Lightning Talks

Charles Bailey — The Rant Of Three

Simon Sebright — SharePoint for Thinking Developers
Phil Nash — Why I Do What I Do

Matt Turner - Fluency

Chris Oldwood — Not Only But Also

Frank Birbacher — Style C++for Version Control
Frances Buontempo - TDD

Astrid Byro — A Cry For Help

Didier Verna — Why?



The Rant of Three

Charles Bailey

20th April 2012

Charles Bailey The Rant of Three



The rule of three

The “rule of three” is a principle in writing that suggests
that things that come in threes are inherently funnier,
more satisfying, or more effective than other numbers of

things.

Charles Bailey The Rant of Three



The rule of three

In aviation the rule of three or “3:1 rule of descent” is
that 3 miles of travel should be allowed for every 1000
feet descent.

Charles Bailey The Rant of Three



The rule of three

The Rule of Three (also Three-fold Law or Law of
Return) is a religious tenet held by some Wiccans. It

states that whatever energy a person puts out into the
world, be it positive or negative, will be returned to that

person three times.

Charles Bailey The Rant of Three



The rule of three

@ Copy constructor
@ copy assignment operator

@ destructor

Charles Bailey The Rant of Three



The rule of three

COpy constructor
move constructor
copy assignment operator

move assignment operator

destructor

Charles Bailey The Rant of Three



The rule of none

You should not provide an user-declared copy
constructor, copy assignment operator or destructor
(unless you really have to).

Charles Bailey The Rant of Three



The rule of none

You should not provide an user-declared copy
constructor, copy assignment operator or destructor
(unless you really have to).

class None {
Tl x;
T2 y;

s

Charles Bailey The Rant of Three



The rule of one

If you are writing an interface class you should provide a
user-declared destructor.

Charles Bailey The Rant of Three



The rule of one

If you are writing an interface class you should provide a
user-declared destructor.

class One {
public:
virtual “One() {%}
virtual void contract() = 0;

+;

Charles Bailey The Rant of Three



The other rule of one

If you are writing an immovable entity you may provide a
user-declared destructor.

Charles Bailey The Rant of Three



The other rule of one

If you are writing an immovable entity you may provide a
user-declared destructor.

class Onell {
public:
“Onell1();
One(const One&) = delete;
One& operator=(const One&) = delete;

+;

Charles Bailey The Rant of Three



The rule of two (C++03)

If a class contains a cloneable entity you may provide a
copy constructor, copy assignment operator and no
desctructor.

Charles Bailey The Rant of Three



The rule of two (C++03)

If a class contains a cloneable entity you may provide a
copy constructor, copy assignment operator and no
desctructor.

class Two {
Two(const Two&);
Two& operator=(const Two&) ;

private:
std: :auto_ptr<Cloneable> member;
s

Charles Bailey The Rant of Three



The rule of three

If you are providing a copy constructor, a copy
assignment operator and a destructor you may be doing
something wrong.

Charles Bailey The Rant of Three



The rule of three

If you are providing a copy constructor, a copy
assignment operator and a destructor you may be doing

something wrong.

class Three {
Three(const Three&);
Three& operator=(const Three&);
“Three();

private:

RawResource* member;

+;

Charles Bailey The Rant of Three



The rule of two and a half

If you want to make your class movable but not copyable
and it isn’t inherently movable and not copyable for any
other reason then you may provide a user-declared move
constructor, move assignment operator and optionally a
destructor.

Charles Bailey The Rant of Three



The rule of two and a half

If you want to make your class movable but not copyable
and it isn’t inherently movable and not copyable for any
other reason then you may provide a user-declared move
constructor, move assignment operator and optionally a
destructor.

class Threell {
Threell(Threell&&) ;
Threell& operator=(Threell&&) ;
“Threell();

+;

Charles Bailey The Rant of Three



There is no rule of five.

There is no substitute for considering on a case by case
basis what special member functions you should provide

for your class.

Charles Bailey The Rant of Three



Hello world in C4++11

C++11, have we completely lost it?

Charles Bailey The Rant of Three



Hello world in C4++11

%:include<iostream>

int main()<%
char hw<:7?7)?7?<"Hello, world!\n"/>;
std: : cout<<hw; %>

Charles Bailey The Rant of Three



C+-+11, have we completely lost it?

auto 1li = char(std::tolower(c));

Charles Bailey The Rant of Three



C+-+11, have we completely lost it?

auto 1i = static_cast<char>(std::tolower(c));

Charles Bailey The Rant of Three



C+-+11, have we completely lost it?

auto 1li = static_cast<char>(std::tolower(
static_cast<unsigned char>(c)));

Charles Bailey The Rant of Three



C+-+11, have we completely lost it?

auto 1li {static_cast<char>(std::tolower(c))};

Charles Bailey The Rant of Three



C+-+11, have we completely lost it?

char 1i {std::tolower(c)};

Charles Bailey The Rant of Three



C+-+11, have we completely lost it?

char 1i = std::tolower(c);

Charles Bailey The Rant of Three



The End

while((c = getchar()) != EOF)
{/x ... ¥/}

while(std::istream: :traits_type::eq_int_type(
(c = cin.get()),

std::istream: :traits_type::eo0f()))
{ /% ... x/ }

Charles Bailey The Rant of Three



