Immutability FTW!

@KevlinHenney

(I told you so...)

@KevlinHenney

PROGRAMMING

You're DoiNG It CompLeTELY WRONG.

Change is the
only constant.

Heraclitus

You cannot step
twice into the
same river.

Heraclitus

Time is like a river,
but frozen not flowing.
Eddies, pools and falls
are fixed in place,
timeless and immutable.

Kevlin Henney

"Remembrance of Things Past"”
http://www.spec-fiction.ca/remembrance-of-things-past/

When it is not
necessary to
change, it 1is
necessary not to
change.

Lucius Cary

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted here is something like the
following substitution property: If for each
object ol of type S there is an object 02 of type T
such that for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for 02, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

for all programs P defined in terms of T,
the behavior of P is unchanged when o1 is
substituted for 02

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is one
whose objects provide all the behavior of objects
of another type (the supertype) plus something
extra. What is wanted' here is something like the
tollowing substitution property: If for each
object ol of type S there is an object 02 of type 1
such that for all programs P defined in terms ot 1,
the behavior of I'is unchanged when 01 is
substituted for 02, then S 1s a subtype ot 1.

Barbara Liskoo
‘Data Abstraction and Hierarchy"

public class Ellipse
{

private double semiMajor, semiMinor;

public Ellipse(double a, double b)
public double semiMa‘jorAxis ()
public double semiMinorAxis()
public void semiMajorAxis (double a)
public void semiMinorAxis (double b)

public class Circle extends Ellipse
{

public Circle (double r)

public double radius()

public void radius (double r)

public class Ellipse
{

public void semiMajorAxis (double a)
public void semiMinorAxis (double b)

}

public class Circle extends Ellipse

{

@Override
public void semiMa‘jorAxis (double a)

{
}

@Override
public void semiMinorAxis (double b)

throw new UnsupportedOperationException () ;

The reason a solution is so hard to come by is because the
problem is poorly stated: mathematics tells us that a circle is an
ellipse, so | can substitute a circle wherever an ellipse is required,
suggesting that a circle is a subtype of an ellipse.

Kevlin Henney
"Vicious Circles", Overload 8, June 1995

The troubles start when we introduce any state modifying
functions, such as assignment or the ability to change the major
and minor axes independently.

Kevlin Henney
"Vicious Circles", Overload 8, June 1995

The reason a solution is so hard to come by is because the
problem is poorly stated: mathematics tells us that a circle is an
ellipse, so | can substitute a circle wherever an ellipse is required,
suggesting that a circle is a subtype of an ellipse.

The troubles start when we introduce any state modifying
functions, such as assignment or the ability to change the major
and minor axes independently.

We are so confident that we understand the mathematical
concepts behind circles and ellipses that we have not bothered to
ask any more questions of that domain.

Kevlin Henney
"Vicious Circles", Overload 8, June 1995

The first observation is that there is no way to change circles and
ellipses once you have created them.

Kevlin Henney
"Vicious Circles", Overload 8, June 1995

This is the correct mathematical model: there are no side effects
in maths, conic sections do not undergo state changes, and there
are no variables in the programming sense of the word.

Kevlin Henney
"Vicious Circles", Overload 8, June 1995

The first observation is that there is no way to change circles and
ellipses once you have created them.

This is the correct mathematical model: there are no side effects
in maths, conic sections do not undergo state changes, and there
are no variables in the programming sense of the word.

Readers who are comfortable and familiar with functional
programming and data flow models will recognise the approach.

Kevlin Henney
"Vicious Circles", Overload 8, June 1995

In the case of circles and ellipses, the circle is simply an ellipse
with specialised invariants. There is no additional state and none
of the members of an ellipse need overriding as they apply
equally well to a circle.

Kevlin Henney
"Vicious Circles", Overload 8, June 1995

public class Ellipse
{

private double semiMajor, semiMinor;

public Ellipse (double a, double b)
public double semiMa‘jorAxis ()
public double semiMinorAxis ()

public class Circle extends Ellipse

{
public Circle (double r)

public double radius()

Pure Interface Layer
Interfaces may extend
interfaces, but there is no
implementation defined in
this layer.

Common Code Layer
Only abstract classes are
defined in this layer, possibly
with inheritance, factoring out
any common implementation.

Concrete Class Layer
Only concrete classes are
defined, and they do not
inherit from one another.

«interface»
Usagelnterface

A

public interface Ellipse

{

double semiMajorAxis() ;
double semiMinorAxis () ;

public interface Circle extends Ellipse

{

double radius|() ;

public class ??7? implements Ellipse

{

private double semiMajorAxis, semiMinorAxis;

public class ??? implements Circle

{

private double radius;

The Naming of Cats is a difficult matter,
It isn't just one of your holiday games;

You may think at first I'm as mad as a hatter

When I tell you, a cat must have THREE DIFFERENT NAMES.
[..]

But above and beyond there's still one name left over,

And that is the name that you never will guess;

The name that no human research can discover—
But THE CAT HIMSELF KNOWS, and will never confess.

[...]
T S Eliot

public class Ellipse
{

private double semiMajor, semiMinor;

public Ellipse (double a, double b)
public double semiMa‘jorAxis ()
public double semiMinorAxis ()

public class Circle

{

private double radius;

public Circle (double r)
public double radius()
public Ellipse toEllipse ()

public class Ellipse
{

private double semiMajor, semiMinor;

public Ellipse (double a, double b)
public double semiMa‘jorAxis ()
public double semiMinorAxis ()
public boolean isCircle()

THE INTERNATIONALI

A 101communications Publication May 2000, Vol 12/No 5
$7.95 US/$10 Gan/$12 Int'

Building Expression Template Enabled L T C O nV e rS i O n S

Containers: Extending the
Technigue to Enhance

Technology < . ', 3 : O Ve rl O a d in g

Derivation

Replacing
Functors
to Simplify the

Genericity

of Different Design
Strategies in C++

A Useful Optimization M u t 3 b i l i t y

and Its Consequences FROM ME
Substitutahility: A Useful Way
to Structure System Meaning

GOMI
Legitimate Uses of Runtime Behavi

How to Do Case-Insensitive
String Comparison

Phenomenon: An element of what we can observe
in the world. Phenomena may be individuals or
relations. Individuals are entities, events, or
values. Relations are roles, states, or truths.

Individual: An individual is a phenomenon that
can be named and is distinct from every other
individual: for example, the number 17, George
ITII, or Deep Blue's first move against Kasparov.

Value: A value is an intangible individual that
exists outside time and space, and is not subject
to change.

| SHARED PATH | £
Please consider = | THE
other path users | ALL USERS SHC

CYCLISTS ARE A

No liability will be accej

WILEY SERIES IN

SOFTWARE DESIGN PATTERNS

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

A Pattern Language for

Distributed Computing

Frank Buschmann
Kevlin Henney

Douglas C. Schmidt

Immutable Value

References to value objects are commonly distributed and
stored in fields. However, state changes to a value caused
by one object can have unexpected and unwanted side-
effects for any other object sharing the same value
instance. Copying the value can reduce the
synchronization overhead, but can also incur object
creation overhead.

Therefore:

Define a value object type whose instances are immutable.
The internal state of a value object is set at construction
and no subsequent modifications are allowed.

public class Date implements ...

{

public int getYear() ...

public int getMonth() ...

public int getDayInMonth() ...

public void setYear(int newYear) ...

public void setMonth(int newMonth) ...

public void setDayInMonth(int newDayInMonth) ...

public class Date implements ...

{

public
public
public
public
public
public
public
public
public
public
public
public

int getYear() ...
int getMonth() ...
int getWeekInYear() ...
int getDayInYear() ...
int getDayInMonth() ...
int getDayInWeek() ...

void
void
void
void
void
void

setYear(int newYear) ...
setMonth(int newMonth) ...
setWeekInYear(int newWeek) ...

setDayInYear(int newDayInYear) ...
setDayInMonth(int newDayInMonth) ...
setDayInWeek(int newDayInWeek) ...

public final class Date implements ...

{

public int getYear() ...
public int getMonth() ...
public int getWeekInYear() ...
public int getDayInYear() ...
public int getDayInMonth() ...
public int getDayInWeek() ...

public final class Date implements ...

{

public int year() ...
public int month() ...
public int weekInYear() ...
public int dayInYear() ...
public int dayInMonth() ...
public int dayInWeek() ...

UED
Dictionary 'Advanced Search Results History Bookmarks Options Help Home

get, n. - get, V.

get, n.?
get, n.? (9€t)
get, v.
geta, n. pl.

Pa. tense got (arch. gat). Pa. pple. got (gotten). Pres. pple.
getting. Forms: inf. 3-4 geten, (5 getyn), 3-6 gete, (4 geit, geyt,
Getan, a. (and n. gite, Sc. gat(e, 4-5 gyte, 6 Sc. gait), 3-7 gett, (4-6 gette, 4
get-at-able, a. gitte, 5 gytt, 9 dial. git), 3- get. pa. tense 3-7 gate, (3 gait, 4
get-away, getaw get, pl. gaten, geton, -yn, geetun, getton, 5 geten), 3-6 gatt,

(4-6 gatte), 3- gat, 6- got, (6 got(t)e). pa. pple. a. 3-5 geten, (3
3eten, getun, 4 getin, geteyn, giten, -in, gyten, -in, 4-6 getyn,
5 geton), 3-5 getten, (4-5 gettyn, 5 getton, 6 gitten), 4-6 gete,
gete (4 i-gete, 5 y-gete, gyte), 4-6 gette, (5 y-gette), 5-6 gett, (5
getee get). B. 3-4 gotin, 3- 6 goten, (4 gotyn, gote, 5 y-goten, goton,
geten gothen), 4-6 5c. gottin, -yn, 5-7 gotton, 6- gotten, got, (6 y-
getenly, adv. got).

geterne

get-go, n.

gete, n.
gete, v.

[a. ON. geta (gat, gatum, getenn) to get, obtain, to beget, also, to
guess (Sw. gitta, Da. gide to be able or willing, MSw. gata, Da. gjette
gethe to gquess) = OE. -gietan (only in the compounds a-, be-, for-, ofer-,
gether, adv. on-, under-gietan: see Becer, FORGET), OFris. (ur-, for-)jeta, OS. (bi-,
gethicall far-)getan (MDu. ver-gheten, Du. ver-geten), OHG.
ge«zced»<zced>an, ke<zced><zced>an (once in pple.

Gethsemane

ok "TosrTorwords "Copy’ "PRRE WA rinanenty [T T

OED

Dictionary 'Advanced Search 'Results 'History Bookmarks Options Help ‘Home
« PRONUNCIATION B « SPELLINGS § « ETYMOLOGY § « QUOTATIONS

set, n.’ set, v’

set, n.?
set, v.' (set)

set, v.?
set, ppl. a.

set, cony. [Com. Teut.: OE. settan = OFris. setta (mod.Fris. sette), 0S. settian
set- (MDu., MLG. setten, Du. zetten), OHG. sezzan beside sazzan (MHG.
cats sezzen, G. setzen), ON. setja (Sw. satta, Da. saette), Goth. satjan;
causal of *setjan (sitjan) to sit.

Confusion between set and sit arose as early as the beginning of the 14th
c., owing partly to the identity or close similarity of the forms of their past
setaceous, a. tenses and pa. pples., and partly to the identity of meaning in some uses, as
setaceous between to be set (= seated) and to sit; cf. SIT V. (etym. note and A. 5a a
setal a. note). For cases of mere subst!tutipn of fﬂr['ns of sit ﬂ::rlfc-rms nf set, see A. 1

’ v, 2 C below. The spelling sett is still sometimes found in technical senses; cf.
setar SET N.']

setarious, a.
set-aside, n. and A. Inflexional Forms.

Forms: see below. Pa. tense and pple. set.

setace
setaceo-

set-back
setchal, setchel(
set-down

sete, n.

e "TGSETOFWOrae "Copy "PRRE "W Fina in encry [N T

1. a. inf. and pres. stem. (a) 1 settan (Northumb. setta), 2-5 (6
arch.) setten, 3-6 sette (2 setton, seotte, 3 Orm. settenn, Lay.
saetten, 4 Kent. zetten, 5 settyn, cettyn, satte, 6 seatt-), 4-9

0ED
Dictionary NOVERCT Searey, WesuRs Wetary ‘Wookmares "Opuone Wi Wowe
reset

reset, n.’ reset, v.?
reset, n.?
reset, v.' (ri:'set)
reset, v.?

resetment

Also re-set.

resettable, a. [Re- 5 a.]

resetter
resettle, v. trans. To set again, in various senses of the verb.

resettlement
reseve

CRS Ny 1655 FuLLer Ch. Hist. v. iv. §7 Elizabeth,..finding so fair a

resew, reseyve flower..fallen out of her Crown, was careful quickly to gather it up
reseyt again, and get it re-sett therein. 1684 R. WALLER Nat. Exper. Pref.,
resgat For a time they fall out of their Collets.., and [are] worth nothing
till..they are again reset in their proper places. 1830 LyrTon P.
Clifford xix, A stray trinket or two—not of sufficient worth to be re-
reshape, v. set. 1883 HALbANE Worksh. Rec. Ser. 1. 371/2 The hair can be again
reshaper reset as firmly as it was before [etc.].

reshare, v.

resharpen, v. b. Surg. To set (a broken limb) again.
resheathe, v.

WEER IGSETORWOrES 'COPY PR TWEFR Find in ety [N TP P

. 1. a. To replace (esp. gems) in a (former or new) setting.

resh

0ED
Dictionary TOVERCET Seareh, WesuRs ‘Tetery 'Wookmares ‘pHone el Wowe
unset

unset, v. un'set, v.

unset, ppl. a.
unsete, a. [un-* 3, 7. Cf. OE. unsettan (once), to take down.]

unsett
unsetting, ppl. a.

unsettle, v. 1602 MARsTON Ant. & Mel. m. Wks. 1856 I. 37 O, you spoyle my
unsettleable, a. ruffe, unset my haire. 1611 Cotcr., Desplanter,..to vnplant, vnset,
unsettled, ppl. a. remoue. 1761 Gray Lett. (1900) Il. 204 The man was sent for: he
unset it; it was a paste not worth 40 shillings. 1775 MRs. DELANY in
Life & Corr. Ser. 1. (1862) Il. 105 There is some hazard in unsetting
; enamel for fear of chipping the edges. 1836 MARRYAT Midsh. Easy
unsettling, vbl. n xxxii, How could he put the young men to fresh tortures by

unsety, a. removing splints and unsetting limbs? 1884 Law Times 1 Nov. 8/1
unseven, V. On the morning in question Dawson had unset the gun.

unsever, V.
unseverable, a.
unseverably, ad\

1. trans. To put out of place or position; to undo the setting of.

unsettledness
unsettiement

2. intr. To get out of place or position.

1703 THoREesBY Let. to Ray, Spelk, a wooden splinter tied on, to

unsevere, a. keep a broken bone from bending or unsetting again.
unsevered, ppl. ¢

unsew, v.
unsewed, ppl. a.

EEP (ISSETORWOrS COPY "PRRE TWEFR Find in ety [N TP P

Copied Value

Value objects are commonly distributed and stored in
fields. If value objects are shared between threads,
however, state changes caused by one object to a value
can have unexpected and unwanted side effects for any
other object sharing the same value instance. In a multi-
threaded environment shared state must be synchronized
between threads, but this introduces costly overhead for
frequent access.

Therefore:

Define a value object type whose instances are copyable.
When a value is used in communication with another
thread, ensure that the value is copied.

class date

{
public:

date(int year, int month, int day in month);

%ﬁ% year() const;
int month() const;
int day in month() const;

void year(int);
void month(int);
void day in month(int);

}s

class date

{
public:

date(int year, int month, int day in month);

%ﬁi year() const;

int month() const;

int day in month() const;

void set(int year, int month, int day in_month);
b

today.set (2014, 4, 11);

class date

{
public:
date(int year, int month, int day in month);
int year() const;
int month() const;
int day in month() const;
%

today = date(2014, 4, 11);

Al HE

EF 2

>
()
c
c
@
I
=
>
)
NC

O’REILLY"

Referential transparency is a very
desirable property: it implies that
functions consistently yield the same
results given the same input,
irrespective of where and when they are
invoked. That is, function evaluation
depends less—ideally, not at all—on the
side effects of mutable state.

Edward Garson
"Apply Functional Programming Principles"

A book is simply the
container of an idea like
a bottle; what is inside
the book is what matiers.

Angela Carter

template<typename ValueType>
class container

{

public:
typedef const ValueType value_type;
typeﬁef ... dterator;

bool empty() const;
std::size_t size() const;
iterator begin() const;
iterator end() const;

container & operator={const container &£);

template<typename ValueType>]
class set set<int> ¢ = { 2’ 99 9’ 79 9’ 29 4’ 59 8 };

{
public:
typedef const ValueType * iterator;

set(std::initializer list<ValueType> values);

bool empty() const;
std::size t size() const;

iterator begin() const;
iterator end() const;

iterator find(const ValueType &) const;

std::size t count(const ValueType &) const;

iterator lower bound(const ValueType &) const;

iterator upper bound(const ValueType &) const;

pair<iterator, iterator> equal range(const ValueType &) const;
private:

ValueType * members;

std::size t cardinality;

}s

template<typename ValueType> i
class array array<int>c¢={2,9,9,7,9, 2, 4,5, 8 };

{
public:
typedef const ValueType * iterator;

array(std::initia]izer_]ist<Va1ueType> values);

bool empty() const;
std::size t size() const;

iterator begin() const;
iterator end() const;

const ValueType & operator[](std::size t) const;
const ValueType & front() const;
const ValueType & back() const;
const ValueType * data() const;
private:
ValueType * elements;
std::size_t Tength;
}s

template<typename ValueType>
class vector
{
public:
typedef const ValueType * iterator;

bool empty() const;
std::size t size() const;

iterator begin() const;
iterator end() const;

const ValueType & operator[](std::size t) const;
const ValueType & front() const;
const ValueType & back() const;
const ValueType * data() const;

vector popped front() const;

vector popped back() const;
private:

ValueType * anchor;

iterator from, until;

}s

In computing, a persistent data structure is a data structure
that always preserves the previous version of itself when it is
modified. Such data structures are effectively immutable, as
their operations do not (visibly) update the structure in-place,
but instead always yield a new updated structure.

(A persistent data structure is not a data structure committed
to persistent storage, such as a disk; this is a different and
unrelated sense of the word "persistent.")

http://en.wikipedia.org/wiki/Persistent _data_structure

template<typename ValueType>
class vector

{

public:
typedef const ValueType * iterator;
bool empty() const;
std::size t size() const;
iterator begin() const;
iterator end() const;
const ValueType & operator[](std::size t) const;
const ValueType & front() const;
const ValueType & back() const;
const ValueType * data() const;
vector popped front() const;
vector popped back() const;
void pop_front();
void pop_back();

private:

ValueType * anchor;
iterator from, until;

}s

LISP 1.5 Programmer’'s Manual

The Computation Center
and Research Laboratory of Electronics

Massachusetts Institute of Technology

| still have a deep fondness for the
Lisp model. It is simple, elegant, and
something with which all developers
should have an infatuation at least
once in their programming life.

Kevlin Henney
"A Fair Share (Part 1)", CUJ C++ Experts Forum, October 2002

template<typename ValueType>
class list
{
public:
class iterator;

std::size t size() const;

iterator begin() const;
iterator end() const;

const ValueType & front() const;

list popped front() const;

list pushed front() const;

void pop_front();

void push_front(const ValueType &);
private:

struct Tink

{

link(const ValueType & value, link * next);

ValueType value;
link * next;
}s
link * head;
std::size_t Tength;
}s

Hamlet: Yea, from the table of
my memory I'll wipe away all
trivial fond records.

William Shakespeare
The Tragedy of Hamlet
[Act I, Scene 5]

Garbage collection [...] is optional
in C++; that is, a garbage collector
is not a compulsory part of an
implementation.

Bjarne Stroustrup
http://stroustrup.com/C++11FAQ.html|

assert (
std::get_pointer_safety() ==
std: :pointer_safety::strict);

public interface RecentlyUsedList

{
static final RecentlyUsedList nil = new Null() ;

boolean isEmpty() ;

int size();

String get(int index) ;

RecentlyUsedList add (String newItem) ;
RecentlyUsedList remove (String toRemove) ;

RecentlyUsedList list =
nil.add("Alice") .add("Bob") .add("Alice") ;

assert list.size () == 2;
assert list.get(0) .equals("Alice");
assert list.get(l) .equals("Bob") ;

Ophelia: "Tis iIn my memory
locked, and you yourself shall
keep the key of it.

William Shakespeare
The Tragedy of Hamlet
[Act I, Scene 3]

A use-counted class is more
complicated than a non-use-
counted equivalent, and all of
this horsing around with use
counts takes a significant
amount of processing time.

Robert Murray
C++ Strategies and Tactics

template<typename ValueType>
class vector
{
public:
typedef const ValueType * iterator;

bool empty() const;
std::size t size() const;

iterator begin() const;
iterator end() const;

const ValueType & operator[](std::size t) const;
const ValueType & front() const;
const ValueType & back() const;
const ValueType * data() const;

vector popped front() const; -
vector popped back() const; Uses std::default_delete<ValueType[]>, but

void pop_front(); cannot be initialised from std::make_shared.

void pop_back();

std::shared ptr<ValueType> anchor;
iterator from, until;

}s

template<typename CharType>
class string;

template<typename CharType>
class string<const CharType>;

"Distinctly Qualified", CUJ C++ Experts Forum, May 2001

template<typename CharType>
class string;

template<typename ValueType>
class list
{
public:
class iterator;

std::size t size() const;

iterator begin() const;
iterator end() const;

const ValueType & front() const;

list popped front() const;

list pushed front() const;

void pop_front();

void push_front(const ValueType &);
private:

struct Tink

{

Tink(const ValueType & value, std::shared ptr<link> next);

ValueType value;
std::shared ptr<link> next;
}s
std::shared ptr<link> head;
std::size_t Tength;
}s

list<Anything> chain;
std::fill n(
std::front_inserter(chain),
how_many,
something) ;
S~
On destruction, deletion of links is recursive

through each link, causing the stack to blow up
for surprisingly small values of how_many.

Algorithms +
Data Structures =
Programs

Niklaus Wirth

JUDGMENT gt
R —

/

WILL BRING

DAY ON g =%
MAY 21, 2048

paraskevidekatriaphobia, noun

= The superstitious fear of Friday 13th.

= Contrary to popular myth, this superstition is relatively recent
(19th century) and did not originate during or before the
medieval times.

= Paraskevidekatriaphobia (or friggatriskaidekaphobia) also
reflects a particularly egocentric attributional bias: the universe
is prepared to rearrange causality and probability around the
believer based on an arbitrary and changeable calendar system,
in a way that is sensitive to geography, culture and time zone.

struct tm next friday 13th(const struct tm * after)
{
struct tm next = *after;
enum { daily secs = 24 * 60 * 60 };
time t seconds =
mktime (&next) +
(next.tm mday == 13 ? daily secs : 0);
do
{
seconds += daily secs;
next = *localtime(&seconds):
}
while(next.tm mday != 13 || next.tm wday != 5);
return next;

std::find if(
++hegin, day iterator(),
[1(const std::tm & day)
{

});

return day.tm mday == 13 && day.tm wday == 5;

class day_iterator : public std::iterator<...>

{

public:
day iterator() ...
explicit day iterator(const std::tm & start) ...
const std::tm & operator*() const

{
return day;

}

const std::tm * operator->() const

{
return &day;

}

day iterator & operator++()

{
std::time t seconds = std::mktime(&day) + 24 * 60 * 60;
day = *std::1ocaltime(&seconds);
return *this;

}

day iterator operator++(int) ...

}s

var fridayl3ths =
from day in Days.After(start)

where day.Day == 13
where day.Day0OfWeek == DayOfWeek.Friday

select day;

foreach(var irrationalBelief in fridayl3ths)

{
}

public class Days : IEnumerable<DateTime>

{

public static Days After(DateTime startDay)
{

}

public IEnumerator<DateTime> GetEnumerator()

{

return new Days(startDay.AddDays(1)):

for(var next = startDay;; next = next.AddDays(1l))
yield return next;

}

private DateTime startDay;

Iterator

Clients often want to traverse elements that are
encapsulated within an aggregate, such as the
elements maintained by a collection. Clients may not
wish, however, to depend on the aggregate’s internal
structure to access components of interest.

Therefore:

Objectify the strategy to access and traverse the
components maintained by the aggregate into a
separate iterator component. Let this iterator be the
only means for clients to access the component.

Enumeration Method

Some types of aggregate [...] have representations that do
not conveniently support Iterator-based traversal.
Similarly, using an Iterator approach to access the
elements of an aggregate that is shared between threads
can incur unnecessary overhead from repeated locking.

Therefore:

Bring the iteration inside the aggregate and encapsulate
it in a single enumeration method that is responsible for
complete traversal. Pass the task of the loop—the action
to be executed on each element of the aggregate—as an
argument to the enumeration method, and apply it to
each element in turn.

Lifecycle Callback

The lifecycle of some objects is simple: their clients
create them before they are used, they stay alive as
long as they are used, and they are disposed of by
their clients when no longer used. However, some
objects have a much more complex lifecycle, driven by
the needs and events of their component environment.

Therefore:

Define key lifecycle events as callbacks in an interface
that is supported by framework objects. The
framework uses the callbacks to control the objects’
lifecycle explicitly.

public interface IObservable<out T>
{

}

IDisposable Subscribe (IObserver<T> observer) ;

public interface IObserver<in T>

{
void OnCompleted() ;
void OnError (Exception error) ;
void OnNext (T wvalue) ;

IDisposable subscription =
source.Subscribe (
value => handle element,
error => handle exception,
() => handle completion);

Observer

Consumer objects sometimes depend on the state of, or
data maintained by, another provider object. If the
state of the provider object changes without notice,
however, the state of the dependent consumer objects
can become inconsistent.

Therefore:

Define a change-propagation mechanism in which the
provider—known as the ‘subject—notifies registered
consumers—known as the ‘observers’—whenever its
State changes, so that the notified observers can
perform whatever actions they deem necessary.

void run(const function tests[], const char * label, listener & sink);

// precondition: tests is a non-null null-terminated array
// execution:

// sink.start_testing(label) ->

// (for each test in tests:

// (sink.before test(...) ->

// (test executed ->

// (one of:

// (sink.test passed(...) |
// sink.assertion failed(...) |
// sink.exception thrown(...)))

// sink.after test(...))) ->
// sink.finish_testing(label)

sink.start _testing(label) ->
(for each test in tests:
(sink.before test(...) ->
(test executed ->
(one of:

(sink.test passed(...) |
sink.assertion failed(...) |
sink.exception thrown(...)))

sink.after test(...))) ->
sink.finish_testing(label)

{

public:

sink.start _testing(label) ->
(for each test in tests:
(sink.before test(...) ->
(test executed ->
(one of:

(sink.test passed(...) |
sink.assertion failed(..
sink.exception thrown(..

sink.after test(...))) ->
sink.finish_testing(1abel)

) |
)))

IE

class listener

. before test(...) = 0;

. test passed(...) = 0;

. assertion failed(...)
... exception_thrown(...)
... after test(...) = 0;

. finish testing(...) =

. start testing(...) = 0;

o

C.A.R.Hoare

Commuqicating
Sequential
Processes

Concurrency

Threads

Locks

Some people, when confronted with a
problem, think, "I know, I'll use threads,"
and then two they hav erpoblesms.

Ned Batchelder
https://twitter.com/#!/nedbat/status/194873829825327104

Shared memory is like a canvas where
threads collaborate in painting images,
except that they stand on the opposite
sides of the canvas and use guns rather
than brushes. The only way they can
avoid killing each other is if they shout
"duck!" before opening fire.

Bartosz Milewski

"Functional Data Structures and Concurrency in C++"
http://bartoszmilewski.com/2013/12/10/functional-data-structures-and-concurrency-in-c/

Unshared mutable
data needs no
synchronisation

Unshared immutable Shared immutable
data needs no data needs no
synchronisation synchronisation

Instead of using threads and shared memory
as our programming model, we can use
processes and message passing. Process here
just means a protected independent state
with executing code, not necessarily an
operating system process.

Russel Winder
"Message Passing Leads to Better Scalability in Parallel Systems"

OOP to me means only messaging,
local retention and protection and
hiding of state-process, and
extreme late-binding of all things.
It can be done in Smalltalk and in
LISP. There are possibly other
systems in which this 1is possible,
but I'm not aware of them.

Alan Kay

Languages such as Erlang (and occam before
it) have shown that processes are a very
successful mechanism for programming
concurrent and parallel systems. Such
systems do not have all the synchronization
stresses that shared-memory, multithreaded
systems have.

Russel Winder
"Message Passing Leads to Better Scalability in Parallel Systems"

Coﬁvputer Systems ' 3
Spnes ! S 3

7 |

2 i e

£
e

gl s Al

Multithreading is just one
damn thing after, before, or
simultaneous with another.

Andrei Alexandrescu

Actor-based concurrency is
just one damn message after
another.

§7 ==

Message 3 Message 1

Sender Receiver A

Me
Ss a
e 2

Receiver B

In response to a message that it receives, an actor
can make local decisions, create more actors, send
more messages, and determine how to respond to
the next message received.

http://en.wikipedia.org/wiki/Actor_model

Concatenative programming is so called
because it uses function composition instead of
function application—a non-concatenative
language is thus called applicative.

Jon Purdy
http://evincarofautumn.blogspot.in/2012/02/
why-concatenative-programming-matters.html

(f 0 g o h)(x)

xhgf

f@goh

hlglf

This is the basic reason Unix pipes are so
powerful: they form a rudimentary string-based
concatenative programming language.

Jon Purdy
http://evincarofautumn.blogspot.in/2012/02/
why-concatenative-programming-matters.html

e
2 J s

\'hf.-e L _: -:_q,:- ..'. LAl :.h '
Sumee ry~-whet s muﬂtﬁ%mpnrtnntlﬁ
Tg put my strongest conesrns in 8 nﬁ%ahelll

1, ‘We showld hewe acoey waya of ¢cunling progratig htks
garﬂen koge-—torew in snother segment when 1% heoones ﬁheﬁih
'if besores nessseary to rasssce detm 1n encther wop. .
®R1e ik the way of ID slec.

?, Our loader srcull be abie to 4¢ limk-lpading end
gontrolled estatliskhment,] .

Js Dur llbwrery f1ling scheme ehculd cllew for rather
generel Indering, responclbility, gereretlicne, deia psth
awltohing, >

4, It sheuld ha rpossible tb get privete EyatEE cCcEponents
{11 rovtines ers eytez cocpoments) fef Euggering eround with,

K. D. KeTlvor
cet, J:J;f"laﬁi

Pipes and Filters

Some applications process streams of data: input data
streams are transformed stepwise into output data
streams. However, using common and familiar
request/ response semantics for structuring such types
of application is typically impractical. Instead we must
specify an appropriate data flow model for them.

Therefore:

Divide the application's task into several self-contained
data processing steps and connect these steps to a
data processing pipeline via intermediate data buffers.

define a sequence of days

° include only 13t of month

include only Fridays

..A

function GetNextFridayl3th($from) {
[DateTime[]] $fridayl3ths =
(1..500) |
%{ $from.AddDays($) } |
?2{ $.Day -eq 13} |
?2{ $.DayOfWeek -eq [DayOfWeek]::Friday }
return $fridayl3ths[0]

[DateTime[][]1] $inputsWithExpectations
("2001-07-13", "2002-09-13"),
("2007-04-01", "2007-04-13"),
("2007-04-12", "2007-04-13"
("2007-04-13", "2007-07-13"
("2011-01-01", "2011-05-1
("2011-05-13", "2012-01-1
("2012-01-01", "2012-01-1

1
1
1

3")
3")
3")
3“) .
3“) .
3")
3")
3")

(II2012_01_13"’ l|2012_04_
("2012_04_13n’ u2012_07_
("2014-04-11", "2014-06-

$inputsWithExpectations | ?{
[String] $actual = GetNextFridayl3th($ [0])
[String] $expected = § [1]
$actual -ne $expected

Everything
flows, nothing
stands still.

Heraclitus

Go with
the flow.

Queens of the Stone Age

