
Cool and Ripe for Exploitation:
Search-Based Software Engineering

Chris Simons
Department of Computer Science and Creative Technologies

University of the West of England

Bristol BS16 1QY United Kingdom
chris.simons@uwe.ac.uk

http://www.cems.uwe.ac.uk/~clsimons/

ACCU 2014 Conference
8 – 12 April 2014

mailto:chris.simons@uwe.ac.uk
http://www.cems.uwe.ac.uk/~clsimons/

Agenda

• Motivation

• The very good idea - search

• Drawing inspiration from nature

• Examples – genetic programming, and more

• The developer and interactive search

• Some resources available

2

3

• Programming solutions and trade-offs are difficult
– Where do solutions come from??
– And then when we’ve got some,

• Robust & rock solid or ship to customer now?
• Hard-code a kludge or fix the error ?
• Architect a solution or patch-the-patch?
• Etc. etc.

4

Motivation

Any number of trade-offs during development?

• Complex development problems

– Dependencies

• Measurements

– Quantitative, objective

• Value judgements

– Qualitative, subjective

• Difficult to predict full consequences of
candidate solutions?

5

Why is this difficult?

• Deduction
• Reasoning from one or more general statements (premises) to

reach a logically certain conclusion(s)

• E.g. reuse of patterns, idioms, libraries etc.

• Induction
• Conclusion is inherently uncertain and probably the truth

• E.g. trial & error, generate & test in complex, novel problems

• Abduction
• From observation, to inference, to hypothesis

• E.g. designing experiments, comparing this to that

6

Finding candidate trade-off solutions

7

ANSWER

WHAT COULD POSSIBLY WORK?

IS IT ANY GOOD?

formulate a candidate solution

evaluate the candidate solution

i. Construct(s)?
ii. Assembly?
iii. Configuration?

i. Fitness?
ii. Measure / Metrics?
iii. TEST SPECIFICATION!

the requirement!

Focussing on inductive reasoning….

8

Evidence from Psychology

Comprehension

Description

Validation

Johnson-Laird, P., Byrne, R. (1991) Deduction, Laurence Erlbaum Associates.

“Mental Models” Reasoners attempt to
formulate a model…

Is there an alternative model?
If yes, better? Keep, else discard

An internal model…

“Because the number of mental models is finite[...], the search can in principle
be exhaustive. If it is uncertain whether there is an alternative model to the
premises, then the conclusion can be drawn in a tentative and probabilistic way”

10

Evidence: Iterative & Incremental Process

11

Some forerunner hints (1)…

Wirfs-Brock, R., and McKean, A. (2003) Object Design: Roles, Responsibilities, and
Collaborations. Addison-Wesley, Boston, MA, USA, p 84.

Development as ‘Search’ strategies

“Make educated guesses about the kinds of inventions that you’ll need based
on the nature of your application. We guide our search from the perspectives
of:
• Decision making, control and coordination activities,
• Structures and groups of objects,
• Etc….

The best way to evaluate potential candidates […] is to shift perspective.

Stop brainstorming candidates when you run out of energy.”

Trade-off?

12

Some forerunner hints (2)…

Glass, R. (2003) Fact and Fallacies of Software Engineering. Addison-Wesley, Pearson
Education, pp. 79-83.

“Fact 27: There is seldom one best design
solution to a software problem.”

“Fact 28: Design is a complex, iterative
process. The initial design solution will
likely be wrong and certainly not optimal.”

Trade-off?

55 facts and 10 fallacies in:

13

Some forerunner hints(3)….

“If there is one thing of which we can be sure, it is that a system of any
substantial size is going to evolve. It is going to evolve even as it is

undergoing development. Later, when in use, the changing environment
will call for further evolution. … the system itself should be resilient to

change, or change tolerant. Another way of putting this goal is to say that
the system should be capable of evolving gracefully.”

As we iteratively engineer software, we must adapt
to (changing) requirements and technical debt…

Jacobson, I., Booch, G., Rumbaugh, J. (1999) The Unified Software Development Process, Addison Wesley.

Rather than attempting to formulate a solution…

Formulate the space of all solutions, then…

iterate (i.e.) search over the space

14

So what’s the very good idea?

1. Representation

– To encode all the possibilities of the search space

2. Fitness measures

– To evaluate possibilities in the search space

3. Search Approach

– E.g. brute-force exhaustive enumeration is
straightforward

15

We need three things for search

16

Representation – tree example













15
)3(2

y
x

17

Representation – tree example

i = 1;

while(i < 20)

{

 i = i + 1

}

• Other representations are available e.g.

– Binary, integer, float, character

– Structures, as sequences, sets, maps etc.

18

• Quantitative, e.g.

– Coupling, cohesions, complexity etc.

– Security, performance, robustness etc.

• Qualitative, e.g.

– Elegance, understandability, etc.

 more on this later…

19

Fitness measures - examples

• Can exhaustively enumerate over each
solution, but

– Spaces get big, very quickly…

20

Search Approach?

21 http://www.optaplanner.org/blog/2014/03/27/searchSpaceSizeCalculation.png

22

Observation & Inference:

Exhaustive enumeration quickly becomes intractable

Could the size of search space in software
development be one of the causes of its difficulty?

23

"This idea that intelligence is the one
thing that amplifies itself indefinitely,
I guess is what I'm resistant to.
Intelligence can let you solve harder
problems, but some problems are just
resistant, and you get to a point that
being smarter isn't going to help you
at all, and I think a lot of our problems
are like that. Like in politics - it's not
like we're saying that if only we had a
politician who was slightly smarter
all our problems would go away."

24

So what to do?

Take inspiration from nature…

25

Evolution in nature

Darwin, aged 45 in 1854,
by then working towards
On the Origin of Species

Evolution is the change in the inherited characteristics
of biological populations over successive generations.

sexual reproduction for
diversity and population change

Selection of fittest individuals

environment

http://en.wikipedia.org/wiki/File:Charles_Darwin_seated_crop.jpg

26

(Evolutionary) Search

initialise population at random

while(not done)

 evaluate each individual

 select parents

 recombine pairs of parents

 mutate new candidate individuals

 select candidates for next generation

end while

Representation of an “individual” solution
 e.g. models, trees, arrays etc. etc.

Eiben, A.E., Smith, J.E. (2003) Introduction to Evolutionary Computing, Springer.

27

Software Fitness Landscape

Trade-offs?

• Alan Turin (1952)
• “Computing Machinery and Intelligence” in Mind
• hints at a “…genetical programming...”

• Alex Fraser (1957)
– Computational simulation of natural evolution

• Fogel et al. (1966)
– Evolutionary programming (finite state machines)

• Rechenburg (1973)
– Evolutionary Strategies

• Holland (1975)
– Genetic Algorithms

• Kosa (1992)
– Genetic Programming

28

Evolutionary Computing
Not new…

many, many more!!

29

Search-Based Software Engineering

The term “Search-Based Software Engineering” (SBSE) coined in 2001.

Harman, M., Jones, B.J. (2001) Search-Based Software Engineering. Information
and Software Technology, vol. 43, no.14, pp. 833-839.

“… a new field of software engineering research and practice is emerging: search-based
software engineering. The paper argues that software engineering is ideal for the
application of […] search techniques.

Such search-based techniques could provide solutions to the difficult problems of balancing
competing (and some times inconsistent) constraints and may suggest ways of finding
acceptable solutions in situations where perfect solutions are either theoretically impossible
or practically infeasible”.

Harman, M. (2011) Software Engineering meets Evolutionary Computation.
Computer, vol. 44, no.10, pp. 31-39.

30

Search in code - Genetic Programming

i = 1;

while(i < 20)

{

 i = i + 1

}

Parse tree symbolic expressions defined by:
• Set of terminals
• Set of functions

31

Genetic Programming Example

http://alphard.ethz.ch/gerber/approx/default.html

files

Simple line fitting using regression

http://alphard.ethz.ch/gerber/approx/default.html

32

Genetic Programming Example

Poli, R., Langdon, W.B., McPhee, N.F. (2008) A Field Guide to Genetic Programming, LuLu Publishing.

Langdon, W.B., Harman, M. (2012) Genetically Improving 50000 Lines of C++,
Research Note, University College London.

“We evolved a widely-used and highly complex 50000 line system, seeking
improved versions that are faster than the original, yet as least as good semantically.
Our approach found a version that is 70 times faster (on average) and is also a small
Semantic improvement on the original”.

See also:

Note the multiple objective trade-off between performance and semantics

Langdon Improving.pdf
Langdon Improving.pdf
Langdon Improving.pdf

• Automatic Refactoring
– Representation

• Parse trees of object-oriented source code

– Fitness
• Cohesion (maximise), coupling (minimise), dependency etc.

– Diversity preservation
• Crossover and mutation using Fowler refactoring patterns

– E.g. push down, pull up, collapse hierarchy etc.

– Search approach
• Evolutionary algorithm (and other), ‘population’ of parse

trees

33

Other examples of Search (1)

34

Other examples of Search (1)

“The high cost of software maintenance could be reduced by automatically improving the
design of object-oriented programs without altering their behaviour. We have constructed
a software tool capable of refactoring object-oriented programs to conform more closely
to a given design quality model, by formulating the task as a search problem in the space
of alternative designs. This novel approach is validated by two case studies, where programs
 are automatically refactored to increase flexibility, reusability and understandability as
defined by a contemporary quality model. Both local and simulated annealing searches
were found to be effective in this task.”

O’Keefe, M., O Cinneide, M. (2008) Search-based Refactoring for Software Maintenance.
Journal of Systems and Software, vol. 81, Iss. 4, pp. 502-516.

Limitation: If the population size of search is, say, 100, which one is best? For
Large scale software systems, can the programmer compare candidates?

Trade-offs?

Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf
Cinneide Refactoring.pdf

• Automatic Test Case Generation

– Representation

• Inputs of a test case (sequence of ints, floats, strings etc.)

– Fitness

• Branch coverage (maximise), execution time (minimise), etc.

– Diversity preservation

• Crossover and mutation at random

– Search approach

• Evolutionary algorithm (and other), ‘population’ of test cases
representing a test suite.

35

Other examples of Search (2)

36

Other examples of Search (2)
“Search-Based Software Testing is the use of a […] search technique, such as a
Genetic Algorithm, to automate or partially automate a testing task, for example
the automatic generation of test data. Key to the optimization process is a
problem-specific fitness function. The role of the fitness function is to guide
 the search to good solutions from a potentially infinite search space, within a
practical time limit. Work on Search-Based Software Testing dates back to 1976,
with interest in the area beginning to gather pace in the 1990s. More recently there
 has been an explosion of the amount of work. This paper reviews past work and the
 current state of the art, and discusses potential future research areas and open
 problems that remain in the field.”

Observation: Especially beneficial in regression testing

McMinn, P. (2011) Search-Based Software Testing: Past, Present and Future.
2011 IEEE Fourth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), IEEE Press, pp. 153-163.

McMinn SBST.pdf
McMinn SBST.pdf
McMinn SBST.pdf
McMinn SBST.pdf
McMinn SBST.pdf
McMinn SBST.pdf
McMinn SBST.pdf
McMinn SBST.pdf
McMinn SBST.pdf

• Automatic Bug Fixing

– Representation

• Parse trees of source code

– Fitness

• %age tests passing in existing test suites

– Diversity preservation

• Crossover and mutation at random

– Search approach

• Genetic programming, population of source code variants

37

Other examples of Search (3)

38

Other examples of Search (3)
“This paper describes GenProg, an automated method for repairing defects in off-the-shelf,
legacy programs without formal specifications, program annotations, or special coding
practices. GenProg uses an extended form of genetic programming to evolve a program
variant that retains required functionality but is not susceptible to a given defect, using
existing test suites to encode both the defect and required functionality. Structural
differencing algorithms and delta debugging reduce the difference between this variant
and the original program to a minimal repair. We describe the algorithm and report
experimental results of its success on 16 programs totaling 1.25 M lines of C code and 120K
lines of module code, spanning eight classes of defects, in 357 seconds, on average. We
analyze the generated repairs qualitatively and quantitatively to demonstrate that the
process efficiently produces evolved programs that repair the defect, are not fragile input
memorizations, and do not lead to serious degradation in functionality.”

Le Goues, C., Nguyen, T., Forrest, S., Weimer, W. (2012) GenProg: A Generic Method
For Automatic Program Repair. IEEE Transactions on Software Engineering, vol. 38,
 no. 1, pp. 54-72.

Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf
Le Gouse GenProg.pdf

39

Zhang, Y. (2014) Repository of Publications on Search-based Software Engineering.
http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/.

SBSE repository

So given the successful applications of SBSE, is programming now just a case of
(i) representation, (ii) fitness measures, (iii) search algorithm?

Where is the programmer?

Simons, C.L. (2013) "Whither (Away) Software Engineers in SBSE?", in First International
Workshop on Combining Modelling with Search-Based Software Engineering (CMSBSE 2013),
in conjunction with the International Conference on Software Engineering, (ICSE '13),
IEEE Press, pp.49-50.

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf
Simons Whither Away.pdf

• Better as a human-machine partnership
• But partnership requires agreement

– mutually predictable actions
– maintain common ground

40

Klein, G., et al., (2004) “Ten Challenges for Making Automation a ‘Team Player’ in Joint Human-Agent Activity”,
IEEE Intelligent Systems, vol. 19, no. 6., pp. 91-95.

• We tried to replace
people to fully automate

– Didn’t really work…?

41

What is “evaluation”?

A value judgement…

42

What is “evaluation”?

A value judgement…

Objective?

Subjective?

Software Metrics e.g. lines of code, coupling, cohesion….

Value judgement e.g. elegance, symmetry, patterns….

A combination of both i.e.
 “multi-obsubjective”

• Human in the fitness function -
- e.g. Dawkins ‘biomorphs’

43

Interactive Evolutionary Computing

Dawkins, R. (1986) The Blind Watchmaker, Penguin Books.

• Since then:
– Art
– Music
– Image processing
– Games
– Industrial product design
– Fashion Design
– Control and robotics
– Etc. etc. etc.

Tagaki, H. (2001) Interactive Evolutionary
Computation: A Fusion of the Capabilities of
EC Optimisation and Human Evaluation.
Proceedings of the IEEE, vol. 78, no. 9, pp.
1275-1296.

44

Evaluation: Aesthetics, Elegance?
“the significance of symmetry was only made clear with the discovery that stress and
disease make it harder for an individual to develop a perfectly symmetric body. Small
differences on either side of an imaginary mid-plane therefore betray genetic quality,
and potential mates use this to gauge each other’s desirability. Put simply, symmetry is sexy”.

Schilthuizen, M., “Lopsided Love”, New Scientist, 18 June 2011, pp. 42-45.

M.C.Escher

45

Coupling vs Elegance in Software Design

versus

Brown, W.J., et al., (1998) Anti-Patterns: Refactoring Software Architectures and Projects in Crisis, Wiley.

• Novel elegance metrics
– Numbers among classes, Ratio of Attributes to Methods

46

Example (1) Interactive Software Design

initialise
population

start

initialise
weights

interactive
generation?

visualise
software
design

designer
evaluation

designer
terminates

adjust
weights

stop

evaluate
fitnesses

select according
to weights

reproduce
offspring

Self-mutate

yes

no

yes

no

Simons, C.L., Smith, J.E. (2012) Elegant Object-oriented Software Design via
Interactive Evolutionary Computation, IEEE Transactions on Systems, Man
and Cybernetics – Part C, vol. 42, iss. 6, pp. 1797-1805.

Trade-offs?

• Significant role in searching (evolving)
effective software designs

• Wide potential for other design fields via
interactive search

47

Elegance

48

Example (2) Interactive Software Testing
“Search-based testing could be a key aspect in creating an automated tool for
supporting testing activities. However, domain specific quality criteria and
trade-offs make it difficult to develop a general fitness function a priori, so
interaction between domain specialists and such a tool would be critical to its
success.
In this paper, we present a system for interactive search-based software testing
and investigate a way for domain specialists to guide the search by dynamically
re-weighting quality goals. Our empirical investigation shows that objective re-
weighting can help a human domain specialist interactively guide the search,
without requiring specialised knowledge of the system and without
sacrificing population diversity”.

Marculescu, B., Feldt, R., Torkar, R. (2013) Objective Re-Weighting to Guide an
Interactive Search Based Software Testing System. In Proceedings of the 12th
International Conference on Machine Learning and Applications (ICMLA’13)

Observation: beneficial to emphasise quality goals over mechanistic test generation

Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf
Marculescu - Objective-Re-Weighting.pdf

• Searching for strategies rather than instances

• Exploiting many-core computing

• Giving insight to software developers

• Optimising compilation and deployment

• Balancing Computation and Human Interaction

49

Challenges ahead?

Harman, M. (2012) “The Role of Artificial Intelligence in Software Engineering”, Proceedings of the First
International Workshop on Realising Artificial Intelligence in Software Engineering (RAISE) , pp. 1-6.

– Evolving Objects (EO): an Evolutionary Computation
Framework (C++)
• http://eodev.sourceforge.net/

– Open BEAGLE (C++)
• https://code.google.com/p/beagle/

– ECJ 21 (Java Evolutionary Computation)
• http://cs.gmu.edu/~eclab/projects/ecj/

– ECF (Evolutionary Computational Framework) (C++)
• http://gp.zemris.fer.hr/ecf/

– JCLEC – Java Class Library for Evolutionary Computation
• http://jclec.sourceforge.net/

– Etc. etc.

50

Some resources available

http://eodev.sourceforge.net/
http://eodev.sourceforge.net/
https://code.google.com/p/beagle/
https://code.google.com/p/beagle/
http://cs.gmu.edu/~eclab/projects/ecj/
http://cs.gmu.edu/~eclab/projects/ecj/
http://gp.zemris.fer.hr/ecf/
http://gp.zemris.fer.hr/ecf/
http://jclec.sourceforge.net/
http://jclec.sourceforge.net/

51

And finally…
there’s even an article on a GA in Overload!

http://www.accu.org/index.php/journals/1825

Buontempo, F. (2013) How to Program Your Way Out of a Paper Bag
Using Genetic Algorithms. Overload, Iss. 118 (December 2013).

http://www.accu.org/index.php/journals/1825

• Search-based Software Engineering is coming of
age

• Search helps developers to be more productive

• Ripe for exploitation

52

Conclusions

I’m happy to collaborate on SBSE tools and their application

• Any questions?

53

Thank you

