Lightning Talks

Olve Maudal - Technical debt is good!

Allan Kelly - Dialogue Sheet Retrospectives

Martin Winkler - There Is No Base

Didier Verna - Letting Go of Control

Tom Gilb - User Stories: Why They Might Be Too Light

Chris Oldwood - The Ups and Downs of Being an ACCU Member
Pete Goodliffe - Manyfestos

Peter Pilgrim - We Are Going To Live Forever!

Roger Orr - Errors Are Evil

Mark Dalgarno - Optimizing For Unhappiness

Lightning Talks

Olve Maudal - Technical debt is good!

Allan Kelly - Dialogue Sheet Retrospectives

Martin Winkler - There Is No Base

Didier Verna - Letting Go of Control

Tom Gilb - User Stories: Why They Might Be Too Light

Chris Oldwood - The Ups and Downs of Being an ACCU Member
Pete Goodliffe - Manyfestos

Peter Pilgrim - We Are Going To Live Forever!

Roger Orr - Errors Are Evil

Mark Dalgarno - Optimizing For Unhappiness

Technical debt is good!

A 5 minute lightning talk at the ACCU conference
Oxford, April 13-16 201 |

Technical Debt Quadrant

Reckless Prudent
“We don’t have time “We must ship now
for design™ and deal with
consequences’”’
Deliberate

Inadvertent

E , - “Now we know how we
What's Layering: should have done it”

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

Kicebu
Sparebank

"Let's upgrade this external library before the next release instead”

"Let's upgrade this external library before the next release instead”

"We do not have time to plan these activities”

"We
do
not h
ave ti
ime
to plan thes
e activi
ivities"

UL

"Hmm, this is not as elegant as | hoped for”

"Hmm, this is not as elegant as | hoped for”

"What is polymorphism?”

"What is polymorphism?”

Rk

"Ah, now we understand how we should have done it"

"Ah, now we understand how we should have done it"

"Let's copy-paste this code, then fix just what we need"

"Let's copy-paste this code, then fix just what we need”

STURID

"Let's copy-paste this code, then fix just what we need”

il ot

"Let us just ship the product, then deal with the
consequeces”

"Let us just ship the product, then deal with the
consequeces”

Reckless

“We don’t have time

Prudent

“We must ship now

for design” and deal with
consequences”
Deliberate
Inadvertent
¢ , — “Now we know how we
‘What's Layering: should have done it”

Reckless

“We don’t have time

(EORMED

Prudent

“We must ship now

for design” and deal with
consequences”
Deliberate
Inadvertent
L , —— “Now we know how we
‘What's Layering: should have done it”

\\\\\\\'\V-

Reckless

“We don’t have time

(EORMED

Prudent

“We must ship now

for design” and deal with
consequences”
Deliberate
Inadvertent
L , —— “Now we know how we
‘What's Layering: should have done it”

UL

Reckless

“We don’t have time
for design”

Deliberate

Inadvertent

“What’s Layering?”

(NFORMED

Prudent

“We must ship now
and deal with
consequences”

“Now we know how we $\§0

should have done it”

UL

Reckless

“We don’t have time
for design”

Deliberate

Inadvertent

“What’s Layering?”

Wit

“Now we know how we %\X’

(NFORMED

Prudent

“We must ship now
and deal with
consequences”

should have done it”

DOt

Reckless

“We don’t have time
for design”

Deliberate

Inadvertent

“What’s Layering?”

e

NFORMED

Prudent

“We must ship now
and deal with
consequences”

should have done it”

“Now we know how we ®\Xo

Reckless

“We don’t have time
for design”

Deliberate

Inadvertent

“What’s Layering?”

NFORMED

Prudent

“We must ship now
and deal with
consequences”

should have done it”

“Now we know how we $\go

Reckless

“We don’t have time
for design”

Deliberate

Inadvertent

“What’s Layering?”

Prudent

“We must ship now
and deal with
consequences”

“Now we know how we $\%¢

should have done it” “‘

ot
gTuelD

Reckless

“We don’t have time

“We must ship now

for design” and deal with
consequences”
Deliberate
Inadvertent
¢ , — “Now we know how we
‘What's Layering: should have done it”

W

DOt

gTuRID

Reckless

“We don’t have time
for design”

Deliberate

Inadvertent

“What’s Layering?”

Prudent

“We must ship now
and deal with
consequences”

“Now we know how we

should have done it”

Reckless

“We don’t have time
for design”

Deliberate

Inadvertent

“What’s Layering?”

Prudent

“We must ship now
and deal with
consequences”

“Now we know how we

should have done it”

Kicebu
Sparebank

_@ Kleby
Sparebank

The savvy developer treats technical debt just as
the entrepreneur does financial debt. They use it. It
speeds delivery, so long as it is properly managed.

(source: http://www.c2.com/cgi/wiki?TechnicalDebt)

http://www.c2.com/cgi/wiki?TechnicalDebt
http://www.c2.com/cgi/wiki?TechnicalDebt

Greed is good!

Technical debt is good!

Lightning Talks

Allan Kelly - Dialogue Sheet Retrospectives

Martin Winkler - There Is No Base

Didier Verna - Letting Go of Control

Tom Gilb - User Stories: Why They Might Be Too Light

Chris Oldwood - The Ups and Downs of Being an ACCU Member
Pete Goodliffe - Manyfestos

Peter Pilgrim - We Are Going To Live Forever!

Roger Orr - Errors Are Evil

Mark Dalgarno - Optimizing For Unhappiness

Lightning Talks

Martin Winkler - There Is No Base

Didier Verna - Letting Go of Control

Tom Gilb - User Stories: Why They Might Be Too Light

Chris Oldwood - The Ups and Downs of Being an ACCU Member
Pete Goodliffe - Manyfestos

Peter Pilgrim - We Are Going To Live Forever!

Roger Orr - Errors Are Evil

Mark Dalgarno - Optimizing For Unhappiness

Lightning Talks

Didier Verna - Letting Go of Control

Tom Gilb - User Stories: Why They Might Be Too Light

Chris Oldwood - The Ups and Downs of Being an ACCU Member
Pete Goodliffe - Manyfestos

Peter Pilgrim - We Are Going To Live Forever!

Roger Orr - Errors Are Evil

Mark Dalgarno - Optimizing For Unhappiness

Letting Go of

Control

Letting Go of Control
Part 1/2

Didier Verna

Letting Go of

o m Our software is out of control
e m This is only going to get worse
m We should be afraid

m We should be ashamed

The birth of a baby

A miracle of Nature

Letting Go of
Control

Didier Verna

#

m Darwin: Evolution is far from perfection
m Up to 50% pregnancies lead to spontaneous abortion

The birth of a baby DOCUMENT

A miracle of DON KNUTH

Letting Go of
Control

Didier Verna

#

m When it doesn’t work, you don’t really know why
m When it does work, you really don’t know why

The IATEX biotope

And the viral propagation of styles

Letting Go of
Control

\documentclass{article}

Nuclear Envelope

\begin{ }

™ 8 8% Body

Plasma Membrane \end{d 3 /

m IATEX documents as eukaryote cells
m Styles as viral infection with new geneTgX material

& Houston, we have a problem. ..

Letting Go of

o Classes, Styles, Conflicts: the biological
B realm of IATEX. In TUGBoat 31:2,

proceedings of TUG 2010, the TgX Users

Group Conference, San Francisco, July 2010.

% Houston, we have a problem. ..

Letting Go of

o Classes, Styles, Conflicts: the biological
I realm of IATEX. In TUGBoat 31:2,

proceedings of TUG 2010, the TgX Users

Group Conference, San Francisco, July 2010.

m [ATEX is a mess
m Open Source software is a mess
m Proprietary software’s gotta be a mess too

Intermediate conclusion

Letting Go of

s m Darwin / Jacob: Nature is a tinkerer
m Alon: the tinkerer as an engineer
m Verna: the engineer as a tinkerer

Intermediate conclusion

Letting Go of

s m Darwin / Jacob: Nature is a tinkerer
m Alon: the tinkerer as an engineer
m Verna: the engineer as a tinkerer

We should be ashamed!

Letting Go of

Control Stephanie Forrest:
Didier Verna
“As programmers, we like to think of software as the product
of our intelligent design, carefully crafted to meet
well-specified goals. In reality, software evolves
inadvertently through the actions of many individual
programmers, often leading to unanticipated consequences.
Large complex software systems are subject to constraints
similar to those faced by evolving biological systems, and
we have much to gain by viewing software through the lens
of evolutionary biology.”

Lightning Talks

Tom Gilb - User Stories: Why They Might Be Too Light

Chris Oldwood - The Ups and Downs of Being an ACCU Member
Pete Goodliffe - Manyfestos

Peter Pilgrim - We Are Going To Live Forever!

Roger Orr - Errors Are Evil

Mark Dalgarno - Optimizing For Unhappiness

User Stories:
why they might be too light
by TOm @ Gllb « COM

5 Minute Lightening Talk
ACCU Oxford
Thursday 14 April 2011, 18:00 session

Published Paper in AgileRecord.com
http://www.gilb.com/tiki-download_file.php?fileld=461

“‘% Gilb’s Mythodology Column

User Stories: A Skeptical View

by Toom and Kas Guilp

Tha BEkeptioal Wiew of our progduct ok=arfy supenor o all competitse produots af a7
We sZres with the idesds of yser afories, in the Wyite” [1, Der s

ming & Cofn] ciscusaed befow, but do not cfres ot ol to Myth Boafe: average seoonds nesded for gefined [Lisera] fo Correctly
SEmeEnts gren, thet user stories ans @ Zood, sufRciant or even Compiete gefined [Taaka] gefned [Helo]

Original Claims
The
LEADER’S GUIDE

"’?Qd/ical

Management

REINVENTIN e WORKPLACE
for the 21ST CENTURY

<

vation, Deep Job Satisfaction

fow to Inspire Continuons Inno Deep Ji & Client Detight

{

DENNING

http://stevedenning.typepad.com/

From Mike Cohns User Stories Work

&
Agile Estimating — Mike Cohn

bl mike@mountaingoatsoftware.com Ug l‘ R , () R l L\

L -
f g www.mountaingoatsoftware.com 3 :
_ (720) 890-61 10 (office) *‘ APPLIED

.’A %
i (303) 810-2190 (mobile) For Acir SOF A
!

NMVELLRMENS

L J
MOUNTAIN GOAT
___SOFTWARE

Mk o
F crwwrcord by #orv Bwan

User Stories: Samples

Sample user stories
Structure o

want to check my savings
_Sta ke h o I d e r account balance.
As an account holder, I

A am required to

;u‘;henﬁcqfe :;‘yself T As the primary account
EHEECARING TN Sy SR e, L hatder T con grant access

- N eed S x to additional users so

transactions.

—Because Y P

© 2003-2008 Mountain Goat Software®

My General Assertion

- User Stories are good enough for
small scale and non-critical projects

* But, they are not adequate for non-
trivial projects

 The claims (myths in slides ahead)
are not true when we scale up

Myth 1:
User stories and the conversations provoked by them
comprise verbal communication,
which is clearer than written

communication.
 Verbal e |, as auser, want clearer
communication is interfaces to save time
not clearer than
written . e
communication Usability: ,
. — Scale: Time for defined
 Dialogue Users to Successfully
— to clear up ‘bad complete defined Tasks
written user stories’ — Goal [Users = Novices,
— does not prove that Tasks = Inquiry] 20
there are no Seconds.
superior written — Successfully: defined as:
formats correct, no need to correct

it later.

Myth 2:
“User stories represent a common language.
They are intelligible to both users and developers.”

As one of 10,000
concurrent users, I would

like the system to
perform adequately.

e What does ‘perform’ mean ?

* What does ‘adequately’ mean?

 What does it mean under higher or lower loads?

Myth 3:
“User stories are the right size
for planning and prioritizing.”

Myth 4:
User stories are ideal for iterative development,
which is the nature of most software development.

Myth 5:
“User stories help establish priorities that make sense to
both users and developers.”

Myth 6:
“The process enables fransparency.
Everyone understands
why.”

References

* Ask me for free digital

Copy
— Tom@Gilb.com

e Download Related

4 Papers and Slides and 2
o Chapters at

e WWW.Gilb.com

COMPETITIVE . (Downloads tab)

\ENGINEERING

ANDBOOK FOR SYSTEMS ENGINEERING, REQU B‘"S
SENGINEERING. AND SOFTWARFE ENGINEERING USING ™M IWAGE

ILB

mailto:Tom@Gilb.com
http://www.Gilb.com

Lightning Talks

Olve Maudal - Technical debt is good!

Allan Kelly - Dialogue Sheet Retrospectives

Martin Winkler - There Is No Base

Didier Verna - Letting Go of Control

Tom Gilb - User Stories: Why They Might Be Too Light

Chris Oldwood - The Ups and Downs of Being an ACCU Member
Pete Goodliffe - Manyfestos

Peter Pilgrim - We Are Going To Live Forever!

Roger Orr - Errors Are Evil

Mark Dalgarno - Optimizing For Unhappiness

Lightning Talks

Olve Maudal - Technical debt is good!

Allan Kelly - Dialogue Sheet Retrospectives

Martin Winkler - There Is No Base

Didier Verna - Letting Go of Control

Tom Gilb - User Stories: Why They Might Be Too Light

Chris Oldwood - The Ups and Downs of Being an ACCU Member
Pete Goodliffe - Manyfestos

Peter Pilgrim - We Are Going To Live Forever!

Roger Orr - Errors Are Evil

Mark Dalgarno - Optimizing For Unhappiness

'; Confusion of goals and perfection

of means seems, in my opinion, to

characterise our age.

Albert Einstein

it's an epidemic!

\‘l;llv-_.y

Y

Manifesto for Agile Software Development

i Pris

We are 6vering better ways of developi‘ﬁg
software ﬁyﬁomg it and helping others do it.
W@&l&fsﬁwork we have come to value

[,'_‘mtel:ﬁgtlons over processes and tools
g so are over comprehenswe documentatlon
@gswxﬁen(e%ﬁ%bmtlon over contmct negotlatlon
Respondmg to change over f'ollowmg a plan

éjli'ifhatc is, while there is value in the items on
‘ @e‘ f'lg ht, we value the items on the left more.

T

~ KentBeck James Grenning Robert C. Martin
3 &t ’:’,Mlke Beedle Jim Highsmith Steve Mellor
Arle.‘éan Bennekum Andrew Hunt Ken Schwaber
_ ?ﬁlstan Cockburn Ron Jeffries Jeff Sutherland %
Ward Cunningham Jon Kern Dave Thomas

Martin Fowler ~ Brian Marick

'.'. ‘

L2001, the above authors
this declaration may be freely copied in any form,
but only in its entirety through this notice

- Twel Princi les of Agile Softwart

L n-the
¥ 1 -
B come a at.

)‘ View Slgnatorle
u,.

e Mol "“ ’ll‘ﬂmq

3

Sign the Manifesto

View Map

R o 14:59

Because the world needs better code

Refactoring Manifesto

1.

Make your products live longer!

Refactoring means taking the opportunity to keep your
product alive. Don't ditch it, stitch it! Don't end it, mend
it! Refactoring is not a needless cost. It is anti-needless
complexity that prevents change.

Design should be simple so that it is easy to
refactor.

Product designers: Make your products easy to change.
Write clean, understandable code. Consumers: Buy
products that are continuously refactored, or else find
out why the developers didn't do that. Be critical and
inquisitive.

Refactoring is not rewriting.

Rewriting is throwing away the broken bit. This is NOT
the kind of refactoring that we're talking about.

What doesn't kill it makes it stronger.

Every time we refactor code, we add to its potential,
its history, its soul and its inherent beauty.
Refactoring is a creative challenge.

Refactoring is good for the imagination. Using new
techniques, tools and materials ushers in possibility
rather than dead ends.

Refactoring survives fashion.

Refactoring is not about styling or trends. There are no
due-dates on continuously refactored code.

To refactor is to discover.

As you refactor objects, you'll learn amazing things
about how they actually work. Or don't work.

L e TE:)V:. o 14:54
SOA Manifesto

Service orientation is a paradigm that frames what you do.
Service-oriented architecture (SOA) is a type of architecture
that results from applying service orientation.

We have been applying service orientation to help organizations
consistently deliver sustainable business value, with increased agility
and cost effectiveness, in line with changing business needs.

Through our work we have come to prioritize:

Business value over technical strategy
Strategic goals over project-specific benefits
Intrinsic interoperability over custom integration
Shared services over specific-purpose implementations
Flexibility over optimization
Evolutionary refinement over pursuit of initial perfection

That is, while we value the items on the right, we value the items on the left more.

Guiding Principles
We follow these principles:

Respect the social and power structure of the
organization.

Recognize that SOA ultimately demands
change on many levels.

The scope of SOA adoption can vary. Keep
efforts manageable
and within meaningful boundaries.

Products and standards alone will neither give
you SOA nor apply
the service orientation paradigm for you.

SOA can be realized through a variety of
technologies and standards.

e d L S ¥ eGSR iy

smagapiatna 25 14.95 Crivo ¥

1slations of this page | Accessibility

Sign up for the Free Software Support 'r

o) B A monthly update on GNU and the FSf
' GNU Operating System) s (5

ilosophy Licenses Downloads Documentation Help GNU

pin the FSF!

| The GNU Manifesto

T e GNU Manifesto (which appears below) was written by Richard Stallman at the beginning of
C U Project, to ask for participation and support. For the first few years, it was updated in mino
ways to account for developments, but now it seems best to leave it unchanged as most people
have seen it.

Since that time, we have learned about certain common misunderstandings that different wordin:
could help avoid. Footnotes added since 1993 help clarify these points.

For up-to-date information about the available GNU software, please see the information availab
o1 our web server, in particular our list of software. For how to contribute, see
h lp://www.gnu.org/help.

V/hat's GNU? Gnu's Not Unix!

C J, which stands for Gnu's Not Unix, is the name for the complete Unix-compatible software
¢ em which | am writing so that | can give it away free to everyone who can use it.(1) Several
¢ er volunteers are helping me. Contributions of time, money, programs and equipment are

g .atly needed.

Sc far we have an Emacs text editor with Lisp for writing editor commands, a source level
debugger, a yacc-compatible parser generator, a linker, and around 35 utilities. A shell (comman:
interpreter) is nearly completed. A new portable optimizing C compiler has compiled itself and ma
be released this year. An initial kernel exists but many more features are needed to emulate Unix.
When the kernel and compiler are finished, it will be possible to distribute a GNU system suitable
for program development. We will use TeX as our text formatter, but an nroff is being worked on.
W e will use the free, portable X Window System as well. After this we will add a portable Commoi
Lisp, an Empire game, a spreadsheet, and hundreds of other things, plus online documentation.
\Ve hope to supply, eventually, everything useful that normally comes with a Unix system, and
more.

(5NU will be able to run Unix programs, but will not be identical to Unix. We will make all

i 'provements that are convenient, based on our experience with other operating systems. In

| articular, we plan to have longer file names, file version numbers, a crashproof file system, file

1 iame completion perhaps, terminal-independent display support, and perhaps eventually a Lisp-

I ased window system through which several Lisp programs and ordinary Unix programs can shar

¢ screen. Both C and Lisp will be available as system programming languages. We will try to
1pport UUCP, MIT Chaosnet, and Internet protocols for communication.

E dae 0 bW o < A
i

8008

D TAURE OF

SOFTWARE TESTING MANIFESTO ™ S wARE TEazancl

Manifesto Post-it Notes Maost Voted News Contributors Pictures Suggestions

« Competence
During EuroSTAR 2008 three workshops were held « EuroStar Favorites
with the purpose of starting a discussion about . News

software testing. To create a statement about the
future of software testing to the test community
worldwide; a Manifesto that gives the major
guidelines for our journey into the future.

« People
o Process

| RECENT pOsTS |
. Become Test-
infected

« Be Inspirational
« Early Removal

« New Technology
« Not Predictable

On this website the post-it notes are shown which
were created during those workshops. The) (oeamnd
statements on these post-it notes are the first step ' h .
towards the making of the Software Testing
Manifesto. Each statement can be voted up or
down by clicking on the green or red arrow shown
besides each post-it. Furthermore every
statement can be changed or discussed by leaving
comments on that specific post-it note.

The final goal is that we will be left with the top ten
most voted manifesto statements. These
statements are the basis for the manifesto and will
be transferred in to the final Software Testing
Manifesto which will be published on this website.
Change the way we look at the future of software
testing. A future which also will be a big part of
your own future.

Webmastered by Marco van der Spek

i 33, 14:50

Library Software Manifesto
By Roy Tennant - Posted on November 12th, 2007

“Tagged: Integrated Library Systems

This is offered in an attempt to rationalize the relationship
between libraries and library systems vendors, which is
presently unhealthy. I encourage comments directly on this
post (see below) or emailed to me directly.

Consumer Rights
I have a right to know what exists now and what is

potential future functionality. — Marketing materials may
tout a new product or a new version of a product, but I
have a right to know what I will receive if I buy the product
today.
I have a right to use what I buy. — For example, it
should not cost extra to create another index of my data.
I have a right to the API if I've bought the product. —
An application program interface (API) is simply a structured
way for one application to communicate with another. In
other words, the ability of a software program to send a
structured query to another application and receive a
structured response. Using the API for a product I've bought
should not incur an additional charge.
I have a right to complete and accurate
documentation.
I have a right to my data. — This includes the ability to
bring forward not just my records, but also usage data (for
example, how many times a book was checked out), since
such information will be increasingly important for relevance

R e TE:JV : " 14:57 Vv 70 J

Open Cloud Manifesto.org

www.opencloudmanif... G

blogs, wikis,
and more

mozilla

E / ABOUT MOZILLA /

The Mozilla Manifesto

The Mozilla project is a global community of people About Us
who believe that openness, innovation, and :"':“
opportunity are key to the continued health of the Governaos
Internet. We have worked together since 1998 to Histary
ensure that the Internet is developed in a way that

benefits everyone. As a result of the community's

efforts, we have distilled a set of principles that we

believe are critical for the Internet to continue to

benefit the public good. These principles are contained

in the Mozilla Manifesto.

Read the Manifesto in your language

+ Albanian + Arabic

* Asturian * Bosnian

+ Catalan + Chinese (Simplified)
+ Chinese (Traditional) + Croatian

+ Czech + Dutch

+ English + French

+ Frisian + Friulian

+ Galiclan + German

* Greek * Hungarian

+ [talian + Japanese

+ Korean + Macedonian
+ Malay + Polish

+ Portuguese (Brazilian) + Romanian

+ Russian + Slovenian

+ Serbian + Slovak

+ Spanish * Turkish

+ Vietnamese

If you are interested in making the Mozilla
Manifesto available in a different language, please
read about how you can help.

~rer~ a6 14:52

if you only have time for oné clue this year. this is the one to get...

m-nnotselﬁormbllbormdw-rsorcomm
welnhunllnbdm- ndaurmdllxcﬂdlwaynw-

deal with it-

the cluetrain manifesto

online Markets..- ...people of Earth
Networked markets are

beginning to se\f-organlze
faster than the companies night and day- Oceans
that have tradltionally rise and fall. ‘Whatever
served them- Thanks to the You may have heard, this
web, markets are is our world, our place to
becoming better informed, ever you've been
smarter, and more told, our flags fly free.
demanding of qualities Our heart goes on
missing from most forever. people of Earth,
business organlutions. remember.

The sky is open to the
stars. Clouds roll over us

—mer~ 2C

1 Markets

_Markets
demogral

Conversa
human. T
voice.

Whether ¢
perspecti\l
humorous
typically © - rum’EDlA

people rec i
the sound e

ntents
The Intern et cnnt
among hur

possible in ‘:
3 Hyperlinks

Aclp

Apout Wikipedia
Commurnity portal
qecent changes
Sontact Wikipedia

_In both int¢
intranetwo!

soboX

\n popu\ar culture

& quoted in ¢ 1935

nis also

H2K2.

Aoy
~ " ‘1_ %“’mu

& Login fcrete

m)lsnmn\\esﬂy
uymemndhw
.wmumn

Hacke!
\whie hat.

Hom,
me || Cours:
ErTre——— ourses

U S T Dee m Blog
er Manifesto P .

D Patem pacg

2910.01.07. SLC, uT,

dly up in Mi foundtable
Mi ~ tod
erfus inneapolis with ay, we channe|
er some others tryj ed Jeff Patton, |
ing
a':o‘he Agile Manifgs::work outa
Ut 20 minutes playi;lwe o

X
pressed. g the role ¢

contri
would ntric extension
come up with in

in,

h9 to get our wishes e

ave time t

0 settle

the same worgs a:". the grammar, o
‘s: nhnjlems are the : ilable. I don't l,hink ‘here are three \
our view, ame. You can yote l;mane,s alot

+X€ on your pry
efer

duct tea,
ms to del
nerel > deliver prodi
‘erel}}ll ;W ork” or fit a chec: ?'s
it my needs at a m li
0

st. but sol
ve m:
m y
ent, but evolve :;o,'

k the wa
Y desi
esigners think | should
work, but

rely see a
S 1
ools, but see through ¢,
0 the

lack Hat Bretrds. pEF CON

Hackers. athough in the mmmmmmn
¥ y accurale Pheack-

zsoam\..s«ul "

1 ig also a0 jlam in the game [\nnata.

*p Hacker
MeKenzie Wark.

A poster that ¢8° pe order
dorm room.

See also

o prrack

uaﬂesm"smm

...monmok

o Timeline of computer gacurity hacke! history

References

e, 1SBN 70w 6633463

4. A Thomas Douglas (2003 Hacker

Ex\sma\ links

o The orignal anticie The Conscience of
o The orignal articie The Conscience

a Hacker & 00 ph-ack.ug avcrweﬂ B
of a Hacke! @on TextFies.com et Archive
&

Vlems, not merel, that work or tha
s
y

cxerberd’®

fedi

ence
S th,
ng q at fo

Stg,
Ualitigg.

Articles

Qsearcn [

Talks”

17120

Content (s

Lan
. ., ingpjpg
Writip, I by,

.
Appj
n
ess g houly
hay,
e

"t of g
Can 4, Mms‘"‘/os

o
Somyg, thin,

MANIFESTO

~ we believe in

~afixed set of Immutable ideals

- over, .
- tailoring our approach to each specific

situation.

MANIFESTO

we believe In
~ concentrating on and discussing only the

things that interest us

-~ over
the bigger problem.

MANIFESTO

~ we believein
~ 0Ur own opinion

OVEr

the opinions and experiences of others.

MANIFESTO

e believe in |
- arbitrary black-and-white mandates

- over

real-world scenarios with complex issues
and delicate resolutions.

MANIFESTO

-~ we believe that

~ When our approach Is hard to follow

It only shows how much more
Important it Is.

MANIFESTO

e believein
- crafting an arbitrary set of commandments

- over

the realisation that it's just never
that simple.

MANIFESTO

webelievein
trying to establish a movement to promote

our view

" Something that will be genuinely useful

MANIFESTO

 we helieve that
- We are hetter developers than those who
don't agree with us

 because _
- they don’t agree with us.

MANIFESTU

that S,
we helieve we're doing the right thing.

And if you don't, you're wrong.

And if you don't do what we do, you're doing
it wrong.

(thankyou)

l

\\\

ey
|11 || | ez
T

BUMPH

- THIS DOCUMENT WAS CREATED BY PETE GOODLIFFE
~ITIS COPYRIGHT // ® 20 pere coonuee
- >> ALL RIGHTS RESERVED

- >> ALL THOUGHTS ARE OWNED

- >> PHOTOS AND IMAGES ARE MOSTLY

~ SOURCED FROM THE WEB

THANK YOU FOR READING // 1 HoPE 7 WS UseFu

Lightning Talks

Olve Maudal - Technical debt is good!

Allan Kelly - Dialogue Sheet Retrospectives

Martin Winkler - There Is No Base

Didier Verna - Letting Go of Control

Tom Gilb - User Stories: Why They Might Be Too Light

Chris Oldwood - The Ups and Downs of Being an ACCU Member
Pete Goodliffe - Manyfestos

Peter Pilgrim - We Are Going To Live Forever!

Roger Orr - Errors Are Evil

Mark Dalgarno - Optimizing For Unhappiness

Peter Pilgrim

Java Champion, Scala Enthusiast
Are We Going To Live Forever?

:{- i

Who Wants To Look Aft

v
. -ﬂ;*_ﬁ,:_.
e
N ‘i.:.‘?
—

Creative Commons Attributions

Bullcitydogs a volunteer at APS of Durham
http://www.flickr.com/photos/bullcitydogs/3236816175/sizes/|/

Justageek http://www.flickr.com/photos/justageek/2300396608/

Otsebmi http://www.flickr.com/photos/otsebmi/2848983818/

Woicik from the Boogie down bronx http://www.flickr.com/photos/woicik/4358333258/

http://www.apsofdurham.org/adopt/adpt-dogs.html
http://www.flickr.com/photos/bullcitydogs/3236816175/sizes/l/
http://www.flickr.com/photos/justageek/2300396608/
http://www.flickr.com/photos/otsebmi/2848983818/
http://www.flickr.com/photos/woicik/4358333258/

Lightning Talks

Olve Maudal - Technical debt is good!

Allan Kelly - Dialogue Sheet Retrospectives

Martin Winkler - There Is No Base

Didier Verna - Letting Go of Control

Tom Gilb - User Stories: Why They Might Be Too Light

Chris Oldwood - The Ups and Downs of Being an ACCU Member
Pete Goodliffe - Manyfestos

Peter Pilgrim - We Are Going To Live Forever!

Roger Orr - Errors Are Evil

Mark Dalgarno - Optimizing For Unhappiness

Lightning Talks

Olve Maudal - Technical debt is good!

Allan Kelly - Dialogue Sheet Retrospectives

Martin Winkler - There Is No Base

Didier Verna - Letting Go of Control

Tom Gilb - User Stories: Why They Might Be Too Light

Chris Oldwood - The Ups and Downs of Being an ACCU Member
Pete Goodliffe - Manyfestos

Peter Pilgrim - We Are Going To Live Forever!

Roger Orr - Errors Are Evil

Mark Dalgarno - Optimizing For Unhappiness

Optimizing for Unhappiness
- Tips for cost-conscious managers

Mark Dalgarno
@MarkDalgarno

Tip #1

You can never have enough CCTV cameras

Make sure your staff aren’t wasting their time
by monitoring them closely

Are they loitering in so-called
water-cooler chats?

Are they taking too long in the toilet?

Tip #2

Fire your cleaners

Having cleaners is like saying you’re happy
with untidiness.

If your staff have to do their own cleaning,
they’ll naturally keep the place tidy

Tip #3

Require everyone to wear a suit to work

It will make your office look smarter after
you’ve fired your cleaners.

The well-dressed developer is the
productive developer.

Tip #4

Give Middle-Managers
Preferential Treatment

Managers are your enforcers in the battle
for cost-reduction, give them special
treatment and they’ll work twice as hard to
enforce your rules.

Tip #5

Be vigilant!

Subversive organisations such as ACCU are
saying there is a better way

Watch out for any of the following terms
being used by your staff

Danger Words!!!

* Conference / Training

» Agile Software Development / Scrum / XP
e Self-organizing teams

* Technical Debt

* Clean code

* Test-Driven Development

» Steve Freeman / Nat Pryce

Lightning Talks

See you
tomorrow

same time, same place

	Are We Going To Live Forever?
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Creative Commons Attributions

