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 Five Symptoms of Complexity

1. Expensive maintenance

2. Large-scale refactorings

3. Parallel development

4. Opaque project state

5. Automated test death march



  

Complexity Measures to the Rescue?

“Syntactic complexity metrics cannot capture the whole picture of 
software complexity” (Herraiz & Hassan)

“The use of metrics to manage software projects has not even reached 
a state of infancy” (Glass)
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Profiling The Ripper



  

James Maybrick – The Ripper?

Picture and permission provided by Professor David Canter, http://www.davidcanter.com



  

Welcome to Code City

Code City: http://www.inf.usi.ch/phd/wettel/codecity.html



  

Heat Maps
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Geographic Profiling of Code

Implicit Dependency



  

Parallel Work: Quality and Defects
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Interaction Patterns: Applications

Detect

Guide

Inform



  

Emergent Modularity
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Feedback on Automated Tests
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Code Churn – The DoneDone Link
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Modus Operandi

Made with http://worditout.com



  

The Road Ahead

Read Patterns?

Inspection Guide?

Dynamic Predictions?



  

Thanks!
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