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The rule of three

The “rule of three” is a principle in writing that suggests
that things that come in threes are inherently funnier,
more satisfying, or more effective than other numbers of

things.
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The rule of three

In aviation the rule of three or “3:1 rule of descent” is
that 3 miles of travel should be allowed for every 1000
feet descent.
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The rule of three

The Rule of Three (also Three-fold Law or Law of
Return) is a religious tenet held by some Wiccans. It

states that whatever energy a person puts out into the
world, be it positive or negative, will be returned to that

person three times.
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The rule of three

@ Copy constructor
@ copy assignment operator

@ destructor
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The rule of three

COpy constructor
move constructor
copy assignment operator

move assignment operator

destructor
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The rule of none

You should not provide an user-declared copy
constructor, copy assignment operator or destructor
(unless you really have to).
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The rule of none

You should not provide an user-declared copy
constructor, copy assignment operator or destructor
(unless you really have to).

class None {
Tl x;
T2 y;

s
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The rule of one

If you are writing an interface class you should provide a
user-declared destructor.
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The rule of one

If you are writing an interface class you should provide a
user-declared destructor.

class One {
public:
virtual “One() {%}
virtual void contract() = 0;

+;
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The other rule of one

If you are writing an immovable entity you may provide a
user-declared destructor.
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The other rule of one

If you are writing an immovable entity you may provide a
user-declared destructor.

class Onell {
public:
“Onell1();
One(const One&) = delete;
One& operator=(const One&) = delete;

+;
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The rule of two (C++03)

If a class contains a cloneable entity you may provide a
copy constructor, copy assignment operator and no
desctructor.
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The rule of two (C++03)

If a class contains a cloneable entity you may provide a
copy constructor, copy assignment operator and no
desctructor.

class Two {
Two(const Two&);
Two& operator=(const Two&) ;

private:
std: :auto_ptr<Cloneable> member;
s

Charles Bailey The Rant of Three



The rule of three

If you are providing a copy constructor, a copy
assignment operator and a destructor you may be doing
something wrong.
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The rule of three

If you are providing a copy constructor, a copy
assignment operator and a destructor you may be doing

something wrong.

class Three {
Three(const Three&);
Three& operator=(const Three&);
“Three();

private:

RawResource* member;

+;
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The rule of two and a half

If you want to make your class movable but not copyable
and it isn’t inherently movable and not copyable for any
other reason then you may provide a user-declared move
constructor, move assignment operator and optionally a
destructor.
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The rule of two and a half

If you want to make your class movable but not copyable
and it isn’t inherently movable and not copyable for any
other reason then you may provide a user-declared move
constructor, move assignment operator and optionally a
destructor.

class Threell {
Threell(Threell&&) ;
Threell& operator=(Threell&&) ;
“Threell();

+;
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There is no rule of five.

There is no substitute for considering on a case by case
basis what special member functions you should provide

for your class.
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Hello world in C4++11

C++11, have we completely lost it?
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Hello world in C4++11

%:include<iostream>

int main()<%
char hw<:7?7)?7?<"Hello, world!\n"/>;
std: : cout<<hw; %>
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C+-+11, have we completely lost it?

auto 1li = char(std::tolower(c));
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C+-+11, have we completely lost it?

auto 1i = static_cast<char>(std::tolower(c));
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C+-+11, have we completely lost it?

auto 1li = static_cast<char>(std::tolower(
static_cast<unsigned char>(c)));
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C+-+11, have we completely lost it?

auto 1li {static_cast<char>(std::tolower(c))};
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C+-+11, have we completely lost it?

char 1i {std::tolower(c)};
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C+-+11, have we completely lost it?

char 1i = std::tolower(c);
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The End

while((c = getchar()) != EOF)
{/x ... ¥/}

while(std::istream: :traits_type::eq_int_type(
(c = cin.get()),

std::istream: :traits_type::eo0f()))
{ /% ... x/ }
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