
C++ Undefined Behavior
What is it, and why

should I care?
Marshall Clow

Qualcomm
marshall@idio.com

http://cplusplusmusings.wordpress.com
(intermittent)

Twitter: @mclow

April 2014ACCU 2014

What is Undefined Behavior?

(from N3691 - C++)

1.3.24: undefined behavior

Behavior for which this International Standard imposes no requirements.

[Note: Undefined behavior may be expected when this International Standard
omits any explicit definition of behavior or when a program uses an erroneous
construct or erroneous data. Permissible undefined behavior ranges from
ignoring the situation completely with unpredictable results, to behaving during
translation or program execution in a documented manner characteristic of the
environment (with or without the issuance of a diagnostic message), to
terminating a translation or execution (with the issuance of a diagnostic
message). Many erroneous program constructs do not engender undefined
behavior; they are required to be diagnosed. — end note]

Some examples of UB

Program crashes

Program gives unexpected results

Computer catches fire

Cat gets pregnant

Program appears to work fine

There are no wrong answers!

Example #1:
No Wrong Answers!

#include <iostream>
// g++ sequence_points.cpp && ./a.out --> 10
// clang++ sequence_points.cpp && ./a.out --> 9

using namespace std;
int main () {
! int arr [] = { 0, 2, 4, 6, 8 };
! int i = 1;
! cout << i + arr[++i] + arr[i++] << endl;
! }

How can I get UB? (I)

Signed integer overflow (but not unsigned!)

Dereferencing NULL pointer or result of malloc(0)

Shift greater than (or equal to) the width of the
operand

Reading from uninitialized variables

Modifying a variable more than once in an expression

How can I get UB? (II)

Buffer overflow

Comparing pointers into two different data
structures

Pointer overflow

Modifying a const object (C++) or a string
literal

How can I get UB? (III)

Negating INT_MIN

Data races

Mismatch between new and delete

Calling a library routine w/o fulfilling the
prerequisites

memcpy with overlapping buffers

Yikes!

#include <new>

class Foo {}; // complicated class

int main (int argc, char *argv[])
{
! int *p = new Foo [4];
// ..much later..
 delete p;

! return 0;
}

atomic_is_lock_free

20.9.2.5 shared_ptr atomic access

template<class T>
bool atomic_is_lock_free
 (const shared_ptr<T>* p);

Requires: p shall not be null.

Arithmetic Operations

3.9.1.4: If during the evaluation of an
expression, the result is not mathematically
defined or not in the range of representable
values for its type, the behavior is undefined.

[Note: most existing implementations of C++ ignore integer
overflows. Treatment of division by zero, forming a remainder
using a zero divisor, and all floating point exceptions vary
among machines, and is usually adjustable by a library
function. —endnote]

Example #2:
No Wrong Answers!
#include <stdio.h>
#include <stdbool.h>

int main (int argc, char *argv[])
{
! bool b;
! if (b) printf ("true\n");
! if (!b) printf ("false\n");
! return 0;
}

Why does C and C++
do this?

It gives the compiler leeway to generate
smaller code, by omitting checks

By assuming no UB, the compiler can
generate simpler, faster, smaller code.

Why is this important?

Because compilers know it - and optimizers
take advantage of it.

It is perfectly legal to transform a program
exhibiting UB into any other program.

Remember - in UB, there are no wrong
answers!

Different kinds of
routines

Type 1 - no UB, no matter what the inputs

Type 2 - UB for some subset of all possible
inputs.

Type 3 - UB every time, no matter what the
inputs.

John Regehr, University of Utah

Example #3

! int * do_something (int *p)
! {
! ! log ("do_something %d", *p);
! ! if (!p)
! ! {
! ! ! // code here
 p = malloc (...);
 // more code here
! ! }
! return p;
 }

Example #4
#include <stdio.h>

int main ()
{
! int i = 0x10000000;
! int c = 0;
! do
! {
! ! c++;
! ! i += i;
! ! printf ("%d\n", i);
! } while (i > 0);
! printf ("%d iterations\n", c);
}

Why do we care? (I)
It's surprisingly easy to write code with undefined
behavior.

http://code.google.com/p/nativeclient/issues/detail?
id=245

UB code may “work” for a while, and then “break” when
the optimization level is increased or the compiler is
upgraded.

This is what the STACK people call “optimization-
unstable code”. (remember, no wrong answers!)

Why do we care? (II)

UB shows up in “tricky” code; frequently code that is
attempting security checks.

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30475

Bugs that STACK found in Postgres

Don’t be this guy!

https://www.youtube.com/watch?v=HRJ-VLehcJg

What can I do about
UB?

Be aware of UB.

Don’t blame the compiler (AKA “don’t shoot
the messenger”)

if you're doing “something tricky” think about
UB.

Build your code with several compilers/
different optimization levels.

You can’t check for UB
after the fact

It’s too late

The damage has already been done

If you write this:
bool WillThisOverflow (int a)
{ return a + 100 < a; }

the compiler can/may/will optimize it to:
bool WillThisOverflow (int a)
{ return false; } // Why?

Instead, you should write:
bool WillThisOverflow (int a)
{ return a < (INT_MAX - 100); }

Are there any tools to help
detect UB?

Tools are starting to appear

clang has -fsanitize=undefined

See http://blog.llvm.org/2013/04/testing-
libc-with-fsanitizeundefined.html

John Regehr's Integer Overflow Checker

STACK (this past summer from MIT)

Quiz
// Optimize this code
void
contains_null_check(int *P)
{
 int dead = *P;
 if (P == 0)
 return;
 *P = 4;
}

Quiz
// Optimize this code
void
contains_null_check(int *P)
{
 int dead = *P;
 if (P == 0)
 return;
 *P = 4;
}

Questions?

References
A Guide to Undefined Behavior in C and C++, Part I
http://blog.regehr.org/archives/213 (links to II and III)

Towards optimization-safe systems http://
pdos.csail.mit.edu/papers/stack:sosp13.pdf

http://clang.llvm.org/docs/
UsersManual.html#controlling-code-generation

What every C programmer should know about
undefined behavior http://blog.llvm.org/2011/05/what-
every-c-programmer-should-know.html (with link to
parts II and III)

References

It’s Time to Get Serious About Exploiting Undefined
Behavior http://blog.regehr.org/archives/761

Finding Undefined Behavior Bugs by Finding Dead Code
http://blog.regehr.org/archives/970

About unspecified and undefined behavior in C (ACCU
2013) http://www.pvv.org/~oma/
UnspecifiedAndUndefined_ACCU_Apr2013.pdf

