Many slices of Pl

Monte-carlo simulations in a parallel world

Steve Love, November 2011

All context copyright © Steve Love 2011

Many slices of Pl
monte.

te-caro simulations n a paraie world

Steve Love, November 2011

I—Many slices of PI

Al conext copyight © teve Love 2011

2011-11-27

1. To be honest, Monte-Carlo simulations aren’t really the focus of this talk. It's more about
parallel programming. But since Monte-Carlo simulations usually benefit from lots of
processing power, they're a natural candidate for parallelisation.

2. So to begin with, what is a Monte-Carlo simulation? In essence it's some algorithm that gets
run lots of times (think for-loop) with the results aggregated in some way - usually averaging of
some kind.

3. One simple application of this is to estimate PI, which can be done by repeatedly and randomly
(with uniform distribution) dropping things inside a square and determining how many of them
are inside a circle inscribed exactly within the square. The ratio of those within the circle to the
total dropped is approximately Pl / 4.

Estimating PI

2011-11-27

public static int Simulate(int count)
{
var hits = 0;
var rnd = new Random((int)DateTime.Now.
Ticks);
foreach(var i in Enumerable.Range(0,
count))
{

var x = Math.Pow(rnd.NextDouble()

var y = Math.Pow(rnd.NextDouble()

if(Math.Sqrt(x +y) <= 1.0)
++hits;

,2);
,2);

return hits;

public static double EstimatePi(int hits, int count)

return 4.0 * hits / count;

public static double RunningAverage(int count, double last, double next)

return last + (next - last) / (count + 1);

}

See http://en.wikipedia.org/wiki/Monte_Carlo_method

I—Estimating Pl

Estimating Pl

See e wikipediscrahkiMonte_Carto_method

1. The first listing is not the simulation, it's the method of estimating how many things are inside
the circle. Also note that the ratio of 1/4 of a unit circle to a unit square is the same as the ratio

for a circle of radius 0.5 to the same square.

2. The EstimatePi method calculates the required ratio and multiplies up by 4. The result of this,

then, is an estimate of PI.

3. The third method is used to take a running average of the results. The idea of the whole thing

is that the Simulate method gets called a lot!

4. These three methods are the ones used for all of the examples that follow.

Single slice

2011-11-27

static void Main()

var simsize = 999999;
var count = 100;

var pi = 0.0;
foreach(var i in Enumerable.Range(0, count))

var hits = Common.Simulate(simsize);
pi = Common.RunningAverage(i, pi, Common.EstimatePi(hits, simsize));

Console.WriteLine(pi);

Single slice

I—Single slice

1. Here for the first time we have a real simulation. Single threaded, single process, for-loop (told
you!)

2. Of course it's too slow. Provided we have access to a computer with more than one core or
processor we can do better by writing a multi-threaded version.

Shared slice

var pi = 0.0;
var locked = new object();

Action action = delegate
foreach(var i in Enumerable.Range(0, count / 4))
var hits = Common.Simulate(simsize);
lock(locked)
pi = Common.RunningAverage(i, pi, Common.EstimatePi(hits, simsize));
}
}
var tasks = Enumerable.Range(0, 4)
.Select(id => Task.Factory.StartNew(action))
.ToArray();
Task.WaitAll(tasks);

Console.WritelLine(pi);

The trouble with this is the running average is wrong...

Shared slice

I—Sha red slice

The trouble with this s the running average is wrong...

2011-11-27

1. Inthis version there are 4 threads all working on a quarter of the total required. To make this
version work each thread writes to a common result variable (pi) which must be synchronised.
It’s important here to wait for all the results to be in before any attempt to use the pi variable.
The problem with the average is that part of calculating the running average requires the
number of items so far, meaning that we'll really only calculate the average for 1/4 of the
items...

w N

The promise of Pl

Func< double > action = delegate
{
var part = 0.0;
foreach(var i in Enumerable.Range(0, count / nthreads))
{
var hits = Common.Simulate(simsize);
part = Common.RunningAverage(i, part, Common.EstimatePi(hits, simsize));
}

return part;

’

var tasks = Enumerable.Range(0, nthreads)
.Select(id => Task< double >.Factory.StartNew(action))
.ToArray();

var pi = tasks.Select(t => t.Result).Average();
Console.WriteLine(pi);

The promise of PI

I—The promise of Pl

2011-11-27

1. One solution to that problem is to use a Promise, whereby each thread performs the simulation
and averaging of its quarter, then passes those results to a single collator to average those
results giving a final average for the whole lot.

2. A great side-effect of this is that there is no longer a need for a lock! The use of t.Result means
the calculation for pi will block until all tasks are complete. It's not exactly pretty though.
Easily enough understood for this simple example, but 2 types of average?

3. There is a standard solution to the problem of needing a single consumer to gather results
from multiple producers...

Queue up

var results = new ConcurrentQueue< int >();
var nthreads = 4;
var pi = 0.0;

Action action = delegate

foreach(var i in Enumerable.Range(0, count / nthreads))
{
var hits = Common.Simulate(simsize);
results.Enqueue(hits);
}
}
var tasks = Enumerable.Range(0, nthreads)
.Select(id => Task.Factory.StartNew(action))
.ToArray();

var n = 0;
while(n < count)

int hits;
if(results.TryDequeue(out hits))
pi = Common.RunningAverage(n++, pi, Common.EstimatePi(hits, simsize));

Console.WritelLine(pi);

Queue up

I—Queue up

2011-11-27

1. Putthe results on a queue. Sightly more verbose, but a lot more direct.

2. This version only enqueues the results of the simulation - how many things were inside the
circle - instead of making any attempt to estimate PI.

3. A benefit here is that the collation of results can begin before all the tasks are done. The use of
the queue (and waiting for it to drain) also means we have a natural synchronisation
mechanism without using locks (or explicit joins).

Parallel PI

var results = new ConcurrentQueue< int >();
var pi = 0.0;

Action< int > action = delegate(int i)

var hits = Common.Simulate(simsize);
results.Enqueue(hits);

’

var options = new ParallelOptions { MaxDegreeOfParallelism = 4 };
Parallel.ForEach(Enumerable.Range(0, count), options, action);

var n = 0;
while(n < count)

int hits;
if(results.TryDequeue(out hits))
pi = Common.RunningAverage(n++, pi, Common.EstimatePi(hits, simsize));

Console.WritelLine(pi);

Parallel Pl

I—ParaIIeI Pl

2011-11-27

1. Whilst we're here, in passing we note that the problem is embarrassingly parallel in the form
we have now reached, so more starightforward parallel programming techniques can come
into play. This is even more direct than the queue, and has all of its benefits.

2011-11-27

“...but now we’d like to run the simulations on the
grid..."”

wyn

“...but now we'd like to run the simulations on the
grid...”

1. No. It's never that simple, is it? There’s always one...

No PI?

static class MsgServerApp

static void Main()

{
var simsize = 999999;
var count = 100;

using(var context = new Context(1))
using(var results = context.Socket(SocketType.PULL))

{
results.Bind("tcp://*:55566");
var n = 0;
var pi = 0.0;
while(n < count)
var hits = int.Parse(Encoding.UTF8.GetString(results.Recv()));
pi = Common.RunningAverage(n++, pi, Common.EstimatePi(hits, simsize));
Console.WriteLine(pi);
}
}

No PI?

L No PI?

2011-11-27

1. Here’s an application that takes the simulation results from...somewhere...and does the
calculation to estimate PI. So, where is the simulation?

Pl service

static class MsgSimulatorApp
{
static void Simulator(Context ctx, int count, int simsize)

using(var results = ctx.Socket(SocketType.PUSH))
{
results.Connect("tcp://localhost:55566");
foreach(var i in Enumerable.Range(0, count))
{
var hits = Common.Simulate(simsize);
results.Send(Encoding.UTF8.GetBytes(hits.ToString()));

}
}

static void Main()
var simsize = 999999;
var count = 100;
var nthreads = 4;

using(var context = new Context(1))

Parallel.ForEach(Enumerable.Range(0, nthreads),
i => Simulator(context, count / nthreads, simsize));

Pl service

I—PI service

2011-11-27

1. Of course it’s a service. In real life the configuration of the simsize, count, addresses and so on
would be, er, configuration :-)

2. Note that this is a multi-threaded service. Each thread performs its own set of calcs and sends
to the well-known end-point for further processing - indpendently of any other threads.

3. Atiny but measurable problem here is that the number of calculations must be a multiple of
the number of threads to ensure that all of them are processed, otherwise further checks must
be done to mop up any remainder.

Talkin’” "bout PI

using(var context
using(var results

new Context(1))
context.Socket(SocketType.PULL))

results.Bind("inproc://results");

var tasks = Enumerable.Range(0, nthreads)
.Select(id => Task.Factory.StartNew(() =>
Simulator(context, count / nthreads, simsize)))
.ToArray();

var n = 0

var pi

= 6.0;
while(n < ¢

ount)

var hits = int.Parse(Encoding.UTF8.GetString(results.Recv()));
pi = Common.RunningAverage(n++, pi, Common.EstimatePi(hits, simsize));

Console.WriteLine(pi);

Talkin' "bout PI

L Talkin’ "bout PI

2011-11-27

1. With a simple change, we can use the simulation in-process, which has important implications
for testing. This is the application code, which simply calls the Simulator as a thread...

Simulate PI

static void Simulator(Context ctx, int count, int simsize)
using(var results = ctx.Socket(SocketType.PUSH))

results.Connect("inproc://results");
foreach(var i in Enumerable.Range(0, count))

var hits = Common.Simulate(simsize);
results.Send(Encoding.UTF8.GetBytes(hits.ToString()));

Simulate Pl

I—Simulate Pl

2011-11-27

1. ...and this is the service - now just a method.

In case you missed it...

Listing 1: In process PI Listing 2: Out of proc PI

static void Simulator(Context ctx, int static void Simulator(Context ctx, int
count, int simsize) count, int simsize)
using(var results = ctx.Socket(using(var results = ctx.Socket(
SocketType.PUSH)) SocketType.PUSH))
{
results.Connect("inproc://results" results.Connect("tcp://localhost
; :55566");
foreach(var i in Enumerable.Range(foreach(var i in Enumerable.Range(
0, count)) 0, count))
var hits = Common.Simulate(var hits = Common.Simulate(
simsize); simsize);
results.Send(Encoding.UTF8. results.Send(Encoding.UTF8.
GetBytes(hits.ToString())) GetBytes(hits.ToString()))
} }
} }
} }

In case you missed it...

Listing 1: In process PI Listing 2: Out of proc PI

I—In case you missed it...

2011-11-27

1. The difference between the implementations of the simulator service and the in-process
version is subtle. Can you spot it?

Static service

static void Simulator(Context ctx)

using(var work = ctx.Socket(SocketType.REP))
using(var results = ctx.Socket(SocketType.PUSH))
using(var done = ctx.Socket(SocketType.PAIR))
{
done.Connect("inproc://done");
results.Connect("tcp://localhost:55557");
work.Connect("tcp://localhost:55556");

var finished = false;
var killEvent = done.CreatePollItem(IOMultiPlex.POLLIN);
killEvent.PollInHandler += (sock, ev) => { sock.Recv(); finished = true; };

var workEvent = work.CreatePollItem(IOMultiPlex.POLLIN);
workEvent.PollInHandler += (sock, ev) =>

var simsize = int.Parse(sock.Recv(Encoding.UTF8));
sock.Send(Encoding.UTF8.GetBytes("OK"));
var hits = Common.Simulate(simsize);
results.Send(Encoding.UTF8.GetBytes(hits.ToString()));
+
var items = new []{ killEvent, workEvent };

while(! finished)
ctx.Poll(items);

Static service

I—Static service

2011-11-27

1. The previous service was multi-threaded, and we noted the issue about ensuring all the
requested calculations are performed and reported.

2. Adifferent approach is to just be a long-running server, and process all requests. Running
multiple processes means that those processes can, potentially, be on different machines too -
this is distributed parallelism.

Client

static void Work(Context ctx, int count, int simsize)
{
using(var work = ctx.Socket(SocketType.REQ))

work.Bind("tcp://*:55556");
foreach(var i in Enumerable.Range(0, count))
{

work.Send(simsize.ToString(), Encoding.UTF8);
work.Recv();

}
}

static void Main()

{
var simsize = 999999;
var count = 100;

using(var context

using(var results

{
Task.Factory.StartNew(() => Work(context, count, simsize));

new Context(1))
context.Socket(SocketType.PULL))

results.Bind("tcp://*:55557");

var n = 0;

var pi = 0.0;
while(n < count)
{

var hits = int.Parse(Encoding.UTF8.GetString(results.Recv()));
pi = Common.RunningAverage(n++, pi, Common.EstimatePi(hits, simsize));

Console.WritelLine(pi);

I—Client

2011-11-27

1. Here’s the client code for the distributed parallel version.

2. Most of the code is setting up the network side - the core of the program is still essentially the
same as the original!

3. It doesn’t end there. Using a suitably general middleware means...

Py PI

def work(ctx):
work = ctx.socket(zmq.REQ)
try:
work.bind("tcp://*:55556")
for i in range(count):
work.send(str(simsize))
work.recv ()

finally:
work.close()

def recv(ctx):
results = ctx.socket(zmq.PULL)

try:
results.bind("tcp://*:55557")
pi =0.0

nresults = 0

while nresults < count:
hits = int(results.recv())
pi = runningAverage(nresults, pi, estimatePi(hits, simsize))
nresults += 1

print(pi)

finally:
results.close()

Py Pl

Lpy P

2011-11-27

1. ..you can even use a different programming language.
2. This is a client written in Python that will quite happily send work to, and collate results from
the C# servers already shown.

Oh, the results

| Style | PI \ Time |
single 3.14159434159434 | 24393.10
shared 3.1414178562569 6186.41
promise 3.14080278080278 | 6225.78
parallel 3.14156106156106 | 7199.58

msggqueue | 3.14166458166458 | 6199.42
msgserver | 3.14159398159398 | 6080.00
piclient 3.14153366153366 | 6525.49

piclient was run with 4 static servers in action.

Oh, the results

LOh, the results

2011-11-27

1. These were actually run on a hyper-threaded 4 core box, but only with 4 threads in each case
(including the parallel version using Parallel.ForEach). The measurements are only intended to
be indicative of relative speeds - it was a simple Python script to launch each process and
count system time until it finished.

LC-TT-TTO0C

