
APR 2006 | {cvu} | 1

{cvu}
ISSN 1354-3164
www.accu.org

The ACCU is an organisation of programmers who
care about professionalism in programming. That is,
we care about writing good code, and about writing it
in a good way. We are dedicated to raising the standard
of programming.
The ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
ACCU members - by programmers, for programmers -
and have been contributed free of charge.
To find out more about the ACCU’s activities, or to join
the organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of the ACCU

accu

Volume 18 Issue 2
April 2006

Editor
Paul Johnson
77 Station Road, Haydock,
St.Helens, Merseyside,
WA11 0JL
cvu@accu.org

Contributors
Ian Bruntlett, Francis
Glassborow, Lois Goldthwaite,
Pete Goodliffe, Steve Hopley,
Paul Johnson, Roger Orr, George
Shagov, Örjan Westin

ACCU Chair
Ewan Milne
0117 942 7746
chair@accu.org

ACCU Secretary
Alan Bellingham
0117 942 7746
secretary@accu.org

ACCU Membership
David Hodge
0117 942 7746
membership@accu.org

Advertising
Thaddeus Froggley
ads@accu.org

ACCU Treasurer
Stewart Brodie
0117942 7746
treasurer@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribrution
Able Types (Oxford) Ltd

Design
Pete Goodliffe and
Alison Peck

A brand new look!
elcome to the redesigned C Vu! I’ve just seen the version
about to be sent to the printers (well, an early draft) and I
must say how impressed I am by it. Sure, I and a couple of

others were consulted on the format and page style, but I shall now
charge my glass to Pete and Alison for a job well done.
As always, the magazine is packed with the usual mixed bag of
extremely high quality articles, editorial and masses of book reviews – and I mean it. Since I
took over, you may have noticed that the number of reviews published has dropped somewhat
due to the space being needed for articles. While it is encouraging to see the number of articles
on the up, it’s not as good that the reviews vanish, so for this and the next issue, I will be putting
in all of the reviews dropped over the last 2 years (yes, it’s been 2 years now!)

I think we're alone now (well, almost)
It’s with sadness that I have to report the closure of CUJ. It is always sad when a magazine
closes its door (for whatever reason) and with CUJ coming off the shelves, all that is left to the
general public is Dr Dobbs, which is not exactly the easiest magazine to obtain (unless you live
in London or close to Manchester Airport – I’ve certainly never seen it in Liverpool). It is a far
cry from the halcyon days when magazines used to carry listings to help people to learn how
to program and develop for their machines.
As you will see in the Secretary’s report, there was talk of bringing the ACCU magazines to
become a news stand publication. I don’t have a problem with that, in fact, it would be a possible
boon in some respects - there would be more pages, so I would have room to include some very
large articles which have been submitted, but would require most of the magazine to bring to
print as well as being able to having dedicated parts for C#, Agile development and if someone
was to write it, parts for Java.
There would be logistical problems though – most notably would be that Overload and C Vu
would need to merge to get the page count somewhere approaching viable and staffing would
have to be arranged. While I would never want to impune on the Overload editorial team (or
myself for that matter), but in my opinion, the new magazine would require a full time editor,
much higher paper quality, a larger page count and probably the two largest hurdles: advertisers
and more surprisingly, readers!
Of course, this has not been decided upon, so it’s really academic . Personally, I’d love the CUJ
writers to find a new home in Overload and C Vu – but I can see the
logic behind moving the ACCU magazines to the news stands.
Ah well, that’s enough for now – and on with the show!

W

PAUL JOHNSON,
EDITOR

2 | {cvu} | APR 2006

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, be default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from CVu without written
permission from the copyright holder.

COPY DATES
C Vu 18.3: 1 May 2006
C Vu 18.4: 1 July 2006

IN OVERLOAD 72
Multithreading 101 by Tim Penhey, To Grin Again and C++ Best Practice:
Desigining Header Files by Alan Griffiths, A Fistful of Idiioms by Steve Love
and Visiting Alice by Phil Bass.

DIALOGUE
24 Francis’ Scribbles

From Francis’ desk.

25 Standards Report
News from Lois.

26 Mailbox
Your letters and opinions.

27 Student Code Critique
Entries for the last
competition and this
month’s question.

REGULARS
33 Book reviews

The latest roundup from the
ACCU bookcase.

44 ACCU Members Zone
Reports and membership
news.

FEATURES
3 Fuzzy Matching

Steve Hopley brings the 1980’s US census into 2006.

7 Cygwin - Confessions of a Tool User
Ian Bruntlett on why using cygwin is not that bad an ordeal.

8 The Curse of Good Code
Pete Goodliffe talks about documented, maintainable code.

10 What Drives Development?
Phran Ryder looks at his own drivers.

11 Design Time
Paul Johnson creates a GUI for his MySQL application.

17 C++ Forever
George Shagov looks at transferring data across a network.

21 Trees, Roots and Leaves #1
Örjan Westin examines the value of tree structures.

Fuzzy Matching
Steve Hopley brings the 1890’s US census into 2006.

ack in 1890, the USA was undergoing a census. Even at that time, it had
a huge population and this would cause a massive logistical problem,
not only because of the number of people but because of the English

language. You see, the English language is very variable and because of that,
there are many ways to spell the same (or very similar) surnames.
One solution was to match the sound of the word by using the “Soundex
Coding” system. The big advantage is that similar sounding names have
almost the same code sequence.
As with any form of sequence, it had its own rules.

1. Always retain the first letter of the word as the first character of the
code.

From the 2nd letter on:
2. Ignore the vowels
3. Ignore w, y, q and h
4. Ignore punctuation
5. Code the other letters with the values 1 – 6 (see table)
6. Where adjacent letters have the same code, only the first is used
7. If the length of the code is greater than 4, only use the first 4 characters
8. If the length of the code is less than 4, pad it out with “0”

The upshot was that names like CUNNINGHAM would become C552 (C
is retained, U, H , A and I are dropped, the first two Ns are given by 5 with
the 3rd also being 5. G = 2 and M is 5. The final code is therefore C5525.
As we only use the first 4 characters, this becomes C552.
HEYHOE gives the odd value of H000. H is kept and all the others are
ignores. As this is only 1 character in length, the other three are padded with 0.
You can imagine that in 1890, the above method solved a lot of problems
(and probably created many more). However, we can now perform this
task quite simply and through a bit of code, we can generate Soundex Code
from a standard input (see flowchart 1) and to start with, we need to define
an array which holds the “allowed” characters in the order shown in the
table. I’ve kept them in capitals purely for convenience.

string allowed[] = {"BFPV", "CGJKSXZ", "DT",
 "L", "MN", "R"};

The code is read in (via cin >> input). This needs encoding, so
a variable of type string is used and the first character of input placed into it.
string encoded = input[0];

Next step is to read the rest of the string to the end of input into a temporary
string. The temporary string contains only the letter to be tested
string temp;
for (int i = 1; i < input.length(); ++i)
 temp = input[i];

The conversion of code numbers will be required at various times in the
program, so this is best farmed out to its own function (int
convertCodeNumbers(string t)).
This function compares the values in the allowed array to the value passed
in. If the letter is found, then the value of the loop where it occured is
returned else 0. Remember though, we have to add one to the return value
if it’s found.
int convertCodeNumbers(string t)
{
 for (int m = 0; m < 6; ++m)
 {
 if (allowed[m].find(t) != string::npos)
 return m + 1;
 }
 return 0;
}Letter Code

b f p v 1

c g j k s x z 2

d t 3

l 4

m n 5

r 6

B

Take 1st letter
as the 1st string

Input
Name

Take next letter
as a 2nd string

Search
string = code
group

Match?

2nd string =
code number

All
checked?

Empty 2nd string

Add 2nd string
to 1st string

All
checked?

Output
name and

code

YESYES

NO

YES NO

NO

STEVE HOPLEY
Steve Hopley is a lecturer in Computer Systems at St Helens College of
Further Education with special interests in cryptography and the deciphering
of how a computer understands. He is a regular at Security and Anime
conventions (though not at the same time!)
Steve can be contacted at shopley@sthelens.ac.uk

Flow
chart 1
APR 2006 | {cvu} | 3

This will return a value of between 0 and 6 as an int which will need to
be converted to a character if the value is > 0.
if (returned_value != 0)
 t += itoa(returned_value);
encoded += t;

...

string itoa(const int &value)
{
 ostringstream o;
 return (!(o << x)) ? “ERROR” : o.str();
}

Finally, you end up with source like listing 1.
This process is then repeated for the rest of the characters in the input
string. A quick test should show that the name BRAIN gives B65 and
CUNNINGHAM gives C55525. If you recall though, the output must be
4 characters in length, so the result for BRAIN would need padding with
a “0” and CUNNINGHAM would require truncating.
CUNNINGHAM also exposes a problem in the code so far, it has given 555
which means that the two Ns have both been read (which isn’t allowed).

The devil is in the detail
The repetition problem is solved by keeping a record of the last temporary
string (string lastvalue, see flowchart 2). As with temp, the first
character of the input string is placed in (to avoid it being repeated). This
time in the iteration step, we compare lastvalue with temp and if they
are the same, it’s not added to encoded. If they are not the same, make
lastvalue the current value of temp (listing 2).

#include <iostream>
#include <sstream>
#include <string>

using namespace std;

string allowed[6] = { "BFPV", "CGJKSXZ", "DT",
 "L", "MN", "R" };

int convertCodeNumbers(string t)
{
 for (int m = 0; m < 6; ++m)
 {
 if (allowed[m].find(t) != string::npos)
 return m + 1;
 }
 return 0;
}

string itoa(const int value)
{
 ostringstream o;
 return (!(o << value)) ? "ERROR" : o.str();
}

int main()
{
 string input, encoded, temp;
 char c;
 int rv;
 cout << "Please enter the name to encode : ";
 cin >> input;
 encoded = input[0];
 for (int n = 1; n < input.length(); ++n)
 {
 temp = input[n];
 rv = convertCodeNumbers(temp);
 if (rv > 0)
 encoded += itoa(rv);
 }
 cout << "Name Code\n";
 cout << input << " " << encoded << "\n";
}

Li
st

in
g

1
Listing 2

#include <iostream>
#include <sstream>
#include <string>
#include <cstring>
using namespace std;
string allowed[6] = { "BFPV", "CGJKSXZ", "DT",
 "L", "MN", "R" };

int convertCodeNumbers(string t)
{
 for (int m = 0; m < 6; ++m)
 {
 if (allowed[m].find(t) != string::npos)
 return m + 1;
 }
 return 0;
}

string itoa(const int value)
{
 ostringstream o;
 return (!(o << value)) ? "ERROR" : o.str();
}

int main()
{
 string input, encoded, temp, copytemp;
 int rv;
 cout << "Please enter the name to encode : ";
 cin >> input;
 encoded = input[0];
 rv = convertCodeNumbers(encoded);
 copytemp = itoa(rv);
 for (int n = 1; n < input.length(); ++n)
 {
 temp = input[n];
 rv = convertCodeNumbers(temp);
 if (temp != copytemp)
 {
 copytemp = temp;
 if (rv > 0)
 encoded += itoa(rv);
 }
 }
 if (encoded.length() < 4)
 {
 for (size_t s = 4 - encoded.length();
 s < 4; ++s) encoded += "0";
 }
 if (encoded.length() > 4)
 {
 string t;
 t = encoded.substr(0, 4);
 encoded = t;
 }
 cout << "Name Code\n";
 cout << input << " " << encoded << "\n";
}

4 | {cvu} | APR 2006

Once that has been done, we can deal with the case of the encoded string
being less than or more than 4 characters by adding “0” or truncating
respectively. Again, very simple

Matchmaker, matchmaker, make me a match
Okay. We now have a reliable system for producing the Soundex Codes
and it would be quite trivial to replace the cin >> input with a list of
words and examine their output. Again, I’ll just use an array, iterate
through it and examine the results. The string below contains the data I’ve
used to test my code with.
string tests[] = {"ABRAHAM", "ABRAHAMS",
 "ABRAMS", "ADAM", "ADAMS", "ADDAMS",
 "ADAMSON", "ALAN", "ALLAN", "ALLEN",
 "ANTHANY", "ANTHONY", "ANTONY", "ANTROBUS",
 "APPERLEY", "APPLEBY", "APPLEFORD" };
size_t arrayLen = sizeof(tests) /
sizeof(*tests);
for (int i = 0; i < t; ++i)
 {
 lastvalue = tests[i][0];
 convertCodeNumbers(tests[i]);
 ...
 }
cout << "NAME CODE" << endl;
for (int i = 0; i < t; ++i)
 cout << test[i] + " " + code[i] + "\n";

When compiled, the program
produces:

Now this is working, we can
p rogr es s an d pe r fo r m a
matching sequence whereby
we find which codes of these
names match the code from
the input and then output these
names, so that if APPLEBE
was entered, the program
would output answers.
NAME ? APPLEBE

This is somewhat interesting as even though APPLEBE is not in the test
list, the program has found the others listed.

Half a match is better than no match…
One thing which may have struck you about that last demonstration is that
APPERLEY was rejected despite it sounding very similar. It would
therefore be useful to be able to output these “near misses” as well. It is not
hard to, just introduce another loop which compares a decreasing section
of the input with decreasing lengths of the stored codes (flowchart 3).
If you were to enter APPLEBE, a whole range of answers are generated.
Listing 3 gives such a possible solution.

NAME CODE

ABRAHAM A165

ABRAHAMS A165

ABRAMS A165

ADAM A350

ADAMS A352

ADDAMS A352

ADAMSON A352

ALAN A450

ALLAN A450

ALLEN A450

ANTHANY A535

ANTHONY A535

ANTONY A535

ANTROBUS A536

APPERLEY A141

APPLEBY A141

APPLEFORD A141

Name Code

APPLEBE A141

APPLEBEE A141

APPLEBY A141

APPLEFORD A141

Take 1st letter
as 2nd string

Input
Name

2nd string =
1st string

Search
string = code
group

2nd string =
len(2nd string)?

Output
name and

code

YES

NO

Match routine

3rd string =
2nd string

Take next letter
as 2nd string

Match routine

3rd string =
2nd string

Add 2nd string
to 1st string All checked?

LEN < 4

YES
NO

1st string =
1st 4 chars

Fill 1st string
with "000"

YES

NO

Search
string = code
group

Match?

2nd string =
code number

All
checked?

Clear 2nd string

YESYES

NO
NO

MATCHING
SUBROUTINE

Flow
chart 2
APR 2006 | {cvu} | 5

string searchdata(string search)
{
 size_t arraylen = sizeof(testdata) /
 sizeof(*testdata);
 string input, encoded, temp, copytemp;
 int rv;

 for (int i = 0; i < arraylen; ++i)
 {
 input = search;
 encoded = input[0];
 rv = convertCodeNumbers(encoded);
 copytemp = itoa(rv);

 for (int n = 1; n < input.length(); ++n)
 {
 temp = input[n];
 rv = convertCodeNumbers(temp);

 if (temp != copytemp)
 {
 copytemp = temp;
 if (rv > 0)
 encoded += itoa(rv);
 }
 }

 if (encoded.length() < 4)
 {
 for (size_t s = 4 - encoded.length();
 s < 4; ++s)
 encoded += "0";
 }
 if (encoded.length() > 4)
 {
 string t;
 t = encoded.substr(0, 4);
 encoded = t;
 }
 }
 return encoded;
}

int main()
{
 string test, data, search;
 cout << "Name to test : ";
 cin >> test;
 size_t arraylen = sizeof(testdata) /
 sizeof(*testdata);

 for (int m = 4; m > 0; --m)
 {
 cout << m << " characters match\n";
 for (int n = 0; n < arraylen; ++n)
 {
 if (testdata[n].substr(0, m) ==
 test.substr(0, m))
 cout << testdata[n] <<
 " "
 << searchdata(testdata[n])
 << "\n";
 }
 }
}

Listing 3 (continued)

M=4

Print num.
of chars
checked

Match 1st
M chars

Any key to
cont.

KEY?

M--

M=0?

Output
Match

YES

NO

NO

YES

Fl
ow

ch
ar

t 3

#include <iostream>
#include <sstream>
#include <string>
#include <cstring>

using namespace std;

string allowed[6] = { "BFPV", "CGJKSXZ", "DT",
 "L", "MN", "R" };
string testdata[] = {"ABRAHAM", "ABRAHAMS",
 "ABRAMS", "ADAM", "ADAMS", "ADDAMS",
 "ADAMSON", "ALAN", "ALLAN", "ALLEN",
 "ANTHANY", "ANTHONY", "ANTONY", "ANTROBUS",
 APPERLEY", "APPLEBEE", "APPLEBY", "APPLEFORD"
};

int convertCodeNumbers(string t)
{
 for (int m = 0; m < 6; ++m)
 {
 if (allowed[m].find(t) != string::npos)
 return m + 1;
 }
 return 0;
}

string itoa(const int value)
{
 ostringstream o;
 return (!(o << value)) ? "ERROR" : o.str();
}

Li
st

in
g

3

6 | {cvu} | APR 2006

APR 2006 | {cvu} | 7

Cygwin - Confessions of a Tool User
Ian Bruntlett on why using cygwin is not an ordeal.

’m no spring chicken when it comes to using development or utility
software. But when it came to downloading the Cygwin utilities, the
rules changed. I’ve had mixed experiences with it. In the spirit of giving

something back to the developers of the GNU tools and the people who port
them to the Windows platform, here is an overview of my experiences.
In 1999 I was working on a database project (of the fopen, fseek,
fread kind :) and we distributed it on DAT tapes to our customers.
Previously we had used pctar, running under DOS 6.x. However, we
shifted from working with DOS to working with Windows NT 4. I
stumbled across the Cygwin tools and downloaded them and used them,
no problem. We even quadrupled our throughput because instead of each
PC writing one tape at a time, we had each PC writing four tapes at a time.
In Winter of 2005, I was doing voluntary work at a charity – Contact,
www.contactmorpeth.org.uk – due to ill mental health. And I wanted
to pass on knowledge about typical Linux tools – bash, gawk, perl, python, g++
as a payment in kind of the efforts the other volunteers were putting in on
hardware. I would have to find and buy text books so I could teach myself how
to use these tools properly. For technical help, I expected to rely on the ACCU.
I decided that I wanted to standardise on bash as my command line
interpreter. So I wanted to install the Cygwin tools on the charity’s
computers, for use instead of cmd.exe or command.com. I tried over a
period of a couple of weeks to download the files – but the Cygwin utilities
had changed – instead of downloading lots of things by default, only the bare
minimum would be. I couldn’t get the hang of the Cygwin setup.exe. I
looked at the Cygwin web site and FAQ, to no avail. Finally I sent a message
to the accu-general mailing list and, with their help – and a bit of dumb luck,
I worked out that the little round circles in each package line should be
clicked on to cycle between different options like – ignore or install.
So my first suggestion as a grateful user of the Cygwin tools is to suggest
that the FAQ have a section that shows people the little circle thing being
used in practice. Believe me, this is a big help. To do otherwise, to use a
British expression, is like putting a sign on your web site that says
“Download our software if you think you are hard enough”.
I am actually a big fan of setup.exe – in particular, the ability to
download Cygwin via a broadband internet connection, burn it on to CDR
and install it on many other computers without having to download it again
is brilliant. Thank you for that, I really appreciate it.
My “second” suggestion is this: an update of the FAQ. Once someone has
downloaded the tools, tell them about the GNU and O’Reilly books that
have been published about the tools people have just downloaded. Just an
entry in the FAQ would do. I’ve known about O’Reilly’s books but I
stumbled across the GNU books – and I hope to learn emacs, LISP and
the gnu C++ compiler and debugger – amongst other things. APress is a
good publisher but I’m not sure they’ve got any titles that are of interest
to Cygwin users. I’m going to be learning from them this year and
reviewing them for the ACCU’s C Vu magazine.
One thing that caught me out when choosing Cygwin options for
downloading is that there is no running counter of just how much
information is going to be downloaded. My first download was a bit of a
problem. To get downloads to work at all on Windows XP Home Edition,

I had to be logged in as supervisor and I couldn’t save it in a sub-folder
below My Documents. To get it to work at all, I had to create a directory
called c:\DownloadCygwin. I think the My Documents folder’s full
filename had characters that setup.exe just didn’t like.
When deciding what to download, I make an informed decision based on:
1) how much space do I want to use on the charity’s hard drives? 2) how
much time do I have to download all this stuff? and 3) can I just download
a selection of utilities?
When you are selecting individual packages for setup.exe to
download, it tells you how big the individual packages are. However, I
would like this facility to be expanded so that, say a running total of how
many megabytes a particular category is going to have downloaded. And
a final, overall figure, telling you how many megabytes you are going to
download in this session.
On my most recent attempt to download the main GNU tools, I selected
the tools I was interested in and then, to reduce the amount of time to
download them, I went through the list of packages, de-selecting those that
I thought were unlikely to be used by me in the foreseeable future and burnt
them on to CDR. So far, so good. So I took the CDR home and put it into
a Windows 2000 Professional PC donated by my sister’s fiancé’s father’s
business (I’ve kept Windows and MS Office on it because I teach people
how to use that software as well as OpenOffice.org 2.x). I ran
setup.exe, chose to install Cygwin from local directory.
And then I ran bash and tried to run different programming utilities. I got
the message “bash: python: command not found” etc. So I thought I’d
failed to download the right tools. I checked the CDR in Windows
Explorer – the files were there except setup.exe overlooked them. I
figured that setup.exe would just so a “install all the files I
downloaded”. I was wrong. The options that you select when you are
downloading the files – you have to remember them so that, say when you
come to install the software on a different PC, you must type in the options
again. From memory.
So I tried again and got most, but not everything, working. In particular,
running emacs gave the Windows dialogue box “emacs.exe - Unable To
Locate DLL” The dynamic link library cygungif-4.dll could not be
found in the specified path C:\Cygwin\bin; etc. This was particularly
off-putting because I bought the GNU emacs books last year when I
stumbled across the GNU shop site and I wanted to learn emacs LISP. I
checked my CDR for cygungif-4.dll and it wasn’t there. So the
dependency management of setup.exe needs to be looked so that if you
remove stuff from the download list, packages would be re-selected
automatically to avoid dependency problems.
Cygwin is currently more difficult for me to install than, say some Linux
distributions. This is an achievement in itself. Perhaps setup.exe could
be changed to have profiles such as a) bare minimum command bash and
tools, b) text mode programming (select languages required), c) text and
GUI programming d) vim e) emacs f) text manipulation – groff etc. g) the
full monty.
A further item on my wish list is to have a Cygwin icon on the Windows
task bar at the bottom of the screen so I can quickly run a bash shell.
Finally, Contact has a Geordie computer – a Why Aye Mac. Known to the
rest of the world as an i-mac. I want to run bash and g++ on the i-mac.
Any suggestions are welcome.

I

www.cygwin.com offers GNU Unix and other tools ported to the
Windows operating systems for Unix people to carry on using the tools
they know and like, even on Windows.

IAN BRUNTLETT
Ian has been involved in broad spectrum of software
systems and languages. He works as a volunteer,
teaching people with mental health problems how to use
and program computers. He can be reached at
ianbruntlett@hotmail.com

Professionalism in Programming #37
The Curse of Good Code
Pete Goodliffe talks about documented, maintainable code.

ar out in the uncharted backwaters of the unfashionable end of
the western spiral arm of the Galaxy lies a small unregarded
yellow sun. Orbiting this at a distance of roughly ninety-two

million miles is an utterly insignificant little blue green planet
whose ape-descended life forms are so amazingly primitive that
they still think computer programs are a pretty neat idea.
This planet has - or rather had - a problem, which was this: most of
the programmers on it wrote poor code pretty much all of the time,
even when they were being paid to do a good job. Many solutions
were suggested for this problem, but most of these were largely
concerned with the education of programmers, which is odd
because on the whole the programmers didn’t want to be educated.
And so the problem remained; lots of the code produced was
rubbish, and most of the users were miserable, even the ones who
could write good computer programs.

Did you realise that as an ACCU member, and as a C Vu reader, you are
an unusual beast? You’re the kind of programmer who cares about the craft
of programming, and who takes the initiative to
improve their skills. Well done! Keep it up.
Anyone who’s had the misfortune to recruit
programmers will appreciate how rare a gift this is.
Most CVs you’ll read fail to demonstrate good
programming practice and most ‘C++ programmers’
I’ve interviewed haven’t the first clue about how to
write correct code. They wouldn’t recognise one end
of a copy constructor from the other, even if it hit them
over the head with a dangling pointer.
Yet these guys get hired, earn good money, and
presumably churn out something resembling code.
Eventually. It’s not good code. It’s not maintainable,
extensible, bug-free, tested, and often not even correct
(syntactically, semantically, aesthetically, emotionally, or theologically).
You don’t want to work in their wake; it’s a messy place. Too many of us
have had to suffer this kind of fate – mopping up after the inept.
Rant. Rant. Rant.
So what do we do about this? How can we save the (programming) world?
That’s a hard question. Good programmers don’t grow on trees. How do
you inform the bad apples that their skills suck? How do you convince
them to care? And how do you get them to improve in a way that’s
agreeable and enjoyable? A philosophical conundrum indeed. There’s one
suggestion at the end of this article. But all you can do is strive to
continually improve your own skills, to write excellent code, and to do
your bit for reducing code entropy before Vogons blow up your codebase.
I’m always here to help, so here are a few more random disconnected
thoughts about crafting high quality, professional, code. They’re
reminders for the indoctrinated, and sage lessons for the ill-informed.

Be conventional
I respect a man who knows how to spell a word more than one way.

– Mark Twain

This is one of the overlooked golden rules of programming. The following
advice will lead to more comprehensible, easier to review code – and
therefore to fewer faults and to
better code quality. Sounds good,
doesn’t it?
There’s also a hint of self-
preservation here, and more than a little vanity, too. You’ve taken the time
to write some code. You naturally want other people to use it, to extend
it, to maintain it, and to enjoy it. You want them to bask in the
magnificence of your coding genius. You don’t want them to throw it all
away, and replace it at their earliest convenience.
So the rule is simple: be conventional. Write code without hidden
surprises, that works exactly as the reader would expect, that follows all
the natural design and language idioms, and fits into the rest of the local
codebase sympathetically.
Why does this matter?

Favouring ‘conventional’ code prevents overly
clever (and therefore overly complex)
programs. This reduces potential bugs
dramatically.
You won’t re-invent the wheel. Conventions
are, by definition, tried and tested. They work –
history has proved this. You’ll conserve your
precious brainpower, whilst writing code that’s
more likely to be correct.
The reader (a reviewer, maintenance
programmer, or yourself in three years time)
can understand your code immediately. They
can leverage their existing knowledge when
working with the code, rather than have to
figure it all out from first principles. They’ll

have more fun working with your code. If you annoy or surprise
them, people will just walk away and find something easier to use.
People don’t accept (or understand) change.
If someone can’t immediately see what your code is doing, they’ll
modify it incorrectly and introduce a bug. Some time in the future
this will haunt you – you just know that you’ll get the blame.

What does this mean practically? Things like:
Employ the coding and design idioms natural to your chosen
language. [1]
Use metaphors that others will understand, and pick variable/class
names that make sense to the reader. [2]
Use code presentation techniques that are commonplace. [3]
Use standard tools to construct your code. [4] [5]
Choose standard file names, with a convention for header files,
source files, and build files. [2]
Write GUI programs with standard keyboard short cuts.
Consider how you package the code. Provide the README file that
people expect and zip/tarball it in a subdirectory (so it unpacks
predictably: there’s nothing worse than unzipping a large file only
for it to scatter files all over the current directory – what a mess!)

Sadly, this doesn’t mean that you’ll necessarily be writing the most
exciting, cutting-edge code. We must compromise our desire to try out a
new technique in order to write the highest quality software.

F

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the
same place in the software food chain. He has a passion for
curry and doesn’t wear shoes. Pete can be contacted at
pete@cthree.org

write code without
hidden surprises
8 | {cvu} | APR 2006

A case study: you are shipping a portable library written in C/C++. It must
run on a variety of platforms. You want people to use it? Make a C++
idiomatic interface so that your users can learn the API easily, and so it
can interoperate with other C++ libraries. Consider STL-like iterators as
an interoperability mechanism. Provide makefiles to build the code (or on
Unix use the standard autoconf / automake packages). Don’t roll your own
build system with a clever scripting language, or use a baroque new build
tool just because it’s cool. The user’s effort to install the language or tool
is probably not worth it. No one will use your library. Don’t create artificial
barriers and hurdles, you’ll only hurt yourself [6].
So – should we abandon all innovation and keep doing the same old
uninspired things over and over until the Vogons arrive? No, explore new
techniques and idioms, but balance them against the needs of the
programmers working with your code.

The next most important rule is probably: be consistent. Do all these
conventional things consistently. But that’s another story...

Write good documentation
Yes, it’s hard to write, but it’s harder not to.

– Carl Van Doren
This advice is born of frustration. My frustration. You might have just
written the best code in the known world. It’s elegant and efficient; a novel
and beautiful solution to a tricky problem. But if I can’t work out how to
use it then it is unusable – practically useless.
When you write code, the user needs to be able to see clearly:

what it can do,
how to use it,
where to find out more about it, and
examples of usage.

You can do this through a number of means:
“self documenting” code, [7]
literate API programming tools, [7]
sample code, and finally
English documentation. [8]

Writing good documentation is not a God given gift. Every programmer
must learn how to do it. It isn’t easy, but since programming is all about
communication, this is an essential skill.
A case study: I needed to use a particular facility in a popular C++ library.
It was something that the library must have provided, but I simply couldn’t
find where it was or how to use it. Eventually, I gave up on the supplied
docs and traced back through the library’s labyrinthine header files to
work out how to achieve my goal. It was painful experience which left me
thinking a lot worse about that library.
Don’t spoil your hard work with inadequate docs.
So what’s worth documenting? Be careful about the assumptions you
make here. What seems easy or obvious to you (someone well-versed in
the code you’re working with) may be incomprehensible gibberish to
others. Writing ‘conventional’ code will reduce reliance on external
documentation, but will not remove it.
Every time I explain a new principle to another programmer, I realise how
much knowledge I’ve acquired over the years, and how much implicit
knowledge I assume of other programmers. Be careful of making careless
assumptions that render your docs (and code) worthless.

Great expectations
I have offended God and mankind because my work didn’t reach the

quality it should have.
– Leonardo da Vinci

This exercise is useful for a programmer, a manager, or a janitor. Just take
a moment and check that you are delivering what is required of you. Do
you meet expectations? This raises some interesting questions:

What do people expect of you?
How can they assess you? What’s the scale?

Consider this for a minute, and then ask yourself: how well do I square up?
Do you deliver good code? Do you deliver comprehensive unit tests? [9]
Do you deliver it all on time, repeatedly, and reliably? Do you provide
adequate visibility of what you do? Do you inject many bugs into your

code? Do you fix faults quickly? [10] Do you
communicate well? Do you work with other team
members well? [11] Is your design work up to
scratch? [1]
And just who can tell? Is your manager / employer

actually qualified to rate your programming skills? If not, how can you
demonstrate that you are competent?
Think carefully about this stuff, it might help to secure your next raise.
Then ask the next question: do you enjoy what you’re doing? Confucius
said: If you enjoy what you do you’ll never work another day in your life.
If you don’t: what's wrong? Is it something you can change at all?

Programming in the Real World
Everything we see is a perspective, not the truth.

– Marcus Aurelius
Too many programmers are shallow, uneducated, and terminally boring
individuals. Sorry, you are! Here’s a simple, but very important, piece of
advice to help you become an exceptional software developer...
Develop outside interests that you can use as a frame of reference for
technical knowledge. If all you ever study is programming then you will
become a very two dimensional person, and will not be able to slot coding
techniques into the context of the Real World.
There’s a lot to learn outside your technical field that will teach you about
what you do. Keep an open mind, and adopt a Real World perspective.

So long, and thanks for all the fish...
Not every end is the goal. The end of a melody is not its goal, and yet if a

melody has not reached its end, it has not reached its goal.
– Friedrich Nietzsche

Go forth and write good code. Be professional. Digest these ideas, and
apply them to the code you’re writing right now. Never presume that
you’ve reached the pinnacle of your programming career.

Thanks to all of the people who tell me that they've enjoyed my
articles, have got something genuinely useful out of them, and
have passed them on to colleagues for their ‘education’. That's
why I’m writing, and it makes a big difference to hear it. No
one’s paid to write in C Vu or Overload and any author
appreciates feedback, from a simple encouragement to deep
technical discussion. Even (constructive) criticism is better than
silence. There’s nothing worse than spending ages writing
something for it to be apparently totally ignored!

So here’s your challenge for the issue: If you’ve enjoyed
reading anything in these pages, why not consider sending an
email to the author to let them know. It really does make a big
difference!

Feedback

Too many programmers are shallow,
uneducated, and terminally boring individuals

continued on page 10
APR 2006 | {cvu} | 9

What Drives Development?
Phran Ryder looks at his own drivers.

My favourite conference is the BCS SPA conference (http://
www.spaconference.org/spa2006/). I went to my first in 1994 and I have
enjoyed them ever since as I learn so much. I learn so much because of the
informal, interactive, group learning nature of the sessions. There arent
many presenters who stand up and talk through PowerPoint presentations.
Indeed, anyone who does wont be allowed to talk for long for he/she will
be bombarded with questions and before long it will become a group debate.
SPA stands for Software Practice Advancement, and of course BCS stands
for British Computer Society.
Many years ago I found that if I wanted to be sure to get something out of
a conference I would go to that conference with one or two questions I
wanted to answer. At the SPA conference, the informal nature of the
conference provides ample opportunities for my questions to be asked.
Last year my question was: What Drives Software Development? My
reason for asking the question twofold: Firstly, I had recently read books
on Test Driven Development, Domain Driven Development and Model
Driven Development. Secondly, a senior, very experienced colleague had,
at that time, said to a large audience: Everybody knows that a penny spent
in design is worth a pound in development.

I was incredulous that someone still believed that such a thing was true.
As a consequence I started an article, that I have not yet finished, which
discussed why that statement was once true and why it no longer is true
or at least shouldn’t be true. Whilst writing drafts of the article, a question
kept coming back to me: What is it in software development that can at one
time make it true that a penny in design is worth a pound in development?
By the end of the conference I had a list of some sixty answers, ranging from
Ego driven development to Deadline Driven Development and Just F*****g
do it Driven Development. I won’t waste column inches listing them all but
I will ask you to take a few moments to think what drives your development?
Is it technology? Requirements? A trend? What is it the helps you decide
what to do next? A process? A plan? A project manager? Feedback?
During the conference I coined one of my favourite phrases Mortal Driven
Development. Partly this was in back lash to a perception of the type of people

who embraced XP (eXtreme Programming). It seemed to me that the people
who went into XP were highly talented, for want of a better expression, Code
Gods. This does not seem right to me particularly as I am not a member of
Valhalla, Olympus or wherever the Code Gods hang out. The thing is that
to do XP properly there are certain things that you have to do to the extreme.
The problem is that when push comes to shove mere mortals (like me) don’t
- we just get the immediate job done. So in an environment of Pressure Driven
Development we prefer Pragmatics Driven Development.
But by the end of the conference, and ever since, one thing alone is the
biggest driving force to my development. If you have read, managed to
finish, and remember any of my previous articles you may have guessed
what this is...Value Driven Development. And in a larger font:

Value Driven Development
Every month, week, day, hour or minute I am consequently asking myself
What will provide best value to the business. Try it! It helps me to decide
what requirements to fulfil next, what test to write next, what proof of
concept to do next, what design to do next&..Its is a great comfort blanket.
It also explains why a penny in design could be worth a pound in development.
That philosophy originates in the early 1970s when studies were made into
the cost of fixing programming defects. These showed that the cost of fixing
defects rose exponentially over time. [Barry W. Boehm. Software
Engineering Economics, Prentice Hall, 1981. ISBN 0138221227].
In the 1970s is might be hours or days before the code you wrote on punch
cards was compiled. It might be longer before you were scheduled a slot
to run your program. In short, the overheads and turn around times of
development where very large. Thus, it paid to do heavy up-front design.
The most valuable thing you could do was a good design.

PHRAN RYDER
Phran is Chairman of AgileNorth.org.uk (www.agilenorth.org.uk), a non-
profit organisation for technical and business staff who wish to learn and
share experience of becoming and being agile. He aspires to be a code God
- contact him at phran@agilenorth.org.uk.
Continually seek to improve your coding skills and try to help others
improve. Here’s one way that might work: roll this article up. Bash it over
the head of the moron programmer behind you. Do it repeatedly, until they
give in and start writing good code. Or until the spaceships arrive.

Notes and references
1. Professionalism in programming #6: Good design. In: C Vu 13.1
2. Professionalism in programming #16: What's in a name? In: C Vu

14.5
3. Professionalism in programming #1: Layout of source code. In: C

Vu 12.2
4. Professionalism in programming #8: The programmer's toolbox.

In: C Vu 13.3
5. Professionalism in programming # 17: The code that Jack built. In:

C Vu 14.6
6. Exploiting your users’ laziness like this leads to another conclusion

- don’t write a library that depends on too many other third party
libraries! Too much installation effort will dissuade them from

trying out your software. In this case, you are reinventing the
wheel... Is this good advice? Work it out for yourself.

7. Professionalism in programming #5: Documenting code. In: C Vu
12.6

8. Professionalism in programming #3: Being specific. In: C Vu 12.4
9. Professionalism in programming #10: Software testing. In: C Vu

13.5
10. Professionalism in programming #22: Finding fault. In: C Vu 15.5
11. Professionalism in programmer #34-36: Together we stand. In: C

Vu 17.5, 17.6, 18.1

Shameless plug
I’m speaking at the 2006 ACCU conference in April. Come and
hear me talk about Effective version control.
You know you want to.

If you weren’t yet considering going to this
event then I strongly encourage you to book a
place. It’s excellent value, and a wonderful
way to do what we’re attempting here – to
learn how to improve your coding skills.

Pete's new book, entitled Code Craft, is out soon.
Keep your eyes peeled!

The Curse of Good Code (continued)
10 | {cvu} | APR 2006

Let’s do C# and MySQL # 3
APR 2006 | {cvu} | 11

Design Time
Paul Johnson creates a GUI for his MySQL application.

n the beginning, life was simple. People had pieces of paper (or card)
that contained words of wisdom, words of cheer and even sometimes,
words which made sense. These words on the cards lived in TARDIS

like structures which filled small rooms and would generally have
misleading cards on the drawer fronts due to some dispute with the office
girls over time off for hair combing (or something like that – I’m talking
about the ‘70s when being in a union meant something!)
The system worked happily for many years. The TARDIS like structures
creaked a bit, but something sinister was happening to the bits of card.
Words began to vanish, fade or worse, form a blotchy mess due to the
roof leaking. Could it be these pieces of paper/card were coming to the
end of their regeneration cycle or something more sinister?
One day, many years after one man was nailed to the office memo board
for suggesting that instead of mascara, the company should actually buy
a new ribbon for the typewriter, a bright spark, was sitting in a dull room
reading a copy of Your Computer. In it, amongst the adverts for a myriad
of vapourware goodies and some very dodgy tape copying software
(yeah right – “for backup purposes”), there was an article on
modernising the office environment with this amazing new tool called a
microcomputer. Sure, they were expensive, but compared to the amount
of time it would take to find a card, ensure the details were correct and
any other activity required to use it properly, they would soon start to save
the company money. The bright spark spoke to an under manager, who
spoke to a middle manger, who spoke to a higher manager, who spoke to
the director who finally sought the approval of the second highest person
in the company, the shop steward. The shop steward then grovelled at the
heel of the real boss – the company secretary.

To cut a long story short, the secretary wanted an easy life and
so the movement from bits of card to tape began. Millions of
pieces of card would lose their jobs, but no-one would care. The
Mecca which was technology had arrived.
There was only one problem though – there were lots of
different computers out there and each had their own database
software and usually, they would not talk to each other. This
meant that if they moved from one machine to another, they’d
still need to keep the old system running as the ability to translate the data
from one format to another meant specialist software or worse, typing
everything in again.

Eventually, the backend of the database system would be removed from
the frontend and companies could have any old frontend as long as the
frontend always communicated with the backend correctly. The frontend
could be amazingly complex or stupidly simple – it didn’t matter. What
mattered was how the two communicated.
This is what we have now. MySQL provides the backend (server) and we
can have what we want for the front end – which is what I’m looking at
this time.

The Design
The first part of the design process is deciding what exactly I want the front
end to do. Do I want something similar to that in figure 1, whereby
everything is in one window or do I want something more like figures 2
and 3 which give two dialogs: one for the connection, the other for the data.
Both have their own advantages and disadvantages and both are simple to
create using a development tool (such as MS VS.NET or Qt Designer
[used here]). However, the key to what I want is simplicity.

I Figure 1
Fi

gu
re

 2
Figure 3

PAUL JOHNSON
Paul Johnson works at the University of Salford where
he sometimes teaches, but mostly fixes computers and
attempts to keep members of staff happy. He is
currently looking for another job.

Looking at the advantages/disadvantages, it is apparent that the second
design is the one which I will go for.

Coding
Remember, this is a GUI application and in C#. Whilst there are the likes
of gtk-sharp, Qt#, wx# and probably some others, it makes sense to stick
with System.Windows.Forms as the widget set and as with all other
widget sets, SWF has it’s own events and event handlers. Happily, they
are the same on all of the current C# platforms.

Window basics
If you’re using VS.NET, you can ignore this. If you’re using Mono and
don’t have access to VS.NET or a System.Windows.Forms designer,
you need to pay attention – what follows is a whirlwind on setting up the
windows without the designer.
The SWF window has a couple of components – a title bar and the window
itself. Anything else is up to the designer.
The window is created like this:
using System.Windows.Forms;
using System.Drawing;
public class testwindow : forms
{
 public testwindow()
 {
 this.Size = new Size(400, 300);
 this.Text = "Some form title";
 }
 public static void Main()
 {
 testwindow t = new testwindow()
 Application.Run(t);
 }
}

Size is (length, height). Text can be anything. This will give
you a very simple window with nothing in it and a title bar. Impressive
eh! Yeah, I thought you’d say that...
Let’s go back to my original design (figure 2). The main difference this
time is that I have some “bits” on the window, such as a writeable icon, a
couple of labels, a status bad, a faded icon and a button (see Listing 1).
These can be very easily added (with a bit of a change of code to help things
become clearer – I’ve ignored the menus – they shouldn’t be there!)
The widgets are declared to start off with. Prior though to the initialisation
of the widgets, there is a piece of code : protected override void
Dispose(bool disposing) this quite a common piece of code with
SWF applications. It cleans up any resources being used nice and safely.
T h e m a i n g ru n t w or k i s n ow p e r fo rm e d i ns i de
InitializeComponent(). To start with, the main window is
created. There then follows the instantiation of the widgets:
this.Address = new Label();
// and so on for the other components

The positioning and setting up of the widgets occurs. This is where things
become interesting if you’re not using a designer!

this.Address.Size = new Size(32, 8);
this.Address.Name = "address";
this.Address.Text = "Server Address";
this.Address.Location = new Location(11, 8);
this.Address.TabIndex = 0;

Whilst the Name and Text entries are easy to understand and Size
follows the same format for a widget as for a main window, Location
refers to the top left corner of the widget in relation to the top left of the
window; 11, 8 is 11 along and 8 down for the start of the widget.
There are quite a number of changes from the simple version and it’s not
complete either! The new GUI looks like figure 4. It’s not as attractive
though.
You will note though that I have a drop-down box for the server address
and that the progress label, progress bar and connection button are
disabled. There is a good reason for that – unless the username and
password have something in there or if an invalid IP address has been
entered, I don’t want anyone to be able to connect or even try to connect.

Figure 1 Figures 2 and 3

Advantages Disadvantages Advantages Disadvantages

One window design
Simple to use drop down for the
table
Data is editable

It looks unprofessional and is not
obvious
“Update” button isn't exactly clear
as to it's purpose
No undo facility
No export facility

Clear and simple presentation
Connection kept away from the
main UI
Undo facility
Export facility
Data is editable
Connection can be dropped from
main UI “File” menu

Two window system – increases
code size

Not as quick to navigate (tables are
in a submenu in the “Edit” menu
option.

public class testwindow : forms
{
 private Label ServerAddress;
 private Label Address;
 private Label Status;
 private Button Connect;
 private ProgressBar Progress;
 private TextBox Username;
 private TextBox Password;
 private TextBox IPAddress;
 public testwindow()
 {
 InitializeComponent();
 }
 protected override void Dispose(
 bool disposing)
 {
 if (disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }
 private void InitializeComponent()
 {
 ...
 }
 public static void Main()
 {
 testwindow t = new testwindow()
 Application.Run(t);
 }
}

Listing 1
12 | {cvu} | APR 2006

The problem now is that to re-enable the Connect button, ProgressBar or
the IP Address, I have to add an event onto to the username/password
writeable icons or the dropdown box respectively. Happily, it’s simple to
add.
For the dropdown box...
this.IPAddress.SelectedItemChanged +=
 new System.EventHandler(
 this.IPAddress_SelectIndexChanged);

For the writeable icons
this.Password.TextChanged +=
 new System.EventHandler(
 this.Password_TextChanged);
this.Username.TextChanged +=
 new System.EventHandler(
 this.Username_TextChanged);

The progressbar is controlled by the button, which itself needs an event –
cunningly called Click.
this.Connect.Click +=
 new System.EventHandler(this.Connect_Click);

Events
Events are pretty simple to understand. You do something to a window –
anything – and an event is generated (such as a window redraw, focus
being gained or a whole plethora of other activities). By default, the only
events that most windows have are resize and close with anything else the
programmer should define. If a window was to act on all events, you’d
soon end up in the situation whereby the machine grinds to a halt very
quickly.
Event handling is a key aspect to any form of GUI application. If you
consider an “old” command line program which used a simple menu, you
would have a series of conditions on the menu which would (say) add a
number to a value or save a file or something similar. The event in this case
is the menu selection (it’s arguable if it is an event really). With a GUI
application, the simple “press 1” menu is now replaced with buttons, menus,
text boxes and a pile of other bits and pieces. However, unless the program
knows that clicking on the “Go” button means to do something, then it’s
eye candy – in effect, it’s the same as having an unhandled menu item.

In the case of my little application, three types of events are used –
ButtonClick, SelectedItemChanged and TextChanged.

Having added the previous code to the application, an event handler has
to be written. These can be quite complex affairs.
The TextChanged events needs to check to see if the other writeable
icon has some text in it before the button is enabled.

private void Password_TextChanged(
 object sender, System.EventArgs e)
{
 if (Username.Text.Length > 0
 && Password.Text.Length > 0)
 Connect.Enabled = true;
 else
 Connect.Enabled = false;
}
private void Username_TextChanged(
 object sender, System.EventArgs e)
{
 if (Username.Text.Length > 0
 && Password.Text.Length > 0)
 Connect.Enabled = true;
 else
 Connect.Enabled = false;
}

Similarly, the SelectedItemChanged needs to test to see which
option has been selected as “Localhost” needs to disable to the
IPAddress entry writeable icon.

private void IPAddress_SelectedIndexChanged(
 object sender, System.EventArgs e)
{
 Address.Enabled = IPAddress.SelectedIndex
 == 1 ? true : false;
 IP.Enabled = IPAddress.SelectedIndex
 == 1 ? true : false;
}

For completeness, I have a dummy Button_Click event defined.
private void Connect_Click(
 object sender, System.EventArgs e)
 {
 }

It may have occurred to you by now that having one large writeable icon
for the IPAddress is not that good an idea. It’s actually a very bad idea as
the program would need to

1. Check that all the characters are either numbers or “.”
2. Check that the numbers are all between 0 and 255
3. Check that there are 3 “.” and 4 sets of numbers which can be of the

form
127.0.0.1
127.000.000.001
127.00.000.01
and any other numbers you fancy to put in

It is far simpler to just create 4, number only, writeable icons. Again, it’s
not hard to do – at the same time, I’ll limit the maximum number of
characters allowed to be 3.

private TextBox[] IP;
...
this.IP = new TextBox[4];
for (int i = 0; i < 4; ++i)
{
 // definitions
 this.IP[i].MaxLength = 3;
}

do something to a window – anything
– and an event is generated

Fi
gu

re
 4
APR 2006 | {cvu} | 13

The problem comes with ensuring that only numbers can be entered. This
can be done by extending the TextBox class:
class NumberBox : TextBox
{
 public NumberBox()
 {
 this.CausesValidation = true;
 this.Validating += new CancelEventHandler(
 TextBox_Validation);
 }
 private void TextBox_Validation(
 object sender, CancelEventArgs e)
 {
 try
 {
 int value = System.Int32.Parse(
 this.Text);
 }
 catch (System.Exception)
 {
 e.Cancel = true;
 }
 }
}

This gives me a final layout (figure 5) which I’m quite happy with. Sure,
it’s not as nice as the Qt mock up, but it’s functional.
Listing 2 my final listing for the connection window. I’ll extend it next
time to include the main viewer window. The code at this stage is not
optimal, nor is it bug free (the number range is still not as good as I’d like
and the layout could do with some improvement), but it’s making a start
which is important. We’ve covered quite a bit here. Before hand, we had
a nasty command line SQL interface. We still do, but at least now we’re
making headway into having a nice GUI.
// Paul's MySQL connector application – it is
// nearly complete it just needs the SQL
// connection code to be added which is very
// trivial – in fact, you do it and I'll show you
// how I did it next time!

// mcs connector.cs -r:
// System.Windows.Forms -r:System.Drawing
// csc connector.cs -r:System.Windows.Forms -r:
// System.Drawing

using System.Windows.Forms;
using System.ComponentModel;
using System.Collections;
using System.Drawing;

public class testwindow : Form
{
 private Label ServerAddress;
 private Label Address;
 private Label User;
 private Label Pass;
 private Button Connect;
 private TextBox Username;
 private TextBox Password;
 private ComboBox IPAddress;
 private NumberBox[] IP;

 private StatusBar StateBar;
 private ProgressBar Progress;
 private Label Connection;
 private System.ComponentModel.
 Container components = null;

 private testwindow()
 {
 InitializeComponent();
 }

 protected override void Dispose(
 bool disposing)
 {
 if (disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 private void InitializeComponent()
 {
 this.SuspendLayout();

 this.Size = new Size(300, 150);
 this.Text = "Server connection";

 this.ServerAddress = new Label();
 this.ServerAddress.Size = new Size(72, 12);
 this.ServerAddress.Name = "address";
 this.ServerAddress.Text = "Server Address";
 this.ServerAddress.Location =
 new Point(11, 10);
 this.ServerAddress.TabIndex = 0;

 this.IPAddress = new ComboBox();
 this.IPAddress.DropDownStyle =
 ComboBoxStyle.DropDownList;
 this.IPAddress.BackColor = Color.White;
 this.IPAddress.ForeColor = Color.Black;
 this.IPAddress.Size = new Size(160, 8);
 this.IPAddress.Name = "ipaddress";
 this.IPAddress.Location = new Point(100, 8);
 this.IPAddress.Items.Add("Localhost");
 this.IPAddress.Items.Add("Other");
 this.IPAddress.SelectedIndex = 0;
 this.IPAddress.SelectedIndexChanged +=
 new System.EventHandler(
 this.IPAddress_SelectedIndexChanged);
 this.IPAddress.TabIndex = 1;

 this.Address = new Label();
 this.Address.Size = new Size (72, 12);

Figure 5
14 | {cvu} | APR 2006

 this.Address.Name = "numaddr";
 this.Address.Text = "IP Address";
 this.Address.Enabled = false;
 this.Address.Location = new Point(11, 32);
 this.Address.TabIndex = 2;
 this.IP = new NumberBox[4];
 for (int i = 0; i < 4; ++i)
 {
 this.IP[i] = new NumberBox();
 this.IP[i].Size = new Size(44, 8);
 this.IP[i].Enabled = false;
 this.IP[i].Location = new Point(100 +
 (48 * i), 30);
 this.IP[i].TabIndex = 3 + i;
 this.IP[i].MaxLength = 3;
 }

 this.User = new Label();
 this.User.Size = new Size(54, 12);
 this.User.Name = "user";
 this.User.Text = "Username";
 this.User.Location = new Point(11, 62);
 this.User.TabIndex = 7
;
 this.Username = new TextBox();
 this.Username.Size = new Size(80, 8);
 this.Username.Name = "username";
 this.Username.Location = new Point(70, 60);
 this.Username.TextChanged +=
 new System.EventHandler(
 this.Username_TextChanged);
 this.Username.TabIndex = 8;

 this.Pass = new Label();
 this.Pass.Size = new Size(48, 12);
 this.Pass.Name = "pass";
 this.Pass.Text = "Password";
 this.Pass.Location = new Point(150, 62);
 this.Pass.TabIndex = 9;

 this.Password = new TextBox();
 this.Password.Size = new Size(80, 12);
 this.Password.Name = "password";
 this.Password.PasswordChar = (char)'*';
 this.Password.Location =
 new Point (200, 60);
 this.Password.TextChanged +=
 new System.EventHandler(
 this.Password_TextChanged);
 this.Password.TabIndex = 10;

 this.Connect = new Button();
 this.Connect.Size = new Size(70, 20);
 this.Connect.Name = "connect";
 this.Connect.Enabled = false;
 this.Connect.Text = "Connect";
 this.Connect.Location =
 new Point (200, 100);
 this.Connect.Click +=
 new System.EventHandler(
 this.Connect_Click);
 this.Connect.TabIndex = 11;

 this.StateBar = new StatusBar();
 this.StateBar.Location = new Point(0, 130);
 this.StateBar.Height = 20;
 this.StateBar.Name = "status";

 this.StateBar.ForeColor = Color.Blue;
 this.StateBar.Text = "Disconnected";
 this.StateBar.TabIndex = 12;

 this.Connection = new Label();
 this.Connection.Size = new Size(50, 12);
 this.Connection.Text = "Progress";
 this.Connection.Enabled = false;
 this.Connection.Name = "connprog";
 this.Connection.Location =
 new Point(11, 106);

 this.Progress = new ProgressBar();
 this.Progress.Location = new Point(68,100);
 this.Progress.Minimum = 0;
 this.Progress.Step = 1;
 this.Progress.Maximum = 10;
 this.Progress.Name = "progbar";
 this.Progress.Enabled = false;

 this.AutoScaleBaseSize =
 new System.Drawing.Size(5, 13);
 this.Controls.AddRange(new Control[] {
 this.ServerAddress, this.IPAddress,
 this.IP[0], this.IP[1], this.IP[2],
 this.IP[3], this.User, this.Username,
 this.Pass, this.Password, this.Connect,
 this.Connection, this.StateBar,
 this.Progress, this.Address});
 this.ResumeLayout();
 }

 public static void Main()
 {
 testwindow t = new testwindow();
 Application.Run(t);
 }

 private void Password_TextChanged(
 object sender, System.EventArgs e)
 {
 if (Username.Text.Length > 0
 && Password.Text.Length > 0)
 Connect.Enabled = true;
 else
 Connect.Enabled = false;
 }
 private void Username_TextChanged(
 object sender, System.EventArgs e)
 {
 if (Username.Text.Length > 0 &&
 Password.Text.Length > 0)
 Connect.Enabled = true;
 else
 Connect.Enabled = false;
 }
 private void IPAddress_SelectedIndexChanged(
 object sender, System.EventArgs e)
 {
 Address.Enabled = IPAddress.SelectedIndex
 == 1 ? true : false;
 for (int i = 0; i < 4; ++i)
 {
 IP[i].Enabled = IPAddress.SelectedIndex
 == 1 ? true : false;
 }
 }
APR 2006 | {cvu} | 15

 private void Connect_Click(
 object sender, System.EventArgs e)
 {
 }
}

class NumberBox : TextBox
{
 public NumberBox()
 {
 this.CausesValidation = true;
 this.Validating += new CancelEventHandler(
 TextBox_Validation);
 }

 private void TextBox_Validation(
 object sender, CancelEventArgs ce)
 {
 try
 {
 int value = System.Int32.Parse(this.Text);
 }
 catch(System.Exception)
 {
 ce.Cancel = true;
 }
 }
}

Next time
Next time, I’ll continue with the WinForms code for the main GUI and
also demonstrate how to show the data from the MySQL server. What I’ve
covered here is just a beginning...

Thanks
I must thank two people for helping me with this article and one
organisation – the first is an old friend of mine, Pat de Ridder. He had a
good look at the code and at what I was trying to do and made quite a
number of useful suggestions. He also provided quite a nice way of
ensuring that only numbers are allowed into the textboxes – unfortunately,
I couldn’t get it to work (must be a difference in operation between Mono
and VS.NET)
The other is my son, Richard who has been testing the code for a month
or so now and has also been entering a lot of data for me (not bad
considering he’s only 7!).
I’m also thankful for the support from Cansfield High Specialist Language
College, Ashton-in-Makerfield for providing the inspiration for a code
redesign one lunchtime.

While writing part 3 of this series, I discovered something – and it’s
something that I’m finding happening more and more over time.

I often say to people when I’m developing software that “I love the
engine and hate the eye candy” - in other words, give me the raw code
and I’m fine. Tell me to interact with a GUI (using any widget set) and
I’m not so much lost, but I do have problems. It’s not that I don’t
understand how GUIs work using the usual event / message system,
it’s just that they are so badly documented in books.

Take System.Windows.Forms. There are a large number of books
available, of differing quality, but all of which make the same mistake.
They assume that you’re using an IDE or some form of window
designer code. The programmer really doesn’t need to do much, set
a couple of events and let the form designer take care of the rest. They
have to program the event handlers, but even they can be prototyped
in the form code, so it’s a case of insert code here.

I have yet to come across a book which starts using first principles
for SWF (or many of the other widget sets available) and builds up
from there. I can’t blame the authors, as for the majority of them they
are targeting people using VisualStudio.NET – which the largest
section of the audience is. The target audience may not even be
programmers, but want to hack something together to do a particular
job.

However, for the likes of me (using Mono) or anyone who is making
use of the free version of the C# compiler from Microsoft, these books
aren’t much use and so we have to rely on the internet or MSDN or
mailing lists (such as the ACCU general or programmer list). Good
as they may be, if you’re on a train or have a spare 20 minutes to carry
on with a program, they’re no substitute for a good book.

It gets worse though if you try to search on the net for what you’re
looking for. While writing the article, I needed to find the name for one
particular generic, but didn’t know what it was called. I tried for about
20 minutes and gave up – the worst of it was that I had found the
answer on about the third hit, but because of the description being
purely textual, it didn’t ring any bells.

Acorn had the right idea with their Programmers’ Reference Manuals,
specifically the toolbox manual. This book gave every widget, their
events, the messages, parameters in and out, the lot. It wasn’t a
programming book by any stretch of the imagination, but by having
it close to hand, it was usually very simple to work out how to code
the application and best of all, it had pictures.

Even the likes of Brown’s Windows Forms Programming with C#, one
of the finest C# books around in my opinion, seems to miss this. Don’t
anyone mention MSDN. Sure, it has code examples, but it’s a hideous
mess!

Books now seem to be aimed at those who just want to use the IDE
to create an image viewer or those who are into full sized mega
applications with very little in between. Even seemingly simple jobs,
such as forms talking to other forms, multiple windows, child – parent
relationships seem to be overlooked.

If anyone has a suggestion for a book which will fill these gaps, please
let me know. I don’t make any claims to having read every book.

With so many books, why are there so many gaps?

C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write
about rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

If seeing your name in print wasn’t enough, every year we award prizes for the best published article in
C Vu, in Overload, and by a newcomer.
16 | {cvu} | APR 2006

C++ Forever
George Shagov looks at transferring data across a network.

`Come back!' the Caterpillar called after her.
`I've something important to say!'

This sounded promising, certainly: Alice turned and came back again.
`Keep your temper,' said the Caterpillar.

`Is that all?' said Alice,swallowing down her anger as well as she could.
`No,' said the Caterpillar.

Lewis Carroll, Alice's Adventures in Wonderland

Phase I: Life story
Being on the road all the time, it is quite important to stop and to think:

1. Where are we coming from?
2. Where are we now?
3. Where are we going to?

Preamble

I have a friend who works as a C++ server developer for a large respectable
company. He told me this story, which is quite interesting from a
professional point of view.
The application being developed is a C++ server on an UNIX-like
platform. Inter-Process-Communication is done through sockets and it
uses some third-party product for the communication layer. Let me title
everything related to this library within the net- prefix, like net-
library, net-API, net-object, etc. The net-API of this library
constructs a net-object and fills it by means of the fields, where each
particular field is represented by its name. When the net-object is
constructed and filled, it is going to be populated on a network. For
instance if we have a cpp-class:
class CAuthor
{
public:
 int m_nID;
 std::string m_strFirstName;
 std::string m_strLastName;
 std::string m_strPhone;
 /*
 * and so on, <skipped>
 */
;

then sending this class through the network might seem like this:
void CAuthor::Send()
{
 Net_Object netObj =
 net_API_ConstructNetObject();
 net_API_AddIntField(netObj, "id", m_nID);
 net_API_AddStringField(netObj, "firstname",
 m_strFirstName);
 net_API_AddStringField(netObj, "lastname",
 m_strLastName);

 net_API_AddStringField(netObj, "phone",
 m_strPhone);
 /*
 * and so on, <skipped>
 */
 net_API_SendNetObjcet(netObj);
}

and of course there should be a procedure that ‘receives’ objects from the
network.
In order to avoid the tediousness of putting these fields into the net-object,
additional macros have been written. Therefore the declaration of the cpp-
class looks like this:
class CAuthor
{
public:
 BEGIN_ENTRY_MAP(CAuthor)
 ENTRY_DECL("id", m_nID);
 ENTRY_DECL("firstname", m_strFirstName);
 ENTRY_DECL("lastname", m_strLastName);
 ENTRY_DECL("phone", m_strPhone);
 /*
 * and so on, <skipped>
 */
 END_ENTRY_MAP;

public:
 int m_nID;
 std::string m_strFirstName;
 std::string m_strLastName;
 std::string m_strPhone;
 /*
 * and so on, <skipped>
 */
};

The macro BEGIN_ENTRY_MAP instantiates some static function within
the static map of the fields and ENTRY_DECL adds one row to that static
map. The first parameter of the macro is the name of the net-field, required
by net-API, the second parameter is the field value itself.
Each class has a Copy member, in order to apply the fields which come
from network to the existing cpp-object, something like this:
void CAuthor::Copy(const CAuthor& newobj)
{
 m_nID = newobj.m_nID ;
 m_strFirstName = newobj.m_strFirstName;
 m_strLastName = newobj.m_strLastName;
 m_strPhone = newobj.m_strPhone;
 /*
 * and so on, <skipped>
 */
}

This is represented pictorially in figure 1. As far as you might guess, these
cpp-objects (like CAuthor) should not only be sent and received through
the network, they also to be kept in a database. For this purpose there is a
special application - “database writer”, and as expected this is loaded from

GEORGE SHAGOV
George was born in Moscow in the seventies and graduated from Moscow
State Technical University. He started as a software developer in 1992 and
since has spent a year and a half in the US (also developing software).
George is currently working as a software engineer at Deutche Bank in
Moscow. You can contact George at george.shagov@db.com
APR 2006 | {cvu} | 17

database, so there is additional functionality needed that loads these
objects from the database. We have some kind of database vendor, which
requires its own structures for reading and writing to the database to be
filled out. This database object looks like this:

class CDBAuthor
{
public:
 db_int ID;
 db_string<32> FIRST_NAME;
 db_string<32> LAST_NAME;
 db_string<16> PHONE;
 /*
 *and so on, <skipped>
 */

public:
 BEGIN_DB_ENTRIES(CDBAuthor)
 DB_ENTRY_INT(ID, READ_WRITE);
 DB_ENTRY_STRING(FIRST_NAME, READ_WRITE)
 DB_ENTRY_STRING(LAST_NAME, READ_WRITE)
 DB_ENTRY_STRING(PHONE, READ_WRITE)
 /*
 *and so on, <skipped>
 */
 END_DB_ENTRIES();
};

As a consequence of this, there should be some functions that convert
CAuthor to CDBAuthor:
void ConvertToDB(CDBAuthor& dbAuthor,
 const CAuthor& author)
{
 dbAuthor.ID = author.m_nID;
 dbAuthor.FIRST_NAME = author.m_strFirstName;
 dbAuthor.LAST_NAME = author.m_strLastName;
 dbAuthor.PHONE = author.m_strPhone;
 /*
 * and so on, <skipped>
 */
};

void ConvertFromDB(CAuthor& author,
 const CDBAuthor& dbAuthor)
{
 author.m_nID = dbAuthor.ID;
 author.m_strFirstName = dbAuthor.FIRST_NAME;
 author.m_strLastName = dbAuthor.LAST_NAME;
 author.m_strPhone = dbAuthor.PHONE;
 /*
 * and so on, <skipped>
 */
}

And of course select and insert statements are needed and look like
this:

static const std::string s_strSelectAuthor =
" select "
" ID "
" ,FIRST_NAME "
" ,LAST_NAME "
" ,PHONE"
" from tAuthor"
;

static const std::string s_strInsertAuthor =
" insert into table tAuthor ("
" ID "
" ,FIRST_NAME "
" ,LAST_NAME "
" ,PHONE"
") values ("

There should be a procedure which binds the variable to the insert
statement. It is good if this procedure is created according to the data from
the BEGIN_DB_ENTRIES macro (it would be a helpful automation.)
Still here? Good. Let me conclude a preamble a little bit. If you have a
task of adding one field you need to:

add the field to the class
do not forget modify Copy function
add the field to db class
modify two conversational functions:
from database.
to database.
modify select and insert statements

All these operations are performed manually, including compiling/testing
of all the code modified. You’re having a busy day! I am not joking - it is
a sample from real life, the companies live like that, big ones, enterprises,
for years.
But now is that all? Almost.

DATABASE
WRITER

net-API

DATABASE

APPLICATION

net-API

DATABASE
LOADER

NETWORK

Fi
gu

re
 1

companies live like that, big ones,
enterprises, for years
18 | {cvu} | APR 2006

Make life easier, parse it!
Let us consider a plain text file called author.txt, with content as in
figure 2.
Having been parsed, the resulting information is absolute in order to:

generate the class (CAuthor) and all of its members (fields) with
all access functions to these fields (getters and setters)
generate functionality which will fulfill net-object (both sides, to
and fro)
generate Copy function for cpp-class
generate database db-class (CDBAuthor) within all its fields.
generate two conversational functions:
converting from CAuthor to CDBAuthor
and back
generate SQL statements
inserts
and selects
generate whatever I have forgotten to mention.

All we need to do is to parse this simple text file. Somebody might say
the parsing procedure is quite complicated, in order to argue that I am
putting the flex skeleton which parses the file in Listing 1.
The result of parsing is shown in figure 3.

In conclusion to this part, all we need to do in order to add a
new field to the system is to modify our test file
(author.txt) and restart the building procedure. All the
functionality will be automatically generated. The parsing
and generating of code is the very place where all of the
verifications are to be made, and perhaps some inserts at the
helpful developers database, in order to keep the data handy.

Comment line
#cpp name | aapi field | type | dimension | DB field
| ID | id | int | 1 | ID
| FirstName | firstname | string | 32 | FIRST_NAME
| LastName | lastname | string | 32 | LAST_NAME
| Phone | phone | string | 16 | PHONE

Fi
gu

re
 2

%{
#include <stdio.h>
#include <stdlib.h>
%}

%option 8bit outfile="scanner.cpp"
prefix="test"
%option nounput nomain noyywrap
%option warn
%x COMMENT
%x CPP_NAME
%x NET_NAME
%x TYPE
%x DIMENSION
%x DB_NAME

alpha [A-Za-z]
dig [[:digit:]]
thename ({alpha}|_|{dig})*
thedigit ({dig})*
delim "|"
space [\t]
spaces ({space})*

%%

"#" {
 BEGIN(COMMENT);
 }
{delim} {
 BEGIN(CPP_NAME);
 }
{spaces} {
 }

<CPP_NAME>{spaces} {
 }
<CPP_NAME>{thename} {
 printf("Field: ");
 printf("cpp-name:%s; ", yytext);
 }
<CPP_NAME>{delim} {
 BEGIN(NET_NAME);
 }
<NET_NAME>{spaces} {
 }
<NET_NAME>{thename} {
 printf("net-name:%s; ", yytext);
 }
<NET_NAME>{delim} {
 BEGIN(TYPE);
 }
<TYPE>{spaces} {
 }
<TYPE>{thename} {
 printf("type:%s; ", yytext);
 }
<TYPE>{delim} {
 BEGIN(DIMENSION);
 }
<DIMENSION>{spaces} {
 }
<DIMENSION>{thedigit} {
 printf("dim:%s; ", yytext);
 }
<DIMENSION>{delim} {
 BEGIN(DB_NAME);
 }
<DB_NAME>{spaces} {
 }
<DB_NAME>{thename} {
 printf("db-name:%s;\n", yytext);
 }
<DB_NAME>\n {
 BEGIN(INITIAL);
 }
<COMMENT>\n {
 BEGIN(INITIAL);
 }
<COMMENT>. {
 }

%%

int main(void);
int
main ()
{
 yyin = stdin;
 yyout = stdout;
 yylex();
 printf("\n\nTEST RETURNING OK.\n");
 return 0;
}

Listing 1 (continued)
Li

st
in

g
1

APR 2006 | {cvu} | 19

If at first you don’t succeed, parse, parse and parse
again!
The data, cpp-objects, are not plain, as in the sample. There is a hierarchy
of them, which are sometimes pretty complicated. It means that having one
‘plain text file’ is not enough, we will have got a number of them, such as:

description of net-fields
description of database fields
file with relations between database and net-fields
and each particular cpp-object should have its own ‘plain text file’
including all of the required fields. Perhaps this is the same as a
previous clause. So one item might be annihilated from the list

But for the rest of the code, all of the above is going to be generated.
S o m e o n e
might say the
benefit is not
obvious, then
l e t u s
cons ide r
figure 4.
As you may
h a v e
surmised, we
were talking
only about a
s e rve r
application,
b u t t he
system itself
is much more
complicated.
The re i s a
GUI for the
se rve r and
some
add i t i ona l
clients, some
of which are
wr i t t en i n
Java . And
th i s ne t -
l i b ra ry (o r
rather to say
net-objects),
me n t ione d

before is (are) an interface between server and different clients. The simple
question is though: how does the look up relationships between server and
GUI fields work? The situation is pretty simple. Usually in GUI there are
different forms of data representation (what are the GUIs are for?) or grids
within the rows of data. It assumes that each particular column in the grid
(or of the form) has its name. But where this name is taken from? It is
neither the name of the DB field nor the name of the net-field, so usually
these names are configured on the GUI side, and the relationship between
these names and net-names or db-names are known only if you are taking
look at the GUI. If we follow the proposed approach it means that these
GUI-names are to be added at the ‘plain text file’ in order to have GUI-
code generated also.

But now is that all? Almost.
Since the fields are going to be written in the database, it means we must
know the length. There is no any reason to have dynamic strings,
constructed by means of std::string. Therefore our cpp-class might
look like this:

class CAuthor
{
public:
 int GetID() const { return m_nID; }
 void SetID(int nID) { m_nID = nID; }
 const char* GetFirstName() const {
 return m_strFirstName; }
 void SetFirstName(const char* strFirstName)
 {
 if (!strFirstName)
 return;
 ::strncpy(m_strFirstName, strFirstName, 32);
 }
private:
 int m_nID;
 char m_strFirstName[32+1];
 /*
 * and so on, <skipped>
 */
};

Why do we need that? Performance. Each particular change of
std::string will cause a memory allocation, which is quite a costly
operation from the perspective view of performance. By means of such
an approach we are avoiding these additional allocations. And further, the
CAuthor class becomes a scalar, it means that its ::Copy member
might be realized as a simple call to a ::memcpy function.
This approach significantly boosts the performance of the system. But
now is that all? Yes, it seems like, save documentation, which is realized
as twiki pages and updated, of cause, manually.

Postscript
I am not going to waste your time describing the benefits of a centralised
approach, as they are clean. The fashion of writing macros of declarations
of static maps originates from big software companies like Microsoft, for
instance, since they, distributing the technology (like ATL) are not able
to use flex or yacc, since it does not look professional, if it possible to say
so. Therefore many companies, are actually being quite deceived by that
and are misled from the straight path, which quite disappointing. Of
course what am I saying here is my own point of view on the subject.

Conclusion
In conclusion I thought to put down a couple of keen words, yet restrained
myself from doing it, for who am I? I am not a judge, certainly. Moreover,
during writing the article I tried to be as neutral as possible, keeping
technical style, quite critical, not personal. Notwithstanding saying
nothing does look strange also, therefore I am citing the words, God-a-
Mercy I am satisfied withal:

"For with what judgment ye judge, ye shall be judged: and with what
measure ye mete, it shall be measured to you again" Matthew 7:2

DATABASE
WRITER

net-API

DATABASE

APPLICATION

net-API

DATABASE
LOADER

NETWORK

net-APInet-APInet-API

Client NClient 1GUI

Fi
gu

re
 4

Field: cpp-name:ID; net-name:id; type:int; dim:1; db-name:ID;
Field: cpp-name:FirstName; net-name:firstname; type:string; dim:32; db-name:FIRST_NAME;
Field: cpp-name:LastName; net-name:lastname; type:string; dim:32; db-name:LAST_NAME;
Field: cpp-name:Phone; net-name:phone; type:string; dim:16; db-name:PHONE;

TEST RETURNING OK.

Fi
gu

re
 3
20 | {cvu} | APR 2006

Trees, Roots and Leaves #1
Örjan Westin examines the value of tree structures.

rees are very useful; they can help with sorting and organisation of
data, parsing and problem solving. They can also provide the over-
worked programmer with shade and a sturdy support for the

hammock. With this in mind, I was quite surprised when I couldn’t see
any when I went looking recently. True to the proverb, I saw a forest. Tries,
binary trees, Cartesian trees, search trees... fine, but I needed
a tree, and I couldn’t find any.
Ah, well, I thought, I’ll just have to write my own. How hard
can it be? As it turns out, this was not an entirely trivial
exercise, which is why I decided to write an article about it. I got a bit
carried away, so it actually became three articles, roughly covering design,
implementation and refactoring.

Not big and not clever
Most examples of trees I have seen have been, in one way or another, quite
explicit about the difference between trees, branches and leaves. This
approach has two significant drawbacks: it prohibits the use of trees and
branches interchangeably in generic functions, like sorting and searching,
and it prohibits the promotion from leaf to branch.
When would you want to do the latter? Well, in HTML it is quite common
to see things like important. If we parsed this in a way that
had each HTML element, or tag, as a node in our tree, this would be an
“em” leaf with “important” as content. But if we wanted even more
emphasis, and put important in
our tree, then the “em” element would be a branch with a “strong” element
as a child.
I also found that many of the trees out there have either very specialised
or very big interfaces. They tend to assume a lot about how and for what
they are going to be used. While I do the same, to some extent, I have made
an effort to make it as simple and generic as possible.
The following requirements summarise my needs:

1. Data indifference, i.e. generic and able to hold different data types
in different instances.

2. Small, simple interface, with as high exception safety as possible..
3. Whole-part indifference, i.e. offering the ability to treat roots,

branches and leaves alike.
4. Composable and decomposable, i.e. it should be easy, fast and

cheap to merge and break up.
5. Unsorted but sortable, i.e. a client should be able to sort a tree, but

the tree should not make any assumptions.
6. If possible, conform to STL container requirements.
7. Faithful, i.e. with a strict control of relationships.

These requirements affect the design in a couple of surprising ways. The
first is a no-brainer: make a template class. I already knew that, but it’s
always a good idea to put down the requirements you take for granted –
that makes it easier to question them later, should you need to. This also
goes for the second, which is a requirement that should be in place for
almost any class you’d care to design – the good old KISS principle, here
in the alternative meaning “Keep It Simple and Safe”.

The third and fourth tells me I am not actually looking for a tree, but a tree
node. Whether it is a root, branch or leaf is only determined by its
relationships: a root has no parent, a leaf has no children, but a branch has
both. If they are all of the same class, and can be treated uniformly, it helps
a lot with the fourth requirement while also making the interface smaller.

The fifth asks for iterator support, to allow the use of the standard sorting
algorithms. How to sort the tree is not my worry; as long as you can go
through a list of branches with a common parent and swap them around,
the client can implement sorting. The simplest way of achieving this is to
make it appear like one of the standard containers, as wished for in the
sixth requirement.
While full conformity with the STL containers is nice, as it makes the class
easier to use, it’s only an absolute requirement for library writers. For the
rest of us, it’s good enough if it does the job in a reliable and efficient
manner. For this reason, I will do this backwards, i.e. start making a usable
class, while keeping the standard in mind, and refactor it once I have it
working. Normally, the arguments for this would be a lot weaker – one
should always strive for standardised and familiar interfaces where
applicable – but in this instance, I already know that it is impossible to
make this fully conformant. But I’ll tell that story later.
Finally, the seventh prohibits assignment and copy construction. This was
a bit of a surprise, but it makes sense if you think about it. When I copy a
leaf or branch – do I give the copy the same parent as the original? If I do,
the copying of one node will alter another, since the parent must be notified
it has a new child. If I don’t, the copy will not be true, and I cannot do the
same thing with the copy as I can with the original – in this case accessing
the parent – which is hardly what you’d expect of a copy. It would
definitely not be a faithful copy.
Without knowing how it’s going to be used in every instance, I can’t in
good conscience decide which path to follow. Either way, the user might
be surprised by the result of the assignment, which is rarely a good thing.
Rather than baffle, I decided to provide a copy function that copied
everything except the parent.

To be? No, it's not to be
The first draft looked something like this:
template <typename T>
class tree_node
{
public:
 ...
 tree_node<T> & front();
 ...

Right, I’ll stop there because I have already made hamburgers of two holy
cows, and I can see the friendly neighbourhood mob approaching with
their quaint pitchforks and torches. I hope they’re bringing something to
drink, too.
The first is seen in the return type of front(), which is a node, rather
than the template type which is the norm in the standard template library.
When a client calls front(), the expected return is a reference to the
first element held – that’s how deque, list and vector works. Well,
that’s what you get here as well.

T

ÖRJAN WESTIN
Since 1993, Örjan has worked as a developer and consultant (apart from a
return to Mid Sweden University in 1995 where he created and taught a
course in "GUI design and Windows Programming"), mainly using C++. He
is currently working for Unilog Ltd as a Senior Consultant and can be
contacted at orjan.westin@unilog.co.uk

the user might be surprised by the result of
the assignment, which is rarely a good thing
APR 2006 | {cvu} | 21

Unlike those containers, however, the tree_node is not one-
dimensional. In a list, for instance, you get hold of the first value and use
it, and what you use it for is wholly dependent on the type of element you
have in your list. This would only make sense in a tree_node if it is a
leaf; if it is a branch or root, you might want it for its value or you might
want it for its children. Rather than try to provide two different idioms, I
stick with one.
Remember the third requirement? Only by admitting that a tree_node
contains tree_nodes can I make it whole-part indifferent. Everybody
knows that a list contains structs holding not only data, but also
pointers forwards and backwards, but
this is an implementation detail and
can be ignored. In this case, however,
i t ’ s a de s i g n f e a t u r e , n o t a n
implementation detail, and as such it
should be visible, and should generate a compilation error if used wrong:

tree_node<string> tree("Hello");
string s = tree.front();
// Error: no conversion from tree_node<string>
// to string

The second holy cow on the barbecue is the composite pattern, in which,
as we all know, the composite class is derived from the stand-alone
class.[1] So why don’t I follow that pattern?
First of all, patterns are only useful idioms – you are not required to follow
them when they don’t make sense. Secondly, the composite pattern is not
this generic; like all good patterns it is quite specific when it comes to
circumstances it is applicable. In this case, you write both the base and
composite classes, so you know what you are doing. That luxury is not
available when inheriting from an unknown type. Thirdly, in the words of
Herb Sutter: “Only use public inheritance to model true IS-A, as per the
Liskov Substitution Principle (LSP)”.[2]
You cannot argue that a tree to store, say, Widgets is-a Widget, as it has
no knowledge of what a Widget is. Instead, you end up with a class with
two distinct and unrelated purposes. When it comes to class purposes,
there can be only one. Okay, so nobody will come and cut your head off
with a sword if you write a class with two or more different purposes, but
I am sure I’m not the only one who have wished for that when coming
across a piece of old code to maintain.
Short of actual beheading, I know there is no way to stop some people from
ignoring issues of style and try to resurrect both cows by re-writing the
class declaration like this:

template <typename T>
class tree_node : public T
{
 ...
 tree_node<T> & front();
 ...

N e a t , o r w h a t ? T h i s f o l l o w s t h e p a t t e r n , a nd i t b r i n g s
tree_node::front() back on track, so that it returns a reference to
the template class. Well, it returns a reference to a class derived from it,
which should be close enough. Shouldn’t it? Well, as it turns out, it isn’t.
list<string> l;
// Add elements

// ...
// Change the first
l.front() = "bubble"; // fine

tree_node<string> t;
// Add elements
// ...
// Change the first
t.front() = "bobble"; // Error: no operator=
 // defined for tree_node

Oops.
And that’s just the start. Even if I did not hide the copy constructor and
assignment operator, I would hide the function front and any other
functions in the template class that happens to share name with the
functions in tree_node. Hopefully, if issues of style does not prevail,

the practical considerations should
convince everyone that in this
particular forest, those two cows are
not holy.
You want fries with those burgers?

To have or to hold
With those controversies out of the way, I can go on with the design and
put the member data in. That’s fairly straightforward – simple containment
should do it. This means, of course, that a root or branch which is only

template <typename T >
class tree_node
{
public:
 typedef T& value_reference;

 tree_node():
 value_(NULL);

 tree_node(const value_reference value):
 value_(new T(value));

 ~tree_node()
 {
 delete value_;
 }

 bool has_value() const
 {
 return (NULL != value_);
 }

 value_reference value() {
 if (!has_value())
 throw std::exception(“No value”);
 return *value_;
 }

void assign_value(const value_reference value)
 {
 if (has_value()_)
 delete value_;
 value_= new T(value);
 }
 ...
 private:
 T* value_;
};

Listing 1

patterns are only useful idioms –
you are not required to follow them
when they don’t make sense

When it comes to class purposes,
there can be only one
22 | {cvu} | APR 2006

used to keep track of children – like you would use a list or
vector, for instance – always has space set aside for data, even
if it’s not used. If the contained class is expensive to construct,
this is a bad thing.
To allow data-less nodes, I might as well keep the data as a
pointer, with the appropriate care in constructor, destructor and
assignment. This is the familiar pimpl idiom [3], a common an
implementation of the bridge pattern[1] – see Listing 1.
Since there is no guarantee there’ll be a value to return, I’ll have to check
for that and throw an exception if the client has asked for something I can’t
give. Since I’ll have to check it anyway, I might as well give the client the
ability to do the check, to avoid having to put a try-catch block around
every call to value(). I’ll also provide a const version, but there’s not
much point in listing it here.
That’s the first bit of data sorted, what’s next? The parent of course – as
most people know, you have to have a parent (or two, but bear with me)
before you can get children. And because most people don’t want the
parent to move in with them, I just keep track of its address so I can send
Christmas cards. Just remember to use the right type – the parent is not
the template type T, but the tree_node that has us as a child (see
listing 2).

What, no assignment of parent? No, you don’t get to choose your parents,
but more on that later. How do you like the function to find the root?
There’s another way of doing this that doesn’t use a temporary variable,
but recursion. If you want to, you can write something like this instead:

pointer root()
{
 if (NULL == parent_)
 return parent_->root();
 return this;
}

This is slightly less efficient, but illustrates that this container is designed
for recursion, something that makes it a different breed than the usual two
types that are distributed in the standard template library, namely:
sequence containers (deque, list and vector) and sorted associative
containers (map, set and their multi counterparts. We will have reason
to come back to this in the next part, when we begin to play with children.

References
1. Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: "De-

sign Patterns", Addison-Wesley 1994.
2. Herb Sutter: "Uses and Abuses of Inheritance, Part 2", C++ Report,

January 1999.
3. Herb Sutter: “Pimpls - Beauty Marks You Can Depend On“, C++

Report, 10(5), May 1998.
4. Herb Sutter: “The Joy of Pimpls (or, More About the Compiler-

Firewall Idiom)“, C++ Report, 10(7), July/August 1998.

this container is designed for recursion,
something that makes it a different breed

 ...
 typedef tree_node<T>* pointer;
 pointer parent()
 {
 return parent_;
 }

 pointer root()
 {
 pointer tmp = this;
 while (NULL == tmp->parent())
 tmp = tmp->parent();
 return tmp;
 }
 ...
private:
 pointer parent_;

Li
st

in
g

2

Magazine Redesign
Pete Goodliffe

As you’ll undoubtedly have noticed, this issue sees a new look for C Vu.
It’s bolder, brighter, and hopefully much easier to read. A facelift for
Overload will follow shortly.

You’ll also have noticed that this is more than just a new look. We’ve taken
a fresh view of C Vu, updated, and restructured the contents greatly.
We’re aiming to make C Vu more accessible, more readable, and
something that will attract a new readership. This is something that better
reflects the ACCU, what we do, and who
we are.

I hope you find this issue of C Vu a vast
improvement, and enjoy the new look. I‘d
we lcome your comments
(pete@cthree.org).

Thanks are due to all involved for their hard
work on this – especially to our production
editor, Alison, who has had to put up with
a lot of my mithering and requests to move
blocks 2mm to the left (and back again)
over the last few weeks.

Don’t forget to continue writing for C Vu.
The magazine design is new but, as ever,
the contents are entirely up to you!
APR 2006 | {cvu} | 23

Francis’ Scribbles
Francis Glassborow sets another cryptic puzzle.

he unusually large number of submissions to the ‘Cryptic clue’ item
from the last issue (note that a prize is not guaranteed, that depends
on the number and quality of submissions) means I have only limited

space for this column (and I have now used four lines of it).
Once again, there has been a lot of debate on comp.std.c about dangerous
functions in the Standard C Library. There are a number of functions that
open up the opportunity for buffer overrun problems in your code.
However among all the functions in the Standard C Library, one stands
out as exceptional in that it is effectively impossible to use it safely. I refer
to gets().
Apparently, it was originally included because it was in widespread use.
That is not a good reason for including a clearly defective function in a
Standard Library. The apparent endorsement of an always dangerous
function seems like allowing an electric wiring standard to support
‘diagonal’ buried wires. Hiding a ‘diagonal’ wire with plaster is always
dangerous. It being common practice among cowboy electricians would
not justify endorsing it in a professional standard. We all know that
removing it from the Standard would not stop it being used but nonetheless
removing it immediately might make the point about its dangerous nature.
What would you think about a proposal to remove gets() immediately
from the Standard C Library?

Commentary on problem 23/24
Have a look at the following code and comment on possible surprises.
#include <iostream>
struct X {
 int i;
 X(){}
};
struct Y: struct X{
 int j;
 Y(): X(), j() {}
};
Y y = Y();
int main(){
 std::cout << y.i << std::endl;
 return 1;
}

From Balog Pal (pasa@lib.hu)

Hm, I saw the problem in the last issue it looked so obvious not worth
actual commenting...[It would be a very rare problem from me that was
obvious to everyone. Francis]

In struct X we have member i that is not initialised in the constructor. That
is, in itself just a moral problem – the programmer will get away with it
as long as he remembers to never use i before assigning some value to it.
struct Y just inherits from X, not touching i in any way. Then we have:
Y y = Y();

That is copy-initialisation, with the effect same as writing:
Y y(Y());

The compiler will create a temporary Y, invoke Y::Y(), then call the
auto-generated copy-constructor with that temporary in order to construct
y. The auto-generated copy-constructor will do member-wise
construction like this:

Y::Y(const Y& that): X(that), j(that.j) {}

That, in turn uses auto-generated copy-constructor of X that looks like
X::X(const X& that): i(that.i) {}

And getting here we have a problem: undefined behaviour reading from
an uninitialised that.i.
We could have avoided that with direct-initialisation of y.
In main() we read y.i – that would be undefined behaviour with the
‘fixed’ version. But if we have some magic wand that clears undefined
behaviour status at { of main, with the code as it stands reading y.i is OK.
In practice most compilers will probably optimise the copy construction
to do nothing. It is allowed by the as-if rule and cannot break a program
that is not already broken (as ours is). Then access y.i will read the
garbage, and on most real machines in the world (where int uses all the
bits and have no trap values) will just output a random value and exit with
1. That’s the most probable of the things that could happen, but that’s no
excuse for the programmer omitting that x(0) in X::X().
Thank you for an excellent critique. The above is another reason for not
inheriting from a class that has not been designed with inheritance in mind.
Note that it would normally be an error to implement a base class (i.e. one
designed for inheritance) with any constructor that did not fully initialise the
base class data members.

Problem 25
Here is a problem from SQL for all those readers who have asked for some
variety (and I would welcome ‘gotcha’ type problems in other languages
such as Java, C# or Python as well as from C and C++)

Here is my problem (assumes at least Oracle 9i):
INSERT INTO my_table VALUES ((SELECT
my_sequence.NEXTVAL FROM DUAL), ...);

The intent is to insert a non-repeating auto-generated value into a
primary key field of a table. The problem is that this method is simply
naïve.

From William Fishburne <bfishburne@gmail.com>
Please explain why the method is naïve. Submissions by 1st May.

Cryptic clues for numbers
Last issue’s clue:
On reflection, this issue is still the same prime. (3 digits)

Very curious, why did I have more answers to this clue than for all those
in the previous six issues?

From: Roy Read <roy@camelot.demon.co.uk>
Once again I am either going to make a monumental fool of myself
and give a daft answer or else you have made this one far to easy.
Primarily another year’s series begins.
Thank you for publishing the answer to last issue. Sadly the old
brain is slowly going – in my “mind’s eye” I could see the boat,
could hear the signature tune, even picture the face of the lead actor
but could I not think of Hawaii 50 ! expletive deleted.
From: Richard Shaw <ashawthing11@ntlworld.com>
One too many for even ‘The Power’ to get in 3.

T

continued on page 28

FRANCIS GLASSBOROW
Francis is a freelance computer consultant and long-
term member of BSI language panels for C, C++,
Java and C#. He is the author of ‘You can do it!’, an
introduction to programming for novices. Contact
Francis at francis@ronbinton.demon.co.uk
24 | {cvu} | APR 2006

Standards Report
Lois Goldthwaite brings us up-to-date with the latest news.

he standards column in the last issue of CVu discussed the fast-track
ballot on C++/CLI (aka C++ for .NET) and some of the concerns
which the BSI C++ panel has about approving this as an ISO/IEC

standard on a par with 14882, the C++ Standard.
The UK put forward a procedural objection to this ballot, and since then
we’ve been surprised to see that some websites, and even some journalists,
have considered this newsworthy outside the ISO community. (No
journalist has contacted me, but Herb Sutter says he has received calls.)
These other people have laid emphasis on our ‘demand’ for a change of
name for this new language. What our paper actually requests is that
ECMA withdraw the fast-track proposal, with changing the name a
secondary option if they feel they must have ISO approval for their
standard. ECMA are a recognised standards body and have already
adopted C++/CLI as an official ECMA standard, and that will remain true
whatever happens in ISO.
There are arguments both for and against changing the name. The first
point to consider is that about half the people in this world who consider
themselves C++ programmers are writing code for Windows and
compiling it with Microsoft tools*. If Microsoft’s compiler suddenly
changed its name to Visual Something-Else, then about half the industrial
uses of C++ would disappear at a stroke.
Some people say: So what? If they're not writing proper C++, they
shouldn't be allowed to delude themselves that they are.
Other people take the position: No one who aspires to understand C++ is
beyond salvation; all it takes is missionary work to bring them to
enlightenment. Don’t arbitrarily cast them into the darkness away from
C++, to wander forever in the wilderness.
Another consideration is the extensive work that TG5 have devoted to
ensuring that standard-conforming C++ code will still have the same
semantics in the CLI, or .Net, environment. Changing the name might
remove some incentive for Microsoft and TG5 to maintain this
compatibility.
Opinions on the BSI panel are still divided about whether a radical change
of name is the best course, but we all agree that ‘C++/CLI’ is all too easily
shortened into just ‘C++’, leading to blurring and confusion. Indeed,
Microsoft’s policy was explained to me by one of their representatives:
Guidance for usage of the term “C++” in Microsoft material says that
we should refer to “Standard C++” if talking about the ISO standard. If

the article is about C++/CLI, it should mention “C++/CLI” up front, and
then use “C++” for the remainder of the article.
A glance at the MSDN online documentation suggests the latter rule is
often overlooked in practice. Microsoft’s documentation is often referred
to by programmers writing for other environments, who might not realise
when the discussion strays away from standard constructs and into
platform-specific extensions.
TG5 should be recognised and applauded for their achievement in making
C++ a first-class language in the CLI world. Many of the fundamental
design principles of CLI are contrary to the fundamental principles of
C++, so this was not a simple project.
There are actually three levels in C++/CLI that can be distinguished:

1 support for standard C++ code to run in the CLI environment.
2 some minor extensions to allow C++ code to consume CLI

components authored in other languages, which are no more radical
than any other compiler’s platform-specific extensions.

3 some major extensions to enable CLI components to be written in
‘C++’ for consumption by other programs.

The final group are the parts which arguably should be given some other
name to prevent confusion. Visual C++ can be used to compile standard
C code, with the right switches, and if it also compiles this other language
in addition to C++, that would be useful, too.
As for a name for the new parts, maybe ‘CLIC++’, without the slash,
would be less prone to being shortened; or perhaps a better name reflecting
the language’s heritage can be found. Suggestions on an electronic
postcard to standards@accu.org are welcome.
In my opinion, the very worst thing that could happen would be for all
these extensions to become identified in the public mind with ‘C++’, and
for ‘Standard C++’ to take on the connotations associated with ‘Standard
Basic’ or ‘Standard Pascal’ – ISO standards for dead languages produced
long ago by now-defunct working groups.
*The second point to consider is the well-known fact that 69.4% of all
statistics are made up on the spot!

T

LOIS GOLDTHWAITE
Lois has been a professional programmer for over 20 years.
She is convenor of the C++ and Posix standards panels at BSI.
Lois can be contacted at standards@accu.org.uk
From: Alan Stokes <alan@alanstokes.org.uk>
Controls, aha! We need a U-turn, and a degree more.
From: Mark Holloway <hollowaymr@hotmail.com>
One after before hexadecimal (hex 0xB4 = 180 decimal, one after
which is... 181!)
I hope I have understood the point of the puzzle. I was briefly trying
to get something with word play: Self-cannibalism, as Prince
Charles might say. The clue hopefully leading to “one ate one” but
I suspect that’s (i) too cryptic, (ii) not numeric and (iii) just odd.
From: richard.brookfield@bigfoot.com
Despite adding one to a straight line, it sounds like I ate one.
Darts player threw one over maximum; it sounds like I ate one.
From: Dr Boots <drboots@galactichq.org>
I ate one in my prime.

From: simon.cornell@uk.bnpparibas.com
Get to the root of a pair of bytes.
From: Raymond Butler <butlerra@lsbu.ac.uk>
Old enough to vote, one follows the majority in little more than a U-
turn.

I added a little polish to a couple of these. However I kept my fingers off
the winner. If Mark likes to email me, we can discuss a suitable book prize.
I actually made the choice more for the ‘self-cannibalism’ idea than for
the submitted clue.

This issue’s clue

‘All for one’, no, ‘Musketeers for musketeers’. You will need some
powerful luck to get this one.
What is your alternative clue for the same number? (Submissions by
1st May).

Francis’ Scribbles (continued)
APR 2006 | {cvu} | 25

26 | {cvu} | APR 2006

Mailbox @ C Vu
Your letters and opinions.

The debate over debuggers doesn’t seem
to be dying down much. Bill Rubin in the
USA had this to say.

The term “debugger” is a misnomer. The tool
we call a “debugger” does not debug code any
more than a design tool does design. Humans
do these things. We would never call a design
tool a “designer”.
To read the commentary on the Undo article
(Volume 18, No. 1), one would think that the
only purpose of a debugger is to help
diagnose bugs. But this is not the case. A
debugging tool is just as useful in helping a
developer to understand how a program
works, and from a very different viewpoint
than can be obtained in any other way. One
might say, with apologies to the “intelligent
design” folks, that program documentation –
or even source code – is “just a theory”. The
debugger tells you what’s really happening.
For example, suppose you need to add some
functionality to a system of a hundred-
thousand lines of code. Even if the code base
is the best-written and best-documented in
the world, there is no substitute for being able
to step through the relevant parts with a
“debugger”, to get a feel for how it really
works. And if the system is less than perfect,
or its documentation is less than complete –
or less than correct – the debugger is an
essential tool, even if you never use it to
diagnose bugs.
In my view, much of the “debuggers
considered harmful” controversy goes away
once one distinguishes between the tool and
the various activities it supports, only one of
which is debugging. A pity it’s too late to
give the “debugger” an apt name.

Meanwhile, the fun and games over null
references (SCC, 17:6) carr ies on.
Rahman Fazl had this to say.

To my mind the key point in the quote from
the standard that I referred to (8.3.2/4), is that
creating a ‘null’ reference requires binding a
reference to the “object” obtained when you
dereference a null pointer, which causes
undefined behaviour. (For “undefined
behaviour” you can read “core dump”.)
So, in the example provided by Jim Hyslop,
the code does not create a null reference,
though it does try (at runtime) and
coredumps, if a decent compiler was used.
This distinction might be considered pedantic
by some. However, when giving advice to
less-experienced programmers (which I think

is part of the rationale behind the SCC) I do
feel it is paramount to be accurate.
Perhaps what I’m trying to say is: Instead of
telling people not to create null references, it
is sufficient and simpler to tell them never to
attempt to dereference a null pointer.
This covers a wider range of problems
without introducing yet another concept into
C++. I hope we all appreciate the value of not
gratuitously expanding the set of concepts we
need to juggle with as C++ programmers,
given that the topic of C++ being seen as
overly complicated was covered both in C-
Vu (Lois’ Standards Report) and in Overload
(Editorial) last issue.

Given the changes in the education system
within the UK, it seems that Francis’
comments in the last issue have caused
some consternation. A reader (who wished
to remain anonymous) had this to say.

Normally, I read Francis’ Scribbles as I find
his sense of humour, while dry, always
worthy of my time. However, as a teacher of
many years now, I really must object to his
comments in 18:1. I don’t know if Francis has
taught in a school, but going by his book, it
would not surprise me if he had not taught in
Further Education – it has the correct feel for
someone experienced in that area.
I found the comments about maths (as taught)
and maths teachers uninspiring to be plain
wrong. While there is no doubt that
throughout the 1970s and 1980s maths was
very much a talk and chalk subject which
required a lot of cognitive and abstract skills
and was largely taught by fairly old teachers,
that changed in the 1990s. Largely due to
changes in curriculum, the ability for schools
to “get rid of” teachers who were past their
sell-by date and the advent of technology.
Maths in 2006 is not Maths as it was in 1986.
Maths now is an interactive practice which
utilises the likes of interactive whiteboards
(students can now appreciate movement in
3D as they can see it). The use of these boards
is also a positive boon in other subjects such
as the sciences where the manipulation of
elements, the dissection of animals and
rotation of racimates not only aids in
learning, but involves the students.
I will not get into the argument about
examination standards as that is a different
matter and one which I could talk about for
hours on end.
I strongly object to the insinuation that as a
profession, teaching has not progressed. It

has, but not in the old “linear” style. Allow
me to explain. Progression, as is understood,
is a linear activity; you start at point “A” and
through experience, move to point “B” and
then “C” and so on. There is nothing wrong
with that until you analyse what the
“experience” actually was.
The experience did not include very much in
self-reflection, peer review, standards
reports, the student/staff experience or many
of the criteria now used to ensure that some
of the most rigorous standards in Europe are
maintained and constantly improved upon.
Schools undergo OFSTED inspections
roughly every 4 years, but there is nothing to
stop a snap inspection at any time and the
rules for these inspections for employment
are very exacting (you cannot employ anyone
for 6 weeks before or after the inspection).
Experience in the old “linear” style meant
exactly that – number of hours under the belt.
As the curriculum did not vary that much, it
was possible to qualify 1970, start teaching
and not really change much of what you
delivered for 15 to 20 years.
Teaching and learning in 2006 is not the beast
it once was. While some decry what is
happening in the education system (such as
the material taught), they have very little
knowledge of what is actually happening.
Yes, the material has changed, but in some
respects, it has become much harder than
once it was. Elements of what was on the A
Level syllabus in 1987 are now being taught
in year 9 as they are now considered relevant
and integrates far better with what is being
taught in other subjects; the learning
experience is now more gestalt rather than the
old “just accept it”. Some elements have also
been dropped and some that have should not
have been dropped (the over-reliance on the
calculator is not good!).
To sum up. I think Francis needs to go back
to school to see what is really happening – he
will be amazed at the positive changes. This
sort of “decry the teacher” does not do him
justice. I will continue to read his column, but
please Francis, don’t just start to spout what
the Daily Mail prints.

As always, I'm more than happy to print
your letters and emails. If you wish to
comment on any aspect of the magazine,
please feel free to. Just drop an email to
cvu@accu.org. The editor reserves the
r ight to al low a r ight to reply to al l
correspondence.

Student Code Critique Competition
Set and collated by Roger Orr.

Please note that participation in this competition is open to all
members. The title reflects the fact that the code used is normally
provided by a student as part of their course work.

This item is part of the Dialogue section of C Vu, which is intended
to designate it as an item where reader interaction is particularly
important. Readers’ comments and criticisms of published entries
are always welcome, as are possible samples.

Before We Start
Remember that you can get the current problem set in the ACCU website
(http://www.accu.org/journals/). This is aimed to people living overseas
who get the magazine much later than members in the UK and Europe.

Student Code Critique 38 Entries
The student wrote “I’m getting a compilation error with this program,
something about the instantiation of invArg; I think the type checking
is too strong; any suggestions?”
#include <iostream>
#include <cstdlib>
using namespace std;

template<class T>
class invArg
{
public:
invArg(T& arg):inv(arg){}
virtual void Write()const{cout << inv << endl;}
private:
T inv;
};

template<class T>
class Exp
{
public:
T operator()(const T& base, T
exp)throw(invArg<T>)
{
if(exp<0)
1/operator()(base,exp);
else if(base==0)
throw invArg<T>(base);
else
{
T ret=1;
for(;exp--;)
base*=exp;
return ret;
}
}
};

int main()
{
for(;;)
{
try
{
long double base,exp;
cout << "Enter a base and an exponent: " <<
endl;
cin >> base >> exp;
cout << base <<"^" << exp << "=" << fixed <<
Exp<long
double>()(base,exp) << endl;
}
catch(invArg<long double>& inv)
{
inv.Write();
}
system("PAUSE");
return 0;
}
}

From Balog Pál
pasa@lib.hu

First I must criticize the SCC. It’s not fair. And not professional. You
dump a piece of code and expect comments without establishing a context.
The early entries were fragments with comments on the intent. Or had
enough working structure.
Suppose you faced such code on a review, would you start fixing or
commenting it? If I’m forbidden to use the FUBAR stamp I would turn it
anyway without further looking until I saw a clear specification on what
the task was. Aren’t we teaching that when the mark is unclear you drop
everything and fetch someone who knows? Instead of making a couple
of wild assumptions and sit down to carve the code?
Here all we have is the student’s work and a question. We could answer
the question that the compiler is right and the error message clearly states
the problem that the const object presented to construct invArg is not
good for the non-const reference of its constructor. And that it can be
fixed by inserting const, sending him home. Then he’ll come back
saying compiler found another error. Then a warning, then it finally
compiles but does not what he thought it will. Then we can say “Why, the
program follows instructions, not wishes.” but who will be any wiser? As
those wishes are secret material like the recipe of Coke.
Another strategy is to switch to Oracle mode, and lay out a ton of ‘if you
wanted this, do that’ stuff. Will that serve the student who must be
confused enough with the fundamental issues? And burn precious
resources on all the false branches of prediction? Sigh.
So we try rev-engineer the code. In main it prompts two numbers then
writes a string naming them base and exponent and printing base^exp
that the rest of the program calculates. The calculation is done by using a
templated functor class with long double precision. We also see try/
catch. I can’t tell if using template, using functor, using exceptions was
part of the task, and the stuff in main is just the test harness Mark I. Or the

Prizes provided by Blackwells Bookshops & Addison-Wesley

ROGER ORR
Roger Orr has been programming for 20 years, most
recently in C++ and Java for various investment banks
in Canary Wharf. He joined ACCU in 1999 and the
BSI C++ panel in 2002. He may be contacted at
rogero@howzatt.demon.co.uk
APR 2006 | {cvu} | 27

task was to produce the result. Also there’s an endless for(;;) loop with
an unavoidable return. To make sense, one of those should go.
What we don’t see in main is any attempt to analyse the success of getting
the numbers from cin. That is OK for throwaway test-harness, but not
OK if it was part of the task.
To calculate b^n I’d probably think to use exp() in <cmath> as
exp(n*log(b)) but that will produce double, not long double.
So a templated Exp may serve the purpose to do the calculation with
different types and precision. Here we see a stateless class with a single
operator(). I couldn’t figure a good reason for that, though there may
be. When I create a functor it holds some state, e.g. one of the function
parameters fixed, or an accumulator for the result... Else a simple template
function should to.
Let’s look at that operator(). It takes base as const T& and exp as
T, pretty suspicious. It also has an exception spec. I refer to boost and
articles why we shall not use exception specs.
Then it checks for negative exponent and finding one tries a recursion.
What is a good idea, but the implementation has bugs, exp must be
negated and we’re not in lisp but C++ so we shall start with keyword
return.
Then we throw up if base is 0. I just can’t tell why, as far as I know
exponentiation is well defined for zero base, 0^n being 1 for n==0 and
0 for anything else. So I would definitely return that at this point if
calculating the exponent was the task.
For the rest of the cases we see a look doing multiplications. The compiler
gets grumpy as we try to modify base that we promised to keep const.
Did we mess up? No, if it were not const, we would multiply base by
1*2*3*... And then return ret that still has the 1 we set before the
loop. So the actual fix shall be ret *= base; let’s re-check the loop:
ret stays 0 if exp was 0, multiplies once if 1, etc, so far so good.
Negatives would cause an endless loop, but we eliminated that in the first
if. What if exp is 0.5? Duh, we’ll have an endless loop.
To fix that we shall look at specs again – should exp really be type T
or int is OK? For the latter the fix is easy, just book it everywhere. Maybe
it must be type T but restricted to integral values by a usage rule. Or
not restricted, and error must be flagged. Or not restricted and value is
expected. The ‘you owe the oracle’ register starts overloading... For the
first case I’d issue this solution:
template<class T>
T Exp(const T& base, int exp)
{
 if(exp<0)
 return 1/Exp<T>(base, - exp);
 else if(base==0)
 return exp ? 0 : 1;
 else
 {
 T result(1);
 while(exp--)
 result *= base;
 return result;
 }
};

Thus we also eliminated exceptions and related stuff. But some comments
on that, especially as the original question is tied to it.
The code starts with a template class named invArg. That makes no
sense reading through. And it took me a day to figure out invArg
probably stands for ‘invalid argument’. No kidding. It has a constructor
that takes a nonconst ref (for nitpickers: reference to object that’s non-
const (T&)). Then uses it just to initialise a value. That is definitely a no-
no, we rarely take nonconst refs, and when we do it’s to modify the passed
object or store that nonconst ref for better times. Otherwise we take T or
const T&. Fixing that removes the compiler error in question.

This InvArg class does nothing but stores the passed argument, and has
a Write method that prints to cout. The class appears used as an
exception thrown. That has a plenty of issues.

Hardcoding stuff like cout in a supposedly generic-purpose class
is bad. Write() should do write the object’s state, but to the
stream passed as argument. Then the user will call it with cout, if
that is the place to write to.
Templated exceptions smell. It is pretty hard to catch and handle
them. We try to use as few exceptions classes as we can, and
organize them in hierarchy so a general handler can catch them.
Especially the kind that can’t do anything put print a message.

So if exceptions are really needed we’re better off with a single
InvalidArgumentException class. That will hold a single string
message. It can come with a set of concrete constructors or a templated
one that takes the offending argument and converts it to string. (Say, using
stream mechanism internally.) And a GetMessage() that can fetch the
string. Write() is no longer needed, whoever wants to write out, can
write the string.
In the catch handler we should write a more informative message, saying
exception happened, and what it was. With careful planning on how we
can continue or exit.

From Colin Hersom
colin@hedgehog.cix.co.uk

“Something about the instantiation of invArg?” Did you look at the
message carefully? No? It is important to know exactly what the compiler
says since it really is trying to tell you what is wrong, and knowing what
is wrong is well over halfway to determining how to fix it. Let’s put it
into my compiler and see what it says:
In member function
 `T Exp<T>::operator()(const T&, T)
 [with T = long double]': no matching function
for call to
 `invArg<long double>::invArg(const long
double&)'
candidates are: invArg<long
double>::invArg(const invArg<long double>&)
 invArg<T>::invArg(T&)
 [with T = long double]

Error messages caused by problems with templates are often cryptic, but
this one is not too bad. It is looking for a function with an argument type
of const long double& but it can only find that name with a long
double& or a const invArg<long double>&. The second of
those is the auto-generated copy-constructor, so presumably you want to
call the first. There is rarely a need for non-const references, especially
in constructors, so does it compile if you make the argument const?
Well, it passes that point but now there is another error:
assignment of read-only reference `base'
referring to the line base*=exp;

Hmm. What are you trying to do? No comments because you were just
hacking this out? Comments help to organise your thoughts and remind you
tomorrow what you were thinking of yesterday. The code seems very hard
to read, did you not use a decent editor to create it? Anything half decent
would at least given you some indentation so that the flow of the program
was easier to follow. You can then see that the main program looks like:
int main()
{
 for (;;)
 {
 // work
 system("PAUSE");
 return 0;
 }
}

28 | {cvu} | APR 2006

So the for(;;) is doing nothing. What is that system call doing? I
can’t see why you should make this little program dependent on some
external file, so I think that I’ll just comment it out. You could replace it
by a getline or something if you want the user to respond before
moving on. If you put the return statement outside the for loop then the
user is prompted for another input in any case.
What else can I see? What about this line:
1/operator()(base, exp);

That statement seems stranger the more I look at it:
There is an explicit call to operator(), which is rarely required.
The whole statement is an expression without assignment, so its
result is discarded (and the function has an indeterminate value)
It is recursive, passing in exactly the same arguments as it was
given, so if this is ever reached it will go into an infinite recursion,
the best result will be a stack error. You might be lucky and not
screw up your operating system. Presumably you meant to negate
the exp argument.

All your template instantiations appear to need their type provided
explicitly. That is not a good sign. The whole point of templates is that
the compiler can deduce the type so that if, for example, you wanted to
use some type like Complex instead of a double (yes, I thought you
did), you only need to change the declaration of base and exp and the
compiler does the rest. At the moment you have to change the call to Exp
as well.
You have calls to Exp<type>::operator() but nothing else. The
class has no constructor and no retained data, so why is it a class? I know
that the STL has such things, but then they have a whole load of scaffolding
around them to ensure that you don’t have to specify the types for the
template. If you want to emulate one of them, then you need to examine
and understand that code. For the moment, it would seem that your
example would be better coded as a template function. You can then call
it like this:
Exp(base, exp)

and the compiler will deduce the argument types to be instantiated. Let’s
do this and see where we get to. We need to replace that operator()
call as well, so that solves that worry:
template<class T>
T Exp(const T& base, T exp) throw(invArg<T>)
{
 if (exp<0)
 return 1/Exp(base, -exp); // Fixed this
 // recursion
 else if (base==0)
 throw invArg<T>(base);
 else
 {
 T ret=1;
 for (; exp--;)
 base *=exp;
 return ret;
 }
}

Then there is that catch which also needs to know the template
arguments. You made the Write function virtual to get round that? Yes,
but there is not much point in a virtual function that is defined only in one
class since then you can only call it from that class. If you want to be able
to catch invalid arguments from a range of types then you need a base class
to catch and the derived classes to throw:
// This is what we catch
class invalid_base
{
public:
 invalid_base(){}
virtual ~invalid_base(){}

virtual void Write() const = 0;
};

// We throw a derived object
template<class T>
class invArg : public invalid_base
{
public:
 invArg(const T& arg): inv(arg){};
virtual void Write() const
 {
 cout << inv << endl;
 }
private:
 T inv;
};

and then change the catch to:
catch(invalid_base &inv)
{
 inv.Write();
}

OK, lets show it to the compiler. The assignment error is still there. You
have assigned ret=1 and then not used it. Did you mean to write:
ret *= base;

That does at least get rid of the error and it compiles OK. Did you not try
this code in a non-templated form first? That should have ironed out the
obvious problems, and it is usually easier to test non-templated code. Shall
we try it?

Enter a base and exponent:
2 3
2^3=8.000000
Enter a base and exponent:

(Looks OK)

3 2
3.000000^2.000000=9.000000
Enter a base and exponent:

(There is something odd about that output, since the first calculation gives
the inputs as integers but the second one they appear as decimals. I think
that your “fixed” formatting is persistent. Do you need it at all?)

0 0
0.000000
Enter a base and exponent:

(Just testing the error mechanism - it doesn’t really stand out as an error,
does it)

4 .5
^C

Whoops! Something doesn’t like square roots. You were going to fix that
later? Shouldn’t you have at least put in a trap so that you know where to
add the new code when you write it? That for loop looks suspicious. Why
isn’t it a while loop for a start? Don’t you know that it is very dangerous
to compare floating point numbers with exact values (zero in this case),
because the binary representation might not exactly reach that value?
You can apply the integral part of the exponent by multiplication, but then
you need to deal with the fractional part. The code needs to look like:
T ret=1;
while (exp > 0)
{
 ret *= base;
APR 2006 | {cvu} | 29

 exp = exp-1;
}
if (exp != 0)
{
 // do fractional exponent bit
}
return ret;

You need to look at that error reporting again. Trapping the error may not
result in writing to "cout", indeed I would expect to write to "cerr" if
anywhere, and you need to write something like "invalid argument" as
well. However, putting the string into the class fixes it for ever, so I suggest
the class writes its value to a stream provided as an argument but does
nothing else. This is the minimum that this template class could do. The
base has the function:
virtual void Write(ostream&) const = 0;

and the derived class overloads it:
virtual void Write(ostream &os) const
{
 os << inv;
}

then you need a utility function to pass in the stream:
ostream &operator << (ostream &os, const
invalid_base &err)
{
 err.Write(os);
 return os;
}

so the catch clause can determine the stream and everything else:
cout << "invalid argument: " << inv << endl;

I think that is enough for now. Here is the code as we have changed it, you
now need to go away and work out how to fix it for fractional exponents
and check that it all works for other types. Also do fix the test harness so
that you don’t have to type ctrl-C when you want to stop it. Oh, and look
at that invalid argument test: 0^Exp is valid except when Exp==0,
so maybe your error class should take two values instead of one.

#include <iostream>
#include <cstdlib>
using namespace std;

// This is what we catch
class invalid_base
{
public:
 invalid_base(){}
virtual ~invalid_base(){}
virtual void Write(ostream&) const = 0;
};
// We throw a derived object
template<class T>
class invArg : public invalid_base
{
public:
 invArg(const T& arg): inv(arg){};
virtual void Write(ostream &os) const
{
 os << inv;
}
private:

 T inv;
};

ostream &operator << (ostream &os, const
invalid_base &err)
{
 err.Write(os);
 return os;
}

// Exp calculates base ^ exp for arbitrary types
template<class T>
T Exp(const T& base, T exp) throw(invArg<T>)
{
 if (exp<0)
 return 1/Exp(base, -exp); // b^-e == 1/b^e
 else if (base==0)
 throw invArg<T>(base);
 else
 {
 T ret=1;
 while (exp > 0)
 {
 ret *= base;
 exp = exp-1;
 }
 if (exp != 0)
 {
 // do fractional exponent bit
 }
 return ret;
 }
}

int main()
{
 for (;;)
 {
 try
 {
 long double base, exp;
 cout << "Enter a base and exponent:"
 << endl;
 cin >> base >> exp;
 cout << base << "^" << exp << "="
 << Exp(base, exp) << endl;
 }
 catch(invalid_base &inv)
 {
 cout << "invalid argument: " << inv
 << endl;
 }
 // system("PAUSE");
 }
 return 0;
}

From Prof. Peter Sommerlad
peter.sommerlad@hsr.ch

Firstly the original code with commentary of what I suppose to be plain
wrong:
#include <iostream>
#include <cstdlib>
using namespace std;

Source code formatting very ugly and hard to parse by humans
Use of typename in template argument lists more modern than class
30 | {cvu} | APR 2006

Following class is used as an exception and should better be derived from
std::exception or use std::invalid_argument directly.
invArg requires too much from T (copy constructable and ostream&
operator<<(ostream&,const T&) defined

template<class T>
class invArg {
public:

Should use T or const T& as ctor type, if used at all.
A std::string for the reason would be better

 invArg(T& arg):inv(arg){}

I/O shouldn’t be the competence of an exception class
 virtual void Write()const{
 cout << inv << endl;
 }
private:
 T inv;
};

Wow, so many bad things is such little code.... why a functor instead of a
simple (template) function with a template function the compiler could
derive the correct template instantiation without hassle.
Assumption: should have implemented exponentiation by repeated
multiplication requires:
T operator/(int,const T&) and T operator*=(T&,
const T&), copy ctor. T::operator--(int)

template<class T>
class Exp {
public:

1. might throw different things than just invArg<T> but promises to
only throw invArg<T>

2. instead of the return value, base is used as the result of
exponentation, which fails because it is declared as const ref

3. parameter exp should be an integral type, otherwise algorithm fails
to terminate

4. does not return a value in 2 of three cases

 T operator()(const T& base, T exp)
 throw(invArg<T>)
 {
 if(exp<0)

Might assign to ret instead of return and place the return at the end
 /* return */
 1/operator()(base,/*-*/exp);

Recursion is dangerous, endless without negation
 else if(base==0)

Guard clause is better the first case to see it more clearly

 throw invArg<T>(base);

Better; throw invalid_argument("Exp::operator():
base was 0");

 else {
 T ret=1;

Always returning 1? should be placed outside conditional
 for(;exp--;)

Does not terminate with non-integral exp value, while would be more
readable
 base*=exp;

Cannot compile since base is const ref, should read: ret *= base;
 return ret;
 }
 }
};
int main()
{
 for(;;) {

Why an endless loop, when we return from within unconditionally
 try {
 long double base,exp;

As stated above, exp should be of an integral type
 cout << "Enter a base and an exponent:
"<< endl;
 cin >> base >> exp;

Fixed output doesn’t work well with negative exponents, gives 0.000
 cout << base <<"^" << exp << "="
 << fixed
 << Exp<long double>()(base,exp)
 << endl;
 }
 catch(invArg<long double>& inv)

Better std::exception

 {

 inv.Write();

std::cout << inv.what() << std::endl;
 }
 system("PAUSE");

What is the reason to pause?
Might not work on non-windows/non-dos systems, non-portable
 return 0;

Why returning within the loop or at all in main()?
 }
}

The “corrected” version of mine, which still is not perfect, but at least
compiling and giving some result.

#include <iostream>
#include <cstdlib>
#include <climits>
#include <stdexcept>
#include <boost/static_assert.hpp>
APR 2006 | {cvu} | 31

template<typename T,typename E>
T Exp(const T&base, E exp){
 BOOST_STATIC_ASSERT(
 std::numeric_limits<E>::is_integer);
 // avoids instantiation where algorithm
 // doesn't work
 if (0==base) throw std::invalid_argument
 ("Exp::operator(): base was 0");
 T ret=1;
 if (exp <0) {
 ret /= Exp(base,-exp); // a little
 // obfuscation, might use
 // ret = T(1) / Exp(base,-exp)
 } else {
 while(exp--){
 ret *= base;
 }
 }
 return ret;
}
int main()
{
 long double base;
 long exp;
 std::cout << "Enter a base and an exponent:"
 << std::endl;
 std::cin >> base >> exp;
 try {
 std::cout << base <<"^" << exp << "="
 << std::fixed << Exp(base,exp)
 << std::endl;
 }
 catch(std::exception& inv)
 {
 std::cout << inv.what() << std::endl;
 }
}

Commentary
I admit that the criticism from Balog is justified – I should have given some
more context for the example. However I’m pleased that despite this we
had three entrants for the contest. I did deliberately leave the code left
justified (as supplied) rather than adding any indent because I thought it
was instructive to see just how much context is lost when the formatting
style is unhelpful.
I think between them that the entrants covered most of the points in the
code. My remaining point is that in ISO C++ the pow() function has
overloads for float, double and long double – did the student
realise this? I’d like to have seen a little more discussion about why the
student wanted to use a template and then simply instantiate it with long
double. If a template was really required it might be sensible to rename it
‘Pow’ to reflect its semantics.
A subsidiary point to be aware of is that for some C++ implementations
long double may in fact be same representation as double.

The Winner of SCC 38
The ed i t o r ’ s cho i ce i s : Pe t e r Somme r l ad . P l ea se em a i l
francis@robinton.demon.co.uk to arrange for your prize.

Student Code Critique 39
(Submissions to scc@accu.org by 1st May)

The student wrote:
“I wanted to learn how to use STL in my own code. I’ve got a data structure
that currently has start() and size() methods returning the start

address and the size of some internal data structure. So I decided to try
and write it an iterator so I can use the standard algorithms.
“I'm getting a bit stuck – so I’ve simplified it down as much as I dare but
the test code still fails to compile if I uncomment either of the lines marked
‘ERR:’. Please help me get my iterator class working.
“The real class is much bigger than tester and doesn’t use int but does
have the start and size methods.

#include <algorithm>
template< typename T >
class iterator
{
public:
 // construction
 iterator(T* p) : mPtr(p) {}
 iterator& operator=(const iterator& rhs)
 { mPtr = rhs.mPtr; return *this; }
 // Comparison
 bool operator!=(const iterator& rhs)
 { return mPtr != rhs.mPtr; } const
 // iterator operations
 T& operator*() { return *mPtr; }
 iterator operator++() { return ++mPtr; }
 iterator operator++(int) { return mPtr++; }
private:
 T* mPtr;
};
class tester
{
public:
 tester()
 { for (int i = 0; i < size();)
 data[i++] = i; }
 int * start() { return data; }
 int size() { return thesize; }
 iterator<int> begin()
 { return iterator<int>(data); }
 iterator<int> end()
 { return iterator<int>(data + thesize); }

private:
 static const int thesize = 10;
 int data[thesize];
};
#include <iostream>
void print(const int & i)
{
 std::cout << i << std::endl;
}
void incr(int & i)
{
 i++;
}
int main()
{
 tester t;
// ERR: std::for_each(t.begin, t.end, incr);
 iterator<int> begin = t.start();
 iterator<int> end = t.start() + t.size();
 begin++;
 std::for_each(begin, end, print);
// ERR: std::for_each(begin, end, incr);
}

32 | {cvu} | APR 2006

C and C++
Object-Oriented Programming: Using
C++ for Engineering
by Goran Svenk, ISBN 0-7668-3894-
3, Thomson

reviewed by Mark Easterbrook

Do not waste your money on this
book, it does not teach Object
Oriented Programming and the programming
examples are a mishmash of C and poor C++.
For example:

I would expect a book on OO, when trying
to illustrate code diagrammatically, to use
some form of class diagram – this book
uses flowcharts.
float is used almost exclusively for
scientific calculations, even when using
library functions that operate on
doubles.
Pre-processor macros have no place in
C++ code; the author seems to like them.
The STL is not introduced until 80% of
the way through the book.

I strongly suspect the author is Fortran
programmer and has just translated to C++ with
the addition of OO to increase the buzzword
count. Not Recommended.

C++ Programming: From Problem
Analysis to Program Design
by D.S. Malik, ISBN 0-619-16042-X,
Thomson

reviewed by James Roberts

When I chose this book from the
‘to be reviewed’ list, I was
expecting a book aimed at a
reader who had mastered the
basics of C++ (perhaps from the same authors
C++ primer book), and was interested in
progressing further.

It turned out that this book is aimed at building
up a student’s knowledge of C++ from a start
point of little or nothing.
The style is fairly wordy, and includes copious
examples of completed code. Unfortunately, the
author does not explain why design choices
were taken, or what alternatives were not taken.
As a course book, perhaps it is reasonable to not
include anything but the briefest descriptions of
which compilers might be useful. However, for
any other readers this is in my opinion rather
important.
The main complaint I had with the book is the
actual content. Why was there no mention of
polymorphism (other than a passing definition)?
Why were three chapters dedicated to the
implementation of linked lists, queues and
stacks, with no mention of the STL outside the
appendices? A description of the concepts
would have its place – but the full source code
seems over the top.
There is apparently ‘valuable testing software’
included with the book. This seems to consist of
a series of acrobat files mainly consisting of
examination texts. I was unable to access the
website, as I had no instructor id.

Developing Series 60 Applications:
A Guide for Symbian OS
by Leigh Edwards et al, ISBN
0-321-22722-0, Addison-
Wesley

reviewed by David Caabeiro

For those waiting for a definitive reference on
Symbian C++ development for Series 60, this
book fulfils all expectations. Series 60 is
currently the best selling mobile platform, being
deployed on devices from manufacturers such as
Nokia, Siemens, Samsung, etc. It is difficult to
find a topic not covered by this book, and given
the lack of documentation provided by the SDK,
it becomes a must-have in your bookshelf.
The book could be split into three parts. The first
part comprises basic stuff such as building and
deployment process, Symbian fundamental
APIs and application framework (comparable to
the MVC pattern). It is fundamental to
understand these chapters to understand the rest
of the book.
The second part refers to UI gadgets, starting
with an explanation of basic controls, event
handling, menus, etc. Following chapters
provide description of dialogs, lists, notes,
editors and many other system widgets.
Lastly, more advanced stuff, such as
communications programming (sockets, TCP/
IP, IrDA, Bluetooth, HTTP, messaging and
telephony), multimedia framework, system
engines and views, and finally testing and
debugging.
Of course, no book covers all possible topics.
The information you will find on some chapters
(communications is an example) is the essential
you will need to get started. For other advanced
topics, such as client-server architecture,
multithreading, etc. you will need to look for
other material.
One of the things I liked most of this book is the
quantity and quality of examples (which are
available online) which feature working
applications, so they are ready to build and run
on your emulator and smartphone.
If you are on your first steps with Series 60
development get this book, you will not be
disappointed. As I read somewhere, it might
well be considered the “Charles Petzold” for
Series 60 platform development.

Bookcase
The latest roundup of book reviews.

n the recent past, I’ve had to take the somewhat unfortunate position to drop book reviews
in order to keep to the page count and balance the number of articles to the number of
reviews.

Not unsurprisingly, this has caused quite a bit of disquiet, so for this and the next issue, all
of the books we have had to miss out will be reviewed along with new reviews.

Remember, if you submit a book review you are contributing to the greater knowledge of
the membership. Books are expensive and the last thing anyone wants it to spend upwards
of 30 pounds on a book which is an utter turkey!

That said, if you decide to review a book, the worst that will happen is you lose a fiver – and
if the book has the “Not Recommended” rating, your next book is free. What can be fairer
than that.

As always, the ACCU must thank the Computer Bookshop, Blackwells and a range of other
publishers for providing us with the review books.

I

Bookshops
The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let us know). We hope that you will give preference
to them. If a bookshop in your area is willing to display ACCU publicity material or otherwise
support ACCU, please let us know so they can be added to the list

Computer Manuals (0121 706 6000) www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022) www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792) blackwells.extra@blackwell.co.uk
APR 2006 | {cvu} | 33

Exceptional C++ Style
by Herb Sutter, ISBN 0 201
76042 8, Addison-Wesley

reviewed by Pete Goodliffe

If you know Herb Sutter’s
writing then you will already be
asking: is this another must have
C++ book? Indeed it is. Herb has produced another
exceptional (pun intended) tome. If you are a C++
programmer who is not familiar with Sutter’s work
then I suggest you get copies of Herb’s previous
books, work through them, and then get this one.
Sutter is a renowned C++ guru, chair of the ISO
C++ standards committee, regular CUJ
columnist, and conference speaker. He knows
what he’s talking about. As ever his latest book
is well structured, readable, and authoritative.
It follows directly on from his two previous
“Exceptional C++” books, and the story here is
very much “business as usual”. Presented in a
question and answer format (which often works
well, and sometimes seems very contrived),
various individual topics are investigated in
separate mini-articles. Some of the more thorny
topics are split across several articles.
Sutter takes us on a journey through the latest
wisdom on generic programming, exception
safety, class design, resource management and
optimisation. I was originally confused by the
book’s title “Exceptional C++ Style”; none of
the items are really any more to do with
programming style than his previous books.
However the last section, probably the best, does
finally do some justice to the title. Sutter provides
a number of case studies of Real World code,
showing how to improve its coding style in light
of modern C++ wisdom. This section alone will
help less experienced C++ programmers to learn
what industrial strength C++ coding is about.
The book is well cross-referenced (internally,
with his earlier books, and with other major C++
books) and clearly laid out, with sound bite
“guidelines” to distil the important information.
It comes highly recommended for all practising
C++ programmers.

Ivor Horton's Beginning ANSI C++ 3ed
 by Ivor Horton, ISBN 1-59059-227-
1, Apress

reviewed by Malcolm Pell

The book’s intended audience
is someone with little prior
programming knowledge or
experience.
The book starts well, and I had no trouble
understanding the basics of C++. Even though I
have previous C experience, I feel that someone
without C experience can still use this book to
gain familiarity with C++.
The first 11 chapters cover the basics of C++,
which map quite well to the features provided by
C, so should not present any major difficulty to
either a C user, or someone with little
programming experience.

Chapters 12 to 20 cover features which are pure
C++, and thus new to someone like myself
coming from a C programming background.
I was surprised that ‘Input and Output’ is not
properly discussed until chapter 19. Given that
most of the example programs produce some
sort of output, I would have thought that an early
chapter on some basic I/O code would be
beneficial to inexperienced readers.
There are plenty of sample code chunks in every
chapter, and lots of useful exercises which
readers are strongly encouraged to undertake.
There is also a Code ZIP file that can be
downloaded from the APRESS Web site.
Overall, I would suggest that this book is
considered by someone who desires to learn
C++. Do not be put off by the number of errors
found by myself and other readers. In some
ways, finding these errors gave me confidence
that I have understood the subject material. See
the Long review for a list of errors.
[However, it seems from this review that this book
introduces C++ from the traditional view of first
teaching the reader 'better C'. There is nothing
wrong with that approach as such, but it often fails
to develop good C++ programming based on the
strengths of the language. – Francis]

C++ Demystified
by Jeff Kent, ISBN 0-07-225370-3,
McGraw Hill Osborne

reviewed by James Roberts

This book advertised itself as
‘simple enough for a beginner,
but challenging enough for an
advanced student’. I would
grudgingly agree on the former, but strongly
disagree with the latter.
The author is strong on explanation, writing in a
rather chatty and jokey style. I suppose this might
be useful for readers who like the technical input
leavened slightly. I found it irritating.
After a little investigation, it turned out that this
was in-fact a book on C, with a little bit of C++
thrown in. For example, using cout rather than
printf for terminal output. However, the
word class only appears in a ‘what to study
next’ chapter at the end. I think that this is a fatal
weakness. I have no idea how a reader could be
expected to understand a description of the
ofstream functionality, without knowing
about methods or classes.
Another criticism that I have is that the author
expects the user to have Visual Studio available.
Although he says that alternatives are available,
it might have been nice if he had recommended
one or two, or even just gave a URL for
download.
Some examples will not compile, including this
one that I found slightly amusing:
The following...are different in syntax, but
identical in effect:

char name[] = {'J', 'e', 'f'.
'f', '/0'};
char name = "Jeff";

Yup, both fail to compile on my system too.
There are a number of other problems,
including: no coding exercises; ‘rules’ which are
given on one page and broken on the next;
leaving function parameters as unnamed
because the names ‘serve no purpose’.
To end on a more positive note, there were some
areas that were not badly covered (e.g. dangers
of cin where a user might type a character when
a number is expected). However, this does not
make up for the inadequacies of the remainder
of the book. Not recommended.

Programming in C, 3ed
by Stephen G. Kochan, ISBN 0-
672-32666-3, Developer's Library

reviewed by Giles Moran

Programming in C is in its
third edition and having read it
I can see why it is popular. The
book is aimed at the novice
programmer and uses examples and exercises to
reinforce each new point.
The early chapters take the reader through
concepts such as compilation, variables,
expressions, decision-making and loops. The
layout of each chapter is clear with a number of
good examples that clearly illustrate each point.
Exercises for the reader close each chapter.
The reader is then introduced to arrays and
functions. It is good to see concepts such as
‘const’ and recursion in the early chapters and
not relegated to an advanced chapter located
near the end of the book. C specific topics
follow, with structures character strings and
pointers covered in good detail. Chapters on bit
operations and the preprocessor follow and
these are welcome additions. Most of the
introductory C books I have seen skip these
features. Chapters on data types, file IO and
advanced features (unions, dynamic memory
allocation) ensue. The dynamic memory
allocation part of the advanced features chapter
should have been greatly expanded, as I do not
think you can write meaningful C programs
without understanding this. Four pages are
obviously not enough.
The final chapter on object-oriented
programming is odd, as I am reading a book on
C when C++ and C# code appears. By all means,
have a chapter on how to write OO C but this
chapter should have been dropped and more
examples on C programming paradigms could
have been added.
The book concludes with a very useful appendix
covering the C language and the standard
library.
This is a good introduction to the C language for
a beginner. It is only let down by the lack of
discussion on dynamic memory allocation.
Recommended for those seeking a gentle
introduction to the C language.
34 | {cvu} | APR 2006

C Programming for the Absolute
Beginner
by Michael Vine, ISBN 1-931841-
52-7, 240pp + CD, Premier Press

reviewed by Thomas Padron-
McCarthy

This could have been a good
introduction to C, but it
contains many mistakes both
concerning how the C language works and
concerning terminology. In addition, many of
the explanations are more confusing than
illuminating, when they are not simply wrong.
The book starts with a short introduction on how
to use Unix, and there is an appendix on how to
install Cygwin to get your Windows computer
to behave like Unix and to get access to the free
Gnu C compiler gcc. That is only in the
introduction, and in the rest of the book, the C
code is not operating system specific. All
examples are shown in the standard Windows
command prompt.
The book matches the content of a typical
beginner’s course on C, up to and including
arrays, structures, unions, pointers, dynamic
memory allocation, separate compilation and
include files. Everything is explained slowly
and carefully. It stays away from more advanced
topics such as varargs.
Unfortunately, there are three serious problems
with this book: incorrect information about C,
strange terminology and confusing
explanations.
To show just one instance of incorrect C, I will
quote this code example from page 60:
if isdigit(cResponse)
 printf("\nThank you\n");
else
 printf("\nYou did not enter a
digit\n");

This is the explanation that goes along with the
code:
I did not evaluate the isdigit function to
anything in the preceding if condition. This means
that I do not need to surround my expression in
parentheses. You can do this in any if condition, as
long as the expression or function returns a true or
false (Boolean) value.

Besides the author seeming to think that
“evaluate” means “compare”, this is of course
entirely wrong. The example compiles, but only
because isdigit is a macro which happens to
contain its own parentheses (as expression
macros should).
There are more errors similar to this one. Some
of them, such as the claim that it is the printf
function that parses escape sequences such as \n
and \", may be explained as pedagogical
simplifications. In that case it is not a good idea
to lie to the student about things that will cause
him to make mistakes later on.
As for strange terminology, one of the worst of
many examples is that the author actually
confuses variables, data types and values! For

example (from page 29), he defines three
floating-point variables, and says that “[t]his
code has three floating-point variable data
types”. I do not think that he actually is confused
about the things themselves, so it must be a
terminology problem.
Finally, as an example of confusing
explanations, consider this explanation (from
page 8) of the Unix file system: As you'll see
later, directories are nothing more than files
that contain the hierarchical relationship
needed to support its contents and relationships.
Would you understand that sentence if you did
not already know what a directory is? And,
knowing what a directory is, can you decide if
the statement in the sentence is true, false or
meaningless?
I taught C programming for several years during
the nineties, at the Linköping University and in
industry, both introductory and advanced
courses. As part of that work, I evaluated a large
number of C textbooks. This is not the worst
book I have seen, but it will require much work
before it becomes a good one.
Not recommended.

C# and .NET
User Interfaces in C#: Windows Forms
and Custom Controls
by Matthew MacDonald, ISBN 1-
59059-045-7, Apress

reviewed by Andrew Murphy

This book is great at taking
MSDN, summarising it and
providing a general overview.
It is also easy to read and gives attention to other
issues that surround a good user interface, giving
you some pointers for how you should do things.
However, if regurgitated MSDN offends you;
you do not like lame arguments for why three-
tiered architecture is bad; or you actually
expected to find examples of slightly more
complex subjects such as such as implementing
localisation successfully, then this is not the title
for you.
Chapter 1 is in my opinion the best chapter of
this book. It attempts to get programmers to stop
and think before they create another ill-designed
“wow” interface. It tries to get us to do things in
a way that users have come to expect, meaning
our users can use the interface without training
and with confidence. Fantastic!
On the bad side, this book is meant to be targeted
at experienced C# developers so why does it
spend the first half of chapter 2 trying to explain
what a C# structure is? After this, most of the rest
of the book is taken up with brief descriptions
and MSDN method listings. Although it does
give some useful tips and a CD full of examples,
these examples are very simple and fall way
short of being advanced.
Overall the book is easy to read and MSDN style
informative but lacks substance where it is

needed. At £35.00 I would not buy it but at
£5.00, for reading on a train I would but I would
not expect to use it as a reference book later.

ADO.NET in a Nutshell
by Bill Hamilton & Matthew
MacDonald, ISBN 0-596-00361-7,
600pp + CD, O'Reilly

Reviewed by Mick Spence

This book is part of the O’Reilly
“In A Nutshell” series and covers
the Database API for the Microsoft .NET
framework. There are three main sections,
several appendices and a CD-ROM.
The first section has a brief introduction and
tutorial on ADO, split into chapters each
concentrating on an individual class or concept.
Although relatively new to .NET, I found this
section to be readable, accurate (a few typos
were spotted but nothing major), and while it did
assume some previous knowledge of Databases
and the .NET framework, it seemed
straightforward to work through at a good pace.
The second section is a reference to the ADO
core classes. Each chapter gives a technical
description of one of the core classes, including
a brief description of the most commonly used
functions it supports.
I found this section useful and easy to read. The
code examples I tried seemed to be accurate and
covered the concept being demonstrated quite
well.
The third section offers a quick reference to the
ADO API. Each chapter provides an overview
of an ADO namespace with a hierarchy
diagram(s), a complete list of all types defined
within the namespace including a brief
description of the type, and a list of all its
properties / methods / etc supported.
As it says in the title, it is meant to be a quick
reference, which I guess it is, but for me it
appeared to be little more than a list of
operations, which is a shame because the
descriptions given are good.
The CD-ROM is an electronic copy of the
book’s third section. When installed, it
integrates into the .NET IDE, allowing you to
search the API Quick reference from within the
IDE.
I found the book was well written, covered all
aspects I expected and appeared technically
accurate. The tutorial was very useful, but it
takes up a large percentage of the book. The
second and third sections seem more useful for
all levels of experience. If you are new to ADO
I would recommend this book, however if you
do not need the tutorial section, you may be
better looking for a pure reference book.

Programming .NET
Components
by Juval Lowy, ISBN 0-596-00347-1,
458pp, O'Reilly

reviewed by Paul Usowicz
APR 2006 | {cvu} | 35

As the author himself points out the usage of the
word 'component' has been slightly overdone in
software. This book concentrates on developing
your own components using the .net framework
for component-based solutions. The book starts
with very simple terminology and progresses
through subjects such as ‘Interface-Based
Programming’, ‘Version Control’, ‘Remoting’
and ‘Security’.
This is a very technical book which I feel should
be mentioned somewhere on the cover as a
novice would find this book overwhelming. The
supporting web site has code downloads (for
both versions of the .NET framework), an errata
and other useful information. Most of the code
snippets are in C# with the odd bit of Visual
Basic.net.
So, did I like the book? No.
There are two reasons I really did not get on with
this book. Firstly, I found it very difficult to read
from cover to cover. Although I am sure many
people would do this, I just could not get into the
flow with this book. The chapters are too
separate for any aspect of progression and I
found the text, quite frankly, unexciting. Do not
get me wrong, technically I was very impressed
but I just struggled to read it all preferring to
think of it as a reference book for specific
programming tasks (a point which is enhanced
by the comprehensive 35 page index).
The second problem I had with this book was not
so much a criticism of the book but of the fact
that 90% of the information presented in this
book, I already have in several others. Now I
know that this is not the author’s fault but it
would make the book very bad value-for-money
if I was purchasing it.
In conclusion, if you are looking to do, or are
already doing, component development and you
do not have too many ‘professional’ books then
this book is definitely worth the effort as the
technical content is very good. However, if you
have a huge library of good C# books then take
a good look through it first to see if the
component specific nature of the book is worth
the asking price.

Teach Yourself Visual
Studio .NET 2003
by Jason Beres,
ISBN 0-672-32421-0, 666pp,
SAMS

reviewed by Griff Phillips

The format of SAMS “Teach
Yourself” books is highly
appealing: relevant subject matter broken down
into small readable chunks with exercises and
review material at the end of each one. Ideal for
busy professionals who need to get up to speed
fast and do not have time to read the canonical
texts for the given subject. Unfortunately, my
experience has been that SAMS books usually
fail to deliver on this promise: this title is no
exception.

The main problem is that this book has no clear
idea of its audience. It claims to be suitable for
newcomers to Windows programming. Yet
within a few pages the .NET framework is being
explained in terms of COM+ and “the DNA
Architecture” without any attempt to explain
these terms. (However we are proudly informed
that “With the introduction of Visual
Studio.NET ... Microsoft has also improved the
C++ language” !!) Many of the code examples
are given in C#. This is an odd choice since
anyone sufficiently familiar with C# to follow
the examples has probably used VS.NET
already and would have no need for this book.
In fact the book appears to be completely aimed
at .NET programmers. There is very little
material for programmers who wish to upgrade
from Visual Studio 6 in order to continue
developing and supporting unmanaged
applications.
The usual SAMS sloppy editing is present
throughout. For example we are reassured
throughout the book that Chapter 10 will explain
assemblies (a key .NET concept). In fact
Chapter 10 explains ADO database access.
Assemblies are never explained anywhere, nor
do they even appear in the index. Throw in a pile
of mistakenly repeated chunks of text, bad
spelling (“lead” vs. “led” etc) and incorrectly
captioned diagrams, and the end result is the
usual SAMS mess.
In summary, anyone considering a book on
VS.NET would be advised to avoid this one and
consider spending a bit more on something from
a reputable publisher such as DevelopMentor or
Microsoft Press instead.

VB for the Absolute Beginner
by Michael Vine, ISBN 0-7615-
3553-5, 342pp + CD, Prima Tech

reviewed by Richard Knight

This book is aimed at the
novice. He uses simple games
to teach the fundamentals of
VB programming. The author
does explain topics clearly and simply, but tends
to rush over them. This style does not lend itself
well to the beginner since he provides no further
help or explanation.
Chapters involve programming a simple game
relevant to the concepts to that chapter; source
code and graphic files are all on the CD. Each
chapter concludes with challenges. Like some of
his explanations, no further help or answers are
provided.
He devotes a chapter to debugging and error
handling and emphasises the importance of
checking code errors. In his introduction, he
states there are no prerequisites, including
knowledge of mathematics yet he fails to
explain for example what a “division by zero”
error is. Unfortunately, this type of omission is
not uncommon.
He explains the difference between sequential
and random access files but then skips very
quickly over when to use which one. In one

chapter he discusses in considerable depth
arrays and congratulates the reader if they have
understood. He concludes the arrays chapter
with the comment that if you have struggled with
it perhaps you are not cut out to be a
programmer!
Overall I believe this book would be useful to a
novice programmer but with the proviso that it
is perhaps backed up with additional help,
particularly form design. For anyone with any
experience of VB (and that would include
Access VBA) this book would prove too simple.
For its price (£21.99) it would probably prove
attractive to someone looking to learn VB and at
that price is probably worth purchasing.
Recommended with reservations.

Expert Net 1.1 Programming
by Simon Robinson,
ISBN-1-59059-222-0, Apress

Reviewed by Christer Lofving

This book is a little divergent in
its plan. It is no overview of
.NET, rather a series of essays
covering different vital .NET
topics.
The chapters (“essays”) have no immediate
connection and stand all well by their own. Only
exception is chapter one and two. They are
connected and cover MIL, Microsoft Immediate
Language, which makes up the core of .NET on
this deeper level.
It’s no bold guess that many everyday .NET
developers don’t even know about this assembly
like, still fully graspable language. Here is a
sample from the oblique “Hello World”.
{
 .maxstack 1
 .entrypoint

 ldstr "Hello World!";
 call void [mscorlib]
 System.Console::
 WriteLine(string)
 ret
}

It is possible to write a complete eShopping
application out of this machine close language.
But of course it would mean an enormous vast
of time. Lesser known tools "hidden" in the
.NET sdk are pointed out.
Among them ILDASM, the core IL compiler.
A chapter named "Going inside the CLR" is
even more deep digging.
It helps to have knowledge about the MS
Windows API as well as of the Java Virtual
Machine, in many aspects the Java equivalence
to Microsoft CLR (Common Language
Runtime). The following chapter explains
assemblies in depth. The inner working of this
concept is valuable knowledge for any .NET
developer, even a higher level one.
36 | {cvu} | APR 2006

If you have Java/J2EE experience, you will get
a lot of "flashbacks" when you read about how
garbage collection is working in .NET.
Same goes for the threading chapter.
At the end the book becomes a little more
pragmatic in its covering of performance,
advanced Windows creation, code security and
cryptography. It ends up with an extensive
reference to the Microsoft Intermediate
Language, dealt with in the starting chapters.
Everything is well explained and is indeed
interesting reading.
But I can't help to wonder who the book is really
aimed for?
(Except for the .NET fanatical.) The philosophy
of MS Visual Studio is rather to make things
simple and hide complicated stuff for the
ordinary developer. But, I can find out at least
one more target group. Namely if you are
working on any of the more extensive Microsoft
certifications, for example the MCAD. As an
extra reading to get a deeper understanding of
.NET and to keep the interest up between exams.

UML
Executable UML - A Foundation for
Model-Driven Architecture
by Stephen Mellor and Marc
Balcer, ISBN 0 201 74004

Reviewed by Joe Mc Cool

Very specialised this. I can
see it having both a limited
market and limited appeal. As
I understand it Executable
UML is a further level
of abstraction but resulting in some sort of
executable process, some sort of "thing" I can
run. I was expecting to see lots of material on
comparative products, costs, ease-of-use,
production environments etc.
After describing Executable UML as a
"language", the authors hint at the existence of
compilers, but then fall back a list of "possible"
candidates:C++ variants, Java byte encoding
and a UML virtual machine. So, there is nothing
to play with, only more abstraction models,
more state diagrams and more theory.
Overall, the book presents little added value to
those already skilled in object orientated
analysis of the Shlaer-Mellor type. For the
perhaps naive newcomer to the world of
translational methodology, the book raises a
false hope for the out-of-the-box model
compilation.
For academics yes, possibly; for those at the coat
face, no.
To explore as background:

http://www.martinfowler.com/
ieeeSoftware/mda-thomas.pdf
http://www.featuredrivendevelopment.
com/node/572

http://www.metamodel.com/wisme-
2002/papers/graw.pdf

Real Time UML
by Bruce Powel Douglass,
 ISBN 0-321-16076-2, Addison
Wesley

Review by Paul Thomas

First came the men in white
coats flipping switches and
making lights flash. Then came
machine code mnemonics and code was written.
Languages came next on the abstraction ladder
but the text editor was still needed. The next
step, we are told, is graphical editing. Throw
away your vi, lines and boxes is where it's at.
UML 2 is more than just an update to a syntax,
it's an attempt to make it possible to write code
in diagram form and it's powerful. Nowhere has
this taken hold more than in the RT world where
code has to be tight and coders are considered
dangerous.
UML really did unify the object modelling
world, we all speak a common language but sing
slightly different tunes. Each camp has its own
ideas about how a practitioner should take
requirements through to a working system but
the differences are minor. For each process,
there is a tool and an endless stream of books.
Usually, the books recommend using the
features of UML that are implemented in the tool
and gloss over the weaker. This book is one of
the better ones but it only narrowly avoids being
marketing literature because of it. The tool
pushed is ILogix Rhapsody and most diagrams
in the book are really screen-shot so you don't
forget it. I can't comment on the quality of the
tool, but I'm guessing that the support for
communication diagrams is weak because the
book devotes roughly a paragraph to them.
The first half introduces Real Time systems in
general, UML 2 language features and the RT
profile for UML. There's a lot to take in and it
comes at you thick and fast, but it's well written
and generally an enjoyable read. The small
exception is the RT profile chapter that seems to
be mostly lists of tags and stereotypes. A book
like this could never be a comprehensive
reference, so I would have preferred more space
being given to tutorial. I suspect a reader
unfamiliar with the basics of UML and OO
modelling would struggle but everything seems
to be there.
The second half of the book is given over to the
more interesting subject of the software
engineering process. This is the part usually
skipped by trainees that just want to draw
diagrams. This is a shame because analysis is
where the real magic lies and where the most
mistakes are made. The author makes a good job
of laying out the entire process in a linear,
digestible form. There's plenty of explanation of
the reasoning behind the process too. I thought
there was a little bit missing in the crucial
analysis of use cases, but I was pleasantly
surprised at the quality of the design chapters. In

particular, I was impressed that patterns appear
as an integral part of the design process rather
than an advanced concept or, worse, an exciting
new silver bullet solution.
I would recommend this book on the strength of
the examples alone. There is a nice variety, they
are real world rather than contrived or
simplified, they are highly detailed and they are
believable. If a picture is worth a thousand
words, I need a bigger shelf for this book.

Fast Track UML 2.0
by Kendall Scott, ISBN 1-59059-
320-0, 173 pages, APress

reviewed by Derek Graham

Kendall Scott will be well
known to most people familiar
with OO or UML. This latest
book is a guide to version 2.0 of
the UML specification. It follows very much in
the style of his "UML Distilled". The difference
is that that book was written at a time when UML
was still new and exotic and so an element of
introduction to both UML and OO was in order.
In "Fast Track" he assumes you already have
some idea about the object-oriented approach
and there is no introductory material. The author
also assumes that the reader is someone already
involved with IT and has at least a passing
acquaintance with Java, web development or
windows application development. Each
chapter deals with an aspect of UML notation in
a fairly logical order not just the conventional
"one chapter per diagram" approach. Each
diagram element and concept is described afresh
with commentary on their use within a larger
context. At the end of the book is an appendix,
covering the built-in UML stereotypes, and a
glossary.
The book describes UML as it is now rather than
describing how it has progressed from the earlier
versions. This can make the book a little
frustrating at times when you are searching for
information on what the major changes are
without wading through the entire text. I think
the book could have benefited from an appendix
drawing these changes together. The examples
used throughout the book illustrate common
design situations and how UML can be used to
model them.
Occasional references to contemporary
technologies (.Net, ATL, COM+) and software
products (Rational XDE) seem to have been
included as proof of how up-to-date the book is
but will probably help to date it in a few years
(or months) time.

UML Xtra-Light
by Milan Kratochvil & Barry
McGibbon, ISBN 0 521 89242 2, CUP

reviewed by James Roberts

The idea behind this book is to
give non-IT project members
(business users, management
etc.), enough of an understanding
of UML to improve project communication via
APR 2006 | {cvu} | 37

documentation. This is a laudable aim, and
would be useful. However, this book does not
live up to this ambition.
I would have hoped that the authors would have
concentrated their efforts on giving a digestible
overview of XML - possibly illustrated with
meaningful examples.
There was some effort at this - but at times it
seemed to take second priority to the
exhortations of reuse of component based
design. Whilst I would not disagree with the
sentiment, it was not clear how this was
appropriate in this book.
I had other grumbles with this book. Some of the
discussions suddenly dropped into quite a
technical level (e.g. strategies for mapping
object hierarchies to database tables). All jolly
interesting, but not necessarily appropriate to
the target audience.
There certainly were good aspects to this book.
The 'traps' section of use cases was good.
Unfortunately, although this would have been
appropriate in a teaching manual for UML it was
possibly not useful for the management (who
might want to know how to read a use case, not
to write them).
In summary, although there are good bits this
book, it is not focused to a particular audience
and spends too much time evangelising over the
'paradigm' of component based delivery.
Not recommended.

Linux & Unix
Linux Pocket Guide
by Daniel J. Barrett, ISBN 0-596-
00628-4, 191pp, O’Reilly

Reviewed by Ian Bruntlett

This book is very nearly an “oh
wow” book. However, if you use
the bash shell and could do with
some gentle assistance, buy this book now.
Unlike other books you buy, you’ll get loads of
use from this book.
At the back of the book there are 5 sides of blank
paper – 7 if you disregard the sensibilities of
book publishers. And if we are going to be
utilitarian (not such a bad thing for a utility
book) there are the inside front and back pages
as well. I believe they should be used for
categorised lists of commands you should know
about – but with a note that there isn’t enough
space to fully detail them. man and info are your
friends :)
There are the occasional errors – xclock is in the
index under oclock, for instance. The surplus
pages could have been put to good use as either
a list of categorised gawk functions or
categorised bash functions or an appendix of the
commands you ought to be aware of but can’t be
fully documented because of lack of space.

This book is tailored to Fedora Core 1 Linux
(Nov 2003) but I’m using it for SuSE Linux,
Zenwalk Linux and Cygwin.
Here is a quick list of the things that aren’t
covered that I believe should be: shred, chroot,
GnuPG, strace, ldd. And the section on rpm
really should have mentioned that rpm –Va can
list all the changes made to software packages
since you installed them.
VERDICT – Recommended.

Hardening Linux
by Terpstra, Love, Reck and
Scanlon, ISBN 0-07-225497-1,
Osborne

Reviewed by Ian Bruntlett

I took this book out of the
library because I wanted to
introduce a Linux box to a
LAN that has broadband
internet access. I’ve got to admit the corny
looking cover did put me off this book.
To coin a phrase, this is an “Oh, wow!” book.
From the little experience I’ve got, this book
covers most if not everything. It certainly covers
everything I know about Linux security. And it
documents commands and practices that generic
Linux primers seem to ignore. That alone makes
this book worth buying if you have a Linux box
attached to the internet. A word of warning
though – this book only covers Red Hat and
SuSE Linux. I mainly use SuSE and dabble with
other distros – some of the recommendations
will still apply to non-Red Hat, non-SuSE Linux
systems. Actually this book takes security to the
extreme of describing how enterprises should
handle security. It’s that good.
One of the key aspects of hardening a Linux box
is to limit the system services running – the logic
being, if it isn’t running, it can’t be hacked. It
also recommends that compilers are kept on safe
machines. If you have a machine that might be
hacked, then try not to make life easier for the
hackers by giving them access to development
tools on a compromised system.
VERDICT: Highly Recommended.

Shell scripting recipes
by Chris F.A. Johnson, ISBN 1-
59059-471-1, Apress

Reviewed by Christer Lofving

10 years ago I would have
considered this book as an
almost invaluable resource.
(Probably unavailable as
well!). Today, with the Webs enormous
expansion in mind I am more doubtful. There
is a good amount of free shell scripts out there.
Not only for the traditional bash, but for other
scripting languages like kshell and z-shell (Zsh)
as well.
The latter is a pretty unknown, but very powerful
one. http://zsh.dotsrc.org/ is a neat site about it
which makes a good introduction for the

curious. It is also in a Zsh I have tested the actual
scripts in this book.
In fact, most of my shell scripting knowledge
origins from online resources like free tutorials
and code samples. My conclusion out of this is
that nowadays a potential author of a "shell
scripting recipe book" has to do a good handcraft
to attract buyers. Not to say a good artwork.
Because Chris Johnson seems to have the same
feeling for his scripts as I imagine an artist has
for his creations. It means this book is indeed no
rush job, it is very well written. Each chapter has
a thematic approach, for example "Playing with
files", "Scripting with numbers" and even "The
dating game" (actually about date formatting)
This is nice, but makes it a bit difficult to locate
"my" scripting hint. Each script in the chapters
has a brief overview, an introductory "how it
works" and an usage pattern like;
Usage: wfreq [FILE ...]

So far so good.
Next comes "The script" with the main body of
the script, like
prw ${1+"$@"} |
 tr -cd 'a-zA-Z-\n' |
 sort |
 uniq -c |
 sort -n

A more or less cryptic "Notes" is finally ending
the example up. Every script is presented in this
way. It is easy to feel confused at this point.
Is the code above the script itself or some kind
of pseudo-code?
Nowhere in the book is there a fully complete
script! A detail that is redundant for the pro, but
I think of vital importance for a the lesser
experienced. A very informative overview of
Internet Scripting resources end up the book,
along with a short but well disposed index.

The Definitive Guide to Linux Network
Programming
by Keir Davis et al, ISBN 1-59059-
322-7, 375pp, Apress

reviewed by Alyn Scott

I chose to review this book
because it covers two subjects I
am interested in, namely Linux
and networks. My initial impression was that it
was rather a thin book to be called a “Definitive
Guide”. Could it live up to my expectations in
just 375 pages?
It is divided into three parts. Part one starts with
the fundamentals of network protocols and
socket programming. Chapter one is a concise
and yet easy to read introduction to TCP/IP
down to the byte level of the packet headers. The
basic system functions and data structures are
described as they are used in the next two
chapters.
Part two is about the design and architecture of
client-server programs. The different methods
of handling multiple simultaneous clients are
described, e.g. forking and multithreading.
38 | {cvu} | APR 2006

Simple client-server programs are developed
which leads onto developing a custom network
application, a chat server. All the design
decisions for a custom protocol and the
implementation of the chat server and a GUI
client are described in the next four chapters.
There is also a section on the debugging and
development cycle.
Part three deals with security. It starts by
explaining tunnelling, OpenSSH and the Public
Key Infrastructure (PKI). It then illustrates the
many library functions in the OpenSSL toolkit
with short code fragments.
Chapter 12 covers common security problems,
the techniques hackers use to compromise
systems and the methods we can use to make
then more secure. This leads onto the second
case study for a secure networked application,
an authentication server. This brings together
many of the concepts in the previous chapters.
Finally, the appendix gives a brief insight into
IPv6 and converts a simple server and client.
Overall, this book is well structured and mostly
easy to read and I could find little fault with the
technical content. It is a very good introduction
into network programming but I still question
the use of “Definitive” in the title. There is scope
to expand the later chapters with more examples
as these are the most difficult to follow.
The quality of the source code was usually very
good. There were a few elementary errors in
some of the worked examples and the server
program of the first case study would not
compile.
Apart from these slight reservations, I would
recommend this book to anyone interested in
this area of programming

Unix & Shell Programming
by B Forouzan & R Gilberg, ISBN 0-534-39155-9,
Thomson

reviewed by Paul F. Johnson

I have considered Linux and UNIX shell
scripting akin to code optimisation - a black art
that you either can or cannot do. I think the
reason has been that all the books I have read
consider the reader to be almost an expert to
begin with. This book does not.
It assumes nothing other than knowing what a
shell is. No requirement for being a perl guru or
such. Being able to use an editor of your choice,
and being able to use chmod is all that is
required. Simple.
The book is very well structured with clear and
concise explanations on how to write scripts.
Even complex scripts are covered, when the
authors patiently explain what is happening. As
the reader has probably never done any form of
shell scripting the authors have taken the
approach of teaching a secure way and
following best practice for scripts.
I really enjoyed reading this book - and I do not
say that very often!

The only down point are the end of chapter
review questions. While correctly pitched,
sometimes the actual reason for asking a
question is lost and this can be confusing. That
said, I only recall seeing such questions less than
5 times in the whole of the book, so it is not a
big problem.
Given the growth of Linux on the desktop (and
the projected growth for 2005/6), I would
suggest anyone wanting to gain employment in
this ever growing sector should get this book.
Study it well; it will stand you in good stead.
Highly Recommended

Succeeding With Open Source
by Bernard Golden, ISBN 0-321-
26853-9, 242pp, Addison-Wesley

reviewed by Mike Pentney

This book is aimed primarily at
IT managers who wish to select
and use open source software
in their organisations. It is well
written and well organised:
each chapter starts with an executive summary
and there are numerous marginal notes that can
be skimmed to get the gist of the text very
quickly. The author is CEO of a consultancy
specialising in open source products and his
knowledge and experience are evident from the
text.
The book is divided into two major sections: the
first part gives a brief overview of open source
software and the second part presents a formal
tool for evaluating open source products.
The overview of open source software describes
what open source software is, who creates it,
who uses it, where it can be obtained from and
how it might benefit an organisation. It also
discusses how individuals and companies are
trying to profit from open source, and addresses
the risks that are unique to open source products.
There is a good discussion of the major open
source licenses and their implications for
companies wishing to incorporate open source
software into their own products.
The second part of the book is a detailed
presentation of a formal approach to evaluating
open source products - the “Open Source
Maturity Model (OSMM)”. The central idea is
to award points to products in six main
categories: the software itself, the support
options, documentation, training, integration
with other products, and the availability of
professional services (which could include
installation, configuration, training and
support.) The author uses JBoss (a Java-based
application server) as an example and shows
how it might score in an OSMM exercise.
Although various aspects of the OSMM
evaluation process are fairly obvious, and there
is some overlap between categories, the model
is a useful basis for comparing products and will
answer many of the questions an IT manager
ought to be asking before committing to an open
source solution.
Recommended.

Linux in Easy Steps
by Mike McGrath, ISBN 1-84078-
275-7, Computer Steps

reviewed by Paul F. Johnson

This must go down as
probably the worst book I have
ever read. Everything about it
screams “stick with
Windows”. It is plain awful.
Right from the outset the books sets out on the
wrong foot. It seems to think there is only one
Linux distribution around (Mandrake). It does
not bother with the likes of Redhat, Debian or
the other flavours around. The book
concentrates on dual booting rather than a fresh
install – why? I can understand back in the days
of RedHat 6 or 7 when hardware was not as well
supported, having a dual boot enabled you to
access the internet under Windows. But not for
the age of this book.
While the idea of the book is commendable
(easy steps, a brief look at a few applications and
the such), everything is biased towards a
particular distribution – the advice given for
installing applications or removing them is
useless for those using a non-rpm based system.
Probably the only decent parts of the book are
the small sections on using OpenOffice or Gimp,
but that hardly makes up for the rest of the book.
There are numerous problems with this book.
Save your money. Do not buy this book – unless
you want to convince someone to stick with
Windows. Not recommended.

Java
J2EE and XML Development
by Kurt Gabrick & David Weiss,
ISBN 1 930110 30 8, 274pp,
Manning

reviewed by Alistair McDonald

This book assumes that the
reader knows J2EE and XML
and intends is to show how
Java technologies can be used
to manipulate XML. I am writing this review in
2004, and the book is a little dated, however
most of the information is still current and when
the authors expected major changes to occur this
is clearly pointed out.
The book starts with a rather lengthy overview
of distributed systems and J2EE development.
The second chapter is partly an introduction to
XML. The discussion quickly becomes java-
centered, with the second chapter discussing all
the java APIs JDOM, JAXP, etc. By this point,
all the prerequisites have been covered, and
chapter 3 covers the persistence of XML, and the
various options open to the developer - files,
databases, and so on.
The book next discusses application integration,
through a web services example using SOAP.
The sample code is remarkably concise, and
shows what can be done with Java and XML
APR 2006 | {cvu} | 39

when they are used properly. When a subject
comes up, it is covered well - Web Services
Description Language (WSDL) comes up in this
chapter, and is covered there and then. This makes
the book easier to read from cover-to-cover.
Once the main XML issues are out of the way
chapter 5 covers user interfaces, using an
example based on a JSP servlet using XSLT to
filter the results. It is well explained and I was
left feeling that developing a complex
application can be very simple if the correct
decisions are taken when architecting the
project.
The final chapter covers a complete case study
encompassing most stages of a project, and
again shows the experience of the authors.
Unfortunately, book related web site appears to
be neglected. I placed a comment on it, and there
was no reply in nearly three weeks. I did manage
to download the source, however - a whopping
2.5 megabytes in a zip file.
At some places I found the text incredibly boring
and I had to shake myself and reread a
paragraph. It is difficult to explain why - I
appreciate the conciseness of the book, and
everything said is relevant, but occasionally the
writing style seems to put the reader to sleep.
As a developer, I appreciate the book for its
conciseness and breadth. Repetition is rarely
apparent and the examples show exactly what is
required with very little window dressing. The
result is that this book is like a roadmap - it
shows you where you can go with XML, giving
you enough information to get there but
avoiding the details, such as the exact layout of
every junction. If you know Java, and you know
XML but have never used the two together, or
if you lack the knowledge or experience to
choose an approach with authority, then this
book will really help.
If you buy this book because you need to know
what it tells you, then you will probably have to
buy more books later. If you are not familiar with
the APIs you choose, then you will need a
reference manual or a guide to get the best from
them. The examples in the book are concise and
show you exactly what to do for the sample, but
a real-life project will require more than just a
few APIs.

JUnit Recipes
by J.B.Rainsberger, ISBN 1-
932394-23-0, 720pp,
Manning

reviewed by Anthony Williams

When I discovered an obvious
naming error in one of the
early examples, I was
immediately concerned about the level of
proofreading that was done before publication
of this book. However, I am glad to say that my
concerns were unnecessary; there are no
mistakes of any significance anywhere in the
book.

The book is laid out into a series of chapters
describing related techniques, such as “working
with test data” and “testing web components”,
with each chapter split into a series of “recipes”,
each describing a particular technique. The
layout of each recipe is good, with a problem
statement, additional background, the details of
the recipe itself, and further discussion. There
are also references to other related recipes that
provide alternatives to, build on, or are relied on
by this recipe.
The level of coverage is very comprehensive.
Having read the book it feels like there is a recipe
for testing just about everything you could write
in Java: from simple classes; to XML generation
code; database access code; EJBs; singletons,
and JSPs. There are even recipes on managing
your test suites, adding tests to hard-to-test
classes, and the use of test implementations of
other objects to allow testing objects in isolation.
Just because it focuses on Java and JUnit does
not mean that this book is useless to anyone
programming in another language. On the
contrary, many of the techniques described can
be applied in any Object Oriented language,
though there are certainly some that are specific
to Java. For this reason, I would highly
recommend this book not just to Java
programmers, but to anyone interested in
improving the testing of their code.
Highly Recommended.

Learn Java in a weekend
by Joseph P Russell, ISBN 1-
931841-60-8, 482pp, Premier
Press

reviewed by Paul F. Johnson

Okay, I know what you are
thinking – it is another one of
those SAMS style “do the
impossible in a really short amount of time”
books. For a change, it is not and actually never
claims to be. It even says to claim such a thing
would be stupid!
This book is designed for real beginners – those
who may have installed the Java SDK and not
known what to do with it other than play a couple
of online games or watch the BBC news ticker
on their website.
The idea behind the book is that you have seven
sessions (Friday night, three on Saturday and
three on Sunday) and that by the end of the book,
you should be able to write a standalone Java
program or a Java applet. In the case of this
book, the author uses a simple calculator
program that is built up from a simple command
line right up to a functioning GUI calculator.
This is where things fall down though.
While the author explains what is going on, to
me (and in earlier chapters especially), it appears
to me that he is treating the reader as if they are
bordering on slow. I can understand why he has
done that, but to me (coming from a C++
background), it was not pleasant to read. Later
on though, the author does start to treat the
reader as a human being.

My other bind with this book is the volume of
material covered. Sure the book is 468 pages, but
to cover a large amount of the GUI provided by
Java in a relatively short space was not a good
idea and actually does an otherwise good book
a disservice.
On the positive side, I have finally managed to
understand the inheritance model used by Java,
so the book cannot be all that bad.
Does it do what it claims to do? Yes and no. Yes,
you should be able to write a standalone
application or applet by the end of the book, but
no as it will probably be full of holes.

Professional Java Tools for Extreme
Programming
by Richard Hightower et al, ISBN
0-7645-5617-7, 732pp, Wrox

reviewed by Jim Hague

Let's start by getting the title
out of the way. This book is
about open source tools for
Java software development
projects. Yes, there is a short introductory
chapter on XP, and the tools discussed may be
of use to XP practitioners, professional or
otherwise, but in no way do you have to be
following XP or any agile methodology to
benefit from using the tools described in this
book.
The book is presented in the usual Wrox style,
with head and shoulder shots of some of the
authors gracing the front cover. It is an expanded
second edition of a book from 2001, with
'Professional' tacked onto the start of the title.
Once past the introduction to XP, the book
moves on via an overview of Java and J2EE
deployment concepts to 3 sections covering
tools for building projects (Ant, XDoclet),
automated testing (JUnit, JUnitPerf, HttpUnit,
JMeter, Cactus, JspTestCases, jcoverage,
Jemmy, jfcUnit, Abbot) and continuous
integration (CruiseControl, Anthill).
Interspersed with these are chapters on CVS,
Bugzilla and Maven. These are followed by 150
pages of API reference and an appendix listing
the sample application used when discussing
some of the tools. There is a distinct J2EE bias
to the book, with much space devoted to
building and testing web applications and EJBs.
With eight different authors credited, you might
expect the quality of the chapters to vary, and
you would be right. Several are good,
particularly where the document for the tool in
question is sparse. I found the chapter on “Swing
testing with Jemmy” particularly useful, and the
chapter on Maven a good introduction to Maven.
Most of the others cover their subject in a
workmanlike fashion, but I did feel that a couple
offered little beyond so much rehashing of the
documentation. No indication is given as to the
division of authorial responsibility.
Sadly, the book is badly let down by some of the
code extracts. There are obvious syntax errors,
and extra spacing scattered haphazardly. Some,
40 | {cvu} | APR 2006

but as far as I can tell not all, of the code can be
downloaded from the Wrox website, but even
here some of the samples are incomplete.
Every Java programmer needs to know these
tools exist, and the aim of the book to explain
and spread good software development practice
by showing how such practices can be
implemented with readily available tools is
laudable. This book is not a must-have, but is
worth passing around colleagues new to Java.
Though do warn them about the code samples
first.

Real-Time Java Platform
Programming
by Peter Dibble, ISBN 0 13 028261 8,
332pp, Prentice Hall

reviewed by Alan Barclay

This book promises to guide the
experienced Java platform
developer through everything
they need to know in order to
build effective Real-Time programs. In fact, I
found it all quite complex and a rather boring
read and did not actually feel that I had learnt
enough to know how to put together a complete
Real-Time program.
This is really a book for die-hard Real-Time
zealots only and not for the Real-Time
newcomer or casual reader thinking that they
might find some Java performance optimization
techniques within. It contains around a hundred
pages on the general theory and problems of
Real-Time systems followed by a couple of
hundred pages on the solutions and techniques
introduced by the Real-Time Specification for
Java (RTSJ, JSR-1). These new techniques
include new Non-Heap Memory, Thread
Scheduling and Asynchronous Events. Finally,
there are just a few pages on recommended
practices.
The author does give the impression of a
comprehensive knowledge of the subject and the
book is well annotated with diagrams, tips and
example code snippets. Unfortunately there did
not seem to be may full examples of Real-Time
Java in action. Instead the snippets were
typically up to a dozen lines long only showing
certain of the techniques in action.
As is so often the case, the stated web site
containing sample code and updates is nothing
but a dead link. I was unable to locate errata or
source code downloads for this text.
If you are looking for a guide to using Real-Time
Java then, with a bit of perseverance, this book
will probably help you along just fine. However
you will most certainly also need “The Real-
Time Specification for Java” (ISBN:
0201703238) for full details of the Real-Time
API.

Database and Database
Programming
Mastering Data Warehouse Design
by Claudia Imhoff et al, ISBN 0-
471-32421-3, Wiley

reviewed by Richard Stones

This book tries to be a
comprehensive guide to data
warehousing from
fundamental relational
concepts (chapter 2) upwards.
It also aims, according to the back cover, to
provide advice on two conflicting approaches,
the more traditional Inmon relational approach,
and Kimball's dimensional data mart approach.
The book gets off to a rather slow start, with a
somewhat unfocused chapters on basic
relational concepts, business models and
discovering keys, which I thought strange. If the
reader needed this basic introduction, they
probably are not ready to try building a data
warehouse, never mind worrying about which
philosophical approach was best.
Things then improve as the book settles down
into the more practical steps of getting the model
correct, and deciding what data needs including.
It then moves into more data warehouse type
areas, looking at managing hierarchies, the
calendar, and transactions, all key areas for data
warehousing. Most of these chapters
concentrate on relational techniques. There are
some sections I personally found odd - for
example some explanations of when to use bit
map indexes - which seemed out of place in a
book that felt it needed to start by defining
normal forms and then only the first three.
By the end of the book I did not really feel the
authors had addressed "head-on the challenging
questions raised by Kimball" as promised on the
back cover. I also found it not a particularly easy
read; it never really managed to make me want
to pick up the book to explore further, though to
be fair I've read much worse. The book seemed
strongest in the chapters when it concentrated on
relational based techniques for smaller data
warehouses, which are being built by people
who need a refresher at the beginning of the
book on normal forms. Overall a worthwhile
book for beginners to data warehousing who
need to build smaller relational data warehouses,
but unfortunately never really justifies its
"mastering" title.

Practical RDF
by Shelley Powers, ISBN 0-596-
00263-7, O'Reilly

reviewed by Ivan Uemlianin

This book introduces the
Resource Description
Framework (RDF). It
concentrates on syntax and
editing tools with use cases and RDF's USPs
considered secondarily. It is pleasantly written

but unimaginative, adding little to what is freely
available on the net. Not recommended.
After an introductory chapter, chapters 2-6
describe RDF concepts and XML syntax;
chapters 7-11 describe software to manipulate
RDF; chapters 12-15 describe RDF
applications, including the W3C's Web
Ontology Language (OWL) and RSS.
Information coverage is adequate, and the
coverage of commercial RDF application is
creditable, as RDF is still far from the
mainstream. However the organisation of the
book - syntax, tools, and applications - soon
reads like a catalogue, and the reader is not
drawn forwards. Some big issues hover
frustratingly in the background.
First: the semantics-based nature of RDF. This
is covered early on, but treated as a difficulty
rather than as a fundamental property of RDF.
Initially RDF had no syntax: even now RDF/
XML is one of several possible syntaxes. While
SGML, HTML and XML all started as syntax
and derived semantics (or a data model), RDF
began as semantics, with firm mathematical/
logical foundations.
The basic unit of the semantics is a proposition,
analysed into subject and predicate, predicate
being further analysed into property and value.
This <subject property value> structure is the
RDF triple. For example, the proposition 'The
secretary bird has grey feathers' might become
<secretary_bird feathers grey>. Given
<bird_abc123 species secretary_bird>, RDF
supports the deduction <bird_abc123 feathers
grey>. RDF builds on this to improve the
granularity of representation: for example by
enabling triples to be subjects or property values
(reification).
OWL provides basic datatypes like Class,
ObjectProperty, DataType, upon which
domain-specific ontologies can build. RDF's
data structures can be tailored exactly to
problem domains. The chapter on OWL is
misplaced in the uses section: it is effectively
part of RDF (like C++'s STL). Keeping it till the
end only hides the usability of RDF.
Second: RDF and RDBMS. RDF has native
support for deduction, and semantics close to
natural language; it is extensible in that any two
RDF data structures can easily be merged or
translated into a third. These properties make
RDF attractive to people dissatisfied with the
relational data model: most of the commercial
RDF applications covered are 'RDF databases'.
The book uses the relational model to illustrate
RDF concepts and gives a few urls and
commercial applications, but it feels like an
important chapter is missing.
It could have been better:

1 Categorise use cases (e.g., next-generation
dbms, document metadata, UI design) and
give concrete examples.

2 Discuss important features of RDF fully:
RDF's semantic base; its support of
APR 2006 | {cvu} | 41

deduction; how its data model differs from
other data models.

3 Review syntax and tools.

The Definitive Guide to MySQL 2ed
by Michael Kofler, ISBN 1-59059-
144-5, Apress

reviewed by Christopher Hill

Riding on the coat tails of the
latest trend we have yet another
book on MySQL that
extensively covers installation
of MySQL on a number of platforms; Database
design and the SQL language from a MySQL
point of view and finally how to use MySQL in
various programming languages.
While I get the impression that the author knows
the subject well, he has not been well served by
the translation, which is quaint at best and very
confusing at worst – two examples
“Extraordinarily frustrating was the attempt to
install both packages under Windows”, and
“However, if you wish to allow, for example,
that in the book database a book could be entered
that had no publisher, then you should do
without NOT NULL”.
In Part II the author addresses database design,
SQL and using PHP as the programming
language; not in three separate chapters, but
interspersed with much cross-referencing. I
have used PHP and MySQL for a few years now,
but I found the presentation very confusing. This
was not helped by the code examples not
matching the resulting output, or that were
incomplete. I also worry about code examples
that show poor practice – one example was
issuing a query within a for loop to retrieve
records with keys 1 to 6.
Part III romps through Perl, Java, C, C++, Visual
Basic C# and ODBC. These chapters are mainly
how to install the components and to get a simple
“Hello MySQL” example running. These fall
into the chasm of too much information for the
expert and insufficient for the novice.
Not recommended.

Deploying OpenLDAP
by Tom Jackiewicz, pages 311pp,
ISBN 1-59059-413-4, Apress 2005

Reviewed by Andrew Marlow

NOT RECOMMENDED
This book is NOT
recommended. It is poorly
presented, badly organised and
lacking in coverage.
OpenLDAP is an open source implementation
of some tools that use the Lightweight Directory
Access Protocol (LDAP). LDAP is typically
used to store directory information on email
addresses but can be used for much more. The
book says it is aimed at people that wish to install
and configure OpenLDAP and that is where the
focus of the book is. Perhaps this is why there
are so many perl listings, man pages and
descriptions of configuration file parameters.

However, there is almost nothing on the
strategic design decisions involved in deploying
OpenLDAP. For example, chapter 3
"Implementing deployment, operations and
administration strategies" seems mainly
concerned with what to name the server and how
to start the slapd daemon.
The book is poorly presented. The chapters are
numbered but the sections and subsections are
not. This is apparent from the table of contents
but continues to be a distraction in the book due
to the overall lack of structure. Each chapter has
a summary at the end but it would be better if
each chapter had an overview at the start. It
appears to be quite disorganised. There are
plenty of nuggets of information but one comes
across them almost at random.
The book contains many configuration file
examples, man page extracts and perl script
listings but these look to have been included
largely as padding. They use the monospaced
font which contributes to an overall look of poor
typography. The way that abbreviations are
dealt with is very inconsistent. For example
even up to the last chapter the book reminds us
that LDAP stands for Lightweight Directory
Access Protocol!
There is no troubleshooting section which is very
odd for a book designed to help in deployment.
The book has a very dated feel due to several
factors; excessive use of man pages, providing
details on support for TTY-based email clients
such as pine; getting bogged down in details
such as how to unpack and build froma
compressed tarball.
It is obvious that the author has the necessary
knowledge to effectively deploy OpenLDAP
including integration with other systems (e.g
samba and DNS) but the experience and
knowledge of the author is too poorly presented
to be of much help to the reader.

Access VBA for the Absolute Beginner
by Michael Vine, ISBN 1-59200-
039-8, 328pp + CD, Prima Tech

reviewed by Richard Knight

This book is aimed at absolute
beginners and those who have
some experience of Access or
indeed experienced
programmers (who have not yet tried VBA) but
is obviously for complete novices. The content
is simple and seems to be a bare statement of
facts, to the point where it almost appears like a
set of classroom notes.
The book contains a CD-ROM containing all the
code examples. However, in the latter half of the
book several pages list the full code again, where
he leaves the reader to read through and
understand. The assumption being that he
explained it beforehand therefore the beginner
requires no more help. Every chapter sets some
tasks, however the “answers” are missing. No
explanation is given how to run code other than
through On Click events, yet he devotes a

chapter to debugging and explaining how to step
though code.
Given that this is a book about using Access and
VBA, it is disappointing that we are well over
halfway through the book before he introduces
data files. He introduces SQL yet fails to then
explain how the user integrates it into VBA.
The book contains a CD-ROM containing all the
code examples and a short Links section giving
some potentially useful VBA programming sites
for the reader to follow up.
This is not a bad book but it appears to be trying
to cover too many bases. For a complete novice
to Access and VBA it could be useful if backed
up with some other help, I hesitate to say “Not
Recommended” but do not think it warrants
“Recommended” status. For his other two reader
categories, I would have to say “Not
recommended.”

Information Architecture with XML
by Peter Brown,
ISBN 0-471-48679-5, 324pp, Wiley

reviewed by Christopher Hill

Should you choose to build a
house, you might read “Build
your own house in one
weekend”, which would include
instruction on using the range of tools that you
need. The book would be of little use if every
reference to the hammer was expanded to a
paragraph or two, and the other tools only get
passing references.
When building a corporate Information
structure you need to manage Meta data,
dictionaries, cross-references, context, versions,
formats etc. You will have to choose the tools to
use, structure them for ease of use and then
motivate staff to use the tools. You will have to
consider how knowledge will be retrieved from
the data that you have stored in your system.
This book is at management strategy level; there
is very little technical content. The above issues
are all lightly touched on, but viewed through
the XML telescope. It feels like “The answer is
XML – now what was the question?”
The author is head of Information Resources
Management in the European Parliament, and so
speaks from wealth of experience of a very large
project. He considers the planning and
implementation of Information Management
urging wide consultation to build the
vocabulary, stressing the importance of naming
conventions, datatypes and schemas. He then
considers how to move old data into the new
format (XML of course!) while maintaining
pace. The final flourish covers Web Services,
delivery management and navigation strategies.
I am not sure who would want to read this book.
If your interest is in Information Architecture
then there are many better books on this subject;
or if XML again better books are to be found. This
book might find use as a general introduction, but
it will not become a long-term reference.
42 | {cvu} | APR 2006

The Web
Web Design Tools & Techniques
by Peter Kentie, ISBN 0 201 71712 3,
Peachpit Press

reviewed by Christopher Hill

As I was reading this book the
saying “Jack of all trades –
master of none” kept running
through my head.
44 ‘chapters’ in 436 pages – with a chapter on
Java programming, another on JavaScript, and
another on Shockwave Movies – you begin to
get the idea that this book dips a toe into just
about every tool and/or technique that the author
could find.
This is a second edition, published in 2002, yet
the impression I get is of a much older book. The
chapters on HTML talk of the problems of
Internet Explorer 2, and that nearly all browsers’
work to HTML version 3.0 – HTML 4.1 was
released in 1999!
There are examples of very bad style; of using a
fixed template so that you can use <H2> for
document title and for sub-headings.
There are many errors; suggesting that
<ROWSPAN> and <COLSPAN> attributes can
be used in <TR> elements; or if you want larger
coloured text you use two tags and
only one closing tag; much of the
HTML is not well formed.
The first tool that the author suggests that
budding web designers might use is Microsoft
Word 2000, which is generally recognised to
produce very bloated HTML.
This is an old book with a little editing and a few
more recent tools added to produce the second
edition, which tries to address too many topics.
Not recommended.

More Eric Meyer on CSS
by Eric A. Meyer,
ISBN 1-7357-1425-8, New Riders

reviewed by Francis Glassborow

If you have read the author's
previous book Eric Meyer on
CSS (cascading style sheets)
you will already know
whether you like his presentational method. If
you have and do, you will need no persuading
from me to purchase this sequel. Now for
everyone else.
If you already know the basics of using CSS and
want to progress a little further this might be a
book for you. The author uses a purely project
based approach. This book consists of ten
projects.
The first project in the book consists of taking
an existing page, designed and implemented
with heavy HTML usage and convert it to one
that uses a CSS driven layout. I.e. the web-page
equivalent of converting source code written in
K&R C into and OO design using C++.

In each project the author walks you through the
process. The author is honest in that he points to
the things that can go wrong if you slavishly
apply the process somewhere else.
I like this style of learning/teaching but not
everyone agrees. If it suits the way you learn and
you want to spend time improving your web-
pages or acquiring skills in this area this would
be a good book for you.

Web Caching
by Duane Wessels,
ISBN 1 56592 536 X, O'Reilly

reviewed by Christopher Hill

Internet browsing is a
wonderful thing; your browser
requests a page and ‘the
internet’ returns it to you. Lots
of computers around the world, co-operating to
respond to these requests efficiently enough to
be commercially and socially useful.
Much of this efficiency is gained by storing the
results of previous requests in caches within
your browser, but also in caches in “the internet”
between your browser and the server holding the
original page being requested.
The bulk of the book covers issues to do with the
caches beyond the browser. Why have caches?
That is a necessary component of a firewall;
company control and filtering; reduce network
traffic; to speed up response times. The politics,
copyright and legal (from USA point of view)
problems are rehearsed.
A considerable part of the book covers the
theory of caching - what do you cache in the first
place and what do you discard when the cache
is full. How do you get people to use your cache
– manual configuration of the browser (fine in a
company, but hard work); let the browser
discover your cache; to hijacking HTTP
requests via an interception cache.
Throughout the book the caching request and
response headers are explained in considerable
detail. The protocols for caching hierarchies are
also covered.
Most of these issues have very specific interest
for quite a limited range of people. Of more
general interest are the discussions for the web
site administrator who either wants to make the
most of caching (to give a prompt response), or
who wants to ensure their pages are not cached
(e.g. to get accurate site use statistics). There is
also a useful discussion on how to get the best
of both worlds.
The book is well written and logically presented.
Recommended if you want to make the most of
your high-volume web site, or gain an
understanding of the bit of “the internet”
between the server and the browser.

Pro Apache 3ed
by Peter Wainwright, ISBN 1-
59059-3006, 880pp, Apress

reviewed by Alan Barclay

Pro Apache is the latest
revision of Peter Wainwright’s
bestselling book on Apache
configuration and
administration. It is a thoroughly
comprehensive and large volume covering a
good number of topics including much detail
about installation, configuration, maintenance
and deployment for both v1.3 and v2.0 of the
Apache HTTP Web Server.
The book starts out with interesting background
information about HTTP and the operation of
Apache and then several pages on the
underlying TCP/IP concepts. The latter I feel
should probably be left out from what is already
a big book. It then continues to provide detail
about all of the configuration capabilities along
with many useful examples.
Following this are chapters on options for
supporting dynamic content (via SSI, CGI, PHP,
Tomcat/Java), implementing User
Authentication, improving performance and
enhancing security. All of which are extremely
pertinent issues for an aspiring web master. As
a newbie I was successful in getting my Solaris
9 Apache package configured and up-and-
running along with PHP in no time.
Peter talks authoritatively about his subject and
I am filled with confidence about the advice that
he is giving. Unfortunately two small aspects let
the book down a little.
Firstly, I found the formatting of the Sections
and Sub-Sections titles difficult to differentiate
which caused some confusion about where I
was, despite the book following a common
publishing style. Otherwise it is perfectly well
formatted and provides information clearly and
concisely Secondly I found a small number of
errors in the examples and the table of contents.
I am left thinking that this book was rushed to
print without enough care and attention given to
the final copy and despite being published in
January 2004 I was unable to find an errata or
source code download on the Apress website.
Overall this is a book with great technical
content but some publishing glitches.
APR 2006 | {cvu} | 43

44 | {cvu} | APR 2006

REVIEWS

accuACCU Information
Membership news and committee reports

View From the Chair
Ewan Milne
chair@accu.org

This, I am sad to say, is my last
From The Chair. After three
years I feel it is time to step
down from the post of Chair. I
have got a great deal out of the job, and I hope I
have given just as much. An increasing work
load at my day job, however, has made it
difficult to give the role the attention it really
deserves (incidentally, since I made the
decision, that load has only increased, so I know
I’m making the right choice). Also my
“secondary” role as Conference Chair has taken
up much of the time I have to devote to the
ACCU. In fact I find this the most engaging and
rewarding task, and so it is my plan to devote my
attention to it – while bandwidth allows. You
may be reading this just before the AGM, and so
while nominations are still open. I will only say
that I have made a nomination for the post of
Chair, and feel that the person who has accepted
this will do an absolutely excellent job.
What I am glad to note in this last column is a
flurry of visible activity which is the
culmination of much background work by, it
must be said, several others: notably members of
the committee giving up their spare time. The
new website has been very successfully
launched, thanks to the efforts of Allan Kelly
and our new web editor, Tony Barrett-Powell.
Incidentally, I’d like to say that Allan, in his
column last issue, was unduly hard on himself.
He took hold of a project to develop a new and
modern website which had failed to get beyond
the talking shop, and has finally delivered the
goods. It may have not have been a wholly
smooth process, but as a member told me, full
time project managers have had much worse
happen. Also making a great contribution has
been Tony. His role as web editor now has a
higher profile, but it should be mentioned that he
has been in charge of converting the journals
back issues to XML, and doing almost all the
conversions himself, which has been quite a
major ongoing task. A final thank you to Tim
Pushman, who has carried out the development
work on the site through his company
Gnomedia. While he has of course been paid for
this, I am told that he is doing several extra tasks
on a voluntary basis, as a member.
Also, you will hopefully notice a whole new look
to C Vu this issue. Pete Goodliffe has worked
with Alison Peck, our Production Editor, to
redesign the magazine. We hope that it provides
a whole new fresh look, and we hope that you
like it – please let us know your feelings. Just be
thankful that the mugshot of your outgoing Chair
only has to make a single appearance.
And so it it just remains for me to thank everyone
for your input into the Association over the past
three years, and ongoing. I’ll see you all at future
conferences.

Secretary’s Report
Alan Bellingham
secretary@accu.org

I rarely miss the committee
meetings, but I missed the
February one, due to feeling
'under the weather', and being
distinctly unwilling to drive in the London area
when my wits weren’t of the best. So this report
is based on the minutes taken by David Hodge.
The meeting this time took place in Weybridge,
hosted by your standards officer Lois
Goldthwaite.
Once past the usual attendance, apologies,
reading of the minutes and discussion of matters
arising, the main business started with the
reports. Of these, the most interesting points are
probably that the Freepost account will be
closed once the just-renewed period expires (it's
hardly used, and would need moving anyway),
that membership is at just over 850, with the
usual pre-conference bulge, and that there has
been a bit of a brouhaha over the UK C++
Panel's objections to the proposed additions to
C++ (Microsoft's recent activities have been a
little controversial in some quarters).
As far as the conference is concerned, all
appears to on course.
The new website has gone live. There are some
teething problems - some items have yet to
complete the transfer from the old site - and we
have to address accessibility issues, but it should
be completed over the next few months.
There was some discussion over the demise of
the CUJ magazine, which was wound up
recently. Since there are both readers and writers
without a home any more, there was some
consideration over whether we could, perhaps
should, exploit this hole in the market, perhaps
by attempting to turn our existing journals into
a professional publication.
Finally, the AGM beckons.
The committee has decided to propose Reg
Charney as an honourary - perhaps honorary? -
life member, in recognition of his work in setting
up and running, for so many years, our US group.
Also, as you may be aware, Ewan Milne is
stepping down as Chair as of the AGM. He has
proposed Jez Higgins to replace him and so,
under the new rules, that proposal has been
seconded and will be voted upon at the meeting.
All other officers will be standing for re-
election, and a list thereof, with proposers and
seconders, will be issued at the meeting. Under
the rules as changed last AGM, such pre-
proposals no longer prejudice any proposals
from the floor of the AGM, but they should
allows the meeting to spend less time in casting
around for candidates, and thus allow more time
to discuss whatever other matters we may have.
Our next meeting is currently scheduled for the
20th May, a few weeks after the AGM.

Membership Report
David Hodge
membership@accu.org

Since the beginning of the year
there have been some 50 new
members, these all generated by
the conference we are running
in April, our membership now stands at 879.
For the benefit of those new members and for
those that might have forgotten, please send all
changes of mail and email addresses to me.
If you have missing journals then I am also the
one to contact.
If you would like to consider being the
membership secretary from April 2007 please
contact me. We are looking to add a large
amount of automation on the new website to
handle membership, you could help in its design
and testing.

Website Report
Allan Kelly
allan@allankelly.net

Just over two weeks ago we
launched the new ACCU
website! I expect most of you
have already visited the site,
and on the whole comments are positive, but just
in case you haven’t check out the new
www.accu.org.
The site was finally launched on 14 February, it
is now the start of March and we’ve had just
short of 130,000 page visits. Incredible I know,
some of them will be bots but still, that is a lot
of visitors.
I have to say a big thank you to those most
closely involved: Tony Barrett-Powell the
ACCU web-editor and Tim Pushman of
Gnomedia who have done most of the work. Jez
Higgins has been a great help in the past few
months, additional thanks for various
supporting work go to Alan Lenton, Ian
Bruntlett and Paul Johnson.
We also have a new book database system. This
has been developed by Parthenon Computing
and is linked to bookshops and carries adverts.
Parthenon will be paid from the revenue
generated with any extra revenue be split
between the ACCU and Parthenon. So, if you
are buying a book please buy it through the site.
The new site isn’t the end of the story. We still
have work to do. The whole point of
redeveloping the site and installing a new CMS
system was to allow us to keep the site up to date
and us it as a new journal media.
Still, there is pressing work to do, we need to
move the US ACCU site over, mailing lists, mail
archives and journals have yet to be moved from
the old server. And there is more.
Again, thanks to all those who have helped.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-BoldMT
 /ArialMT
 /BlueHighway-Bold
 /CourierNewPS-BoldMT
 /CourierNewPSMT
 /Helvetica
 /Impact
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Wingdings-Regular
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

