

AUG 2006 | {cvu} | 1

{cvu}
ISSN 1354-3164
www.accu.org

The ACCU is an organisation of programmers who
care about professionalism in programming. That is,
we care about writing good code, and about writing it
in a good way. We are dedicated to raising the standard
of programming.
The ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
ACCU members – by programmers, for programmers
– and have been contributed free of charge.
To find out more about the ACCU’s activities, or to join
the organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of the ACCU

accu

Software Engineering – the
Greenest of the Professions

 was looking at some code of a friend a few weeks back
(shortly before being hit for 6 by the ‘flu) and I knew that I’d
seen it before. It looked incredibly familiar. Too familiar.

Then I realised that the code I was looking at was code that I’d
written about 9 months back. He’d simply transplanted it into his work. Okay, not a problem,
the code was released under the GPL, so I’m not worried (the copyright attribution had not been
changed).
With that in mind, I started to look at some of my own code to see if this was a common
occurance. Guess what – it is. Then I really started thinking about the implications of code reuse
and how wide spread it was. First the implications.
On the positive side, you know what the code does, how it works, how to employ it best and
how much abuse you can give it before the segment falls over kicking and screaming. The
negative is that if the code is broken or insecure or causes a buffer overflow which had never
happened before, then not only the current project is shot, but also all other projects which rely
on your code. Now think about that last line. It’s important.
With the increase in open source uptake and the number of large companies giving code freely
(such as Sun, IBM and Novell), the chances of broken code being reused and therefore
becoming more dangerous becomes a possibility and do you know what? I’m made up that this
is the case! The more poor code there is out there, the more conscientious code authors should
become. There is a critical point in every industry that says “okay, hold it there. This is broken.
And so is this. And this. Crumbs, we’d better start to be more careful”. Pigs may fly? No, it’s
already started. I’ve noticed in many projects on Sourceforge and Freshmeat that the code base
is becoming far more particular with code reviews and what can be submitted as patches. It’s
good. I just wish the same transparency was available in the commercial world – imagine the
fun and games that could be had if the source to big applications was made available!

I

Volume 18 Issue 4
August 2006

Editor
Paul Johnson
77 Station Road, Haydock,
St.Helens, Merseyside,
WA11 0JL
cvu@accu.org

Contributors
David Carter-Hitchin, Derek
Jones, Lois Goldthwaite, Pete
Goodliffe, Thomas Guest, Bill
Rubin, Phran Ryder

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
David Hodge
membership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe and Alison Peck

PAUL JOHNSON,
EDITOR

2 | {cvu} | AUG 2006

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, be default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from CVu without written
permission from the copyright holder.

COPY DATES
C Vu 18.5: 1st September 2006
C Vu 18.6: 1st November 2006

IN OVERLOAD
Overload 74 contains high-quality articles on a wide range of topics,
including The Kohonen Neural Network, C# Generics - Beyond Containers
of T and Fine Tuning Boost’s lexical_cast. Overload is available to all full
ACCU members.

DIALOGUE
24 Standards Report

Lois Goldthwaite brings
us up-to-date with the
latest from the world of
standard setting.

25 Student Code Critique
Entries for the last
competition and this
month’s question.

REGULARS
34 Bookcase

The latest roundup from
the ACCU bookcase.

39 ACCU Members Zone
Reports and membership
news.

FEATURES
3 Coaching - the Art of Not Teaching

Phran Ryder explains the concepts behind coaching.

5 Effective Version Control #1
Pete Goodliffe describes how to manage your source
code simply and effectively.

9 The Structure and Interpretation of Computer Programs
Mentored Project
Thomas Guest writes a progress report for the project.

12 Trip Switch Booleans in C++
Software with a circuit breaker? Bill Rubin explains how.

14 Developer Beliefs about Binary Operator Precedence
Derek Jones carried out an experiment at the conference.

22 Maintaining Legacy Code
David Carter-Hitchin gets to grips with legacy code.

Coaching – the Art of Not Teaching
Phran Ryder explains the concepts behind coaching.

Mumbling...
any Agile methods emphasise the important role of the coach
without going into detail about what it is to be a coach.”
“Dad.”

“Coaches use questions to raise awareness, ensure ownership,”
“Dad!”
“If you really want to be a good coach I think you need to experience
coaching on a coaching course.”
“DAD! - You’re talking out loud again!”
 “Mm, Oh. What son?”
“You’re talking out loud - I can't do my homework with you mumbling to
yourself.”
“Oh – yeh. Sorry. How are you getting on with your homework?”
“Great. Nearly finished and I bet I get full marks this time. How about
you?”
“I am trying to write an article about coaching for ACCU”
“Bless you”
I looked up at Jake, saw his smile and realised he had made a joke.
“ACCU stands for the Association of C and C++ Users.”
Jake gave me one of his best teenage ‘like I care’ expressions.
“Well it worked on me, didn’t it, Dad. I mean the coaching.”
“In a way it did but really it just helped you to work on yourself.”

The issue
I was sitting with my son Jake at the kitchen table.
This is how I now spent an hour or so of many weekday evenings. Jake
would do his homework and I would, well, I’d try to make use of the time
somehow. And generally I did. It was a cosy arrangement but certainly not
a work environment I would have wanted for myself. You see, Jake had
been having trouble doing homework. No, that’s not correct, he had been
getting into trouble for not doing homework. That’s not accurate either,
he was at the age where, where, …, well he was at that sort of age.
After discussion with Jake’s Mother, I had agreed to come up with a way
to get Jake on top of his homework. My job is one in which I spend great
parts of the day helping people to become motivated, helping them to
overcome problems, and helping them to achieve greater, well,
achievements. So the natural thing was to translate these skills to home.

The session
I had been in communication with the school and discovered their concern
about Jake’s homework. The problem was how to broach the subject with
Jake. Jake was of an age where he could be surly, confrontational, or
uncommunicative. But he could be lucid and friendly. Many parents might
have opening gambits like:

“I need to talk to you about your homework.”
or

“What are we going to do about your homework?”
or

“The school is not happy with your homework”
The coaching approach that I use is all about helping the coachee to
understand their issues, their goals and how they can reach them. The key

tool is the use of the open question – a question that invites a response
of plenty of words.
The coaching follows a structure known as the GROW model which stands
for:

G – Goal
R – Reality
O – Options
W – Will

In summary this involves establishing a goal. Looking at the reality – the
current situation. Exploring the alternatives options for reaching the goal.
And finally understanding how committed the coachee is to overcoming
the any barriers to reaching the goal – their will.
Coaching courses teach you a few things you should do as a coach. One
is make the coachee aware of the coaching process. Another is that the
coachee chooses the topic of the coaching session. This is because
coaching largely about raising the coachee’s awareness of the current
situation and of the coachee’s ownership of steps to change the current
situation. However, surly teenagers, and many others, are unlikely to
appreciate or care for the intricacies of coaching. In such situations I use
coaching by stealth. I use the coaching techniques but the coachee is not
aware that it is going on – at least not at first.

(G) The Goal
In tricky situations the first questions are important, so after some thought
I went for my opening gambit.
“What would you like to get for your next homework?”
This question is not entirely open. It invites a short response but it does
help to establish a goal. Thankfully, Jake took it in a positive way.
“Full marks – of course!”
So that’s the goal. Now for a little reality.

(R) The Reality
This is where I, as a coach, help Jake to understand the current situation,
that is: what has been achieved, what has been tried, who is involved.
I asked “What did you get for your last few pieces of homework?”
He told me – it was not an impressive collection. It included zeros for
homework not handed in and averaged about 30%.
“So your average is 30% and you aim to get 100% for your next homework.
Is that achievable?”
Jake shrugged the shrug of the bothered, “Probably not”
“What mark do you think is achievable?”
“I don’t know! 70%?”
During these last few brief questions I have been refining and qualifying
the goal. As I am listening to Jake’s response, I do not at any point think
about what my next question will be, I just listen. Only when Jake has
finished speaking will I consider what has been said. I’ll summarise what

“M

PHRAN RYDER
Phran is chairman of AgileNorth.co.uk – a non-profit organisation
for technical and business staff who wish to learn and share
experience of becoming and being agile – details at
www.agilenorth.org.uk. He aspires to be a code god and can be
reached at Phran.Ryder@lloydstsb.co.uk
AUG 2006 | {cvu} | 3

has been said and only then consider the next question. It is a simple cycle:
listen, summarise, ask.
I summarized: “So for your next homework you want to improve on your
average of 30% and get 70%?”
“Yes”
So we have considered the reality and as a consequence adjusted the goal.

 (O) The Options
In my coaching session with Jake, the initial exploration of the goal and
reality did not take long. This is not always the case. Neither is it the case
that exploration of goal, reality, options and will is sequential. In practice,
the questions move freely between the types but there is a general trend
from goal through to will.
The ‘could’ word appears in many options questions. ”What could you do
to get more than 30%?”
Jake contemplated briefly and answered “I could work harder.”
“What else could you do?”
“Cheat”

I couldn’t help smirking at this point. A little light relief is a good thing. I
chose to say nothing in the hope that more options would be forthcoming.
Sure enough he made a suggestion and after a few prompting questions
we had several options. The next aim is to prioritise these options. I
summarized the options and asked:
“Which is most likely to help you improve on your marks?”
Jake considered the options briefly and answered, “Working harder”
Working harder is a bit vague. I wanted Jake to consider exactly what he
means. “What is involved in working harder?”
Jake went quiet. He was clearly thinking, searching for ideas. It was very
tempting to come up with some suggestions myself. After all I have a
fountain of experience – I know lots of things. But making suggestions is
one of things that coaches are encouraged to avoid. In this approach to
coaching the goal, options and actions have to be owned by the coachee.
They must come from within the coachee. That way they are more likely,
indeed very likely to be followed. I waited and Jake responded.
“Spend more time on my homework?”
On the surface this answer seems like a good option. It is easy to measure
and thus be specific in setting targets. But what does it mean to Jake. I
asked,
“How would that help to improve your marks?”
Jakes expression was initially blank but then became bemused and
frustrated. He had no answer and said so. So I took a different tack. “What
prevents you from working hard?”
Jakes quick response “Its boring! I’d much rather watch TV.” came with
conviction.
Fair enough I thought. I thought of asking what could make it less boring
but remembered to phrase my question positively. “What would make it
more interesting?”
“Having the TV on?”
This was, to me, probably poor choice. But it is not really my place, as a
coach, to judge. So, of course I asked for more options. “What else could
make it more interesting?”
“Having the radio on?”
“Anything else?”
There was a pause. Jake seemed to be thinking. The pause continued,
became pregnant, and gave birth. During moments of coaching silence it

is very tempting to fill the gap, to rephrase the question, to ask another
question, or, Q forbid, suggest an answer. But coaching is more than asking
questions and listening. Good coaches use all senses available to them and
this time my senses drew my attention to his body language. I felt he had
an answer waiting to materialize; he just needed to narrow his angular
confinement.
“I don’t like being on my own?”
I could feel his relief at having said this, it clearly meant a lot to him. His
answer wasn’t really an option so I rephrased it to clarify. “So you would
like some company when you are doing homework?”
“Yes”
We continued for a few minutes and came up with more options. I
summarized these and then asked “Which of these would be most likely
to make doing the homework more interesting?”
The answer came shyly but quickly – “I’d like some company”
“Who would you like to have for company?”
Jake looked up. Looked me in the eye and said – meekly, “You”
“Well.” I said “I’ll ask me but I am sure I will do it.”

Jake was so obviously pleased that it knocked me off my stride.
What does this mean? Am I not spending enough time with my
son? Am I neglecting him? I put these thoughts to one side and
continued with the coaching process. I used questions to take
Jake through some of the other options and he chose some others

that he could try.

(W) The Will
I then started to consider Jake’s will. This looks at things that might prevent
Jake reaching his goal. “What might prevent you from doing your
homework with me?”
“You might be too busy”
“How can you make sure I am not too busy?”
“I could let you know when I am going to do my homework”
“What if that doesn’t work?”
With a cheeky smile he came with a threatening reply “I’ll give your PDA
a bath.”
“What else could you do if I am not available?”
“I could listen to the radio or I could see if mum will or…”
During the proceeding minutes Jake was clearly enjoying coming up with
ideas and stating how he would overcome barriers. My questions where
directed at making sure Jake had a good idea of how he will reach his goal.
This involves, again, exploring the reality, considering options and
deciding which he would use in a number of situations. But at no point did
I make a suggestion or give direction. It had all been Jake’s thinking.

The summary
So here I was sitting with Jake, mixing idle banter and work. And I was
enjoying it. And Jake’s homework was being done and being done very
well.
I returned to the cause of my mumbling. My essay on coaching – I typed
my summarizing paragraph.
Many Agile methods emphasise the important role of the coach without
going into detail about what it is to be a coach. This article does not claim
to provide that. There are a numerous angles to being a coach. This article
looks at just one of them. It attempts to illustrate a style of coaching that
should form a major part of a coach’s box of tools.
The technique uses open questions that are structured around the GROW
model. Coaches use questions to raise awareness, ensure ownership,
augment commitment. During the process they avoid making judgements,
offering suggestions or leading towards a particular solution. Instead they
paraphrase to clarify, summarise for review and listen.

coaching is more than asking questions
and listening
4 | {cvu} | AUG 2006

Professionalism in Programming # 39

Coaching – the Art of Not Teaching (continued)
I have taught, coached, and mentored for many years. I am sure I am good
at it. But having been on a coaching course I am painfully aware of how
often I tell, i.e. hand out a solution and hope it would be understood.
This may sound simple but if you really want to be a good coach you could
read about it – try Coaching for Performance ISBN 1 85788 303-9. But I
think you need to experience coaching on a coaching course. See for
example http://www.performanceconsultants.co.uk.

The punchline
“Dad, what is the connective noun for birds?”
“Excuse me?”
“The connective noun, you know like a herd of cows”
“You mean the collective noun?”
“Yeh”
“Oh, it’s a ... flock.”

 “Dad, you’re a coach... what is the collective noun for what you do?"
“I don’t think there is one for coaches.
“What about a train of coaches?”
“Nice one.”
“Dad, your business card says you are a consultant. What is the collective
noun for consultants?”
“I don't think there is one”
“Shall we make one up?”
“How about a shaft.”
“Why a shaft?”
“Well, that is what they generally do to people and it is where they should
be kept – in a bottomless one.”
“Dad you’re a consultant."
“I prefer the term coach.”
Effective Version Control #1
Pete Goodliffe describes how to manage your source

code simply and effectively.

ersion control is a necessary evil, the prerequisite for a robust
development process. We all know that we should do it. Sadly many
development shops get this foundational act wrong. Version control

isn’t rocket science, but it does require some careful thought and planning,
and more than a little discipline.
This series of articles will lead you down the path to effective version
control. Following a distilled form of Meyer’s ‘Effective’ book structure,
I present a series of items with simple headlines followed by deeper
discussion. Read this as it suits you: save it for later and pick out the bits
you’re interested in, or start from the beginning and work to the end.
I’m aiming at both software developers and version control administrators
– I present rules for kings and knaves. We all know that rules exist to be
broken, but the following items describe version control best practices.
You’d better have a good (and justifiable) reason to avoid any of them. If
you’re currently implementing all of these items then well done – you’re
an above average version controller already!
This is an enormous topic, and there's a lot to say. Even though I present
this as a series of articles rather than a single behemoth (I think you'd
struggle to read that monster about as much as I'd struggle to write it!) we
really only have time to skim the surface of version control. Large books
could (and have) been written about this topic. Consider this a whirlwind
tour. Caveat lector.

Basic principles
These first few items are the most fundamental – the groundwork upon
which our version control story will build. You might imagine they’re the
most obvious, but some of these are quite often missing in development
team cultures.

1. Use version control

Version control is not optional. It is not a nice-to-have. It’s not something
to add when you ‘get around to it’. Version control is the backbone of your

development process; without it you lack structural
support. Version control is the mechanism by which
multiple programmers collaborate on the same
codebase, and your source code time machine. It
allows you to see how the code changed over time,
who made a particular modification, and why [1].
Without version control, your development efforts are
at risk. You have no central backup, and no definitive
‘master’ source tree. You're left at the mercy of computer/
hard disk failure, or the accidental deletion of those vital
source files. You could try to do the same job manually, but
humans make mistakes and you’ll inevitably land in hot water. Why do
by hand what others have helped you do automatically? (See item 21 for
more of this kind of philosophy.)
As you can see, it’s vitally important to use version control. You should
use it from the very start of a project, even for small projects (small projects
grow, and soon become unstoppable software organisms). You might not
think that the code you’re writing is ‘important enough’ for version control,
but it is always worth the effort. A source code repository provides a
structured working process, helps you correct mistakes, manages software
release versions, and provides defined single point of backup – a safety
net for even the least critical projects.

2. Deploy version control well

So you definitely need to install version control, and you need to deploy
it right. What does this mean? It means several things, each of which we’ll
look at in this item. First of all: you need to use the right tool. This one

V

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@cthree.org
AUG 2006 | {cvu} | 5

simple choice opens up the religious world of version control advocacy.
Don’t ask anyone’s else’s opinion, or you might loose yourself in a So you
definitely need to install version control, and you need to deploy it right.
What does this mean? It means several things, each of which we’ll look
at in this item. First of all: you need to use the right tool. This one simple
choice opens up the religious world of version control advocacy. Don’t ask
anyone else’s opinion, or you might lose yourself in a heated VCS
argument that lasts longer than your next development project.
How do you pick the right version control tool? There are many tools out
there. They cover a vast range of maturity, scalability, features, modes of
operation, and more. They range from the simpler (single server) systems
like Subversion, CVS, and Perforce, through ‘distributed’ systems like
BitKeeper, and Arch (with their multi-site hosted repositories and complex
source tree models), to the enterprise-capable systems like ClearCase (with
all the complexity and baggage enterprise deployment brings). Choosing
is not a simple or obvious task. Good luck!
I guess you’d like a little help here? You’ve got to make a pragmatic choice
based on your project needs. But first, let me introduce you to the golden
rule of version control. It’ll crop up many times, and is applicable in more
fields than this one. Here it comes, so pay attention:
Simplicity is a virtue. When you have a choice, make the simplest one you
can right now that will not adversely affect your choices later down the
line.
There, it’s not complicated, is it? All sorts of version control problems can
be neatly dealt with using this golden rule. Applying it to your choice of
VCS tells you not to plan for the case when your company IPOs, gains
300% more developers and requires a vastly larger version control
infrastructure. If right now you have five developers (and a pot plant) and
you’ll not grow beyond ten programmers (and two aspidistras) for the
foreseeable future then base your tool decision on this information.
The more complicated tools offer many features. They not only come with
a much higher price tag (which shouldn’t be the deciding factor in your
choice of VCS, but in some cases – especially when working on projects
at home – might be important), they come with a swathe more complexity.
They have higher admin overhead, a steeper learning curve, and there’s
more to go wrong. Unless you provably need that extra overhead, steer well
clear, and select a more suitable – simple – tool.
It’s beyond the scope of this article to run a feature comparison of the
version control tools available, but there are a couple of notable systems
that bear some mention. First of all: CVS. This is a venerable, well-proven
VCS that is used worldwide for open source development, and is relied
upon by many, many commercial projects. It works. It’s simple. People
know how to use it. It integrates into all good IDEs, and there are many
third party CVS extensions around. It comes highly recommended [2].
Howeve r , CVS i s
beginning to show its age.
It lacks atomic commits
(guaranteed transactional
server behaviour) and you
can’t rename files or move
things around easily.
Subversion is a relative
ne wcom er , an d was
designed to be CVS’s
successor. It fulfils this
goa l admi rab ly , a nd
provides the CVS-like
development model with a
more modern architecture
and w i th e xc e l l en t
s ca l ab i l i t y . I have
deployed Subversion on
several sites and always
been very satisfied with its
performance.

Before we get too far in this foray into version control, it’s important to
understand exactly what we’re talking about – by defining a few key
terms. Whilst this knowledge is essentially a prerequisite for the reader,
it will be still useful to quickly review the basics.

Version control – The process of managing multiple revisions of a set
of files. These are commonly the source files for a software system (so it
is often called source control), but it could just as easily be revisions of a
documentation tree, or of anything else you’d work on in a file system.

Repository – The version control server’s central store of the versioned
files. The repository records every revision of each file it manages,
allowing you to revert to a particular version, or to investigate how the
file looked at a specific date.

Working copy – Sometimes known as a sandbox, this is your copy of
the source tree, checked-out from the repository and placed on your
computer’s local hard disk. You work on the files here, in isolation from
anyone else working at the same time.

Check-out – The act of creating a working copy from a repository
image. Some version control systems also require you to specifically
‘check out’ each file you want to open for editing, providing a form of edit
contention control through file reservation.

Check-in – Or committing, the act of sending your new version of a
particular file (or set of files) back to the server for inclusion in the
repository.

Branching and merging – A branch is a parallel copy of a set of files in
a repository, acting as a ‘fork’ in development. You can create a branch
to work on a feature in isolation, without affecting the main development
effort. Once you’ve completed work on the branch, you can merge it
down to the mainline development branch, or stop working and leave it
as a development dead-end. The main code branch is often called the
trunk (for obvious reasons).

Tag – A symbolic name associated with a set of file revisions. Used to
mark important development milestones in the repository (for example:
each major software release version). We'll look at branching and
tagging in a later article.

Configuration management – Not to be confused with version control,
software configuration management is a set of procedural and
management processes to ensure that software is delivered correctly,
on time, to budget, with minimum issues, in a repeatable and reliable
way. CM certainly includes version control as one of its central tenets,
but it is far, far, more. This article focuses solely on version control.
(‘Effective configuration management’ could fill several books!)

VCS – Short for Version Control System. You might also see SCMS
which stands for Source Code Management System.

What is version control?

Fi
gu

re
 1

Figure 2
6 | {cvu} | AUG 2006

I suggest that if you can’t make a decision on any other grounds, start
looking at Subversion and require any other tool to provide a compelling
reason to move you away from it.
Now you’ve chosen a VCS, consider these other deployment issues:

Only use one version control system per project. Ideally use only
one version control system per company; it cuts down on complexity
and confusion, and helps you to share code across projects. You’ll
also enjoy administration economies of scale. To achieve this you
might want to migrate some of your source code out of a legacy VCS
into the shiny new system. We’ll look at that in item 11.
Don’t configure the system unusually. Use the simplest deployment
possible. Don’t overcomplicate VCS use with baroque processes or
complex check-in strategies. When you deploy VCS, match it as
closely as possible to the current development process of your
organisation, with an eye to future best practices (unless, of course,
you’re working totally ad-hoc).
Establish the right working practices (see the rest of this article!),
and determine how version control fits into your overall
configuration management strategy. Remember that version control
alone will guarantee nothing. Alongside coding standards, a culture
of solid units tests, and a managed software release procedure (see
item 20) your work will be of an excellent standard.
Address hardware concerns. Put the VCS on a scalable server with
enough disk capacity, with some room for growth (in users and code
size), with a reasonable plan for extensibility, and with an adequate
network infrastructure to support day-to-day use.
Document your version control strategy. Provide a five minute
primer that describes your tool set, where the repositories are hosted,
and how to get up and running with them. Provide pointers to other
VCS manuals. Make sure that your development processes are clear.

3. Know how to use your version control tool

Having version control is essential. Selecting the right system is
paramount. But once you’ve got a VCS, knowing how to use it properly
is a prerequisite. I’ve seen more version control disasters caused by
inexperienced developers trying to do something clever than by
mechanical failure or VCS bugs put together. (It’s remarkable how often
these human errors are blamed on system problems.)
The law here is simple: don’t do anything unless you know what you’re
doing, and exactly how to do it. Even if you do know how to perform some
complex task, always take a practice run first (try it out on a test repository,
or run the commands in ‘test mode’ to see what will happen).
Learn how to use your version control tool well. You don’t have to
necessarily know it inside-out (although that level of knowledge will never
hurt you). But you must know the 50% you routinely use. Never use the
tool without switching on your brain first.

This is a good advert for choosing a simple tool. You’re more likely to
avoid accidents by not having complex VCS behaviour to understand, and
any problems you do encounter will be easier to recover from.

Stay tuned...
In the next instalment we'll look at managing our code repositories and how
to track third party code, before investigating how to work with version
controlled code. We'll conclude by looking at tags and branches, and how
to make reliable source code releases.

Notes
1. This is more than software archaeology. It’ll help you retrieve the

exact code that built a 5-year-old release version of your product,
which now contains a critical fault.

2. CVS also has good migration paths to other tools. It’s the de-facto
VCS, and every other vendor wants CVS users to move to their tool
set. So many CVS repository conversion tools exist. You can start
here and get more adventurous later.

Pete’s book, Code Craft, is out soon.

One of the fundamental differences 'twixt version control systems is their
file locking model. This profoundly affects one of the most basic
developer activities: editing files. There are two models:

Locking (or strict locking) systems mark all the files in your working
copy as read-only. You can’t edit them. In order to fiddle with a file you
have to ask the VCS nicely for permission to edit. This is known as
checking out a file. The server marshals these requests and prevents
two developers from opening the same file in the same branch at the
same time.

As shown in Figure 1, this prevents you from making changes that might
interfere with another person’s work. It does, however, create a large
procedural hurdle for even the smallest edits. It can also be intensely
frustrating: if Dave checks out foo.c, and then goes into a meeting for
three hours – or worse, on holiday for a month – you’re left tapping your
foot, waiting patiently until you can edit it.

Concurrent (or optimistic locking) systems, on the other hand, free you
from this locking hurdle by managing concurrent development for you.
Your working copy is perfectly modifiable, and you can change it at will.
The VCS sorts out the consequences of developers working on the
same files.

Usually this is perfectly harmless; if two developers modify different parts
of the same then file their changes get automatically merged together.
Magic. However, if they both modify the same lines of code, the VCS will
moan when the second developer attempts to check-in, marking their
copy as conflicted. The developer has to resolve the conflicting changes
and then attempt another check-in. This is a lot less painful than it
sounds, and seldom happens in practice. This is shown in Figure 2.

Locking Models

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

-What are you doing right now?

-What technology are you using?

-What did you just explain to someone?

-What techniques and idioms are you using?

If seeing your name in print wasn’t enough, every year we award prizes for the best published article in C Vu, in
Overload, and by a newcomer.
AUG 2006 | {cvu} | 7

Gymnastics revisited
Last issue's series of brain teasers and gratuitous asides set a lot of you
thinking. Thanks to everyone who replied! I promised to put the best
answers in print, and true to my word, here they are...

The winners and also-rans

Tim Penhey deserves credit for getting the number series right, although
he loses points because originally thought that I'd made a mistake in the
puzzle. Thomas Hawtin also got the number series right. The winner
for this puzzle, though, was Anthony Williams, who managed to send
me the correct answer before anyone else. Just. Buy yourself a drink to
celebrate, Anthony!
Anthony’s ‘Spot the difference’ answer was good, but not the one I was
looking for: The Smalltalk sample is the odd one out, because all the
others are idiomatic in their specified language for starting an iteration.
Iteration in Smalltalk would use something like collect: or inject: into:,
a bit like the Ruby version.
Paul Smith fell into my obvious trap in the number puzzle, but deserves
credit for his honest ‘Spot the difference’ answer: Can I find all the
differences? No. That’s probably the best answer that anyone gave! He
also got the correct ‘Odd one out’ answer: I guess Ruby (not having any
knowledge of Ruby at all...) because it looks as if the others just create
an iterator and initialise it to refer to the first value of stuff, but the
Ruby one calls the contained block for each item in stuff as well as
making i an iterator. Spot on, Paul!
Jon Jagger guessed C was the odd language out as it was the only listing
that didn’t mention stuff. Close, Jon, but no cigar.
Reece Dun wins the Eager Beaver award for getting his answers in first
(by a margin of less than an hour). It took him a run-up to get an answer
to my number puzzle, but unfortunately, he didn’t get the series quite
right. His other answers were excellent, though, including a very
comprehensive ‘Spot the difference’ answer:
The first example is C++ and the second is the same code in C.

1. Include the C++ (<iostream>) or C (<stdio.h>) output header.

2. C++ defines swap in <algorithm> whereas you have to write your
own in C:

a) C doesn’t have templates, so you have to write each
permutation of swap as needed, by hand;

b C doesn’t have references, so you need to pass the values by
pointer if you want to modify their content.

3. The interface to bubble_sort follows the languages paradigms:

a) C++ bubble sort operates on a [first, last) iterator pair,
whereas C uses array, length. NOTE, the C version can be
expressed as [array, array + length).

b C++ bubble sort can operate on any iterator type (i.e. any
underlying container, and even subrange), whereas the C
version is restricted to C-style arrays.

c C++ bubble sort can operate on any data type that the
underlying sequence provides, whereas the C version is
restricted to integers.

d C++ bubble sort is vulnerable to 2 programming errors:

bubble_sort(c.end(), c.begin());
// wrong way around
bubble_sort(c.begin(), d.end());
// different containers!

but modern C++ libraries (e.g. GCC and VC8) can detect these
in debug mode. C bubble sort is open to buffer overrun if used
incorrectly:

int data[5] = { 5, 3, 7, 4, 2 };
bubble_sort(data, 10); // oops! too big!

4. The first C++ for loops follow STL best practices, e.g.:

for(first = begin(), last = end(); first != last;
++first)

because you should always use != to compare iterators. This is
8 | {cvu} | AUG 2006
because you may be operating on objects and not pointers, whereas
with the C version, you are operating on pointers, so < is used to
compare them.

5. In the second loop, the C++ version uses j < i to compare
iterators; I assume this is a mistake on the programmers behalf, and
they intended to write j != i instead.

NOTE: Using j < i is valid, but (in this case) unnecessarily
restricts the C++ bubble_sort to random access iterators. In the
next version of C++ (C++0x), there will be support for concepts,
allowing something like:

template< typename Iterator >

 where ForwardIterable< Iterator >

void bubble_sort(Iterator first, Iterator last){
... }

so this bug (if indeed it is a bug) can be picked up immediately by
the compiler.

6. Another difference with the for loops in the C++ and C versions is
that the C versions loop over the indices into the array, whereas the
C++ version iterates over the elements in the sequence.

7. When comparing the two values in the inner if statement, the C++
version dereferences the iterators to get at the values, whereas the
C version accesses the index into the array using array[i].

NOTE: array[i] is equivalent to *(array + i), so the C++
version (*i) will be faster as it requires less computations.

8. When swapping the values, the C version uses the swap that was
implemented,whereas the C++ one uses a special
std::iter_swap method. Unlike std::swap (which would swap
the iterator pointer values!), std::iter_swap will swap the values
that the iterators point to: just like the hand-written C method.

NOTE: If you are performing a bubble_sort on
std::list< std::string > with the C++ version, the library
implementer could have provided a version of iter_swap that will
avoid temporary copying of the strings, using std::swap on them,
e.g.:

template< typename Iterator >

void iter_swap(Iterator a, Iterator b)

{std::swap(*a, *b);}

meaning that you get efficiency gains while maintaining the flexibility
and readability of using the standard library. The Dave Abrahams
and Alex Gutovoy book on C++ template meta programming has a
section on the possible optimisations that can be made to the
iter_swap function.

Reece also tried far too hard in ‘Follow the leader’: Bjarne Stroustrup
wrote a program in C++ that, while it made it harder to shoot himself
in the foot, caused a core dump resulting in the machine blowing up,
taking his leg in the process ;). Scott Meyers forgot his Effective C++
lessons when he wrote some code that resulted in an infinite loop. Herb
Sutter earned eternal fame and glory by producing C++/CLI, the
equivalent of fitting a square peg (C++) into a round hole (CLI) and (for
the most part) succeeding! Andrei Alexandrescu devised a new policy
for his smart pointer class – RandomErrorOfTheDay – that resulted in
a segfault. Thanks, Reece!

Answers

For the record, the correct answers to each puzzle are:
Number puzzle: By the end of main n=7. The sequence was
4,7,3,4,2,8,12,1,2,16,19,1 (this number lead to the obvious trap – did
you fall foul of it?),5,3,0,1,17,8,9,1,6,7.

Spot the difference: There are far, far too many differences to describe
here, but they are all eclipsed by one simple fact. The code on the left
worked, and the code on the right didn't! I can't believe that no one
spotted that!

Follow the leader: Herb won. Thankfully no one got that puzzle wrong.
Even my daughter managed it.

Odd one out: Each of those code snippets idiomatically created an
“iterator” in their language. But the Ruby code was the only snippet that
would have attempted to perform an operation on the iterated range.

The Structure and Interpretation of
Computer Programs Mentored Project

Thomas Guest writes a progress report for this project.

o date, half-a-dozen students, give-or-take, have been working
steadily through the exercises in Abelson and Sussman’s book
Structure and Interpretation of Computer Programs [1] (SICP).

You may not be aware of the mentored developer projects, or if you are,
you may be interested to learn a little more about how they operate. You
may be curious to find out why anyone interested in studying computer
programming would want to use Scheme, a dialect of Lisp—an old and
notoriously uncompromising programming language. This article cannot
provide definitive answers to these questions: for answers, you’ll have to
visit websites, digest emails, watch lectures, work through exercises, etc.
Instead, it offers pointers to more information and an invitation: It’s still
not too late to join in.
Let me also mention at the outset that Mike Small leads this project. I’m
just a student who has volunteered to write a report.

Mentored developer projects
To find out more about ACCU Mentored Developers’ projects, visit the
Members’ Section of the ACCU website. Projects are typically set up by
a group of ACCU members who wish to study a book, a technology, or
similar. Each project will have a leader, who kicks things off, assigns tasks,
and oversees the schedule; students, who actively work on the project;
mentors, who provide expert advice; and observers, who are free to
contribute as little or as much as they please.
Activity takes place on email lists. The accu-mentored-developers mailing
list is a low-volume list mainly used to announce when new mentored
projects start up—if you haven’t subscribed, I recommend you do. When
a new mentored project starts, it spawns off its own separate email list. This
will be a high volume list, on which project work and associated discussion
actually takes place.

The ACCU SICP project
Mike Small initiated this particular mentored project early in 2006, issuing
an invitation on the accu-mentored-developers list.
As already stated, the project was based on Abelson and Sussman’s book,
Structure and Interpretation of Computer Programs—a book which has
been used in undergraduate courses in many universities to teach students
general principles of programming. Being a text book, it’s packed with
exercises, and these exercises are what form the basis of our study. The
complete text of the book is freely available online, and, what’s more, a
full set of videos of the lectures can be downloaded.

Schedule
After much discussion and a few iterations, we seem to have settled on a
sustainable schedule. Each iteration starts with Mike assigning exercises,
one per student per day. As an example, here’s the schedule for the last
few exercises in Chapter One.

Thu 23rd March, Tim, Exercise 1.41
Fri 24th, Pal, 1.42
Mon 27th, Jan, 1.43
Tue 28th Mike, 1.44
Wed 29th Thomas, 1.45
Thu 30th Martin, 1.46

So, this particular round of exercises starts with Tim submitting his
solution to Exercise 1.41 to the email list on Thursday 23rd March.
Everyone then comments on this solution. On Friday, Pal’s solution to the
next exercise gets posted.
This schedule might seem rather ambitious, but, since the book contains
over 350 exercises, we need to keep things moving. As you can see, we
get the weekends off, and, if someone can’t complete an exercise, he just
says so and anyone else is free to step in. Besides, many of the exercises
are trivial, and nearly all can be answered in just a few lines of code.

A few lines of code
As already mentioned, the book uses Scheme as a language for teaching.
Yet Scheme itself is never really taught:
In teaching our material we use a dialect of the programming language
Lisp. We never formally teach the language, because we don’t have to. We
just use it, and students pick it up in a few days.
Amazingly, this turns out to be true. I find myself learning the language
by using it. Sure, some of the exercises are there to help me on my way,
but most of them are aimed at discovering more fundamental things about
programming.
Scheme is also a powerful language. You don’t have to type a whole lot,
and, by virtue of the interpreted environment, you can reshape and test your
code as you go. There’s no need for Makefiles or compilation.
Should you require more information on the language, the Standard is
available online at http://schemers.org/Documents/Standards/R5RS.
Scheme programs are concise and so too is the standard which, at just 50
pages, is more of a pamphlet than a doorstop.

Where are we?
As I write this (April 2006), we’re well into Chapter 2 of the book, which
starts to talk about layers of abstraction, data structures and so on. Chapter
One, “Building Abstractions with Procedures” went into some detail on
the Lisp evaluation model, before covering:

recursive and iterative processes
the space/time complexity of a program
functional programming

Recursion and iteration

Scheme does not need any special looping construct [5] since recursive
procedures (procedures which call themselves) can be used to implement
iterative processes. The classic example is the factorial function, which we
might consider implementing using a recursive procedure:
 (define (factorial n)
 (if (= n 1)
 1
 (* n (factorial (- n 1)))))

T

THOMAS GUEST
Thomas Guest is an enthusiastic and experienced computer
programmer. He has developed software for everything from
embedded devices to clustered servers. His website can be found
at http://www.wordaligned.org

Flow
chart 1
AUG 2006 | {cvu} | 9

This turns out to be an expensive implementation, since, to evaluate a
particular factorial, the Scheme interpreter needs to build a chain of
deferred multiplication operations, which can only be applied when it
finally reduces the input argument to to the special case value, 1. We have
here a recursive procedure which generates a recursive process.
In contrast:
 (define (factorial n)
 (define (iter product counter)
 (if (> counter n)
 product
 (iter (* counter product)
 (+ counter 1))))
 (iter 1 1))

uses a recursive procedure iter to implement an iterative process. At any
point in the calculation of a factorial, the complete state of the function
is held in just three variables, product, counter, and n.
Some points for the curly-bracket language readers.

1. Notice the nested inner function, iter, which has been scoped
within the factorial function since it has no real use outside this
scope. Scheme also supports unnamed, or lambda functions.

2. I could have used the usual mathematical symbol, !, for factorial, if
I wanted.

 (define (! n)
 ...)

 (! 9)
 ;Value: 362880

(Note that in Scheme, logical not is written not.)
It appears that pretty much any contiguous combination of non-
whitespace symbols can be used to name a function. For example,
the built-in increment function is 1+, which we could happily alias
to ++ if we wanted:

 (define ++ 1+)

Predicates often end with a question mark, which reads nicely.
 (if (even? n) ...)

3. Numbers aren’t constrained to fit into a fixed number of bits, so we
can calculate:

 (! 2006)
 ;Value: 2144794478704779 ... 000000

4. I was also pleased to find that Scheme builds in support for rational
and complex numbers:

 (+ 7 (/ (sqrt -1) 3))
 ;Value: 7+1/3i

Space/time complexity

I don’t suppose analysis of the space and time requirements of a program
will come as anything new to a seasoned programmer, though we may
choose to measure rather than analyse. There really is nothing like running
an interpreter and directly experiencing the difference between an O(n)
and an O(log(n)) implementation of a function to bring the lesson home,
though.

Functional programming

The functional style of programming may be a little more novel to curly-
bracket programmers. By functional programming, I mean a style of
programming where powerful abstractions can be built from higher-order
functions—functions which apply to functions, that is—and where
functions are first-class objects.
As an example, here is all we need to implement a function which will
n-fold smooth another function. Note the higher-order helper functions,
compose, which forms the composition of two functions, and repeated,

which repeatedly applies a function. Both these helpers are completely
general purpose building blocks.
 (define (compose f g)
 (lambda (x)
 (f (g x))))

 (define (repeated f n)
 (if (= n 1) f
 (compose f (repeated f (- n 1)))))

 (define dx 0.1)

 (define (average . items)
 (/ (apply + items)
 (length items)))

 (define (smooth f)
 (lambda (x)
 (average (f (- x dx))
 (f x)
 (f (+ x dx)))))

 (define (n-fold-smooth f n)
 ((repeated smooth n) f))

Can I Join in?
Yes—the email list is open to all ACCU members. Observers are always
welcome. We’d really like some more mentors. It’s still not too late to join
in as a student either, and more students would be very welcome. By
reading the email list archive you can get an idea of what all this involves,
and also catch up with the exercises you’ve missed.

Why would I want to join in?
I can only provide a personal answer to this question. For me, it has much
to do with a growing interest in computer languages, and in Lisp in
particular. As Kevlin Henney writes [2]:
Many programmers develop an infatuation with Lisp at least once in their
programming lives. If you haven’t yet, now is your chance.
I’m quoting Kevlin out of context—he’s not talking about the chance to
study SICP with a group of like-minded people, he’s introducing an article
which provides a C++ implementation of Lisp-style list processing.
Perhaps this is the conventional reason for studying Lisp: you may never
use it in anger (how many job adverts are there for Lisp programmers?),
but it will inform you and make you a better programmer. Thus Eric
Raymond [4] advises would-be hackers:
Lisp is worth learning for a different reason—the profound enlightenment
experience you will have when you finally get it. That experience will make
you a better programmer for the rest of your days, even if you never
actually use Lisp itself a lot.
Paul Graham [3], though, goes further. His book, Hackers and Painters,
was what really urged me to find out more about Lisp. In this book, Graham
describes Lisp not as a language to be learned as an end in itself, but as a
superb language for designing and writing computer programs.

Not all languages are equal
Graham’s starting point is that not all languages are equal. Few readers of
this article would dispute this, I think, though many of us would qualify
such comments with questions about context: What problem are you trying
to solve?
Lisp is a multi-paradigm language. So too is C++, but the most powerful
C++ paradigm, generic programming, is problematic. Generic C++ takes
too long to compile, and what’s worse, when it won’t compile, all too often
the compiler spouts nonsense. And often generic C++ looks clumsy: we
want to write high level abstractions, but we end up holding down the shift

Listing 2
10 | {cvu} | AUG 2006

key to punch in angle brackets, colons, and #defines to work around
compiler limitations.
When I found out how simple generic code was in Python (in a
dynamically-typed language all code is generic), and how nicely Python
supported every C++ paradigm I cared about, and more besides, I adopted
it as my hobby-project language. At the same time, I wondered if there
wasn’t another step I could take: as C++ is to Python, perhaps so Python
is to some other, yet more powerful language?
Graham argues Lisp is that language, the language which other languages
are slowly catching up with.

Some languages are more equal than others
Why does Graham rate Lisp so highly? Hackers and Painters provides the
authorative answer, but I’ll attempt to summarise the main arguments here:
Lisp is good because of its power. Lisp is a high-level language which
enables you to write concise, beautiful code. Programmers need a language
which allows them to express themselves clearly and to constantly revise
and test their code. Why, then, isn’t everyone using Lisp? Partly because
programming language choices are made by managers, not hackers, and
partly because Blub programmers can only think in terms of Blub, and
therefore cannot begin to appreciate what Lisp can do.[6]
I found these arguments provocative and entertaining, but what really
impressed me was the quotation Graham cites as the single most important
thing for people to remember when writing programs:
Programs should be written for people to read, and only incidentally for
machines to execute.
Initially, this statement seems radical—isn’t the whole point of programs
that a computer can execute them?—but on reflection, I agree. I believe
this principle should guide every aspect of our programming. It turns out
that the quotation appears in the preface to Structure and Interpretation of
Computer Programs.

Studying SICP
As you can see, my interest arose more from an interest in Lisp rather than
a particular interest in studying computer programming, which is the real
subject of SICP. I’ll leave it until my next update to report more fully on
how I’m finding Lisp: so far, I have been enjoying the language, but the
development environments seem primitive—and I haven’t begun to
investigate library support.
The book itself is written with intelligence and wit. I read quite a few
computing books but don’t often have the time or motivation to work
through the exercises. The ACCU project helps with the motivation, and
my efforts are being repaid in full.

Notes and references
1. Abelson and Sussman, Structure and Interpretation of Computer

Programs, McGraw Hill, ISBN 0070004846.
2. “From Mechanism to Method: A Fair Share, Part 1”, Kevlin

Henney, http://www.ddj.com/dept/cpp/184403842
3. “Hackers and Painters”, Paul Graham,

http://www.paulgraham.com/hackpaint.html
4. “How To Become A Hacker”, Eric Steven Raymond,

http://www.catb.org/~esr/faqs/hacker-howto.html
5. In fact, Scheme does provide two special forms for looping: do, and

the more general named let.
6. This is the Blub paradox. Blub is a hypothetical programming

language, whose name has been chosen so as not to offend (or
prejudice) users of a real programming language.

Thanks
Especial thanks to Mike Small for running this project, and for providing
some of the raw material which went into this report. Thanks also to the
other members of the mailing list.

The ACCU website is at http://www.accu.org

The primary project resource is the email list itself: http://
www.accu.org/mailman/listinfo/accu-mentored-sicp

The book, Structure and Interpretation of Computer Programs, by
Abelson and Sussman, is published by MIT Press. The full text is
available online at: http://mitpress.mit.edu/sicp/full-text/book/
book.html

Videos of the accompanying lectures can be downloaded from:
http://swiss.csail.mit.edu/classes/6.001/abelson-sussman-
lectures/

Schemers.org, an improper list of Scheme resources is at:
http://www.schemers.org

Finally, more information on this mentored developer project can
be found on the project Wiki: http://wiki.wordaligned.org/sicp

Resources
AUG 2006 | {cvu} | 11

XP Day 6
27th & 28th November, 2006, London, UK

Two day international conference about
Agile Software Development suited for
practitioners at any level of experience, with
a strong focus on practical knowledge, real-
world experience and active participation of
all attendees.

Keynote speaker: Joshua Kerievsky.

More information at www.xpday.org.

More than XP. More than one day.

class File {
 public:
 File(/* some arguments */) : isValid_(true),
... {...}
 File(/* other arguments */) :
isValid_(true), ... {...}
 void access() {
 if(pathNotFound()) isValid_ = false;
 else if(openFailed()) isValid_ = false;
 else if(readFailed()) isValid_ = false;
 }

 bool isValid() const {return isValid_;}
 // Other member functions ...
 private:
 bool isValid_; // See Note 1 below.
 // Other data members ...
};
/* Note 1: This bool is initialized to true, and
may be set to false, but is never set back to
true.
*/

Listing 1

Trip Switch Booleans in C++
Software with a circuit breaker? Bill Rubin explains how.

’ve long held the view that advances in programming have come as
much from adding constraints as from adding features. Computers were
first programmed in machine language with no constraints. Instructions

and data could be freely intermixed, either being used as the other. The
advance of high-level languages (FORTRAN, COBOL) constrains
instructions and data to be separate. The advance of structured
programming (C, PL/I) constrains the flow of control among statements.
The advance of object-oriented programming constrains the scope of
functions and data. This short note proposes two modest C++ classes to
constrain the way a boolean variable can be changed. These classes
encapsulate what I call the trip switch protocol. When this protocol is
applicable, the classes reduce software entropy, compared with using bare
bool variables.
A trip switch is a two state device like a common household circuit breaker.
A circuit breaker can be manually “initialised” to the “on” state, and can
automatically be “tripped” into the “off” state, but it cannot automatically
change back into the “on” state. Once off, it stays off. The protocol of a
trip switch can be represented by a bool variable with “on” and “off”
mapped into true and false values.

Unencapsulated trip switch
Consider how I first used the trip switch protocol without encapsulating
it: I was doing file I/O with a class File. I defined a bool data member
called isValid_ and used it as a trip switch to manage file validity as
shown in Listing 1. (The File class is pseudo-code, not really what I
wrote but simply intended to illustrate implementation of the protocol).
Data member isValid_ is initialized to true in each constructor.
During each stage of accessing the file, isValid_ is set to false if
something goes wrong. Once false, it makes no sense to set it to true.
For industrial-strength code, it is good programming practice to include
the code comment Note 1 to document the intent of the design
surrounding the isValid_ usage. Without this code comment, future
readers of the code can never be sure of the intent. They can search the
code base and discover that isValid_ is never explicitly assigned the
value true, but that fact alone does not imply that the designer intended
that it never should be. Thus, Note 1 gives important guidance, not
otherwise available, to maintainers and other code readers.

Problems with unencapsulated trip switch
There are at least three problems with the above approach of using a bare
bool data member to implement the isValid_ trip switch protocol.
Firstly, the decision to employ the trip switch protocol is not made in one
place, but is distributed throughout the File class. In a realistic setting,
the statements involving isValid_ would not be grouped together, but
would be buried among all sorts of other concerns in both header and
source files. The design principle of separation of concerns is not well
served.
Secondly, it is easy for a maintenance programmer to overlook Note 1,
especially when the File class is much more complex than shown here.

If this occurs, the maintenance programmer may degrade the code base by
introducing an assignment statement
isValid_ = true;

somewhere in the File class implementation. This statement degrades the
code base for one of the following two reasons:

1 The maintenance programmer inadvertently violated the design
intent, possibly introducing a bug.

2 The maintenance programmer correctly assumed (or was indifferent
to) the design intent, and deliberately changed it. But because the
programmer overlooked Note 1, it remains in the code, and is now
wrong. A wrong comment is far worse than no comment. It will
surely confound future maintainers.

Thus, the insertion of a code comment, while laudable, is by no means
foolproof.
Thirdly, the bare bool approach doesn’t scale well. I recently wrote a very
small application which required half a dozen trip switch protocol
instances in three enclosing classes. (Some instances used the inverse
protocol, with “on” and “off” mapped into false and true.) Adding the
constructor initializer for each constructor of the enclosing class, and for
each bool data member, and adding the same code comment to each data
member all violate the DRY principle (Don’t Repeat Yourself).

Encapsulated trip switch
All the above problems are avoided by encapsulating the trip switch
protocol in the simple class shown in Listing 2.
An object of type BoolSettableToFalse can be used almost exactly
as a bool object, since it implicitly converts to and from bool. The main
exception is that it cannot be assigned to. Only the setToFalse()
member function can be used to change the value. There’s no way to set
the value to true, and that’s the whole point of the class. There is no
performance penalty – the run time and space are the same as for a bare
bool variable.

I

BILL RUBIN
Bill is President of Quality Object Software, Inc., and a contract
programmer spcializing in C++ development. When not
unscrambling the latest software conundrum, he enjoys technical
rock climbing. Bill can be contacted at rubin@contractor.net
12 | {cvu} | AUG 2006

The copy assignment operator is private to prevent protocol violations; one
could otherwise change a false BoolSettableToFalse to a true one
by assignment. The conversion constructor from bool is needed so that
bool v a r i ab l e s ca n be imp l i c i t l y c onve r t ed t o
BoolSettableToFalse. This constructor allows initializing to
false, which is useful for BoolSettableToFalse instances which
start out life already tripped.
The big advantage of the encapsulation approach is that it enforces the trip
sw i t ch p ro t oc o l a t c omp i l e t i me . Va r i ab l e s o f t ype
BoolSettableToFalse clarify the design intent, and eliminate the
need for descriptive comments and for initializers in enclosing class
constructors. The decision to employ the trip switch boolean protocol is
made in one place – the variable declaration – rather than being distributed
throughout all references to the variable. The only disadvantage I am aware
of is that the setToFalse() member function is less intuitive than a
simple assignment.
Applying BoolSettableToFalse to the File class example yields
Listing 3.
The new File class differs from the original implementation in the
following ways:

1 The type of isValid_ has been changed from bool to
BoolSettableToFalse.

2 The File constructors are not shown, because they no longer
participate explicitly in isValid_ initialization. (They may still
be needed, but not to implement the trip switch protocol.)

3 The Note 1 code comment has been removed, because it’s no
longer needed. The design intent is encapsulated in
BoolSettableToFalse.

4 The isValid_ assignment statements have been replaced by calls
to setToFalse().

In this implementation, the decision to use the trip switch protocol is made
in one place, by specifying the type of the isValid_ data member. Less
client code and no client comments are needed to support the protocol. The
only code that must change is the type of isValid_ and its assignment
statements. A maintenance programmer cannot inadvertently violate the
integrity of the code base because assignments to isValid_ will not

compile, and because there are no longer any code comments to become
incorrect.
The dual of BoolSettableToFalse is BoolSettableToTrue,
which is useful for the inverse protocol shown in Listing 4.
Of course, both these classes are useful not only for data members, but also
for automatic variables and so on.

Summary
The BoolSettableToFalse and BoolSettableToTrue classes
can be used in place of bools to implement the trip switch protocol. The
advantages are typical of those for encapsulation generally: Behaviour is
enforced at compile time; code comments are not needed; the protocol is
implemented only once; multiple instances scale up efficiently. Some may
argue that the trip switch booleans are too trivial to bother with. My view
is that simple classes like these are part of a style of programming in which
a large number of “trivial” refinements accumulate to provide a much more
robust code base.

Acknowledgements
Many thanks to Thomas Becker, Bill Collier, Leslie Hancock, Arthur
Lewis, and Doug Lovell for helpful reviews of this article.

class BoolSettableToFalse {
public:
 BoolSettableToFalse(const bool v = true) :
value_(v) {}
 operator bool() const {return value_;}
 void setToFalse() {value_ = false;}
private:
 BoolSettableToFalse& operator=(const
BoolSettableToFalse&);
 bool value_;
};

Li
st

in
g

2

class File {
 public:
 void access() {
 if(pathNotFound())
isValid_.setToFalse();
 else if(openFailed())
isValid_.setToFalse();
 else if(readFailed())
isValid_.setToFalse();
 }

 bool isValid() const {return isValid_;}
 private:
 BoolSettableToFalse isValid_;
};

Li
st

in
g

3

class BoolSettableToTrue {
public:
 BoolSettableToTrue(const bool v = false) :
value_(v) {}
 operator bool() const {return value_;}
 void setToTrue() {value_ = true;}
private:
 BoolSettableToTrue& operator=(const
BoolSettableToTrue&);
 bool value_;
};

Listing 4

join the accu

How to join
Go to www.accu.org and

click on Join ACCU

Membership types
Basic personal membership

Full personal membership
Corporate membership

Student membership

You've read the magazine.
Now join the association
dedicated to improving your
coding skills.

The ACCU is a worldwide non-
profit organisation run by
programmers for programmers.

Join ACCU to receive our bi-
monthly publications C Vu and
Overload. You'll also get
massive discounts at the ACCU
developers' conference, access
to mentored developers
projects, discussion forums,
and the chance to participate
in the organisation.

What are you waiting for?

professionalism in programming
www.accu.org
AUG 2006 | {cvu} | 13

The ACCU Conference Experiment # 1
Developer Beliefs about Binary Operator
Precedence

Derek Jones carried out an experiment at the conference.

common developer response to a fault being pointed out in their code
is to say What I intended to write was A knowledge based mistake
occurs when a developer acts on a belief they have that does not

reflect reality. The act may be writing code that directly or indirectly makes
use of this incorrect belief. An example may occur in the expression x &
y == z, if its author, or a subsequent reader, incorrectly expects it to
behave as if it had been written in the form (x & y) == z.
This is the first of a two part article that reports on an experiment carried
out during the 2006 ACCU conference investigating both knowledge of
binary operator precedence and the consequences of a limited capacity
short term memory on subjects performance in recalling information about
assignment statements.
It is hoped that this study will provide information that can be used to build
a model of how developers judge operator precedence and the impact that
different kinds of identifier character sequences have on the cognitive
resources needed during program comprehension. Such a model will be of
use in analysing source code for possible, knowledge based, coding errors.
This article is split into two parts, the first (this one) provides general
background on the study and discusses the results of the relative
precedence selection problem, while part two discusses the assignment
problem.

The hypothesis
Knowledge based mistakes might be broadly divided into those that don’t
seem to follow any pattern and those that do (or at least seem to). Here we
are interested in finding patterns in the mistakes made by developers in
choosing which of two binary operators has the higher precedence.
Studies have consistently found a significant correlation between a
person’s performance on a task and the amount of practice they have had
performing that task [2]. Based on these findings it is to be expected that
there will be a significant correlation between a developer’s knowledge of
relative binary operator precedence and the amount of experience they
have had handling the respective binary operator pair.
A reader of the visible source only has to make a decision about the relative
precedence of binary operators when an operand could have two possible
binary operators applied to it. This paper uses the term operator pair to
refer to the two operators involves in this decision. For instance:
x + (y * z); // No reader choice to make
 // because parenthesis make it.

x + a[y * z]; // No reader choice to make
 // because of bracketing effect
 // of []

x + y * z << a; // Two pairs of binary
 // operators. A choice has to
 // be made about which operator
 // y and z bind to.

x + (y * z) | a; // One pair of binary operators
 // The parenthesized expression
 // could be the operand of +
 // or |

As table 1 shows, less than 2% of all expressions contain two or more
binary operators.
This analysis assumed that subject performance is not influenced by the
order in which the two operators in an operator pair occur.

Non-source code experience
There are two main situations where developers are required to
comprehend expressions and thus gain experience in deducing precedence.
These are formal education and reading/writing source code.
Within formal education, expressions are encountered when reading and
writing mathematical equations. Many science and engineering courses
require students to manipulate equations (expressions) containing
operators that also occur in source code. Students learn, for instance, that
in an expression containing a multiplication and addition operator, the
multiplication is performed first. Substantial experience is gained over
many years in reading and writing such equations. Knowledge of the
ordering relationships between assignment, subtraction, and division also
needs to be used on a very frequent basis. Through constant practice,
knowledge of the precedence relationships between these operators
becomes second nature; developers often claim that they are natural (they
are not, it is just constant practice that makes them appear so).
Experience suggests that even people from an engineering background
sometimes associate division from right to left. Division is often written
in a vertical, rather than a horizon, direction in hand written and printed
mathematics, so people have much less experience handling cases where
it is written purely horizontally.

Measuring source
The following subsection discusses measurements of binary operator
usage in the visible source of a number of large C programs (e.g., gcc,
idsoftware, Linux, Netscape, OpenAFS, openMotif, and postgresql). The
visible, rather than the preprocessed, source was used as the basis for
measurement because we are interested in what a reader of the source sees
and has to make decisions about, and not what the compiler has to analyse.
The contents of preprocessor directives were not included in the
measurements.
Your author has not yet made sufficiently extensive measurements of the
source code of programs written in any other languages for anything
worthwhile to be reported here. Some broad brush measurements of
FORTRAN [7] and PL/1 [1] source code have been made by other authors.

Binary operator usage in expressions

The languages C, C++, C#, Java, Perl, PHP, and some other languages
share a large common subset of binary operators having the same relative
precedence and associativity. These binary operators, with precedence
decreasing from left to right are shown in Figure 1 (operators in the same
column have the same precedence).

A

DEREK JONES
Derek used to write compilers, then got involved with static analysis
and now spends his time trying to figure out developer behaviour.
Derek can be contacted at derek@knosof.co.uk
14 | {cvu} | AUG 2006

 High Low

 [] * + << < == & ^ | && || assignment
 () / - >> > != operators
 . % <=
 -> >=

Fi
gu

re
 1

Percentage of expressions containing a given number of binary
operators in their visible source code. Note that function call, direct and
indirect member selection, and assignment operators are not included
here as binary operators (although the arguments of function calls and
array subscript expressions are counted as separate expressions).

Binary
operators

% occurrence
Binary

operators
% occurrence

0 92.82 3 0.62

1 5.28 4 0.14

2 0.86 5 0.13

Table 1

Operator
All occurrences of

operator
Occurrences in an

operator pair
Operator

All occurrences of
operator

Occurrences in an
operator pair

&& 8.55 22.17 > 3.82 3.60

+ 12.46 13.41 >= 2.18 2.24

== 17.62 12.07 / 1.92 2.07

|| 5.23 11.66 <= 1.34 1.33

* 4.32 6.34 & 9.59 0.70

| 5.19 6.25 << 2.67 0.44

- 6.27 6.14 % 0.49 0.25

!= 8.73 5.65 >> 1.84 0.24

< 7.59 4.34 ^ 0.22 0.08

Table 2

Occurrences of pairs of binary operators as a percentage of all binary operator pairs (the total number of such operator pairs was 154,575). Table
arranged so that operators along the top row have higher precedence. The '-' symbol denotes zero pairs.

* / % + - << >> < > <= >= == != & ^ | && ||

* 1.222

/ 1.218 .116

% .006 .005 .001

+ 6.214 1.125 .104 5.344

- 1.271 .479 .026 3.345 1.405

<< .032 .007 .001 .005 .031 .010

>> .037 .004 - .005 .019 .018 .006

< .328 .479 .013 1.001 .822 .026 .009 -

> .373 .147 .020 1.188 .774 .013 .026 .003 -

<= .068 .032 .001 .349 .137 .003 .004 - - -

>= .126 .068 .004 .421 .298 .010 .006 - .001 - -

== .086 .049 .160 .352 .469 .028 .052 - .001 - - .001

!= .057 .032 .074 .207 .178 .008 .017 .001 - .001 - - -

& .003 .007 .001 .006 .005 .083 .115 .001 .001 - .001 .001 .004 .144

^ .018 - - - - .003 .003 - .001 - - - - - .057

| .016 .005 .003 .003 .012 .558 .114 - - - - - - .022 - 5.829

&& .093 .043 .045 .272 .222 .006 .012 3.466 2.577 1.692 2.530 13.157 7.959 .516 .001 - 5.392

|| .038 .019 .019 .183 .098 .007 .006 2.487 2.054 .362 1.005 8.924 2.685 .245 - .001 .021 2.827

Table 3

Occurrences, as a percentage
of all such operators, of binary
operators in the visible C
source code. The second
column is based on all
occurrences of binary
operators in expressions
(890,423 operators). The third
column is based on
occurrences of of
binaryoperator pairs in an
expression (e.g., a + b & c * d
contains the operator pairs +
& and & *, so & is counted
twice). There were 309,150
binary operator pairs
AUG 2006 | {cvu} | 15

While technically they are binary operators array subscript, function call,
direct and indirect member selection, and the assignment operators are
often not thought of as such by developers. For the rest of this paper the
term binary operator should be read as excluding these operators unless
stated otherwise.
The source code contexts included in these measurements were all the ones
in which the C grammar permitted an expression (a full expression to use
C Standard’s terminology) to occur (excluding preprocessor directives).
For learning, or reinforcement of existing knowledge, of binary
precedence to occur a binary operator pair needs to be encountered.
Measurements of occurrences of binary operators in such pairs, rather than
all binary operators, is what our hypothesis suggests subject performance
should be correlated with. Table 2 lists both sets of measurements.
Table 3 lists the percentage occurrence of each operator pair as a
percentage of all operators pairs in all expressions.

Use of parentheses in expressions

If the authors of source code always used parenthesis to specify the
intended binding of operands to operators, then neither they or subsequent
readers would need to have any knowledge of the operator precedence
actually specified by a language; the information they needed would
always be visible in the source.
For instance, the expression a * b + c could be written as (a * b)
+ c. The first expression is defined to be the operator pair * +, while the
second is defined to be a parenthesized binary operator (*) +. In (a +
b << c) * d there is no parenthesized binary operator because there

are two binary operators within the parenthesis. However, there is an
operator pair, i.e., + <<.
Measurements (see Table 4) showed that several operator pairs (see *
entries) almost always appear with redundant parenthesis to explicitly
specifying the intended precedence.
When parenthesis are used to specify the intended binding of the operands
to operators, readers of the source do not need to make use of their
precedence knowledge. Thus there is no learning experience and these
occurrences are not included in any count used here.

The experiment
The experiment was run by your author during a 45 minute lunchtime
session of the 2006 ACCU conference (http://www.accu.org) held in
Oxford, UK. Approximately 300 people attended the conference, 18 (6%)
of whom took part in the experiment. Subjects were given a brief
introduction to the experiment, during which they filled out brief
background information about themselves, and they then spent 20 minutes
working through the problems. All subjects volunteered their time and
were anonymous.
One person wrote on the answer sheet that they did not understand the
parenthesis problem. This person did not answer any of the parenthesis
problems (a few seemed to have been answered, but not in a way that
allowed the intent to be unambiguously deduced). Results from 17 subjects
were used.

Ratio of occurrences of parenthesized binary operators where one of the operators is enclosed in parenthesis, e.g., (a * b) - c, and the other is the
corresponding operator pair, e.g., (*) - occurs 0.2 times as often as * -. The table is arranged so that operators along the top row have highest
precedence and any non-zero occurrences in the upper right quadrant refer to uses where parenthesis have been used to change the default operator
precedence, e.g., * (-) occurs 0.8 times as often as * -. The total number of these parenthesized operator pairs was 102,822 and the total number of
operator pairs was 154,575. When there were no corresponding operators pairs in the visible source the entries are marked with a *.

(*) (/) (%) (+) (-) (<<) (>>) (<) (>) (<=) (>=) (==) (!=) (&) (^) (|) (&&) (||)

* 0.1 0.3 9.5 0.2 0.8 2.3 4.4 0.0 0.0 - - 0.1 0.1 64.8 0.1 - - -

/ 0.6 1.2 3.8 0.4 1.6 10.5 4.7 - - - - - - 1.6 * - - -

% 5.4 10.5 6.0 4.2 4.2 22.0 * - - - - - - 5.0 * - - -

+ 0.2 0.2 1.3 0.0 0.3 337.1 101.7 0.0 0.0 - 0.0 0.0 0.1 104.3 * 13.2 0.0 0.0

- 0.2 0.3 3.1 0.1 0.3 11.5 8.5 0.0 0.0 - 0.0 0.0 0.0 45.4 * 0.5 - 0.0

<< 2.8 10.5 34.0 43.1 20.9 1.5 2.2 0.1 - - - 0.1 0.2 10.4 2.8 0.1 - -

>> 3.4 2.0 * 68.9 22.6 1.3 1.3 - - - - - - 8.3 2.2 0.0 - -

< 0.2 0.2 0.5 0.3 0.4 5.6 5.4 - - - - - 2.0 96.0 * - - -

> 0.2 0.2 0.2 0.3 0.3 3.9 1.6 - - - - - * 45.5 2.0 * 0.0 -

<= 0.3 0.4 1.5 0.2 0.4 4.4 5.0 - - - - - 1.0 * - * - -

>= 0.2 0.1 1.0 0.2 0.4 4.4 2.9 - - - - - - 55.0 - * - -

== 0.2 0.6 0.9 0.2 0.2 1.7 2.0 * 6.0 * * * 9.0 4689 * * 0.0 -

!= 0.2 0.4 0.5 0.1 0.2 4.2 3.1 8.0 * - * * * 487.8 * * - -

& 7.2 2.7 0.5 108.8 168.9 15.1 20.9 3.0 1.0 * 2.0 3.0 1.5 0.3 * 55.9 - -

^ 0.5 * * * * 12.8 38.0 * 2.0 - - * * * 0.1 * - -

| 5.1 2.3 1.2 13.0 6.9 6.6 1.7 * * - * * * 67.7 * 0.0 - 1.0

&& 0.1 0.1 0.9 0.2 0.2 3.0 2.1 0.3 0.3 0.4 0.3 0.4 0.5 6.1 18.0 * 0.0 26.0

|| 0.1 0.2 0.7 0.1 0.3 2.7 2.9 0.4 0.4 0.3 0.3 0.6 0.7 4.6 * 27.0 25.5 0.0

Ta
bl

e
4

16 | {cvu} | AUG 2006

The problem to be solved
The problem to be solved followed the same format as an experiment
performed at a previous ACCU conference and the details can be found
elsewhere [6].
Figure 2 is an excerpt of the text instructions given to subjects.
Figure 3 is an example of one of the problems seen by subjects. One side
of a sheet of paper contained three assignment statements while the second
side of the same sheet contained the five expressions and a table to hold
the recalled information. A series of X’s were written on the second side
to ensure that subjects could not see through to identifiers and values
appearing on the other side of the sheet. Each subject received a stapled
set of sheets containing the instructions and 40 problems (one per sheet of
paper).
The parenthesis insertion task can be viewed as either a time filler for the
assignment remember/recall problem, or as the main subject of the
experiment. In the latter case the purpose of the assignment problem is to
make it difficult for subjects to track answers they had given to previous,
related operator pair, problems.
Subject’s performance on the parenthesis task is discussed in this article
(the first of two).

The parenthesis problems

Based on the results of the 2004 ACCU experiment [6] it was anticipated
that on average subjects would answer around 20 questions. By practising
on himself the author concluded that answering five parenthesis problems
would take approximately the same amount of time as answering the if-
statement problem used in the 2004 experiment. This gave an estimated
100 answers per subject (subjects actually averaged 123.5 answers).
To simplify the analysis, it was decided subjects would encounter every
operator pair in a problem before they say the same pair again. If subjects
were expected to answer around 100 problems then some operators needed
to be removed from consideration. The binary operators used had 10 levels
of precedence (some shared the same precedence levels), giving 90
possible combinations of pairs of operators if we require the operator pairs
to have different relative precedence. It was decided to include a small
number of problems where the operator pairs had the same precedence and
the same precedence pairs +/- and ==/!= were chosen. The operators *,

/, and % share the same precedence and span the range of frequency of
occurrence in source code (see Table 5) and were all included for this
reason.
The < operator was chosen to represent the relational operators because it
is the most commonly occurring of the four (just over 50% of all relational
operators), and the << operator because it is slightly more common than
>>.
If one set of two operators having the same precedence could appear there
are 110 possible pairs, for two sets of two operators having the same
precedence there are 121 possible pairs, and so on. The problems were
automatically generated using an awk script which was parameterized by
a data file that specified when to use pairs of operators having the same
precedence.
All possible operator pairs (from which ever set of operators was selected
by the data file) were generated and their order randomised, as was the
ordering of the individual operators of a pair. The generation process was
then repeated until enough precedence problems had been generated for
40 subjects (8,000 problems). Two hundred problems were successively
taken from this list for each subject.
The binary operators that appeared in the problems seen by subjects, with
precedence decreasing from left to right are (operators in the same column
have the same precedence):
 * + << < == & ^ | && ||
 / - !=
 %

The task consists of remembering the value of three different variables
and recalling these values later. The variables and their corresponding
values appear on one side of the sheet of paper and your response needs
to be given on the other side of the same sheet of paper.

1 Read the variables and the values assigned to them as you might
when carefully reading lines of code in a function definition.

2 Turn the sheet of paper over. Please do NOT look at the
assignment statements you have just read again, i.e., once a page
has been turned it stays turned.

3 At the top of the page there is a list of five expressions. Each
expression contains three different operands and two different
operators. Insert parenthesis to denote how you think the operators
will bind to the operands (i.e., you are inserting redundant
parenthesis).

4 You are now asked to recall the value of the variables read on the
previous page. There is an additional variable listed that did not
appear in the original list.

if you remember the value of a variable write the value down
next to the corresponding variable,
if you feel that, in a real life code comprehension situation,
you would reread the original assignment, tick the “would
refer back” column of the corresponding variable,
if you don’t recall having seen the variable in the list
appearing on the previous page, tick the “not seen” column
of the corresponding variable.

Fi
gu

re
 2

--------------- first side of sheet starts here ---------------

 p = 13;

 q = 72;

 r = 29;

-------------- second side of sheet starts here --------------

x + y * z

x / y == z

x != y - z

x % y ^ z

x << y - z

remember would refer back not seen

 q = ____ __ __

 p = ____ __ __

 s = ____ __ __

 r = ____ __ __

Figure 3
AUG 2006 | {cvu} | 17

The number of problems generated for the % operator was significantly
less than for the other operators and the !=, -, and / operators did not occur
as frequently as the other operators (see Table 5). This difference was
driven by the data script used to control the generation of the problems.
At the time it was thought to be a good idea.

Results

Subject experience

Traditionally, developer experience is measured in number of years of
employment. In practice the quantity of source code (lines is one such
measure) read and written by a developer (interaction with source code
overwhelmingly occurs in its written, rather than spoken, form) is likely
to be a more accurate measure of source code experience than time spent
in employment. Developer interaction with source code is rarely a social
activity (a social situation occurs during code reviews) and the time spent
on these social activities may be small enough to ignore. The problem with
this measure is that it is very difficult to obtain reliable estimates of the
amount of source read and written by developers. This issue was also
addressed in studies performed at a previous ACCU conference [5][6].
It has to be accepted that reliable estimates of lines read/written are not
likely to be available until developer behavior is closely monitored (e.g.,
eye movements and key presses) over an extended period of time.
A plot of problems answered against experience for both the 2004 or 2006
(see Figure 4) experiments did not show any correlation between years of
experience and number of problems answered. While a least squares fit of
years of experience against percentage of incorrect answers shows a slight
upward trend, the Pearson r correlation coefficient is not significant at the
0.05 level.

Subject motivation

When reading source code developers are aware that some of the
information they see only needs to be remembered for a short period of
time, while other information needs to be remembered over a longer
period. For instance, when deducing the affect of calling a given function
the names of identifiers declared locally within it only have significance
within that function and there is unlikely to be any need to recall
information about them in other contexts. Each of the problems seen by
subjects in this study could be treated in the same way as an individual
function definition (i.e., it is necessary to remember particular identifiers
and the values they represent, once a problem has been answered there is
no longer any need to remember this information).

Subjects can approach the demands of answering the problems this study
presents them with in a number of ways, including the following:

seeing it as a challenge to accurately recall the assignment
information (i.e., minimizing would refer back answers) and not
being overly concerned about accurately answering the parenthesis
questions,
recognizing that would refer back is always an option and that it is
more important to correctly parenthesize the list of expressions.
making no conscious decision about how to approach the answering
of problems.

Experience shows that many developers are competitive and that
accurately recalling the assignment information, after parenthesizing the
expression list, would be seen as the ideal performance to aim for.
At the end of the experiment subjects were asked to turn to the back page
and list any strategies they used when answering problems. The answers
given all related to remembering information about the assignment
statements. There was no mention of the parenthesis problem. One person
wrote on this page that: “Not usually programming in a language that
supports shift operations.” which suggests that they are using a language
that is not among the set being considered here, and that the language they
use assigns different precedences to the operators it supports (but then,
whether the precedence actually defined by a language has any effect on
developer performance is one of the questions raised by the results of this
study).

Analysis of results
The 17 subjects gave a total of 2,100 answers to the operator precedence
questions (average 123.5 per subject, standard deviation 44.0, lowest
answered 75, highest answered 200). If subjects answered randomly then
50% of answers would be expected to be correct. In this experiment 66.7%
of answers were correct (standard deviation 8.8, poorest performer 45.2%
correct, best performer 80.5% correct).
If the hypothesis is correct, then subjects will give more correct answers
for some operators than for others. A first approximation is given, for each
operator, by the percentage of problems containing the operator that were
answered correctly (see Table 5). It is an approximation because there are
two operators in each problem and incorrect knowledge about one of the
operators will affect impact the perceived performance for the other
operator.
If subjects guessed all answers we would expect 50% to be correct. A
correct percentage either side of 50% is evidence that subjects are

Fi
gu

re
 4

The left graph is the number of precedence problems answered (average 123.5) against number of years of professional experience for that subject
(average 14.6). The right graph is the percentage of incorrect answers given by a subject against years of professional experience (the line is a least
squares fit on the percentage of incorrect answers).
18 | {cvu} | AUG 2006

consistently making use of some knowledge about the operator. When this
knowledge agrees with that given in the language specification the correct
percentage will be greater than 50% and when it is different the percentage
will be less than 50%.
Some operators share the same precedence. If developers are aware of this,
then it is possible that essentially the same piece of existing knowledge is
reinforced in developer memory when either operator is encountered. If
this is the case we would expect that subject performance for these same
precedence operators will be similar. Table 5 shows that the percentage of
correct answers for the operators + - and == != * and / are very similar.
Based on these results we might also expect subject performance for the

same precedence operators <<, >> and <, >, <=, >= to be very similar,
had they all appeared in problems.
The % operator has the same precedence as the * and / operators, but are
developers aware of this connection? The very low percentage of correct
answers containing % operator suggest that subjects were not aware of this
fact.
The reinforcement that seems to take place when some same precedence
operators appear in source means that an occurrence of either operator
should count towards a learning experience for the same piece of
knowledge. When plotting correct answers against operator occurrence,
those operators which subjects know have the same precedence should
have their occurrences summed (e.g., the 12.41% +'s and the 6.14% -'s
are summed to give 18.55%).
The percentage of correct answers for the || and && operators was very
similar (see Table 5). Do developers believe they share the same
precedence level, or do they know the precedence is different (it actually
differs by one level) and the performance similarity is caused by subjects
randomly selecting one of the operators to have the high precedence? The
percentage of correct answers for the | and & operators was not as similar
(again the precedence levels differ by one). Answers to the questions raised
by the results for these operators will have to wait until more experiments
are performed.
In Figure 5, the Pearson r correlation coefficients are 0.64 and 0.27. There
are 11 operators (or combination of operators), which gives 9 degrees of
freedom. Looking in statistical tables [4] for a one-tail test we find that the
results in the left plot are significant at the 0.05 level of significance, while
the straight line fit of the results in the right plot is not significant.

Operator pair-wise analysis

Does each developer have their own, incorrect, model of operator
precedence, or do many developers share a common incorrect model? For
instance, do a significant number of developers believe that one particular
operator has a much lower precedence than it does in reality?
The Bradley-Terry model is one technique for analysing results that consist
of paired comparisons. A common example of the use of the Bradley-Terry

For each operator, the percentage of problems containing that operator
that were answered correctly. Third column gives the total number of
problems containing that operator.

Operator Percentage correct Number of problems

/ 86.18 123

* 85.91 291

|| 78.89 379

&& 77.21 408

+ 76.63 291

- 72.39 163

< 66.43 414

| 62.72 397

<< 60.19 417

== 60.14 291

!= 59.20 125

& 56.70 455

^ 47.64 403

% 34.88 43

Ta
bl

e
5

For each operator pair, the percentage of problems for which a correct answer was given for that operator pair. The value in parenthesis is the total
number of problems containing that operator pair.

* / % + - << < == != & ^ | && ||

* -

/ 90(10) -

% - - -

+ 94(19) 69(13) 0(2) -

- 92(14) 100(1) 0(4) 80(10) -

<< 74(31) 84(13) 40(5) 58(31) 61(18) -

< 93(31) 100(13) 40(5), 90(33) 88(17) 64(50) -

== 100(19) 100(12) 100(24) 100(9) 83(31) 90(32) - -

!= 100(12) - 33(3) 100(6) 100(8) 92(13) 91(12) 57(7) -

& 71(35) 69(13) 40(5) 74(35) 47(21) 40(49) 41(51) 27(36) 11(17) -

^ 63(30) 69(13) 25(4) 30(30) 33(15) 30(43) 16(43) 12(32) 8(12) 30(49) -

| 80(31) 84(13) 20(5) 70(30) 60(15) 45(46) 42(42) 22(31) 0(11) 79(44) 75(44) -

&& 100(31) 100(11) 60(5) 93(30) 94(18) 73(45) 75(44) 53(30) 71(14) 79(53) 88(45) 73(42) -

|| 96(28) 100(11) 60(5) 92(28) 92(13) 69(42) 85(41) 53(28) 70(10) 87(47) 83(43) 86(43) 50(40) -

Table 6
AUG 2006 | {cvu} | 19

model is in ranking sports teams from the results of individual matches
played by those teams.
Table 7 gives the output of using the Bradley-Terry model to rank
operators in precedence order based on subject answers. The second
column for each operator can be interpreted as providing an estimate the
probability that one operator will be chosen to have a higher precedence
over another. For instance, the coefficient for the operator ^ is twice as
great as the coefficient for | and so when both occur together in an operator
pair the ^ operator is twice as likely to be assigned a higher precedence.
However, be warned the error analysis is complex and the confidence in
the calculated probabilities low; this issue is not discussed here.
The Bradley-Terry analysis was performed using the R system [8] with the
addon package written by David Firth [3].
The coefficients for the same precedence operators *, / and +, - and ==,
!= are very similar. However, there is little difference between the
coefficients of many adjacently ranked operators. The rank assigned to the
% operator is significantly different from the * and / operators (with which
it shares the same precedence); this difference in precedence assignment
is discussed later.

Discussion
The very large number of errors (approximately 33%) made by the subjects
in this experiment is surprising. Had they guessed the answers the error
rate would have been 50%. While experience shows that developers do
make errors on the relative precedence of binary operators when writing
and reading code, an error rate of this magnitude would generate many
more faults (around 1% of all expressions would be in error) than appear
to be encountered in practice.

Possible reasons for the discrepancy between the error rates found in this
experiment and those seen in commercial software development include:

Some aspect of the experiment’s design resulted in subject’s
performance being significantly poorer than it is when they
comprehend source code professionally. For instance, subjects may
have been overly distracted by the desire to correctly remember
information about the assignment statements (subject’s performance
on the ‘filler’ problem, an if-statement analysis task, in the 2004
experiment was so good that insufficient error data was obtained for
analysis).
Developers make use of local context (e.g., the semantics suggested
by the names of variables), rather than knowledge of operator
precedence, to deduce how operands bind to binary operators. For
instance, the semantic associations of the identifiers used in the
expression:
num_apples % num_baskets > max_left_over
suggest that num_apples and num_baskets are in a calculation
that checks whether there is an excessive number of apples
remaining after some task is performed.
Developers make use of knowledge of what is being calculated to
choose the way in which operands bind to operators.
Developers are aware of their own lack of knowledge of operator
precedence and use parenthesis to indicate the intended precedence
when they feel sufficiently unsure of the behavior that will occur.
The ratios in <tableref href="op_paren"> show that
parenthesis are not always used for rarely occurring operator pairs.
However, the high ratio of operator usage for some operators (e.g.,
see the ^ row) suggests that the overall impact may be significant.

Will measurements of binary operator usage in other language reveal
different sets of common operator pairs? The most significant factor
driving the choice of operators in source code is likely to be low level
implementation details of the algorithms used. Various claims are made
about how object oriented languages affect the choice and implementation
of algorithms. Your author does not believe there is any significant
operator usage variation between C++, C#, and Java. However, until
detailed measurements are made it is not possible to claimed with any
certainty that developer operator precedence performance for these
languages is consistent with our hypothesis.
The percentage of correct answers for the * and / operators is well above
that predicted by the least squares fit and it is also above that for the + and
- operators. Of all the operators appearing in the problems the * and /
operators have the highest precedence. Perhaps developers are aware of

Coefficients obtained from applying a Bradley-Terry model to the pairs of
binary operator precedence answers

Operator Coefficient Operator Coefficient

/ 3.37 | 1.48

* 3.33 % 1.21

+ 2.59 && 0.58

- 2.4 == 0.15

& 1.87 || 0.09

<< 1.57 != 0.0

Ta
bl

e
6

Fi
gu

re
 5

The left graph is a plot of the occurrence of operators, as a percentage of all operators in operator pairs, in visible C source (see table 2), against
percentage of correct answers to problems containing an instance of the operator (see table 5). The line is a least squares fit assuming the percentage
correct deviates from the regression line. Operators separated by a comma have had their percentage occurrences summed and the correct
percentages averaged. The right graph plots operators as a percentage of all operators occurring in all expressions.
20 | {cvu} | AUG 2006

this endpoint information and it provides them with a decision algorithm
that is simpler to use than for other operators, where information on an
upper and lower precedence bound may need to be applied.
There is no obvious pattern to the other operators in the operator pairs that
the multiplicative operators appeared with when a correct answer was
given.
The percentage of incorrect answers for the == and != operators is well
above that predicted by the least squares fit. The Bradley-Terry analysis
suggests that subjects believe, incorrectly, that the equality operators have
the lowest precedence of all the operators seen in the study. While the
results imply that subjects are using a much lower precedence for these
operators than they actually have, the percentage of correct answers is not
low enough to suggest that subjects are consistently using a lower
precedence.
The results for the ̂ operator are consistent with random guessing and this
operator's precedence is sufficiently middling in the rankings that end-
effects will be small.
Subject performance on the % operator is consistent with them believing
it has a precedence level that is completely different than the one it actually
has. More experiments are needed to uncover information on the model
developers have for the % operator. These experiments might even inquire
about the extent of developer knowledge about this operator (e.g., what
operation to they believe it performs?).
Subject performance does not appear to be effected by the operator with
which the ^ and % operators are paired.

Further work
What performance characteristics would we expect from subjects having
much less experience than the subjects in this experiment? If subject
performance is strongly correlated with operator pair reading experience,
then we would not expect to see much less correlation between number of
correct answers and source code occurrences.
Experiments using subjects who are just about to graduate and subjects a
year or so after graduating (with and without extensive software
development experience during that time) could provide the data needed
to calculate the impact on performance of formal training and experience
with source code.
A replication of the same experiment would be very useful, perhaps with
some changes to the format. For instance, using different relational and
shift operators, and more % problems; or changes the format of the problem
to be solved so that a task other than remembering information about
assignment statements is used.
What operations do developers think that the ^ and % operators perform?
Perhaps the poor subject performance on these operators can be explained
by the fact that many developers don't actually know what operation they
perform, and hence where they might possibly fit in to the precedence
hierarchy.

Conclusion
The results, Figure 5, are consistent with the hypothesis at the 0.05 level
of significance. This means that there is a 5% chance that the null
hypothesis (i.e., random answering) is true.
This is the first experimental evidence (perhaps partially indirectly) that
software developer performance is effected by the number of times
language constructs are encountered in source code.

If further experiments confirm the very poor binary
operator precedence knowledge seen in this experiment,
then developers must be using a significantly different
technique for comprehending expressions (i.e., they are
not relying on a knowledge of operator precedence).
Developer training is unlikely to be a viable option for
solving the problem of faults caused by incorrect
knowledge of operator pair precedence. While it is

possible for people to learn the precedence of all language operators
sufficiently well to pass a test, this knowledge will degrade over time
through lack of use. Many languages contain operators that are rarely used
in practice and it is knowledge of the precedence of these operators that
developers are likely to forget the quickest (through of lack of practice).
While coding guideline often contain a recommendation specifying that
operator precedence be made explicit through the use of parenthesis,
experience shows that developers are often loath to insert what they
consider to be redundant parenthesis (because Everybody knows what the
precedence is and if they don't they should not be worksing on this code).
Subject operator pair performance should be all the evidence needed to
convince people that redundant parenthesis do provide a useful service.
Under 2% of all expressions would need to make use of redundant
parenthesis.

References
[1] J. L. Elshoff. A numerical profile of commercial PL/I

programs. Software-Practice and Experience, 6:505-525,
1976

[2] K. A. Ericsson, R. T. Krampe, and C. Tesch-Romer. The role
of deliberate practice in the acquisition of expert performance.
Psychological Review 100:363-406, 1993, also University of
Colorado, Technical Report #91-06.

[3] D. Firth. Bradley-terry models in R. Journal of Statistical
Software, 12(1):1--12, Jan. 2005.

[4] P. R. Hinton. Statistics Explained. Routledge, 2nd edition,
2004.

[5] D. M. Jones. I mean something to somebody. C Vu, 15(6):17-
19, Dec. 2003.

[6] D. M. Jones. Experimental data and scripts for short sequence
of assignment statements study.http://www.knosof.co.uk/
cbook/accu04.html, 2004.

[7] D. E. Knuth. An empirical study of FORTRAN programs.
Sofware-Practice and Experience, 1:105—133, 1971.

[8] W. Venables, D. M. Smith, and R Development Core Team.
An introduction to R. Apr. 2006

coding guideline often contain a
recommendation specifying that operator
precedence be made explicit through the
use of parenthesis

If you read something in C Vu that you
particularly enjoyed, you disagreed
with or that has just made you think,
why not put pen to paper (or finger
to keyboard) and tell us about it?
AUG 2006 | {cvu} | 21

Maintaining Legacy Code
David Carter-Hitchin gets to grips with legacy code.

s an infrastructure manager and programmer of a 20 year old
2+ MLOC C/C++ system, I am reasonably qualified (in theory) to
give some advice about working on such a project. Before discussing

any of the technicalities of the project, I thought it worthwhile to offer some
general advice and encouragement for people out there dealing with totally
different technologies. I have written this article with the view it may be
read by people who don’t know much about legacy code, and as such
please forgive me for the occasional didactic tone.

1. Learn to be patient
If you’re patient already, then fine. If you’re not, then you’re going to be
disappointed, since old systems require hard work and time to turn around.
The bigger a system is, the longer it will take, so be prepared to get results
over a period of time, not all at once. Patience is a key life skill and it’s all
too important when working with old code!

2. Build a knowledge base
Information is power. Again, like patience, this will be a key factor in
deciding the future life of your old code. Start documenting everything
which seems significant, but don’t hope to understand everything at once,
and don’t get swamped by detail. Find a sensible place to gather similar
facts, like a Wiki. For example, if your software relies on a large number
of third party of public domain libraries, then put these into an inventory.
Schematic diagrams showing the inter-relationships between parts of the
code are very useful, as are diagrams showing relationships with the
outside world. If your software takes in real world data, from
external feeds for example, make sure these are documented
(frequencies, content, format). In general understand what its
input, processing and output are, but don’t worry about being too
high-level early on; it’s better to have a complete, but vague
overall picture than a highly detailed but incomplete one. The reason for
this is that although you could be an expert on a particular subset of the
code, if you are unaware of how it relates to the whole, then any changes
to that subset are potentially dangerous, as your changes could lead to
unexpected behaviour somewhere else.
If you don’t see it as your role to maintain documentation, then find out
what documentation has already been done, and whose role it is to keep it
up to date. Even if you are lucky enough to be working in a team with full
time technical writers, then try to make some time to read their output and
give them some feedback.

3. Ensure your tools are in place to tackle the project
I’ll say more of this below but a few things I would a have thought were
essential would be a good source code indexer, source revision system and
bug tracking tool. If there’s a little nagging doubt in the back of your mind
that you think that you should have a certain tool to do a certain job, then
it’s probably a good idea to make some time and follow that up. Tools are
key to breaking down the problem of maintaining software into more
manageable chunks.

4. Tame the beast
Sometimes old software is monstrous in nature – it’s ugly, it’s
unpredictable, it’s big (sometimes), it’s dangerous (“Hey, where’s all my
data gone?!”) and so on and so on. However monsters are not known for
high IQs, and your average programmer is going to be much smarter than
any system. Now to tame the beast, you need to study it (with patience!)
to find out its strengths and weaknesses – again this will take time, it won’t
happen overnight (unless you’re very lucky). Once you’ve understood it’s
weakest areas, then you can fix those. Fixing one problem often reveals
another, so be prepared for that. Sometimes a fix doesn’t work either –
don’t get disheartened – have patience!
Eventually, if you keep trying, you will make it.

5. Performance versus function, hardware vs software
First thing to do before you even think about writing or changing a line of
code, is to ask yourself (and your sponsors) what improvements are most
important. Broadly speaking these will fall into two camps ‘performance’
and ‘functional’ enhancements. By ‘performance’ I mean everything from
speed of execution to safety and security considerations – security is
normally dealt with separately to speed considerations, but I’m lumping
the two here for ease of discussion. So, if your primary concern is
performance, you should first conduct a thorough environment review –
this should not take long, but it might take a long time to remedy any ill-
findings. You need to audit the quality and number of machines (if known)
your code is currently running on, type of network used and so forth.

Obviously if you are dealing with a third party or public domain app that
gets shipped everywhere, then this is not so applicable to you. If, on the
other hand your working environment is constrained then it’s essential to
look at that. If you (or your sponsors) have lots of money to spend then
upgrading key machines could temporarily fix processing bottlenecks. Of
course, it is better (and possibly cheaper) to fix the software, but this often
takes longer than the time it takes to order and install a new piece of
hardware. You need to understand the issues, and weigh up the cost/
benefits.

6. Marry methodologies
Getting people to agree about the best way of doing things is essential. If
you can’t agree, it’s better to elect a draconian ruler who will lay down the
law, as opposed to letting things get out of hand.
Our project is twenty years old, and so there is a conflict between the old
C gurus and the C++ youngsters. The arguments are very interesting, and
I can see both sides, but at the end of the day, a unified approach has to be
adopted for success. Here that approach is C++.

Tool chain
Well, so much for general considerations – now for some specifics. I’ll
start with the tool-chain we use.
To navigate our code we use Doxygen, LXR + glimpse for fast searches.
I’ve also tried with Understand for C/C++, which was very good and
Synopsis which I haven’t managed to get working yet, but it looks very
good.

A

DAVID CARTER-HITCHIN
David is currently a senior infrastructure developer for a bank in the
City of London. His major interest is Mathematics and he is
currently studing for a BSc and a CQF. David can be reached at
david@carter-hitchin.clara.co.uk

Patience is a key life skill and it’s all too
important when working with old code!
22 | {cvu} | AUG 2006

Before your code gets anywhere near a compiler, there are a raft of tools
to help improve coding safety and standards. We use Gimpel’s Flexelint
which takes about 6 hours to run on 2+ MLOC of C/C++.

It takes quite a while to clear out the noise from this tool, but when you
start to see the real errors, it’s well worth the price tag. We have also looked
at Parasoft’s C++Test which includes some unit testing software (more
about that below) and CodeWizard, which is functionally rich, but to set
up a tool like this for maximum effect on an existing codebase would take
a lot of time. We have not completely out ruled using a tool like this, or
similar tools like QAC++, but we can do plenty of things ‘ourselves’ first
– in other words without the need for third party tools.

Keep it tidy
Code clean-ups are very useful, including formatting improvements,
removal of unnecessary code/includes and generally rewriting code to be
clearer. Doxygen with code annotation and include dependency and class
graphs (you need to enable GraphViz to get those) are very enlightening.
If includes are included twice, for example, this are displayed in red as a
warning.
Anything to make the code clearer is welcome. A simple example is in the
forward definition of enums/structs:

typedef struct _my_struct
{
 int a;
} MY_STRUCT;

This used to be required under old some C compilers, for use within the
same translation unit, but now we can simply write:

struct MY_STRUCT
{
 int a;
};

Use STL
We are compiling all our C as C++ so we can do this now. In addition any
opportunity to use the STL where appropriate is welcome. For example
we had some horrid code which declared a fixed array of size 200,
populated the array with data, then called a function which re-arranged the
entries, throwing away duplicates. This was horrid primarily because of
the arbitrary 200 size limit. It wouldn’t have been too bad had there been
some bounds checking and extension code there, but there was not – all
we had was the result of a lazy programmer’s assumption about the nature
of the data – which in time proved to be false and this caused production
problems. This was a classic case for a use of a std::set, which extends
itself for me safely and without me having to write code, and as a bonus
provides uniqueness. This is the strength of C++ – replacing clunky
verbose C which was broken with a few lines of robust C++. The source
code dropped from about 75 lines to 5. The C programmers would argue
that the executable size would increase slightly, and they may be right, but
in my opinion this is a price worth paying given that I’ve got code which
is robust and much much smaller (therefore easier to understand, maintain,
test and modify).

Refactoring
Another important concept is encapsulation of complex behaviour in order
to refactor code.

A good example of this in our project is the multiple
ways our application accesses the database. Over time
numerous methods have been developed which exist in
various places in the code. As a result there was no
consistent method of database access, which can be a
s igni f icant problem in te rms of support and
maintenance. In order to solve this a new C++ database

classes was written which incorporated all the best features of the various
methods and, over time, the various methods are being converted to the
new database class. Once all methods have been replaced with invocations
of the new class, then any maintenance or upgrades or vendor changes are
relatively a lot more simple.

Compilation and checking
Our compiler is GCC. We’ve got to the point, after a lot of work, where
we can have -Werrror enabled meaning that warnings get treated as errors,
so compilation fails. This is a good thing with old code, as hidden nasties
are often found this way, and new ones are nipped in the bud. Sometimes
compilers and static analysers are the ONLY WAY we are going to find
these subtle problems. We also play with -Wpendantic, -Weffc++ and -
GLIBCXX_DEBUG although the output from these can be huge, so we
can’t enable them permanently. Having said that -Wpendantic may go in
soon. I recently discovered -enable-concept-checks which you need to set
when configuring GCC which applies some additional checks for STL
usage.

Debugging
For debugging we mainly use Totalview and GDB. I’m looking forward
to the bi-directional debugger UndoDB supporting threads and shared
memory, we will use that when available. For memory analysis we use
Valgrind on Linux and Purify and Insure++ on Solaris. We are beginning
to look at DTrace and libumem on Solaris 10. With legacy C code, the
responsibility for freeing up heap memory is with the application, and is
easily overlooked. By wrapping the legacy code in a class, with the
destructor responsible for freeing the heap memory, robustness can be
improved. In the near future we will also be using a checked STL
implementation, like STLport or Dinkumware.

Unit testing
For unit testing we are in an interesting position. The main part of our
application is used to process financial information and perform financial
calculations. Before every release we run a regression batch, meaning that
we take a dump of the live database, and perform the same calculations
with the new code on the old data. We then compare the output from the
live run with the output from the test run to see if any of the results have
‘regressed’. These calculations are extremely complicated and we run
hundreds of millions of them and the outputs are compared down to the
last penny, so any discrepancies show up very quickly. Although this is
not a unit test in the normal sense, it is a very robust test for changed
behaviour. In future though we plan to enhance these tests to cover the GUI
side of the application and make the tests finer grained. I should mention
Michael Feather’s book Working Effectively with Legacy Code, which
seems to focus mainly on unit testing. I haven’t read all of this book, but
it has a good reputation.

there was no consistent method of database
access, which can be a significant problem in
terms of support and maintenance

all we had was the result of a lazy
programmer’s assumption about

the nature of the data
AUG 2006 | {cvu} | 23

24 | {cvu} | AUG 2006

Standards Report
Lois Goldthwaite explains the proposed addition of two new

character types to C++.

e are all citizens of the world, in these days of ever-increasing
globalisation. Two papers in the latest ‘mailing’ [1] from the C++
standard committee propose to bring a greater helping of

globalisation to the C++ standard.
N2018 by Lawrence Crowl [2], “New Character Types in
C++”, calls for adding two new character types to C++ in
addition to the four we already have [3], in order better to
support Unicode. The two new types would be called
char16_t and char32_t.
N2035 by Matt Austern [4], “Minimal Unicode support for the standard
library”, outlines the impact of adding these two types on the C++ standard
library. In a nutshell, it would double the number of instantiations for
strings, locales, iostreams, and regular expressions [5].
Internationalisation, and especially the Unicode way of achieving it, are
important issues in today’s programming world, and growing more
important all the time. In a message to the WG21 library committee,
Austern says:

[C++ Unicode support] isn’t some obscure C-compatibility feature that
will just sit harmlessly in an appendix of the standard and that you can
ignore unless you’re involved in some kind of specialized bureaucratic
task. We’re long past the tipping point where Unicode has become more
important than ASCII. If we have Unicode in C++ (and I’ll be very
disappointed if we don’t), it will be used prominently in important
interfaces. XML is defined in terms of Unicode, for example, so I expect
that any future XML library will be built on top of these things. You should
take a close look at N2018 and N2035 and form an opinion about them
on the assumption that this is something that you will use on a daily
basis, that you will use it more often than you use wchar_t and
possibly as often as you use char.

But wait a minute – Unicode support, doesn’t C++ already have it? Isn’t
this what wchar_t is for? Well, yes and no. An array of wide characters
might be a Unicode string literal, but then again it might be encoded
according to some other system, such as Big5 Chinese characters.
Furthermore, some vendors have defined wchar_t as a 16 bit data type,
whereas others have defined it as 32 bits. For WG21 to announce that
standard C++ now requires it to be just one of those sizes, with Unicode
encoding only, would break many people’s code.
Apart from that, C and C++ have traditionally been agnostic about
character sets. Even if you confine the discussion to English text in Roman
characters, you cannot take it for granted that all computers will represent
that in ASCII characters. Consider IBM mainframes and minicomputers,
which use the EBCDIC character codes instead – and in that system the
letters of the alphabet are not even in a contiguous sequence! However, it
is possible (with a little, well, rather a lot of attention to not building in
unwarranted assumptions) to write portable programs which will compile
and execute correctly whichever character set is in use.
Standard C++ also has what are called “null-terminated multibyte strings”.
These are strings encoded under a system which may use one or several
bytes to represent a single character in some language like Japanese, using

Shift_JIS encoding. Such NTMBSes could also be used to hold a string in
the Unicode UTF-8 encoding.
Given that C++ has never before made specific rules about how the
contents of a string should be interpreted, is it justified to require that these

new character types are specifically limited to Unicode processing only?
What about platforms for which ASCII is not the underlying character set
– should they be required to support the ‘alien’ Unicode processing just to
claim to be standards compliant?
Another question being discussed is whether names like utf16_t and
utf32_t would be better and clearer about the intent of the new types.
Perhaps, but char16_t and char32_t were chosen for ISO/IEC TR
19769:2004, “Extensions for the programming language C to support new
character data types”. As much as possible, the C++ committee tries to
make sure that C code will compile under C++ unless there is a very good
reason to break compatibility.
In C the two new character types are simply typedefs for integer types
of the right size, but that won’t work for C++ because it makes it impossible
to distinguish functions overloaded on these types. They would have to be
distinct fundamental types in C++, and that is what N2018 proposes.
No committee decision has been made on how to answer the above
questions, but you can bet that serious discussions will be taking place in
the coming year while the C++0x draft is being hammered into shape. If
you have an opinion on these issues that you would like to express, please
send comments to standards@accu.org and they will be passed on to
WG21.

Notes and references
1 It is called a ‘mailing’ because once upon a time, back in the dark

ages, these periodic collections of technical proposals would be
shipped via snail mail around the world as bundles of paper.
Nowadays WG21 has an eco-friendly shiny green paperless process
in which only electrons are shifted, but we haven’t thought up a new
name to reflect the new procedure.

2 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/
n2018.html

3 These are char, signed char, unsigned char, and
wchar_t, but you already knew that, right? It is a historical
accident that C++ has three flavours of the simplest data type,
char, two of which are identical – but not the same two on all
platforms.

4 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/
n2035.pdf

5 The regular expressions library in TR1 (authored by the UK’s John
Maddock) will be part of the standard library expected from all
compilers in C++0x.

W

LOIS GOLDTHWAITE
Lois has been a professional programmer for over 20 years.
She is convenor of the C++ and Posix standards panels at
BSI. One of her hobbies is representing the UK at
international standards meetings!
Lois can be contacted at standards@accu.org.uk

C and C++ have traditionally been agnostic
about character sets

Student Code Critique Competition
Set and collated by Roger Orr.

lease note that participation in this competition is open to all
members. The title reflects the fact that the code used is
normally provided by a student as part of their course work.

This item is part of the Dialogue section of C Vu, which is intended
to designate it as an item where reader interaction is particularly
important. Readers’ comments and criticisms of published entries
are always welcome, as are possible samples.

Before we start
Remember that you can get the current problem set in the ACCU website
(http://www.accu.org/journals/).This is aimed to people living overseas
who get the magazine much later than members in the UK and Europe.

Student Code Critique 40 entries
The student wrote:

I’m having problems printing out a tree data structure – the code doesn’t
crash and I don’t get any compiler warnings but the tree doesn’t seem
to get shown properly. It’s based on some (working) Java code. This test
program shown below only prints the head node and not the children.
I’ve tried both C and C++ but the program behaves the same for both.

Please try to help the student understand why their code is broken as much
as where it is broken.

#include <malloc.h>
#include <stdio.h>

struct binaryNode
{
 int value;
 struct binaryNode *left;
 struct binaryNode *right;
};

struct binaryNode createNode(int value)
{
 struct binaryNode *newNode;
 newNode = (struct binaryNode*)malloc(
 sizeof(struct binaryNode));
 newNode->value = value;
 newNode->left = 0;
 newNode->right = 0;

 return *newNode;
}

struct binaryNode addChildNode(struct
binaryNode parent, int value)
{
 struct binaryNode tempNode;
 tempNode = createNode(value);

 if (value < parent.value)
 parent.left = &tempNode;
 else
 parent.right = &tempNode;
 return tempNode;
}

void printNodes(struct
binaryNode head,
 int indent)
{
 int i;
 if (head.left != 0)
 printNodes(*head.left, indent + 1);
 for (i = 0; i < indent; i++)
 printf(" ");
 printf("%i\n", head.value);
 if (head.right != 0)
 printNodes(*head.right, indent + 1);
}
int main()
{
 struct binaryNode head;
 struct binaryNode node1;
 struct binaryNode node2;
 head = createNode(3);
 node1 = addChildNode(head, 1);
 node2 = addChildNode(node1, 2);
 printNodes(head, 0); // Only prints 'head'
 return 0;
}

From Jim Hyslop <jhyslop@dreampossible.ca>

Hmmm... I bet I can see what’s coming. “Tree data structure” in C and C++
almost invariably means pointers. Java hides all that icky pointer stuff for
you. Probably some basic pointer problems are coming up.

struct binaryNode createNode(int value)
{
 struct binaryNode *newNode;
 ...
 return *newNode;
}

Just as I suspected. Java would naturally convert the return type into a
pointer (yeah, yeah, “Java doesn’t have pointers” – yes it does, it just
manages their lifetimes for you).
All functions must be modified to accept and return pointers to
binaryNode objects:

struct binaryNode * createNode(int value)
{
...
 return newNode;
}
struct binaryNode * addChildNode(
 struct binaryNode * parent, int value)

with, of course, corresponding modifications to the body of the function.

P

ROGER ORR
Roger Orr has been programming for 20 years, most
recently in C++ and Java for various investment banks in
Canary Wharf. He joined ACCU in 1999 and the BSI C++
panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk
AUG 2006 | {cvu} | 25

I’m surprised this program doesn’t crash (and a more complicated one
probably would). tempNode is a local variable, which goes out of
scope at the end of the function. The parent’s left/right pointer will
point into, effectively, garbage. Converting to pointers solves this
issue:
void printNodes(struct binaryNode head,
 int indent)

I will assume there is a reason the printed out structure has to match the
internal structure. Normally, you wouldn’t need to worry about that.
OK, so much for the initial problem the student encountered. There are
some significant design flaws. First of all, addChildNode is error prone.
It relies on the user passing in the appropriate parent to addChildNode.
If node2 wants a value of 4, then we have to change the line from:
 node2 = addChildNode(node1, 2);

to:
 node2 = addChildNode(head, 4);

Nasty. This is going to cause no end of subtle, hard-to-find bugs.
In addition, there is no check to see if there is already a child. The tree will
get messed up if the user types:

 head = createNode(3);
 node1 = addChildNode(head, 2);
 node2 = addChildNode(head, 1);

Instead of thinking about operations on nodes, the programmer should be
thinking about operations on the tree. Tree handling should be separated
into a distinct file, with an interface (Notes: untested, uncompiled code
follows; assume appropriate include guards are present):

/* mytree.h */
typedef struct binaryNode
{
 int value;
 binaryNode * left;
 binaryNode * right;
};
binaryNode * createTree(int initialValue);
void addValue(binaryNode * root, int value);
void printTree(binaryNode * root);
void releaseTree(binaryNode * root);
/* end of mytree.h */

Note that printTree no longer accepts the indent value. This is an
internal value that only printTree cares about.
Other design issues the student needs to consider: Does each value have
to be unique? What about removing elements from the tree? What other
operations will need to be performed on the tree, besides printing?
Searching, for example? Do we know right now which operations will be
performed? If we don’t, then is it worth adding a callback function, to
allow users to define their own operation, something like:

typedef int (CALLBACK *)(binaryNode *,
 void * callbackData, int depth);
int performOperation(binaryNode *,
 CALLBACK, void * callbackData);

performOperation simply recurses through the tree, and calls the
callback function for each node. The depth parameter indicates how
deeply nested in the tree we are (By the way, student: do we really need
to know this?) The return value from the callback is used to determine
whether or not to abort the processing:
/* mytree.c */

static int doRecursion(binaryNode * node,
 CALLBACK cb, void *callbackData, int depth) {
 if (node == NULL)
 return TRUE;
 if (!doRecursion(node->left, cb,
 callbackData, depth+1))
 return FALSE;
 if (cb(node, callbackData, depth));
 return doRecursion(node->right, cb,
 callbackData, depth+1);
 return FALSE;
}
void performOperation(binaryNode * node,
 CALLBACK cb, void *callbackData) {
 doRecursion(node, cb, callbackData, 0);
}

Using printNode as an example, we can now write this as:

static int printNode(binaryNode * node,
 void * unusedData, int indentCount) {
 printf("%*.*s%i", indentCount, indentCount,
 " ", node->value); }
/* Note the use of %*.*s to give a variable-width
indent - no more 'for' loop! */
void printTree(binaryNode * root)
{
 performOperation(root, printNode, NULL);
}
int main()
{
 binaryNode * root = createTree(3);
 addValue(root, 2);
 addValue(root, 1);
 printTree(root);
 releaseTree(root);
}

And now, for some comments on style. These are subjective, and my
opinion only:

I would prefer to initialize the pointer newNode in the same
statement as it is declared. In these small functions, it doesn’t make
any practical difference, but it’s a good habit to immediately
initialize variables to a sane value.
In C I like to declare structs as typedef struct so I don’t have
to type struct this; struct that; (you might say I don’t want
to be struct dumb; by all that typing...).
I prefer NULL over the literal 0. The standard include files should
provide a suitable declaration of NULL. In C++, 0 is OK, but I don’t
remember if 0 is acceptable in C – I suspect it should properly be
cast to a void pointer.

From Balog Pal <pasa@lib.hu>

Duh, another “unfair” SCC. To make the student understand the problem
he must grok both the java and C++ object model. But to explain that and
all its ramifications would take a chapter in a book. Or a couple.
But this piece of code looks so innocently translated from java, and became
so utterly broken I can’t help but to love it, and try to do something. Though
I think Roger shall submit his own solution as punishment – either as an
entry or a standalone article. :-)
Let’s start with theory. Java has “primitive types” and “reference types”.
We’re interested in the latter. “Objects”, that are actual instances of a class
or an array are always created on the heap. While the variables you
encounter in code will contain a pointer to that object. (Java calls it the
“reference value” and the java hypers who never read the langspec (4.3.1)
claim there are no pointers in the language, well, actually all you have
26 | {cvu} | AUG 2006

around is pointers.) Variables that are members in a class, local variables
in a function, function arguments, and function return values are all
pointers. When you assign to such variable you assign a pointer. When you
pass to a function you pass a copy of the pointer. What you return is a copy
of the pointer. A copy of the pointer refers to the same object that sits on
the heap. To have an actual copy of the object you must do some special
incantations like Clone() and fight to make it work too. But you never
deal with ‘dereference’ or ‘address of’; having no variance the language
does all that transparently.
The java heap is garbage-collected, automatically. You just use the
pointers in a natural way, if you lose the last pointer to an object (by
assigning a new value to the variable storing it), there’s no way for the
program to ever access it, but the system will eventually reclaim the space
it occupies. While as long as you have a pointer anywhere, the object is
safely ‘living’.
In C++ the world is completely different. Here every object is a direct
value. If you have an instance of a struct as a local variable, the struct will
exist with its full body in that local stack frame. And cease to exist as you
leave that scope. If you pass an object as function argument, or return from
the function, it is copied. If you want the object created on the heap, you
have to ask it, by using new (or malloc for raw memory). You get it
allocated, and a pointer to it returned. Then you must eventually issue
delete (or free) on that pointer to reclaim the space. If you just lose the
pointer, you create a ‘memory leak’, and risk to waste all the system’s
memory. You must make sure in the design that allocations and
deallocations are very properly paired.
You can also create pointers to existing objects using the address-of (&)
operator. But you must be aware of the lifetimes of the objects. After you
delete an object, or it is destroyed by leaving scope, any pointers you have
to it are no longer valid. And using their value (even inspecting it, or
passing as argument) invokes ‘undefined behaviour’ you absolutely want
to avoid.
Now let’s see why the code is wrong as written, and what it actually does:

struct binaryNode createNode(int value)
{
 struct binaryNode *newNode;
 newNode = (struct binaryNode*)malloc
 (sizeof(struct binaryNode));
 newNode->value = value;
 newNode->left = 0;
 newNode->right = 0;
 return *newNode;
}

Here you allocate raw memory on the heap, store a pointer in newNode
and initialize all its members. Though it’s not the preferred C++ way, it’s
okay for C code, and is correct so far. But the function returns a struct (not
a pointer) and you return *newNode. That means the struct that sits on
the heap is copied to a temporary ‘return value’ structure. Then the function
ends, variable newNode is destroyed, and so you lose any chance to ever
call free() to reclaim the space on the heap. If you want to return a struct,
it is better created as a local variable, set up and returned. If you want it
on the heap, the pointer shall be returned.

struct binaryNode addChildNode(
struct binaryNode parent, int value)
{
 struct binaryNode tempNode;
 tempNode = createNode(value);
 if (value < parent.value)
 parent.left = &tempNode;
 else
 parent.right = &tempNode;
 return tempNode;
}

Here the function will return a copy of a struct, and receive a copy too
called parent. You set up a local node as tempNode, and set its state
using createNode. Not counting the memory leak, it will work, a state
with value and two nulls will be copied to the struct. Then you patch left
or right of ‘parent’ and return a copy of tempNode. The function ends,
all the local variables go out of scope, including that parent struct, with
your carefully applied changes. I say fortunately, as if you managed to
issue those changes in a node that is visible, you would face disaster. As
tempNode is just destroyed, yet you stored its address in left or right. This
is the explanation of the behaviour you observe, this addChildNode has
no chance to modify the original parent struct you try to pass, so that one
stays with null leafs. And you avoid the crash due to problems cancelling
each other.
The other functions are broken in a similar way, so I leave the details for
brevity, let’s instead see a working translation. I made several variants but
show only one. It is not the most effective solution, the aim was to make
it as close to the original (but no closer), and to make it show how java
code maps to C++, along with points where it must differ. And make it safe.

#include <stdio.h>
#include <boost/shared_ptr.hpp>
class binaryNode
{
public:
 typedef boost::shared_ptr<binaryNode> tPtr;
 // or std::tr1::
 typedef
 boost::shared_ptr<const binaryNode> tCptr;
private:
 // private constructor: creation is
 // restricted to factories
 explicit binaryNode(int v) :value(v) {}
public:
 // factory
 static tPtr Create(int value)
 {
 return new binaryNode(value);
 }
 tPtr AddChild(int child_value) // mutator!
 {
 tPtr & p =
 child_value < GetValue() ? left : right;
 p = Create(child_value);
 return p;
 }
 // selectors
 int GetValue() const {return value;}
 tCptr GetLeft() const {return left;}
 tCptr GetRight() const {return right;}
private: // node is noncopyable!
 binaryNode(const binaryNode&); // ni
 binaryNode & operator =(const binaryNode&);
 // ni
private: // state
 int value;
 tPtr left;
 tPtr right;
};
void printNodes(binaryNode::tCptr pNode,
 int indent)
{
 if(!pNode)
 return;
 printNodes(pNode->GetLeft(), indent + 1);
 for (int i = 0; i < indent; ++i)
 printf("*");
 printf("%i\n", pNode->GetValue());
AUG 2006 | {cvu} | 27

 printNodes(pNode->GetRight(), indent + 1);
}
int main()
{
 binaryNode::tPtr pHead
 (binaryNode::Create(3));
 {
 binaryNode::tPtr p;
 p = pHead->AddChild(1);
 p = p->AddChild(2);
 pHead->AddChild(5);
 }
 printNodes(pHead, 0);
 return 0;
}

I’m sure in the original Java code binaryNode was a class, and
transmuted to a struct only as part of creating a C (not C++) code. Now it
is a class again. And the data members no longer publicly exposed. The
Java best practices ask for immutable classes. I can’t see a way to keep
this one immutable, but also practical to use – but mutation must be kept
at bay and under tight control. Allowing that anyone just poke the guts is
out of question.
The plain pointer members got replaced by shared_ptr. If we have
pointers we must look out for ownership issues, and must manage
deallocations. Doing it by hand is cumbersome, error-prone, and would
require plenty of code, so we better pick up a “smart” pointer that does most
of the work. Among smart pointers shared_ptr (from the Boost library,
see dox at www.boost.org, or TR1) is a kind that approximates the Java
“references” very closely. It can be copied around as function parameter
or return value, assigned at will, but still keeps a proper count, how many
existing copies still refer to the object we created on the “free store” (C++
name for the heap) with new, and when the last is gone, it calls delete
for us. It is almost as good as the garbage collector, only fails to recover
objects referring to each other in a cycle.
To make the code more readable, we introduce typedef tPtr, that is
inside binaryNode, that is the preferred C++ way as opposite to add
another name to the outer namespace, like binaryNodePtr. And
immediately pick its twin tCptr, that is a pointer to a const
binaryNode. Java unfortunately miss the notation and the concept of
const, and const-correctness. Thus relying on programmers to write
immutable classes or just refrain from poking stuff without the language’s
help to introduce and enforce a contract. Going to C++ we better pick up
const and use wherever possible. It is a great help. Fortunately
shared_ptr works fine along with const, it can copy tPtr to tCptr
while knowing they refer to the same object.
The use of the smart pointers is straightforward in most situations, just do
as in the java code, except for member access . is changed to ->.
The next thing in binaryNode is the constructor. In C++ we positively
want constructors for our structures and classes, and make them initialize
the data members. Java does init members to zeros or nulls automatically,
C++ doesn’t. And having uninitialized objects mean undefined behaviours
and nasty debug sessions over weekends hunting phantom bugs that
surface depending on what memory garbage got picked up. The
assignments that were done in createNode migrate to the constructor’s
initializer list between : and {. If we still had plain pointers they would
be listed too, our smart pointer members have their own constructors that
are called, so can be skipped.
The constructor is made explicit, to prevent accidental implicit conversion
from int to binaryNode. And it is made private. Private constructor
means no one outside the class can call it. So you can’t create an instance
of binaryNode either with new or as a local variable in a function. Thus
we can effectively restrict creation to a small set of controlled functions
(factories). Those will know how to create the instance properly, and return
a smart pointer – that the user can then safely handle.

The next function is the former createNode, it is moved into the class,
so gains access to the private constructor, also encapsulates the name. It
is certainly static, and I renamed it to Create that is the usual name for
the basic factory. The users will call it as binaryNode::Create()
anyway. It creates the instance using new and encapsulates the pointer in
a tPtr. The member init code was moved to the constructor already.
Our other factory function is AddChild, created from addChildNode.
It’s also made a member, as it’s more natural than to pass a node as
argument, also we thus gain access to members we need. We find out which
branch to put the new node, then assign the pointer returned from
Create() there. If that branch was already occupied it gets nuked (the
smart pointer does that). I’m not sure that was the intended behaviour but
that’s what the original version suggested. If the new node needs to be
“dropped down” to an end of a branch, it can be programmed here. A
pointer to the newly created node is returned to help a more convenient
build of the tree.
Then come the selectors, all const functions and carefully return our
constified pointer that will not allow mutation of the tree.
The next two lines prevents the compiler to create a copy constructor and
assignment operator for this class, like simple creation we don’t want the
user to create copies of a node, also the copy created that way (referring
to the same branch nodes as the original) would hardly make sense.
The printNodes function I left outside the class, it looks like part of
the test framework. It certainly uses tCptr, not tPtr – no intention to
modify the tree. The implementation uses the selectors. I made a simple
transformation, but the original structure with if-s would work too. You
still better look out for the case a passed pointer is null before using it.
main() is similar to the original just with the proper types.
In the class I didn’t include any extra stuff not needed by this code, in
practice probably some more selectors or specific member functions will
be needed to help rearranging the tree.

From Reece Dunn <msclrhd@hotmail.com>

The problem with this code is that the student – having come from a Java
background – has made some assumptions that are true in Java, but don’t
apply to C and C++.
The first assumption is that objects are passed by reference. Take the
function:
struct binaryNode addChildNode(
 struct binaryNode parent, int value);

The parent object is a copy of what is passed to it. Therefore, the copy is
modified, not the intended parameter passed into the function. Also, the
value passed back is a copy of the newly created node. Java passes objects
by reference, so in Java this isn’t a problem.
The solution here is to make parent and the return value pointers so that
the values are updated correctly. For addChildNode, this gives:

binaryNode * addChildNode(binaryNode * parent,
 int value)
{
 binaryNode * tempNode = createNode(value);
 if(value < tempNode->value)
 parent->left = tempNode;
 else
 parent->right = tempNode;
 return tempNode;
}

The other problem is that there is a memory leak, because the malloc call
in createNode does not have a corresponding call to free. In Java,
memory is automatically managed by the garbage collector, but in C and
C++ it is up to the programmer to explicitly free that memory.
28 | {cvu} | AUG 2006

You can use smart pointers to use the Resource Aquisition Is Initialisation
(RAII) idiom that means that the programmer does not have to make an
explicit call to clean up resources. I will use the Boost version here, but
these are also available in C++ TR1. The C++ version looks like this:

#include <boost/shared_ptr.hpp>
#include <iostream>
struct binaryNode;
typedef boost::shared_ptr< binaryNode >
binaryNodePtr;

struct binaryNode
{
 int value;
 binaryNodePtr left;
 binaryNodePtr right;
 binaryNode(int value_):
 value(value_)
 {
 }
};
binaryNodePtr addChildNode(
 binaryNodePtr parent, int value)
{
 binaryNodePtr tempNode(new binaryNode(
 value));
 if(value < tempNode->value)
 parent->left = tempNode;
 else
 parent->right = tempNode;
 return tempNode;
}
void printNodes(binaryNodePtr head,
 int indent = 0)
{
 if(head->left)
 printNodes(head->left, indent + 1);
 for(int i = 0; i < indent; ++i)
 std::cout << " ";
 std::cout << head->value << std::endl;
 if(head->right)
 printNodes(head->right, indent + 1);
}
int main()
{
 binaryNodePtr head(new binaryNode(3));
 binaryNodePtr node1(addChildNode(head, 1));
 binaryNodePtr node2(addChildNode(node1, 2
));
 printNodes(head);
 return 0;
}

Note that using C++ means that createNode can be (and is in the above
example) replaced by defining an appropriate constructor and the new
operator.

From Calum Grant <calum.grant@sophos.com>

This problem highlights a fundamental difference between the way C, C++
and Java manage memory. In C and C++ there is a distinction between a
value and a pointer. For example
 struct binaryNode n1;

means that n1 is a value (a binaryNode), whilst :
 struct binaryNode *n2;

means that n2 is a pointer (to a binaryNode). When values are assigned
to each other, the data is copied – in C++ this is done via a copy constructor

or an operator =, whilst in C this is a simple memory copy. When pointers
are assigned to each other, only the pointer is copied, not the value itself.
In Java, there is no distinction between pointers and values, since
technically speaking there are only pointers to objects, so there is no need
for the *, & and -> notation.
The value/pointer distinction has significance when you define a function.
When a function returns a value, it returns a copy of the value. When an
argument to a function is a value, the value is copied into the function,
leaving the original unmodified.
Your original program was returning a copy of newNode in
createNode(), not newNode itself. Similarly, addChildNode()
actually modifies a copy of the node passed into it, which means that it
has no effect, and explains your output.
To make your program equivalent to Java, you need to change the
functions such that they take and return pointers, not values. This is done
as follows:

struct binaryNode *createNode(int value)
struct binaryNode *addChildNode(struct
 binaryNode *parent, int value)
void printNodes(struct binaryNode *head, int
 indent)

You also need to declare tempNode, head, node1 and node2 to be
pointers and not values, otherwise they will take copies.
You have a bug in addChildNode(). You need to check if there is
already a value in parent->left or parent->right, and call
addChildNode() recursively.
You might ask why C and C++ bother to make the distinction between
pointers and values, when it all works so well in Java. The reason is because
C and C++ have manual memory management, which gives you much
more control over when and where objects are created and destroyed. On
the other hand, Java has automatic memory management (garbage
collection) so everything is allocated on the heap and the programmer does
not need to worry. This extra flexibility in C and C++ is a common source
of errors, but can give better performance.
Since C and C++ have manual memory management, one needs to be
mindful of who is responsible for freeing any memory you allocate. In C,
you need a function that recursively frees the entire data structure.
C++ often does not need to worry about memory management because it
can use containers and smart pointers to manage memory. In our case, we
could use std::auto_ptr to automatically initialize the pointer to 0,
and automatically delete what it is pointing to when it is destroyed. C-style
pointers are best avoided in C++ since they are more prone to error.
You could also consider turning binaryNode into a class. A class should
be designed so that it is very difficult (or impossible!) to use it incorrectly.
A class should prevent operations that could invalidate the class. A ‘class
invariant’ is a condition that should always be true, for example that the
nodes are ordered correctly. Therefore left and right should be private so
that they cannot be modified outside of the class. Another invariant is that
the value should always be initialised and not change, so we need a
constructor to initialize the value, and value could be const.
We must also check that the default copy constructor and assignment
operators do the right thing. In this case they don’t, so we must disable them
by making them private, or implement them to do the right thing.
We don’t need to hard-code int into binaryNode. The class can hold
any data type (T) by making the class a template. We also need to know
how to compare two items, which is usually done via a comparator (Cmp),
rather than relying on the < operator. The default comparator is
std::less, however we may want to change this.
Here is a C++-style implementation of BinaryNode. Compared to the
C implementation, the C++ implementation is safe, generic, easier to use,
and impossible to abuse.
AUG 2006 | {cvu} | 29

#include <string>
#include <iostream>
#include <functor>
#include <memory>

template<typename T,
 typename Cmp = std::less<T> >
class BinaryNode
{
 const T value;
 std::auto_ptr<BinaryNode> left, right;
 BinaryNode &operator=(const BinaryNode&);
 BinaryNode(const BinaryNode&);
public:
 BinaryNode(const T &v) : value(v) { }
 void insert(const T &v)
 {
 if(Cmp()(v, value))
 {
 if(left.get())
 left->insert(v);
 else
 left.reset(new BinaryNode(v));
 }
 else
 {
 if(right.get())
 right->insert(v);
 else
 right.reset(new BinaryNode(v));
 }
 }
 void display(int indent=0) const
 {
 if(left.get())
 left->display(indent+1);
 std::cout
 << std::string(indent, ' ')
 << value
 << std::endl;
 if(right.get())
 right->display(indent+1);
 }
};
int main()
{
 BinaryNode<int> node(3);
 node.insert(1);
 node.insert(2);
 node.display();
 return 0;
}

From Nevin Liber <nevin@eviloverlord.com>

First off, let me say that I found the code to be pretty good. Functions and
variables are named well, and functions are short and each one tends to
have a single purpose.

Misunderstanding

The code is broken due to a fundamental misunderstanding about objects
in C. C is a pass-by-value language. Objects and their lifetimes are
managed explicitly. If one wishes to build a recursive data structure (such
as a tree), then the nodes are allocated (via malloc) in the heap, and the
rest of the program manipulates pointers to those objects. Unlike Java, C
does not have built in garbage collection, so one must explicitly free those
objects when they are no longer needed.

Specifics
#include <assert.h>
#include <malloc.h>
#include <stdio.h>

I will be using assert to signal programming errors detected at run time.
I’ll expand on that when I discuss addChildNode.

typedef struct binaryNode binaryNode;
struct binaryNode
{
 int value;
 binaryNode *left;
 binaryNode *right;
};

The typedef is a notational convienence: it allows me to replace struct
binaryNode with binaryNode everywhere else that I use it. The code
was not incorrect before; I just find that there is less clutter this way.
binaryNode *createNode(int value)
{
 binaryNode *newNode = (binaryNode*)malloc(
 sizeof(*newNode));
 if (newNode) {
 newNode->value = value;
 newNode->left = 0;
 newNode->right = 0;
 }
 return newNode;
}

createNode now returns a binaryNode * instead of a binaryNode.
Note: while it is unlikely, malloc can fail. I added the if check for this
possibility, and only set its members on success. However, since this
routine now returns a pointer, the callers of it may also have to check for
failure (which is indicated by a NULL pointer).

binaryNode *addChildNode(binaryNode *parent,
 int value)
{
 assert(parent);
 binaryNode *tempNode = createNode(value);
 if (value < parent->value) {
 assert(!parent->left);
 parent->left = tempNode;
 } else {
 assert(!parent->right);
 parent->right = tempNode;
 }
 return tempNode;
}

Made the changes to use pointers everywhere.
But now that everything is pointer based, someone could pass NULL in
for parent. Should we allocate the node in that case? I don’t know. And
since I don’t know what to do, I consider it a programming error to pass
in NULL, which I indicate by using assert.
There is a similar issue with the parent->left or parent->right that
gets replaced. If it is non-NULL, then those point to part of a tree. What
should I do? Recursively destroy those nodes? Not allocate our new node?
Without knowing the intentions of the programmer, I won’t guess. Instead,
it is another programming error to do so, and I’ll again indicate that by
using assert.

void printNodes(binaryNode const *head,
 int indent)
30 | {cvu} | AUG 2006

{
 if (head) {
 int i;
 printNodes(head->left, indent + 1);
 for (i = 0; i != indent; ++i)
 printf(" ");
 printf("%d\n", head->value);
 printNodes(head->right, indent + 1);
 }
}

Once again, use pointers. Note the use of const: since printNodes
does not change the data structure that head points to, the const
documents that in a compiler enforceable way.
Bug corrected: the correct printf specifier for int is %d, not %i.
[Ed: the C standard allows either.]

Since I have to check if head is non-NULL anyway, I simplified the code
by getting rid of the checks on head->left and head->right, as the
recursive call to printNodes will catch that anyway. When implementing
recursive algorithms, I find that having one terminating condition is far
more understandable than multiple ones scattered throughout the function.
The termination condition for this function is when head is NULL.

void destroyNodes(binaryNode * head)
{
 if (head) {
 destroyNodes(head->left);
 destroyNodes(head->right);
 free(head);
 }
}

This is a new function I added. As mentioned before, in C one has to clean
up the heap objects when finished with them. This recursive function has
the same basic structure as printNodes, and the termination condition
is when head is NULL.

int main()
{
 binaryNode *head = createNode(3);
 binaryNode *node1 = addChildNode(head, 1);
 binaryNode *node2 = addChildNode(node1, 2);
 printNodes(head, 0);
 destroyNodes(head);
 return 0;
}

Again, fixed everything up to use pointers.
I leave it as an exercise for the reader if the calls to createNode or
addChildNode returned NULL. The reason I am leaving it as an exercise
for the reader is that what should be done may depend on behavioural
changes made to addChildNode (to eliminate the asserts).
 I added the call to destroyNodes, since we need to clean up the heap
objects when we are done with them. Caveat: once called, head, node1
and node2 can no longer be dereferenced, since they point to memory that
is no longer a binaryNode.

From Seyed H. HAERI (Hossein) <shhaeri@math.sharif.edu>

The evil in this SCC isn’t that hidden. The student has come from Java,
and is not still used to preliminaries of (manual) memory management.
What has caused the problem reported is not this one however. Despite
that, the latter problem also stems from coming from Java. The student is
wrongly assuming that whilst calling by value, you get references to the
same object. That’s why, as one can see, all the arguments to the functions
are copied (wrongly) supposing that they will be references to the same
place in memory. This said, not willing to change the C structure of the
code, changing all (but one) of the occurrences of binaryNode to

binaryNode*, and a little number of syntactic fixations would turn the
program into something not having the mentioned problem. (I hope the
editor doesn’t expect me to add the full above fixed code.)
As told above, the evil isn’t this one however. The student leaves a dreadful
memory leak in his program. Any trained eyes looking to this code will
soon understand that it allocates memories whilst it doesn’t give them
back; it uses malloc, yet there aren’t any deallocs! Trying to add free
wouldn’t mitigate anything because again this is not the leak. The leak is
quite nasty: in the createNode function, the student allocates memory,
copies its contents and returns. This allocated memory will be dangling
thereafter because no pointer possesses it anymore. And this is evidently
a direct result of coming from Java. Applying the above change to the
program, one would then have to return the ownership of the allocated
memory to the caller. This will pass the caller the duty of cleaning it up,
and, adding appropriate number of deallocs will force the devil to run
away. This doesn’t end the story however.
The code is furthermore in C, as opposed to in C++. This means that, given
that the code is pretty trivial, there shouldn’t be much surprise in that it
behaves the same in C/C++. (I know that this is not a rule, and can well
break…) The things that should be noted whilst porting it into C++ are:

1. Use ADTs for both nodes and data structure! Classes, of course, are
the C++ gadgets for this. This will open the door of a world of
goodies to you. For example, in the current version, one can easily
change the pointers to children of the nodes without being checked
ever. This is whilst those pointers are in fact internals of the nodes,
and should well be forbidden for the strangers. Had you
encapsulated this data, you wouldn’t allow strangers this easily
change the internals of your code.

2. Use new/delete instead of malloc/dealloc. This will prevent
you from the dangers of unwillingly dealing with raw memory. For
your level at least, this is not a good piece of practice.

3. Don’t declare variables until their point of use. Try adhering to this
unless there remains no other way for you.

4. Use std::cout instead of printf. This will save you from the
bother of using the appropriate label.

5. Replace all if(p != 0)’s with simply if(p). (I guess this is
correct also in C. But, I’m not sure…). [SCC: it’s OK in C too]

6. Remove all the redundant uses of the keyword struct. For
example, in C++ you need not to write

 struct binaryNode* createNode(int)

you could simply write
 binaryNode* createNode(int)

7. Except for the above function in which you have to return the
allocated memory, use references instead of pointers. This will make
coding easier. (You don’t need to worry about the usage of
operator * and operator ->. Your familiar operator . will do.)

Next, I come to the coding recommendations. First, I would like to note
the student about the point that if the student is about to implement a BST
– as it is a common assignment for the level – but the student is doing that
wrongly. I’m not sure whether this is the intent, but whatever that is, the
unstructured/semi-structured addition of elements is an alarm bell. This
may lead to some sort of anarchy in the data structure. (I am not clear what
the data structure is at least.)
Second, I give a plus to the student for appropriate naming of variables and
functions. However, the types of arguments, as mentioned above, aren’t
appropriate. I don’t see any bad coding practice except that he/she doesn’t
comment anything – which is a big sin! (Yes, this happens whilst the code
is definitely trivial.) printNodes should get its argument constantly
because it doesn’t change the tree it gets. So, another minus! If the code
is not an assignment which is supposed only to work with ints, then all
the material should be templatised to prevent hard-coding. All
operator --’s should be turned to prefix. And, finally the code hasn’t
got an appropriate interaction with the user.
AUG 2006 | {cvu} | 31

From Lars Hartmann <lars@hartmannix.dk>

The main issue here is calling conventions.
There are at least three ways to pass arguments to a function:

1. Call by value (CBV)
2. Call by name (CBN)
3. Call by reference (CBR)

Each of these can be supported by any given language, but they might not
be. Understanding the differences between them, and knowing if they are
supported or not by a language will aid a lot when faced with a porting task.
The calling conventions above are characterized as follows:

CBV: When using this calling convention we copy values when
passing them on to functions. Values might be a fixed set of types
given by the programming language, or the language might allow
the extension of the types that can act as values.
CBN: This is used when we give an argument a name, and let the
receiving function look up the value associated with the name when
it is needed. This also makes it possible to change the value
associated with the name (In C/C++ this is done by passing a
pointer).
CBR: This is a mix of the above. The reference has a name like in
CBN, and the name is used to access or modify the associated value.
The name is used in place of a value, like the value is used in CBV.

What we need to consider here are: Which constructs are available in Java,
C and C++.

So when we need to take a Java implementation and port it to C or C++
we need to decide how we want to pass the information along to functions.
This decision might not seem very important right now, but remember the
copying that takes place when using CBV, this makes it hard to update data
structures without having to recreate them all the time. It is possible to do
this, but using either CBN or CBR (depending on which language you port
to) seems a lot easier.
The distinction between CBR and CBN in C++ is very subtle, and one
could argue that the Java CBR concept looks a lot more like C++ CBN
that C++ CBR.
If all this talk with calling conventions are confusing this might be a good
time to look for more information.
Having said this, its time to look at the code.

struct binaryNode
{
 int value;
 struct binaryNode *left;
 struct binaryNode *right;
};

This struct is quite all right, the student has decided to use CBN (that is,
pointers). Good choice no copying problems to take care of.
Next the function to create a node:
struct binaryNode createNode(int value)
{
 struct binaryNode *newNode;
 newNode = (struct binaryNode*)malloc(
 sizeof(struct binaryNode));
 newNode->value = value;
 newNode->left = 0;

 newNode->right = 0;
 return *newNode
}

At first glance this will look very all right to a Java person. The problem
is that the returned value of the function is a value and not a pointer to a
value. When we return a ‘bare’ type like this, we will get a copy of the
object returned, which most likely was not the intention.
Keeping the the decision to use CBN it should have looked like:

struct binaryNode* createNode(int value)
{
 struct binaryNode *newNode;
 newNode = (struct binaryNode*)malloc(
 sizeof(struct binaryNode));
 newNode->value = value;
 newNode->left = 0;
 newNode->right = 0;
 return newNode;
}

The addChildNode function uses CBV calling convention, this means
that the arguments to this function are first copied before changes are made
to them, and when the function returns, these temporary objects are
destroyed. The function actually returns a valid node object, but the parent
object that stored the pointer to this object will point at the memory of the
tempNode, not the returned node, therefore the pointer stored in the parent
is not valid. Instead we should use CBN here as well:

struct binaryNode* addChildNode(
 struct binaryNode* parent, int value)
{
 struct binaryNode* tempNode;
 tempNode = createNode(value);

 if(value < parent->value)
 parent->left = tempNode;
 else
 parent->right = tempNode;
 return tempNode;
}

The final function printNodes is again using CBV with the same array
of problems as described above. Changing it to use CBN solves the
problem:

void printNodes(struct binaryNode* head,
 int indent)
{
 int i;

 if(head->left != 0)
 printNodes(head->left, indent + 1);
 for(i = 0; i < indent; i++)
 printf(" ");
 printf("%i\n", head->value);

 if(head->right != 0)
 printNodes(head->right, indent + 1);
}

All that is left now is to adapt main to use these new functions:
int main()
{
 struct binaryNode* head;
 struct binaryNode* node1;
 struct binaryNode* node2;
 head = createNode(3);
 node1 = addChildNode(head, 1);

Java C C++

CBR x x

CBV x x

CBN x x
32 | {cvu} | AUG 2006

 node2 = addChildNode(node1, 2);
 printNodes(head, 0);
 return 0;
}

This neatly prints three lines of indented numbers, one for each node.

Commentary
I’d like first to pick up on Balog’s complaint “to make the student
understand the problem he must grok both the java and C++ object model”.
This is true; but I don’t think it is unrealistic. I haven’t worked on a single-
language project for years; the last project I worked on used many
languages including: C++, Java, PL/SQL, PHP, Bash, Perl, HTML and R.
My experience may perhaps be atypical – what is your own experience?
One of the things I find interesting about multi-language projects is that
each programmer knows different languages to different levels; and a
programmer moving from a familiar language to a new language can
produce bugs someone more used to the language would never think of.
So it is with this code. An experienced C programmer would never produce
it but it looks plausible to a Java/C# programmer because it is in line with
their mental model of ‘how things work’. The task of the critique is to
explain not just what is wrong but why – and this does involve some
knowledge of the C memory model (and some knowledge of the Java
model will help too).
However, there is a design issue with the code too (as some entrants
pointed out). It appears most clearly in addChildNode where the child
node is added based on a comparison of the new value with that of the
parent node; but there is no validation that the chosen branch is not already
in use. Safe use of this function requires co-operation between the caller
and the implementation.
To my mind this is perhaps more serious than the details of syntax. Even
if the code was ‘fixed’ to compile and execute successfully in C the result
would be very brittle to the exact values and parents passed in to successive
calls to addChildNode.
I would be trying to find out more from the student about the task their
code is actually trying to solve; my suspicion is that they are trying to
produce a binary-sorted tree and need a recursive search for adding a child
node in the correct place.
As is common with the SCC sadly the student is unavailable for
questioning when you produce your critique, but I would be happy to see
a shortlist of questions you’d like to ask if they were to hand!

The Winner of SCC 40
The editor's choice is:

Lars Hartmann
Please email francis@robinton.demon.co.uk to arrange for your prize.

Student Code Critique 41
(Submissions to scc@accu.org by 1st September)

The student wrote:
I’m having trouble with deleting things from a collection.

The code used to work, it printed out:

 contents: 123
 deleted: 2
 contents: 13

Then I upgraded my compiler and it complained about “delete iterator”
(see ‘now won’t compile!’ in the code).

Someone explained that iterator was only ‘like’ a pointer so I should use
&* on it to get the pointer back. But can someone explain why I need
&* – does this do anything at all?

Anyway, I did try this, and got it to compile with the newer compiler but
the program sometimes crashed. I’ve tried compiling with full warnings
but I don’t get any – is this compiler broken?

Please point out both good and bad things the student is doing.

#include <vector>
#include <iostream>
#include <string>
using namespace std;
class VectorTest
{
 vector<string>::iterator iterator;
 vector<string> vector;
public:
 void addToVector(string string)
 {
 vector.push_back(string);
 }
 void printVector(ostream & ostream)
 {
 ostream << "contents: ";
 for (iterator = vector.begin();
 iterator != vector.end(); iterator++)
 {
 ostream << *iterator;
 }
 ostream << endl;
 }
 void deleteFromVector(string string)
 {
 for (iterator = vector.begin();
 iterator != vector.end(); iterator++)
 {
 if (*iterator == string)
 {
 delete iterator; // now won’t compile!
 cout << "deleted: " << string << endl;
 }
 }
 }
};
int main()
{
 VectorTest test;
 test.addToVector(string("1"));
 test.addToVector(string("2"));
 test.addToVector(string("3"));
 test.printVector(cout);
 test.deleteFromVector("2");
 test.printVector(cout);
 return 0;
}

Prizes provided by Blackwells Bookshops & Addison-Wesley
AUG 2006 | {cvu} | 33

Games Programming

Beginning Maths and Physics
for Game Programmers
by Wendy Stahler (with
Dustin Clingman and
Kaveh Kahrizi), New
Riders, ISBN 0-7357-
1390-1, 454pp
Reviewer : Paul F. Johnson

Computer and Video Games
courses at Universities and Colleges of FE are
growing in popularity all of the time, yet most
of them completely omit the maths and physics
involved with any good game engine or system.
This book hopes to set the omission right.
And set it right it does. Plenty of examples, good
clear discussion and everything set out logically
and best yet, it assumes very little. The maths is
as user friendly as you will get and the physics
uses “real” examples on how projectiles work,
cars collide and other such events you would
expect to see in any game.
Stahler doesn’t shy away from the more
complex areas of physics, such as 3D, but
approaches them in a step-wise and easy to
follow way. It is refreshing to see this in any
beginners book, let alone one on such a complex
subject. Wendy really does need a pat on the
back for her efforts in this respect.
The book uses OpenGL to demonstrate the
theory and if you know how to remove the
Win32 material from the source, the value
escalates tremendously. However, if you don’t,
the value isn't deminished (the theory still holds)
just it may not convey the theory as well. It is
hard to say as different people have different

abilities to visualise how an aspect may look
without physically seeing it. Unfortunately,
from a pragmatic point of view, by not having
the Win32 parts in either an external file or
conditionally compiled, drags down the book.
Hopefully, Wendy will do something about this
in the next iteration of the book.
Recommended.

C++ for Game Programmers
by Noel Llopis, Charles River Media, ISBN
1-58450-227-4, 404pp
Reviewer: Paul F. Johnson

If this book had been called C++ – an
intermediate guide, this review would have been
somewhat different. It isn’t and as such, it’s not
a very pleasant review.
The problem is that the book has very little to
interest a game programmer. The C++ contained
in the book is pretty much your run of the mill,
generic material. The code fragments are just
that – fragments and in my opinion don’t really
re-enforce the points the author is trying to
make.

Sure, there are bits on AI, games physics,
communication and large objects, but these are
consigned to the back of the book – less than
1/4 of the book covers these aspects. The rest,
containers, smart pointer, linked lists – standard
fodder.
Secondary to this is the book is unsure who it is
aimed at. The book claims “intermediate” on the
back – however, it’s not. The STL is far better
covered in Josuttis (the STL takes the majority
of the book). It’s no good for beginners as it’s
way to brief. It’s no use to advanced bods as they
will already know the material covered and it’s
not high enough for intermediates who should
already know about linked lists et al.
If you’re after a straight C++ book, there are far
worse on the market – there are also far better.
Not recommended.

Games Physics
by David H Eberly, Elsevier,

ISBN 1-55860-740-4, 744pp
Reviewer: Paul F. Johnson

This book is not for those with a weak
constitution. If your maths is not up to muster,
then don’t go near the book – you plain won’t be
able to understand it. I didn’t on the first read and
I teach maths! However, if you are a games
programmer and want to ensure your games
realism is as good as real life, then you must have
this book. It is fantastic!
For the uninitiated, games physics governs how
a bullet arcs, how the speed drops over time and
the likes of terminal velocity when it comes into
contact with a non-air body. And that’s at a
simple level.
The maths in the book is enough to scare most,
but thankfully, the explanations are clear and
consise with all of the terms used defined. There
are also plenty of code examples, so the cold
maths become simpler for the programmer to

Bookcase
The latest roundup of book reviews.

C Vu has had, for a very long time, held the reputation and standard for top-notch reviews
of programming and technical books. We have a great relationship with many publishers,
some of whom publish quotes from the reviews on their literature (after getting permission
of course!).

We are independent of any publishing company and as such have been known to slate
books from one publisher and, in the same breath, praise another book from them. C Vu
and its reviewers are respected for their impartiality and independent knowledge. However,
looking at the number of reviews for this edition, it looks like the proverbial ink wells are
running dry. We need more reviews!

Remember, if you submit a book review you are contributing to the greater knowledge of
the membership. Books are expensive and the last thing anyone wants it to spend upwards
of 30 pounds on a book which is an utter turkey! That said, if you decide to review a book,
the worst that will happen is you lose a fiver – and if the book has the “Not Recommended”
rating, your next book is free. What can be fairer than that.

As always, the ACCU must thank the Computer Bookshop, Blackwells and a range of other
publishers for providing us with the review books.

Bookshops

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
34 | {cvu} | AUG 2006

understand (and use) as it is in a form they
understand. The source is also on the cover
mount CD.
The book steers clear of any platform issues
(everything will compile on gcc, VC++, Intel
C++ and nVidias cg compiler). It is purely for
the physics.
Highly recommended

Game Programming in C++:
Start to Finish
by Erik Yuzwa, Charles
River Media, ISBN 1-
58450-432-3, 378pp
Reviewer: Paul F. Johnson

I had high hopes for this book.
Okay, 370-ish pages from
start to finish is as insane as
learning C++ in 21 days or Java in a
weekend, but I put that to one side. This
book is what I’d love to have on my shelf –
covered OpenGL and SDL, two open source
libraries, both widely used, both very capable.
Then things went wrong; I opened it.
22 pages before anything of substance – it
covered Inno, using CVS and setting up various
bits on the machine. I can ignore that, it doesn’t
concern me, but it does take the page count down
to about 350. Okay, still enough to give an over
view of SDL...
The first code example fails to compile! Totally
fails. Why? Look at the code and the description

// specify that you want to use
// objects defined in the std
// namespace
using namespace std;
int main(int argc, char
*argv[])
{

// define a string object. can
// also be defined as a
// std::string
 string text_string;

// instead of strcpy we can use
// the = operator
 text_string = "Hello world";
// instead of strcat we can use
// the += operator
 text_string += " I am a
 std::string";
// when needing a pointer to the
// character string buffer,
// always use the .c_str()
// method
 cerr << text_string.c_str()
 << endl;
 return 0;
}

It looks innocent enough, but it is assumed that
the reader has little or no C knowledge at all (the
book is for beginner to intermediate). What is

this strcpy, strcat and what on earth is a
method and operator?
Also, why doesn’t it compile. That’s right. The
#include <string> is needed. This sort
of mistake of not having the #includes or
bothering to really explain what is going really
doesn’t help.
I can gloss over those. I have a bigger beef.
Remember I said it was for beginners – it
launches very quickly into using templates. Me,
I didn’t hit templates for yonks while learning,
yet the author seems to consider them fair game
for beginners! If they had been written with care
and with a lot of explanation, I could let it ride.
This isn’t. In fact, some parts are just wrong.
Up to around page 68, there isn’t very much in
there that would be considered programming,
though the design chapter is quite good. Page 69
is where the book really stops being of use – it
goes platform specific. A massive opportunity
missed. From this point on, the source is very
much Windows orientated and it becomes more
and more less use to anyone not using Windows.
There is a section on dlls and interaction with
COM. Why? The beginner wants to get
something running and wants to link to the SDL
or OpenGL libraries, not bother with their own
– they want quick, simple and pretty.
Now, gentle reader, how many people think that
they can master graphics programming maths?
You know, 3D models, vectors, matrices – that
sort of thing. Quite a few, yes? How many think
that it can be covered in enough detail in 20
pages? Not a hope. The author should have used
the pages for something more productive and
had a line in about using something like
“Beginning Math and Physics for Game
Programming” – an entire book which uses the
SDL and OpenGL, but covers the maths in a
great deal more detail – and accuracy.
I could go on, but you get the picture. It’s not a
very good book. Given that one of the finest
books on OpenGL (OpenGL Programming
Guide, Vsn 2) runs to almost double the page
count, covers everything in far higher detail and
yet costs a shade under a tenner more (according
to Amazon), it speaks volumes on what this
book hopes to achieve.
Me, if the other half bought it as a present, I’d
think she was having an affair and it was her way
of telling me so.
Not recommended.

C, C++ and C#
C in a nutshell
by Peter Prinz & Tony Crawford, O'Reilly,
ISBN 0-596-00697-7
Reviewer : Christer Lofving

It does not happen very often, but
it happens. You run into a
technical book which takes the
breath out of you.

Last time it happened to me was when I
reviewed “Java I/O” by Elliotte Rusty Harold in
the late 90’s. Except for being fun to read at that
time, it has also since then come to extensive use
for me in a lot of real-world Java projects.
I think this aspect is that will raise an already
good computer book to an extraordinary level;
it’s usefulness AFTER reading it! Also, on the
book market today you can find a trillion titles
on themes like “Java quick start” and “Teach
yourself C#”. (Even C++ has its good share
here).
But there is a considerable shortage of books on
C programming. In the bookshelf at home, my
freshest pure C book has a printing year of 1994!
And a search on Amazon for “C programming”
gives similar results.
The K&R classic “C programming language” as
top hit, followed by a couple of titles from the
90’s. So there is really a gap to fill. Good news
are this title fills it indeed.
OK, almost all the “nutshell” books are of high
quality, but “C in a nutshell” is outstanding even
in that good company.
It has its 600 pages divided up and marked with
“thumb marks” per section. A feature which
gives it almost the same feeling as a theologian
study Bible.
Part I describes the basics, and by that I really
mean the basics. A beginner can handy use it
from start as a step-by-step tutorial. Then he/she
can work on with literals, expressions, functions
and to real advanced topics like pointers. For the
experienced user this “feature catalogue” of
course is of great value as well.
The text is informative and intricacies are
explained in clean English. And best of all;
everything is illustrated with small, but fully
functional code samples. This is an invaluable
feature for any programming tutorial or
reference book, because some lines of code (in
form of a well-chosen example) often says more
than many words.
This style is followed throughout. The most
valuable part for myself was the complete,
updated reference to the C standard library
which makes up the core of the book.
I now feel up-to-date on the many enhancements
added in the 1999 standard. The third and ending
part “Basing tools” contains tutorials about
using gcc, make and gdb. That makes it a
complete, all-around C programming book.
Useful for the beginner as well as for the most
experienced user to be found on earth. I am sure
it will accompany me for many years to come.

C Primer Plus 5th ed
by Stephen Prata, Sams.
ISBN 0-672-32696-5
Reviewer: Paul Thomas

Recommended.
Ah, C! This brings back
memories. I had to learn C “on
AUG 2006 | {cvu} | 35

the job” and what a confusing beast it was. It was
years before I found time to learn the details and
I was probably dangerous until then! It’s always
better to take the time to learn something like
this properly and I could have done worse than
work through this book. Though I expect it
would have taken some time. The K&R “bible”
has run out of pages before this book has covered
the if statement.
I didn’t do the exercises but I did give it a full
read – a good 750 pages or so before the
reference section. I learnt a few things too;
mostly about C99 which the book focusses on.
It does have the good grace to point out where
compiler support is lacking and there is a good
grounding in other practical matters. Not
enough emphasis on non-portable behaviour for
my liking, with bad advice on bitfields. But the
teaching style is nice – introduce a new program,
then follow it up with a lengthy discussion. Not
just the basic language details either, but
common use idioms.
I would leave it at that and recommend it for
anyone committed to follow a large tutorial. But
I have a few worries.
About halfway through, I came across this gem:

So in serious programming, you should use
fgets() rather than gets(), but this
book takes a more relaxed approach.

Relaxed approach? Your stock is falling Dr.
Prata. Still, that’s academics for you: wagging a
finger at us for shunning garbage collection and
formal verification; then writing FORTRAN
libraries.
Another thing I look for in a basic C book is
goto. Sure enough, it’s not recommended and
there is even a good section on how to replace it
with structured code. But no satisfactory
explanation for why it should be shunned. So
students that learn from this book will likely
rebel when they see how easy it is to use and will
badger C/C++ lists to accept that it’s a good
thing. Probably quoting Knuth.
So, while other books might be better, it's a good
tutorial for C that takes a complete novice into
fairly advanced territory.

Programming C# (4th edition)
by Jesse Liberty, O'Reilly,
ISBN: 0-596-00699-3.
644pp
Reviewer: Alan Lenton

This is the 4th edition of
this book, and covers C# 2.0,
.NET 2.0, and Visual Studio
2005. I originally bought the book late last year
when I was trying to persuade .NET Windows
Form to do anything other than produce
programs which were database clients (I failed,
incidentally). Having discovered that a week
long visit to the dentist was probably less painful
than using C++ to program .NET, I decided to
learn C#, and bought this book to do so.
I found the book frustrating.

Yes, all the syntax is there, so are simple
examples, and it’s impressively heavy, but there
is something missing. It took me quite a while
to figure out what it was that was missing. If you
want it in eastern mystic terms, the Tao of C#
was missing. By that I mean it didn’t really
explain how to think in C# terms – how to build
your program in a C# compatible way so that
you weren’t distorting C# usage to make it fit
into a concept more appropriate to another
language.
The failure is all the more severe because the
book advertises itself as being for experienced
professionals wanting to get up to speed in C#.
These are exactly the sort of people who would
need the conceptual information far more than
an eight page explanation of how to do loops in
C#.
The book would probably be OK for someone
starting out to learn C# as their first language,
although even then I’m not sure. And, come to
think of it, I don’t recall ever hearing of anyone
who didn’t learn C# as a second or subsequent
language!
Not recommended, although, to be fair, I was
unable to find a C# book that I would
recommend.

C++ for Engineers and
Scientists 2nd ed
by Gary Bronson, Thomson,
ISBN :0-534-99380-X
Reviewer: Paul Thomas

Recommended with Reservations
Quite an interesting one this, it has a strange mix
of the old and the new. Some parts of the
language that are usually left to the advanced
sections are introduced quite early as an integral
part of the language. Function templates, for
instance, are introduced at the same time as
regular functions. Strings and streams are
definitely not treated as add-on features. So the
usual downfall of C++ introductory texts is
avoided.
The presentation is impressive. The material is
moved forward in a way that’s bound to keep
you interested. The Engineers and Scientists
appear in the title because that is the focus of all
the examples and exercises. It certainly makes a
nice change from bank transactions and if this is
your area then I imagine it will hold your interest
much more.
There are a few technical inaccuracies that let
the book down and this combined with the
material that’s missing gave me the impression
that the author wasn’t as fully conversant with
C++ as you might hope. As an example, the
section on cast operators was misleading and
plain wrong in places. But a few minor problems
like that shouldn’t detract from such a nice
tutorial text.
I’d recommend it to anyone needing to cross
over from the harder sciences, but on the
understanding that it is not really suitable as a

reference and should be read in conjunction with
something a bit more meaty.

C++ and Object-Oriented
Numeric Computing
by Daoqi Yang, Springer, ISBN: 0-387-
98990-0. 440pp
reviewed by Francis Glassborow

I have to be honest and tell you that I get irritated
by this kind of book. The title starts the problem
for me. You would expect (or at least I would)
a book that starts with the assumption that the
reader is familiar with programming and C++ in
particular. You would be mistaken.
This is an introductory text on C++ aimed at
scientists and engineers. That would be OK if
the book tackled programming in C++ in a way
that is appropriate to what I call the incidental
programmer – someone who needs to program
as part of their work or profession but who is a
professional in some other discipline. Such
people need a good clear introduction on how to
express the problems of their discipline in C++.
They need the full power of the high-level
abstractions provided by the Standard Library
(and should be told about both Boost and other
specialist quality libraries).
What these people do not need is a tedious
introduction to low level C++ with a lot of
emphasis on its C ancestry.
Let me give you an example of what sticks in my
gullet. The author wants to spend some time on
operator overloading so he writes a chapter on
implementing classes for complex numbers,
vectors (mathematical ones) and matrices. The
first of these is already fully designed and
implemented in the Standard Library complete
with specialisations for all the floating point
types and facilities for mixing the different
specialisations. What we find in the book is a
partial implementation of a complex number
type with doubles used for the real and
imaginary parts. There is no discussion of the
reasons for the design. For example, the author
correctly implements operator + in terms of
operator += but give no explanation.
Later, in chapter 7 (on templates), he gives the
briefest of introductions to the Standard
complex<> types.
Perhaps I should not go on, because I clearly
have no sympathy for the author’s approach.
From my perspective the material is too low-
level, too skimpy, lacks explanation of either
how the implementation works or how the
reader might use C++ in his/her discipline.
This book is clearly ill-suited to the ordinary
novice and, in my opinion, does not tackle the
use of C++ by mathematicians, scientists or
engineers. There is a place for a good clear
introduction to numerical programming using
C++ but this book is not it
36 | {cvu} | AUG 2006

Python
wxPython in Action
by Rappin, Noel & Robin
Dunn, Manning, ISBN: 1-
932394-62-1, 552pp
Reviewer: Ivan Uemlianin

Recommended
This is a likeable book,
recommended without reservation to anyone
getting started in python GUI programming.
n.b.: the book says virtually nothing of use on the
relationship between wxPython and
wxWidgets.
The book’s three parts introduce in turn
wxPython and GUI programming in general, the
basic wxPython widgets, and then more
complex wxPython stuctures. Each part has six
chapters. At the next level down the book is
organised as a FAQ: each section or sub-section
title is phrased as a direct question: ‘What
terminology do I need to understand events?’,
‘How do I create a pop-up menu?’, etc.
The authors are serious about GUI programming
and good design, and about bringing these to a
new audience. The writing is clear and steady
if a little earnest, as if an effort has been made
to avoid intimidating budding GUI pythonistas.
The FAQ format makes it very easy to use as a
reference but, apart from the first section, it gets
too tedious to read as a book. This effectively
works as a gentle nudge encouraging the reader
to try a few things out and come back when they
need help.
Although the book has an introductory feel, and
a lot of time is spent on foundational issues, it
still covers a reasonable amount of ground, up
to things like using tree controls, html displays,
printing and drag-and-drop.
The book disappointed me (majorly) twice.
First, there are virtually no complete
applications (I counted one, a basic sketchpad).
There are many working scripts, but these
invariably demonstrate a particular widget or
behaviour. Compare this with Python and
Tkinter Programming by J.E. Grayson (2000),
which offers a wide range of often quite
spohisticated GUIs, including AppShell.py – a
kind of GUI template which the reader can ‘fill
in’ and customise as required.
The authors seem completely unaware of this
earlier book on Python GUI programming; their
publishers certainly can’t have been. Rappin &
Dunn (among many others) claim that
wxPython improves significantly on Tkinter
but, in the absense of any GUIs approaching the
sophistication of those in Grayson (2000), they
do not demonstrate their case.
Second disappointment: the book contains no
discussion at all of SWIG or wxWidgets.
wxPython is essentially a Python wrapper
around wxWidgets, and it uses SWIG
extensively to provide this wrapper. How

simple is it to port a wxPython GUI to
wxWidgets? Should this be a factor in choosing
python GUI toolkits? Practical issues like these
remain unaddressed. Although slightly
tangential, an illustration of how SWIG is used
to generate wxPython from wxWidgets would
have made a valuable appendix.
However, wxPython’s use of SWIG and
wxWidgets is mentioned only in passing, and
the book proceeds as if it were of no practical
interest.
I found these two ommissions extremely
annoying, but they are missed opportunities
rather than serious errors. Notwithstanding my
disappointments I found the book very useable.
I recommend it as dead tree format
documentation for wxPython, or for python
programmers who want to get started on GUIs.
The book can not be recommended for people
who want to learn about the relationship
between wxPython and wxWidgets.

Java
The Java Programming

Language 4th ed
by Ken Arnold et al.,
Addison Wesley,
 ISBN : 0-321-34980-6
Reviewer: Paul Thomas

Highly Recommended
Now this is more like it! A
proper language text with dense, value for
money, trustworthy content. None of your
namby-pamby tutorial here, lots of caffeine is
needed to read it. Java is often dismissed (mainly
by C++ programmers) as a language written for
children frightened by the sharp edges of a real
language. They should have a skim through this
and see how much is actually involved.
The book is actually billed as a tutorial, but those
parts are very light. If you need a gentle worked
pace, then you won’t get far with this one. It
starts with a quick tour to give you a feel for the
language, then methodically moves through just
about every aspect of syntax, primitives and core
library classes. As the material moves toward
the (huge) class libraries, it becomes more
reference-like with lists of selected class
methods. At just about every point, the reference
material is mixed with rationale, advice on
common usage and examples to place it in
context.
This is a no-nonsense description of the
language that can help you get up to speed very
quickly – particularly if you are familiar with
similar languages. It also has enough depth that
you can be confident not to have missed
something. It won’t help if you are new to
programming. Make no mistake, this is
programming for grown-ups and my copy is
likely to become worn through heavy use before
long.

Pocket PC
Pocket PC Network
Programming
by Steve Makofsky,
Addison-Wesley,
ISBN : 0-321-13352-8.
656 pp
Reviewer: Frances Buontempo

This book covers network
programming Pocket PC 2002/
2003 and Pocket PC 2002/2003 Phone Edition
devices, though some of the APIs may be
available on a Windows CE 3 or 4 device and
much of it applies to PCs as well. The contents
include Winsock, WinInet, Internet Protocol
Helper API's (IPHelper), Network Redirector,
Serial and Infrared connections , Remote Access
Services, Connection Manager, Pocket PC 2002
Phone Edition, Desktop Synchronization, and
the Pocket Outlook Object Model, Email
(MAPI). The final briefly chapter covers the
compact framework: VB.Net and C# for Pocket
PC. However, since it is aimed at earlier versions
of Pocket PC, it does not cover Bluetooth.
This book pulls together a wealth of items, some
of which are covered in disparate places across
the MSDN making them hard to find without
knowing what to look for. It adds extras such as
warnings and error cases to be aware of,
alternative ways of doing things and giving a
brief overview of networking concepts such as
the TCP/IP stack etc.
On the plus side, it gives a thorough coverage of
networking ranging from Desktop
Synchronization to more detailed items such as
using HTTP programmatically, communication
with other devices via IrDA, telephony and the
RAPI, and with networks. It includes lots of
code samples and usually demonstrates various
ways of doing things, though not always
clarifying pros and cons of each method where
alternatives exist.
The code samples are mostly in C. Their
standard is sometimes poor: magic numbers all
over the place, including the same constant
repeated over three times in one code 39 line
code sample...neither an enum nor a #define
in sight. Furthermore, it often says to set certain
parameters to API calls to NULL with no
explanation. More background or depth would
be good from time to time. However, it is enough
to show which functions should be used in which
order to do what.
This book is complete, thorough and relevant to
more than just Windows Mobile devices, but has
some nasty code samples and a lack of advice
about when to use what. In addition throw away
statements are made without explanation from
time to time such as page 307: Each [SMS]
message can be up to 160 alphanumeric
characters long (140 bytes). Excuse me? Oh... 7
bit chars...right. There are several throwaway
comments like this that could do with some
AUG 2006 | {cvu} | 37

explanation. Finally, some of the code samples
are troubling for an entirely different reason. In
particular, InternetSetOption is
proferred as the way to set timeouts when using
HTTP. According to the MSDN this has a
known bug: InternetSetOption with
timeout values doesn’t work.Calling
InternetSetOption (or MFC CHttpFile::SetOption)
with INTERNET_OPTION_SEND_TIMEOUT or
INTERNET_OPTION_CONNECT_TIMEOUT
does not set the specified timeout values. (See
Q176420 support.microsoft.com/support/kb/
articles/Q176/4/20.ASP)
Recommended with serious reservations. If you
buy it, it would provide a good starting point, but
take everything it says with a pinch of salt.

Programming
The Art of Computer
Programming V4
Fascile 4
by Donald Knuth, Addison-
Wesley,
ISBN: 0-321-33570-8. 120 pp
Reviewer: Francis Glassborow

This is another part of volume four of The Art of
Computer Programming. This latest fascicle (by
the way, at the time of writing I am not aware of
the publication of fascile 1 of this volume. The
fascile 1 you may see in your local bookstore/
shop is for volume 1) has bwcovers the
generation of all trees. Closer examination
revealed another aspect of this curious way of
dragging text out of a perfectionist author (The
author has been working half a lifetime on this
volume and still has volume 5 to come). You
cannot simply put the fasciles together and get
the finished volume because each fascile has a
coherent extract from the projected work but not
consecutive. This fascile refers back to earlier
fasciles.
If you know Donald Knuth’s work, you do not
need me to tell you of its authority and
readability. The author is without doubt one of
the leading figures of the computer world and
has been for over 30 years. The earlier volumes
have stood the test of time, though they have
been revised and updated.
If you do not know The Art of Computer
Programming this is not the place to start, get the
first three volumes and study them carefully.
You will then be ready to dip into the fourth
volume either via the drafts on the web or by
getting the fasciles as they become available. It
is probably unwise to wait for the completed
volume as this writer has grown old waiting and
has had his hopes raised several times over the
last decade.

General Interest
What the Dormouse Said
by John Markoff, Penguin,
ISBN: 0-14-303676-9, 310pp
Reviewer: Alan Lenton

I’ve been waiting for this book to
come out in paperback ever since
I read an interview with John
Markoff in the ACM’s online
magazine, Ubiquity! (http://www.acm.org/
ubiquity/interviews/v6i29_markoff.html)
The perceived wisdom about the genesis of the
Internet is that while hippies and lefties were out
on the streets protesting about the Vietnam War,
a small cadre of ‘all American’ engineers was
busy laying the foundations of personal
computing and ARPNet, the Internet’s
precursor.
I always thought this had to be wrong. You only
have to look at the ethos of the early ARPNet/
Internet to see how hippy and power-to-the-
people-ish it was. Even today, after decades of
commercial activity, the battle still rages.
Technically, the architecture of Internet remains
fundamentally that of peer-to-peer, even though
the majority of major applications are client/
server oriented. As for the open/closed source
program dichotomy – the battle is, if anything,
fiercer than ever.
This didn’t all happen by accident. As John
Markoff's remarkable book shows, the personal
computer and networking revolution was a
product of US society on the West Coast in the
late 60s.
The truth is that the architectural ideas and much
of the technical work on things we take for
granted about personal computing and the
Internet came from people who were part of the
San Francisco scene, they took drugs – including
acid – and in many cases were real hippies.
To give just one example of the depth of the
links, one of the camera operators at the first
ever public demonstration of cyber space on
December 9th, 1968 was Stewart Brand, soon to
become famous as the creator of the Whole
Earth Catalog!
The book covers the period from the start of the
sixties through to the infamous Bill Gates letter
denouncing members of the Homebrew
Computer Club for ‘stealing’ Gates’s version of
Basic for the seminal MITS Altair personal
computer.
I really recommend this book for those who
would like to find out the whole story of how the
technologies that came together to make the
network enabled personal computer came int
existence. It may well be that personal
computing and the Internet turn out to be one of
the most enduring legacies of the 60s hippy
movement!

Oh - and just what was it that the dormouse said?
'When logic and proportion

Have fallen sloppy dead

And the White Knight is talking backwards

And the Red Queen's "Off with her head!"

Remember what the dormouse said:

Feed your head!

Feed your head!

Feed your head!'

(From the song "White Rabbit" by Jefferson
Airplane, 1966)

Skype: The Definitive Guide
by Harry Max & Taylor Ray,
Que, ISBN: 0-321-40940-X.
263 pp
Note by Francis Glassborow

This is one of those books that
you do not really need but some
people are happier with a printed
book rather than relying on the web. I am not
sure that is the right way to go because Skype is
still developing and so any book is out of date
before it gets to the shops.
Nonetheless if you want to use Skype you might
find having this book to read when you have a
moment (such as when travelling to work) might
open your eyes to the potential Skype has
beyond being just useful for Internet telephony.
One of the things I like about Skype is its support
for such things as SMS messages (text messages
to mobile phones). I can quickly send a text
message from my laptop when it is connected to
the Internet.
If you are not already familiar with Skype, it is
well worth trying it out and its basic features
from computer to computer are free. Even the
computer to phone connections are relatively
inexpensive.
If you are a Skype user, you might browse this
book in your local bookshop to see if it meets
your needs, but there is nothing here that you
will not be able to find for yourself by reading
the information provided by its website.

Crabby Office Lady
by Annik Stahl, Microsoft
Press,
ISBN: 978-0-7356-2272-2.
178 pp
Note by Francis Glassborow

Let me make this one simple
(after all it is not about
programming); load up your
chosen browser and Google ‘Crabby Office
Lady’. The book is based on Annik Stahl's
Internet columns.
Yes, it is fun and despite the publisher
(Microsoft Press) shows an
appropriate lack of reverence
for his employer.
38 | {cvu} | AUG 2006

accu ACCU Information
Membership news and committee reports
View From the Chair
Jez Higgins
chair@accu.org

Somebody asked me recently
what it felt like to have my
hands on the levers of ACCU
power. I laughed. There are no
levers, not even a small ones. ACCU is not a
ship, at whose wheel I stand, guiding the
organisation smoothly and safely through
whatever waters this particular failing metaphor
might take us. That’s entirely as it should be.
We’re a voluntary organisation, and everybody
is here because they want to be. The Chair
doesn’t dish out orders and crack the whip. I’m
not good at that kind of thing, anyway. The
nearest I’ve come in the past to any kind of
“command position” was as a patrol leader when
I was a scout (1st Tacolneston, now sadly
defunct). Organising a group of 14 year olds
relies very little on bossing around and very
much on encouragement, suggestion, nudging
and negotiation. I was pretty good at it, actually.
Being Chair is turning out to be kind of similar,
but with more beards.
First in line for an activity badge is Ewan, who
took a combined conference committee and
ACCU committee meeting to a look at a
potential new venue for next year’s conference.
The conference venue is a subject that evokes
strong emotion, and is something everyone on
the conference committee takes extremely
seriously. We were given an extensive tour of
the facilities, which were really quite
impressive, and really rather too much lunch,
which was also rather good. We checked out the
car park too. That’s right, car park. I have to be
slightly coy about the specifics at the moment,
but hopefully Ewan will be able to say more next
time.
Badges too for Allan, Tim and Tony, who
continue to work away on the website. Much of
the work isn’t yet immediately visible, but going
live as I type this are the ACCU blogs - technical
weblogs by ACCU members. There’s much
more too, I suggest you speed over to Allan’s
report for the details.
Finally, a badge and many thanks to Paul, who
is standing down as C Vu editor to spend more
time with his newly enlarged family and newly
enlarged job. He’s done sterling work over the
last two and half years. On behalf of the whole
of ACCU I’d like to thank Paul for his
commitment and effort. On a personal note, I
want him to know that it is very much
appreciated, even if I am routinely late with this
report. Taking over the C Vu reins is Tim
Penhey, who I’m sure is going to do a fine job.
Editor – now that is a job where you get to crack
the whip ...

Secretary’s Report
Alan Bellingham
secretary@accu.org

The May committee meeting
took place, unusually, at a hotel.
However, there was good
reason for this: the hotel is a
candidate venue for the next AGM and,
parenthetically, the next conference.
(Having managed to be at the last two AGMs
without actually attending the conferences they
were attached to, I may be a little one sided. One
was missed due to an injured back, the other due
to a business ‘crisis’, and I hope neither reason
is repeated.)
The Oxford Hotel is a compromise between the
constricted central Oxford location of the
Randolph and the out-at-the-edge nature of the
Holiday Inn at Peartree. It’s a sister hotel of the
Hinckley Island (at which I will be attending a
convention in late August), and the Paramount
Hotel group aspires to a casual stylishness which
I find more attractive than faded grandeur. The
food was better than the Randolph, it’s much
more car-friendly, and if the conference
committe go with it, I for one would be happy.
But on to the meeting.
Most of the usual bunch were at the meeting, but
we also had in attendance Giovanni Aspronni,
there for the first time since his election, as well
as Tim Penhey.
The minutes were checked and approved, and
officers’ reports were received.
The first major issue we discussed was whether
the handbook should still be published on paper,
or whether it should more sensibly appear on the
website. The conclusion was that although the
latter option is attractive, we shouldn’t just go
ahead and do it without consultation from the
members. So, for this year, it will still be printed,
but we may well move to go online next year.
We will need to guard against address skimming
and the like.
Following this, we considered the future
direction of these journals. With the arrival of
web publishing, with a lower cost of delivery, is
the continued existence of paper magazines still
necessary? There was, as you would expect,
considerable discussion here. With the arrival of
the new website, can we go web-only? If so,
should we trickle articles out as they arrived, or
should we stick to a known publication
schedule? In the end, we decided that we would
start by publishing Overload on the website at
the same time as the physical copies were
posted. This will mean that at least far-flung
members will have a chance to read articles at
the same time as UK members, and online
discussions could be less disjoint.
Another issue, again on publishing (we seemed
to have a strong theme for this meeting) was that

with our C Vu editor retiring, we need a
replacement. Overload has been running for a
while with a team structure, and this seems a
good opportunity to do the same for C Vu. As a
result, we have asked Tim Penhey to recruit such
a team for C Vu.
And then, changing the subject, we finished with
two related issues. The first was the result of a
request from the WG21 ISO panel that the UK
should host the Spring 2007 meetings. This has
been done before – it’s convenient for the
meetings to be just before our conference, so that
speakers can arrive for the panel meeting and
then do the conference as well. However,
hosting such a meeting takes money, and
without money it won’t happen. Therefore, we
need sponsors. If you know someone, whether
inside Sun or Microsoft or Google, or perhaps a
smaller organisation, that might be interested,
please contact Lois. No amount too small!
Finally, we talked about support for local
meetings. We've long been impressed by the
regular meetings that the Silicon Valley branch
has been holding, and though the annual
conference is very impressive, smaller local
meetings haven’t taken off in the same way. We
reckoned that seed funds for local groups such
as Nottingham or similar could well help get
them going, and agreed that, given a suitable
case, we would provide them.

Website Report
Allan Kelly
allan@allankelly.net

Just over two weeks ago we
launched the new ACCU
website! I expect most of you
have already visited the site, and
on the whole comments are positive, but just in
case you haven’t, check out the new
www.accu.org.
The site was finally launched on 14 February, it
is now the start of March and we’ve had just
short of 130,000 page visits. Incredible I know,
some of them will be bots but still, that is a lot
of visitors.
I have to say a big thank you to those most
closely involved: Tony Barrett-Powell the
ACCU web-editor and Tim Pushman of
Gnomedia who have done most of the work. Jez
Higgins has been a great help in the past few
months, additional thanks for various
supporting work go to Alan Lenton, Ian
Bruntlett and Paul Johnson.
We also have a new book database system. This
has been developed by Parthenon Computing
and is linked to bookshops and carries adverts.
Parthenon will be paid from the revenue
generated with any extra revenue be split
between the ACCU and Parthenon. So, if you are
buying a book please buy it through the site.
AUG 2006 | {cvu} | 39

accuACCU Information
Membership news and committee reports
REVIEWS

The new site isn’t the end of the story. We still
have work to do. The whole point of
redeveloping the site and installing a new CMS
system was to allow us to keep the site up to date
and us it as a new journal media.

Still, there is pressing work to do, we need to
move the US ACCU site over, mailing lists, mail
archives and journals have yet to be moved from
the old server. And there is more.
Once again, thanks to all those who have helped.

Since the conference there has been a lot of talk
on the committee list about creating local groups
– inspired by Reg Charney. One of the things
we’ve started thinking about is creating an online
calendar to track all these events.
Hopefully by the time I write the next report
we’ll have some new stuff to talk about.
40 | {cvu} | AUG 2006

I just wanted to say you were fantastic!
And do you know what? So was I.

Yep, it had to happen. My time in this position is fast drawing to a close and like the proverbial
timelord, you won’t be seeing me again, well not with this silly ol’ face.

I’ve throughly enjoyed editting C Vu. I remember my first issue was one that I took over in
mid production run – it was a very strange experience, but not an unenjoyable one.

The magazine has seen quite a number of changes in personnel
as well as the new website and the redesign. All of them have made
C Vu a stronger and more professional publication. The stall has
been set, and my heart felt wishes go to our next editor. Good luck
Tim. Don’t let us down!

Going soon. It’s time to say goodbye... Might regenerate. I don’t know. Feels different this time...

	Software Engineering - the Greenest of the Professions
	Coaching - the Art of Not Teaching
	Effective Version Control #1
	The Structure and Interpretation of Computer Programs Mentored Project
	Trip Switch Booleans in C++
	Developer Beliefs about Binary Operator Precedence
	Maintaining Legacy Code
	Standards Report
	Student Code Critique Competition
	Bookcase
	I just wanted to say you were fantastic!

