

Smarter than the Average Pointer

Jonathan Wakely

ACCU London

23 Nov 2011

“The future is already here – it's just not very
evenly distributed” -- William Gibson

The new C++11 standard includes
std::shared_ptr, std::make_shared and std::ref

All came from Boost and versions of them can
be found there for C++03 compilers.

template<typename T, typename... Args>
shared_ptr<T>
make_shared(Args&&...);

Calling

 make_shared<X>(args)

 is equivalent to

 shared_ptr<X>(new X(args))

but better

What's wrong with this code?

void f(shared_ptr<A>, shared_ptr);
...
f(new A, new B);

What's wrong with this code?

void f(shared_ptr<A>, shared_ptr);
...
f(new A, new B);

The order of evaluation is unspecified

If the second constructor throws the first object
could be leaked

c.f. GOTW #56: Exception-Safe Function Calls
http://www.gotw.ca/gotw/056.htm

What's wrong with this code?

void f(shared_ptr<A>, shared_ptr);
...
f(shared_ptr<A>(new A), shared_ptr(new B));

This still has exactly the same problems.

What's wrong with this code?

void f(shared_ptr<A>, shared_ptr);
...
f(shared_ptr<A>(new A), shared_ptr(new B));

This still has exactly the same problems.

But this solves the problem:

f(make_shared<A>(), make_shared());

What's wrong with this code?

Base* p = new Derived;
shared_ptr<Base> sp(p);

What's wrong with this code?

Base* p = new Derived;
shared_ptr<Base> sp(p);

Maybe nothing, but it depends if it's safe to
delete a Derived through a pointer to Base.

The shared_ptr doesn't know the dynamic type
of the object it manages.

This is OK:

shared_ptr<Base> sp(new Derived);

Now the shared_ptr knows the dynamic type of
the object and will delete it correctly.

But this avoids the problem completely:

shared_ptr<Base> sp = make_shared<Derived>();

shared_ptr<A> sp(new A)

There are two memory allocations here.

An A is allocated on the heap.

The shared_ptr's reference counting information
must also be allocated on the heap.

shared_ptr<A> sp = make_shared<A>()

There are ??? memory allocations here.

shared_ptr<A> sp = make_shared<A>()

There is only one memory allocation here.

An A and the shared_ptr's reference counting
information can be allocated as a single block.

The object is allocated right next to its
associated reference count.

shared_ptr<A>(new A(x, y, z)

make_shared<A>(x, y, z)

Using make_shared means less typing too!

So it's:

● Safer

So it's:

● Safer Good ThingTM

So it's:

● Safer Good ThingTM

● Faster

So it's:

● Safer Good ThingTM

● Faster Good ThingTM

So it's:

● Safer Good ThingTM

● Faster Good ThingTM

● Helps fight RSI

So it's:

● Safer Good ThingTM

● Faster Good ThingTM

● Helps fight RSI Good ThingTM

#include <memory>
#include <iostream>

struct Base { };

struct Derived : Base {
Derived(int) { }
~Derived() { std::cout << “Bye” << std::endl; }

};

std::shared_ptr<Base> create(int i) {
return std::make_shared<Derived>(i);

}

int main() {
std::shared_ptr<Base> p = create(5);

}

std::make_shared supports perfect forwarding

boost::make_shared can't for C++03 compilers,
takes its arguments by reference-to-const

To pass arguments to a constructor as
reference-to-non-const you can use boost::ref

#include <boost/make_shared.hpp>
#include <boost/ref.hpp> // <utility> for std::ref
#include <iostream>

struct Base { };

struct Derived : Base {
Derived(int&) { }
~Derived() { std::cout << “Bye” << std::endl; }

};

boost::shared_ptr<Base> create(int& i) {
return boost::make_shared<Derived>(boost::ref(i));

}

int main() {
int i = 5;
boost::shared_ptr<Base> p = create(i);

}

std::allocate_shared<X>(alloc, args)

is like

std::make_shared<X>(args)

but uses the supplied allocator to obtain the
required memory

Go forth and make_shared !

