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• Motivation 

• The very good idea - search 

• Drawing inspiration from nature 

• Examples – genetic programming, and more 

• The developer and interactive search 

• Some resources available 
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• Programming solutions and trade-offs are difficult 
– Where do solutions come from?? 
– And then when we’ve got some, 

• Robust & rock solid or ship to customer now? 
• Hard-code a kludge or fix the error ? 
• Architect a solution or patch-the-patch? 
• Etc. etc.  
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Motivation 

Any number of trade-offs during development? 



• Complex development problems 

– Dependencies 

• Measurements 

– Quantitative, objective 

• Value judgements 

– Qualitative, subjective 

• Difficult to predict full consequences of 
candidate solutions? 
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Why is this difficult? 



• Deduction 
• Reasoning from one or more general statements (premises) to 

reach a logically certain conclusion(s) 

• E.g. reuse of patterns, idioms, libraries etc. 

• Induction 
• Conclusion is inherently uncertain and probably the truth  

• E.g. trial & error, generate & test in complex, novel problems 

• Abduction 
• From observation, to inference, to hypothesis 

• E.g. designing experiments, comparing this to that  
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Finding candidate trade-off solutions 
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ANSWER 

WHAT COULD POSSIBLY WORK? 

IS IT ANY GOOD? 

formulate a candidate solution 
 

evaluate the candidate solution 
 

i. Construct(s)? 
ii. Assembly? 
iii. Configuration? 

i. Fitness? 
ii. Measure / Metrics? 
iii. TEST SPECIFICATION! 

the requirement! 
 

Focussing on inductive reasoning…. 
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Evidence from Psychology 

Comprehension 

Description 

Validation 

Johnson-Laird, P., Byrne, R. (1991) Deduction, Laurence Erlbaum Associates.   

“Mental Models” Reasoners attempt to  
formulate a model… 

Is there an alternative model? 
If yes, better? Keep, else discard 

An internal model… 

“Because the number of mental models is finite[...], the search can in principle  
be exhaustive. If it is uncertain whether there is an alternative model to the  
premises, then the conclusion can be drawn in a tentative and probabilistic way” 
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Evidence: Iterative & Incremental Process 
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Some forerunner hints (1)… 

Wirfs-Brock, R., and McKean, A. (2003) Object Design: Roles, Responsibilities, and 
Collaborations. Addison-Wesley, Boston, MA, USA, p 84.  

Development as ‘Search’ strategies 

“Make educated guesses about the kinds of inventions that you’ll need based 
on the nature of your application. We guide our search from the perspectives 
of: 
• Decision making, control and coordination activities, 
• Structures and groups of objects, 
• Etc…. 
 
The best way to evaluate potential candidates […] is to shift perspective.   
 
Stop brainstorming candidates when you run out of energy.” 
 
 

Trade-off? 
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Some forerunner hints (2)… 

Glass, R. (2003) Fact and Fallacies of Software Engineering. Addison-Wesley, Pearson 
Education, pp. 79-83.  

“Fact 27: There is seldom one best design 
solution to a software problem.”  

“Fact 28: Design is a complex, iterative 
process. The initial design solution will 
likely be wrong and certainly not optimal.”   

Trade-off? 

55 facts and 10 fallacies in: 
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Some forerunner hints(3)…. 

“If there is one thing of which we can be sure, it is that a system of any 
substantial size is going to evolve. It is going to evolve even as it is  

undergoing development. Later, when in use, the changing environment 
will call for further evolution.  … the system itself should be resilient to  

change, or change tolerant. Another way of putting this goal is to say that 
the system should be capable of evolving gracefully.” 

As we iteratively engineer software, we must adapt 
to (changing) requirements and technical debt…  

Jacobson, I., Booch, G., Rumbaugh, J. (1999) The Unified Software Development Process, Addison Wesley.    



Rather than attempting to formulate a solution… 

 

Formulate the space of all solutions, then… 

iterate (i.e.) search over the space 
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So what’s the very good idea? 



1. Representation 

– To encode all the possibilities of the search space 

2. Fitness measures 

– To evaluate possibilities in the search space 

3. Search Approach 

– E.g. brute-force exhaustive enumeration is 
straightforward 
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We need three things for search 
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Representation – tree example  
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Representation – tree example  

i = 1; 

while( i < 20 ) 

{ 

 i = i + 1 

}  



• Other representations are available e.g. 

– Binary, integer, float, character 

– Structures, as sequences, sets, maps etc. 
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• Quantitative, e.g. 

– Coupling, cohesions, complexity etc. 

– Security, performance, robustness etc. 

• Qualitative, e.g. 

– Elegance, understandability, etc. 

 

  more on this later…  
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Fitness measures - examples 



• Can exhaustively enumerate over each 
solution, but 

– Spaces get big, very quickly… 

20 

Search Approach? 



21 http://www.optaplanner.org/blog/2014/03/27/searchSpaceSizeCalculation.png 
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Observation & Inference: 
 
Exhaustive enumeration quickly becomes intractable 
 
Could the size of search space in software  
development be one of the causes of its difficulty?  
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"This idea that intelligence is the one 
thing that amplifies itself indefinitely,  
I guess is what I'm resistant to.  
Intelligence can let you solve harder 
problems, but some problems are just  
resistant, and you get to a point that  
being smarter isn't going to help you 
at all, and I think a lot of our problems 
are like that. Like in politics - it's not  
like we're saying that if only we had a  
politician who was slightly smarter  
all our problems would go away." 
 



24 

So what to do? 

Take inspiration from nature… 
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Evolution in nature 

Darwin, aged 45 in 1854,  
by then working towards  
On the Origin of Species 

Evolution is the change in the inherited characteristics  
of biological populations over successive generations. 

sexual reproduction for  
diversity and population change 
 

Selection of fittest individuals 
 

environment 
 

http://en.wikipedia.org/wiki/File:Charles_Darwin_seated_crop.jpg


26 

(Evolutionary) Search 

initialise population at random 

while( not done ) 

  evaluate each individual 

  select parents 

  recombine pairs of parents 

  mutate new candidate individuals 

  select candidates for next generation 

end while 

Representation of an “individual” solution 
   e.g. models, trees, arrays etc. etc.   

Eiben, A.E., Smith, J.E. (2003) Introduction to Evolutionary Computing, Springer.    
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Software Fitness Landscape 

Trade-offs? 



• Alan Turin (1952)  
• “Computing Machinery and Intelligence” in Mind 
• hints at a “…genetical programming...” 

• Alex Fraser (1957) 
– Computational simulation of natural evolution 

• Fogel et al. (1966) 
– Evolutionary programming (finite state machines) 

• Rechenburg (1973) 
– Evolutionary Strategies 

• Holland (1975) 
– Genetic Algorithms 

• Kosa (1992) 
– Genetic Programming 
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Evolutionary Computing 
Not new… 
 

many, many more!! 
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Search-Based Software Engineering 

The term “Search-Based Software Engineering” (SBSE) coined in 2001. 

Harman, M., Jones, B.J. (2001) Search-Based Software Engineering. Information 
and Software Technology, vol. 43, no.14, pp. 833-839.    

“… a new field of software engineering research and practice is emerging: search-based 
software engineering. The paper argues that software engineering is ideal for the  
application of […] search techniques.  
 
Such search-based techniques could provide solutions to the difficult problems of balancing  
competing (and some times inconsistent) constraints and may suggest ways of finding  
acceptable solutions in situations where perfect solutions are either theoretically impossible  
or practically infeasible”.  

Harman, M. (2011) Software Engineering meets Evolutionary Computation. 
Computer, vol. 44, no.10, pp. 31-39.    
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Search in code - Genetic Programming 

i = 1; 

while( i < 20 ) 

{ 

 i = i + 1 

}  

Parse tree symbolic expressions defined by: 
• Set of terminals 
• Set of functions 
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Genetic Programming Example 

http://alphard.ethz.ch/gerber/approx/default.html 

files 

Simple line fitting using regression 

http://alphard.ethz.ch/gerber/approx/default.html
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Genetic Programming Example 

Poli, R., Langdon, W.B., McPhee, N.F. (2008) A Field Guide to Genetic Programming, LuLu Publishing.  

Langdon, W.B., Harman, M. (2012) Genetically Improving 50000 Lines of C++,  
Research Note, University College London. 

“We evolved a widely-used and highly complex 50000 line system, seeking 
improved versions that are faster than the original, yet as least as good semantically. 
Our approach found a version that is 70 times faster (on average) and is also a small 
Semantic improvement on the original”.  

See also: 

Note the multiple objective trade-off between performance and semantics 

Langdon Improving.pdf
Langdon Improving.pdf
Langdon Improving.pdf


• Automatic Refactoring 
– Representation 

• Parse trees of object-oriented source code 

– Fitness 
• Cohesion (maximise), coupling (minimise), dependency etc. 

– Diversity preservation 
• Crossover and mutation using Fowler refactoring patterns 

– E.g. push down, pull up, collapse hierarchy etc. 

– Search approach 
• Evolutionary algorithm (and other), ‘population’ of parse 

trees 
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Other examples of Search (1)  
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Other examples of Search (1)  

“The high cost of software maintenance could be reduced by automatically improving the  
design of object-oriented programs without altering their behaviour. We have constructed 
a software tool capable of refactoring object-oriented programs to conform more closely 
to a given design quality model, by formulating the task as a search problem in the space  
of alternative designs. This novel approach is validated by two case studies, where programs 
 are automatically refactored to increase flexibility, reusability and understandability as 
defined by a contemporary quality model. Both local and simulated annealing searches  
were found to be effective in this task.” 

O’Keefe, M., O Cinneide, M. (2008) Search-based Refactoring for Software Maintenance.  
Journal of Systems and Software, vol. 81, Iss. 4, pp. 502-516. 

Limitation: If the population size of search is, say, 100, which one is best? For 
Large scale software systems, can the programmer compare candidates?  

Trade-offs? 

Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf


• Automatic Test Case Generation 

– Representation 

• Inputs of a test case (sequence of ints, floats, strings etc.) 

– Fitness 

• Branch coverage (maximise), execution time (minimise), etc. 

– Diversity preservation 

• Crossover and mutation at random 

– Search approach 

• Evolutionary algorithm (and other), ‘population’ of test cases 
representing a test suite.  
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Other examples of Search (2)  
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Other examples of Search (2)  
“Search-Based Software Testing is the use of a […] search technique, such as a  
Genetic Algorithm, to automate or partially automate a testing task, for example  
the automatic generation of test data. Key to the optimization process is a  
problem-specific fitness function. The role of the fitness function is to guide 
 the search to good solutions from a potentially infinite search space, within a  
practical time limit. Work on Search-Based Software Testing dates back to 1976,  
with interest in the area beginning to gather pace in the 1990s. More recently there 
 has been an explosion of the amount of work. This paper reviews past work and the 
 current state of the art, and discusses potential future research areas and open 
 problems that remain in the field.” 

Observation: Especially beneficial in regression testing   

McMinn, P. (2011) Search-Based Software Testing: Past, Present and Future.  
2011 IEEE Fourth International Conference on Software Testing, Verification and  
Validation Workshops (ICSTW), IEEE Press, pp. 153-163. 

McMinn SBST.pdf
McMinn SBST.pdf
McMinn SBST.pdf
McMinn SBST.pdf
McMinn SBST.pdf
McMinn SBST.pdf
McMinn SBST.pdf
McMinn SBST.pdf
McMinn SBST.pdf


• Automatic Bug Fixing 

– Representation 

• Parse trees of source code 

– Fitness 

• %age tests passing in existing test suites 

– Diversity preservation 

• Crossover and mutation at random 

– Search approach 

• Genetic programming, population of source code variants 
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Other examples of Search (3)  
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Other examples of Search (3)  
“This paper describes GenProg, an automated method for repairing defects in off-the-shelf,  
legacy programs without formal specifications, program annotations, or special coding  
practices. GenProg uses an extended form of genetic programming to evolve a program 
variant that retains required functionality but is not susceptible to a given defect, using  
existing test suites to encode both the defect and required functionality. Structural  
differencing algorithms and delta debugging reduce the difference between this variant  
and the original program to a minimal repair. We describe the algorithm and report  
experimental results of its success on 16 programs totaling 1.25 M lines of C code and 120K 
lines of module code, spanning eight classes of defects, in 357 seconds, on average. We  
analyze the generated repairs qualitatively and quantitatively to demonstrate that the  
process efficiently produces evolved programs that repair the defect, are not fragile input 
memorizations, and do not lead to serious degradation in functionality.” 

Le Goues, C., Nguyen, T., Forrest, S., Weimer, W. (2012) GenProg: A Generic Method  
For Automatic Program Repair. IEEE Transactions on Software Engineering, vol. 38, 
 no. 1, pp. 54-72. 

Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
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Zhang, Y. (2014) Repository of Publications on Search-based Software Engineering.  
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/.    

SBSE repository 

So given the successful applications of SBSE, is programming now just a case of 
(i) representation, (ii) fitness measures, (iii) search algorithm? 

 

Where is the programmer? 

Simons, C.L. (2013) "Whither (Away) Software Engineers in SBSE?", in First International 
Workshop on Combining Modelling with Search-Based Software Engineering (CMSBSE 2013),  
in conjunction with the International Conference on Software Engineering, (ICSE '13),  
IEEE Press, pp.49-50.  

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf


• Better as a human-machine partnership  
• But partnership requires agreement 

– mutually predictable actions  
– maintain common ground  

40 

Klein, G., et al., (2004) “Ten Challenges for Making Automation a ‘Team Player’ in Joint Human-Agent Activity”, 
IEEE Intelligent Systems, vol. 19, no. 6., pp. 91-95.     

• We tried to replace 
people to fully automate 

– Didn’t really work…? 



41 

What is “evaluation”? 

A value judgement… 
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What is “evaluation”? 

A value judgement… 

Objective?  

Subjective? 

Software Metrics e.g. lines of code, coupling, cohesion….  

Value judgement e.g. elegance, symmetry, patterns….  

A combination of both i.e.  
 “multi-obsubjective” 



• Human in the fitness function - 
- e.g. Dawkins ‘biomorphs’ 
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Interactive Evolutionary Computing 

Dawkins, R. (1986) The Blind Watchmaker, Penguin Books.  

• Since then: 
– Art 
– Music 
– Image processing 
– Games 
– Industrial product design 
– Fashion Design 
– Control and robotics 
– Etc. etc. etc. 

Tagaki, H. (2001) Interactive Evolutionary 
Computation: A Fusion of the Capabilities of 
EC Optimisation and Human Evaluation. 
Proceedings of the IEEE, vol. 78, no. 9, pp. 
1275-1296.     
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Evaluation: Aesthetics, Elegance? 
“the significance of symmetry was only made clear with the discovery that stress and  
disease make it harder for an individual to develop a perfectly symmetric body. Small  
differences on either side of an imaginary mid-plane therefore betray genetic quality,  
and potential mates use this to gauge each other’s desirability. Put simply, symmetry is sexy”.  

Schilthuizen, M., “Lopsided Love”, New Scientist, 18 June 2011, pp. 42-45.    

M.C.Escher 
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Coupling vs Elegance in Software Design 

versus 

Brown, W.J., et al., (1998) Anti-Patterns: Refactoring Software Architectures and Projects in Crisis, Wiley.     



• Novel elegance metrics 
– Numbers among classes, Ratio of Attributes to Methods 
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Example (1) Interactive Software Design 

initialise  
population 

start 

initialise  
weights 

interactive  
generation? 

visualise 
software  
design 

designer 
evaluation 

designer 
terminates 

adjust  
weights 

stop 

evaluate 
fitnesses 

select according 
to weights 

reproduce  
offspring 

Self-mutate 

yes 

no 

yes 

no 

Simons, C.L., Smith, J.E. (2012) Elegant Object-oriented Software Design via 
Interactive Evolutionary Computation, IEEE Transactions on Systems, Man 
and Cybernetics – Part C,  vol. 42, iss. 6, pp. 1797-1805.   

Trade-offs? 



• Significant role in searching (evolving) 
effective software designs 

• Wide potential for other design fields via 
interactive search 
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Elegance 
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Example (2) Interactive Software Testing 
“Search-based testing could be a key aspect in creating an automated tool for 
supporting testing activities. However, domain specific quality criteria and 
trade-offs make it difficult to develop a general fitness function a priori, so  
interaction between domain specialists and such a tool would be critical to its 
success. 
In this paper, we present a system for interactive search-based software testing 
and investigate a way for domain specialists to guide the search by dynamically  
re-weighting quality goals. Our empirical investigation shows that objective re- 
weighting can help a human domain specialist interactively guide the search, 
without requiring specialised knowledge of the system and without  
sacrificing population diversity”.     

Marculescu, B., Feldt, R., Torkar, R. (2013) Objective Re-Weighting to Guide an  
Interactive Search Based Software Testing System. In Proceedings of the 12th  
International Conference on Machine Learning and Applications (ICMLA’13) 

Observation: beneficial to emphasise quality goals over mechanistic test generation  

Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf


• Searching for strategies rather than instances 

• Exploiting many-core computing 

• Giving insight to software developers 

• Optimising compilation and deployment 

• Balancing Computation and Human Interaction 
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Challenges ahead? 

Harman, M. (2012) “The Role of Artificial Intelligence in Software Engineering”, Proceedings of the First 
International Workshop on Realising Artificial Intelligence in Software Engineering (RAISE) , pp. 1-6.     



– Evolving Objects (EO): an Evolutionary Computation 
Framework (C++) 
• http://eodev.sourceforge.net/ 

– Open BEAGLE (C++) 
• https://code.google.com/p/beagle/ 

– ECJ 21 (Java Evolutionary Computation) 
• http://cs.gmu.edu/~eclab/projects/ecj/ 

– ECF (Evolutionary Computational Framework) (C++) 
• http://gp.zemris.fer.hr/ecf/ 

–  JCLEC – Java Class Library for Evolutionary Computation 
• http://jclec.sourceforge.net/ 

– Etc. etc. 
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Some resources available 

http://eodev.sourceforge.net/
http://eodev.sourceforge.net/
https://code.google.com/p/beagle/
https://code.google.com/p/beagle/
http://cs.gmu.edu/~eclab/projects/ecj/
http://cs.gmu.edu/~eclab/projects/ecj/
http://gp.zemris.fer.hr/ecf/
http://gp.zemris.fer.hr/ecf/
http://jclec.sourceforge.net/
http://jclec.sourceforge.net/
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And finally… 
there’s even an article on a GA in Overload! 

http://www.accu.org/index.php/journals/1825 

Buontempo, F. (2013) How to Program Your Way Out of a Paper Bag 
Using Genetic Algorithms. Overload, Iss. 118 (December 2013). 

http://www.accu.org/index.php/journals/1825


• Search-based Software Engineering is coming of 
age 

• Search helps developers to be more productive 

• Ripe for exploitation  
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Conclusions 

I’m happy to collaborate on SBSE tools and their application 



• Any questions? 
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Thank you 


