The Language Stew

-

-

-

-

. -

- . Robert C. Martin

Object Mentor Inc.
-
-
-
-
-
- -
- Copyright © 2010 by Robert C. Martin

All Rights Reserved.

Sunday, 9 May 2010

~ The Vacuum Catastrophe

Sunday, 9 May 2010

~ The Hardware Catastrophe

Sunday, 9 May 2010

Count the orders of magnitude since PDP8 '“

= 1e5 times faster

= 1e6 times more memory
= 1e7 times more storage
= 1e4 less cubic feet.

= 1e3 less power

= 1e2 less expensive

.27 orders of magnitude

= And that doesn’t count the internet.

Sunday, 9 May 2010

~ The Software Stagnation

The elements of our trade

= Sequence
= pay = e.calcPay(today) ;
» e.deliverPay (pay) ;

= Selection
= if (e.isPayDay(today)) e.pay(today) ;

= lteration
= for (e : employees) e.tryPay(today);

Sunday, 9 May 2010

Dot Counting in Java

public class DotCounter ({
public static int count(String s) {
int dots = 0;
for (int i=0; i<s.length(), i++)
i1f (s.charAt(i) == '."'")
dots++;
return dots;

Sunday, 9 May 2010

Dot Counting in C#

public class DotCounter ({
public static int Count(string s) {
int dots = 0;
for (int i=0; i<s.Length(), i++)
if (s[1] == "'.")
dots++;
return dots;

Sunday, 9 May 2010

C

int count dots(char* s) {
int count = 0;
for (; *s; s++)
i1f (*s == '.")
count++;
return count;

Sunday, 9 May 2010

Ruby

def count dots(s)
dots = 0
s.each char do |c|
dots += 1 if c ==
end
dots
end

I

I

Sunday, 9 May 2010

Scala '“

def dot count(s: String): Int = ({
accumulate dots(List.fromString(s), O0)

}

def accumulate dots(s: List[Char],
dots: Int): Int = {
if (s.length == 0)

dots
else
accumulate dots(s.tail,
if (s.head == '.")
dots + 1
else

dots)

Sunday, 9 May 2010

Clojure

(defn count-dots [s]
(Lf (empty? s)
0
(+
(count-dots (rest s))
(if (= \. (first s)) 1 0))))

LISP 15 QVER HALFA | | T WONDER IF THECYCLES THESE ARE YOUR
CENTURY OLD AND IT M.L CONTINUE FOREV@ FATHER'S PARENTHESES

STILL HAS THIS PERFECT % z ?2\\
R , #VZZN
| TIMELESS AQ{BOUB 32

NEW GENERATION RE-
DISCOVERING THE LISP ARTS.

FOR A MORE... CIVIUZED AGE.

fg A FEW CODERS m

Sunday, 9 May 2010

PAL-8

STR PTR,
DOT,

DOTS,

COUNT DOTS,

COUNT NEXT,

DONE,

o O

DCA
TAD
SNZ

SUB
SNZ
ISZ
ISZ

CLA
TAD

STR_PTR
I STR PTR

DONE
DOT

DOTS
STR_PTR
COUNT NEXT

DOTS
I COUNT DOTS

Sunday, 9 May 2010

Many different ways
to say

. "« THE SAME THING

So is there no benefit to:

* Procedures?

= Objects?

= Functional?

= Information hiding
= Encapsulation

= Inheritance

= Design Patterns

Sunday, 9 May 2010

~ Expression Vs. Technology

Sunday, 9 May 2010

Why Doesn’t MDA work?

= Because
= Sequence
= Selection
= and lteration

= Are not well captured in diagrams.

Sunday, 9 May 2010

Procedural Programming

= Easy to add new functions.
= Hard to add new Data Structure.

= State is nearly global
= Making threading very difficult.

void drawAllShapes (struct Shape* list) {
for (struct Shape* s = list; s; s=s->next) {
switch (s->type) {
case square:
drawSquare (s) ;
break;

case circle:

drawCircle(s) ;
break;

}

Sunday, 9 May 2010

Object-Oriented Programming

¢

= Control flow and compile-time dependencies are opposed.

= Making it easy to add new data structures
= But hard to add new functions.

= Some locality of state

public class Payroll {
private EmployeeGateway employeeGateway;
public void payDay (Date payDate) {
foreach (Employee employee in employeeGateway.findAll ())
employee.calculatePay (payDate) ;

= «interface»
Payroll findAll EmployeeGateway
o D & + findAll
Control paybay() i U
Flow N\
v [ADO

Employee

|: Gateway

Compile-time
Dependencies

19

Sunday, 9 May 2010

Definitions ﬁ

= Structured Programming:
= discipline imposed upon direct transfer of control.

= Object-Oriented Programming:
= discipline imposed upon indirect transfer of control.

20

Sunday, 9 May 2010

Functional Programming

= State is local
= Better protection from Threads.

= Source code dependencies align with Control Flow
= Making it easy to add new functions
= But hard to add new datatypes.
= Functions are first class elements.
= Source Code Dependencies oppose Control Flow
= Not best of both worlds, but workable.
= State is extremely local
= Making multiprocessing easier.

21

Sunday, 9 May 2010

22

Sunday, 9 May 2010

Definition

= Functional Programming:
= Discipline imposed upon mutable state.

— Nahhhhh.

23

Sunday, 9 May 2010

Static vs Dynamic

= Decades of war has left a ruined landscape.

C vs. Pascal

C++ to the Rescue.

C++ vs Smalltalk

Smalltalk’s untimely demise.
The ascendency of static typing.

TDD!
— and the revolution begins.

Python, Ruby, Rails!

24

Sunday, 9 May 2010

Java, C#, C++

= Urgh.
= OO0 -ish.
= Statically typed.

= Source code dependencies can oppose flow of control.
= Componentizable.
= Wordy and constrained.

public boolean equals (Object obj)

i1f (obj] == null)
return false;

if (! (obj.getClass() == getClass()))
return false;

MediaCopy that = (MediaCopy) ob7j;

return this.id.equals(that.id) &é&
this.media.equals (that.media) ;

25

Sunday, 9 May 2010

Ruby

= 00

= Dynamically Typed.
= Compondentizable
= Monkey-patch-able!

= “| reject your reality and substitute my own.”

= Elegant, and yet...

26

Sunday, 9 May 2010

Ruby

= 00

Dynamically Typed.
Compondentizable
= Monkey-patch-able!

= “| reject your reality and substitute my own.”

Elegant, and yet...

def discountedPrice(bag)

minPrice = nil
minAllocation = nil
forEachDiscountAllocation(bag) do lallocationl
price = allocation.calculateDiscount(self)
if (minPrice == nil || price < minPrice)
minPrice = price
minAllocation = allocation.dup
end
end
undiscountedBooks = (bag.dup)
undiscountedBooks.remove(minAllocation.books)
minPrice + grossPriceOf(undiscountedBooks.books)

end

26

Sunday, 9 May 2010

Scala / F# '“

= Hybrid languages.
= Can be procedural.

Can be OO.

Can be functional.

Statically typed.

= Warty like C++
trait Ord {
def <(that: Any): Boolean
def <=(that: Any): Boolean = (this < that) || (this == that)
def > (that: Any): Boolean = ! (this <= that)
def >=(that: Any): Boolean = ! (this < that)

27

Sunday, 9 May 2010

Clojure '“

= Functional
= Java Stack
= Very disciplined State/ldentity/Value model. STM!

= Atoms
= Agents
= Refs in transactions.

= Lots of Insidious Sequential Parenthesis.

TRULY, THIS WAS
THE LANGUAGE

[LAST NIGHT I DRIFTED OFF
| WHILE READING A LIsP Book

AT ONCE, JUST LIKE THEY SAID, I FELT A
GREAT ENUGHTENMENT. I SAW THE NAKED

' PATTERNS AND METAPATTERNS DANCED.
SYNTAY FADED, AND I SWAM IN THE PURITY OF
QUANTIFIED CONCEPTION. OF [DEAS MANIFEST.

T MEAN, OSTENSIBLY, YES.
HONESTLY, WE HACKED MosT™
OF IT TOGETHER WITH PERL.

['SUbDENLY, T WAS BATHED
IN A SUFFUSION OF BLUE.

28

Sunday, 9 May 2010

STM ¢

= Refs

(def current-track (ref "Venus, the Bringer of Peace"))
(def current-composer (ref "Holst"))
(dosync (ref-set current-track "Credo")

(ref-set current-composer "Byrd"))

= Atoms

(def current-track (atom {:title "Credo" :composer "Byrd"}))
(reset! current-track {:title "Spem in Alium" :composer "Tallis"})
(swap! current-track assoc :title "Sancte Deus")

= Agents

(def counter (agent 0))
(send counter inc)

= Dereference

@counter

29

Sunday, 9 May 2010

Sunday, 9 May 2010

Well, at least for processor speed.

= Individual cycle times aren’t going to get faster.
= Multiple cores are the clear solution.
= And that means:

Sunday, 9 May 2010

Well, at least for processor speed.

= Individual cycle times aren’t going to get faster.
= Multiple cores are the clear solution.
= And that means:

Cmmaurrema‘j

Sunday, 9 May 2010

Concurrency Antidote

= Extreme Localized Scope

= Disciplined model of State/Value/ldentity
= Functional Language
= Java Stack

= | vote for Clojure.

Sunday, 9 May 2010

But can mere mortals. ..

Sunday, 9 May 2010

fin
¢ unclebob @ objectmentor.com

e fitnesse.org
: ¢ cleancodeproject.com

Sunday, 9 May 2010

