program thread has the loader
lock and is waiting for the worker thread to complete; the worker thread
needs the loader lock to complete its exit.

Whose fault is this hang?
Is this then a fault in both the pthreads emulations on Windows? This is
hard to answer – there is no standard binding for Posix on C++, just on C.
The 2003 C++ standard does not mention threads and so has nothing to
say about defined behaviour in my example, and I looked in vain at the
POSIX standards [5] for mention of destructors or statements of validity
of pthread_join inside calls to dlclose.
It seems that the designers of Windows wished to ensure that the thread
‘main’ function was only active in one thread at a time. This does have
some advantages – for example it means easy avoidance of common race
conditions initialising and terminating shared libraries. The downside is
the possibility of deadlock.
Since the loader lock is an internal implementation decision of the Win32
API it is hard to see how the pthread-win32 library or cygwin could avoid
the deadlock since the use of the loader lock is outside direct application
control.
It also means that option (3) – re-implementing the library using Win32
calls – would not help either since the problem was with the lock used by
the Win32 API itself.

Simplify, simplify
I wanted to have a smaller piece of code to work on while I investigated
the problem further. I managed to refine the code down to a small example
which demonstrated the same hang on unload. The sample program
worked perfectly on Unix using dlopen, dlsym and dlclose but not on
Windows using Cygwin, nor when using the equivalent Win32 functions
LoadLibrary, GetProcAddress and FreeLibrary.
The sharable library has only one entry point: callLibrary(). This
makes sure the Worker instance is initialised and then calls a method on
this instance. The worker makes use of a helper thread to perform its
function; in this example the worker thread simply waits for timeToEnd
to be set – the original code used some internal queueing to pass work items
to the helper thread.
The driving program is also very simple. It loads the library, looks up the
address of the entry point (callLibrary) and invokes it. Then it unloads
the library and exits.
The code is shown in Figure 1 (Loadable.cpp) and Figure 2
(testWindows.cpp).

Worker::Worker()
: timeToEnd(false)
, started(false)
{
 std::cout << "Worker ctor" << std::endl;
 pthread_mutex_init(&mutex, 0);
 pthread_cond_init(&cond, 0);
}
Worker::~Worker()
{
 std::cout << "Worker dtor" << std::endl;
 stop();
 pthread_cond_destroy(&cond);
 pthread_mutex_destroy(&mutex);
}
void Worker::dosomething()
{
 start();
 std::cout << "Queue something" << std::endl;
}
void Worker::start()
{
 pthread_mutex_lock(&mutex);
 if (! started)
 {
 pthread_create(&thread, 0, threadStart,
 this);
 started = true;
 }
 pthread_mutex_unlock(&mutex);
}
void Worker::stop()
{
 if (! started)
 return;
 pthread_mutex_lock(&mutex);
 timeToEnd = true;
 pthread_mutex_unlock(&mutex);
 pthread_cond_signal(&cond);
 pthread_join(thread, 0);
 started = false;
}
void Worker::run()
{
 pthread_mutex_lock(&mutex);
 while (! timeToEnd)
 {
 pthread_cond_wait(&cond, &mutex);
 }
 pthread_mutex_unlock(&mutex);
}
void *Worker::threadStart(void * arg)
{
 Worker *self = static_cast<Worker *>(arg);
 self->run();
 std::cout << "Thread exiting" << std::endl;
 return 0;
}
extern "C"
{
 void
#if defined (_MSC_VER)
 __declspec(dllexport)
#endif
 callLibrary()
 {
 if (! theWorker.get())
 {
 theWorker.reset(new Worker);
 }
 theWorker->dosomething();
 }

}

// Loadable.cpp
#include <iostream>
#include <memory>
#include <pthread.h>

class Worker
{
public:
 Worker();
 ~Worker();
 void dosomething();
private:
 void start();
 void stop();
 void run();
 static void *threadStart(void *);
 pthread_t thread;
 pthread_mutex_t mutex;
 pthread_cond_t cond;
 bool timeToEnd;
 bool started;
};
std::auto_ptr<Worker> theWorker;

Li
st

in
g

1
Listing 1 (cont’d)
14 | | OCT 2006{cvu}

When I ran this program on Windows here is the output I saw:
 About to load library
 Loaded library 'Loadable'
 About to call library
 Worker ctor
 Queue something
 About to unload library
 Worker dtor
 Thread exiting

and the program was hung.
I still had my hang – how could I prevent it? The fundamental problem
was trying to stop a thread while unloading a shared library.
At first I thought about taking out the pthread_join() – mark the thread
as stopping and then return from the destructor. Unfortunately this
produces a nasty race condition – we are calling the destructor while

handling the unload of the DLL, after we return from FreeLibrary the
DLL’s code and data has gone from memory and so if the second thread
is still running it will get an access violation as there is no longer any code
for it to execute!
Eventually I decided that the best solution was to add a closeLibrary()
call to the shared library that would stop the thread and to ensure that client
programs using dynamic loading called this function before unloading the
DLL. This still left a problem if the client code neglected to call this
function of course, but at least a diagnostic message could be produced
warning that the library had been unloaded without closing.
A slightly safer approach is for the library to call LoadLibrary on itself
when it creates the thread and FreeLibrary when closeLibrary()
completes. This ensures that if main tries to unload the library without
calling closeLibrary() the library will stay in memory and avoid the
free-running thread causing a crash.
Microsoft published an MSJ article some years ago that solved the problem
by splitting the single DLL into two; the second DLL contained the actual
worker threads each of which called LoadLibrary on the second DLL
itself to keep it in memory while they executed. These worker threads
called FreeLibraryAndExitThread when they completed so the
second DLL was only unloaded asynchronously by Windows when all the
threads completed. This would have been rather more of a change to the
sharab le l ib ra ry than I had t ime fo r (and a l so the use o f
FreeLibraryAndExitThread would make the resultant code rather
more Windows-specific than I wanted).

What have I learned?
I think there were three main things I learned from this experience.
Firstly, the interaction of threads, sharable libraries and C++ destructors
is a bit of a minefield. Although my program worked happily on Unix this
might just be luck – I don’t think there are any guarantees in the standards
that the code should work. Actually, this article could be viewed as another
example of the singleton anti-pattern since the single instance of the
worker thread object is the root cause of the problem.
Secondly, when debugging having multiple tools in your toolkit is a good
thing. In this example the Visual Studio debugger was unable to provide
much assistance with this particular problem; but WinDbg produced
helpful information as soon as I used it. In fact, I find that WindDbg
produces additional information so often that sometimes I attach it non-
invasively to a process already under the Visual Studio debugger. This
allows both debuggers to be used to investigate the state of the stopped
program.
And finally, this exercise shows the truth of the phrase “abstractions are
leaky” [5]. I was trying to use pthreads-win32 and cygwin to provide Unix-
like threading a non-Unix operating system. In this particular case an
implementation detail of the underlying operating system leaked into the
application and caused a failure. It is hard to prepare for this in advance,
since it is difficult to predict where the abstraction is going to break down,
and it also indicates that the better your knowledge of the underlying
platform-specific implementation the more likely you are to be able to
recognise and solve such problems.

References
[1] www.cygwin.com
[2] sourceware.org/pthreads-win32
[3] freely available from http://www.microsoft.com/whdc/
[4] http://msdn2.microsoft.com/en-us/library/ms172219.aspx (example)
[5] http://www.opengroup.org/onlinepubs/009695399/toc.htm
[6] www.joelonsoftware.com/articles/LeakyAbstractions.html

Acknowledgements
Thanks are due to Alan Griffiths, Phil Bass and others who reviewed a draft
of this article and suggested improvements.

// testWindows.cpp
#include <windows.h>
#include <iostream>
#include <string>
int main(int argc, char ** argv)
{
 std::cout << "About to load library"
 << std::endl;
 std::string library(argc == 1 ? "Loadable"
 : argv[1]);
 HMODULE handle = LoadLibrary(library.c_str());
 if (! handle)
 {
 std::cout << "Failed to load '" << library
 << "': " << GetLastError() << std::endl;
 return 1;
 }
 std::cout << "Loaded library '" << library
 << "'" << std::endl;
 PROC pCall = GetProcAddress(
 handle, "callLibrary");
 if (pCall)
 {
 typedef void (*pfn)();
 pfn pfnCall = (pfn)pCall;
 std::cout << "About to call library"
 << std::endl;
 pfnCall();
 }
 // Fake some work before we close the library...
 Sleep(5 * 1000);
 PROC pClose = GetProcAddress(
 handle, "closeLibrary");
 if (pClose)
 {
 typedef void (*pfn)();
 pfn pfnClose = (pfn)pClose;
 std::cout << "About to close library"
 << std::endl;
 pfnClose();
 }
 std::cout << "About to unload library"
 << std::endl;
 if (FreeLibrary(handle) == 0)
 {
 std::cout << "Failed to unload: "
 << GetLastError() << std::endl;
 return 1;
 }
 std::cout << "Unloaded library" << std::endl;
 // Fake some more work before we eventually exit...
 Sleep(5 * 1000);
 std::cout << "About to exit" << std::endl;
 return 0;
}

Li
st

in
g

2

OCT 2006 | | 15{cvu}

Annotated Python # 1
On Linux:
$ cd ~/sandbox
$ svn co http://aeryn.tigris.org/svn/aeryn/trunk
 aeryn

On Windows
1. Install TortiseSVN [4]

2. In Explorer, right click
 “SVN Checkout...”

3. Specify the URL of the repository
 and the Checkout directory

Getting Aeryn

Header Checker
Tim Penhey demonstrates the ease of Python.

his series of articles is targeted at those readers who don’t know too
much about Python [1], but are curious. Curious about what Python
can do, whether or not it is as easy to read as the Python enthusiasts

expound, and is it worth putting effort into learning.
I have been wanting to write an article about Python [1] for a while but as
is often the case you think “what could I possibly write about?” I wasn’t
really interested in writing a syntax guide, there are many of those around
already [2]. The solution to the quandary was to ask a muse (Paul Grenyer).
[13:37] tim: I'm wanting to write a python article for cvu

[13:37] tim: in the comming edition

[13:37] Paul Grenyer: ok

[13:37] tim: but not sure what to cover

[13:37] tim: ideas?

<boring – non relevant bit snipped>

[13:38] Paul Grenyer: Well, the last script I was thinking of writing....

[13:39] Paul Grenyer: was to go through source files and checking to see if
the GNU license was at the top and if it wasn’t, adding it.

I thought that this could be interesting, mildly useful, and cover a number
of things without being too complex. So here we go.
The first thing to do is to decide exactly what the script has to do.

Given a base directory to crawl
Iterate over the files, and check files with extensions that match a
predefined set
Check to see if the provided header file is at the start of each file

Next, we need some files to crawl over. Given that it was Paul I was talking
to, he suggested Aeryn [3], an excellent C++ unit testing framework he
wrote.

The interactive interpreter
Python is an interpreted language. This means that there is no explicit
compile step to turn source code into something that
is executed. Python also provides an interactive
interpreter (often just referred to as ‘the interpreter’).
Once the interpreter is started, it presents the user
with a prompt at which you can type code directly.
Python statements are executed as they are entered;
this is a great place to test out code without even
committing ideas to a source file.
On Linux machines, Python is normally in the default
path, and starting the interpreter is done
by calling the Python executable from
the shell prompt, as shown in Figure 1.
If you are in Windows with a default
python installation, then the location of
the Python executable isn’t in your
PATH. See Figure 2.

To exit the Python interpreter, use Ctrl-D on Linux, or Ctrl-Z on
Windows. Even though the development of this script was done on both
Linux and Windows, all the path names in the examples are given as Linux
paths for consistency.

T

TIM PENHEY
Tim believes in choosing the right tool for the job. After years
of hard core C++ hacking he’s found that some things are
just easier in Python. He can be reached at tim@penhey.net

Figure 1
Figure 2

C:\Documents and Settings\Tim>c:\Python24\python
Python 2.4.3 (#69, Mar 29 2006, 17:35:34) [MSC v.1310 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> ^Z

C:\Documents and Settings\Tim>

tim@spike:~$ python
Python 2.4.3 (#2, Apr 27 2006, 14:43:58)
[GCC 4.0.3 (Ubuntu 4.0.3-1ubuntu5)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>
tim@spike:~$
16 | | OCT 2006{cvu}

Which files?
The first piece of code we need is something that will crawl a directory
recursively and easily.
The first place to look for code that you suspect to exist is the Python
Library Reference [5]. Anything that is operating system specific, such as
traversing a directory is in the os module. A quick look through the
documentation leads us to the Files and Directories section [6] and there
is an excellent example of how to use the os.walk function there.

Notes on Listing 1
Python comes with an extensive list of standard modules – os
contains operating system specific commands. The import
statement finds the module (by traversing the python path), initialises
it, and defines one or more names at local scope. In this case the local
variable os is initialised to be a module instance.
The walk function provides iteration over the directories. The result
of each iteration is three parameters – the directory name, a list of
directories in that directory, and a list of files in that directory
The print statement takes an arbitrary number of parameters, and
by default will print the string representation of the parameters. Also
by default the print statement adds a carriage return.

A quick look at the results from this shows that the subversion directories
are also being crawled here – and we don’t want that. So let’s add a quick
check to remove them. (Listing 2)

Note on Listing 2
'str' in var returns True if the string 'str' is found in the string
var, a not in b is the same as not a in b, but easier to read

This is a bit messy, though. A re-read of the documentation shows that the
list of directories that is returned from the walk function is checked for

the next iteration. Removing an entry from the directory list tells the
function not to traverse it. This is a much tidier way of avoiding the
subversion directories. (Listing 3)
Once the complexity of the code being written goes over a couple of lines,
I end up writing a script to contain the code. A script can be imported into
the interpreter as a module. For example, Listing 4 is the file
checker.py.

Notes on Listing 4
every script has to stand alone, so a script must import all modules
it uses
the def command is used to create a function
no need to declare variables, just assign to them. In this case result
is set to be an empty list
os.path.join joins together two or more path elements with the
appropriate path separator for the platform
return the list of files – if the return statement is omitted, then None
is returned

And the script is imported into the interpreter as shown in Listing 5.

Note on Listing 5
[a:b] is the slice operator, where a and b are optional. result[:5]
says return a list that has the elements from result starting at the
start and up to but not including element at index 5 (the sixth element
– indices start from zero).

Working with command line options
Now that there is a way to get the names of all the files that we are interested
in, we need to do something with them. In this case, look at the start of the
files to see if there is a matching header. A simple way to define the header
that we are looking for is to put the header in a file, and pass that name of

the file to the script.
Command line parsing is a
problem that all but the most
trivial scripts need to handle.
Lucki ly Python has an
outstanding module for
pa r s ing command l i ne
arguments – optparse [7] .

>>> import os
>>> for root, dirs, files in \
... os.walk('/home/tim/accu/aeryn'):
... print root, dirs, files
...
[result snipped - way too much stuff printed out]

Li
st

in
g

1

>>> for root, dirs, files in \
... os.walk('/home/tim/accu/aeryn'):
... if '.svn' not in root:
... print root, dirs, files
...
/home/tim/accu/aeryn ['.svn', 'corelib', 'examples',
'include', 'make', 'src', 'testrunner',
'testrunner2', 'tests', 'www'] ['aeryn2.sln',
'Doxyfile', 'lgpl_aeryn.txt', 'license.txt',
'Makefile', 'SConstruct', 'VERSION']
/home/tim/accu/aeryn/corelib ['.svn']
['corelib.vcproj', 'Makefile']
 <<-- snipped results -->>
/home/tim/accu/aeryn/examples/customreport1 ['.svn']
['main.cpp', 'customreport1.vcproj']
/home/tim/accu/aeryn/examples/mockfiletests ['.svn']
['main.cpp', 'mockfiletests.vcproj']

Li
st

in
g

2

>>> for root, dirs, files in os.walk('/home/tim/accu/aeryn'):
... if '.svn' in dirs: dirs.remove('.svn')
... print root, dirs, files
...
/home/tim/accu/aeryn ['corelib', 'include', 'www', 'src', 'testrunner2', 'tests',
'testrunner', 'make', 'examples'] ['aeryn2.sln', 'Doxyfile', 'VERSION',
'lgpl_aeryn.txt', 'license.txt', 'SConstruct', 'Makefile']
 <<-- snipped results -->>
/home/tim/accu/aeryn/examples/customreport1 [] ['main.cpp', 'customreport1.vcproj']
/home/tim/accu/aeryn/examples/mockfiletests [] ['main.cpp', 'mockfiletests.vcproj']
>>>

Li
st

in
g

3

import os

def files(basedir, extensions):
 result = []
 for root, dirs, files in os.walk(basedir):
 if '.svn' in dirs:
 dirs.remove('.svn')
 for file in files:
 for ext in extensions:
 if file.endswith(ext):
 result.append(os.path.join(root, file))
 return result

Listing 4

>>> import checker
>>> result = checker.files('/home/tim/accu/aeryn',
... ('.cpp','.hpp'))
>>> print result[:5]
['/home/tim/accu/aeryn/include/aeryn/
platform_report_output.hpp', '/home/tim/accu/aeryn/
include/aeryn/test_name_not_found.hpp', '/home/tim/
accu/aeryn/include/aeryn/use_name.hpp', '/home/tim/
accu/aeryn/include/aeryn/namespace.hpp', '/home/tim/
accu/aeryn/include/aeryn/xcode_report.hpp']
>>>

Listing 5
OCT 2006 | | 17{cvu}

Notes on Listing 6
Instead of importing an entire module and prefixing the use of all
functions, you can also import individual functions, classes or
variables from modules using the from statement. When imported
this way, the imported entity does not have to be prefixed with the
module name.
Command line arguments are available as a list. An advantage of
having a stand alone function for parsing the arguments is that it can
be tested in isolation using the interactive interpreter.
The first parameter is the short option name, and the second is the
long option name. If a default is not specified None is used. The
help parameter is printed out if the -h or --help option is set. The
variable name that is used to store the option is, by default, the same
as the long option name with the prefix '--' removed, so in this case
'dir'.
Here the variable name to store the option is being overridden to a
shorter name using the 'dest' parameter. The metavar parameter
is used only when printing the help.
Start of help text without metavar:
 -e HEADER, --ensure-header=HEADER
Start of help text with metavar:
 -e FILE, --ensure-header=FILE

The append action allows the option to be specified multiple times.
The variable containing the option is returned as a list.
The store_true action specifies that there is no associated input
expected for this option.
Notice that the help string here uses double quotes not single quotes.
Python strings can be defined using either single or double quotes,
although normal usage is to use single. Here I am using double quotes
as it avoids having to escape the single quote in doesn't.
Alternatively it could have been written as:
help='Test run, doesn\'t actually change the files'

The parse_args function returns a tuple of (options, args)
where the options object contains the parameter values, and the
args parameter is a list containing the arguments that did not match
any of the options.

The options object that is returned has members defined according to the
arguments that were parsed, shown in Listing 7.

Notes on Listing 7
If a module has been imported and then changed, the updated code
can be loaded by using the reload command.

This gives a way of testing the equivalent of passing '-d /home/
tim/accu/aeryn –ensure-header=gnu.txt -x.cpp -x .hpp
-t' on the command line.

Looking for headers
In order to create the file gnu.txt, I cut the top off one of the files. To
load the contents of the file into a variable you can do this:

>>> header = open(options.header).read()

This is a little sloppy though as it relies on the garbage collector to close
the file handle for the associated file object. Python 2.5 (which is currently
in beta) is adding a with statement which is similar to the using statement
in C#. Until then, the clean way is like this (Listing 8):

Notes on Listing 8
The open command returns a file object, and by default opens a file
read only.
The read method returns the entire contents of the file as a string.
Close the file.

Since this functionality is going to be needed in a few places, put it in a
function (Listing 9):

Note on Listing 9
This is called a documentation string or docstring and is used to
document functions, classes or modules.
If the first statement is a string literal, it is bound to the attribute
__doc__ (and func_doc).
Strings that span multiple lines can be specified by using three single
or double quotes – called triple quoted strings.

>>> reload(checker)
<module 'checker' from 'checker.py'>
>>> print checker.readfile.__doc__
readfile(filename):
 returns the contents of the file 'filename'

from optparse import OptionParser

def parse(args):
 parser = OptionParser()
 parser.add_option('-d', '--dir', default='.',
 help='The base directory to start from')
 parser.add_option('-e', '--ensure-header',
 dest='header', metavar='FILE',
 help='Ensure that the header in FILE is'\
 ' at the start of all the files')
 parser.add_option('-r', '--remove-header',
 dest='remove', metavar='FILE',
 help='Remove the specified header first'\
 ' if it is there')
 parser.add_option('-x', '--ext', action='append',
 help='Look at files with this extension')
 parser.add_option('-t', '--test',
 action='store_true',
 default=False,
 help="Test run, doesn't actually change
 the files")
 return parser.parse_args(args)

Li
st

in
g

6 >>> reload(checker)
<module 'checker' from 'checker.py'>
>>> args = ['-d', '/home/tim/accu/aeryn',
... '--ensure-header=gnu.txt',
... '-x.cpp', '-x', '.hpp', '-t']
>>> options, args = checker.parse(args)
>>> options.dir
'/home/tim/accu/aeryn'
>>> options.header
'gnu.txt'
>>> options.ext
['.cpp', '.hpp']
>>> options.test
True
>>>

Listing 7

>>> f = open(options.header)
>>> header = f.read()
>>> f.close()

Listing 8

def readfile(filename):
 '''readfile(filename):
 returns the contents of the file 'filename' '''
 f = open(filename)
 contents = f.read()
 f.close()
 return contents

Listing 9
18 | | OCT 2006{cvu}

Next we need to write the function that will actually check the headers of
the source files. Python has many convenient string handling functions, a
few of which will be used here.

Notes on Listing 10
The following entities evaluate to False: None,
empty string, or empty container (list, tuple,
set, dict). Python uses short circuit boolean
evaluation, so in this case if remove_header is
None the interpreter never tries to evaluate the
startswith method.
The len function is the standard way to get the
length of different types. Here we are returning the
substring of the contents from the end of the header
to the end of the string.
String literals in source are treated as string objects.
The join method takes something that can be
iterated over as a parameter, and creates a string by
appending the contents of itself between each item
in the parameter.
Open the file in write mode.

Created a simple file with a few lines of code called
test.txt. Back to the interpreter to test the process function.
>>> reload(checker)
<module 'checker' from 'checker.py'>
>>> checker.process('test.txt', header, None, options)
adding header to test.txt

Checked the file – no change. Hmm... hang on a sec, was test set to True
or False?

>>> options.test
True
>>> options.test = False
>>> checker.process('test.txt', header, None, options)
adding header to test.txt
>>> checker.process('test.txt', header, None, options)
>>> checker.process('test.txt', None, header, options)
removing header from test.txt
>>> checker.process('test.txt', None, header, options)
>>>

Bringing it together
Now it is behaving as expected. The last few bits that are needed to tie the
functions together in a script are shown in Listing 11.

Notes on Listing 11
While not absolutely necessary, I like to have main as a specified

function so it can be called in the interactive
interpreter.
The logical operators and and or do not return boolean
values, but return the last expression needed to
calculate the return value.

 >>> 'hello' or 42

 'hello'

 >>> 'hello' and 42

 42

The module level variable __name__ is set when the
script is executed or imported. When the script is
imported as a module __name__ is set to the name of
the script (in this case 'checker'). When executed
from the command l ine __name__ is se t to
'__main__'.
Import statements can appear anywhere, and since the
only place the sys module is needed is when the script
is run as a script, we can load it there. The command
line arguments are found in the list member argv.

And there you have it. The next thing to do is to see if it actually works.
In order to get some form of meaningful results over the Aeryn codebase,
I decided to update the copyright date in the GNU licence header. I copied
the header from a file and named it gnu2005.txt, then edited the file to
have year 2006 and saved it as gnu2006.txt. Executing the script in test
mode with the following parameters gave some surprising results:

./checker.py -d ~/accu/aeryn/src -x .cpp -x .hpp -r
gnu2005.txt -e gnu2006.txt -t

Code rarely works the first time
There were several files where it wasn’t removing the header, but it was
adding one. Looking at these files it became apparent that that the matching
algorithm was less than entirely sufficient. The headers matched in all
places except one space. Given that this then meant that the header was
not matched, and it would have ended up with two headers is not ideal.
There must be a better way. One solution is to match against strings that
have all the whitespace stripped. However once you have found that it
matches, you then need to somehow work out the substring of the file that
contains the header so it can be removed.
Stripping whitespace from a string is relatively simple.
''.join(content.split())

def process(filename, ensure_header, remove_header, options):
 '''process(filename, ensure_header, remove_header, options):
 filename: a string
 ensure_header: the header to be added if missing
 remove_header: the header to be removed if found
 options: options object from command line parsing
 '''
 contents = original = readfile(filename)
 actions = []
 if remove_header and contents.startswith(remove_header):
 actions.append('removed header')
 contents = contents[len(remove_header):]
 if ensure_header and not contents.startswith(ensure_header):
 actions.append('added header')
 contents = ensure_header + contents
 if contents != original:
 print filename, ' and '.join(actions)
 if not options.test:
 f = open(filename, 'w')
 f.write(contents)
 f.close()

Li
st

in
g

10

def main(args):
 (options, args) = parse(args)
 if not options.header and not options.remove:
 print 'Nothing to do, neither --ensure-header'\
 ' nor --remove-header set'
 return
 if len(options.ext) < 1:
 print 'Nothing to do, no extensions specified'
 return
 ensure_header = options.header and readfile(options.header)
 remove_header = options.remove and readfile(options.remove)
 filenames = files(options.dir, options.ext)
 for filename in filenames:
 process(filename, ensure_header, remove_header, options)

if __name__ == '__main__':
 import sys
 main(sys.argv)

Listing 11
OCT 2006 | | 19{cvu}

The split method creates a list of words
from a string broken on whitespace. In this
case the string that is the delimiter between
each of the words is the empty string, so we
end up with a string stripped of all whitespace.

Finding the appropriate position of the non-stripped
string for cutting is not much more difficult. In order
to deal with stripped strings, there needed to be
some modification to the functions process, and
main as in Listing 12.

Notes on Listing 12
The xrange function generates the values
from zero up to but not including the
parameter value, so xrange(5) will generate
the values 0, 1, 2, 3, 4.
Python does not have either postfix or prefix
increment (or decrement) operators. It does
however have increment and assign. In
fact it pretty much has any operator with
assignment supported.

Executing the updated script over the Aeryn source
no longer gave any surprises. The full Python script
and gnu headers used for these tests can be found
on my website [8].
I sincerely hope that this article has enlightened you
to some of the power and simplicity of Python.

References
1. http://python.org
2. http://wiki.python.org/moin/BeginnersGuide
3. http://www.aeryn.co.uk
4. http://tortoisesvn.tigris.org
5. http://docs.python.org/lib/lib.html
6. http://docs.python.org/lib/os-file-dir.html
7. http://docs.python.org/lib/module-

optparse.html
8. http://scorefirst.com/articles.html

Listing 12

def strip_header(contents, header):
 i = 0
 for x in xrange(len(header)):
 while contents[i] != header[x]:
 i += 1
 i += 1
 return contents[i:]

def process(filename, ensure_header, ensure_stripped,
 remove_stripped, options):
 '''process(filename, ensure_header, remove_header, options):
 filename: a string
 ensure_header: the header to be added if missing
 ensure_stripped: the ensure_header with no whitespace
 remove_stripped: the header to be removed if found
 with the whitespace removed
 options: options object from command line parsing
 '''
 contents = original = readfile(filename)
 contents_stripped = ''.join(contents.split())
 actions = []
 if remove_stripped and \
 contents_stripped.startswith(remove_stripped):
 actions.append('removed header')
 contents = strip_header(contents, remove_stripped)
 contents_stripped = contents_stripped[len(remove_stripped):]
 if ensure_stripped and not contents.startswith(ensure_header):
 if contents_stripped.startswith(ensure_stripped):
 contents = strip_header(contents, ensure_stripped)
 actions.append('updated header')
 else:
 actions.append('added header')
 contents = ensure_header + contents
 if contents != original:
 print filename, ' and '.join(actions)
 if not options.test:
 f = open(filename, 'w')
 f.write(contents)
 f.close()

def main(args):
 (options, args) = parse(args)
 if not options.header and not options.remove:
 print 'Nothing to do, neither --ensure-header'\
 ' nor --remove-header set'
 return
 if len(options.ext) < 1:
 print 'Nothing to do, no extensions specified'
 return
 ensure_header = options.header and readfile(options.header)
 ensure_stripped = ensure_header and ''.join(ensure_header.split())
 remove_header = options.remove and readfile(options.remove)
 remove_stripped = remove_header and ''.join(remove_header.split())
 filenames = files(options.dir, options.ext)
 for filename in filenames:
 process(filename, ensure_header, ensure_stripped,
 remove_stripped, options)
20 | | OCT 2006{cvu}

Student Code Critique Competition
Set and collated by Roger Orr.

lease note that participation in this competition is open to all members.
The title reflects the fact that the code used is normally provided by a
student as part of their course work.

This item is part of the Dialogue section of C Vu, which is intended to
designate it as an item where reader interaction is particularly important.
Readers’ comments and criticisms of published entries are always welcome,
as are possible samples.

Before we start
Remember that you can get the current problem set in the ACCU website
(http://www.accu.org/journals/).This is aimed to people living overseas
who get the magazine much later than members in the UK and Europe.

Student Code Critique 41 entries
The student wrote:
I’m having trouble with deleting things from a collection.

The code used to work, it printed out:

 contents: 123
 deleted: 2
 contents: 13

Then I upgraded my compiler and it complained about “delete iterator” (see
‘now won’t compile!’ in the code).

Someone explained that iterator was only ‘like’ a pointer so I should use &*
on it to get the pointer back. But can someone explain why I need &* –
does this do anything at all?

Anyway, I did try this, and got it to compile with the newer compiler but the
program sometimes crashed. I’ve tried compiling with full warnings but I
don’t get any – is this compiler broken?”

(Please point out both good and bad things the student is doing.)

#include <vector>
#include <iostream>
#include <string>

using namespace std;

class VectorTest
{
 vector<string>::iterator iterator;
 vector<string> vector;

public:
 void addToVector(string string)
 {
 vector.push_back(string);
 }
 void printVector(ostream & ostream)
 {
 ostream << "contents: ";
 for (iterator = vector.begin();
 iterator != vector.end(); iterator++)
 {
 ostream << *iterator;
 }
 ostream << endl;
 }
 void deleteFromVector(string string)
 {

 for (iterator = vector.begin();
 iterator != vector.end(); iterator++)
 {
 if (*iterator == string)
 {
 delete iterator; // now won’t compile!
 cout << "deleted: " << string << endl;
 }
 }
 }
};

int main()
{
 VectorTest test;

 test.addToVector(string("1"));
 test.addToVector(string("2"));
 test.addToVector(string("3"));

 test.printVector(cout);

 test.deleteFromVector("2");

 test.printVector(cout);

 return 0;
}

From Paul Smith <paullocal@pscs.co.uk>
As you were told, iterator is only like a pointer. iterators usually
have an overloaded unary * operator which gives you the object that the
iterator is pointing to. So, *iterator will give you the object that
iterator is pointing at and then &*iterator will give you the a
pointer to the object that iterator is pointing at. You can then delete
this (as your compiler lets you do).
However, while this will delete the appropriate string, it will not update
the vector of strings to indicate that the string in question no longer exists.
So, at some point your program will still try and reference the deleted string
(in the last test.printVector if not earlier) – causing a probable crash.
It would be unusual for a compiler to be able to detect the problem with
what you have done, because it is syntactically correct C++. (A good LINT
program might have warned about it though.)
In order to update the vector properly, you should use the erase method
of the vector class – i.e.: vector.erase(iterator);.
This will delete the object pointed to by iterator as well as updating
vector so that it doesn’t refer to the deleted string any more. The problem
with this, in your current situation is that iterator will still point to the
dele ted s t r ing , so when you increment tha t in the loop in
deleteFromVector it might skip one more element – taking it past the
end of vector (almost definitely causing a crash, since iterator !=
vector.end() will always be true) or at least missing out an element.

P

ROGER ORR
Roger has been programming for 20 years, most
recently in C++ and Java for various investment
banks in Canary Wharf. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be
contacted at rogero@howzatt.demon.co.uk
OCT 2006 | | 21{cvu}

The deleteFromVector loop needs to be re-written. I would use:
iterator = vector.begin();
while (iterator != vector.end())
{
 if (*iterator == string)
 {
 iterator = vector.erase(iterator);
 // vector.erase returns an iterator that
 // points at the item after the one erased
 cout << "deleted: " << string << endl;
 }
 else
 {
 ++iterator;
 }
}

Alternatively, if you KNOW that all item items in vector are unique, you
could possibly use a break – e.g.

for (iterator = vector.begin();
 iterator != vector.end(); ++iterator)
{
 if (*iterator == string)
 {
 vector.erase(iterator);
 cout << "deleted: " << string << endl;
 break;
 }
}

Other comments on the code:
I notice you used iterator++ in your loops. In general,
especially with complex objects like iterators, using ++iterator
is more efficient, since it doesn’t need a temporary of the object
being incremented to be kept to be returned by the operator.
The postfix ++ operator (iterator++) returns the value of
iterator BEFORE the increment operation, so the compiler has to:

make a copy of iterator
increment iterator
return the previously made copy of iterator

The prefix ++ operator (++iterator) returns the value of
iterator AFTER the increment operation, so the compiler has to:

increment iterator
return the new value of iterator

So you can see the ‘make a copy of iterator’ step is missing.
Depending on the implementation of iterator this may be a
relatively time consuming step that you can miss out as you don’t
need the return value of the increment operator.
many people don’t like the use of using namespace std; in
your code, and prefer you to explicitly use the namespace
everywhere it’s needed – i.e. std::vector<std::string>.
This makes it clearer which namespace is being used, rather than
having to ‘remember’ that you’re using the std namespace.
I wouldn’t have iterator as a member of VectorTest. The
value of that variable is not needed to be kept between methods, so
having it as a member of VectorTest makes its purpose less clear,
people may think it is used between methods, rather than just
locally, as well as using up heap memory unnecessarily.
To make things a bit clearer, I would probably create a new type of
vector of strings, e.g.

 typedef std::vector<std::string> stringvector;

Then instead of having to type the verbose
std:vector<std:string>:iterator every time you need an
iterator, you can use stringvector:iterator.

printVector could be a const method. You’d have to use
stringvector:const_iterator instead of
stringvector:iterator in the loop, but that would be a good
idea anyway.
addToVector and deleteFromVector should take const
references as parameters, rather than value parameters. Using value
parameters as you have done means that a copy will need to be made
of the parameter for passing to the method. Since the methods don’t
change the parameters at all, they could be const references, to
avoid this copy being made: addToVector(const
std::string &string).
Having a parameter called string (e.g. in the addToVector)
method is probably not a good idea, since that is also a type name.
When you call addToVector you explicitly create a string in the
parameter list, whereas with deleteFromVector you don’t.
There’s no problem with either way, but you should try to be as
consistent as possible. As the explicit string creation isn’t necessary,
I’d leave it out, it makes the code easier to read.
I notice that you have implemented all the methods inside the
class definition. This can make it a bit less clear what the class
interface is. I would just put method declarations inside the class
definition, and put the implementation outside the class definition.
For instance:

 class VectorTest
 {
 public:
 void addToVector(
 const std:string &stringToAdd);

 };
 void VectorTest::addToVector(
 const std:string &stringToAdd)
 {
 vector.push_back(stringToAdd);
 }

it’s good that you are using iterators to iterate through the vector in
printVector. Some people would use the ‘C’ style for (int i
= 0; i < vector.length(); i++) construct.

(PS – as to how it worked before you upgraded your compiler – I have no
idea, I’m surprised at that!)

From Simon Sebright <simon.sebright@ubs.com>

Done on the last day, I thought I would make this one as succinct as
possible, whilst still being useful. I often find that the SCC answers are
lengthy and go into a lot of detail, often geared up for the audience reading
C Vu, as opposed to the hypothetical student. From the code often
presented, these students need more than anal amounts of detail; they need
some higher-level insights, some things to think about, ways to approach
problems. Let’s try that and see what happens.
Right, basically your code only worked by fluke with your previous
compiler, because you are mixing idioms. On the one hand, you use a
vector, good, that’s the container of choice for most circumstances.
Vectors, and other STL containers manage their own memory. You pass
them things by value, they worry about taking copies and where those
copies live, and when they get destroyed.
You, however, have tried to get involved in the management of the vector’s
contents by calling the delete operator. This is bad, regardless of whether
it compiles or not. The delete operator is the partner of the new operator,
and you should only use them together. new, delete, new, delete, keep
saying it. If you don’t, all bets are off as to how the system will behave.
This is a good example of the principle of Symmetry in software design:
open, close, start, finish, begin, end, new, delete.
It appears as what you are trying to do is remove a particular string from
the vector. As previously explained, a vector manages its own scoped
objects, therefore you have to use the vector’s functions to achieve your
22 | | OCT 2006{cvu}

aim. Go away and read the documentation on vector, together with Scott
Meyers’ Effective STL. I’ll give you a heads up that removing something
from a vector is a two-stage process. See how you get on.
Right, you had a specific question. Why do you need to use &* to get an
address of the object in the vector from a given iterator? First, don’t
forget, that you shouldn’t generally be doing this for access to objects,
particularly not as above to delete them. However, it is a valid question
and sometimes useful. This is the case when wanting to access the vector’s
contents as a C-style array. Perhaps to pass this to an old-school api
function, or if using a vector of chars for a string, then you get back
the pointer to a char in the array, which is a C-style string.
We l l , l e t ’ s s e e . Wha t t y pe i s t he iterator? I t ’ s a
vector<string>::iterator. Note that it is not a string*. Have
you read the documentation on vector? Well, you must do so. In it, you
will find that iterator is a type available within vector, and that this
type will support various operations for accessing the contents of the
vector, and moving through those contents. So, operators * and ->
provide access to the content. Operators ++, --, +, -, etc. provide the
iteration. Nowhere does it in the documentation say what type the
iterator is, only that it shall support these operations.
Different stl implementations are allowed to do what they want, as long
as the code you write compiles and behaves (should you follow the rules).
It just so happens, that the type string* would also support all these
operators, as they are things you generally do with pointers. Your first
compiler’s implementation probably had a typedef such that
vector<T>::iterator was T*. However, your second compiler more
than likely had a full-blown class, supporting the necessary options.
Now, when you call operator delete on the iterator, you have a
compiler problem because delete is expecting a pointer, you have given
it an instance of the iterator class. Not allowed.
Should you really need the address of the object, you have to first get the
object as a reference, and then take its address. So, operator * on the
iterator gets you the object. You know this, because you have used it
to output the values to the output stream. To get the address of an object,
you use operator & on an instance. Combining the two, we have
&*iter. If you put explicit parentheses in to show you what the compiler
is doing to order the evaluation of these operators, you have &(*iter).
Of course, in the case where iterator is implemented as a pointer, these
two things cancel each other out, but to write portable code, you must
respect the requirements of iterator as documented, not what you find
you can get away with.
Some by the way points:

It is not a good idea to name variables the same as a class name. This
is confusing, i.e. your vector and iterator members of this
class VectorTest, and string parameters.
The iterator member of VectorTest should not be a member.
It is only used within the scope of functions, and its value is not used
across those functions. Make it a local variable in functions where
needed.
It is idiomatic to pass non-built-in types by const reference. You
have passed in your string objects by value.
When calling a function taking a string, or as it should be a const
string&, then you may use arguments as raw strings, because the
right constructor of string will be invoked for you. You explicitly
created string objects, e.g. string("1"). This is unnecessary
here (I see you have done this when calling
deleteFromVector()). Beware, though, if the constructor were
marked explicit, you would need to do it this way. This is the case
when the class writer does not want mistaken conversions to
occur. For example, a file class with a constructor taking a
string for the path would have that constructor as explicit, to
prevent you from accidentally transforming strings into files.
The data members of test are only private because of the
default access level of classes is private. Better to explicitly mark
them private. And, put them at the end. A class should exist for

its users, in this case the public functions are of interest to your
main() function. Make them most easily visible in the class
definition.

Some praise:
In contrast to much student code, this shows a good style in the
breaking up of functionality, even small chunks, into reusable
functions. Many students would be tempted to write the whole thing
in main(). Keep writing small functions like this.
As above, vector is the right default container to use, and using
iterators is the normal way to access it.

From Michal Rotkiewicz <michal_hr@yahoo.pl>

My first remark concerns sections in the VectorTest class: it’s
recommended to put the public section at the beginning of the class. This
way class is more ‘readable’ – you can easily see the interface.
The addToVector function is fine but it may be improved in terms of
performance. When you pass argument to a function by value it’s copied
by copy constructor. In general it’s true but when we are considering
temporary values it’s a little bit more complicated.
Example:
 void foo(myClass arg);
 myClass object;
 foo(object);

In this example object is copied with copy construct during . But if
we have: foo(myClass()); then myClass() might be constructed in
the space used to hold the function argument . In this case copy
constructor is not called. But it’s implementation dependent. My compiler
(gcc 4.1.1) did it whereas other compilers may create temporary object
(using myClass copy constructor) and then initialize function argument.
See C++ standard 12.2.2 example.
If we are passing arguments by reference (void foo(myClass &arg))
the arguments are not copied and I recommend to use it in this case. But
if you try to write:
 void addToVector(string &string) ...

the compiler will complain that you can’t initialize reference with
temporary object. It would be legal if you wrote something like this:
 VectorTest test;
 string s1("1");
 test.addToVector(s1);

In case of test.addToVector(string("1")); temporary object
string("1") is created. As temporary objects are const you have to
use const reference. Finally addToVector function should look like:
void addToVector(const string &string)...
This way you are sure that argument is not copied. Instead of
printVector function I suggest to overload operator<<. Having it
you can use cout with VectorTest objects like with built-in types:
cout<<test;

So let’s write such operator:

 friend ostream& operator<<(ostream &output,
 const VectorTest &ref)
 { return output; }

I will be back soon to the body of this operator. At this moment I’d like to
focus on one aspect: why did I define it as a friend function ?
The operator<< is called binary as it needs two arguments. One on its
left side and second on its right side. We can define binary operator as a
nonstatic member function taking one argument or nonmember function
having two arguments. If the binary operator is defined inside the class
myClass, its leftmost operand is of a type myClass. In terms of
OCT 2006 | | 23{cvu}

VectorTest c l a s s i t m ay look l i ke : ostream
&operator<<(ostream &output)... But in this we would have to
write:
 VectorTest test; ... test<<cout;

This is very ugly and we would like to use cout like with built-in types.
Therefore we can’t define operator<< as a member of VectorTest
class. The second approach is global function:
 ostream &operator<<(ostream &output,
 const VectorTest &ref) ...

This way we can write:
 VectorTest test;

 cout<<test;

Inside the operator<< we have to use private member vector. To be
able to do it, VectorTest class must declare friendship:
 friend ostream &operator<<(ostream &output,
 const VectorTest &ref);

But there is another subtle issue. The friend function doesn’t have access
to the typedefs and enums defined in the class. In our case we don’t have
them so there is no issue but it’s worth remembering how to cope with it.
Function can use typedefs and enums from the class if it is in the lexical
scope of the class. Of course every function that is defined inside the class
meets this requirement. So in our case we have to place operator<<
inside the class but not as a member function. How to do it ? Simply by
placing the operator<< inside class preceding it with word friend.
Keyword friend prevents from treating the function as a member of the
class.
 class VectorTest
 {
 friend ostream &operator<<(ostream &output,
 const VectorTest &ref) { }
 };

Let’s deal with operator<< body. Instead of using for loop for printing
vector element I suggest using copy algorithm with ostream iterator:
 friend ostream &operator<<(ostream &output,
 const VectorTest &ref)
 {
 output<<" contents:";
 copy(ref.vector.begin(), ref.vector.end(),
 ostream_iterator<string>(output," "));
 output<<"\n";
 return output;
 }

Because operator<< returns reference to ostream object we can use
it like this:
 VectorTest test1, test2;

 cout<<test1<<test2;

Finally we have deleteFromVector function. First I recommend to
change the argument to const string &string. (See explanation to
addToVector function.) To know what’s going on at the line delete
iterator let me say a few words about iterators.
Bjarne Stroustrup says in The C++ Programming Language: An iterator
is an abstraction of the notion of a pointer to an element of a sequence.
To get an element that iterator points to we need to dereference it. Example:
 vector<string> vec;
 vec.push_back("one");
 vec.push_back("three");
 vector<string>::iterator it = vec.begin();
 cout<<"First element = "<<*it<<endl;
 it++;
 cout<<"Second element = "<<*it<<endl;

Meanwhile delete iterator says: delete dynamically allocated
iterator. There is no word about element that iterator points to. Example:
 vector<string>::iterator *iterator =
 new vector<string>::iterator();

 delete iterator;

So let’s try another approach: delete *iterator; This construction
says: delete dynamically allocated object that iterator points to. Example:

 vector<string*> vec;
 vec.push_back(new string("one"));
 ...
 vector<string*>::iterator iterator = vec.begin();
 delete *iterator;
 // calls string("one")
 // destructor and deallocates memory.

But above code doesn’t remove element from vector; So after delete
*iterator vec size is still 1 and pointer vec[0] points to the
deallocated memory. To remove vector element we have to use erase
function from vector class. This function takes one argument:
iterator pointing to the element that must be erased. Once element is
erased function returns iterator to the next element. So the code may
look like:

for (iterator=vector.begin();
iterator!=vector.end();
 iterator++)
{
 if (*iterator == string)
 {
 iterator=vector.erase(iterator);
 cout<<" deleted: "<<string<<endl;
 }
}

If you write only vector.erase(iterator) then you have undefined
behaviour as erase invalidates all iterators in the range [iterator,
vector.end()]; Therefore it’s important to have valid iterator
after erase call. That’s the reason why erase function returns the next
valid iterator. We may apply the changes I wrote to the function
deleteFromVector and leave it but I recommended to use algorithms
instead of writing loop. Vector class has function erase(iterator1,
iterator2) that erases all elements from the range [iterator1,iterator2)
and returns iterator to the next element.
Unfortunately this function is not sufficient to remove all elements with
given value as they might not be in the continuous space exactly between
two iterators. To do it we may use remove algorithm which pseudo
declaration is as follow: iterator remove(iterator1,
iterator2, val); Despite the fact that this algorithm is named
remove nothing is removed in fact! We may describe the behaviour of this
function as follow: Move all elements from the range [iterator1,iterator2)
having the value ‘val’ to the end of collection and return iterator to the first
of the elements moved to the end. Example:

 vector<int> vec;
 vec.push_back(1);
 vec.push_back(5);
 vec.push_back(6);
 vec.push_back(5);
 vec.push_back(4); //vec has elements 1 5 6 5 4

If we call:
 vector<int>::iterator it = remove(vec.begin(),
 vec.end(), 5);
24 | | OCT 2006{cvu}

then the vec looks like: 1 6 4 5' 5'' (' – is for notational purposes)
and it points to the 5'; To get rid of the elements we have to call erase:
vec.erase(it,vec.end()); We may write it at one line as well:
 vector.erase(remove(vector.begin(),
 vector.end()),string));

(as we don’t iterate we are not interested this time in the erase return
value). Comparing to original code we won’t see ‘deleted: ’ sentence each
time element is deleted but I think it’s minor issue ;). If you really want to
have such output read about for_each and function objects :)
Finally the code looks like:

#include <vector>
#include <iostream>
#include <string>
#include <iterator>
using namespace std;

class VectorTest
{
public:
 void addToVector (const string &string)
 {
 vector.push_back(string);
 }
 void deleteFromVector(const string &string)
 {
 vector.erase(remove(
 vector.begin(),vector.end(),string),
 vector.end());
 }
 friend ostream &operator<<(ostream &output,
 const VectorTest &ref)
 {
 output<<" contents: ";
 copy(ref.vector.begin(), ref.vector.end(),
 ostream_iterator<string>(output," "));
 output<<"\n";
 return output;
 }
private:
 vector<string>::iterator iterator;
 vector<string> vector;
};

int main()
{
 VectorTest test;
 test.addToVector(string("1"));
 test.addToVector(string("2"));
 test.addToVector(string("3"));
 cout<<test;
 test.deleteFromVector("2");
 cout<<test;
}

From Ric Parkin <ric.parkin@ntlworld.com>

When I first saw this code, I scanned it, immediately saw the simple
mistake the student had made, and moved on. First appearances can often
be deceptive, and a more in depth look revealed a surprisingly rich set of
problems, style, design, use of the standard library, and many other things.
So first, to the stated problem: the author is trying to remove a string
from a vector by calling delete on the iterator ‘pointing to’ the
string to remove. The author themselves almost had the problem solved
when they describe an iterator as only ‘like’ a pointer, so should use &* to
get the pointer back.
What pointer? There are no pointers to be seen in the code, and no call to
new to match with the delete rings a major alarm bell: new and delete

should always be matched up, and in clear code this is often enforced by
class design that wraps up the allocation/deallocation, or makes the
mismatch very clear, eg by quickly wrapping in an auto_ptr.
Also, saying iterators are just ‘like’ a pointer isn’t quite accurate, and the
wrong way around – an iterator is an abstraction of some of the things you
can do with a pointer. So a pointer can be used as an iterator, but an iterator
cannot always be used like a pointer.
This then explains the change in compiler stopping their code from
compiling: previously the vector iterator was implemented as a pointer
to the contained item so calling delete just happened to compile, and now
it’s implemented as a class that represents the item ‘pointed at’ so it no
longer will. This is good as the original code called delete on a pointer
to the middle of the vector’s owned memory, which invokes undefined
behaviour. The big mystery for me is how the original code ever got the
reported output!
 So, fix the problem: how to remove a value from a container? Vector has
a member frunction erase, that takes an iterator to an item and removes
it from the container, so replacing
 delete iterator;

with
 vector.erase(iterator);

will do the trick.
So from a trivial problem immediately into more interesting ones: could
you use const_iterator? After all, you’re not modifiying the string
anywhere, just the container. The answer is a Pollard-like ‘No but Yes but
No’. No, because the existing standard says that erase takes an
iterator, not a const_iterator. But Yes, because this has been
recognised as being too restrictive and is likely to change in the future (see
DR 180). But No after all, as that change hasn’t been agreed yet, and if it
makes it into a future revision not all libraries will get that change
immediately, and portable code could be better off not relying on it.
Looking a little further out, the surrounding loop looks for a value to
remove. There a few minor stylistic things about this loop that I would do
differently: I’d use pre-increment instead of post, save the value of end()
in a variable to avoid calling repeatedly, and use local variables instead of
the class data member iterator.

for (iterator i = vector.begin(),
 e = vector.end(); i!=e ; ++i)
 if (*i == string) {
 //...
 break;
 }

But even better would be to not code for a loop at all: this is a simple find
algorithm, and the standard provides one in the header ‘algorithm’.

 iterator = find(vector.begin(), vector.end(),
 string);
 if (iterator != vector.end())
 {
 vector.erase(iterator);
 cout << "delete: " << string << endl;
 }

Note that you have to check it was actually found before calling erase.
In the Standard Sequence Requirements in Table 67, i t says
erase(position) ‘erases the element pointed to’ by the iterator, which
implies it should point at an element, although the range version could well
take an empty range.
This raises the question of what is this function’s error handling strategy.
For example, if I ask it to remove a value that isn’t there, or what if there
are multiple values there? The current behaviour is to do nothing, and only
remove and report one value, respectively.
OCT 2006 | | 25{cvu}

If we’d like to remove all values that match, then the remove algorithm
is ideal for it. This is a slightly weirdly named algorithm that generates lots
of questions as it doesn’t actually do any removing, instead it shuffles all
values that are going to stay to the start of the range, and tells you the start
iterator of the remaining values. You can then use this as the start of a range
to erase the values left over using the overload of erase that takes a range:
erase(remove(vector.begin(), vector.end(),
 string), vector.end());

There is another loop in printVector that can be replaced with an
algorithm, copy, using an output iterator to send the values to a stream:

copy(vector.begin(), vector.end(),
 ostream_iterator<std::string>(ostream));

So to more minor stylistic issues.
 Overall, the student is trying to do some good things:

using the standard library for vectors and strings rather then reinvent
the wheel
clearly named methods so you know what the code is trying to do
some testing to clarify their understanding and make sure the code
does what they think it does
passing in a ostream as a parameter to printVector, so can send
the output anywhere.
int main() is nice to see: a certain popular IDE’s code generator
often produces void main(), which isn’t allowed by the standard.
even though the final return 0 is redundent as it’ll be added in
automatically, I think it is better to always be in the habit of
returning a value. This is so that you don’t forget to return 0 in some
other function, which would trigger undefined behaviour, and is
clearer to readers that you really do want to return 0, and didn’t just
forget.

 But some things aren’t so good:
all the methods have names that include the word ‘Vector’, despite
them being on a class called TestVector. This is redundant and
leads to overly-verbose code with lots of repetition. add, print and
remove should be sufficient.
the variables are named identically to their type which is rather
confusing, and leads to odd declarations such string string;.
the iterator data member isn’t really part of the class state –
every time it is used it is reinitialised so its old value is never needed.
It should be replaced by a local variable where needed
once that is gone, the only data member is a vector, so VectorTest
is in fact a simple wrapper around a vector of strings that provides
some long-named methods. Another hint is that the name
VectorTest isn’t particularly revealing, which suggests to me that
it isn’t really modelling anything in particular, and shouldn’t be a
class at all. I would prefer it to be written instead as free functions
that took a vector of strings as a parameter.
using namespace std isn’t bad per-se in a source file, but
would be a bad idea in a header. Alternatives would be to fully
qualify names, or pull in just the names used, or put the using in each
function if it’s too hard to read with full names.
a typedef for the vector of strings would be a good idea. This also
simplifies the names of nested types like iterators, i.e.

 typedef
 std::vector< std::string > StringVector;
 StringVector v;
 StringVector::iterator i;

an operator<< would be nice for this class, even if it only called
printVector

printVector should be a const method
while printVector gets given a stream for output,
deleteFromVector has cout hardcoded. If you want the same
one used throughout, perhaps it ought to be passed into the
constructor.
there is no copy constructor, operator=, or destructor. This
means the compiler will generate them, and if the iterator member is
still there, the first two will do the wrong thing. Instead, declare
them private but non implemented. The destructor is fine.
only iostream is in the list of headers, but endl etc are used.
iostream is only required to pull in the names for cout etc, but
isn’t required to pull in anything else. This is only compiling
because on this particular library enough other headers are pulled in,
but another library might not, so should also include ostream to
actually use the stream and endl.
endl actually does two things: output a newline, and flush the
stream. In most cases, cout << '\n' is all that is wanted or
needed and will be a lot faster if that is a bottleneck.
strings are being passed by value. Many string implementations are
reference counted, or cheap to copy, but convention is to pass
anything non-trivial by const reference unless there’s a good
reason why not.
in main, addToVector is called by explicitly making strings from
string literals, whereas deleteFromVector relies on an implicit
conversion.
deleteFromVector and addToVector could take a const
char* and avoid some of the overhead of creating and copying a
string. This depends on whether the client code is expected to be
using modern C++ which could assume that string is universally
used.
incrementing iterator is using post-increment. As the previous value
isn’t needed, it ought not to be asked for, so pre-increment should be
preferred. This can be argued on opimisation issues, but I prefer
clarity – say what you mean.
many people write the public parts of a class first, and the private last
(the rationale is that people want to use a class more often than they
maintain it, so that part should be first)
it isn’t clear what deleteFromVector should do if the value isn’t
there or if multiple values are there.
there aren’t any comments. Fortunately, the code is generally clear
enough that not many are actually needed, but some notes on any
contracts and behaviours would be useful, especially around
deleteFromVector.

One of the interesting things about this code is that it is on first sight pretty
good with one mistake, and yet there are all sort of simple things that feel
oddly wrong when delving in deeper. I blanch to think about the amount
of my own code written under even slight pressure that would have a
similar effect on me if I looked at it in depth again.

Commentary
After a slow start – most ACCU members were presumably enjoying a
well-earned summer break – more entries arrived just before the deadline;
between them the entries cover almost all the points I’d thought of (and
some I hadn’t) about the code provided.
I felt that some of the changes suggested might be slightly too advanced
for the student, who was struggling with understanding object ownership.
It can be hard to know how much to cover when trying to help someone
with a problem; especially in the SCC when the ‘student’ is absent!
As most entries pointed out, the fact that the code works at all is a bit of a
fluke (it is down to the low level implementation details of memory
management and string class layout for the compiler involved). In my
experience most programmers when faced with code that sometimes
works tend to assume the code is fine and blame the environment in which
26 | | OCT 2006{cvu}

the program fails. (“It only crashes in release builds – must be an optimiser
bug” or “It works on Windows, must be a gcc bug”).
The advice in this particular case that the call to delete is not balanced
by a call to new is good – it helps to identify this bug but also gives the
programmer a rule of thumb that may help them in the future.
I agree with the entrants who wanted an operator<< for the class, but
do have a preference to make this a non-friend inline function calling
the (existing) print[Vector] method. I like this pattern as, in a class
hierarchy, the print method can be made virtual and hence operator<<
automatically behaves polymorphically.
The use of comments is a debate on its own (as recent discussion in C Vu
and elsewhere has shown!) I thought the code was clear without comments
as the method names were self-documenting, my only minor problem was
with the deleteFromVector method where it is unclear what behaviour
to expect if duplicate elements are located.

The winner of SCC 41

The editor’s choice is Ric Parkin.
Please email francis@robinton.demon.co.uk to arrange for your
prize.

Student Code Critique 42
(Submissions to scc@accu.org by 1st November)

Despite appearances, this code is not from a student but extracted from an
existing code base. There is a string class that sometimes gives unexpected
failures. Here’s a simple test program that asserts with one compiler – but
only in debug – and works with another. Please explain the assert failure
and critique the code.

#include "MyStr.h"
#include <assert.h>
int main()
{
 MyStr s;
 assert(s == "");
 s = "10";
 assert(s == "10");
}

The header file for MyStr is:
 #include <string.h>

class MyStr
{
public:
 MyStr(char const * str = 0);
 MyStr(const MyStr& str);
 const MyStr& operator=(const MyStr& str);
 ~MyStr() { delete [] myData; }
 bool operator==(const MyStr& d) const;
 friend bool operator==(const MyStr& lhs,
 char const * rhs);
 friend bool operator==(char const * lhs,
 const MyStr& rhs) { return rhs == lhs; }
 void alloc(unsigned N) const
 {
 MyStr *nc = const_cast<MyStr*>(this);
 char * od = nc->myData;
 nc->myData = new char[N];
 nc->mySize = N;
 copyStr(myData, od);
 delete [] od;
 }

 void copyStr(char* d, char const* s) const
 {
 if(s == NULL)
 d = NULL;
 else
 strcpy(d,s);
 }

 operator char *() const { return myData; }
 // more methods unused in test not shown
private:
 char * myData;
 unsigned mySize;
};

inline MyStr::MyStr(char const * str)
: myData(NULL), mySize(0)
{
 if(str == NULL) return;
 unsigned newlen = strlen(str) + 1;
 alloc(newlen);
 copyStr(myData, str);
}
inline MyStr::MyStr(const MyStr& str)
: myData(NULL), mySize(0)
{
 if(str.myData == NULL) return;
 unsigned newlen = strlen(str.myData) + 1;
 alloc(newlen);
 copyStr(myData, str.myData);
}

inline const MyStr& MyStr::operator=(
 const MyStr& str)
{
 if(str.myData == NULL)
 { myData = NULL; mySize = 0; }
 else
 {
 unsigned newlen = strlen(str.myData) + 1;
 if(newlen > mySize)
 alloc(newlen);
 copyStr(myData, str.myData);
 }
 return *this;
}

inline bool MyStr::operator==(const MyStr& d)
 const
{
 if(myData == d.myData) return true;
 if(myData == NULL || d.myData == NULL)
 return false;
 return !strcmp(myData, d.myData);
}
 inline bool operator==(const MyStr& lhs,
 char const * rhs)
{
 if(lhs.myData == NULL && rhs == "")
 return true;
 else if(lhs.myData == NULL) return false;
 else return
!strcmp(lhs.myData, rhs);
}

OCT 2006 | | 27{cvu}

Prizes provided by Blackwells Bookshops & Addison-Wesley

Francis Scribbles 27
Francis Glassborow brings us the final installment of his regular

column.

Time wasting
received a reminder to renew my subscription to the New Scientist this
morning. Among the methods available was via the Internet. That
seemed the quickest and easiest way. It was not. Their data capture

software denied that there was a subscriber with that account number either
named ‘Glassborow’ or with ‘OX4 1PA’ as a postcode (validation was
either by last name or postcode). After trying all the options (with/without
spaces in postcode, with/without use of upper case) I finally gave up and
renewed by phone.
Next I received an email from the BSI training program that attempted to
tell me how to successfully take the course on BS0 (BSI’s standard for
standardisation and now required study and examination for all
participants in standards work above the level of a panel). Despite all their
advice, my machine absolutely refuses to let me see even the first word of
the course. Yes, it is some form of machine/OS related problem because
I can start the course on my wife’s machine.
Even without this problem, there are several serious irritants with this
‘distance learning’ programme/program. The start (on my wife’s machine)
list speakers as a hardware requirement and then adds the comment in red
that there is no audio element. Interestingly, when I disable my Bluetooth
headset connection and reset my machine to use its speakers and
soundcard, I no longer get an initialisation failure but get no other progress.
I should mention that this whole package requires the use of Internet
Explorer with pop-ups enabled. I can see no sign that it will work other
than with some version of Windows (though that includes some
workstations as well). I can see no support for Linux.
This is not the first time that BSI’s IT usage has seemed deficient. I would
care less if I were paid to work on Standards. I am not, nor are any of the
other people who do the real work, so you can imagine my resentment at
my time being wasted by people who are paid to do their work.
We are now well into the twenty-first century and major organisations
should be able to use modern technology a great deal better than the
evidence suggests they are doing. And, yes, this does relate to
programming as the whole of this sorry affair relates to competence (or
lack thereof) in writing the software that enables people like me to get on
with our lives instead of having to try to solve problems created by bad
software.
If BSI likes to reply to the above criticism, I am sure the C Vu editor would
be happy to publish.

Significant dates
Last month I reached my 100th birthday. Yes, I know that is a stretch but
this is a magazine for computer programmers, so octal is reasonable (broad
grin). That event reminded me of other significant ones.
The first volume of C Vu spanned most of two years but there were only
five issues. The second volume was a quarterly and I took over as editor
for the second issue. From volume 3 onwards C Vu has been a bi-monthly.

If you do the arithmetic carefully you will realise that issue 18.1 was the
100th (denary this time) issue. Over those 100 issues, there have been well
over 200 contributors and many millions of words. Granted that the quality
has varied but most, if not all, our writers have added new skills while
helping readers increase their understanding.
Looking back at the early days, I notice that we published much more for
the less experienced in those days. We also published much more by less
experienced writers (of course they rapidly became experienced and many
went on to write elsewhere). The stable readership is one cause of this. The
average length of membership is approaching 10 years, which is a
remarkable achievement for any voluntary organisation. This is a good
indicator that ACCU is achieving something that many members value.
I wonder if it is time that we ran a beginners’ corner on a regular basis. I
know that the Internet has provided an excellent alternative to the printed
word but I think we should be very clear that less experienced
programmers are very welcome amongst us.

A competition

With this in mind, I am offering a prize for the best ‘essay’ describing the
fundamental elements of programming. I will be the sole judge of
contributions and I hope the administration will place all entries on our
website. I have deliberately left the length open. However, the principle
criteria on which I will judge entries is technical accuracy, sticking to the
basics and, most importantly, clear simple writing.
The prize? A signed copy of Exceptional C++ Style (by Herb Sutter) and
a signed copy of You Can Program in C++.

Another significant date
I cannot find exactly when ACCU started (under the name CUG(UK)) but
it was some time in 1987. Forty-nine people joined that year (ten of them
are still members today, and one other rejoined after his membership had
lapsed for a few years). That means that ACCU will be celebrating its 20th

anniversary some time around its Conference next year. I wonder if anyone
remembers the actual date of the foundation meeting.
Which reminds me, the first ACCU Conference was a two-day event that
coincided with the WG21 meeting in London in 1997. The second day
consisted of entirely of talks from Bjarne Stroustrup, Bill Plauger, Tom
Plum and Dan Saks. The most memorable of those was the one from Dan
Saks that showed him to be one of the world’s greatest technical presenters.
Sadly, his family commitments and health problems have kept him away
from recent conferences. Earlier this year he was chosen as a Democratic
candidate (for Ohio) for Congress. Unfortunately, his health has again
deteriorated and he has had to withdraw his candidature. Apart from taking
this opportunity to wish him a full recovery, I am also hoping that we might
entice him back to a reunion of that first Saturday’s speakers.
Some of you will realise that we missed another significant date this April,
it was the 10th ACCU Conference. So much has its success grown that this
year we had to close the bookings (so make sure you are not one of those
left on a reserve list next year). However, being programmers and so
counting from zero, the next conference is the 10th and the ACCU
conferences are ten years old next April. I think that is one more thing of
which we can all be justly proud.

I

FRANCIS GLASSBOROW
Francis is a freelance computer consultant and long-term
member of BSI language panels for C, C++, Java and
C#. He is the author of ‘You can do it!’, an introduction to
programming for novices. Contact Francis at
francis@ronbinton.demon.co.uk
28 | | OCT 2006{cvu}

Symbian C++

Someone living close to me emailed me to say that he was using Symbian
C++. Unfortunately, I lost the email. I would be happy if he could resend it.
I would also like to contact anyone who is using the Eclipse based Carbide
C++ that is provided by Nokia. Even better would be a review of it.
I wonder if anyone can explain why the mobile phone emulator used by
Symbian for development on a PC is so unbelievably slow at starting up.
What makes it worse is that every time you want to test a program on the
emulator you have to reload it.
I think its start-up time is bang in the middle of the worst option for a
program. I classify programs as:

1. Avoid running during the working day
2. Have a meal break
3. Have a coffee break
4. Spend time cursing time wasted
5. I know something happened
6. Seamless

The start time for the mobile emulator is a 4, too short to do anything else,
too long for happiness.
I am told that the 9.x releases of the Symbian OS support standard C++
exceptions. Has anyone tried using them? It seems to me that if it does then
developers should start moving towards using the Standard C++ Library.
This would make it much easier for competent C++ programmers to move
to writing for the Symbian OS.

Problem 27
struct foo {
 int i;
};
int main{
 foo * f_ptr = new foo::foo();
 foo::foo f;
}

Comment on the status of the code above in respect of the 1998 C++
Standard, the corrected 2003 version and the proposals for the next full
version.

Problem 26 commentary

#include <iostream>
int main() {
 int i(0);
std::cout << "Please type in a number "
"between 0 and 255: ";
 std::cin >> i;
 std::cout << i * i;
}

Please identify all the possible problems with the above program (both
compile time and execution time).

From: "Balog Pal" <pasa@lib.hu>

Compile time:
Only <iostream> is included: we need <ostream> for >> and
<istream> for <<. It may work on some compilers if they happen
to include those from <iostream>, but nothing in the standard
indicates we can build on it.
(In practice it works on almost all compilers, which does not help
novices to learn the requirement. FG)

Missing return in main(). It is not a problem with a standard-
compliant compiler (leaving main without return has implicit
return 0;) but some compilers may issue a warning or error
instead in practice.

Runtime:
The prompt is written to cout without endl or flush, so the text
may sit in the buffer when the user is supposed to enter the number;
then if he actually figures out to type something and hit enter the
prompt will appear.
(std::cout is tied to std::cin by default so the former is
flushed before execution of the latter. FG)

>> i; may fail and then i stays at 0.
We bypass the ‘all input is evil’ principle and just use i. If the user
types some large number, i*i will produce overflow that is
undefined behaviour. There is no attempt to enforce the 0-255 range
required in the prompt.

Aesthetic problem:
i*i is just dumped without telling what it is, and no newline at end.
(Curiously, Balog missed the fact that this time the output might not
be displayed before the program ends. FG)

Cryptic clues for numbers

Last issue's clue
Jeans? Maybe. ISO Labour Day? Definitely in Japan. (3 digits)

Some day I will learn what makes a popular clue. I had only one response
to this clue for 501 (ISO date format, used in Japan, are ordered as year,
month, day).

From Ray Butler
Ah, SO! Francis-san,

Is that really what you meant? I cannot believe we are stooping to national
stereotypes :-)

I never noticed that as a possible reading of the last sentence. It was just a
reference to the fact that Japan uses ISO Standard date format (year/month/
day) so May 1st becomes 05/01.
Anyway, here is my alternative clue for 501. Hope it’s not too baffling this
time:

When in Rome, Di shows what she is equal to, only a minute after
the office has closed.

Ray wins a signed copy of You Can Program in C++ if he would like to
claim it.

This issue’s clue
Dial for a cab? All too easy on your mobile!

Hanging up my keyboard
The main reason that I am telling you this is that this is the last regular
column that I intend to write for now. Other things in my life require my
attention and I am not able to commit myself to meet future deadlines.
This is the 100th issues of C Vu to which I have contributed. Over those
100 issues I have written considerably in excess of a million words
including reviews of more than 1000 books.
I intend to continue writing and reviewing but I want to feel free to miss
an issue from time to time rather than feel under the hammer of yet another
deadline.
I have it in mind to write a few articles for new C and/or C++ programmers
dealing with common mistakes and misconceptions but I am not sure when
I will get round to it.

Tidying up

Over the last two months I have stripped out 75% of the technical books
that have sat faithfully on my office shelves. I decided the time had come
to weed out the books that had gone out of date whilst I failed to find time
to study them again.
OCT 2006 | | 29{cvu}

Mailbox @ C Vu
Your letters and opinions.

Dear CVu,
Recently I noticed an accu-contacts email
mentioning job opportunities at an online
betting company. I’d recently seen the topic of
the growing problem of online betting
mentioned in a recent Telegraph article, so I
thought it a responsible thing to highlight the
possible impact of our work as professional
software engineers on the wider community we
live in. Hence I posted a response (soon to be
rejected) to accu-contacts mentioning the
newspaper article. I include an excerpt here:
Excerpt (from “Labour gambles away its
principles” By Leo McKistry (filed: 22/07/
2006) at www.telegraph.co.uk):
 ... In Britain, there are mounting concerns over
the growth in gambling addiction. It is far less
intimidating for women and novices to start
betting on a screen than to enter a traditionally
masculine betting shop or casino. Moreover,
parting with large sums by credit card or bank
transfer is less physically painful than using
cash. In May, one charity, GamCare, reported a
40 per cent rise in the number of people seeking
help with problem gambling.

Only last week, addict Bryan Benjafield was
convicted of stealing more than £1 million from
his employer to pay for his online habit, which
was revealed in court to be costing up to £17,000
a day. Thanks to Benjafield’s irresponsibility, his
employer has now gone bust. ...

I received this reply from the moderator:
accu-contacts isn’t really the place for this sort of
disucssion, so I have rejected the message.

Now, I don’t like the idea of censorship: the
ACCU I joined was an organisation for
programmers by programmers, and at the back
of my mind was the idea “Who are you to tell

me what I should or should not discuss”. This
is what I replied:
I’m surprised at censorship within the ACCU..
Are we afraid of open discussion ?

Is it out of order to discuss the implications of
whether we, as software engineers, elect to work
in particular industry sectors ?

If this is not the correct list, then pls tell me which
is the correct list, and allow me to broach the
topic on that list.

This led to my being informed that the accu-
general is a more appropriate mailing list.
Now, as I mentioned to the original poster (OP)
of the job advert, I think it is right that job
opportunities be shared amongst members –
this is a natural and positive activity for ACCU.
But as I also mentioned to the moderator, I think
it is wrong to simply reject a followup mail from
a member that points out to readers of the
orignal ad, issues that may make them think
twice about applying for that particular job if
they have a choice.
In particular, I feel moderators should at the
very least voluntarily offer an alternative
mailing list without being pressed. Had I not
explicitly asked the moderator what is a more
appropriate list, would I have been told ?
Further, when I went to the website and clicked
on the link for the charter of the accu-contacts
mailing list, it came up empty. (The charters for
two other mailing lists have content, in
contrast.)
And, for those that appreciate the funny side, the
first words in the moderator’s response to my
‘censorship’ challenge were: “You haven’t
been censored.”
Kind regards, (Mr) Fazl Rahman

ps It may be relevant that the moderator and OP
were one and the same person; maybe this is
pertinent.

I think the key here is actually contained in the
PS - “It may be relevant that the moderator and
the OP were one and the same ...”

This fact gave, unfortunately, a misleading
impression – that the moderator, perhaps
stung by criticism, was trying to strike down a
legitimate discussion. This was not, and is not,
the case.

While ACCU does not take a position any
particular firm or industry sector, we do aim to
promote professionalism in all its forms, which
obviously includes ethics and behaviour. That
being the case, however, the place for such
discussion is not the accu-contacts list. That
list exists to provide a place for members to list
jobs to people or people available for jobs, and
that’s all. There are other venues for
discussion of jobs offered or the companies
behind them, including accu-general or here in
CVu.

The rejection email you received was rather
terse. A longer explanation might have
avoided any misunderstanding. Whether to
accept your email to accu-contacts was
discussed by the committee, and we felt that
we had to stick to the mailing list charter*. I’m
sorry at the offence caused, and on behalf of
the committee apologise for it.

* I don’t know why the charter should have
been inaccessible. Certainly no one else has
reported any difficulty. (See http://accu.org/
index.php/mailinglists/charters/
contracts_charter)

Jez Higgins
ACCU Chair
I used the criterion of getting grid of anything that I was not certain that I
wanted to keep, instead of my previous criterion of keeping everything that
I hoped I might get to sometime. I suspect that I have still kept more than
I should have.
I am not yet ready to close the door on my way out but I am certainly feeling
the time is coming when I should be doing that. The last 18 years of writing
and reading have been immensely educational.
I will go on reading and doing some writing but I find that I have lost my
appetite for technical reading. A dozen books a year is more than enough
these days. That may seem a lot to some of you, but during the 1990s it
was not uncommon for me to read two technical books in a week.

The future

I think we are living in times where change is normal. Some of the changes
enrich our lives but others are just the opposite. We can listen to great
music played by great practitioners for a pittance, but too few actually
enjoy making music.

We are approaching a time when I fear software will be widely available
for a pittance but few people will understand the process of producing it.
I think we have a job to not only write good software but to help the
mythical ‘man in the street’ understand how it is done. We are in serious
danger of producing an era of magic with its elite magicians. That, in my
opinion, does not lead to a healthy community. We have the irony of living
in the greatest age of technological development this world has ever had,
whilst being increasingly drowned by ignorance and fundamentalism.
How do you think an intelligent machine would view the human race? That
is a serious question. In the lifetime of many readers, computers will match
and then exceed the complexity of the human brain. Isaac Asimov invented
the ‘Three Laws of Robotics’, but what happens when the machines are
threatened by human fundamentalism?
OK that is the end of my speculation. I will try to stick to technical articles
in the future.

Francis’ Scribbles (continued)
30 | | OCT 2006{cvu}

OCT 2006 | | 31{cvu}

Standards Report
Lois Goldthwaite explains the proposed addition of two new

character types to C++.

o you care about the C++ and C programming language standards?
How much?
Those of us who volunteer our time and money to standards meetings

are proud of what we have produced. For example, I glow with modest
pride when I can point to the footnote in the C++ standard for which I
drafted the original language. It is very far from being an important
footnote, but it is a tangible contribution which I have made.
But everyone who is reading this also has the opportunity to say proudly,
‘I helped to make C++0x a success’. And it costs almost zero time and only
a modest amount of money. If you haven’t yet renewed your dues to
ACCU, please tick the ‘Fee for International Standards Development
Forum’ box when you do. If you have already renewed, please go back to
www.accu.org and add on support for ACCU’s standards effort as a single
item. All it costs is £21, and this year your money has a direct link to
making the C and C++ committee meetings a success, since ACCU are
hosts for the international meetings next April. If only 200 members tick
the ISDF box, the total would cover over a third of the total cost of hosting
the two meetings, of which the main cost is the rental of the meeting rooms
themselves. We are working to enlist corporate sponsors, but a substantial
show of support by ACCU members would go a long way to ensure the
association has the resources to take on this responsibility.
Even better, if you can persuade your employer to become a meeting
sponsor, even on a modest scale, the organisers will be duly grateful. After

all, if companies are willing to pay to have good programs written in C or
C++, they should have some interest in seeing that those programs are as
well-defined and portable as can be ensured by a good language
specification.
Having the committees meeting in such close proximity to the ACCU
conference in Oxford provides a direct benefit to the conference. Some
number of delegates will be speakers at the conference, and some others
will simply be around at the same time, and available for conversation. It
is a chance to match a real face and personality to the folks whose books
fill your bookshelf and from whom we have all learned so much.
If you would like to sit in on some portion of the international committee
meetings, just to see what happens at these events, I will be glad to arrange
for this to happen. And there is a standing invitation to join the UK
standards panels, if you are interested. There is no cost, and no
remuneration except the enjoyment of deeply technical discussions –
which to some of us is rich reward indeed.
Please write to standards@accu.org for more information.

D

LOIS GOLDTHWAITE
Lois has been a professional programmer for over 20 years.
She is convenor of the C++ and Posix standards panels at
BSI. One of her hobbies is representing the UK at
international standards meetings!
Lois can be contacted at standards@accu.org.uk

Mental Gymnastics

What’s the longest sequence of numbers?

You can’t reuse a square as another result in the sequence.

Pete Goodlife provides us with a little more mental exercise...

The puzzles in C Vu 18.3 got a lot of people’s mental faculties firing,
and some have asked for more of the same – you gluttons for punish-
ment! So here you are.

See what you make of this little brain teaser. Send your answers to me
at pete@cthree.org. I'll print your answers in the next issue. The first
person to come up with the correct answer will receive untold fame and
glory. And a smug feeling of satisfaction.

Good luck!

C++ Programming
You Can Program in C++
by Francis Glassborow
Publisher: John Wiley and Sons
Ltd (12 May 2006)
ISBN: 0470014687

Reviewed by: Richard Elderton

I started learning C, then C++
back in 1997 so you’d think I would be
pretty expert by now wouldn’t you?
Wrong! There were problems. I was doing it on
my own with only books and C Vu magazine to
turn to for help. At first it was like floundering
about in a deep quagmire – with approaching
nightfall. My first compiler was the Zorland C
Compiler Ver 2, but I quickly decided that C++
was a better language. My day job is
cabinetmaking and restoration
(www.relderton.co.uk) and I was doing this as a
mind-stretching exercise. I wanted a pure,
powerful and versatile language that would
endure, having played with Sinclair Basic and
Z80 assembly language. Of course assembly
language is the purest approach to computer
programming, but one has to compromise if one
wants to produce powerful programs before
doomsday. C++ fits the other criteria but it also
carries the weight of history (the need of new

developments to build on previous work rather
than start afresh). The next IDE (integrated
development environment)/compilers were
Borland Turbo C++ 3.0 for DOS, then Borland
C++ Builder 5 for Windows, then a rapid retreat
back to Borland Turbo C++. I was reading
avidly all the time but had to content myself with
the poetic qualities of computer speak if I failed
to comprehend its deeper meaning. The trouble
was that the various books, compilers, articles
etc. in the late 1990s were deeply incompatible,
but I was quite innocent of this.
Then came FGW’s You Can Do It! This was like
manna from heaven. The book came with an
easy to use Windows IDE/C++ compiler (Al
Stevens’ Quincy), all the programs could be
made to work with very little trouble and the
author's instructions were easy to follow. At last
I was making real progress. The book is an
introduction to programming using C++ only as
a vehicle. All elements of this publication are
compatible including the book’s website and the
network of mentors who give support to readers
via email. My mentor was Roger Orr, who’s
genius never ceased to amaze me. (To my family
Roger is known as ‘the archangel Gabriel’,
whilst FGW is known simply as God.)
You Can Program in C++ is FGW’s second
book in what will become a series and it is a tour

de force. It progresses from introductory work
through to a level of proficiency that will allow
the student to develop quite powerful yet easily
constructed programs. It is designed for those
who have some prior programming experience
(in any other language). The author takes pains
to explain how those proficient in specific other
programming languages can easily make wrong
assumptions regarding many aspects of C++. I
found those sections particularly interesting
because they helped to show C++ in a wider
context.
FGW’s writing style is what I would call direct.
He holds one’s attention because it seems that he
is talking directly to one. The delivery does not
consist solely in facts but it contains elements of
programming history an personal experiences.
This helps to bring the subject alive and give it
depth and colour, making the details easier to
remember. It goes without saying that an author
has to know his subject, but for an author to
succeed in making a complex subject digestible
to the novice, wide experience and authority are
required. FGW has these in spadefuls.
The book is a manageable size (19 x 23.5 cm)
and has something less than 400 pages. As such
it does not cover every aspect of C++ and the
novice should be grateful for this – it makes it
all do-able. One nark is that the index does not
work, one has to add either 8 or 10 to the
numbers in the index to arrive at the correct
pages. Once one has got over the irritation of
this, one should treat it as an exercise in pointer
arithmetic and not complain. The slightly garish
cover design looks as though the publishers are
aiming at the secondary school market. If so, the
kids will need considerable self-discipline to
stay the course, or very persuasive supervision.
The book demands a lot of commitment on the
part of the reader and many hours at the
computer doing practical programming and
problem solving. Here I have to make a teeny
confession. I stopped doing practical work after
Chapter 4. It was hard to find the necessary spare
time to do a really thorough job of working
through this book (the same was true of YCDI),
but having paid close attention to the text I felt
that I could visualise the results of most of the
program listings. I intend to use the book only
as a tool for fixing problems with other programs
(God forgive me) but I would not advise any real
novice to follow this example.
Two large sections of the book concern the
development of playing card entities and chess
board entities. The former exercise could be
accomplished by students with very little
domain knowledge but I think the latter would

Bookcase
The latest roundup of book reviews.

Vu has had, for a very long time, a reputation for top-notch reivews of programming and technical
books. We have a great relationship with many publishers, some of whom publish quotes from
the reviews on their literature.

We are independent of any publishing company and as such have been know to slate a book from one
publisher and, in the same breath, praise another book from the very same publisher. C Vu and its
reviewers are respected for their impartiality and independent knowledge.

Books for review are available to any member who requests one. The current list of books available
is in the members' area of the website at http://accu.org/index.php/newbooks

The range of books covers C++, Java, C#, PHP, Ruby, project management, tools, design patterns,
and more. To review a book all you need is to send an email and pay a small admin charge of £5 to
cover postage.

By contributing a book review you are contributing to the greater knowledge of the membership. Books
are expensive and the last thing anyone wants to do is spend upwards of £30 on a book which is an
utter turkey! When you review a book the worst that can happen is you lose a fiver. You'll probably
gain some grateful friends, and if the book is "Not Recommended" your next book is free. What could
be fairer than that?

As always, the ACCU must thank the Computer Bookshop, Blackwells and a range of publishers for
providing us with the review books.

C

Bookshops
The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let us know). We hope that you will give preference
to them. If a bookshop in your area is willing to display ACCU publicity material or otherwise
support ACCU, please let us know so they can be added to the list

Computer Manuals (0121 706 6000) www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022) www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792) blackwells.extra@blackwell.co.uk
32 | | OCT 2006{cvu}

be quite difficult and even plain tedious for
anyone who is not a chess player. Some study of
the game would be a great help. However, both
these props served excellently well for
introducing the required programming
functions. Presumably, professional
programmers too have to submit to the tedium
of dealing with domain knowledge in which
they have absolutely no personal interest.
When you buy YCPCPP you also get a CD
which includes an IDE called MinGW
Developer Studio along with a C++ compiler
from The Free Software Foundation (the same
package is available on the internet). There is
also an IDE called JGrasp which can be used
with a variety of compilers. Each package is
present in both Unix and Windows flavours. In
addition, you get a large selection of supporting
text from YCDI – an excellent idea. I’m glad of
the opportunity to use MinGW Developer
Studio because it serves as a stepping stone to
Microsoft Visual C++ 2005 Express Edition
(also free from the internet). I have that installed
too but am taking it very cautiously at the
moment because its fearfully complex
(Microsoft describe it as fun and lightweight,
however).
All in all You Can Program in C++ is very
student friendly. Highly recommended.

The C++ Standard Library Extensions
by Pete Becker
Publisher: Addison Wesley (3
Aug 2006)
ISBN: 0321412990

Reviewed by: Francis Glassborow

You may know that ISO
recently voted in favour of a
Technical Report (TR) from
the C++ Standards Committee (WG21) that
substantially extends the C++ Standard Library.
More recently WG21 incorporated almost all
these extensions (the Special Maths Functions
are currently an exception) into the Working
Draft (colloquially called the Working Paper) of
the next full release of the C++ Standard.
This book documents the material included by
the TR as well as some additions and changes
that have been provided by the 1999 release of
the C Standard. The sum total almost doubles the
size of the Library.
The back cover describes this book as the perfect
companion to The C++ Standard Library by
Nicolai Josuttis. I do not agree. The style and the
depth of the tutorial aspect is markedly different
(as you would expect from the difference of
authorship).
Before going further, I should say that I did not
like the layout and presentation of code in this
volume, and regret that this was not more like
that in Nico’s book. The layout is much more
like that used by P.J. Plauger in his excellent
book on the Standard C Library (hardly
surprising as Pete has worked closely with PJP
for quite a number of years).

Whilst I am on the negative aspects, I should add
that I find end of chapter exercises completely
inappropriate for a book of this nature. Some of
the exercises would be better (in my opinion)
presented as worked examples and others add
nothing useful and will be skipped by almost
every reader. Perhaps the relegation of potential
worked examples to exercises for the reader
goes some way to explain why this book is
relatively so much shorter than The Standard
C++ Library (533 pages of main text versus 742
pages). The other part of the explanation is that
Pete gives nothing more than bare bones
documentation for the numeric and special
maths functions. I think it would have been
useful if he had included a commentary on the
discovered (by him and PJP) problems with the
implementations of the Special Maths
Functions, several of which have very limited
accuracy in certain circumstances.
By now you may think that I am against this
book. You would be mistaken. Pete has tackled
a difficult but very necessary task with a high
degree of technical competence and I have no
doubt that this book belongs on the reference
shelf of every competent C++ Programmer.
There is nothing else current available that gets
even close to providing the wealth of
information you will find here. Many readers
will find the extensive section on regular
expressions to be just what they need to get to
grips with this important aspect of C++
programming.
The chapter on random number generators
surely must be compulsory reading for anyone
who wishes to use a PRNG in their code. The
chapter on smart pointers should be compulsory
study for all post-novice C++ programmers.
Though this book is not the one I would have
wished it is a tour de force covering some very
difficult material. The extensions to the
Standard C++ Library are exactly those that are
needed as the fundamental building blocks for
competent programmers. These kind of library
resources are so much more useful than the
plenitude of higher level libraries that exponents
of other languages seem to expect.
If you are serious about your C++, go and buy
this book today because it will be some time
before anything better comes along (however
for future readers of this review, note that that
statement is made in August 2006 and might not
remain true indefinitely).

Miscellaneous
Fit for Developing Software
by Rick Mugridge and Ward
Cunningham
Publisher: Prentice Hall PTR (Oct
2004)
ISBN: 0321269349

Reviewed by: Anthony Williams

As the subtitle of this book
says, Fit is the Framework for

Integrated Tests, which was originally written
by Ward. This is a testing framework that allows
tests to be written in the form of Excel
spreadsheets or HTML tables, which makes it
easy for non-programmers to write tests. This
book is divided into several parts. Parts 1 and 2
give an in-depth overview of how to use Fit
effectively, and how it enables non-
programmers to specify the tests, whereas parts
3-5 provide details that programmers will need
for how to set up their code to be run from Fit.
Though I have been aware of Fit for a long time,
I have never entirely grasped how to use it;
reading this book gave me a strong urge to give
it a go. It is very clear, with plenty of examples.
I thought the sections on good/bad test structure,
and how to restructure your tests to be clearer
and easy to maintain were especially valuable –
though they are obviously focused on Fit, many
of the suggestions are applicable to testing
through any framework.
Fit was developed as a Java framework, and so
all the programming examples are in Java.
However, as stated in the appendix, there are
ports for many languages including C#, Python
and C++. The way of structuring the fixtures that
link the Fit tests to the code under test varies with
each language, but the overall principles still
apply.
The book didn’t quite succeed in convincing me
to spend time working with Fit or Fitnesse to try
and integrate it with any of my existing projects,
but I still think it’s worth a look, and will try and
use it on my next greenfield project.
Recommended

Mathematics of Digital Images
by S. G. Hoggar
Publisher: Cambridge University
Press (14 Sep 2006)
ISBN: 0521780292

Reviewed by: Francis Glassborow

The subtitle of this book from
Cambridge University Press is
‘Creation, Compression,
Restoration, Recognition’. As the title indicates,
the book is heavy on mathematics and those who
struggled to achieve success at High School
math (or GCSE in the UK) will likely be
drowned by the requirements of this book.
The tough mathematics requirement is
unavoidable, what could have been avoided is
the academic writing style. I wish that academic
authors would take on a co-author whose job
would be to make the contents more accessible
by, for example, breaking excessively long
sentences into shorter ones. This author adopts
the style of writing in the first person plural. That
is certainly an improvement on those who insist
on writing in the third person passive.
The back cover mentions ‘pseudocode’, do not
be led into expecting that there will be much to
help you transfer theory into practical code that
you can use to help your understanding. You
will have to provide the understanding and
OCT 2006 | | 33{cvu}

probably write the pseudocode for yourself as
part of the journey towards enlightenment.
There are some surprising sections in the book
(at least surprising to those not already familiar
with the computational needs of computing with
digital images).
90 pages on matrices will surprise no one, but
more than 180 pages on probability is likely to
be a major surprise.
This book succeeds in its objective and if you
need to understand all the intricacies of handling

digital images it is about as good as you can get
n the theory side. For practical programmers I
would like to have seen the material
supplemented with far more pseudocode. Even
better would have been real compilable code in
some widely available programming language.
My preference would be for C++ but Python, C,
C# or even Java would be acceptable.
This is a good book if you can cope with the
mathematics and have the time to study the
contents properly. To some extent the individual

sections stand alone, but you would need to read
a section linearly and not try to dip in in search
of something relevant
to a current
programming
problem. This is a
book to develop
your overall
knowledge,
understanding and
skills.
34 | | OCT 2006{cvu}

Mental Gymnastics

6th annual agile software conference run by
Extreme Tuesday Club

Monday 27th and Tuesday 28th November 2006 in London, UK

We offer a wide variety of interactive and tutorial sessions
covering every aspect of software development. The sessions we
run are designed for a mix of project managers, developers,
business analysts and testers – catering for all experience levels
from beginners to advanced practitioners.

The event features:
Invited speakers from UK and Europe
Keynotes: Joshua Kerievsky, James Noble and Robert Biddle
Tutorials about agile software development methods
Workshops and practical hands-on sessions

The conference is always a sell-out, so register early to avoid disappointment!

Find out more at www.xpday.org

The event is organized on a not-for-profit basis by the Extreme Tuesday Club (XTC), which
has been meeting every Tuesday at the Old Bank of England pub in Fleet Street since 1999.

accu ACCU Information
Membership news and committee reports
{cvu}

View From The Chair
Jez Higgins
chair@accu.org

Before I became Chair, and
was a normal committee
member without any
particular portfolio, I often
used to get the impression that there was stuff
going on in ACCU that I didn’t know about. I
didn’t know what the stuff was or how it was
happening, but thing were definitely going on.
I occasionally raised it in committee meetings.
“When there’s this stuff going on”, I would
lament, “please can you tell us.” It wasn’t that
anything bad was happening, simply that I felt
it was important that the committee, and the
wider membership, knew that things were
happening. While I can’t honestly say that
traffic on the committee list rocketed as a result
of my little campaign, one quite visible result is
Alan’s Secretary’s report. Should his
description of committee life pique your
curosity, I’d remind you that members are quite
welcome to attend committee meetings and see
what goes on. Just mail Alan or me for details.
Now I am the Chair (or in the Chair, or
whatever the correct term is), I find that I’m
involved in this mysterious stuff and have
discovered the reason people rarely wrote
emails about it. Truth is that most of it is pretty
boring, until it’s actually done and finished.
Fortunately, when they are finished they’re
usually pretty exciting. As Ewan announces
elsewhere, the venue for next year’s conference
has now been finalised and it should be super.
ACCU is also involved in the organisation of
next year’s WG21 meeting, a meeting that will
finalise the shape of C++ 0x, not to mention
bringing a bevy of C++ big-brains to Oxford at
exactly the right time to pop along to the
conference. By the time the column is printed,
Tim, Tony and Allan should have further new
chunks of accu.org open for business.
While these are driven by the committee, the
real heart of ACCU is its members. Discussion
on accu-general is, by turns, entertaining,
technical, frivolous. Reg Charney’s inspiring
and address at the AGM is seeing its first fruit,
as a regular meeting in London is being
arranged even as I type this report. Overload
and CVu have carried some terrific articles
from both new and established authors.
Participation in the current mentored developer
projects remains strong, with recent Effective-
C++ discussions revealing new insights to
virtual function interface design. This is the
real exciting stuff of ACCU. The best part is
we can all join in and enjoy it.

Conference Report
Ewan Milne

Last issue Jez alluded to news
about next year’s conference

location. I can now confirm that we will indeed
be moving to a new venue. For the past three
years the Randolph Hotel has provided a
wonderful backdrop to our event. Bursting with
character and with an undeniably great central
location, it is with some regret that we have
had to conclude that it is time to move from
this home in order for the conference to grow
and develop. Any of you who have wilted as
the air-conditioning struggled to cope or
suffered the elbow-to-elbow lunch-breaks will,
I am sure, recognise that we face capacity
issues. Note that we do not have plans to
aggressively increase numbers at the
conference, as we want to maintain the crucial
community atmosphere of the event. But we
have outgrown the Randolph.
We believe we have found the solution in the
Paramount Oxford Hotel. This boasts a modern
conference centre with ample spaces for our
tracks, and additionally public spaces which
will allow us significantly more breathing
space. In fact we are currently planning more
for how to use the extra space at our disposal
rather than how to fit everything in. Also, I can
report the air-con is efficient enough for me to
have had to keep my jacket on when we met
there.
The one issue that must be addressed is
location. The name is something of a give
away, yes it is of course in Oxford. But rather
than the central location we have recently
enjoyed, it is on the outskirts. This is
something that we are highly sensitive to, but
we feel that the advantages offered by the
facilities fully make up for this drawback. Not
least of these is a large car park which should
ease travel to the event by road considerably.
And while we will not be right in the centre,
we’ll only be a quick bus ride away, and closer
by are the restaurants and shops of
Summertown.
The bottom line is that we feel it is time for a
move, and we have found a new location which
we believe will meet our needs. The committee
are in fact very excited about the possibilities,
and I hope you will be too when you come
along to the 2007 conference: April 11-14 at
the Paramount Oxford Hotel.

Website report
Allan Kelly

June 2006
Managing the ACCU
website project is kind of
different to managing a
project at work. In some ways the ACCU
project is more like an open source project,
there are volunteers involved, people who give
their time free of charge for... well, why do any
of us give our time to the ACCU? Something
to do with believing in the organization, its

principles, the bond with other members and
wanting to belong.
Even Tim Pushman at Gnomedia does this
because he believes in the organization, yes we
pay him but I know he does some work he
doesn’t charge for. Tim too does it because he
wants to, the fact that we pay him means he
can just devote more time to the project than
Tony and I.
This mix does mean that things don’t always
happen in the predictable fashion they might do
in a commercial organisation. Actually, scrub
that, things don’t happen like that in the office
but we like to tell ourselves they do.
No, the ACCU website project is a true
demonstration of the way projects unfold, half
planned, half random, half done because we’re
paid, half done because we love it!
So, with that build up you’re not going to be
surprised when I tell you the things I set out in
the last report aren’t done. For example, I never
mentioned the Wiki in the last report but we
now have a Wiki to track everything that is
happening, and a good job too, there is a lot,
just not very fast!
At the conference a few of you were
approached by myself or Tony about writing
blogs for the website. Well, at the time of
writing we have our blogging system up and
the first blogger is about to start testing it.
Hopefully by the time you read this the blogs
will be public.
The mailing lists should transition to the new
system within the next few months, the
schedule is kind of vague, Tim keeps plugging
away at it.
We’ve set the ball rolling in the US for a
migration of their site. The US team will
handle that themselves with support from us
when and where they need it.
But the big news of for this report is the
journals, or specifically, Overload. In the last
report I briefly mentioned the options for
putting journals online. Little did I know that
the Overload editor, Alan Griffiths, was
thinking along the same lines. He brought the
issue to May committee meeting and it was
decided to start putting Overload online. All of
Overload, every issue, as soon as practical after
the issue is published.
I think its a good balance, Overload is online
and CVu isn’t. If you’re shy of your writing
appearing on the web try CVu, things that are
ACCU specific, like this report, go in CVu.
This may change, for now it seems sensible.
Now you could argue that this will devalue
your membership, why pay when you can get it
for free online? Well I think there are some
good reasons to continue paying. First, you still
get a printed version, many of us (old fogies)
prefer printed matter; second, your membership
buys you not just Overload but CVu and a
conference discount. Third, and to my mind
OCT 2006 | | 35

accuACCU Information
Membership news and committee reports
REVIEWS

most important, by joining the ACCU you are
making common cause, you are saying, I agree
with these guys, their values, their beliefs and I
want to belong to it.
Even if we do lose a few members as a result
of this move I think we’ll more than make up
for it in new members who discover the ACCU
and our values through reading Overload
online.
And then, even if thousands of members don’t
flood in I don’t think we’ll loose money.
Because, the other thing we’ve just about go
ready is website advertising in the form of
banner ads. If you, or your company, would
like to advertise on the ACCU website please
drop me a line, we’ll be going live in the next
month or so.
I’m kind of conscious that once again I’m
finishing this report by saying “Jam
tomorrow”... thing is, I’ve turned into a project
manager. Que twilight music.

September 2006
As every keen reader will undoubtedly have
noticed, my report carried in the August CVu

was in fact the same as the one in the April
CVu. Such things happen even in the best
publishing houses. Fortunately the Editor has
kindly agreed to publish it in this issue so you
should find two reports here not one.
Of course things have moved on from August
and we now have our blog pages up and
running on the website complete with RSS
feeds. So far the main bloggers are Alan
Lenton and our web site developer Tim
Pushman, thanks to both of you!
Behind the scenes the journals are nearly ready
for release, me and a few other lucky people
have had an early preview and given some
feedback so hopefully these will be available
before I have to write the next report.
Another feature you won’t have seen used yet
is the banner ad system. We have installed a
banner ad server on the site and its ready to go.
Our problem is lack of adverts! About the time
of the conference we thought we had several
advertises interested and I think they probably
still are. Although we have the technology we
lack an advertising officer to coordinate the
advertisers, billing, etc. Simply neither the

website editor, Tony Barrett-Powell, nor
myself have the time to organize this. Web
advertising should be covered by the same
person as journal advertising and I see great
opportunities to sell print and online ads at the
same time. If you feel like trying your hand at
advertising officer please let Jez or me know
and we’ll talk some more.
The US Chapter haven’t started their move to
the website yet. We’ve made the site available;
we’re just waiting for them to move some of
their content across.
Still, there is more work to do. The next major
piece of work is the membership system. We
need to get this up and running for the new
membership secretary. Also, we hope to move
the mailing lists to the new site before long.
On a personal note I’m hoping that I’ll soon be
able to step back from the website and reclaim
some of my personal time. After two years I’m
ready for a break.
36 | | OCT 2006{cvu}

	The Winds of Change
	More Real Life Experiences of a Software Engineer
	On Information Poverty
	Complacency in the Computer Industry
	Premature Optimisation
	Effective Version Control #2
	Threads and Shareable Libraries
	Header Checker
	Student Code Critique Competition
	Mailbox @ C Vu
	Francis Scribbles 27
	Standards Report
	Bookcase
	View From The Chair
	Conference Report
	Website report

