

OCT 2006 | | 1

{cvu}
ISSN 1354-3164
www.accu.org

The ACCU is an organisation of programmers who
care about professionalism in programming. That is,
we care about writing good code, and about writing it
in a good way. We are dedicated to raising the standard
of programming.
The ACCU exists for programmers at all levels of
experience, from students and trainees to experienced
developers. As well as publishing magazines, we run
a respected annual developers’ conference, and
provide targeted mentored developer projects.

The articles in this magazine have all been written by
ACCU members – by programmers, for programmers
– and have been contributed free of charge.
To find out more about the ACCU’s activities, or to join
the organisation and subscribe to this magazine, go to
www.accu.org.
Membership costs are very low as this is a non-profit
organisation.

The official magazine of the ACCU

accu
{cvu}

Do you get what you pay for?

f there is one constant in the world it is that things change. I
have re-entered the world of permanent employment and it
feels very strange. I am now working for Canonical, the

company behind the Ubuntu Linux distribution. Canonical are
the driving force behind many fun things, one of which is the
bazaar distributed revision control system. That is something I’m
going to have to write more about later.
Working for a company founded on open source ideals
makes you think slightly differently about some things. I
feel that there is the predominant opinion that with a lot of
free software that you get what you pay for. Often the
support and documentation of free software is somewhat
lacking. Often the software is not easy to use, GUI polish is
often missing and, in my experience, you get occasional
crashes.
Much of this is understandable if you look at the people who
work on open source software. Only a small proportion of
the people working on open source software are paid to do
so. Most programmers I know are more interested in getting
something working than making it look pretty. Luckily these
days there are user interface specialists who have become
involved in the open source world and many of the applications
are light years ahead of where they once were.
Is open source software really heading in the general direction of
great successful projects like gcc, firefox, and open office – or are
the successful projects just the anomalies? I'm hoping for the
former.

I
Volume 18 Issue 6
December 2006

Editor
Tim Penhey
cvu@accu.org

Contributors
Ryan Alexander, Mark
Easterbrook, Lois Goldthwaite,
Pete Goodliffe, Paul Grenyer,
Thomas Guest, Jez Higgins,
Andrew Marlow, Roger Orr, Tim
Penhey

ACCU Chair
Jez Higgins
chair@accu.org

ACCU Secretary
Alan Bellingham
secretary@accu.org

ACCU Membership
David Hodge
membership@accu.org

ACCU Treasurer
Stewart Brodie
treasurer@accu.org

Advertising
Thaddeus Froggley
ads@accu.org

Cover Art
Pete Goodliffe

Repro/Print
Parchment (Oxford) Ltd

Distribution
Able Types (Oxford) Ltd

Design
Pete Goodliffe

TIM PENHEY,
EDITOR

2 | | DEC 2006

ADVERTISE WITH US
The ACCU magazines represent an effective, targeted
advertising channel. 80% of our readers make
purchasing decisions or recommend products for their
organisations.

To advertise in the pages of C Vu or Overload, contact
the advertising officer at ads@accu.org.

Our advertising rates are very reasonable, and we offer
advertising discounts for corporate members.

COPYRIGHTS AND TRADE MARKS
Some articles and other contributions use terms that
are either registered trade marks or claimed as such.
The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will
withdraw all references to a specific trade mark and its
owner.
By default, the copyright of all material published by
ACCU is the exclusive property of the author. By
submitting material to ACCU for publication, an
author is, by default, assumed to have granted ACCU

the right to publish and republish that material in any
medium as they see fit. An author of an article or
column (not a letter or a review of software or a book)
may explicitly offer single (first serial) publication
rights and thereby retain all other rights.
Except for licences granted to 1) Corporate Members
to copy solely for internal distribution 2) members to
copy source code for use on their own computers, no
material can be copied from C Vu without written
permission from the copyright holder.

{cvu}

COPY DATES
C Vu 19.1: 8th January 2007
C Vu 19.2: 1st March 2007

IN OVERLOAD
This month, you can read: ‘Pooled Lists’ by Christopher Baus, ‘The Singleton in C++
– A force for Good?’ by Alexander Nasonov, ‘C++ Interface Classes – Strengthening
Encapsulation’ by Mark Radford and ‘A Drop in Standards’ by Paul Johnson.

DIALOGUE
20 Meet-Up Report

A report on the first
London regional meeting

21 Code Critique Competition
Entries for the last
competition and this
month’s question

27 Standards Report
Lois Goldthwaite keeps
us updated

28 Obfuscated Code
Another competition to
keep you on your toes!

REGULARS
29 Bookcase

The latest roundup from
the ACCU bookcase

32 ACCU Members Zone
Reports and membership
news

FEATURES
3 Adventures in Autoconfiscation

Jez Higgins moves a project to GNU autotools

5 Effective Version Control #3
Pete Goodliffe concludes the series

8 Trouble with TCP
Mark Easterbrook tackles TCP timeouts

10 Library Vendors and the Non-Existent C++ ABI
Andrew Marlow discusses possibilities around a missing
standard

14 String Literals and Regular Expressions
Thomas Guest wrestles with regex

16 Loading a Container with a Range
Paul Grenyer looks for the simple solution

Adventures in Autoconfiscation
Jez Higgins moves a project to GNU autotools.

rabica is an XML toolkit written in C++[1]. It provides a SAX
interface for streaming XML parsing, a DOM interface for in-
memory XML processing, and an XPath engine for easy DOM

access. In the next release or two, it will add an XSLT processor. Arabica
supports std::string, std::wstring or pretty much any other crazy
string class. The code itself is good, honest, standard C++, which my
experience shows is highly portable. I’ve built Arabica on Windows using
Visual C++, under Cygwin, on a variety of Linux flavours, FreeBSD,
several types of Solaris, OS X, and GNU Darwin. It’s quite a tidy package,
and if you’re working with XML in C++ you should consider it. That’s
what I think, anyway, but I did write it.
Damon, in Montreal, disagrees. On 22 February 2005 he wrote[2]:

The C++ port of SAX (a set of standard JAVA API for XML parsing)
Arabica is totally unusable, there are even syntax errors like namespace
errors in the so-called stable release, besides it does not have any
reference manual!

The following week he wrote[3]:
It is an awful library with a bunch of syntax errors in its newest release
(namespace error....), no documents available at all. Fail to compile it on
Linux at all.

I didn’t have any correspondence with
Damon. I found his comments months
later during a vanity searching session on
Technorati[4]. In the nearly 8 years since
Arabica’s initial release, it’s been my
experience that people very rarely write to
you about your software. When they download your code, it either works
or it doesn’t. If it works, they got on with what they were doing. If it
doesn’t, they may take a moment to think you’re an idiot, then they fling
it away and try something else. More often than not, that first point of
failure is the build. If it doesn’t build, it’s fallen at the very first hurdle.
The Arabica distribution contains, currently, around 150 source files.
Since Arabica is largely implemented as C++ templates, the majority of
the files don’t need to be compiled and built separately. You just include
them into your code. Only a handful, under 20, need to be built into a shared
or static library.
Why did Damon have such a hard time? Why didn’t I?

Come with me. Come with me on a journey through
time.
When I started on the code that would become Arabica, I was an angry
man. I was having a very bad experience at work, with a rotten developer,
who had handed over a horrible, verbose, bug-ridden piece of code. It was,
allegedly, an XML parser. It read an XML wire-format and built a C++
object graph, what we now call deserialisation. At the time, I called it
rubbish.[5]
I had argued that we shouldn’t, absolutely shouldn’t, build our own parser,
but use one of free parsers that were, even then, already available. When
I had this lump of code dropped on me, I wanted to demonstrate just how
awful it was. I grabbed the Expat source[6] and got the build going on
Windows. Next, I grabbed the recently released Java SAX interfaces[7],
and ran though them search and replacing String for std::string.
That done, I hooked up Expat, which is a C library that deals in char*,
to my new SAX classes. It worked. No bugs. Not bad for an afternoon’s
work. I released the code as an afterthought. I didn’t think it was of
particular interest, but the code I’d based it on was freely available, and I
needed something to put on my website.

Over the subsequent months, and then years, I continued to work on
Arabica on and off. There was a new version of SAX, which I incorporated.
Other C and C++ XML parsers were released [8][9][10], and I wrote SAX
wrappers for them.
For most of that time, my primary development platform was Visual C++
6 and then 7. Every now and again, I'd boot up a Linux box, refresh the
Makefiles, and clean up the conformance errors GCC pointed out. It
worked OK, after a fashion.
As the library grew, the build became increasingly fiddly. While Arabica
provided bindings for Expat, libxml2, Xerces, and MSXML, you’d only
want to build against one of those. That implies a certain amount of
Makefile editing. I found out that some compiler/operating system
combinations didn’t support std::wstring, so parts of the build had to
be conditionally excluded. C++ libraries have different levels of Standards
conformance, and there are ambiguities in some places, so parts of my code
have to be conditionally included to plug the gaps. Some platforms put
things in different places, or expect certain types of files to have certain
extensions[11], which needs more Makefile editing.
At the time Damon was discarding Arabica as completely unusable, my

build notes were:
Building Arabica isn’t hard, but it
can be a little fiddly.
First, you will need to have at least
one of the following parsers
installed: expat, libxml, Xerces. If

you’re working on a Linux box, you probably have libxml or expat
already installed. It’s entirely possible to build in support for several
parsers, but you’ll probably only want one.
Next you need to build the SAX library, configuring it for your
choice of parser, or parsers.
In an ideal world you’d just do ./configure and be done with it.
Unfortunately, at the moment the dark recesses of template meta-
programming are as nothing to getting autoconf going. One day... So
anyway, we have to resort to a little Makefile fiddling. What I’m
going to describe is probably GNU Make specific, but for other
Make variants you should be able to follow along OK.
Choose your parser (or parsers) as detailed above.
You’ll need a relatively Standards compliant C++ compiler and
library – gcc 3.x.y is okay, gcc 2.95.* will probably work if you use
an alternative library such as STLPort.
Untar the Arabica source.
At the top level directory, you’ll find a Makefile which builds
everything. It uses the -include directive to pull in
Makefile.header, which is where all the twiddly bits are.
Pull up Makefile.header in your favourite editor. Most of it
should be pretty obvious – defining CXX to point to your C++
compiler and so on. There are some examples in the distribution you
can use as a base.

A

JEZ HIGGINS
Jez works in his attic, living the devil-may-care life of a
freelance programmer. After work, he walks the dog. In
April, he became ACCU Chair.
His website is http://www.jezuk.co.uk/

they may take a moment to think
you’re an idiot, then they fling it

away and try something else
DEC 2006 | | 3{cvu}

The interesting Makefile.header macro is PARSER_CONFIG.
PARSER_CONFIG controls which parsers Arabica will use, and also
whether to compile in wide character support. For each parser you
want to configure as -DUSE_parser. The choices are
USE_EXPAT, USE_LIBXML2 and USE_XERCES. If you don’t need,
or your platform+compiler doesn’t support, wide characters (eg.
Cygwin, gcc on Solaris) you’ll also need to set
-DARABICA_NO_WCHAR_T. For each parser you support, add the
appropriate -lwhatever (-lexpat, -lxerces-c, -lxml2) to
DYNAMIC_LIBS.
Run make. libSAX should build, possibly with a number of
warnings about preprocessor tokens, and finish up in ./bin. If your
parser’s header files aren’t installed in the usual places (/usr/

include, /usr/local/include or whatever the default is for
your platform), you’ll have to edit INCS_DIRS in the Makefile.
Once libSAX is built, everything else should build too.
The supplied Makefiles work for me on using gcc on Suse Linux
7.3, Cygwin and Solaris 7. If you can supply a Makefile.header
for a new platform+compiler, I’d be delighted to receive it.
Once the SAX library is built, the DOM library is simplicity itself.
You don’t have to do anything! Arabica’s DOM implementation is
all headers files. If you want to use it, just include the appropriate
parts, link the SAX library, and you’re done.

You can see I had made some effort to ease this process. GNU Make
supports an include mechanism, so I had moved all the platform specific
pieces out into a separate Makefile fragment. This minimized the number
of places that needed to be edited, but there was still a deal of
manual intervention required. I supplied a number of platform
specific versions, 6 at last count, but I didn’t have regular access
to all of the platforms in question. Note also the equivocation –
“that should be it”, “will probably work”, “works for me”. It
wasn’t reliable, and I knew it.
It was a maintenance bother too. As I added more test and example
programs, I had more Makefiles to maintain. When I added the XPath
engine, which uses Boost Spirit, I received emails from people who didn’t
need XPath asking me how to leave out it out of the build, as their builds
were now broken.
I had this code, code I knew was good and portable and useful, but I had
this cruddy, wobbly, unreliable build system that had accreted around the
outside. It was awkward for me, off-putting for other people. At least one
person thought I was a useless idiot. Something had to change.

Out with Makefiles
I needed an alternative to my motley collection of Makefile bits and pieces.
At the very least it had to meet the following criteria

be able to find Arabica’s prerequisites – at least an XML parser and
optionally Boost
identify whether wchar_t was supported
detect platform specific file extensions
track file dependencies
be at least as easy to maintain as my existing setup
stand a better than even chance of working on the random machine
that somebody has just downloaded my code to

There are now many alternatives to Make. There are Ant[12], its Groovy
derivative Gant[13], and its .NET-alike Nant[14]. There are Cons[15] and
Scons[16]. There are Jam[17] and BJam[18]. There are Rake[19] and A-
A-P[20] and a whole host more I’d not even heard of[21]. If you look at

any of these tools, chances are there’s at least a passing reference to how
much better than Make it is.
I didn’t consider any of them, not even for a moment.

If you download some arbitrary program or library written
in C or C++, from Sourceforge, Tigris, Savannah, or
whereever, it won’t, as rule, use any of those tools. Chances
are pretty good that it won’t need anything like the fiddling
the Arabica did. You expect something like Figure 1.

Anything else violates the principle of least surprise by a considerable
distance. There was only one choice for Arabica – GNU Autotools.

In With Makefile.am
The magic of the “./configure; make; make install” is provided by GNU
Autotools. Autotools is actually three separate packages – autoconf,
automake, and libtool. Autoconf creates portable and configurable
packages, the configure script. Automake is a Makefile generator, used
with autoconf to produce Makefiles based on what configure finds out
about the system. Libtool is a set of shell scripts to build shared libraries
in a generic fashion. In reality, you don’t use one without the others. As
far as I can tell Autotools is not an official name, but everybody knows
that it means.

You might have noticed a disparaging reference to configure in the build
notes above. I’ve actually been here before. Six years ago, I attempted to
convert Arabica as-was to use Autotools. Even armed with a hot off the
press copy of New Riders’ GNU Autoconf, Automake, and Libtool[25] –
a book written by the primary Autotools maintainers – I made absolutely
no progress at all. I found the whole process so dispiriting and confusing
that I abandoned my efforts, subsequently consigning myself to years of
creaking Makefiles and the contempt of Damon from Montreal.
Six years is a long time in programming. Despite my previous bad
experience, I had no doubts that I would, in relatively short order,
autoconfiscate[26] my project. Next time, I’ll tell you how I did it.

Notes and References
[1] http://www.jezuk.co.uk/arabica
[2] http://damonli.blogspot.com/2005/02/track-separation-today_22.html
[3] http://damonli.blogspot.com/2005/02/track-separationace-spring-

break.html
[4] http://www.technorati.com/
[5] I know everybody has “he was awful” war stories, but this was,

genuinely, one of the worst experiences of my working life. I’m
getting angry just thinking about it again.

[6] http://expat.sourceforge.net/ Expat was originally written by James
Clark, a real XML big brain, and is widely used. It’s still my XML
parser of first resort.

[7] http://www.saxproject.org/. SAX describes a streaming XML parser
interface. It was initially developed provide a common interface to
XML parsers written in Java (as JDBC provides a common interface
to databases), but there are now implementations in most languages.

[8] libxml, the GNOME XML parser, http://www.xmlsoft.org/

Figure 1

 $ wget http://somewhere/path/to/somelib.tar.gz
 $ tar zxf somelib.tar.gz
 $ cd somelib
 $./configure
 [... lots of output snipped ...]
 $ make
 [... lots more output snipped ...]
 $ make install
 [... a little bit more output, also snipped ...]

this cruddy, wobbly, unreliable build system
that had accreted around the outside

I found the whole process so dispiriting
and confusing that I abandoned my efforts
4 | | DEC 2006{cvu}

Adventures in Autoconfiscation (continued)

Professionalism in Programming # 41
[9] Xerces-C is an Apache project initially donated by IBM,
http://xml.apache.org/xerces-c/

[10] MSXML, the Microsoft XML parser packaged as a COM object,
ubiquitous on Windows boxes, http://msdn.microsoft.com/xml

[11] Shared libraries, for example, generally have .so extensions. Under
Cygwin, however, uses .dll, while OS X and other Darwin
derivatives use .dylib.

[12] http://ant.apache.org/
[13] Gant is a build tool for scripting Ant tasks using Groovy instead of

XML to specify the build logic. http://docs.codehaus.org/display/
GROOVY/Gant

[14] http://nant.sourceforge.net/
[15] http://www.dsmit.com/cons/

[16] http://www.scons.org/
[17] http://www.perforce.com/jam/jam.html
[18] http://www.boost.org/tools/build/v1/build_system.htm
[19] Rake is Ruby’s build tool, http://rake.rubyforge.org/
[20] http://www.a-a-p.org/
[21] There’s a big (and undoubtedly incomplete) list at http://dmoz.org/

Computers/Software/Build_Management/Make_Tools/
[22] http://sourceforge.net/ You knew this one didn’t you?
[23] http://tigris.org/ ColabNet's Sourceforge-a-like
[24] http://savannah.gnu.org/ GNU Project’s Sourceforge-a-like
[25] Updated text now available at http://sourceware.org/autobook/
[26] Autoconfiscation – the process of converting a project to use GNU

Autotools
Effective Version Control #3
Pete Goodliffe concludes the series.

he previous two articles in this mini-series discussed what version
control is, the basic usage of a version control system, and how to
look after repositories and the code held within them. In this final

instalment we’ll look at some more advanced, but essential, parts of the
version control story. We’ll investigate good merging and branching
practices, and how to use version control in your product release
procedure.

Tags and branches
These two concepts are fundamental to managing files under revision
control, and allow you to organise work in a logical, maintainable way.
However many projects branch badly, or don’t exploit branches enough –
making their work harder and more dangerous. These items will show you
how to employ branches and tags to your development advantage.

16. Separate development lines

Branches enable you to fork your development effort and work on different
features simultaneously, without the development efforts interfering with
one another. Once complete, each code branch can be merged back onto
the mainline to synchronise the fork with its parent. This is an immensely
powerful development tool.
Many common tasks are made much easier with branches. Use them for:

Encapsulating major revisions of the source tree. For example: each
feature should be developed on its own branch.
Exploratory development work – the stuff you’re not sure will work.
Don’t risk breaking the main development line: tinker on a branch
and then merge down if the experiment is a success. You can also
create multiple branches to test out different ways of implementing
the same functionality; merge down the most successful attempt (a
form of code natural selection?)
Major changes that cut across a lot of the source tree and will take a
while to complete, requiring many tests, and many individual check-
ins to get right. Doing this work on a branch prevents other
developers stalling for days on end with a broken code tree.

Here are some more contentious applications of branches that you might
see employed in development teams. I recommend that you don’t attempt
these unless you definitely need to partition your developers’ work. (This
is yet another case of the simplicity rule – don’t make complicated branch
strategies when you don’t need them.)

Individual bug fixes. Open a branch to work
on a bug fix, test the work, and then merge the
branch down once the fault has been closed.
In the extreme case assign a different branch
for each individual developer; then there’s no
danger of their work breaking anyone else’s.
It’s their responsibility to merge the mainline
into their branch as required to keep their view
of the world up-to-date. When there’s something
worthy of inclusion in the software release, they tell a
code integrator who reviews the work, and then merges
it into the mainline.

Branches an excellent organisation facility just waiting to be used. Don’t
be afraid of them. Don’t pollute your main development line with
unnecessary cruft that can be hived off into a branch.

17. Separate development from release lines

This is another good use of branches, but it’s so important that it’s elevated
to it’s own item.
As you approach a release deadline you must be very careful how you
change the code. Simple modifications that would have been acceptable a
month ago are no longer welcome. Every check-in must be justified and
included in the release on merit, after careful review. Otherwise the
integrity of the release code is in danger – one careless check-in could put
you back by weeks.
However, deadlines are such that you’ve probably made a start on the next
development task whilst a few developers are desperately trying to remove
the last few bugs. Branches can keep all that disparate activity under
control.
At a designated point create a release branch. This will contain the code
that comprises your software release. Usually this is a line of development
that is versioned: each build gets its own version number, and the source
code for it is tagged at each build point, with a name reflecting this build
number. (See item 20 for more on making releases.)

T

PETE GOODLIFFE
Pete Goodliffe is a programmer who never stays at the same
place in the software food chain. He has a passion for curry
and doesn’t wear shoes. Pete can be contacted at
pete@cthree.org
DEC 2006 | | 5{cvu}

{cvu}

The release branch is kept relatively stable, and absolutely no development
work will occur on it. The development continues down feature or bugfix
branches. When a change is deemed fit for integration into the software
release it is merged across into the release branch.
In this way you maintain a controlled release codebase, and can track the
history of changes made between build revisions of any software release.
At the same time you can attempt some more contentious bugfixes without
compromising the software release. You can even be developing the next
generation product at the same time.

18. Tag releases and milestones

Tags (or labels) are the version control equivalent of bookmarks, allowing
you to mark important revisions of the software during its development,
to easily get retrieve them later, and to move the bookmark when the world
has changed.
It’s good practice to use tags liberally. There are several scenarios that you
should consider tags for:

marking the code that comprises major software releases,
marking code milestones against the development schedule (i.e.
‘feature complete’ or ‘release candidate’ points),
personal code bookmarks to help a developer in their day-to-day
work, and
marking important points before/after complex operations. For
example, it’s good practice to tag the tree before a complex merge,
and the again afterwards (see item 19).

Tags are identified by name, so choose a good naming scheme,
distinguishing personal tags from releases, and from milestones. Personal
tag names should ideally include the user name, date, and reason for
creation. Milestone/release tag names should include the software release
name and build number or milestone name.

19. Merge carefully

The reason you made a branch was to keep things compartmentalised, so
only merge branches together when you definitely want the development
lines to converge. Only merge down when a branch is shown to be in a

good state, with code in an acceptable, working form. Otherwise you will
pollute the clean mainline with partial work and broken code.
Perform the merge operation very carefully. Watch out for any warning
messages, any errors, and any conflicts found during the merge, and don’t
commit your merge to the repository until you’ve verified its integrity.
Some VCSs have more complex merge issues than others, so make sure
that you understand all the implications of a merge in your environment.
For example:

How do directory changes (e.g. file creation) on a branch merge
down to main – do you have to run a separate merge operation to
pick those up?
Does your VCS give you any support when you perform more than
one merge from a branch to another? Do you have to remember that
you’ve already merged versions 1-10, so that a second merge at
release 20 doesn’t try to import all the 1-10 changes again?
Does the VCS record merge information for you to investigate later,
or must you include merge information in your check-in message?
(If you do have to include this merge information then be complete
so that you can work out what you did later on. It’s not a bad idea to
include the entire merge command in the check-in message. At the
very least record the source branch, the destination branch, the range
of source revisions you’re merging, and any other pertinent
information).

It’s good practice to tag the destination branch before and after the merge
operation. This makes it easier to recover from a merge catastrophe, and
also helps you to compare the effect of the merge operation on the branch.

19½. Reprise: Vendor branches

In item 6 we looked at managing third party code, by storing it in a vendor
branch. This is a special use of the branching mechanism. We put the
pristine third party code into its own branch – and never fiddle with it there.
This third party code is usually a library of some sort, and has periodic
releases by the vendor. From time to time we must upgrade to a new
release. Each release of the code (known as a vendor drop) is committed
into the vendor branch (and tagged for future reference). We then merge
that branch into the main line of our development (see Figure 1).
On the main branch we can make any tweaks to the vendor’s code (our
own bug fixes, for example). The vendor branch remains as a virgin
reference version of the vendor’s code. Perhaps we will feed our bug fixes
back to the vendor for inclusion in a subsequent release.
When a new drop of the vendor code arrives, we commit it into the vendor
branch, and merge the differences on that branch down into the mainline.
If the vendor has incorporated bugfixes that we already checked into the
mainline ourselves, the merge operation should be simple.

Making source code releases
There’s nothing magic about the source code that goes into a product
release. It’s the same source code that you’ve been working on for months.
However, the release procedure is stringent. These two items show you
the right way to build release software from the repository.

20. Release from a virgin tree

An official software release is an important thing, and you can’t risk any
gremlin creeping in to disrupt production. It’s easy to overlook changes
you’ve made in your working copy that will affect how the software is
produced. You might have modified source files, or altered some config
to help you debug. It’s easy to forget these things. The only way to be sure
that you are building from a good source tree is to check out a fresh one
before building.

Fi
gu

re
 1

There’s nothing magic about the
source code that goes into a

product release
6 | | DEC 2006

{cvu}

You must tag the source files that comprise each major release so you can
reconstruct it later, and it’s important to do this in the right order. To make
a software release, create the release tag in your working copy first. Then
check out a virgin tree on that tag, and build there (presumably in a new
session so that no environment variable, etc, can affect the integrity of the
build).
This named tag allows you to repeatedly fetch the exact code that went into
that release, and build an identical release at any time in the future – if you
need to research a bug in old software, for
example. Making this tag first ensures that
your new working copy is exactly what you
expect. Otherwise the repository’s state-of-
the-art might have changed before you check
out a build tree.

21. Automate everything in sight

Humans make mistakes. That’s what we’re genetically programmed to do.
The only mistakes computers make are ones that we program them to do.
Our consolation is that they’ll do it repeatedly, until we find the mistake
and fix it. The best way to prevent silly human errors during complex
check-outs, configurations, or build procedures is to take the whole
problem out of the hands of fallible humans and give it to the reliable
machine. Typos in commands and failure to follow exact procedures are
common problems, and can cause all sorts of subtle errors.
Write scripts or macros to automate these activities. Document how to use
them. The incidence of failure will decrease dramatically. There are other
upsides to this strategy. Work is:

faster (there’s no need for all those commands and all those button
pushes),
easier (there’s no need to remember all those commands and all
those button pushes), and
requires less documentation (you only need to document one
command or button push).

Do as little as possible by hand. You’ll guard against every developer error
you could imagine (and more besides). By making others’ lives as easy as
possible, in the long run you’ll be making your own life easy.

Miscellaneous
Finally, the unclassifiable law of version control…

22. Learn to script your version control

Don’t rely too heavily on the convenience of GUI front-ends to your VCS.
Whilst GUIs undoubtedly provide a productivity gain for simple

operations, they do not provide you with the flexibility to meet the
demands of item 21.
All good VCSs provide command line access to the repository. Learn to
harness the power of the command line, and understand how to incorporate
these commands in scripts. There are lots of uses for this:

overnight builds, triggered automatically at a set time,
unified checkout/build/deploy scripts,

continuous integration (a term from
extreme programming describing
fully automated build/test cycles), and
even
extending your VCS with with extra
facilities (several VCSs allow you to
install trigger scripts on the server that

get invoked during specific operations)

All’s well that ends well
The very first item in this series “1. Use version control” is a prerequisite
for predictable software development. Everything else we’ve looked at is
just a refinement of that single piece of advice – “Use version control well”.
There are three commonly held version control myths:

1. It’s hard
2. It’s not my job
3. I can live without it

All three are wrong. Very wrong. When version control is deployed well,
when the right tool is used, and used sensibly, good version control practice
is not hard at all; it’s not rocket science. Version control is everyone’s
responsibility, not just some specialist IT infrastructure department. And
you cannot live without it. Version control is absolutely essential.
I’ve covered a lot of ground in these three articles – there’s a lot to be
thinking about as you evaluate or deploy your development version control
system. But this stuff has a profound effect on the quality of your
development process, on how easy it is to work with your source code, and
how easy it is to work with other developers.
If version control is your responsibility (clue: it is) then make sure that you
understand each of the principles listed here, and put them all into
practice.

Humans make mistakes.
That’s what we’re genetically

programmed to do.

Write for us!
C Vu and Overload rely on article contributions from members. That’s you! Without articles there are no
magazines. We need articles at all levels of software development experience; you don’t have to write about
rocket science or brain surgery.

What do you have to contribute?

What are you doing right now?

What technology are you using?

What did you just explain to someone?

What techniques and idioms are you using?

If seeing your name in print isn’t enough, every year we award prizes for the best published article in C Vu, in
Overload, and by a newcomer.

Pete’s book, Code Craft, is out now.

Check it out at: http://www.nostarch.com
DEC 2006 | | 7

Living with Legacy Code # 3
Trouble with TCP
Mark Easterbrook tackles TCP timeouts.

his is a tale of being trapped between a rock and a hard place solving
a legacy code problem for one of my clients. The application didn’t
work how the customer expected it to work, the company had not

anticipated how the customer might use it, and everyone believed TCP was
a reliable communications medium with guaranteed delivery of packets.
Any solution had to be minimum change and a re-write was out of the
question.
The application environment was a network of workstations running a
command and control application. Each operator could choose how and
what to view on their screen, but all the data came from a common database
so that all operators saw any changes immediately. In addition, each
operator could add local annotations to their own view, the electronic
equivalent of drawing on the screen with an erasable marker pen! This
local annotation system had an additional feature, the ability to send a copy
of an annotation to the other workstations, but with a number of limitations:

The data was only sent to currently active workstations.
It was a data broadcast in that there was no way to select individual
workstations in the send.
It was a one-shot send: Subsequent changes were not propagated.
Any received data overwrote the local copy, regardless of which
version was the latest.
If a receiving workstation did not already have a copy of the
annotation, it was not displayed unless the operator chose to see it.

The customer used this feature a lot, and soon found that sometimes the
data would sometimes take hours to reach other workstations. As the data
could be updated by multiple operators this was unacceptable. Of course,
it was not possible to tell the customer they were using the feature
incorrectly – they were already committed to it – if only we could get it to
work reliably for them.
At first, the shipping code did not make any sense, and it was only after
working forward through the source code control archive from the original
over 10 years ago, reconstructing the development path of the feature, that
it was possible have any chance of understanding it.
At the implementation level, the data was put into a spool directory which
the transmit process would poll regularly. For each file, it would open a
TCP connection to a host, and if successful, send the file and close the
connection before moving on to the next host. As long as at least one host
was available the file was removed from the spool directory. This probably
worked fine when tested in the lab. It also worked adequately in the field.
Sometime later, and maybe nothing to do with this particular module, the
open TCP connection library function was enhanced to include a 0.5
second timeout using the setitimer() function which takes 2 values:
seconds (0) and microseconds (500000). This meant that when some
machines were unreachable, no process iterating through all remote hosts
would seem to hang (at least not long enough for the user to notice).
In the fullness of time as external network access became cheaper one of
the customers started using a WAN instead of a LAN, then complained
that the data transfer to remote machines was unreliable. The problem was
that distant machines were taking more than 0.5 seconds to reply to a
connect request. An obvious fix was to increase the timeout and this was

done by adding a zero to the timeout. Although this made the problem go
away, nobody had noticed that the intended change had in fact removed
the timeout completely [1] at the application level. The code now used the
connect timeout in the TCP stack which can be anything from 20 seconds
to tens of minutes depending on the system.
Testing with the new longer connect timeout showed significant delays
when there were unreachable hosts so yet another fix was needed. The
answer at the time was to cache the open connections (I’m not sure what
the question was), so the sending application would open connections to
all available remote hosts and hold an array of open file descriptor so when
it had a file to transmit it just need to call send and not open. Every two
minutes it would close and re-open all the file descriptors so that the list
didn’t get too stale. Again, this probably worked fine when tested in the
lab, but isn’t resilient in a real network.
As seasoned network programmers know, it is very difficult to detect a
failed connection without sending something, which is why many systems
send heartbeats to each other. The other critical piece of information that
the last fix didn’t take into account is that the timeout on an open TCP
connection is long, very long. In this case it was 20 minutes. The
introduction of caching open connections without actually checking them
for failure meant that if a remote host hard-failed (i.e. no TCP close
requests were received), the process would hang for 20 minutes. The most
common cause of such a hard fail is a router or WAN link outage, resulting
in multiple remote connections failing, and thus multiple 20 minute
timeouts. Such outages are not very common (nor are they rare), but they
shouldn’t take out local connectivity as well as remote!
About this time I became involved. As this was fragile legacy code the
rules of engagement were minimum change and minimum risk, so a rewrite
using multiple processes or a similar solution was out of the question.

Attempt 1: Add a timeout to the send
The code in Listing 1 sets an interval timer for 5 seconds and an empty
signal handler for the alarm that will be generated. The read from the TCP
socket will therefore be interrupted after 5 seconds if no data is received.
The interrupted read will exit and set errno appropriately. That is the
theory. In practice, it doesn’t do this. In practice, it depends on which
flavour of Unix you are running, which of course makes any solution non-
portable.
The problem the Unix developers had was that any interrupt will cause a
read to fail, which means that every read needs to handle interrupts and
restart the read, for example:
while (read(fd, databuf, MAX_READ) < 0
 && errno == EINTR);

Even if this had been introduced from day one, there would still have been
programmers surprised that their read calls failed in the presence of

T

MARK EASTERBROOK
Mark is a software developer working with embedded
systems, high performance/reliability/availability
systems, operating systems and legacy code. He can
be contacted at mark@easterbrook.org.uk

static void NoReply(void) {}

 signal(SIGALRM, NoReply);
 alarm(5);
 write(fd, request, request_size);
 if (read(fd, reply, MAX_REPLY) < 0) {
 if (errno == EINTR)
 ...
 alarm(0);
 signal(SIGALRM, SIG_DFL);
 ...

Listing 1
8 | | DEC 2006{cvu}

interrupts. To introduce the behaviour later would cause code to fail after
an OS upgrade. Different flavours of Unix addressed the problem in
various ways:

4.2BSD the read was restarted after an interrupt. This means the
above code cannot possibly work.
4.3BSD realised that programmers needed a way to interrupt the
read, so introduced an SA_RESTART flag. This applies to the
interrupt handler (via sigaction) and therefore does not work if
you don’t have access to the interrupt handler. (On other Unix
variants there is similar behaviour using SV_INTERRUPT).
Solaris 9 does not seem to support any way of preventing a restart.
This is one of the platforms on which I needed the code to work.

Attempt 2: Turn off non-blocking
Sockets have the option to run in non-blocking mode by setting
O_NONBLOCK (or O_NDELAY). This causes the read to exit immediately,
returning 0 if no data is available to read. A simple addition to my interrupt
handler is all that is needed:
 static void NoReply(void) {
 fcntl(fd, F_SETFL, O_NONBLOCK);
 }

This worked on the first system tested – Solaris – but failed on the second
– HP-UX. It seems that some kernels don’t allow the blocking flag to be
modified while a read is in progress. This was also a less than satisfactory
solution because the interrupt handler requires access to the file descriptor,
forcing it from function scope to file scope and forcing a unique interrupt
handler for each instance of the read call.

Attempt 3: Close the socket
If the socket has failed it does not really matter what happens to it, so I
tried a sledgehammer approach and just added a close socket call. The
socket still needs to be non-blocking to cause the close to return
immediately:

 static void NoReply(void) {
 fcntl(fd, F_SETFL, O_NONBLOCK);
 fclose(fd);
 }

This worked on Solaris, but not on HP-UX, probably for the same
underlying reason why the non-blocking version didn’t.

Attempt 4: The C version of try…catch
The solutions so far, as well as being non-portable and not working on HP-
UX, didn’t feel right. Expanding the scope of a variable was definitely a
sticking plaster solution and probably would have come back to bite at a
later date.
The underlying problem is getting cleanly out of a block of code and tiding

up when a unrecoverable error condition occurs. Some other languages
would be looking at a try…catch block to try and solve it. Fortunately,
C also has try and catch, it is just well disguised and not many C
programmers know about it – see Listing 2.
If you think of the if sigsetjmp as the try, and the matching else
as the catch, it is not dissimilar to a real try..catch block, albeit an
uncouth stack reset rather than a stack unwind. The sigsetjmp saves the
stack context and returns zero to indicate it has been called normally. The
code then sets up the alarm and signal handler as before. If the alarm fires
the interrupt handler performs a siglongjmp to restore the stack context

to that of the sigsetjmp call, which returns a non-zero value to indicate
a jump entry, and takes the else clause thus avoiding the troublesome
read call.
The sigsetjmp is a powerful error handling idiom, but needs to be used
with care:

The siglongjmp call must only occur when the main code is
within the “if sigsetjmp” context so the jump can only occur
from an inner block to a containing block. In this case this means
making sure that the signal handler is disabled as soon as the
try…catch section is exited.
The stack is simply reset, so the “catch” block needs to tidy up,
particularly if resources have been obtained. There is no stack
unwinding to assist like in C++, so all allocation and deallocation
must be carefully designed and checked for leaks.
Seglongjmp smells like goto, so will fall foul of the anti-goto
crowd. As with legitimate uses of goto, the alternatives are even
worse, so it is worth the effort the justify it.

Alternative solutions
The constraints given at the beginning prevented any design time solutions
to the problem, but it is worth quickly looking at how the problem could
have been solved if I had had a free hand, in no particular order:

Use select(). This allows the code to wait for one or more file
descriptors with a timeout.
Use non-blocking I/O and poll for replies.
Use one process (or thread, if you like to live dangerously) for each
connection.
Use uni-directional messages (fire and forget). As this system didn’t
perform re-transmits, checking for a reply was a waste.
Use UDP uni-directional datagrams.

Programming notes
I have used signal in the above examples, but the API to set a signal
handler varies between platforms:

signal (traditional System V)
sigvec (BSD 4.x)
segset (SVR3)
sigaction (POSIX)

The setjmp-longjmp code was taken from:
http://www.developerweb.net/sock-faq/detail.php?id=202

Note
[1] 5000000 modulus 1000000 = zero, and zero means no timeout!

static void NoReply(void) {
 fcnt1(fd, F_SETFL, O_NONBLOCK);
 siglongjmp(jmp_env, 1);
}

 if (sigsetjmp(jmp_env, 0) == 0) {
 signal(SIGALRM, NoReply);
 alarm(5);
 write(fd, request, request_size);
 if (read(fd, reply, MAX_REPLY) < 0) {
 ...
 }
 alarm(0);
 }
 else {
 ... (handle timeout)...

Listing 2

C also has try and catch, it is just
well disguised
DEC 2006 | | 9{cvu}

Library Vendors and the non-Existent
C++ ABI

Andrew Marlow discusses possibilities around a missing
standard.

here is no standard Application Binary Interface (ABI) for C++. The
consequences when linking C++ binaries from dis-similar
compilation environments are typically fatal link time errors. As a

simple example, consider the function:
 void doSomething(int flag);

Due to function overloading the name the compiler generates as the
external symbol is slightly different from doSomething. The actual name
might be __Z11doSomethingi. Another compiler for the same
o p e ra t i n g s ys t e m m i gh t p r od u c e a d i f f e re n t nam e , s a y ,
?doSomething@@YAXH@Z. This is done to provide
a way of encoding additional information about the
name of a function, structure, class or another
datatype in order to pass more semantic information
from the compilers to linkers. This process of
changing the name of symbols with external linkage
is known as name mangling. In our example, if an
ob j ec t f i l e r e f e r s t o t he rou t i ne a s
__Z11doSomethingi but the definition is in an
o b jec t f i l e t ha t r e f e r s t o i t a s
?doSomething@@YAXH@Z then the link will fail
with a missing symbol for __Z11doSomethingi,
due to name mangling differences between the two
object files. This can happen if the first object file is
produced by a compiler with a different ABI than the
compiler that produced the second object file. Name mangling is the
simplest example of ABI issues but there are several more ways in which
the conventions for object file layout may differ.
This normally means that a vendor of a commercial C++ library has to
choose from one of the following three options:

1. Hand over the source code to the users.
2. Offer a C API alternative that does not contain any C++ (this works

due to the de facto C ABI, mentioned later).
3. Support every customer configuration that there is.

These may all seem like drastic choices. This article explains why there is
no alternative at present. The aim of pointing out these problems is for the
following beneficial outcomes:

1. That developers become more aware of the dangers of using
commercial specialist C++ libraries for which the source code is not
available.

2. That pressure is placed on the C++ standards committee to get them
to at least consider standardizing certain aspects of the C++ ABI
(e.g. the name mangling convention) to mitigate some of the dangers
and promote interoperability between closed-source libraries.

3. To get the developers of commercial closed-source C++ libraries to
consider offering a purely C-based interface until these issues are

resolved. This might seem like an unnecessary constraint on the
library developers but it makes the libraries available to more users,
some of which might otherwise not be able to purchase the library
licenses.

4. To increase awareness of the developers of commercial closed-
source C++ libraries in the benefits of exercising restraint in the use
of certain C++ language features. It can minimize the trouble users
will have trying to combine such libraries into an executable of their
own. This also makes such libraries available to a larger number of

users.

What is the C++ ABI?

Definition

According to Wikipedia, an Application binary
interface (ABI) describes the low-level interface
between an application program and the operating
system, between an application and its libraries, or
between component parts of the application. An ABI
differs from an application programming interface
(API) in that an API defines the interface between
source code and libraries, so that the same source
code will compile on any system supporting that API,
whereas an ABI allows compiled object code to

function without changes on any system using a compatible ABI.
For developers this means that when they try to combine libraries from
more than one source (e.g. a home-developed library with a commercial
one), the concerns are that it links successfully and that it runs successfully
(assuming for the sake of this article that the code has no bugs).

Standardization efforts

In general, language standards do not specify the kind of details that allow
binary interoperability between dissimilar environments. Even C has no
such official standard. What is needed is a common object file format. This
common format will differ from operating system to operating system, but
on a given operating system it needs to be the same no matter what
compiler is used, and no matter how the programming language evolves
over the years. This is no trivial matter, even with a straightforward
language like C, but over the years the standard object file format known
as Executable and Linking Format (ELF) evolved for System V Unix
(including Linux). On Microsoft Windows a similar standard emerged.
ELF means that two or more object files of C code from dissimilar
compilation environments (say, two libraries produced by different
vendors) can be combined into a single executable with no trouble. The
vendors just need to make their libraries available for the same operating
system (obviously, the machines instructions must be for the same
instruction set). The trouble is that C++ has certain object layout and
external symbol considerations that mean conformance to ELF is not
enough. This is an area in which people on the standards committee feel
that changes to the C++ language standard are not required. It is felt to be
an implementation issue. After all, the details of ELF are not covered by
the C standard and ELF is only a de facto standard.

T

ANDREW MARLOW
Andrew has been programming for over 20 years,
mainly in C and C++ on Unix. He began on
machines that used punched cards and paper tape.
Website: http://www.andrewpetermarlow.co.uk.

language standards
do not specify the

kind of details that
allow binary

interoperability
between dissimilar

environments
10 | | DEC 2006{cvu}

Several compiler vendors have independently decided that their own
compiler should define an ABI that is particular to their compiler, but this
is hardly a standard. The Sun Solaris compiler ABI has stabilized as of
Studio 7 (ref 1). The Free Standards Group (FSG) has created the Linux
Standards Base (LSB) in an attempt to deal with the issue (ref 2). The ABI
of the GNU C++ compiler was formalized starting with version 3 (but
unfortunately changed at versions 3.3 and 3.4, causing problems for the
LSB effort). CodeSourcery, a company based in California, is attemping
to standardize on a C++ ABI for use in a GNU environment (ref 4). Other
companies such as Compaq, EDG, HP, IBM, Intel, Red Hat, and
SGI are working with CodeSourcery on this. However, the effort
currently does not include the big players Microsoft and Sun and
only applies to the GNU environment. Furthermore, it does contain
some processor-specific material for the Itanium 64 bit. The FSG
started talking to ISO about ABI standardization in 2003 which
culminated at the end of 2005 in ISO 23360, which standardizes the
C++ ABI as part of a Linux standardization effort. But this is
particular to linux. Whilst laudable, there is a lot more work to do
before two libraries produced by different vendors can be combined into
a single executable with no trouble on a commercial Unix system or on
Microsoft Windows.

Common object file format

There are three main types of object files.
1. A relocatable file holds code and data suitable for linking with other

object files to create an executable or a shared object file.
2. An executable file holds a program suitable for execution; the file

specifies how the program’s process image will be created.
3. A shared object file holds code and data suitable for linking in two

contexts. First, the link editor may process it with other relocatable
and shared object files to create another object file. Second, the
dynamic linker combines it with an executable file and other shared
objects to create a process image.

C development worked within this framework. The vendors of C libraries
just shipped the header files and library archives (static and/or shared). The
entrypoints mentioned as prototypes in the headers were resolved by
linking into the associated libraries. Care was taken to ensure that the
following aspects were taken into account in ELF and the behaviour of all
C compilers for a given operating system:

size and layout of predefined types (char, int, double, etc.)
layout of compound types (arrays and structs)
external (linker-visible) spelling of programmer-defined names
machine-code function-calling sequence
stack layout
register usage.

C++ object format issues

C++ introduces some extra considerations. Unless these are taken into
account and resolved, C++ libraries from different development
environments even with the same operating system might not be
successfully combined into an executable. It may fail at linktime. Even
worse, there is the possibility that it may fail at runtime.
One of the reasons for the lack of a standard ABI is that as C++ evolved
over the years, the ABI used by a compiler often needed to change in order
to support new or changing language features. Programmers expected to
recompile all their binaries with every compiler release. An unstable ABI
is incompatible with the safe use of shared libraries, and is a nightmare for
library and middleware vendors.

Here is a list of the C++ ABI issues that may cause problems:
external spelling of names (name mangling)
layout of hierarchical class objects, i.e., base classes, virtual base
classes
layout of pointer-to-member
passing of hidden function parameters (e.g. this)
how to call a virtual function

vtable contents and layout

the location in objects of pointers to vtables
finding adjustment for the this pointer

finding base-class offsets
calling a function via pointer-to-member
managing template instances
construction and destruction of static objects
calling functions implemented in other languages and honouring
their calling conventions.
throwing and catching exceptions
some details of the standard library

implementation-defined details
typeinfo and run-time type information (RTTI)
inline function access to members

ABI mismatch problems

Link time failures

The most common problem is where the program fails to link due to
missing symbols. The classic case is where the naming mangling is
different, but it can also arise due to the use of certain languages features
in one environment that are not employed in the other. An example is
RunTime Type Information (RTTI). An application that does not use RTTI
itself and has the feature turned off (it is sometimes off by default) may
fail to link with a library that makes use of RTTI. Another reason is where
the different environments do not agree on the template instantiation
mechanism. When libraries do not contain the template code for templates
it instantiates the linker may fail to find these symbols at linktime.
Sometimes it may take a while before a failure to link is uncovered in the
library. It may depend in which library facilities are called upon by the
application.
Another problem that is a bit more unusual but still manifests as fatal link
time errors is when the library has employed C++ internally but is not sold
as a C++ library. This occasionally happens with C libraries. The company
that produces the library are unaware of these issues and allow the library
developers to do the majority of the implementation in C++ which gets a
thin C wrapper added at the end. The user of such a library might be
unaware that the library contains references to C++ and might try to link
it with a C or FORTRAN linker, say, depending on what programming
language they are using. This has been done by at least one software house
employed by a Stock Exchange. The software house was told to provide
an API for the price feed that can be called by C programmers. They
produced one where the functions have C linkage but much of the code is
written in C++.

there is a lot more work to do before two
libraries produced by different vendors

can be combined into a single
executable with no trouble

an unstable ABI is incompatible
with the safe use of shared libraries
DEC 2006 | | 11{cvu}

Another subtle variation on this is that some vendors produce a C library
but compile it with a C++ compiler, treating C++ as a better C. The external
functions are all declared to have C linkage and the vendor is unaware that
their library contains any references to C++. An example of a library that
does this is the Mark 7 NAG C library (a maths library from the Numerical
Algorithms Group). This contains references to C++ because all programs
that contain C++ will need any static objects such as std::cout
initializing before subroutine main is executed. This is done by the C++
runtime library and requires linking with the C++ linker. In the case of C
libraries containing C++ implementation either directly or indirectly,
I refer to this as “the C++ poison pill”.

Runtime failures

Not all of these ABI issues cause linktime failure. For example, if a closed-
source commercial library from one environment is linked into an
application from another environment, and the environments differ on how
exceptions are caught and thrown, the library may throw an exception that
the application cannot catch successfully, even though the code in both
places is flawless. Another example is where
differences in compiler version cause differences in
internal STL implementation details. Differences in
object layout might mean a failure at runtime. This
also happened to me only recently, where an
application that used a library built with a recent
version of g++ was accidentally linked with an older
version of g++. This caused the program to core dump
when it executed the default constructor for an
ofstream whose internal structure had changed in the
area of C locales.
The points mentioned above are often not understood
by the vendors of commercial closed-source C++
libraries, or the development teams of those vendors. This means that even
when the problem is understood by a potential user of the library, they may
be told wrong information by the vendor. For example, the vendor might
claim that if the user employs the C API in his code then no references will
be made by the library to any C++.

What’s a customer to do?
What does a customer do when they need to purchase a commercial C++
library from some vendor but the vendors C++ environment is different
from that of the customers? (assuming the same operating system and same
compiler vendor, just different versions of the compiler). The action really
has to be taken by the library vendor but very often the challenge is getting
the vendor to understand the issue and then getting them to agree to do
something about it.

Vendor choices

Here are the choices that need to be offered to the vendor:
1. Hand over the source code to the users.
2. Offer a C API alternative that does not contain any C++.
3. Support every customer configuration that there is.

These are all drastic choices. They are not the only choices. For example,
a vendor may offer an interface via a CORBA service where the server runs
on some remote site. The vendor provides the Interoperable Object
Reference (IOR) for their service and the Interface Definition Language
(IDL) that describes the offered service. Then the user of this service
doesn’t even have to use C++ if they don’t want to. But solutions like this
are most unusual. Most vendors assume that their product will have to be
linked into the executable. It is almost certain that a vendor of a commercial
C++ library will choose from one of the three possibilities listed above
when it comes to resolving C++ ABI issues. Another possibility, which
only applies to Microsoft platforms, is to use COM. This works for the
same reasons that CORBA works, but unlike CORBA is tied to the
Microsoft environment.

Distribution of the source code Most vendors will consider that the first
option could never be an option for them. They would not even offer their
source via some escrow agreement in the event they went bust. They
consider that it is only by keeping the code secret that they can sell the
library at all. This is a great pity because there are several examples of
companies that have taken this option with no ill effect to their revenue at
all. For example, there is Troll Tech’s QT library for GUI development.
This library has a license that allows the source code to be distributed. The
code is protected from being appropriated by another commercial
company by the protections afforded by the GPL (the GNU project’s
General Public License). Another alternative approach which allows the
source code to be distributed is to charge primarily (or exclusively) for
support. This is the approach taken by Riverace in their commercial
support of the open source C++ project ACE (Adaptive Communications
Environment). Another example is ZeroC, which produces the open source
product ICE (Internet Communications Engine). This is released under the
GPL but a commercial license is available on request for users of ICE on
commercial projects that do not wish to be bound by the terms of the GPL.

Perhaps more companies engaged in the
development of commercial C++ libraries could be
encouraged to follow the example of companies like
Trolltech, Riverace or ZeroC. It is my belief that this
is the best choice out of the three. It means their are
no environmental mismatch problems and the
source code is protected by copyright law, one of the
most powerful kinds of law there is. However,
knowledge of copyright law and how the protection
it affords can be harnessed by use of appropriate
source code licenses is outside the experience of
most commercial companies. Even their legal
departments seem to have little knowledge in this
area.

Offer a C API The second option is seldom found and even when it is, it tends
to be because the C API was developed first. A commercial example is the
MQSeries library from IBM. It is rare to find a C++ library that was
developed for C++ users but was done so by first implementing a core in
C then wrapping C++ on top. An example of a small software package that
does this is the sourceforge Cyclic Logs project (ref 3). One of the reasons
why this is rarely done is that in non-trivial projects the developers wish
to use the power of C++ and do not want to be constrained by using its
less expressive relative, C. Care must be taken when discussing this option
with a vendor. The vendor might not realize that a C API that involves any
of the library code being compiled with C++ is still likely to cause
problems.
Matching the customer’s configuration The last option might seem to the
most unpleasant as the amount of work involved increases in proportion
to the number of configurations all the vendor’s customers have, but in
practice this seems to be the approach that most vendors take.
The most common problem this causes is that the library might not be
available at all depending on what operating system and compiler is in use.
For example, some commercial libraries might only be available on very
old versions of Solaris. This would tie the developer to that version. If this
is not acceptable the developer might have to face the fact that the library
cannot be used on their project. I recently came across a situation where a
vendor was using Visual Studio version 6 to compile a C++ library and a
potential customer was using the Visual Studio 2005 since they also
needed to use .NET. The customer pointed out that the ABI issue meant
they might not be able to use the vendors library. The problem also affects
some projects that use the GNU C++ compiler. This sometimes happens
with projects that make use of Open Source projects. The Open Source
projects typically start development with the GNU C++ compiler, because
it allows the developers to use a relatively modern dialect of C++,
compared to that supported by many commercial compilers. It is also free
(as in free beer). But the project then wishes to use a closed-source
commercial C++ library. At this point they may find out that the vendor
does not support the GNU compiler.

some vendors
produce a C library

but compile it with a
C++ compiler,

treating C++ as a
better C
12 | | DEC 2006{cvu}

The approach of matching the customers configuration is often used where
the library in question is the C++ standard runtime library with associated
STL, from the vendor of a commercial C++ compiler. The runtime library
and the STL implementation tend to be tightly bound for commercial
compilers, as the STL code tends to be expressed in terms of the runtime
library. There are other examples of companies that take this approach for
other kinds of library. For example, Rogue Wave have sold the commercial
C++ foundation library Tools++ for many years. Users of Rogue Wave
software may have experienced several of the issues described in this
article as a result of unexpected differences between their development
environment and the one used by Rogue Wave that produced the copy of
the Rogue Wave library in use. These difficulties tend to get ironed out
over time as the differences are enumerated and eventually the developers
get the library that does exactly match their configuration. Matching the
configuration can prove to be very tricky in some cases; in extreme cases
it means that not only must the operating system be the same, at the same
version, but both operating systems must have the same patches applied
in the same patch order, and the compiler must be the same, the same
compiler version and the same compiler options used, not only options that
control optimization/debug but the use of exceptions, RTTI and multi-
threading. For example, I experienced a problem once when using a library
that required the developer use a special compiler option that worked
around a bug to do with the lifetime of temporaries in the Solaris compiler.

Other developer options
Use lowest common denominator C++ If the developer cannot get the vendor
to do any of the above, then the developer may be forced to adopt an
environment that is as close to the vendor’s as possible. This might mean
using an older version of the operating system and/or older compilers. The
use of older compilers could easily mean the developers must forgo using
a more modern dialect of C++. This might restrict them in the area of
templates and namespaces for example. Some parts of the STL that require
a lot of template support might no longer be available to them. If the
developer can put up with this then this might allow use of the commercial
library.
Use Service Oriented Architecture The developer might make the library
available as a service using CORBA or DCOM. An executable that offers
the service could be linked on a machine that matches what the vendor says
the customer must have. The customer can then use the facility via the
CORBA/DCOM service in the environment of their choice.
Influence compiler writers Until relatively recently the ABI issue was not
even being tackled by the developers of the same compiler. This is now
changing. For example, both the GNU compiler and Suns’ Studio
compilers are now trying to adhere to ABIs developed by the team
responsible for the compiler. This is an attempt to minimize ABI issues
provided one sticks to the same compiler. However, not every commercial
compiler is tackling the issue. Perhaps developers could try to put pressure
on the companies that produce these other compilers to follow the example
of GNU and Sun.
Influence the C++ standard C has a standard ABI on UNIX and Microsoft
Windows, but it is only a de facto one. Nonetheless this has worked
extremely well. However, there is no standard for a C++ ABI. Some people
consider that this is not an issue for the standards committee; they say this
is an issue for the vendors. If the vendors got together and a de facto
standard emerged then it would be similar to what evolved in the world of
C. This is not much help to the embattled developer.
It is proving hard enough for the same group of compiler writers to arrive
at a consistent version of the ABI for the same compiler. The chances for

complete interoperability between different versions of the compiler seem
slim indeed. Perhaps a compromise would be for the standards committee
to set a standard for name mangling. This is usually the first problem the
developer encounters when their application fails to link. Sometimes when
the developer and library environments are close (e.g. same operating
system version, compiler produced by the same vendor buPowert at
slightly different versions), same general dialect and features of C++ in
use, a common name mangling convention might be enough to get the
application to link successfully. At the very least it should serve to get those
compiler developers that have not yet done so to confront the issue.

Conclusion
The developers and vendors of commercial C++ libraries need to be aware
that not supplying the customer with the source code means they will have
to support all the popular customer compiler configurations. In the past this
meant offering libraries built with the current version of the commercial
compilers for Microsoft Windows and commercial Unixes. Now, the GNU
compiler needs to be included since it is becoming more widely used in
commercial software projects and there are efforts at GNU ABI
standardization. Potential customers will have to be aware that if they do
not have a compiler configuration that is extremely common in a
commercial environment then they may not be able to obtain a particular
C++ library that will work for them. Sometimes this means they might be
forced not to use the GNU compiler, or they might be forced to use a
different version of the commercial compiler they already have.
Sometimes they may get conflicting compiler version requirements if they
are using more than one commercial C++ library.
The effort at CodeSourcery shows that a number of vendors consider the
issue to be important enough to standardize on for at least the GNU
environment. This gives scope for some optimism. The ISO standard
23360, whilst not being specifically for C++, also shows that there is some
hope, at least for Linux. However, these are only recent developments.
They only apply in limited areas and, even there, require the compiler to
conform to the standard, something it typically takes some time to achieve.
In the meantime, it is not safe for developers to assume that library vendors
are aware of the issues. Neither should the developers assume any
commercial libraries they might to use will be available for their particular
compilation environment. These risks need to be identified very early on
in a project that chooses to use commercial C++ libraries. It forms an
essential part of any business case proposal for the purchase of a license
to use such libraries.

References
[1] http://developers.sun.com/sunstudio/articles/CC_abi/

CC_abi_content.html
[2] http://lists.freestandards.org/pipermail/lsb-discuss/2004-August/

002162.html
[3] http://cycliclogs.sourceforge.net
[4] http://www.codesourcery.com/cxx-abi/abi.html

The ABI specification for the LSB
[5] http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?

CSNUMBER=43781&scopelist=PROGRAMME Linux Standard
Base Core Specification 2.0.1

an unstable ABI is incompatible
with the safe use of shared libraries
DEC 2006 | | 13{cvu}

String Literals and Regular Expressions
Thomas Guest wrestles with regex.

ccording to the Draft Technical Report on C++ Library Extensions
[1] (more commonly known as TR1) regular expressions are making
their way into the C++ standard library. Actually, Boost [2] users

have had a regular expression library [3] for a while now. The library is
beautifully designed and easy to use but is let down by the limitations of
string literals.

String literals
Let’s go back to basics and examine a C++ string literal:
 char const * s = "string literal";

Here, the string literal comprises the sequence of characters s, t, ... l. The
double-quotes (") serve to delimit the contents of the string.
All’s fine until we need a double-quote inside the string:
 char const * s
 = "The "x" in C++0x will probably be 9";

This line of code gives a compilation error:
 error: expected ',' or ';' before "x"

since the first internal double-quote closed the string. But how can we
include a double-quote without closing the string?

Escape sequences
Here’s how: the backslash is treated as an escape character. That is to say,
normal interpretation of the string is suspended for a while – in this case
for a single character – allowing us to write:
 char const * s
 = "The \"x\" in C++0x will probably be 9";

Here, the internal double-quotes have been escaped, so they don’t close
the string literal but are in fact interpreted as double-quote characters
within the string itself. Yes, it’s confusing.

Literal backslashes
Now, if the backslash takes on a special meaning, how are we to insert a
literal backslash into the string? Simple – we must escape that too:
 char const * s
 = "A backslash \\ starts an escape sequence";

Here, despite first appearances, the string contains just a single backslash
character. We did say it was confusing! Which leads us on to ...

Regular expressions
Put string literals aside for now. We’re going to talk about regular
expressions (let’s call them regexes from now on). Regexes are used to find
and match patterns in blocks of text. Like string literals, regexes are
composed of sequences of characters, and, also like string literals, we need
to escape the usual meaning of characters in regexes.
Once again, the backslash, is used as the escape sequence prefix.

Ruby [4] embeds a powerful regex engine, so let’s use Ruby for our regex
examples. Here are some Ruby regex patterns:
 /w/
 /w+/
 /\w+/
 /"\w+"/
 /\\/

Notice here that the forward slash, is used as a delimiter and is not part of
the body of the regex pattern – just like the double-quote, ", was not part
of the body our string literals.
What do these regex patterns mean?

/w/ matches the character ‘w’.
/w+/ matches a sequence of one or more adjacent w’s.
/\w+/ matches one or more adjacent ‘word’ characters.
/"\w*"/ matches a double-quote delimited sequence of one or
more ‘word’ characters.
/\\/ matches a single backslash.

Did you notice that the backslash, gives the succeding w a special meaning?
Did you notice that the + has a special meaning within a regex (it means
one or more)? To match a literal +, we’d need to escape it like this: /\+/
And did you notice that to match a literal backslash we must escape it?
Good – but that was the easy bit!

Attempting to match a C++ string literal
Let’s suppose we want to use our regex pattern matching on some C++
code. Now, matching a C++ string literal is going to be tricky. A first
attempt, /".*"/, just won’t do because the .* is greedy and will eat up
everything until the final " in the text to be matched. So we might match
too much:
 char * s1 = "string", * s2 = "literal";
 ^---------match----------^

A non-greedy second attempt, /".*?"/, won’t do either since it gets
confused by an escaped double-quote in a string literal. So we might match
too little:
char const * s =
 "The \"x\" in C++0x will probably be 9";
 ^match^

Correctly matching a C++ string literal
To properly match a C++ string literal we need to apply the following
pattern: start with a double-quote; continue with a sequence of either
characters which aren’t the double-quote or the backslash or escape
sequences; then finish with a double-quote.
Precisely what makes up a valid escape sequence is a little fiddly; there
are octal and hexadecimal escapes, there are various whitespace
characters, and there are unicode values. We can however compose a
pattern using a suitable short-cut as follows:
 /"([^"\\]|\\.)*"/

We can read this as: a string literal starts with a double quote, followed by
any number of items which are:

either not a double-quote or a backslash

A

THOMAS GUEST
Thomas is an enthusiastic and experienced programmer. He has
developed software for everything from embedded devices to
clustered servers. His website is http://www.wordaligned.org and
you can contact him at thomas.guest@gmail.com
14 | | DEC 2006{cvu}

or are a backslash followed by any single character
and then finishes with a closing double-quote.
As you’ve probably spotted, we have to double up the backslashes in the
regex pattern because the backslash is used as an escape sequence; i.e. a
literal backslash is matched by the pattern \\.

Now let’s do it in C++
I’ll use the Boost [3] implementation since the compilers I have available
don’t support TR1 yet. We’re going to need to construct a boost::regex
using a pattern represented by a string literal. Which is where the problems
start. Of course we can’t write:
 boost::regex const string_matcher(
 /"([^"\\]|\\.)*"/);

because we haven’t passed a string literal to the boost::regex
constructor. In order to pass a string literal we’ll need to use double-quotes
instead of forward-slashes and we’ll have to escape the internal double-
quotes. Let’s try again:
 boost::regex
 const string_matcher("\"([^\"\\]|\\.)*\"");

Oh dear – the error moves to run-time. We get an exception:
 'Unmatched [or [^'.

This is because the closing square bracket] has been escaped by the time
it gets to the regex engine. Unfortunately the \\’s in the string literal
contract to just single backslashes. We need to redouble them.
 boost::regex const string_matcher(
 "\"([^\"\\\\]|\\\\.)*\"");

Here, each pair of backslashes has contracted to a single backslash by the
time the regex engine sees it, which – believe it or not – is what’s required.
This string_matcher works, but as code it is rather more cryptic than
communicative.

A complete C++ string literal matcher
A complete program for you to try is shown in Listing 1.

Raw strings in Python
Unlike Ruby, Python [5] doesn’t include support for regexes in the
language itself. Instead, regex support is provided by the standard regular
expression library [6].
Python’s flexible string literals allow us to simplify the regex pattern,
though. Here, we use a raw string [7], and we chose to delimit it with single-
quotes so we don’t need to escape the internal double-quotes.
 string_literal_pattern = r'"([^"\\]|\\.)*"'

This is nice. Basically, raw strings leave the backslashes unprocessed.
Raw strings aren’t just restricted to regex patterns, though perhaps that’s
their most common use.

Raw strings in C++?
C++ doesn’t support raw strings (at least, it doesn’t support them yet, and
I haven’t found them mentioned in TR1) – but it does support wide-strings,
indicated by the L prefix.
 cpp_wide_string = L"this is a wide string";

Maybe if we switched the L for an R we could allow raw strings into C++?
It would make regex patterns far more readable.

Verbatim strings in C++?
Alternatively ...
I’ve never used C# but googling suggests raw strings are supported and
rather nicely named ‘verbatim string literals’. C# uses the @ prefix to

indicate that a string literal is a verbatim string. Now, @ isn’t even part of
the C++ source character set, so maybe this too would be possible.

There’s no escape
The proliferation of backslashes when we combine regexes and string
literals is unfortunate. It could be worse. What if the backslash key had
fallen off our keyboard? Remarkably – and, as far as I know, uniquely –
C++ caters for this situation. A number source characters can be written
as ‘trigraphs’ – sequences of three characters starting ??. The backslash
is one such character: it can be written as ??/.
boost::regex const
 string_matcher("??/"([^??/"??/??/??/??/]|??/"
 "??/??/??/.)*??/"");

For completeness, we could also lose the |, [and] keys.
 boost::regex const
 string_matcher("??/"(??(^??/"??/??/??/??/"
 "??)??!??/??/??/??/.)*??/"");

The string literal used to initialise string_matcher is valid, but the
regex wouldn’t match it properly. I’ll leave the fix as an exercise for the
reader.

References
[1] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/

n1836.pdf
[2] http://boost.org
[3] http://www.boost.org/libs/regex/doc/index.html
[4] http://www.ruby-lang.org “Ruby Website”
[5] http://python.org
[6] http://docs.python.org/lib/module-re.html
[7] http://docs.python.org/ref/strings.html

#include <boost/regex.hpp>
#include <iostream>
#include <stdexcept>
#include <string>
int main(int argc, char * argv[])
{
 try
 {
 boost::regex const
 string_matcher("\"([^\"\\\\]|\\\\.)*\"");
 std::string line;
 while (std::getline(std::cin, line))
 {
 if (boost::regex_match(line,
 string_matcher))
 {
 std::cout << line
 << " is a C++ string literal\n";
 }
 }
 }
 catch (std::exception & exc)
 {
 std::cerr << "An error occurred: "
 << exc.what();
 }
 catch (...)
 {
 std::cerr << "An error occurred\n";
 }
 return 0;
}

Listing 1
DEC 2006 | | 15{cvu}

Loading a Container with a Range
Paul Grenyer looks for the simple solution.

Introduction
n this article I am going to look at the different methods of loading a
C++ container with a closed range of numbers. A closed range of
numbers includes the final number. Therefore the range 0 to 10 would

include the number 10. The container I am going to use for the examples
is vector. The container could equally be a list or another ordered container.
I recently came up against the problem of loading a vector with a range
and expected it to be easy. The obvious method of loading the vector is:

std::vector< int > myVec;
for (int i = 0; i < 10; ++i)
{
 myVec.push_back(i);
}

However I wanted to write a function that would load a vector with both
incrementing and decrementing ranges. Wrapped in a function, and with
a typedef added for clarity, the example above is a good implementation
for incrementing ranges:

typedef std::vector< int > VectorOfInt;
...

VectorOfInt LoadClosedRange(int first, int last)
{
 VectorOfInt result;
 for (int i = first; i != last; ++i)
 {
 result.push_back(i);
 }
 return result;
}

...

LoadClosedRange (0, 10);

However, as soon as it is used with a decrementing range, the loop over
fills the container with everything but the expected range:

LoadClosedRange(10, 0);

So I am going to look at the different ways of implementing
LoadClosedRange so that it works for both incrementing and
decrementing ranges and look at some test code along the way.
Those of you with efficiency in mind will have noticed that returning a
vector from LoadClosedRange is not the most efficient way to do things
as it requires each element of the result to be copied on return. This is a

valid argument, but one I am going to ignore for the relatively small ranges
I am going to be dealing with.

Testing
I am going to use the Aeryn [1] testing framework to unit test each of the
LoadClosedRange implementations to make sure they handle both
incrementing and decrementing ranges. I can also use Aeryn’s context
object facility to use the same test code for each Load implementation.
The easiest way to test if a Load implementation has loaded the right range
into a vector is to compare it to another vector which has the correct range.

Therefore the first things I need to create are some vectors with an
incrementing and decrementing range. This is easy to do at compile time,
as the range is known then, using a couple of arrays, as shown in Listing 1.
The best way to compare two objects with Aeryn is to use the IS_EQUAL
test condition macro. It uses operator== to compare objects. If two
objects are not equal but are streamable, it streams them to the Aeryn report
interface. Vector supports operator==, but isn’t streamable. However,
it is easy to add streamability to a VectorOfInt by implementing an
operator<< at file scope (in the global namespace):

inline std::ostream& operator<<(
 std::ostream& out, const VectorOfInt& range)
{
 std::copy(range.begin(),
 range.end(),
 std::ostream_iterator< int >(out, " "));
 return out;
}

Aeryn uses a class contributed by Anthony Williams to detect streamable
types. For user defined types it must be specialised. The specialisation for
VectorOfInt looks like Listing 2.

I

PAUL GRENYER
Paul has been a member of ACCU since 2000.
He founded ACCU Mentored Developers and
has written a number of articles for CVu and
Overload. Paul now contracts at an investment
bank in Canary Wharf. He can be contacted at
paul@paulgrenyer.co.uk

typedef std::vector< int > VectorOfInt;

namespace
{
 const int inc[] = {0,1,2,3,4,5,6,7,8,9,10};
 const int dec[] = {10,9,8,7,6,5,4,3,2,1,0};

 const VectorOfInt goingUp(inc,
 inc + sizeof(inc) /
 sizeof(inc[0]));

 const VectorOfInt goingDown(dec,
 dec + sizeof(dec) /
 sizeof(dec[0]));
}

Listing 1

returning a vector from
LoadClosedRange is not the most

efficient way to do things
16 | | DEC 2006{cvu}

IS_EQUAL uses IsStreamable::result to determine if the types it
is comparing are streamble. The above specialisation makes sure that it
always determines that VectorOfInt is streamable. Separate test
functions can be written to test incrementing and decrementing ranges (see
Listing 3).

A pointer to the LoadClosedRange function is passed to both functions
and used to load a vector. TestLoadInc tests the range 0 to 10 using
goingUp. TestLoadDec tests the range 10 to 0 using goingDown.
Now, instead of writing a separate test function for each Load
implementation they can simply be specified as a context object when the
test is registered (Listing 5).
For more details on registering tests and using context objects see the
Aeryn User Guide [2].

Load Implementation 1 – for loop
Now tha t the tes t code i s in p lace i t ’ s t ime to rev is i t the
LoadClosedRange function (Listing 4).
Plugging LoadClosedRange1 into the test gives the following output.

Test Set : loadTests

- LoadClosedRange1: (for loop) - TestLoadInc
c:\...\test_load.cpp(20): '0 1 2 3 4 5 6 7 8 9 10 '
does not equal '0 1 2 3 4 5 6 7 8 9 '

Ran 1 test, 0 Passed, 1 Failed.

This is the classic off by one error. It is clear from the test vectors,
goingUp and goingDown, that the range loaded should include both the
first value and the last value. This can be achieved by adding 1 to
last. This will fix the incrementing test, but will overwrite the vector
when running the decrementing part of the test. The solution is to test for
an incrementing or decrementing range and introduce a second for loop
(see Listing 6).
The test will now pass:
Test Set : LoadClosedRange1 (for loop)

 - LoadClosedRange1 (for loop) - TestLoadInc
 - LoadClosedRange1 (for loop) - TestLoadDec

Ran 2 tests, 2 Passed, 0 Failed.

This is a good simple solution that gets the job done. However, it has two
significant drawbacks:

1. Duplication of code. If the for loops need changing for any reason,
for example the values are inserted into the container using a
different function, then the code must be changed in two places.

2. If an unsigned int were used instead of an int, last – 1 where
last is initially zero, will cause last to overflow.
In order to remove the duplication the same for loop must be made
to increment as well as decrement. This can be done by modifying
the loop’s expression:
const int direction = last < first ? -1 : 1;
for (int i = first; i != last; i+= direction)
{
 result.push_back(i);
}

VectorOfInt LoadClosedRange1(int first, int last)
{
 VectorOfInt result;
 if (first < last)
 {
 for (int i = first; i != last + 1; ++i)
 {
 result.push_back(i);
 }
 }
 else
 {
 for (int i = first; i != last - 1; --i)
 {
 result.push_back(i);
 }
 }
 return result;
}

Listing 6

typedef VectorOfInt (*FuncPtr)(int,int);

void TestLoadInc(FuncPtr load)
{
 VectorOfInt vecToTest = load(0, 10);
 IS_EQUAL(goingUp, vecToTest);
}

void TestLoadDec(FuncPtr load)
{
 VectorOfInt vecToTest = load(10, 0);
 IS_EQUAL(goingDown, vecToTest);
}

Li
st

in
g

3

TestCase load1Tests[] =
{
 TestCase("LoadClosedRange1 (for loop) - TestLoadInc",
 FunctionPtr(TestLoadInc, &LoadClosedRange1)),
 TestCase("LoadClosedRange1 (for loop) - TestLoadDec",
 FunctionPtr(TestLoadDec, &LoadClosedRange1)),
 TestCase()
};

Li
st

in
g

5

namespace Aeryn
{
 namespace Williams
 {
 template<>
 struct IsStreamable< Range::VectorOfInt >
 {
 static FalseType testStreamable
 (const StreamableResult&);

 static TrueType testStreamable
 (...);

 static const bool result = true;
 };
 }
}

Li
st

in
g

2

VectorOfInt LoadClosedRange1(int first, int last)
{
 VectorOfInt result;
 for (int i = first; i != last; ++i)
 {
 result.push_back(i);
 }
 return result;
}

Li
st

in
g

4

DEC 2006 | | 17{cvu}

This, of course, reintroduces the off by one error and cannot be solved by
simply adding 1 to last as decrementing ranges would miss the final two
numbers in the sequence. So when the sequence is incrementing 1 must
be added to last and when the sequence is decrementing 1 must be taken
away from last. This can be achieved as follows:
const int direction = last < first ? -1 : 1;

for (int i = first;
 i != last + direction;
 i+= direction)
{
 result.push_back(i);
}

This is a reasonable solution. However it doesn’t solve the unsigned
int drawback described above. This can be solved removing the
adjustment of last and placing a call to push_back after the for loop:

const int direction = last < first ? -1 : 1;
int i = first;
for (; i != last; i+= direction)
{
 result.push_back(i);
}
result.push_back(i);

This of course reintroduces the duplicate code drawback as push_back
is used in two places, but not as severely as before as there is only a single
loop. This drawback can be reduced further by introducing a function
(Listing 7).

Load implementation 2 – STL solution
The for loop presents a reasonable solution, but shouldn’t there be
something in the STL to make this easier and more expressive? There is
certainly an STL algorithm that could be argued to make the solution more
expressive: std::generate_n. The C++ standard [3] describes it as
follows as shown in the sidebar.
The implementation of the LoadClosedRange function using
std::generate_n requires a functor to maintain some state and looks
like Listing 8.
The functor maintains and returns, by way of the function operator, the
current number in the range and increments or decrements it through each
iteration. The first and last values in the range are used to determine if the
range is incrementing or decrementing.

The first argument of std::generate_n updates the
supplied container via an iterator. std::back_inserter
is used here as new elements must be inserted into the vector.
The second argument is the number of times the functor’s
function operator is invoked and therefore the number of
numbers in the range. Section 25.2.6/1 from the standard, in
the sidebar, describes the half-open range behaviour of
std::generate_n. We need to include all the numbers in
the range, which is determined by the difference between
first and last. 1 must be added to accommodate the half-
open range behaviour of std::generate_n.. As first
can be less than last the difference can be negative, so
std::abs is used to ensure it is always positive.
From a functionality point of view this is the perfect solution
to the problem. It handles incrementing and decrementing
ranges, the off by one error and there is no code duplication.
It separates the concerns of generating the range and
inserting it into the container. The only draw back is the extra

25.2.6 Generate
template<class ForwardIterator, class Generator>
void generate(ForwardIterator first,
 ForwardIterator last,
 Generator gen);

template<class OutputIterator, class Size, class Generator>
void generate_n(OutputIterator first,
 Size n,
 Generator gen);

1. Effects: Invokes the function object gen and assigns the return value of gen
though all range [first, last) or [first, first + n).

2. Requires: gen takes no arguments, Size is convertible to an integral type
(4.7, 12.3).

3. Complexity: Exactly last - first (or n) invocations of gen and
assignments.

C++ Standard Definition

inline void append(VectorOfInt& cont, int value)
{
 cont.push_back(value);
}

VectorOfInt LoadClosedRange1(int first, int last)
{
 VectorOfInt result;
 const int direction = last < first ? -1 : 1;

 int i = first;
 for (; i != last; i+= direction)
 {
 append(result, i);
 }
 append(result, i);
 return result;
}

Listing 7

class RangeGen
{
public:
 RangeGen(int first, int last)
 : current_(first), step_(first < last ? 1 : -1)
 {
 }

 int operator()()
 {
 int result = current_;
 current_ += step_;
 return result;
 }

private:
 int current_;
 int step_;
};

VectorOfInt LoadClosedRange2(int first, int last)
{
 VectorOfInt result;
 RangeGen rangeGen(first, last);
 std::generate_n(std::back_inserter(result),
 std::abs(last - first) + 1,
 rangeGen);
 return result;
}

Listing 8
18 | | DEC 2006{cvu}

code required for the functor. However that is often the way when using
the STL.

Testing revisited
I have presented here two different ways of loading a vector with a range
and tested each method using an incrementing and decrementing range.
However, each range contains only positive numbers and the function
signature for load can take positive or negative integers. Therefore some
tests should be added to cater for ranges with negative numbers. This is
easily done and is shown in Listing 9.
After adding and registering the new test functions all the tests still pass
showing that the Load implementations can all handle ranges with
negative numbers as well. For complete test coverage tests for corner cases
such as, but not restricted too, load(0,0) and load(0,1) should also
be added. This is left as an exercise for the reader.

Conclusion
Either of the two methods of loading a vector with a closed range presented
here will do the job acceptably. The for loop is the simplest implementation
and the main advantage is that it uses the least code. However I favour the
STL solution as it is free to take advantage of any implementation defined
optimisations as per Scott Meyers Effective STL [4] item.

References
[1] Aeryn – A C++ Testing Framework: http://www.aeryn.co.uk
[2] Aeryn User Guide: http://aeryn.tigris.org/download/

aeryn_user_guide.pdf
[3] The C++ Standard. ISBN: 0 470 845732
[4] Effective STL: 50 Specific Ways to Improve Your Use of the Standard

Template Library by Scott Meyers. Item 43: ‘Prefer algorithm calls
to hand-written loops.’ ISBN: 0-201-74962-9

Acknowledgments
Thank you to James Slaughter, Paul Smith, Frances Buontempo, Morten
Boysen, Tim Penhey, Simon Sebright, Jez Higgins, Peter Hammond and
Kevlin Henney for help with this article and background material.

namespace
{
 ...
 const int negativeInc[]
 = {-5,-4,-3,-2,-1,0,1,2,3,4,5};

 const int negativeDec[]
 = {5,4,3,2,1,0,-1,-2,-3,-4,-5};

 const VectorOfInt negativeGoingUp(
 negativeInc,
 negativeInc +
 sizeof(negativeInc) /
 sizeof(negativeInc[0]));

 const VectorOfInt negativeGoingDown(
 negativeDec,
 negativeDec +
 sizeof(negativeDec) /
 sizeof(negativeDec[0]));
}

void TestLoadNegInc(FuncPtr load)
{
 VectorOfInt vecToTest = load(-5, 5);
 IS_EQUAL(negativeGoingUp, vecToTest);
}

void TestLoadNegDec(FuncPtr load)
{
 VectorOfInt vecToTest = load(5, -5);
 IS_EQUAL(negativeGoingDown, vecToTest);
}

Li
st

in
g

9

DEC 2006 | | 19{cvu}

20 | | DEC 2006{cvu}

Meet-Up Report
Ryan Alexander reports on the first London regional meeting.

s Jez mentions in “View from the Chair”, ACCU as an organisation is
getting more active in helping with local get togethers. The intention
is to have a speaker talking on some hopefully relevant topic. This will

just be another string to the ACCU bow.

A part of this formalisation process is to get reports back from those that
attent the meetings, so other members can get an idea of what is going on,
and hopefully either go to an existing one, or get motivated to start their own
in their area. Here we have the first of the reports to filter back, form the first
London meet-up.

 Tim Penhey

The first ACCU London meeting!
On the first of November, ACCU had what will hopefully be the first of
many London meetings. Hosting our first event were Richard Harris and
Asti Osborne. Their flat in Bermondsey was a wondeful venue, spacious,
and right on the river, a very enviable space indeed! I was quite surprised
at how many chairs they were able to get in there.
I would say at a rough guess we had about 20 people in attendance
including some faces familar to me including such as Paul Grenyer (who
was also foolish enough to ask the new kid for a write up, how am I doing
Paul?)
As I understand these talks have been quite some time in coming, since
I’m a recent joiner myself I can’t speak for anyone else as regards timing.
For me, given that they started barely a month after I joined up, I thought
the timing was quite considerate on their part, I don’t have to feel like I
missed anything.
Speaking of missing something, if you weren’t there, you did. Starting us
off in grand fashion for our first talk was none other than Kevlin Henney
himself, presenting a slightly shortened, yet still quite rousing version of
a talk titled A Critical View of C++ Practices. While I only recently joined,
I did attend the ACCU conference in Oxford in 2005, and I believe I recall
Kevlin speaking at that same conference on patterns. His style is well-
paced, fast and dense, precisely the kind of thing you’re looking for in
conference that you’ve paid to go to. If you’re going to hear him speak be
prepared to keep up. It was of course, doubly challenging for me due to
less experience with C++, however, I did still get a lot out of the talk, since

the talk was on practices and there
are lessons to be learned by any
programmer in that area.
After burning our way through
(some of) what is wrong with the
state of C++, like any civilized
group we retired to a nearby pub
(also on the Thames, lovely view.)
to continue our conversations in a
(only slightly, did I mention how
nice Richard and Asti’s flat is?)
more conducive environment.
Sadly having been just on the tail
end of a cold myself at the time, I
needed to stick to less inebriating
refreshments. I quite look forward
to the next talk and hopefully
being in better health to both enjoy
the t op i c s and p rop e r
conversations afterwards!

A

RYAN ALEXANDER
Ryan Alexander is a relatively new member of ACCU. He can be contacted
at rnalexander@gmail.com

join accu

How to join
Go to www.accu.org and

click on Join ACCU

Membership types
Basic personal membership

Full personal membership
Corporate membership

Student membership

You've read the magazine.
Now join the association
dedicated to improving your
coding skills.

ACCU is a worldwide non-profit
organisation run by
programmers for programmers.

Join ACCU to receive our bi-
monthly publications C Vu and
Overload. You'll also get
massive discounts at the ACCU
developers' conference, access
to mentored developers
projects, discussion forums,
and the chance to participate
in the organisation.

What are you waiting for?

professionalism in programming
www.accu.org

Code Critique Competition # 43
Set and collated by Roger Orr.

lease note that participation in this competition is open to all
members, whether novice or expert. Readers are encouraged to
comment on published entries, and to supply their own possible code

samples for the competition to scc@accu.org

Before we start
Remember that you can get the current problem from the accu-general mail
list (next entry is posted around the last issue’s deadline) or from the ACCU
website (http://www.accu.org/journals/). This also helps people living
overseas who get the magazine much later than members in the UK and
Europe.

A small change of name
You will see that the column as now simply “Code Critique Competition”.
We felt that the word ‘Student’ in the original title was discouraging some
people from entering the competition (and perhaps from supplying
possible code for critique).

Code Critique 42 entries
There is a string class that sometimes gives unexpected failures. Here’s a
simple test program that asserts with one compiler – but only in debug –
and works with another. Please explain the assert failure and critique the
code.

#include "MyStr.h"
#include <assert.h>

int main()
{
 MyStr s;
 assert(s == "");
 s = "10";
 assert(s == "10");
}

The header file for MyStr is:

#include <string.h>

class MyStr
{
public:
 MyStr(char const * str = 0);
 MyStr(const MyStr& str);
 const MyStr& operator=(const MyStr& str);
 ~MyStr() { delete [] myData; }

 bool operator==(const MyStr& d) const;
 friend bool operator==(const MyStr& lhs,
 char const * rhs);
 friend bool operator==(char const * lhs,
 const MyStr& rhs) { return rhs == lhs; }

 void alloc(unsigned N) const
 {
 MyStr *nc = const_cast<MyStr*>(this);
 char * od = nc->myData;
 nc->myData = new char[N];

 nc->mySize = N;
 copyStr(myData, od);
 delete [] od;
 }

 void copyStr(char* d, char const* s) const
 {
 if(s == NULL)
 d = NULL;
 else
 strcpy(d,s);
 }

 operator char *() const { return myData; }

 // more methods unused in test not shown
private:
 char * myData;
 unsigned mySize;
};

inline MyStr::MyStr(char const * str)
: myData(NULL), mySize(0)
{
 if(str == NULL) return;
 unsigned newlen = strlen(str) + 1;
 alloc(newlen);
 copyStr(myData, str);
}

inline MyStr::MyStr(const MyStr& str)
: myData(NULL), mySize(0)
{
 if(str.myData == NULL) return;
 unsigned newlen = strlen(str.myData) + 1;
 alloc(newlen);
 copyStr(myData, str.myData);
}

inline const MyStr& MyStr::operator=(
 const MyStr& str)
{
 if(str.myData == NULL)
 { myData = NULL; mySize = 0; }
 else
 {
 unsigned newlen = strlen(str.myData) + 1;
 if(newlen > mySize)
 alloc(newlen);
 copyStr(myData, str.myData);
 }
 return *this;
}

P

ROGER ORR
Roger has been programming for 20 years, most
recently in C++ and Java for various investment
banks in Canary Wharf. He joined ACCU in 1999
and the BSI C++ panel in 2002. He may be
contacted at rogero@howzatt.demon.co.uk
DEC 2006 | | 21{cvu}

inline bool MyStr::operator==(const MyStr& d)
 const
{
 if(myData == d.myData) return true;
 if(myData == NULL || d.myData == NULL)
 return false;
 return !strcmp(myData, d.myData);
}

inline bool operator==(const MyStr& lhs,
 char const * rhs)
{
 if(lhs.myData == NULL && rhs == "")
 return true;
 else if(lhs.myData == NULL) return false;
 else return !strcmp(lhs.myData, rhs);
}

From Nevin :-] Liber < nevin@eviloverlord.com>
Before diving into the code, let’s take a step back and talk about strings.
In C, a string is modeled by a char*, which is either a pointer to characters
terminated with a '\0', or a NULL pointer.
In the C++ Standard Library, a std::string is an object that keeps track
of the characters as well as a count of the characters, and that count does
not include a terminating '\0' (and '\0' characters may be embedded in the
string).
Now, here are the class invariants for MyStr:

MyStr::myData is a pointer to the character buffer, which is
allocated on the heap.
MyStr::mySize is a count of characters, including a terminating
'\0'.
Special case: when MyStr::myData == NULL, MyStr::mySize
== 0 (and vice versa).
Combining the last two bullet items, the empty string is represented
by MyStr::mySize <= 1.

This is a fairly complicated model. My first inclination is to simplify this
(either use a terminating '\0' or a count of characters but not both, only one
representation of an empty string, etc.). However, the problem states that
there are more public methods that are not shown here, so I can’t really
change it without breaking those methods.

On to code issues

General comment: there is one more invariant which is assumed by the
code as written: namely, there are no embedded '\0' within the string, other
than the terminating one. I’ll note places where this assumption is made.
Given the methods we have seen so far, the only legal way this could
happen is someone modifying the buffer they got by calling
MyStr::operator char*() const (to address this and other issues,
a little bit later in this article I will propose changing the signature of this
operator). It is also reasonable to assume that some of the unspecified
public methods might also do this.
void MyStr::alloc(unsigned N) const: This is a routine for
growing the allocated space in a string. It should not be a const member
function, because it modifies all the member variables, using a very
roundabout way (const_casting this to the non-const pointer nc).
void MyStr::copyStr(char* d, char const* s) const: since
this function is not dependent on any member variables, it really should
be declared static, not const. It also has a bug, in that the statement d =
NULL; effectively does nothing; it should read *d = NULL;. It also
assumes that d != NULL and that the buffer which d points to is large
enough to hold a copy of s.
MyStr::operator char*() const: Since the contents of the buffer
are part of the class invariants (either the pointer is NULL or the buffer
terminates with a '\0'), it is not a good idea to let the caller modify the buffer.

This should really be declared MyStr::operator char const*()
const.
MyStr::MyStr(MyStr const& str): Assumes no embedded '\0'
characters.
unsigned MyStr::mySize: Since mySize is really filled in by
strlen(), its type should be size_t, not unsigned.
MyStr const& MyStr::operator=(MyStr const& str): there
are lots of issues here.
The return type of operator= should be MyStr&, not MyStr const&.
This could prevent MyStr objects from being stored in standard containers
(see Exceptional C++, item #41, for more details).
If myData != NULL && str.myData == NULL, there is a memory
leak, as the memory pointed to by myData is not delete []-ed.
If newLen < mySize, mySize is not set to the correct value. Assumes
no embedded '\0' characters.
bool MyStr::operator==(MyStr const& d) const: Assumes
no embedded '\0' characters.
bool operator==(MyStr const& lhs, char const* rhs):
NULL dereference when rhs == NULL && lhs.myData != NULL.
rhs == "" compares two pointers, not the buffers to which they are
pointing.

Those pesky asserts

An assert only fires in debug because assert is a macro, not a function. In
a release build, the code inside the assert is never executed (and hence one
must be very careful not to put code with side effects inside an assert).
So why does the first assert in main sometimes fire, depending on the
compiler? I t is a combination of the rhs == "" in bool
operator==(MyStr const& lhs, char const* rhs) const,
and that some compilers pool string literals. What pooling string literals
does is whenever two string literals are exactly the same, they are only
stored once, and will end up having the same address for everyone who
uses them.

Here is the call chain
MyStr s;
 s.myData = NULL;
 s.mySize = 0;

assert(s == "");
 operator==(s, "");
 if (lhs.myData == NULL && rhs == "") return true;
 if (true && "" == "") return true;

If strings are pooled, "" == "" will return true because both instances
of the literal "" have the same address. This causes operator== to return
true, and the assert doesn’t fire.
If strings aren’t pooled, "" == "" returns false, and we move on to the
next line of code:

 else if (lhs.myData == NULL) return false;
 if (true) return false;

operator== returns false, and the assert fires.

Fixing the code

There are lots of subtle issues with this code. I also found it difficult to
reason what was going on in a lot of it. Because of this, I am choosing to
rewrite it instead of just fixing the bugs. Hopefully, I’ve made it a bit
simpler (no casts, simple helper functions with good names, etc.) However,
I am still constrained to the class invariants of the original.
Here is my rewrite, with comments explaining the reasoning behind my
changes:
22 | | DEC 2006{cvu}

#ifndef MYSTR_H_
#define MYSTR_H_
#include <algorithm> // for std::swap
#include <cassert> // for assert
#include <string.h>

class MyStr
{
 // Switched the order of the member
 // variables, because I am going to use the
 // value of mySize in the construction of
 // myData
 // Changed the type of mySize from unsigned
 // to size_t, to match strlen(...)
 size_t mySize;
 char* myData;

 // Helper function which determines if
 // string is empty based on its size
 static bool empty(size_t theSize)
 { return theSize <= 1; }

 // Helper function to compare a MyStr with a
 // char const* and its length
 // If the strings are both empty, return
 // true; otherwise,
 // If the strings have a different size,
 // return false; otherwise,
 // Compare the buffers via memcmp
 bool equalTo(char const* yourData, size_t
 yourSize) const
 {
 return empty(mySize) && empty(yourSize) ||
 mySize == yourSize &&
 !memcmp(myData, yourData, yourSize);
 }

 // Helper function to determine the size of
 // a char const* which is consistent with
 // the class invariants of MyStr
 // if !data, size == 0; otherwise,
 // size == strlen(data) + 1
 static size_t size(char const* data)
 { return data ? strlen(data) + 1 : 0; }

 // Helper function to new [] a buffer and
 // copy the srcData into it
 // Assumes srcSize <= destSize
 // Only allocates the buffer when
 // 0 < destSize; otherwise returns NULL
 // When srcSize < destSize, the rest of the
 // buffer is uninitialized
 static char* newCopy(char const* srcData,
 size_t srcSize, size_t destSize)
 {
 char* destData(destSize ? new
 char[destSize] : 0);
 memcpy(destData, srcData, srcSize);
 return destData;
 }

 // Helper function to new [] a buffer and
 // copy the srcData into it,
 // when we want the new buffer to be the
 // same size as srcSizse
 static char* newCopy(char const* srcData,
 size_t srcSize)
 { return newCopy(srcData, srcSize, srcSize); }

public:
 // All the work has been moved into the

 // member initializer lists
 // In general I find this far less error
 // prone
 MyStr(char const* myStr = 0)
 : mySize(size(myStr))
 , myData(newCopy(myStr, mySize))
 {}

 // All the work has been moved into the
 // member initializer lists
 // In general I find this far less error
 // prone
 MyStr(const MyStr& that)
 : mySize(that.mySize)
 , myData(newCopy(that.myData, mySize))
 {}

 // Public helper function which swaps the
 // guts of a MyStr
 // This is non-throwing
 void swap(MyStr& that)
 { std::swap(mySize, that.mySize);
 std::swap(myData, that.myData); }

 // Returns a MyStr&, not a MyStr const&,
 // so that it can be used in standard
 // library containers
 // Strong exception safety guarantee
 // Easy to reason what is happening here, as
 // all the work is now in the
 // constructor and destructor
 // 1. Copy construct the parameter into rhs
 // 2. Swap our guts with the guts of rhs
 // 3. When rhs goes out of scope, our old
 // guts are cleaned up
 // In general, I find this far less error-
 // prone
 MyStr& operator=(MyStr rhs)
 { swap(rhs); return *this; }
 ~MyStr()
 { delete [] myData; }

 // Make all the operator== friends, so that
 // they have the same form
 // Calls the helper equalTo to do the work
 friend bool operator==(MyStr const& lhs,
 MyStr const& rhs)
 { return lhs.equalTo(rhs.myData,
 rhs.mySize); }
 friend bool operator==(MyStr const& lhs,
 char const* rhs)
 { return lhs.equalTo(rhs, size(rhs)); }
 friend bool operator==(char const* lhs,
 MyStr const& rhs)
 { return rhs == lhs; }

 // Made this return a char const* instead of
 // a char*
 // Note: this change may break other code;
 // breakage compiler detectable
 operator char const*() const
 { return myData; }

 // Made this a non-const member function
 // Note: this change may break other code;
 // breakage compiler detectable
 // Asserts if mySize > N
 // Strong exception safety guarantee
 // Uses the same type of swapping logic as
 // operator=
 void alloc(unsigned N)
DEC 2006 | | 23{cvu}

 {
 assert(mySize <= N);
 if (mySize < N)
 {
 MyStr that;
 that.myData = newCopy(myData, mySize,
 that.mySize = N);
 swap(that);
 }
 }

 // I consider this an unsafe interface
 // I am only leaving it in for backwards
 // compatibility (since it is a public
 // function)
 // Asserts when d == NULL
 // Made this a static member function
 static void copyStr(char* d, char const* s)
 { assert(d); if (s) strcpy(d, s);
 else *d = '\0'; }
};

namespace std
{
 // Specialization of std::swap to use the
 // more efficient, non-throwing
 // implementation
 // Useful in things like standard library
 // containers and algorithms
 template<> inline void
 swap<MyStr>(MyStr& lhs, MyStr& rhs)
 { lhs.swap(rhs); }
}
#endif /* MYSTR_H_ */

I'm just hoping the above code won’t be the subject of the next Student
Code Critique... :-)

From Simon Sebright <simon.sebright@ubs.com>

Me: Ah, hello again
Student: [Looks sheepish] Hello

[Bit of a pause]

Student: Erm, I was... did you get my email about my problem?

Me: I did indeed
Student: Do you think you might be able to help me?

Me: No, not at the moment, but I will help you to help yourself. What have
you done so far to diagnose the situation?
Student: Er, well, I compiled it fine

Me: Fine, huh? With what settings:
Student: Settings? Well, default I suppose

Me: Right, go and find out about the warning levels the compiler has. Set
it to maximum, tell the compiler to treat warnings as errors and then let’s
see how far we get
Student: Max level, warnings as errors, OK. Yes, alright then, I’ll,
um, give it a go and get back to you

Me: Well, hopefully you won’t need to!
Student: Well I did what you said and…

Me: Don’t do it ’cause I said, do it to give yourself the best chance of the
compiler helping you. So, what did you find?
Student: Well, I got 4 warnings. Three about converting size_t to
unsigned int, but I can ignore those, and one...

Me: Hang on a minute, why do you think you can ignore those warnings?
Student: Well, I looked at the code and worked out that the ranges
are compatible

Me: OK, suppose you are in your first job and this code is being run in
company’s product. What if you leave, and someone else takes over,
they’ll just have to do the same analysis again.
Student: I’ll put a comment in then

Me: NO!!! Say it in code. Change the compiled code to get rid of it. Right,
what about that 4th warning?
Student: Oh, yes, the other one. Something about comparing an
address and a string constant. Not sure what it means

Me: Right, this is the line if(lhs.myData == NULL && rhs ==
""), is it not? What’s it doing?
Student: Well, it’s just checking to see if we’ve got nothing
ourselves, and we are being asked to compare with an empty string

Me: No, I said what is it doing, not what do you think it is doing. Look at
that bit rhs=="". What does that do?
Student: Well, it sees if rhs is empty?

Me: What is rhs?
Student: It’s a string

Me: Really?!
Student: [beginning to twig that something is up] it’s a char const star

Me: Right! And what are you comparing it to?
Student: A string. No hang on, a const char… ah, it’s comparing
the addresses of the strings! How the hell did it ever work at all?

Me: Well, when you put a string literal in your code, the compiler will put
it in the compiled code, and can choose where it goes, as long as the content
is corrrect. This applies even for this empty string, because the memory
needed for this is not in fact zero chars but…?
Student: Er, ah, one, for the null terminating character

Me: Exactly, so when you write "" in your code the compiler has a little
bit of memory with one null character in it, but there is no guarantee that
all places you write "" will have the same place in memory, and we said
earlier we comparing memory here.
Student: Ah, so I need to check the content of the string instead of
where it is. Doh, that’s what I’m doing further down the function.
Great, got it now, thanks, bye

Me: Woh, not so fast!
Student: Huh?

Me: You do realise that when you are featuring anything to do with ACCU,
that you will get full advice on everything you are doing wrong, don’t you?
Student: ACCU, what’s that?

Me: Find out and join, it’ll do you good. Anyway, here is a list of things
I noted when looking at your project. If I don’t note these, I’ll never win…

1. warning C4130: '==' : logical operation on address of string constant
&& rhs == "" (we’ve dealt with this now)

2. assignment operator: myData = NULL – memory leak if already
assigned

3. strCopy:
 if(s == NULL)
 d = NULL;

useless assignment, string is unaffected, local variable changed. Do
you mean *d = '\0' to have an empty string?

4. one of the global == operators doesn’t need to be a friend
5. duplicate logic in constructors and assigment operator, length

calculation, strcmp. Could have implemented with common
helper. Read up on implementing assignment with copy constructor
and swap()

6. self assignment not protected (see comment about swap(), this
then wouldn’t be a problem)

7. implementation functions public - alloc(), copyStr(): why?
24 | | DEC 2006{cvu}

8. alloc() separated from strCopy(), these two should always be
done together, enforce it

9. use of int variable by default, be explicit
10. if you work in a professional company, they won’t appreciate

classes called MyXxxx. Give it a useful, neutral name
11. have a think about how your member operator== will behave if

one side has myData of NULL, and the other has non-null myData
which is empty.

12. you could have implemented the comparison operators with one
common function (after null checks), consider how you would have
gone about making comparison case-insensitive, for example. In
fact, if you had made the member operator== a non-member,
then either side could be implicitly converted from const char*
to const MyStr&, so you wouldn’t have needed the other two!

Student: Er, right, it’s not that straightforward writing a string class,
is it?

Me: No, even the stl string comes in for a slating, although more because
of its huge interface than the fact that it doesn’t work!
Student: Hmmm! [Looks a little sheepish]

Me: Still, it’s a good exercise to hone your C++ knowledge, as we’ve seen,
but in real life, prefer to use an implementation which is provided!
Student: Yes, thanks. I’ll go away and study this list. Bye…

Me: Bye

From Michal <michal_hr@yahoo.pl>
I see two errors in this code:

1. In the inline bool operator==(const MyStr& lhs, char
const *rhs) most interesting is the first "if" statement: if
(lhs.myData==NULL && rhs=="")...
The second comparison (rhs=="") is incorrect.
Why ? The following example explain this:

 const char* s1="something"; //1
 const char* s2="something"; //2
 if (s1==s2) {
 cout<<"Equal"<<endl;
 } else {
 cout<<"Not equal"<<endl;
 };

The output from the code above is implementation dependent. If
compiler allocated single something string then s1 and s2 point to
the same memory address and output is Equal.
But it’s also legal for compiler to allocate two copies of something
string and then s1 and s2 point to two different memory addresses.
Because operator== is called at line assert(s==""); the
result depends on how the compiler allocates "" string from the
above line and "" string from the rhs=="" statement.
If there is only one "" string allocated then operator== returns
true and assert will not fail. Otherwise false is returned and
program is stopped at line assert(s==""). I believe that in the
debug mode compiler makes two copies of "" string and therefore
operator== fails. To avoid this problem there should be: if
(lhs.myDate == NULL && !strcmp(rhs,"")...There is not
problem with second assert as it’s lhs.myData is not NULL so
string are compared with strcmp function.

2. The second problem is with operator char *() const
{return myData;} Const function should not allow to change
object state. This function doesn’t meet this criteria as it returns
char * pointer which may be modified. This way we can modify
const object.
To avoid it this operator should return const char *:
operator const char *() const {return myData;}

Anyway it doesn’t have any impact on program output as this
operator is not called.

I have also a few minor comments:
header file code should be surrounded with directives:

 #ifndef INCLUDED_MYSTR
 #define INCLUDED_MYSTR
 /* header code */
 #endif

This way we don’t have trouble (multiple definitions) if header is
included multiple times.
assignment operator should return reference to the value which is
not reference to const. Additionally it should check if there is self
assignement:

 inline MyStr& MyStr::operator=(const MyStr&
 str) {
 if (this == &str) return *this;

 }

operator new should be either non-thrown:
 nc->myData = new (std::nothrow) char[N];
 if (nc->myData == NULL)
 //handle lack of memory

or should catch std::bad_alloc exception:
 try {
 nc->myData = new char[N];
 ...
 } catch (const std::bad_alloc &ref) {
 //handle lack of memory
 }

Commentary
I came across this code in production use and was rather taken with it; it
was amazing the code worked as well as it did.
My own preference would be to delete the class completely and replace it
with std::string but sadly this sort of refactoring was not possible for
various, mostly non-technical, reasons.
My role was to port the existing code base from one compiler to another
and it was while doing this that I came across the item which I turned into
the assert failure.
As Nevin points out, the behaviour of the operator== is highly
dependent on whether the compiler does string pooling. The code I was
porting broke at runtime because the source compiler shared string literals
for "" across the whole program whereas the compiler I was porting to
only shared string literals within the same object file.
Fixing code like this is notoriously difficult. What makes it so hard?
Firstly the original code is hard to understand and so working out what it
actually does is non-trivial.
Secondly string classes are fundamental and so any changes to the
implementation involves recompiling and retesting the whole code base.
Also, as Simon said, “it’s not that straightforward writing a string class, is
it?”.
Thirdly in some places (such as in comparing strings against "") the code
relies on the ‘broken’ behaviour, so attempts to change things might cause
other repercussions.
As an example, changing the operator char*() const to operator
const char*() const broke some code elsewhere as the overload set
considered was different, but the problem only surfaced at runtime.
I made some use of private: in the migration to a slightly safer
implementation – making unsafe operators private and then fixing all the
code that failed to compile to use new, safer, methods. One of the
difficulties with operator overloading is how hard it is to search through
the code for all uses of the overloaded operator!
DEC 2006 | | 25{cvu}

 The Winner of CC 42
The winner of CC 42 is: Simon Sebright, by a short head. One of the things
I liked about his critique was the inclusion of helps for the student to learn
the technique of finding and resolving bugs for themselves.

Code Critique 43

(Submissions to scc@accu.org by 8th January)

This code is designed to provide a simple encryption of plain text, and
main is a test harness than encrypts and then decrypts the text.
These seems to be a problem with displaying the encrypted text for strings
with spaces:
 crypt "a test"

Please comment on the specific bug and the code as a whole.

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

void strreverse(char *src, char *dest) {
 int i=0, j;
 for(j= strlen(src)-1; j>=0;j--)
 {
 dest[i++] = src[j];
 }
}

bool encrypt(const char *input, char *output,
 bool encode)
{
 char buffer[80] = {0};

 const char *src = input;
 char *dest = buffer;

 srand(strlen(src));
 int seed = rand();

 while (*src)
 {
 int minVal,maxVal;

 minVal = maxVal = 0;
 int charVal = (int)*src;

 if(charVal >= 33 && charVal < 48)
 {
 minVal = 33; maxVal = 48;
 }
 else if(charVal >= 48 && charVal < 58)
 {
 minVal = 48; maxVal = 58;
 }
 else if(charVal >= 58 && charVal < 65)
 {
 minVal = 58; maxVal = 65;
 }
 else if(charVal >= 65 && charVal < 91)

 {
 minVal = 65; maxVal = 91;
 }
 else if(charVal >= 91 && charVal < 97)
 {
 minVal = 91; maxVal = 97;
 }
 else if(charVal >= 97 && charVal < 123)
 {
 minVal = 97; maxVal = 123;
 }
 else if(charVal >= 123 && charVal < 127)
 {
 minVal = 123; maxVal = 127;
 }
 else if (charVal < 33 || charVal > 126)
 {
 return false;
 }

 int range = maxVal - minVal;
 int key = maxVal % range;
 int delta = range - key;
 if (encode)
 {
 if(charVal < maxVal - key)
 sprintf(dest, "%c", (charVal + key));
 else
 sprintf(dest, "%c",
 (charVal - delta));
 }
 else
 {
 if(charVal >= minVal + key)
 sprintf(dest, "%c", (charVal - key));
 else
 sprintf(dest, "%c", (charVal + delta));
 }
 *dest++;
 *src++;
 }
 *dest = '\0';

 char revBuffer[80]={0};
 strreverse(buffer,revBuffer);
 strcpy(output,revBuffer);
 return true;
}

int main(int argc, char **argv)
{
 for (int i = 1; i < argc; i++)
 {
 char *input = argv[i];
 char output[80];
 encrypt(input, output, true);
 printf("%s\n", output);
 encrypt(output, input, false);
 printf("%s\n", input);
 }
}

Prizes provided by Blackwells Bookshops & Addison-Wesley
26 | | DEC 2006{cvu}

DEC 2006 | | 27{cvu}

Standards Report
Lois Goldthwaite announces the forthcoming publication of a

revised standard.

othing focuses the mind better than a deadline! The lead story from
Portland is that the international C++ committee have made a firm
commitment to publish a revised standard by fall 2009.

Counting backwards from the publication date gives the milestones that
have to be met along the way. The ISO process requires three ballots by
national standards bodies of the world before a document becomes a
standard, and each of those ballots requires several months to complete –
– partly a hangover from the days when documents and official letters were
shipped around the world by boat, and partly to give national experts the
time to devote some serious study to their decision. That is why producing
standards in ISO takes longer than in groups whose formal process can
only be described as dash-it-off-and-
ship-it-while-the-ink-is-still-dripping-
we’ll-fix-glaring-problems-when-we-
issue-the-next-revision-in-six-months.
The first step for C++09 – let’s quit
calling it C++0x now – is what is called
a Reg i s t r a t i on ba l l o t . Th i s i s
accompanied by a Committee Draft
which shows the complete subject
matter to be covered by the final
standard. This vote is to see whether the
voting nations believe the subject coverage is suitable for the topic. The
document need not contain the complete text, or even a first draft of the
complete text, but if any major topics are added after this, or if any
promised topic is cut, the final standard may fail to win approval. This
document was approved at the Portland meeting; more on this below.
The second ballot is on a document called the Final Committee Draft. This
contains near-final text, which may then be revised based on comments
which accompany the votes. This stage of C++98 received so much
feedback, leading to so many changes, that a second FCD ballot took place.
The plan is to issue this document following next April’s meeting in
Oxford.
The last ballot is on a Final Draft International Standard. This is the final
text, and if this gains approval only the smallest changes are allowed
afterwards. If the Final Draft is complete by the April 2009 meeting (and
gains approval by the national bodies, of course), there is a decent chance
that publication could take place in the the fall of 2009.
With the approval of the registration document (http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2006/n2135.pdf), we now have a pretty good
idea of what C++09 will include. This document includes a number of
"placeholder" sections, announcing that such-and-such a feature will be
included, and pointing readers to committee papers discussing the topic.
Here is one example:

14.9 Concepts
This section is a placeholder. The next C++ standard is intended to
include support for concepts. This feature is intended to provide
language support for describing features of types, for example to
express the container requirements tables in the C++ Standard Library
as code that can be checked by the compiler. For more information
and snapshots of current draft proposals still under discussion and
development, see: [the following list of papers].

Of all the topics that have been discussed in recent years, what’s in and
what’s out? Apart from concepts, the other major features are aimed at

preparing C++ for a world in which concurrent multiprocessing is the
normal environment (already there are mobile phones with dual-core
processors, and laptop computers with them are common). These include
a new memory model/abstract virtual machine specification for C++, a set
of atomic types and operations to prevent undefined behaviour in
concurrent programs without the overhead of ubiquitous defensive
locking, support for local storage tied to a unique thread, and an API for
launching and synchronising threads so that most programmers will never
have to grapple with guru-level issues addressed by the earlier features in
this sentence.
Probably the biggest ‘sex-appeal’ factor comes from the decision to

include garbage collection in C++09.
Whether to use it is at the option of the
programmer, since in some application
areas (embedded programming, in
particular), complete control over
memory management is essential.
A big disappointment, to the UK panel
at least, was the vote to exclude
‘modules’ from the document. This is a
proposal from David Vandevoorde to
bring a feature something like .Net

assemblies to C++, with the aim of speeding up compilation (because
header files would no longer be needed) and making libraries play nicer
together (because internal names would be not just private but invisible,
preventing unintentional symbol clashes). It must be admitted that this
proposal was not so mature as the others, since there is no working
implementation yet. However, WG21 simultaneously applied for
permission to launch a project to produce a technical report on modules,
which we hope will be published soon after the standard, and the UK panel
will be supporting this project enthusiastically.
There are several other new features which you can expect to see in C++09,
but which were judged too small to warrant special mention in the
registration document. A near certainty is greater support for Unicode, and
lambda functions are also likely to make it in.
The C committee also met in Portland the week after WG21, and in a
surprise development have decided to start work on a revised version of
the C standard. I hope to have more details for the next issue of C Vu.
The standards committees are meeting in Hawaii in October, with a full
agenda, and in Oxford and London next April, immediately following the
ACCU conference.
If you are interested in joining a UK panel, please write to
standards@accu.org for more details. Attendance at meetings is not
compulsory; much of the work is accomplished via email discussion.

N

LOIS GOLDTHWAITE
Lois has been a professional programmer for over 20 years.
She is convenor of the C++ and Posix standards panels at
BSI. One of her hobbies is representing the UK at
international standards meetings!
Lois can be contacted at standards@accu.org.uk

the other major features are
aimed at preparing C++ for a

world in which concurrent
multiprocessing is the normal

environment

28 | | DEC 2006{cvu}

Obfuscated Code Competition
ne of the sections that I used to really enjoy in the old C++ Report
was the obfuscated C++ section at the end of the magazine. Perhaps
it appealed to my perverse side. The following C code (posted to

accu-general some while ago) prints out the words to the traditional
English song ‘The 12 Days of Christmas’. I think that everyone will agree
that this code is somewhat obfuscated.
The challenge is to write the same program in a different language but keep
the obfuscation. It could be obfuscated in an entirely different way –
perhaps with template metaprogramming, perhaps just writing it in perl.
The most entertaining and perverse will make an appearance in the next
issue.

Entries to scc@accu.org before 8th January 2007.

main(t,_,a)
char
*
a;
{
 return!

0<t?
t<3?

main(-79,-13,a+
main(-87,1-_,
main(-86, 0, a+1)

+a)):

1,
t<_?
main(t+1, _, a)
:3,

main (-94, -27+t, a)
&&t == 2 ?_
<13 ?

main (2, _+1, "%s %d %d\n")

:9:16:
t<0?
t<-72?
main(_, t,
"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,"
"/w{%+,/w#q#n+,/#{l,+,/n{n+,/+#n+,/#;#q#"
"n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';"
"dq#'l q#'+d'K#!/+k#;q#'r}eKK#}w'r}eKK{n"
"l]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i"
";#){nl]!/n{n#'; r{#w'r nc{nl]'/#{l,+'K"
" {rw' iK{;[{nl]'/w#q#n'wk nw' iwk{KK{nl"
"]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'}{nlw"
"b!/*de}'c ;;{nl'-{}rw]'/+,}##'*}#nc,',#"
"nw]'/+kd'+e}+;#'rdq#w! nr'/ ') }+}{rl#'"
"{n' ')# }'+}##(!!/")
:
t<-50?
_==*a ?
putchar(31[a]):

main(-65,_,a+1)
:
main((*a == '/') + t, _, a + 1)
:

0<t?

main (2, 2 , "%s")
:*a=='/'||

main(0,

main(-61,*a, "!ek;dc i@bK'(q)"
"-[w]*%n+r3#l,{}:\nuwloca-O;m"
" .vpbks,fxntdCeghiry")

,a+1);}

O

C++
The C++ Standard Library Extensions:
A Tutorial and Reference
by Peter Becker, ISBN:
0321412990, published by
Addison Wesley
Professional

Reviewed by Thomas Guest

The standard C++ library
is a fine thing but there are
some notable omissions
and weaknesses: there are
no hashed containers, few smart pointers, no
standard regular expression library; support for
gluing functions and algorithms could be
improved on; and so on. The first C++ Library
Technical Report (TR1) addresses these issues
and many more. In 2006 the TR1 library was
approved by ISO, and you can already find TR1
implementations. Pete Becker’s book provides a
comprehensive and accurate reference guide for
the TR1 library.
The book styles itself as the perfect companion
to Josuttis The C++ Standard Library, and
that’s what I hoped for – a book that would cut
through the standardese and provide clear
instructions on how I could benefit from TR1. In
the main, it succeeds. There’s plenty of example
code, and there needs to be – TR1 gives the
standard C++ library a sizeable boost. The code
is clearly written and described, and available
for download from the author’s website. The
examples I tried (using GCC 4.01) worked,
though I had to fiddle a little with include paths.
Pete Becker has first-hand knowledge of
implementing TR1, giving this book an
authorative tone. I can imagine this book
becoming the TR1 Book and I would certainly
recommend it.
I do have some niggles, though. More attention
could have been given to the layout. The code

examples often break awkwardly across pages
and some form of syntax highlighting would
have made them more readable. I can’t
understand why the output from these programs
was either omitted or buried in a paragraph of
explanatory text. Code comments were abused
throughout the book to provide a running
commentary. E.g.
tuple<> t0;
// default constructor

tuple<int> t2(3);
// element initialised to 3

I realise this is common practice in
programming books, but I’d like to see authors
and publishers find a better way to annotate
code.
These are niggles, though. My only real
complaint was that many of the examples failed
to show the benefits of using TR1. Much of TR1
is designed to make C++ easier to use; it’s easier
to manage dynamically allocated objects, it’s
easier to bind function arguments, it’s easier to
wrap functions for use in standard algorithms.
The examples showed how to get TR1 code
compiling and linking, but sometimes failed to
explain why.

Reviewed by: Pete Goodliffe

Rating: Highly recommended
The ‘tr1’ extension to the standard C++
library is a large and comprehensive
addition with much useful functionality.
It draws heavily from the Boost libraries
(www.boost.org) and should become an
important part of any C++ programmer’s
arsenal. At the time of writing, few compilers
currently provide a version of ‘tr1’ in their C++
offerings, but almost all the tr1 functionality is
available from www.boost.org (albeit in the
‘boost’ namespace, not ‘tr1’) so all of the
material in this book is immediately useful.
Enough of the background. This book is a
comprehensive guide to a large library. It comes
from a respected and authoritative author. It is a
genuinely good tutorial and excellent reference.
The book reads well and introduces material at
a well-judged pace, even if the author does have
an unfortunate predilection for footnotes. (If
you’ve read Becker's CUJ/DDJ columns you’ll
understand this! At least in book form these
footnotes have a minor blessing – they’re at the
bottom of the page, so you don’t have to keep
turning pages to read them.)
The questions at end of each chapter are
interesting. They are a great way for reader to
gauge how much they understood. However, I
wonder how many people will actually read
them. Practicing programmers need the
reference information available immediately,
and will dwell less on these. Often the first
question in each chapter asks you to decipher the
evil template error messages that typically result
from a single type error in the kind of monstrous
template constructions that tr1 allows you to
construct. Telling. This book is rather dense for
a university level course text, but C++
programming courses may find it useful.

Bookcase
The latest roundup of book reviews.

It seems that the dropping of the book prices has been met with just about complete acceptance, so I
will be carrying on with that from now.

If you want to review a book, your first port of call should be the members section of the ACCU website
which contains a list of all of the books currently available. If there is something that you want to review,
but can't find on there, just ask. It is possible that we can get hold of it.

You will notice some of the books listed on the website are getting a tad long in the tooth. These are
pretty much pointless to review and so the following will happen. After the dates below, books will be
dumped.

Those in 2004 will be disposed of on May 1st. Those in 2005 will be disposed of on November 1st.

After you've made your choice, email me and if the book checks out on my database, you can have it.
I will instruct you from there. Remember though, if the book review is such a stinker as to be awarded
the most un-glamourous “not recommended” rating, you are entitled to another book completely free.

I must thank Blackwells and Computer Bookshop for their continued support in providing us with books.

Bookshops

The following bookshops actively support ACCU (offering a post free service to UK members
– if you ever have a problem with this, please let me know – I can only act on problems that you
tell me about). We hope that you will give preference to them. If a bookshop in your area is willing
to display ACCU publicity material or otherwise support ACCU, please let us know so they can
be added to the list

Computer Manuals (0121 706 6000)
www.computer-manuals.co.uk
Holborn Books Ltd (020 7831 0022)
www.holbornbooks.co.uk
Blackwell’s Bookshop, Oxford (01865 792792)
blackwells.extra@blackwell.co.uk

Bookshops
DEC 2006 | | 29{cvu}

The book is marred by a few unfortunate typos
and errors that weren’t picked up at editorial
stage. In such a good book this is a real shame.
The tutorial could also do with a little more
practical application; the questions have a little
of this, but good examples of some library usage
in real code would be immensely beneficial.
I have yet to see a better book on this subject, and
the bar has definitely been raised for further
offerings. Highly recommended for all C++
programmers.

Beyond the C++ Standard Library
by Bjorn Karlsson, publisher:
Addison Wesley,
388 pages, ISBN: 0-321-
13354-4

Reviewed by Pete Goodliffe

Rating: Recommended
The Boost libraries have
become increasing
important for C++
programmers, especially as many of their
libraries have been adopted into the ‘tr1’
standard extension and are slated for inclusion
in the next revision of the C++ standard.
Karlsson’s book acts as as a tutorial and
reference to some of the basic Boost libraries.
These days Boost is far too large to cover
comprehensively in a single volume (indeed,
some of the larger Boost libraries have entire
books to themselves). So the author picks the
most immediately useful and applicable parts of
Boost (you can’t really call them the “most
important” libraries, though). This is clearly a
somewhat arbitrary choice, but it has been made
well.
The book covers Boost’s smart_ptr, conversion,
operators, regex, any, variant, tuple, bind,
lamda, function and signals libraries. On the
whole the discussion is clear and well thought
out. The regex coverage is not as clear or deep
as in Pete Becker’s The C++ Standard Library
Extensions.
Every so often Karlsson mixes in some
interesting side notes or describes an advanced
C++ idiom within a chapter’s description of a
Boost library. It is a shame that more was not
made of this. These parts could have been
formatted differently, put in sidebars, or
separated visually somehow to make them stand
out. Overall I find the presentation of the book
a little odd and hard to read (and sometimes
inconsistently applied).
In a book released in 2006, I’d like to see more
mention of what’s in tr1. It is mentioned briefly
in the preface and noted in passing in library
descriptions (and not at all in the index).
It’s inevitable that many of the libraries
Karlsson has chosen have been incorporated
into C++’s tr1 (and pretty soon into an official
revision of the standard itself). This book will
date as the preferred versions become the
standard library implementations, rather than
the deprecated Boost versions.

It also seems slightly strange that mention of
Boost is relegated to the book’s subtitle rather
than in its main title. Nevertheless, this is a
useful and important book, and a great
introduction to the magic of Boost.
Recommended.

Java
Java After Hours - 20 projects you’ll
never do at work
by Steven Holzner (0-672-
32747-3), Sams

Reviewed by Paul Thomas

Most programming books
these days seem have titles
that bear little relation to
their content. Publishers
cynically sprinkle words
like ‘Advanced’ or ‘OO’ around
because it gets the books on company
shelves. Java After Hours, however,
does exactly what it says on the tin. This is not
code to impress your boss or your colleagues.
It’s not even ‘macho’ code to impress hackers,
but it is probably at about the right level for ‘play
code’ if you want to dip your toes into different
areas of Java technology.
The layout and style of the 10 chapters is easy
to follow. Code is incrementally introduced with
with lots of explanation and a little less padding
that usual. The programs are built up in roughly
the way you would create them so you aren’t just
reading through a source file from beginning to
end. As key class are encountered, mini
references are provided to give an overview of
important methods. The documentation for
these methods is often laughable (e.g.
getName() - Gets the name) but it still works.
The projects gradually build up a body of
knowledge in a few core areas of Java
technology. The blurb focuses on what the
applications do, so you might be interested to
know that by the end of the book you’ll have
more than a passing familiarity with AWT
(including Graphics2D, the awt.image package
and the awt.Robot), Swing, SWT, JSP and
Sockets. Threads are covered, but I have serious
reservations about the material.
Synchronisations are not covered, instead we are
told that ‘The standard technique for
communicating with threads is with Boolean
flags’. Bizarrely, the author even confesses in a
sidebar that he once crippled a client’s servers
with runaway threads. Read this as ‘ignore
everything I say about threads’.
It’s a real shame, because I would like to
recommend this book to people who need to
branch out from the Java they use at work, but
the technical inaccuracies are quite serious. I
have already heard people say they based real-
world code on the techniques in this book. As
well as the problem with threads, the author
seems to be claiming that HTTP Basic
Authentication is more secure than HTML

forms with password controls. It all makes me
very uneasy about what else is flawed.
Not Recommended.

Swing Hacks
by Joshua Marinacci & Chris
Adamson (0-596-00907-0),
O'Reilly

Reviewed by Paul Thomas

Despite myself, I really like
this book. The name might
not inspire confidence in
project managers, but it’s
deceptive. Like the
cookbook format, it consists of 100
sections devoted to recipes or ‘hacks’.
Many are simply explanations of how to
use the Swing framework in the way it was
intended but some are truly evil hacks that use
reflection techniques to delve into internal
object structure. All of them help the reader gain
a deep understanding of the Swing framework
and advanced Java techniques.
This isn’t the kind of book you can simply read
end-to-end (I did try). The titles are just clear
enough that you might be able to find
information when you are stuck with a problem.
Really though, this is one to keep nearby for
whenever you have the spare time. I freely
confess that I haven’t read it all, but I’m dipping
into it every now and then and it still has masses
to offer.
If there’s one problem with the book, it’s that I
am now tempted to waste project time adding
translucent drag-and-drop where it isn’t needed.
But if you have enough self control, you’ll find
something that will make life easier on just about
every project. If you work with Swing, you
NEED this book.
Highly Recommended.

Miscellaneous
Home Networking – A visual do-it-
yourself guide
by Brian Underdahl,
published by Cisco Press,
ISBN 1-58720-127-5

Reviewed by Ian Bruntlett.

In this book’s favour, it is
a slim volume with plenty
of practical examples and
helpful photographs, split
up into three manageable parts (Introduction,
Starting your network, Enhancing your
network). It discusses wired networks, wireless
networks and combinations of the two. It is a
partisan work, however – always
recommending a “Linksys model X” or a
“Linksys model Y” etc. throughout the book. In
terms of doing the reader favours, though, it falls
flat on its face. True, this book is the best I’ve
seen so far in terms of introducing a reader to the
topic but this book lacks both a glossary and a
30 | | DEC 2006{cvu}

further reading section. I feel that Cisco Press
should commission a follow up book that digs a
bit deeper and discusses the protocols involved.
Verdict: Excellent introduction, technological
dead end.

Programming Microsoft Windows
Forms (A streamlined aproach using
C#) 2005 Edition
by Charles Petzold,
published by Microsoft
Press, ISBN 0-7356-2153-5,

Reviewed by Steve Love

Recommended (with
some reservations)
First up, if you’re familiar
with other titles by
Charles Petzold, then the basic content of this
book will come as no surprise – lots of code
listings and an explanation of what’s going on in
the code. All the code is written ‘Petzold Style’
(his term) which means no generated code from
the Microsoft Form Designer. That at least
makes the examples much more concise.
Nevertheless, a couple of the examples cover 7
pages or more.
A lot of the book is given over to general
Windows Forms programming, but it does cover
some aspects new to Windows Forms in Visual
Studio 2005 – notably dynamic layout and tool
strips. Also covered in reasonable detail are
custom controls and data bound controls. This
last topic especially interested me, because it’s
not just about binding controls to a database; you
can bind controls to each other.
My reservations come from two observations.
The first is that he makes almost constant
reference to his previous publication
Programming Windows with C#, which makes
me feel this book is incomplete without that
companion. The second is that despite
depending on references to that other book, the
whole first 2 chapters of this one probably cover
much of the same background information –
around one quarter of the book.
That apart there is little to criticise on the
technical content. One or two hideous hacks
when the code strays a little off the main road,
and a few seemingly out-of-place tutorials (how
to create a test program for a DLL project, using
ClickOnce deployment). This being Charles
Petzold, even in C# the code uses a kind of
Hungarian Notation (my favourite is szImage –
no not a null-terminated string, but a Size
struct!), and the code is pretty much written in a
straight line, so to speak, but this isn’t a book
about style, it’s about Windows Forms
techniques. I wouldn’t describe this book as a
‘must have’ for Windows Forms developers,
because a lot of it rehashes old ground, but I
expect most Windows developers would find it
useful.

Secure Coding in C and C++
by Robert C. Seacord,
published by Addison
Wesley, 341 pages, ISBN: 0-
321-33572-4

Reviewed by Pete Goodliffe

Rating: Neutral
There are fewer books
devoted to writing secure
code than many other
topics in the software engineering world. And
this is clearly a field that many more developers
need education in.It sits in Addison Wesley’s
CERT/SEI series, so it appears authoritative.
Indeed, many chapters are written in
collaboration with the author’s CERT
colleagues. But does it live up to this and is it a
worthwhile addition to the (albeit small)
security party?
As the title suggests, the book focusses on
security in C and C++ alone. It opens with a dry
but customary survey of the appalling state of
software security in modern code and goes on to
lambast C and C++ (with some merit, the
majority of insecure code is written in C and
C++ - but does that make them insecure
languages?). Seacord draws primarily on
Windows and Linux as examples, which is a
good choice, and each chapter shows practical
examples of exploits in real code, which helps
ground the discussion.
The book is split into sections covering main
areas of code vulnerability, including string-
based attacks, pointer subterfuge, memory
management and so on. They are each
reasonable discussions of the topic, but to fully
understand the material the reader must
understand C/C++ reasonably proficiently
beforehand. Student programmers would
probably need a more gentle paced introduction
to security.
My main reservation about this book is its C++
coverage. There are really no good examples of
secure C++ code – despite the book’s title.
Seacord mostly deals with C-related problems
(which are indeed many and numerous). The
book does not satisfactorily describe how the
C++ idiom is inherently safer than C (and too
often we are talking about the mythical ‘C/C++’
language, as if the two languages are one and the
same).
Good programming in C is necessarily very
different from good programming in C++. This
is not made clear at all, and few places show
some of the more secure idioms available to the
C++ programmer. For example, the entire
description of C++ iostream output is two
paragraphs and a small quote from Meyer’s
Effective C++. This is in a 40-odd page chapter
on I/O security (mainly discussing printf/scanf
vulnerabilities and buffer overflow problems).
There is also an interesting claim that it is ‘as
easy’ to create a safe abstract type in C as in C++.
Hmm. In a modern security book that claims to
be about C++ this doesn’t seem justifiable.

This is not a bad book, but perhaps does not live
up to the expectations I had of it.

Human-Computer Interaction
by Serengul Smith-Atakan, published by Thomson,
204 pages

This book is part of the Thomson FastTrack
series, and appears to be a one-semester
university course wrapped up in a book. It is
accompanied by web-supported course work
and exam preparation, and downloadable power
point slides it says. This turns out to be pretty
much one big pdf file with review questions and
answers. There is one particular on-line case
study, that of a ticket machine at a station which
appears to be hijacked wherever possible. I read
the original article by a group of academics and
came away thinking, “all very well, but are we
really paying these people to publish this stuff”.
It really felt like someone trying to make their
publication list look bigger, without really
having anything new to say.
It is split into 12 chapters, 10 if you discount the
introduction and review chapters. The
remaining 10 discuss natural computing, user
modelling, user-centred system design, some
very basic psycology, evaluation techniques,
current and future trends of technology and
universal access. I say discuss, it was really a
matter of defining these things very briefly so
that a student could be asked, “what is natural
computing?”, etc.
I was disappointed with this book. I was also
worried about it. If students are using this as
reference material and coming out of university
thinking they know their stuff, then it doesn’t
bode well. True, there are reading lists with each
chapter, exercises and review questions, but I
felt the general level of information was very
poor. It was a very repetetive experience. I kept
thinking I was reading the same paragraph,
because there were so many similar sentences,
really making it feel like someone had a lecture
course and coerced it into a book simply by
padding it out with waffle. For example, chapter
5 is called Task Analysis. OK so far. 5.1
Introduction. Ok. 5.2 Task Analysis Hmm 5.3
What is Task Analysis Hmm!! 5.4 Approaches
to Task Analysis, and each of these sections had
numerous sentences begining Task Analysis...
More important, some of the content was either
very out-dated or just plain wrong. One concept
mentioned is User-Centred System Design, or
USCD. This is presented as a methodology for
producing software which is going to be usable.
Their justification for it is to compare it to the
waterfall model, which they do twice!
It’s basically an iterative process, involving
users (XP anyone?), BUT, in each increment,
they are developing a ‘prototype’. At the end of
the iterations, when the users are happy, the
‘prototype’ is ‘installed’. Really, leave software
development to people who know about it. I
have no problem with iterations or prototyping,
but they need to be used appropriately.
DEC 2006 | | 31{cvu}

32 | | OCT 2006

REVIEWS

accuACCU Information
Membership news and committee reports

{cvu}

View From The Chair
Jez Higgins
chair@accu.org

Do you want some free
money? Conditions apply [*].
One of the many things I’ve
learned since taking on the
Chair is that I need to keep better meeting
notes. Ahead of the last committee meeting on
September, I’d been reviewing the notes of the
previous meeting and discovered an action on
me to mail accu-general and announce in C Vu
the free money the committee agreed to give
away.
Those present at the AGM will no doubt
remember Reg Charney’s impromptu speech
on receiving his honorary membership. The
committee bestowed honorary membership on
Reg, in large part, for the sterling work he had
done in setting up and running a monthly
meeting in Silicon Valley, which attracts first
class speakers. Reg spoke eloquently, not about
what he’d put in, but what he’d gained from the
meetings. I know many people were inspired
by what he said and are thinking about starting
meetings in their own area. Indeed, what I hope
is the first of many meetings was held just a
few days ago.
At our meeting following the AGM, the
committee agreed to make funds available to
help with some of the costs that might be
incurred setting up such meetings. That might
mean the cost of, as Reg suggested, leafleting
your local technical bookshop, printing posters,
equipment costs, initial room hire, things of
that nature.
We haven’t set a budget, nor drawn up a list of
what’s in or out. What might be needed is
going to depend very much on circumstances.

Some people might envisage something along
the Silicon Valley model, with a programme of
speakers at a regular venue. Others might want
something rather more informal. We are,
therefore, going to consider each application on
its own merits.
Note also that we can’t fund meetings on an
ongoing basis. This is intended as seed capital,
to get things going.
If you think you would like some free money,
email me at chair@accu.org.
[*] That condition? You have to write about
your meeting for CVu.

Membership Report
David Hodge and Mick
Brooks
membership@accu.org

Our membership now stands
at 864. For the first time in
the last few years we are
showing a net gain of members, currently 18.
Since the beginning of the year we have gained
170 new members. Mick and I have developed
a spec to allow the membership system to be
run from the website. You will be able to
change your details online and the membership
secretary will do less of the things that I did on
a regular basis as they will be automated from
the website. The quote for this work should be
approved in November and should all be up
and running by the AGM in April, Mick
Brooks will be taking over as membership
secretary in April. He has already started part
of the job as the new members will now be
getting the welcome letter and their first set of
journals from Mick. Although there will be a
lot of the membership operations on the

website there will still be a
human being to contact if
you have any queries.

Website report
Allan Kelly

I hope members will excuse
any lack of activity on the website in the least
few months. Personally I’ve not been paying
much attention lately, my mind has been
elsewhere – what with getting married and
getting caught up in company downsizing.
Fortunately others have continued to push
ahead.
David’s membership report makes two
interesting points. Firstly, association
membership is rising. While we can’t prove
that this is due to the new website many of us
hoped a new website would provide a boost to
membership. The challenge now is to keep
both the content and appearance of the new site
fresh and active.
Secondly, new work is focusing on the
association membership system. Hopefully by
integrating this with the website we can
simplify the membership secretaries work and
provide a better (faster) service to our
members. While there is other work to (e.g.
migrate the mailing lists, integrate ACCU
USA) the membership system should
(hopefully) be the last big piece of work.
By the time you read this C Vu should be
available online to members only. We have not
plans to make C Vu available to non-members.
We have yet to start advertising on the website.
As I mentioned last month, ACCU needs to
find an advertising officer who can co-ordinate
online and offline sales.

She goes on to describe the different ways of
prototyping, Throwaway, Evolutionary and
Incremental. That latter is the funniest; we are
told that the system is built as separate
components, with the final product being
released as a series of components, each release
adding a component until the complete product
is delivered. What utter rubbish!
That said, I did come away with one or two new
things. One is Jakob Nielson’s set of 10
heuristics to consider when designing a system.
Also, distinguish between ‘useful’, ‘usable’ and
‘accessible’, the latter term hinting at another
important point, that of considering not just one,
or the ‘typical’ user, but consider your design for
all users. A lot of emphasis is also given to
catering for disabled users.

But, I could have got that from a few-page
discussion. The only reason I would suggest
anyone buys this book is if they happen to be on
that university course, and then I would
emphasise to go off and find some in-depth
sources of information. The website has it at
£19.99. On second thoughts, I would
recommend that you borrow your friend’s copy.

Regular Expressions Pocket
Reference. (2003)
by Tony Stubblebine, ISBN 0-596-00415-X pp93

Reviewed by Mark Easterbrook.

Conclusion: Recommended (but not for
beginners).
This pocket reference begins with an overview
of Regular Expressions and continues with a

look at each of the main languages and tools that
support REs, including many examples. It
would be a useful reference for an expert, but of
most value at intermediate level. This is only a
pocket reference so a beginner would be better
off with a more comprehensive book such as
Mastering Regular Expressions by Jeffrey
Friedl.

Book Reviews (continued)

	Do you get what you pay for?
	Adventures in Autoconfiscation
	Effective Version Control #3
	Trouble with TCP
	Library Vendors and the non-Existent C++ ABI
	String Literals and Regular Expressions
	Loading a Container with a Range
	Meet-Up Report
	Code Critique Competition # 43
	Standards Report
	Obfuscated Code Competition
	Bookcase
	View From The Chair
	Membership Report
	Website report

