Cleaning
code

Techniques for
Large Legacy Restoration Projects

1828 1822 %

Mike Long

What’s in this for you?

Gain an understanding of the value of legacy

Learn how to make the business case for
remedial work in large software projects

Know the tools necessary to be able to
qguantify and visualize technical debt in big
orojects

How to manage large legacy restoration
orojects

Legacy

Code | have known

MY PROJECT CODE

A

LEGACY

s

Mini-Legacy

'

Code | have known

MY PROJECT CODE

Greenfield Heaven

Code | have known

MY PROJECT CODE Legacy

A saltmines

LEGACY

COBOL

Rube
Goldberg
~ or ~
48 Whatis a
. ,g}f.t‘.‘i?’.:;i & Y Legacy
. e Restoration

Project?

What is a Legacy restoration project?

“A legacy system is an old method, technology,

computer system, or application program.”
Wikipedia

Visit the main page 4 @ _

4 ;: i /}l Article Talk
§ e |
'L.w* - L ‘t
egacy sysiem
WIKIPEDIA gacy sy
The Free Encyclopedia From Wikipedia, the free encyclopedia
Main page 1 This article needs additional citations for verification. P|
Contents reliable sources. Unsourced material may be challenged a
Featured content A legacy system is an old method, technology, computer system, or application program
Current events used, it may continue to impact the organization due to its historical role. Historic data ma
FRancom rticie the new system with the use of a customized schema crosswalk, or may exist only in a de
Donate to Wikipedia
operational reporting can be significant. For a variety of reasons, a legacy system may co
v |nteraction resulting in support and maintenance challenges. It may be that the system still provides |
Help methods of performing a task are now available. However, the decision to keep an old sy

a nam " PSP (U (NP Y R JURRT N USSR J5 Y U S UL

What is a Legacy restoration project?

“To me, legacy code is simply code without
tests”

Michael Feathers

http://www.flickr.com/photos/fraserspeirs/3394782283/

http://www.flickr.com/photos/fraserspeirs/3394782283/

What is a Legacy restoration project?

“Some crap made by someone else”

Developers, Developers, Developers

Large: Software at scale is a different
beast

> 1MLoC
> 10 years old
> 100 developers

=> Large Legacy Project

http://www.flickr.com/photos/eriginal/290808227/

How does a codebase become a big
mess?

Explosive growth — big bang development
Sustained schedule pressure

No quality requirements

High staff turnover

Success

How Why does a codebase become a
big mess?

Feature driven development plans
Stakeholders don’t know software
Developers don’t know software
Quality is tested-in, not built-in
Under-empowered technical leaders

What to do when things get bad

HOW DO
COMMITTEES
INVENT?

by MELVIN E. CONWAY

That kind of intellectual activity which creates

a useful whole from its diverse parts may be

called the design of a system. Whether the

particular activity is the creation of specifica-
tions for a major weapon system, the formation of a rec-
ommendation to meet a social challenge, or the program-
ming of a computer, the general activity is largely the
same.

Typically, the objective of a design organization is the
creation and assembly of a document containing a coherent-
ly structured body of information. We may name this
information the system design. It is typically produced for
a sponsor who usually desires to carry out some activity
guided by the system design. For example, a public official
may wish to propose legislation to avert a recurrence of a
recent disaster, so he appoints a team to explain the catas-
trophe. Or a manufacturer needs a new product and desig-
nates a product planning activity to specify what should be
introduced.

The design organization may or may not be involved in
the construction of the system it designs. Frequently, in
public affairs, there are policies which discourage a group’s
acting upon its own recommendations, whereas, in private
industry, quite the opposite situation often prevails.

It seems reasonable to suppose that the knowledge that
one will have to carry out one’s own recommendations or
that this task will fall to others, probably affects some
design choices which the individual designer is called upon
to make. Most design activity requires continually making
choices. Many of these choices may be more than design
decisions; they may also be personal decisions the designer
makes about his own future. As we shall see later, the
incentives which exist in a conventional management en-
vironment can motivate choices which subvert the intent of
the sponsor.!

stages of design
The initial stages of a design effort are concerned more
with structuring of the design activity than with the system
itself.2 The full-blown design activity cannot proceed until
certain preliminary milestones are passed. These include:
Understanding of the boundaries, both on the design
activity and on the system to be designed, placed by
the sponsor and by the world’s realities.

2. Achievement of a preliminary notion of the system’s
organization so that design task groups can be mean-
ingfully assigned. .

We shall see in detail later that the very act of organiz-

L A related, but much more prehensive di: ion of the behavior of
system-designing organizations is found in John Kenneth Galbraith’s,
The New Industrial State (Boston, Houghton Mifflin, 1967). See especially
Chapter VI, “The Technostructure.”

2For a discussion of the problems which may arise when the design
activity takes the form of a project in a functional environment, see C. J.
Middleton, “How to Set Up a Project Organization,” Harvard Business
Review, March-April, 1967, p. 73.

28

design organization criteria

ing a design team means that certain design decisions have
already been made, explicitly or otherwise. Given any
design team organization, there is a class of design alterna-
tives which cannot be effectively pursued by such an
organization because the necessary communication paths
do not exist. Therefore, there is no such thing as a design
group which is both organized and unbiased.

Once the organization of the design team is chosen, it is
possible to delegate activities to the subgroups of the
organization. Every time a delegation is made and some-
body’s scope of inquiry is narrowed, the class of design
alternatives which can be effectively pursued is also nar-
rowed.

Once scopes of activity are defined, a coordination prob-
lem is created. Coordination among task groups, although
it appears to lower the productivity of the individual in the
small group, provides the only possibility that the separate
task groups will be able to consolidate their efforts into a
unified system design.

Thus the life cycle of a system design effort proceeds
through the following general stages:

1. Drawing of boundaries according to the ground

rules.

2. Choice of a preliminary system concept.

3. Organization of the design activity and delegation of

tasks according to that concept.

4. Coordination among delegated tasks.

5. Consolidation of subdesigns into a single design.

It is possible that a given design activity will not pro-
ceed straight through this list. It might conceivably reorga-
nize upon discovery of a mew, and obviously superior,
design concept; but such an appearance of uncertainty is
unflattering, and the very act of voluntarily abandoning a
creation is painful and expensive. Of course, from the

Dr. Conway is manager, pe-
ripheral systems research, at
Sperry Rand’s Univac Div.,
where he is working on recog-
nition of continuous speech. He
has previously been a research
associate at Case Western Re-
serve Univ., and a software
consultant. He has an MS in
physics from CalTech and a
PhD in math from Case.

DATAMATION

“organizations which design systems ... are

constrained to produce designs which are

copies of the communication structures of
these organizations.”

“This point of view has produced
the observation that there's never
enough time to do something right,
but there's always enough time to

do it over”

Rewrite trap #1: re-implementing
existing features == commercial
suicide

Joel on Software ¢ N Etsca pe
Things You Should Never Do,

Part I
by Joel Spolsky ° Mlcrosoft

Thursday, April 06, 2000

Netscape 6.0 is finally going into its first public beta. There never was
a version 5.0. The last major release, version 4.0, was released almost
three years ago. Three years is an awfully long time in the Internet
world. During this time, Netscape sat by, helplessly, as their market
share plummeted.

e Borland

It's a bit smarmy of me to criticize them for waiting so long between
releases. They didn't do it on purpose, now, did they?

Well, ves. They did. They did it by making the single worst
strategic mistake that any software company can make:

They decided to rewrite the
code from scratch.

Netscape wasn't the first

Rewrite trap #2: The 2"9 System Effect

“This second is the most
dangerous system a man ever
designs...The result, as Ovid
says, is a “big pile.”

MYTHICAL
MAN-MONTH

Too big to fail?

VOID AFTER ONE YEA

Should we declare bankruptcy?

For a re-write to be worth it:
* We really have “enough time to do it over”
— Money is no object, re-implementation of existing features

 We use incremental value delivery to stave off the second
systems effect

— mature and disciplined team

 We can mitigate the knowledge loss

— small and simple system, and the same team as initial
implementation

e And the existing platform is facing obsolescence

For all other cases, rewrite is commercial suicide

Tools and techniques

Recycling Bins

ldentify & remove waste

— — e e i A S e e i
T YT S
«

-fy

The Carrying Cost of Code

Ted Dziuba x-

dozba

"Code is a liability, functionality is an asset."

4 Reply T3 Retweet W Favorite ®®e More

eveers ARRE LB IS
RETWEETS FAVORITES : =y s T

4:17 AM -Jun 7, 2010

Carrying Costs

Large projects take time to build
Defect tracking systems
Communication costs
Knowledge costs

How much of your code is dead?

e Callcatcher

* Listen to your linker
— [Obsolete]
— declspec(deprecated(“**TESTING DEAD**”))

Duplicate code

Tests are inventory

e Tests are inventory, whether scripts, unit tests,
or gui tests

* Long term failing tests
— Delete them or fix them,

— then automate this process

* Flicker tests

There are no fixed costs

* Exploit the huge opportunities for waste
reduction in large legacy

— If you have a big development population, any
waste reduction is a huge boost to productivity

— Think build times, feedback delays, broken builds,
testing cycles, installation times

e But baseline and monitor it!
* Measure it in business terms (SSS)

Pete Goodliffe W Follow
‘ @petegoodliffe

It's remarkable what can be achieved with blunt tools
and perspiration.
11:29 AM - 05 Mar 12

1 RETWEET 1 FAVORITE < 13 %

Sharp tools

* Look for waste introducing systems
— Legacy Version control systems
— Legacy Defect tracking
* Introduce productivity enhancing tools

— Continuous Integration
— Automation

Automate the donkey work

Churn

 What is changing?
 What is not changing?

— The active set of classes

* Drive your decisions on where to put your
effort

Static Analysis

 The compiler is the first port of call

— -wall or /warn:4

* | have had very good experiences with
coverity and cppcheck, YMMV

* Resource leak detection and memory
corruption detection

SCIENCE TiP: LOG SCALES ARE FOR QUITTERS WHO CANT
FIND ENOUGH PAPER TOMAKE THEIR POINT ARORESL)

—
builtin
submodule.c (LOC: 8... ree-walk.c (LOC: 6.
fsckc (LOC: 739, C.. http-backe.
shal_file.c (LOC: 2794, Complexne
reflog.ciL..| - (: Pl
path.c (LOC: 669, C.
fast-export.c (LOC: ..

pack-redundant....
quote.ci.
init-db.c (LOC: 5. unpack-object
attr.c (LOC: ... setup.c(LO...
config.c (LOC: 1643, Complexnes...
remote streami... archive..
y -m... catfile.... checko... o revert....
notes.c (LOC: 1108.. [T
- VCS-5Vn
ge.c (LOC: . miree.... rerere.c (LOC: 7. e iGE

SrC

remote-curl.c (L.

diff.
mailinfo.c (LOC: 1073, Compl... phow reic - Is-iree

help.c(LOC: 4.. miktag.c . Merge- .-

imap-send.c(L... fast_export.c(L. w
wrapper.c (L...
cache-re...
che..pru... check -noles—rnerge cl... ﬂhl_c_”
replace.... fer. M. e svndif... AR
- strips... archive-tar.c .
Name-rev... pateh-id, '-pllLver d_ b sym...
short. mal. com.. upd. pack-write.c (LO... xdiff-interface. ¢ branch.c (LOC. e 2ib.c(LOC: ...
mer... -
- push.c(L..upl.. ha E - -. pretty.c (LOC: 1467, Complexne. dir.c (LOC: 1299, Complexne... e
archi.. -
graph.c (LOC: 1336. ek enviro.. lockfi
match-t...credent.. reflog- diffcore.., [S9C - SEM:
. blocl olor.c(L..object.c (.
nedmalloc.c (LOC: 956, Complexness tree-diff.c (LOC: 3. mail... free.c
notes.c (LOC:. -|
hitp.c (LOC: 13... (entc (LO...
convert.c (LOC: 130.

nedmall.

diffc

pktline.c

userd... diffco
identc (LO.. shat-l...crede...

i contrib - patch-id.
- & h (LOC: 1277, Complexness... examples Donver...i(:’re... shell.c(..list-obje.. frace.c .resol_
builtin-fetch-t.. convert.. gi -
commit.c (LOC: ... Swn' name-h, -

fnmatch o
bstac...
mingw.c (LOG: 1785, Ca .I o xprepare.c (LO... date.c (LOC: 1070, Complexn.. - pack-c. it
: - fastimport ¢ (LOG: 341 _ , -
) . xpatience.c (L... -
winansi.c (L. - transportc.. = !
dirent. wi-status.c (L... bisect.c (LOC. pack-refs..
IL.c (LOC sys.. inet e Rl . 15 o g UL e - --
poll.c : xhistogra...
] 3 .. diff... €T
regexc i I . I i sicen.. I teste.. |

hitp-backend.c (L...

remote-curl. attr.c (LOC. ...

builtin contrib
gn::fi:::iz:ed exal = setup.c (LOC: 862, Comp...free-walk.c (LOG: ..
reflog.c (LOC: 783, ..
fast-expor.. pack-red. git-cr... OIbEIEC- puiln... con..
- 0SxKeY... cun-fa --streamlng ¢ (LOG: 546,

- quote.
fscke(L... fmt-mer.
init-db.c (.
wrapper.c (LO...
checkout. notes-merg. strouf.c (..
notas c (LOC: 1111, Compl._ UnPack-objec. -- ..smW T
column.c
reved.c(..diﬁ_"ee Is-tree.c (L.
help.c(.. push.c..gc... re.. cache-tree ¢ (LOC: 70
midras. PrUin-.chec config € (LOG: 1. imap-send ¢ ["erere.c(LOC:Y —merge o fdente
e B o
shortlog... mkt...rep. merg...
path.c (LO.
archive.c. nelp.c

patch
csumHile.c .. pack-re.
fsck.c (LO.. walker.c (.. listo..
name-has..

tree. sideba.
s -Iw
pager.c...

test-c.

. TE... c. st.pr.

merge-tree E
mailinfo.c (L. e upload-,. count-0bj

VCS-5Vn

merg

catfil... mail... nam.
pack

ittp.c (LOC: 1394, ..

xdiff-interf...

credential

arcm .l
block-shat
remote-testsvn.c .. userdlfc(

nedmalloc
dir.c (LOC: 150..
. - - -
tag.c (LOC.
strin .
abje resol —
reflog-walk. diffcore-bi -. e a0
branch c (LOC: entry.c (LOC: 2. - prom..
Il tes...pat.. nt
fast-import.c (LOC: 3461, Complexne... convert.c (LOC: 132... notes.c (LOC: 1295... colorc. - -
Xprepar.. lockfile.c (. shat-oo. -
fic... ! not..

environm...

graph.c (LOC.... commit.c (LO... bas... url....

parse-op..

submodule.c (LOC:..

cache h (LOC: 1279, Com...
progres... zlib.c(l...

fnmatch transportc(... date.c(L.

-0 xemitc (LOC... shaq_file.c (LOC: 2837, Complexnes...

o
¥pati... .

mailma

transport-helper.c (LOC: 1 pigectc (LOC: 996, ..Tea.. Ser..

poll.c(LO.
tree.c (L.

What can you visualize with this?

 Complexity

* Defects

e Static analysis results
* Churn

* Understanding

* Maintainability

Hello

This is your shiny new dashboard.

Protip: You can drag the widgets around!

Current Valuation

$31

In billions

Synergy

Convergence

43

Buzzwords
Exit strategy 1"
Leverage 3
Synergy 10
Turn-key 1"
Web 2.0 4
Streamlininess 16
Pivoting 17
Enterprise 16
Paradigm shift 12

of times said around the office

“Up and to the right”

* Trends are important

* Only trend metrics that
will change (no-one is
motivated by code

\ o f
e coverage going from
o) 2.066 to 2.067%)

\nd — * Putthe goal or next
distance From milestone in the trend
leR} * Treemaps can also show

trends

Making the business case

“We need to fix this” [Citation Needed]

Quantify, visualize, communicate

e Quantify:

— Communicate in terms of measured business costs
and business benefits

e Visualize:

— A picture is worth a thousand bug reports

* Communicate:
— blah, blah, consultant, blah

Metrics

* Hard: * Soft:
— Complexity — Feature implementation
— coverage time
— test cases — Customer satisfaction
— churn, turmoil, — Employee satisfaction

changeset frequency

— static analysis, dead
code, duplicate code,
warnings,

— Defects (escaped)

Avoiding metricide

“If you can’t measure it you cant
manage it”

* The Managers Delight:

Hard conversations

* “We’re going slow now, but to go faster we
need to slow down”

 “As we improve the codebase we will
introduce regressions in seemingly random
ways”

 “Throwing money at the problem is not going
to significantly move the needle on quality”

How much effort to spend on Quality?

* Hint: you don’t get to decide

* You are going to have to sacrifice feature
development

* in exchange you must promise more frequent
release quality increments

Managing Legacy Restoration

Legacy Restoration is Culture
Change

Change can’t happen without new values
New values must be driven by new culture
ldentifying waste requires new perspective
From Complaining to Fixing

Phases to change

Establish a sense of urgency
Create a guiding coalition

Develop a vision for the
change

Communicate the vision for
buy-in

Empower broad-based action
Generate short-term wins
Never let up

Incorporate changes into the
culture

Software development enthusiast Venturing a perplexed industry in search of wisdom

Erik Schlyter

Home About JournalB) ArticlesB Consulting

Quality by Being Careful

There seems to be a de-facto mentality throughout the indusitry within
organizations that lack an established strategy to achieve and maintain quality. |
call it "quality by being careful" and it is the simplistic comprehension that you can
achieve quality and reduce defects simply by being careful enough. My concemn is
not that people use it as a principle, but rather that people use it as a base for the
assumptions that guide their choice of process strategies. Although there is clear
value in being mindful about your code, | will argue that this mentality in its pure
form is incomplete, doesn't scale, and can be downright counterproductive in the
context of legacy systems or projects where inferior test coverage and lacking — ...l.

requirements is the norm. . .
9 Thoughts, ideas and articles B

Tuesday, 25 Seprember 2012 - 15:10 . Pgrmalink 2 Comments | Read Later 2012-09-25
Quality by Being Careful
2012-08-14
It comes natural to be careful when you got something at stake, and generally | would not The Evaluation of My Software Sabbatical
suggest there is something wrong with it. It makes you focused and it might make you 3012-06-11

avoid sloppiness, but | consider it important to acknowledge the limitations of this mentality Software Sabbatical

when you are collaborating with a team on a shared codebase. In the context of software :
ErikSchlyter

development | first encountered this way of thinking as early as the first assignments at the Mo recent repo activity.

| U (A U A A [| OO 5 OO (R S S |

Quality by Being Careful

e Defects come from incomplete communication,
not only mistakes

* The need for carefulness is fear in disguise
* Fear of changing code leads to localized bug fixes

v’ Write clean and understandable code
v Peer review
v’ Different levels of specification and testing

Improve both trust and quality

 Without trust you can’t
— get the sponsorship to invest in internal quality
— have the developers believe in a better future

* Trust comes with transparency

Lottery Factor

Not my stuff

Large long-lived codebases rarely have many
of the original developers around

This makes the current developers code
archeologists

Ownership comes before collective ownership
Engineers are historians

Engineers as historians

 The larger a codebase is, the more of it will be
completely unknown to the development team,
especially if the project went through a period of
explosive growth.

* Developers are more likely to re-implement
functionality that already exists

* There will be a lot of cargo cult programming. Existing
patterns in the codebase will be copied without
knowing the true reasons behind doing so. This is
dangerous because even the bad practices and leaky
abstractions will be followed and cemented

Knowledge and Skills

Knowledge sharing
Lottery factor

Skills matrix

Code understanding
Pair programming
Code reviews
Learning culture

Where to start: churn + roadmap

* Combine what is changing with your new
development roadmap

— Things that don’t change:
* don’t have bugs
* are not slowing down feature development
 are probably rarely read
— Compare new feature only development with
refactoring + new development

* improving areas of high churn will h

s it really worth it?

* |[n making the case for remedial work, you
need to justify the cost — it might really be
cheaper for the company to have crappy code.

* |f this is the case, you might want to look
elsewhere for work. There are no happy
endings here

 The good news is that this situation is highly
unlikely

Resources

Change should be managed

* Direction
SWITCH — Look for the bright spots,
1 think in terms of specific
| ¢ behaviors, be specific in
| HOW 70 CHANGE THINGS goa|s
WHEN CHANGE 1S HARD ° Motivation

‘ — Make people feel the need
for change, make it small,
cultivate a growth mindset

e Environment

— Change the situation, build
habits, and rally the herd

EFFECTIVELY
WITH

LEGACY CODE

 How to get legacy code

under automated test

e How to break

dependencies

e Strategies for dealing

with common anti-
patterns

ReractoriG
IMPROVING THE DESIGN
OF EXISTING CODE

MARTIN FOWLER

With Cantribations by Kent Beck, John Brant,
William Opdyke, asnd Don Roberts

foceword by Erich Gamma
Object Technology International Inc

[OBECT TECHNMOGY
|
[

T
JACOBSON
Y unsauc

|
:
i
i

Detailed explanations of
70 refactorings together
with the mechanics of
how to apply them
safely

BEHEAD YOUR
LEGACY BEAST

REFACTOR AND RESTRUCTURE RELENTLESSLY WITH

THE MIKADO METHOD

DANIEL BROLUND
OLA ELLNESTAM

FOREWORD BY TOM POPPENDIECK

A structured technique
for avoiding the weeds
when performing deep
refactoring

V- ’L
Libre(ffice: the story of

cleaning and refactoring
a giantcode-base

M ihaelM eeks <m haelm eeks@ suse.com »
’v{@}i m m eeks,#lbreoffice-dev, rc.freenode.net

Stand at the crossmwads and bok, ask for the
ancentpaths, ask where the good way i, and walk
n 1t and you w ill fihd restforyoursoub... "~
Jerem Bh 6:16

D LibreOffice

Conclusions

Conclusions

Prevention is better than cure
Legacy software is valuable software
There is always a business case for restoration

— You just need to prove it

Restoration is culture change

Too big to fail?

Questions?

contrib
credential exampl... con... setup.c (LOC: 862, Comp...ree-walk. (LOC: .
reflog.c (LOC: 783, .. (gnom... wincred
fast-expor... pack-red.. ity CrEC-: buittin... con..
-- S '
" init-db.c (.. I

- B
notes.c (LOC: 1111, Compl.,, UNP3ck-objec..
reverc (.. ypyep IS-treec(l..
help.e (- pushc.. ge.. re.
[[
oo
shortlog.... mkt.. rep. merg...
patchd.. re R
! — |

path.c (LO... -
archive.c..
-gi= Ty s -
col

hitp-backend.c(L...

remote-curl.c.. atfr.c (LOC: .. quote

wrapperc(LO..
notes-merg... W.c {or
column.c (LO...

cache-tree.c (LOC: 70... i
config.c(LOC: 1... imap-send.c(L.. "®rere.c(LOC:7.. Il-me-ge.c . idente (L.

csum-fil
fscke (LO... walkerc (.. list-o...

catil... mails nam...
aroni. uurn. u

regex nedmalloc 1
credential.)
block-shat 4
- dir.c (LOC: 150... graph.C (LOC:.. commite (LO.. oo ml"’mﬂ' | 1| Hhst-c
nedmal. -
- _ tag.c(LOC.. PR e P
e R

fastimportc (LOC: 3461, Complexna... convert.c (LOC: 132.. notes.c (LOC: 1298,

mingw.c (LOC: 1835,

xhistogr... cache.h (LOC: 1279, Com... submodule.c (LOC:...
progres.. b (L.
rranspon.c(.. date.ciL...
#emiLe (LOC... sha1_file.c (LOC: 2837, Complexnes... .
poll.c(LO.. . xd. k. transport-helper.c (LOC: 1... bisectc (LOC: 996, . f@a. Ser..
-] treecil.

