

That which does not
kill us makes us

stronger.

Friedrich Nietzsche

Pain 1s weakness
leaving the body

U.S. Marine Corps

lakesinaday.co.uk

LAKES IN A DAY

ULTRA RUN 11TH OCTOBER 2014
CALDBECK TO CARTMEL

PRE

open

48 MILES 4000 METRES OF ASCENT aduenture

HOME s« DETAILS ¢ HAGLOFS « ROUTE s« KIT s ENTRYLIST s« CONTACTUS ENTER OMNLINE

What does that have to do with this talk?

No]igllgle

Machine Learning

GODEL,ESCHER,BACH

~

W o= 0 PO oS

By

e e K S -

Science Fair Project — shape recognition

Life Plan

1.Start a company
2.7
3.Profit

Life Plan

1.Start a company

2.7

3.Profit

4.Retire to my private
island and work on Al

Something must have gone wrong...

VBA :(

\nl.

IFFE EN'I'

Machine Learning

History

Man has always dreamed of Intelligent Machines

f ‘il'
.IJ:.J
PHONETIC KEMP INC.

VoL, Lix. No. 236.] [October, 1950

MIND

A QUARTERLY REVIEW

OF
PSYCHOLOGY AND PHILOSOPHY

= Sl =

I - COMPUTING MACHINERY AND

INTELLIGENCE
By A. M. Turixe

1. The Iwmitation Fame.

1 erorose to consmider the gquestion, * Can machines thinl ?°
This should begin wath defimitions of the meaning of the 1arms
*machine " and * think . The definitions might be framed so as to
reflect s0 far as possible the normal use of the words, but this
attitude 15 dangerous. lf the meaning of the words ° machine ’
and * think * are to be found by examining how they are commaonly
used it is diffienlt to escape the conclhusion that the meanmg
and the answer to the question, * Can machines think ? * is to be
sought i a statistical survey such as a Gallup poll. But this is
absurd. Instead of atbempting such a defination I shall replace the
question by another, which is closely related to it and 18 expressed

| propose to consider the question, “Can machines think?”

This should begin with definitions of the meaning of the terms
“machine” and “think”.
Alan Turing, 1950

Axon hillock

/

Dendrite Hucleus

/!n_\ I Tetmnal buttons

s chematic of biological nevron.

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WarreN S. McCuLroch and Warter H. Pitts

Because of the "all-or-none™ character of nervous activity,
neural events and the relations among them can be treated by
means of propositional logic. It is found that the behavior of
every net can be described in these terms, with the addition of
more complicated logical means for nets containing circles; and
that for any logical expression satisfying certain conditions, one
can find a net behaving in the fashion it describes. It is shown
that many particular choices among possible neurophysiological
assumptions are equivalent, in the sense that for every net be-
having under one assumption, there exists another net which
behaves under the other and gives the same results, although
perhaps not in the same time. Various applications of the calculus

are discussed. | _
McCulloch & Pitts, 1943

activation
functon

net input
net.
I (Z?)
activation

transfer
function

0.

]
threshold

Slow, but lots of them

» 200 billion neurons (100-400 billion stars in the
galaxy)
» 200,000,000,000,000

e 125 trillion synapses
« 125,000,000,000,000,000,000

‘B The Organization -

of Behavior

Donald Hebb, 1949

"The general 1dea 1s an old one, that any two cells or systems of cells
tlr-lt are repeatedly active at the same time will tend to become
‘assoctated', so that activity in one facilitates activity in the other."

"When one cell repeatedly assists in firing another, the axon of the
first cell develops synaptic knobs (or enlarges them if they already
exist) in contact with the soma of the second cell."

ML does lots of different things

* Regression
» Clustering

e Classification

Single Layer Perceptrons

activation
functon

net input
net.
I (Z?)
activation

transfer
function

0.

]
threshold

class ActivationFunction (object):
def __init__ (self, threshold = 0.5):
self.threshold = threshold

def __call__ (self, x):
return 1 1f x > 0.5 else 0

class SingleLayerPerceptron (object):

def __init__ (self, n_inputs, activation function = ActivationFunction ()):
self.weights = np.random.rand (n_inputs)
self.activation_function = activation_function

def evaluate (self, inputs):
assert len (inputs) == len (self.weights)

sum_inputs = sum (inputs * self.weights)
return self.activation_function (sum_1inputs)

def train (self, input_set, target _set, learning rate = 0.1):
assert len (input_set) == len (target_set)

sum_squared _error = 0.0

for inputs, target zip (input_set, target _set):
estimate = self.evaluate (inputs)
error = target - estimate

for i range (len (inputs)):
self.weights [1] += learning_rate * error * inputs [1]

sum_squared_error += error ** 2

return sum_squared error

inputs = [
[0, 0],
[e
i aiy
s i
]
outputs = [
0,
T
1,
1
]

p = SingleLayerPerceptron (len (inputs [0]))
for i range (50):

err = p.train (inputs, outputs)

print "SSQ = %.6f " % err

for inp, output zip (inputs, outputs):
estimate = p.evaluate (inp)

print inp, => ", estimate,

expected: ", output

1
\'
(OB O RO

== 0

== 1
.000000

expected:
expected:
expected:
expected:

expected:
expected:
expected:
expected:

= == O

= ==

Initial Weights Trained Weights
0.32 0.31 0.52 0.51

Weighted input Activation
0 0.00 0
0.51 1
0.52 1
1.03 1

Weighted input Activation

0.00
0.31 0
0.32 0
0.63 1

Remember XOR?

XOR is special

inputs =

= =00
= O = O

outputs

O K== Ol

]

p = SinglelLayerPerceptron (len (inputs [0]))
for i range (100):

err = p.train (inputs, outputs)

print "%d,%.6Ff " % (i,err)

-

-

-

-

-

-

-

WwWwwwwuwpRkr Pk, PRk PR

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

s

s

P R R R ERERODOONNO0O0NSAWNEOS

= = =
-
W

-
(V)

.- e W
W W W w W

‘-
(V)

18,3.
19,3.
PACIRC
21,3.

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

000000
000000
000000
000000

L L] . L - . L

L

L

== == O 0O~ OO W =R O
W W W W W = e e

W N RO

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

79,3.
80,3.
81,3.
82,3.
83,3.
84,3.
85,3.
86,3.
87,3.
88,3.
89,3.
90,3.
91,3.
92,3.
93,3.
94,3.
95,3.
96,3.
97,3.
98,3.
99, 3.

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

Multi Layer Perceptrons

Multi Layer Perceptrons

Multi Layer Perceptrons

AWij=? 27?

~

W o= 0 PO oS

By

e e K S -

activation
functon

net input
net.
I (Z?)
activation

transfer
function

0.

]
threshold

Sigmoid Activation functions

B (tanh(v))
m (1/1 +exp(-v)))
M (0.5+0.5"tanh{v))

=
=
@
=
boa
o
<

Met input

Activation function and 1st derivative

-
— e
-
.-"-'-...
..---'
| /
- J_.-'"
Fd
F
__.-"'
-'.r.-.-
[i
= — .y
i F
.y
/
.
F,
F.
:f
< _| /
- J
J.-'r
-'.-I-..-
Fd
F J ———
#
.-':-..:-':.:.-....
-H.'\'.:-::::-.
D __'__'_'_'_'_'_._'_'_._,_r" - -
i

0.676824 expected:
0.702282 expected:
0.698220 expected:
0.718801 expected:

0]
1]
1]
0]

o)
0
SSQ
SSQ
0
0
SSQ
SSQ
S0
SSQ
SSQ
0
0
SSQ
SSQ
S0
0
SSQ
SSQ
0
SSQ

Bso

1 | | I | A I VN |
ooNoBoBoRONoNoBoONONONORONONONBONONONONONORNO

.125263
.111737
.101154
.092994
.086770
.082062
.078519
.075865
.073882
.072402
.071297
.070472
.069856
.069394
.069048
.068786
.068588
.068437
.068321
.068231
.068160
.068104

Error while learning XOR

o
—
=
=
-
=
o0
=
o
w
=
o
=
—
=
o
!
=
=
o
=

I !
600 800

lterations

finished after 1289 iterations
0.187037 expected:
0.826948 expected:
0.826635 expected:
0.162049 expected:

[0, O]
[0, 1]
[1, O]
[1, 1]

0]
[1]
[1]
[0]

scikit-learn
algorithm cheat-shee

classification

get

more
data B NO

>50
YES samples
predicting a e -
YES category

NOT
WORKING

NO

YES NO
NOT
YES
Text R <100K
Data . samples

YES

NOT “do you have
WORKING labeled
NO data

number of
categories
known

regression

ES

NO

. <100K YEs
samples
YES \ -
predicting a d
quanti

-
looking %%
predicting
structure

few features
should be
important

NOT
WORKING

YES

clustering
samples

NO

NOT
WORKING

oT
WORKING

YES

samples NO

dimensionality
reduction

bk@xk7 .com
@georgebernhard

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72

