Functional
Programming
You

Already

Know
dKevlinHenney

5

The Paradigms of Programming

Robert W. Floyd
Stanford University

Paradigm(pz-radim, —daim)...[a. F. paradigme, ad.
L. paradigma, a. Gr. mapaderypa pattern, example, f.
mapadewcrv-van to exhibit beside, show side by side. . .]
1. A pattern, exemplar, example.
1752 J. Gill Trinity v. 91
The archetype, paradigm, exemplar, and idea,
according to which all things were made.
From the Oxford English Dictionary.

Today I want to talk about the paradigms of pro-
gramming, how they affect our success as designers of
computer programs, how they should be taught, and how
they should be embodied in our programming languages.

A familiar example of a paradigm of programming
is the technique of structured programming, which ap-
pears to be the dominant paradigm in most current
treatments of programming methodology. Structured
programming, as formulated by Dijkstra [6], Wirth [27,
29], and Parnas [21], among others, consists of two
phases.

In the first phase, that of top-down design, or stepwise
refinement, the problem is decomposed into a very small
number of simpler subproblems. In programming the
solution of simultaneous linear equations, say, the first
level of decomposition would be into a stage of triangu-
larizing the equations and a following stage of back-
substitution in the triangularized system. This gradual
decomposition is continued until the subproblems that
arise are simple enough to cope with directly. In the
simultaneous equation example, the back substitution
process would be further decomposed as a backwards
iteration of a process which finds and stores the value of
the ith variable from the ith equation. Yet further decom-
position would yield a fully detailed algorithm.

I believe that the current state of the art of computer
programming reflects inadequacies in our stock of par-
adigms, in our knowledge of existing paradigms, in the
way we teach programming paradigms, and in the way
our programming languages support, or fail to support,
the paradigms of their user communities.

@

PROGRAMMIN

You're DoiNG It CompLeTELY WRONG.

LISP 1.5 Programmer's Manual

The Compuiation Center
and Research Laboratory of Electronics

Massachusetts Institute of Technology

Unearthing the Excellence in JavaScript

’
.
7

JavaScript:
The Good Parts

O,RE"-LY. Woo" PRESS Donglas Crockford

g

recursion idempotence

mathematics .
e es pattern matching
unification

monads

higher-order functions

declarative P Ur€ functions

immutability

first-class functions .
currying

lambdas non-strict evaluation
statelessness li sts

int atexit(void (*func) (void)) ;

void gsort (
void *base,
size t nmemb, size t size,
int (*compar) (
const void *, const void ¥*));

void (*signal (
int sig, void (*func) (int))) (int) ;

One of the most powerful mechanisms
for program structuring [...] is the block
and procedure concept. [...]

A procedure which is capable of giving
rise to block instances which survive its
call will be known as a class; and the
instances will be known as objects of
that class. [...]

A call of a class generates a new object
of that class.

Ole-Johan Dahl and C A R Hoare
"Hierarchical Program Structures"

public class HeatingSystem {
public void turnOn ()
public void turnOff ()

public class Timer {
public Timer (TimeOfDay toExpire, Runnable toDo)
public void run()
public void cancel ()

public class TurnOn implements Runnable ({
private HeatingSystem toTurnOn;
public TurnOn (HeatingSystem toRun) ({
toTurnOn = toRun;
}
public void run() {
toTurnOn. turnOn () ;

}
}

public class TurnOff implements Runnable ({
private HeatingSystem toTurnOff;
public TurnOn (HeatingSystem toRun) ({
toTurnOff = toRun;
}
public void run() ({
toTurnOff. turnOff () ;

}

Timer on =

new Timer (timeOn, new TurnOn (heatingSystem)) ;
Timer off =

new Timer (timeOff, new TurnOff (heatingSystem)) ;

Timer on =
new Timer (
timeToTurnOn,
new Runnable () {
public void run() ({
heatingSystem. turnOn () ;

}

}) g

Timer off =
new Timer (

timeToTurnOff,

new Runnable () {
public void run() ({

heatingSystem. turnOff () ;

}
});

void turnOn (void * toTurnOn)

{
}

static_cast<HeatingSystem *>(toTurnOn)->turnOn() ;

void turnOff (void * toTurnOff)
{

}

static_cast<HeatingSystem *>(toTurnOff)->turnOff() ;

Timer on(timeOn, &heatingSystem, turnOn) ;
Timer off (timeOff, &heatingSystem, turnOff) ;

class Timer

{

public:
Timer (TimeOfDay toExpire, function<void()> toDo) ;
void run() ;
void cancel () ;

Timer on (

timeOn,

bind (&HeatingSystem: : turnOn, &heatingSystem)) ;
Timer off (

timeOff,

bind (&HeatingSystem: : turnOff, &heatingSystem)) ;

[1(){}

[1(){}()

OFFS

public class Timer

{
public Timer (TimeOfDay toExpire, Action toDo)
public void Run|()
public void Cancel ()

Timer on =

new Timer (timeOn, () => heatingSystem.TurnOn()) ;
Timer off =

new Timer (timeOff, () => heatingSystem.TurnOff())

Timer on = new Timer (timeOn, heatingSystem.TurnOn) ;
Timer off = new Timer (timeOff, heatingSystem.TurnOff) ;

Lambda=-calculus

was the first
object-oriented
language (1941)

William Cook, "On Understanding Data Abstraction, Revisited"

newRecentlyUsedList =
A o (let items = ref(()) o
{

isEmpty = A e #items =0,
size = A e #items,
add=Axe
items := (x) (items, | y € 0...#items A items, # x),
get=A i e items;

1)

var newRecentlyUsedList = function() ({
var items = []
return {
isEmpty: function() {
return items.length ===
},
size: function() {
return items.length

b

add: function(newlItem) {
(items = items.filter (function(item) ({

return item !'== newlItem
})) .unshift (newItem)
},
get: function (index) ({
return items[index]

}

intension, n. (Logic)

= the set of characteristics or properties by which
the referent or referents of a given expression is
determined; the sense of an expression that
determines its reference in every possible world,
as opposed to its actual reference. For example,
the intension of prime number may be having
non-trivial integral factors, whereas its extension
would be the set {2, 3, 5, 7, ...}.

E J Borowski and J M Borwein
Dictionary of Mathematics

A list comprehension is a syntactic
construct available in some programming
languages for creating a list based on
existing lists. It follows the form of the
mathematical set-builder notation (set
comprehension) as distinct from the use of
map and filter functions.

http://en.wikipedia.org/wiki/List_comprehension

{2-x| xeN, x>0}

(2 * x for x in count() if x > 0)

Ix|xeN,x>0Axmod2=0}

(x for x in count() if x > 0 and x % 2 == 0)

import re, collections
def words(text): return re.findall('[a-z]+"', text.lower())
def train(features):

model = collections.defaunltdict (lambda: 1)

for £ in features:

model [f] += 1

return model

HWORDS = train(words (file('big.txt").read()))

alphabet = 'abcdefghijklmnopgrstuvWxyz"

def editsl (word) :

splits = [(word[:i], word[i:])} for i in range(len(word) + 1))
deletes = [a + b[l:] for a, b in split=s if b]

transposes = [a + b[l] + b[0] + b[2:] for a, b in split=s if len(b)>1)]
replaces = [a + ¢ + b[l:] for a, b in split=s for c in alphabet if b]
inserts = [a + = + b for a, b in =plits for c in alphabet]
return =et (deletes + transposes + replaces + in=serts)

def known edits2 (word):
return =set(e2 for el in editsl (word) for eZ2 in edit=sl(el) if e2 in HNWORDS)

def knmown (words): return et (w for w in word=s if w in NWORDS)
def correct (word) :

candidates = known|([word]) or known(editsl (word)) or known edits?2 (word) or
return max (candidates, key=NWORDS.get)

[word)]

paraskevidekatriaphobia, noun

= The superstitious fear of Friday 13th.

= Contrary to popular myth, this superstition is relatively recent
(19th century) and did not originate during or before the
medieval times.

= Paraskevidekatriaphobia (or friggatriskaidekaphobia) also
reflects a particularly egocentric attributional bias: the universe
is prepared to rearrange causality and probability around the
believer based on an arbitrary and changeable calendar system,
in a way that is sensitive to geography, culture and time zone.

HOLY GOD
WILL BRING

struct tm next friday 13th(const struct tm * after)
{
struct tm next = *after;
enum { daily secs = 24 * 60 * 60 };
time t seconds =
mktime (&next) +
(next.tm mday == 13 ? daily secs : 0);
do
{
seconds += daily secs;
next = *1ocaltime(&seconds):;
}
while(next.tm mday != 13 || next.tm wday != 5);
return next;

std::find if(
++begin, day iterator(),
[1(const std::tm & day)
{

});

return day.tm mday == 13 && day.tm wday == 5;

class day iterator : public std::iterator<...>

{

public:
day iterator() ...
explicit day iterator(const std::tm & start) ...
const std::tm & operator*() const

{
return day;

}

const std::tm * operator->() const

{
return &day;

}

day iterator & operator++()

{
std::time_t seconds = std::mktime(&day) + 24 * 60 * 60;
day = *std::1ocaltime(&seconds);
return *this;

}

day iterator operator++(int) ...

}s

var fridayl3ths =
from day in Days.After(start)

where day.Day == 13
where day.Day0OfWeek == DayOfWeek.Friday

select day;

foreach(var irrationalBelief in fridayl3ths)

{
}

public class Days : IEnumerable<DateTime>

{

public static Days After(DateTime startDay)
{

}

public IEnumerator<DateTime> GetEnumerator()

{

return new Days(startDay.AddDays(1)):

for(var next = startDay;; next = next.AddDays(1))
yield return next;

}

private DateTime startDay;

Concatenative programming is so called
because it uses function composition instead of
function application—a non-concatenative
language is thus called applicative.

Jon Purdy
http://evincarofautumn.blogspot.in/2012/02/
why-concatenative-programming-matters.html

(f 0 g o h)(x)

xhgf

function push(top) ({

values[depth++] = top
}
function pop() {

return values[--depth]
}
function show() {

for(i = 0; i < depth; ++i)

printf values[depth - i - 1] " "

printf "\n"
}
NF > 1 { next }
NF == { show() }
$1 ~ /~[0-9]+$/ { push($1) }
$1 == "4" { push(pop() + pop()) }
$1 == "*x" { push(pop() * pop()) }

fogoh

hlglf

This is the basic reason Unix pipes are so
powerful: they form a rudimentary string-based
concatenative programming language.

Jon Purdy
http://evincarofautumn.blogspot.in/2012/02/
why-concatenative-programming-matters.html

ﬁﬂrznnwsﬂMn&aMdubaVuWNMMNMMWlwmmBavahurwmnqummm‘

Lionhs'

Ken Thompsen

commenhtary
o UNIX
Gth [Editlen

with Source Code

ennis Ritchie

Foreword by D

iy
T

|

N . :','(E i "’v‘v"."n"‘/.////
LS ,.,,’l'!"u.‘;_f" ,'(f(‘"/.'l:%‘
SN R
MR &Yk.\\JMﬁﬁﬁ;

/
.

‘‘‘‘‘‘‘

B i
-‘gn.'portnnt..”
To put my strongest concsrns in s nudahell

Bummary--whx;::?e m08£

1, We shovld heve aoce waya ol ecupling progratie Mks

_g-ardcn hogs=-~tCrew in another' segzent when 14 beoomes wberi'. ..
it begores Lesaseary tc rasssge detn in encther way. '
®p1e i the way of 1D slgo. :
2. Our loader srculi be adie to 4c 1ink-loading end
sontrolled esiatliskment, '
3» Our librery f1ling scheme shculd &llow for raiher
generel Indexing, reésponeibility, gerereticns, deia path
awitohing, 3
4, It should be possible ti get privete Eyster ccoponents
{11 rovtines ers eytez corponerts) foff i:ugsez-lne orcund xith,

' ¥, D, Mollrovr

Cct. 11771964

While Thompson and Ritchie were laying out their file system, Mcllroy was
"sketching out how to do data processing by connecting together cascades of processes
and looking for a kind of prefix-notation language for connecting processes together."

Over a period from 1970 to 1972, Mcllroy suggested proposal after proposal. He
recalls the break-through day: "Then one day, I came up with a syntax for the shell that
went along with the piping, and Ken said, I'm gonna do it. He was tired of hearing all this
stuff." Thompson didn't do exactly what Mcllroy had proposed for the pipe system call,
but "invented a slightly better one. That finally got changed once more to what we have
today. He put pipes into Unix." Thompson also had to change most of the programs,
because up until that time, they couldn't take standard input. There wasn't really a need;
they all had file arguments. "GREP had a file argument, CAT had a file argument."

The next morning, "we had this orgy of “one liners.' Everybody had a one liner.
Look at this, look at that. ... Everybody started putting forth the UNIX philosophy. Write
programs that do one thing and do it well. Write programs to work together. Write
programs that handle text streams, because that i1s a universal interface." Those ideas
which add up to the tool approach, were there in some unformed way before pipes, but
they really came together afterwards. Pipes became the catalyst for this UNIX
philosophy. "The tool thing has turned out to be actually successful. With pipes, many
programs could work together, and they could work together at a distance."

In functional programming, a monad is a programming
structure that represents computations. Monads are a
kind of abstract data type constructor that encapsulate
program logic instead of data in the domain model. A
defined monad allows the programmer to chain actions
together and build different pipelines that process data
in various steps, in which each action is decorated with
additional processing rules provided by the monad.

http://en.wikipedia.org/wiki/Monad_(functional_programming)

define a sequence of days

o include only 13" of month

include only Fridays

..A

function GetNextFridayl3th($from) {
[DateTime[]] $fridayl3ths = &{
foreach($i in 1..500) {
$from = $from.AddDays (1)

$from
}
L S
$.Day -eq 13
L S

$.DayOfWeek -eq [DayOfWeek]::Friday

}
return $fridayl3ths|[0]

[DateTime[][]] $inputsWithExpectations
("2011-01-01", "2011-05-13"),
("2011-05-13", "2012-01-13"),
("2007-04-01", "2007-04-13"
("2007-04-12", "2007-04-13"
("2007-04-13", "2007-07-1
("2012-01-01", "2012-01-1

1
1
1

3")
3")
3")
3"),
("2012-01-13", "2012-04-13")
("2012-04-13", "2012-07-13")
3")

("2001-07-13", "2002-09-

$inputsWithExpectations | ?{
[String] $actual = GetNextFridayl3th($ [0])
[String] $expected = § [1]
$actual -ne $expected

Concurrency

Threads

Locks

Some people, when confronted with a
problem, think, "I know, I'll use threads,"
and then two they hav erpoblesms.

Ned Batchelder
https://twitter.com/#!/nedbat/status/194873829825327104

public final class Date implements ...

{

public int getYear() ...

public int getMonth() ...

public int getDayInMonth() ...

public void setYear(int newYear) ...

public void setMonth(int newMonth) ...

public void setDayInMonth(int newDayInMonth) ...

public final class Date implements ...

{

public
public
public
public
public
public
public
public
public
public
public
public

int getYear() ...
int getMonth() ...
int getWeekInYear() ...
int getDayInYear() ...
int getDayInMonth() ...
int getDayInWeek() ...

void
void
void
void
void
void

setYear(int newYear) ...
setMonth(int newMonth) ...
setWeekInYear(int newWeek) ...

setDayInYear(int newDayInYear) ...
setDayInMonth(int newDayInMonth) ...
setDayInWeek(int newDayInWeek) ...

public final class Date implements ...

{

public int getYear() ...
public int getMonth() ...
public int getWeekInYear() ...
public int getDayInYear() ...
public int getDayInMonth() ...
public int getDayInWeek() ...

public void
public void
public void
public void
public void
public void

private int

setYear(int newYear) ...
setMonth(int newMonth) ...
setWeekInYear(int newWeek) ...

setDayInYear(int newDayInYear) ...
setDayInMonth(int newDayInMonth) ...
setDayInWeek(int newDayInWeek) ...

year, month, dayInMonth;

public final class Date implements ...

{

public int getYear() ...
public int getMonth() ...
public int getWeekInYear() ...
public int getDayInYear() ...
public int getDayInMonth() ...
public int getDayInWeek() ...

public void
public void
public void
public void
public void
public void

private int

setYear(int newYear) ...
setMonth(int newMonth) ...
setWeekInYear(int newWeek) ...

setDayInYear(int newDayInYear) ...
setDayInMonth(int newDayInMonth) ...
setDayInWeek(int newDayInWeek) ...

daysSinceEpoch;

public final class Date implements ...

{

public int getYear() ...
public int getMonth() ...
public int getWeekInYear() ...
public int getDayInYear() ...
public int getDayInMonth() ...
public int getDayInWeek() ...

public final class Date implements ...

{

public
public
public
public
public
public

int getYear() ...

Month getMonth() ...
int getWeekInYear() ...
int getDayInYear() ...
int getDayInMonth() ...

DayInWeek getDayInWeek() ...

public final class Date implements ...

{

public int year() ...

public Month month() ...

public int weekInYear() ...
public int dayInYear() ...
public int dayInMonth() ...
public DayInWeek dayInWeek() ...

Referential transparency and referential opaqueness are
properties of parts of computer programs. An expression is
said to be referentially transparent if it can be replaced with its
value without changing the program (in other words, yielding a
program that has the same effects and output on the same
input). The opposite term is referentially opaque.

http://en.wikipedia.org/wiki/Referential _transparency (computer _science)

? “ﬂ-é!)r A ;(.

-‘- o S
"7 ,(’1. - e
-' - -
N -
A -

........

SOFTWARE DESIGN PATTERNS

PATTERN-ORIENTED Immutablea
SOFTWARE
ARCHITECTURE

A Pattern Language for
Distributed Computing

Define a value object type
whose instances are immutable.

Copied Value
Define a value object type

whose instances are copyable.

Instead of using threads and shared memory as our
programming model, we can use processes and message
passing. Process here just means a protected independent
state with executing code, not necessarily an operating
system process.

Languages such as Erlang (and occam before it) have
shown that processes are a very successful mechanism for
programming concurrent and parallel systems. Such
systems do not have all the synchronization stresses that
shared-memory, multithreaded systems have.

Russel Winder
"Message Passing Leads to Better Scalability in Parallel Systems"
97 Things Every Programmer Should Know

OOP to me means only messaging,
local retention and protection
and hiding of state-process, and
extreme late-binding of all
things.

Alan Kay

OOP to me means only messaging,
local retention and protection
and hiding of state-process, and
extreme late-binding of all
things. It can be done in
Smalltalk and in LISP. There are
possibly other systems in which
this is possible, but 1I'm not
aware of them.

Alan Kay

Computer Systems
Series

An Ob/ect-Or/ented Concurrent
System '
; St ot
¥or I i y l'.‘."’(j) 4
Sk 4. edited by Akinori Yonezawa
it TR O i
:.i-‘/7‘ . B Ii.!‘ ,l" i
wr 9 ki i f]
ek 4 LTS 4
5L O B A ~ !
QiAW , _\&‘,- "‘,‘:'. .b ".. i . # \
i ¥ ‘_"..",‘ "'\ ;
f LU :," ' \
£ T 3

The MIT Press

LN R)

Yy F T

+ 4 &

“ﬂ. L4 B A

bt 2

find . -name "*.java" |

sed 's/.*\///" |

sort |

uniq -c |

QPEP -V nA | n |
sort -r

Heinz Kabutz
"Know Your IDE"
97 Things Every Programmer Should Know

try {
Integer.parselnt(time.substring(0, 2));
}

catch (Exception x) {
return false;

}
if (Integer.parselnt(time.substring(0, 2)) > 12) {
return false;

}

if (!time.substring(9, 11).equals("AM") &
Itime.substring(9, 11).equals("PM")) {
return false;

Burk Hufnagel
"Put the Mouse Down and Step Away from the Keyboard"
97 Things Every Programmer Should Know

public static boolean validateTime(String time) {
return time.matches("(0[1-9]|1[0-2]):[0-5][0-9]:[0-5][0-9] ([APIM)");
}

Burk Hufnagel
"Put the Mouse Down and Step Away from the Keyboard"
97 Things Every Programmer Should Know

def is prime(n)
("1" * n) !~ /7128~ (11+2)\1+$/
end

http://www.noulakaz.net/weblog/2007/03/18/
a-regular-expression-to-check-for-prime-numbers/

A A A

o OO
N oF of
W o1 W
o= |l I
n un 1

0
0
0

{ printf "Fizz

{ printf "Buzz
&& $0 % 5 1= 0 { printf $0

{ printf "\n"

}
}
}
}

echo {1..100} | tr " ' "\n' | awk '

$0 % 3 == 0 { printf "Fizz" }
$0 % 5 == 0 { printf "Buzz" }
$0 % 3 1= 0 &% $0 % 5 != 0 { printf $0 }

{ printf "\n" }

' | diff - expected && echo Pass

The makefile language is similar to
declarative programming. This class
of language, in which necessary end
conditions are described but the
order in which actions are to be
taken is not important, is sometimes
confusing to programmers used to
Imperative programming.

http://en.wikipedia.org/wiki/Make_(software)

SELECT time, speaker, title
FROM Sessions
WHERE
date = '2012-04-27' AND
time >= '11:00:00"
ORDER BY time

group ::=
'(' expression ')'
factor ::=
integer | group
term ::=
factor (('*' factor) | ('/' factor))*
expression ::=
term (('+' term) | ('-' term))*

group =
'(' >> expression >> ')';
factor =
integer | group;
term =
factor >> *(('*' >> factor) | ('/' >> factor)):;
expression =
term >> *(('+' >> term) | ('-' >> term));

object
i

| members }

members

pair

pair , members
pair

string : value

array

[]

[elements |

elements
value
value , elements

value
string
number
object
array
true
false
null

string

"nn
" chars "

chars
char
char chars

char
any-non-control-char

\"
\\

\t
\u four-hex-digits

number
integer
integer fraction
integer exponent
integer fraction exponent

integer
digit
non-zero-digit digits
- digit
- non-zero-digit digits
fraction
. digits
exponent
e digits

“Jo itevate is human,
to vecurse divine.

< Peter Deutsch

int factorial (int n)
{
int result = n;
while (n-- > 1)
result *= n;
return result;

int factorial (int n)
{
if(n > 1)
return n * factorial(n - 1) ;
else
return 1;

int factorial (int n, int r)
{
if(n > 1)
return factorial(n - 1, n * r);
else
return r;

int factorial (int n)
{
return
n>1
? n * factorial(n - 1)
1;

seriesProduct(k &, 1, n)

Excel is the world's
most popular
functional language.

Simon Peyton Jones

HE C PROGRAMMING LANGUAGE

. ter initialization 102, 138
po;::cr, null 102, 198
inter subtraction 103, 138, 198
inter to function 118, 147, 201
pointer to structure 136
inter, void = 93, 103, 120, 199
pointer vs. array 97, 99—100, 104, 113
inter-integer conversion 198-199, 205
inters and subscripts 97, 99, 217
inters, array of 107
inters, operations permitted on 103
Polish notation 74
pop function 77
portability 3, 37, 43, 49, 147, 151, 153, 185
sition of braces 10
tfix ++ and —— 46, 105
pow library function 24, 251
power function 25, 27

#poragma 233

pzce(g:xcc of operators 17, 52, 95, 131-132,
200

prefix ++ and -- 46, 106

preprocessor, macro 88, 228-233

preprocessor name, __FILE__ 254

preprocessor name, __LINE__ 254

preprocessor names, predefined 233

preprocessor operator, # 90, 230

preprocessor operator, ## 90, 230

preprocessor operator, defined 91, 232

primary expression 200

printd function 87

orintf conversions, table of 154, 244

INDEX 269

PLrdiff t type name 103, 147.2
push function 77 ' Sk

pushback, input 78

putc library function 161, 247

Putc macro 176

putchar library function 15, 152, 161, 247
puts library function 164, 247

gsort function 87, 110. 120
gsort library function 253
qualifier, type 208, 211

quicksort 87, 110

quote character, * 19, 37-38, 193
quote character, " 8, 20, 38, 194

\r carriage return character 38, 193
raise library function 255

rand function 46

rand library function 252

RAND MAX 252

read system call 170

readdir function 184

readlines function 109

realloc library function 252

recursion 86, 139, 141, 182, 202, 269
recursive-descent parser 123

redirection see input/output redirection
register, address of 210

register storage class specifier 83, 210
relational expression, numeric value of 42, 44

AMMING LANA v
o PROS INDEX 269
atsahsetem 102 1M
— &2 ‘.' PRt 2 O*"‘ N -
ﬂ ~

» fonstes 110 .
.

"-::.'r:-:\ M 120, 1
P avay 91 90000 404, 113
—' mserses 1S 0
p— .. m

gt o e purwetiod @ 10)
R s 74

e

- LN AL % MY, A5L, 15N I8

b
}t

l
|
iy

I
2

lﬂ
I

#include <stdio.h>

/* printd: print n in decimal */
void printd(int n)
{
if (n < 0) {
putchar('-"');
n = -n;
}
if (n / 10)
printd(n / 10);
putchar(n $ 10 + '0");

/* grep: search for regexp in file */
int grep (char *regexp, FILE *f, char *name)

i
int n, mmatch;
char buf [BUFSIZ];
nmatch = 0;
while (fgets(buf, sizeof buf, f£) !'= NOLL) {
n = strlen(buf);
if (n > 0 && buf[n-1] = '\n")
buf[n-1] = '\0";
if (match{regexp, buf)) {
nmatch++;
if (mame != NULL)
printf("%s:", name);
princf("%s\n", buf):
}
}
return nmatch;
H

/% matchhere: search for regexp at beginning of text #/
int matchhere (char *regexp, char *text)

{
if (regexp[0] == '\0')
return 1;
if (regexp[l] == '#'}
return matchstar (regexp[0], regexptZ, text);
if (regexp[0] == '§' && regexp[l] == '"\0')
return *text == "\0';
if (*texc!='%0' && (regexp[0]=='."' || regexp[0]==*text))
return matchhere (regexp+l, text+l):;
return 0;
H

/# match: search for regexp anywhere in text */
int match(char *regexp, char *text)

{
if (regexp[0] == """}
return matchhere (regexp+l, text):
do { /* must look even if string is empty */
if (matchhere (regexp, Text))
return 1;
} while (*text++ != '\0"):
return 0;
H

/* matchstar: search for c*regexp at beginning of text */
int matchstar({int c, char *regexp, char *text)
{

do { /* a * matches zero or more instances */

if (matchhere (regexp, Text))
return 1;
} while (#*text != "\0' && (*text++ = c || c == "."}};
return 0;

J/{ Erwin Unruh, untitled program,
f/ BNSI X3J16-94-0075/I50 WG21-462, 1994.

template <int i>
struct D
{
D(wvoid *):
operator int ()
}:

template <int p, int i>
struct is prime
{
enum { prim = (p%i) && is prime<(i>27?p:0), i>::prim };
}:

template <int i

struct Frime print

{
Prime print<i-1> a;
enum { prim = is_prime<i,i-1>::prim };
void £() { D<i> d = prim; }

¥

struct is prime<0,0> { enum { prim = 1 }:; }:
struct is_prime<0,1> { enum { prim = 1 }; };
struct Frime print<Z>

{

enum { prim = 1 };
void £{) { D«<2> d = prim; }
}:

void foo ()

{

Prime print<l0> a;
}
/{ output:

f/f unruh.cpp 30: conversion from enum to D<2> reguested in Prime print
J/{f unruh.cpp 30: conversion from enum to D<3> requested in Prime print
J/ unruh.cpp 30: conversion from enum to D<5> reguested in Prime print
f/ unruh.cpp 30: conversion from enum to D<7> reguested in Prime print
/f unruh.cpp 30: conversion from enum toc D<11> requested in Prime print
ff unruh.cpp 30: conversion from enum to D<13> requested in Prime print
J/f unruh.cpp 30: conversion from enum to D<17> requested in Prime print
J/f unruh.cpp 30: conversion from enum to D<19> requested in Frime print

struct Fizz{};
struct Bu=zz{}:;
struct FizzBuzz{};

template<int i>
struct RunFizzBuzz
{
typedef wvector<int <i> > Number;

typedef typename if c<(i % 3 == 0) && (1 % 5 == 0), FizzBuzz,
typename if c<i % 3 == 0, Fizz,
typename if c<i % 5 == 0, Buzz, Number>::type>::type >::type tl;

typedef typename push back<typename RunFizzBuzz<i - 1>::ret, tl>::type ret;
bi

templateds>
struct RunFizzBuzz<0> // Terminate the recusion.

{
typedef vector<int <0> > ret;

i

int main()
{

typedef RunFizzBuzz<l00>::ret::compilation error here res;

\Main.cpp(36) : error C2039: 'compilation error here' : is not a member of
'boost::mpl::vectorl0l <SNIP long argument list>'
with
[
TO=boost::mpl::int <0>,
Tl=boost::mpl::vector<boost::mpl::int <1>>,
TZ=boost::mpl::vector<boost::mpl::int <Z>>,
T3=Fizz,
Td=boost::mpl::vector<boost::mpl::int <i4>>,
T5=Buzz,
Te=Fizz,
T7=boost::mpl::vector<boost::mpl::int </>>,
T8=boost::mpl::vector<boost::mpl::int <8>>,
T9=Fizz,
T10=Buzz,
Tll=boost::mpl::vector<boost::mpl::int <11>>,
Tl12=Fizz,
Tl3=boost::mpl::vector<boost::mpl::int <13>>,
Tld=boost::mpl::vector<boost::mpl::int <14>>,
Tl15=FizzBuzz,
<SNIP of elements 16 - 9b>
T9¢=Fizz,
T97=boost:::mpl::vector<boost::mpl::int <97>>,
T98=boost:::mpl::vector<boost::mpl::int <98>>,
T99=Fizz,
T100=Buzz

AT ONCE, JUST LIKE THEY SAID, I FELT A TRULY, THIS WAS
GREAT ENUGHTENMENT. TSAW THE NAKED J| THE LANGUAGE
STR(waEG'UstvE umvwmm FROM. WHICH THE

LAST NIGHT I DRIFTED OFF
WHILE READNG A Li5P Book

— ' =
T MEAN, OSTENSIBLY, YES.

HONESTLY, WE HACKED MOsT

OF IT TOGETHER WITH PERL.

SUDDENLY I \JAS BATHED || W SyNTAY FADED, AND I SMAM IN THE PURITY OF
IN A SUFFUSION OF BLUE. || HOUAVTIFIED CONCEPTION. OF IDEAS MANJFEST.

We lost the documentation on quantum mechanics.
You'll have to decode the regexes yourself.

