


That which does not
kill us makes us

stronger.

Friedrich Nietzsche



Pain 1s weakness
leaving the body

U.S. Marine Corps
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What does that have to do with this talk?



No]igllgle



Machine Learning
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Science Fair Project — shape recognition



Life Plan

1.Start a company
2.7
3.Profit



Life Plan

1.Start a company

2.7

3.Profit

4.Retire to my private
island and work on Al



Something must have gone wrong...



VBA :(
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Machine Learning



History



Man has always dreamed of Intelligent Machines
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VoL, Lix. No. 236.] [October, 1950

MIND

A QUARTERLY REVIEW

OF
PSYCHOLOGY AND PHILOSOPHY

= Sl =

I - COMPUTING MACHINERY AND

INTELLIGENCE
By A. M. Turixe

1. The Iwmitation Fame.

1 erorose to consmider the gquestion, * Can machines thinl ?°
This should begin wath defimitions of the meaning of the 1arms
*machine " and * think . The definitions might be framed so as to
reflect s0 far as possible the normal use of the words, but this
attitude 15 dangerous. lf the meaning of the words ° machine ’
and * think * are to be found by examining how they are commaonly
used it is diffienlt to escape the conclhusion that the meanmg
and the answer to the question, * Can machines think ? * is to be
sought i a statistical survey such as a Gallup poll. But this is
absurd. Instead of atbempting such a defination I shall replace the
question by another, which is closely related to it and 18 expressed




| propose to consider the question, “Can machines think?”

This should begin with definitions of the meaning of the terms
“machine” and “think”.
Alan Turing, 1950
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A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WarreN S. McCuLroch and Warter H. Pitts

Because of the "all-or-none™ character of nervous activity,
neural events and the relations among them can be treated by
means of propositional logic. It is found that the behavior of
every net can be described in these terms, with the addition of
more complicated logical means for nets containing circles; and
that for any logical expression satisfying certain conditions, one
can find a net behaving in the fashion it describes. It is shown
that many particular choices among possible neurophysiological
assumptions are equivalent, in the sense that for every net be-
having under one assumption, there exists another net which
behaves under the other and gives the same results, although
perhaps not in the same time. Various applications of the calculus

are discussed. | _
McCulloch & Pitts, 1943
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Slow, but lots of them

» 200 billion neurons (100-400 billion stars in the
galaxy)
» 200,000,000,000,000

e 125 trillion synapses
« 125,000,000,000,000,000,000



‘B The Organization -

of Behavior

Donald Hebb, 1949




"The general 1dea 1s an old one, that any two cells or systems of cells
tlr-lt are repeatedly active at the same time will tend to become
‘assoctated', so that activity in one facilitates activity in the other."

"When one cell repeatedly assists in firing another, the axon of the
first cell develops synaptic knobs (or enlarges them if they already
exist) in contact with the soma of the second cell."




ML does lots of different things

* Regression
» Clustering

e Classification



Single Layer Perceptrons
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class ActivationFunction (object):
def __init__ (self, threshold = 0.5):
self.threshold = threshold

def __call__ (self, x):
return 1 1f x > 0.5 else 0

class SingleLayerPerceptron (object):

def __init__ (self, n_inputs, activation function = ActivationFunction ()):
self.weights = np.random.rand (n_inputs)
self.activation_function = activation_function

def evaluate (self, inputs):
assert len (inputs) == len (self.weights)

sum_inputs = sum (inputs * self.weights)
return self.activation_function (sum_1inputs)



def train (self, input_set, target _set, learning rate = 0.1):
assert len (input_set) == len (target_set)

sum_squared _error = 0.0

for inputs, target zip (input_set, target _set):
estimate = self.evaluate (inputs)
error = target - estimate

for i range (len (inputs)):
self.weights [1] += learning_rate * error * inputs [1]

sum_squared_error += error ** 2

return sum_squared error



inputs = [
[ 0, 0],
[ e
i aiy
s i
]
outputs = [
0,
T
1,
1
]

p = SingleLayerPerceptron (len (inputs [0]))
for i range (50):

err = p.train (inputs, outputs)

print "SSQ = %.6f " % err

for inp, output zip (inputs, outputs):
estimate = p.evaluate (inp)

print inp, => ", estimate,

expected: ", output
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Initial Weights Trained Weights
0.32 0.31 0.52 0.51

Weighted input Activation
0 0.00 0
0.51 1
0.52 1
1.03 1

Weighted input Activation

0.00
0.31 0
0.32 0
0.63 1




Remember XOR?



XOR is special

inputs =

= =00
= O = O

outputs

O K== Ol

]

p = SinglelLayerPerceptron (len (inputs [0]))
for i range (100):

err = p.train (inputs, outputs)

print "%d,%.6Ff " % (i,err)
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Multi Layer Perceptrons



Multi Layer Perceptrons




Multi Layer Perceptrons
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Sigmoid Activation functions

B (tanh(v))
m (1/1 +exp(-v)))
M (0.5+0.5"tanh{v))
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Activation function and 1st derivative
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0.676824 expected:
0.702282 expected:
0.698220 expected:
0.718801 expected:
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.125263
.111737
.101154
.092994
.086770
.082062
.078519
.075865
.073882
.072402
.071297
.070472
.069856
.069394
.069048
.068786
.068588
.068437
.068321
.068231
.068160
.068104



Error while learning XOR
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finished after 1289 iterations
0.187037 expected:
0.826948 expected:
0.826635 expected:
0.162049 expected:

[0, O]
[0, 1]
[1, O]
[1, 1]

0]
[1]
[1]
[0]









scikit-learn
algorithm cheat-shee

classification

get

more
data B NO

>50
YES samples
predicting a e -
YES category

NOT
WORKING

NO

YES NO
NOT
YES
Text R <100K
Data . samples

YES

NOT “do you have
WORKING labeled
NO data

number of
categories
known

regression

ES

NO

. <100K YEs
samples
YES \ -
predicting a d
quanti

-
looking %%
predicting
structure

few features
should be
important

NOT
WORKING

YES

clustering
samples

NO

NOT
WORKING

oT
WORKING

YES

samples NO

dimensionality
reduction
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