

Code as a Crime Scene

Uncovering complexity in large-scale software projects

Adam Petersen
adam.petersen@diversify.se
http://www.adampetersen.se/

mailto:adam.petersen@diversify.se
http://www.adampetersen.se/

 Five Symptoms of Complexity

1. Expensive maintenance

2. Large-scale refactorings

3. Parallel development

4. Opaque project state

5. Automated test death march

Complexity Measures to the Rescue?

“Syntactic complexity metrics cannot capture the whole picture of
software complexity” (Herraiz & Hassan)

“The use of metrics to manage software projects has not even reached
a state of infancy” (Glass)

Cyclomatic Complexity

Coupling

Afferent Efferent

Profiling The Ripper

James Maybrick – The Ripper?

Picture and permission provided by Professor David Canter, http://www.davidcanter.com

Welcome to Code City

Code City: http://www.inf.usi.ch/phd/wettel/codecity.html

Heat Maps

Models

Views

Test

Geographic Profiling of Code

Implicit Dependency

Parallel Work: Quality and Defects

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Quality

Programmers

Q
ua

lit
y

Interaction Patterns: Applications

Detect

Guide

Inform

Emergent Modularity

browser
 places
 themes

toolkit
 content
 places
 themes

Hidden
modularity?

Feedback on Automated Tests

T1 T2 T3 T4 T5 T6 T7 T8 T8
0

5

10

15

20

25

Test statbility

Production Code
Test Programs

Date

C
h

a
n

g
e

 fr
e

q
.

Normal Warning Deathmarch

Code Churn – The DoneDone Link

0

50000

100000

150000

200000

Decreasing Churn

Total LOC
Churned LOC

Date

LO
C

0

50000

100000

150000

200000

Deadline-Driven Churn

Total LOC
Churned LOC

Date

LO
C

0

50000

100000

150000

200000

Post-Release Quality Problems?

Total LOC
Churned LOC

Date

LO
C

Deadline

Modus Operandi

Made with http://worditout.com

The Road Ahead

Read Patterns?

Inspection Guide?

Dynamic Predictions?

Thanks!

Code As A Crime Scene

Adam Petersen
adam.petersen@diversify.se
http://www.adampetersen.se/

mailto:adam.petersen@diversify.se
http://www.adampetersen.se/

References

Martin Fowler, Refactoring: Improving the Design of Existing Code, 2000

Robert L. Glass, Facts and Fallacies of Software Engineering, 2002

Israel Herraiz, Ahmed Hassan, Beyond Lines of Code: Do we need more complexity metrics?
Included in Making Software, 2010.

Robert L. Glass, Software Creativity 2.0, 2006.

Perry, et. al., Parallel changes in large-scale software development, 2001.

Thomas & Murphy, How Effective is Modularization? In Making Software, 2010

Nagappan & Ball, Use of Relative Code Churn Measures to Predict System Defect Density, 2005.

Nagappan, Murphy & Basili, The Influence of Organizational Structure on Software Quality, 2008

Lewis & Ou, Bug Prediction at Google,
http://google-engtools.blogspot.se/2011/12/bug-prediction-at-google.html

Neil Ford, Emergent Design Through Metrics, 2009

Canter & Youngs, Principles of Geographical Offender Profiling, 2008

http://google-engtools.blogspot.se/2011/12/bug-prediction-at-google.html

