C++ Undefined Behavior
What is it, and why
should I care?

Marshall Clow
Qualcomm
marshall@idio.com
http://cplusplusmusings.wordpress.com
(intermittent)
Twitter: @mclow

ACCU 2014 April 2014

What is Undefined Behavior?

(from N3691 - C++)

1.3.24: undefined behavior

Behavior for which this International Standard imposes no requirements.

[Note: Undefined behavior may be expected when this International Standard
omits any explicit definition of behavior or when a program uses an erroneous
construct or erroneous data. Permissible undefined behavior ranges from
ignoring the situation completely with unpredictable results, to behaving during
translation or program execution in a documented manner characteristic of the
environment (with or without the issuance of a diagnostic message), to
terminating a translation or execution (with the issuance of a diagnostic
message). Many erroneous program constructs do not engender undefined
behavior; they are required to be diagnosed. — end note]

Some examples of UB

@ Program crashes

@ Program gives unexpected results
@ Computer catches fire

@ Cat gets pregnant

@ Program appears to work fine

@ There are no wrong answers!

Example #l:
No Wrong Answers!

#include <iostream>
// g++ sequence points.cpp &&
// clang++ sequence points.cpp &&

using namespace std;

int main () {
int arr [} = {5 Qs ARG TaRe e
1nt. 1 ="
cout << i + arr[++1] + arr[i++]

}

S ademt —->:10
s/a.out ==> 9

How can I get UB? (I)

@ Signed integer overflow (but not unsigned!)
@ Dereferencing NULL pointer or result of malloc(0)

@ Shift greater than (or equal to) the width of the
operand

@ Reading from uninitialized variables

@ Modifying a variable more than once in an expression

How can I get UB? (II)

@ Buffer overflow

@ Comparing pointers into two different data
structures

@ Pointer overflow

@ Modifying a const object (C++) or a string
literal

How can I get UB? (III)

@ Negating INT_MIN
® Data races
@ Mismatch between new and delete

@ Calling a library routine w/o fulfilling the
prerequisites

o memcpy with overlapping buffers

Yikes!

#include <new>

class Foo {}; // complicated class

int main (int argc, char *argv[])
{

int *p = new Foo [4];
// ..much later..

delete p;

return 0;

atomic_.is_lock_free

20.9.2.5 shared_ptr atomic access

template<class T>
bool atomic i1s lock free
(const shared ptr<T>* p);

Requires: p shall not be null.

Arithmetic Operations

3.9.1.4: If during the evaluation of an
expression, the result is not mathematically
defined or not in the range of representable
values for its type, the behavior is undefined.

[Note: most existing implementations of C++ ignore integer
overflows. Treatment of division by zero, forming a remainder
using a zero divisor, and all floating point exceptions vary
among machines, and is usually adjustable by a library
function. —endnote]

Example #2:
No Wrong Answers!

#include <stdio.h>
#include <stdbool.h>

int main (int argc, char *argv[])
{
bool b;
1F (0 b Hrantis("truesin
if- (" Yo yi.printf ("false\n® «;
return 0;

Why does C and C++
do this?

@ It gives the compiler leeway to generate
smaller code, by omitting checks

@ By assuming no UB, the compiler can
generate simpler, faster, smaller code.

Why is this important?

@ Because compilers know it - and optimizers
take advantage of it.

o It is perfectly legal to transform a program
exhibiting UB into any other program.

® Remember - in UB, there are no wrong
answers!

Different kinds of
routines

@ Type 1 - no UB, no matter what the inputs

@ Type 2 - UB for some subset of all possible
inpufts.

@ Type 3 - UB every time, no matter what the
inpufts.

John Regehr, University of Utah

Example #3

int * do something (int *p)
{
log ("do _something %d", *p);
1fo(kp)
{
// code here
pe=-malll@&(. s o)
// more code here

}

return p;

}

Example #4

#include <stdio.h>

int main ()
{
int <3 0x10000000;
int*c = 0:
do
{

Chts
Tk e
printe (Tsd s varye
} while (i > 0);
printf ("%d iterations\n", c);

Why do we care? (I)

@ It's surprisingly easy to write code with undefined
behavior.

@ http://code.google.com/p/nativeclient/issues/detail?
id=245

@ UB code may “"work” for a while, and then “"break” when
the optimization level is increased or the compiler is
upgraded.

@ This is what the STACK people call “optimization-
unstable code”. (remember, no wrong answers!)

Why do we care? (II)

@ UB shows up in "tricky” code; frequently code that is
attempting security checks.

@ http://gcc.gnu.org/bugzilla/show_bug.cqi?id=30475
@ Bugs that STACK found in Postgres

Dont be this guy!

https://www.youtube.com/watch?v=HRJ-VLehcJg

What can I do about
UB?

® Be aware of UB.

@ Dont blame the compiler (AKA "dont shoot

the messenger”)

@ if you're doing "something tricky” think about
UB.

@ Build your code with several compilers/
different optimization levels.

You cant check for UB
after the fact

@ Its too late

@ The damage has already been done

If you write this:
bool WillThisOverflow (int a)
{ return.a 100 < a; }

the compiler can/may/will optimize it to:

bool WillThisOverflow (int a)
{ return false; } // Why?

Instead, you should write:
bool WillThisOverflow (int a)
{ return a < (INT MAX - 100);

Are there any tools o help
detect UB?

@ Tools are starting to appear
@ clang has -fsanitize=undefined

@ See http://blog.llvm.org/2013/04/testing-
libc-with-fsanitizeundefined.html

@ John Regehr's Integer Overflow Checker

@ STACK (this past summer from MIT)

Quiz

// Optimize this code
void
contains null check(int *P)

{
int dead = *P;

if (P ==4l)
return;
*P 3 4;

Quiz

// Optimize this code
void
contains null check(int *P)

Questions?

References

@ A Guide to Undefined Behavior in C and C++, Part I
http://blog.regehr.org/archives/213 (links to II and III)

@ Towards optimization-safe systems http://
pdos.csail.mit.edu/papers/stack:sosp13.pdf

@ http://clang.llvm.org/docs/
UsersManual.html#controlling-code-generation

® What every C programmer should know about
undefined behavior http://blog.llvm.org/2011/05/what-
every-c-programmer-should-know.html (with link to
parts II and III)

References

@ Its Time to Get Serious About Exploiting Undefined
Behavior http://blog.regehr.org/archives/761

@ Finding Undefined Behavior Bugs by Finding Dead Code
http://blog.regehr.org/archives/970

@ About unspecified and undefined behavior in C (ACCU
2013) http://www.pvv.org/~oma/

UnspecifiedAndUndefined_ACCU_Apr2013.pdf

