
The Language Stew

Copyright © 2010 by Robert C. Martin
All Rights Reserved.

Robert C. Martin
Object Mentor Inc.

Sunday, 9 May 2010

The Vacuum Catastrophe

Sunday, 9 May 2010

The Hardware Catastrophe

Sunday, 9 May 2010

Count the orders of magnitude since PDP8

 1e5 times faster
 1e6 times more memory
 1e7 times more storage
 1e4 less cubic feet.
 1e3 less power
 1e2 less expensive

27 orders of magnitude

 And that doesn’t count the internet.

Sunday, 9 May 2010

The Software Stagnation

Sunday, 9 May 2010

The elements of our trade

 Sequence
 pay = e.calcPay(today);

 e.deliverPay(pay);

 Selection
 if (e.isPayDay(today)) e.pay(today);

 Iteration
 for (e : employees) e.tryPay(today);

Sunday, 9 May 2010

Dot Counting in Java
public class DotCounter {
 public static int count(String s) {
 int dots = 0;
 for (int i=0; i<s.length(); i++)
 if (s.charAt(i) == '.')
 dots++;
 return dots;
 }
}

Sunday, 9 May 2010

Dot Counting in C#
public class DotCounter {
 public static int Count(string s) {
 int dots = 0;
 for (int i=0; i<s.Length(); i++)
 if (s[i] == '.')
 dots++;
 return dots;
 }
}

Sunday, 9 May 2010

int count_dots(char* s) {
 int count = 0;
 for (; *s; s++)
 if (*s == '.')
 count++;
 return count;
}

C

Sunday, 9 May 2010

def count_dots(s)
 dots = 0
 s.each_char do |c|
 dots += 1 if c == '.'
 end
 dots
end

Ruby

Sunday, 9 May 2010

 def dot_count(s: String): Int = {
 accumulate_dots(List.fromString(s), 0)
 }

 def accumulate_dots(s: List[Char],
 dots: Int): Int = {
 if (s.length == 0)
 dots
 else
 accumulate_dots(s.tail,
 if (s.head == '.')
 dots + 1
 else
 dots)
 }

Scala

Sunday, 9 May 2010

(defn count-dots [s]
 (if (empty? s)
 0
 (+
 (count-dots (rest s))
 (if (= \. (first s)) 1 0))))

Clojure

Sunday, 9 May 2010

STR_PTR, 0
DOT, '.'
DOTS, 0
COUNT_DOTS, 0
 DCA STR_PTR
COUNT_NEXT, TAD I STR_PTR
 SNZ
 JMP DONE
 SUB DOT
 SNZ
 ISZ DOTS
 ISZ STR_PTR
 JMP COUNT_NEXT
DONE, CLA
 TAD DOTS
 JMP I COUNT_DOTS

PAL-8

Sunday, 9 May 2010

Many different ways
to say

THE SAME THING

Sunday, 9 May 2010

So is there no benefit to:

 Procedures?
 Objects?
 Functional?
 Information hiding
 Encapsulation
 Inheritance
 Design Patterns
 Monads
 etc?

Sunday, 9 May 2010

Expression Vs. Technology

Sunday, 9 May 2010

Why Doesn’t MDA work?

 Because
 Sequence
 Selection
 and Iteration

 Are not well captured in diagrams.

Sunday, 9 May 2010

Procedural Programming

 Easy to add new functions.
 Hard to add new Data Structure.
 State is nearly global

 Making threading very difficult.

void drawAllShapes(struct Shape* list) {
 for (struct Shape* s = list; s; s=s->next) {
 switch (s->type) {
 case square:
 drawSquare(s);
 break;

 case circle:
 drawCircle(s);
 break;
 }
 }
}

Sunday, 9 May 2010

© 1993-2009 Object Mentor Incorporated. All Rights Reserved. www.objectmentor.com 1-800-338-6716

Object-Oriented Programming

 Control flow and compile-time dependencies are opposed.
 Making it easy to add new data structures
 But hard to add new functions.

 Some locality of state
public class Payroll {
 private EmployeeGateway employeeGateway;
 public void payDay(Date payDate) {
 foreach (Employee employee in employeeGateway.findAll())
 employee.calculatePay(payDate);
 }
}

Payroll «interface»
EmployeeGateway

+ payDay() + findAll()

findAll

Control
Flow

Compile-time
Dependencies

ADO
Employee
Gateway

19
Sunday, 9 May 2010

© 1993-2009 Object Mentor Incorporated. All Rights Reserved. www.objectmentor.com 1-800-338-6716

Definitions

 Structured Programming:
 discipline imposed upon direct transfer of control.

 Object-Oriented Programming:
 discipline imposed upon indirect transfer of control.

20
Sunday, 9 May 2010

© 1993-2009 Object Mentor Incorporated. All Rights Reserved. www.objectmentor.com 1-800-338-6716

Functional Programming

 State is local
 Better protection from Threads.
 Source code dependencies align with Control Flow

 Making it easy to add new functions
 But hard to add new datatypes.

 Functions are first class elements.
 Source Code Dependencies oppose Control Flow
 Not best of both worlds, but workable.

 State is extremely local
 Making multiprocessing easier.

21
Sunday, 9 May 2010

© 1993-2009 Object Mentor Incorporated. All Rights Reserved. www.objectmentor.com 1-800-338-6716 22
Sunday, 9 May 2010

© 1993-2009 Object Mentor Incorporated. All Rights Reserved. www.objectmentor.com 1-800-338-6716

Definition

 Functional Programming:
 Discipline imposed upon mutable state.

– Nahhhhh.

23
Sunday, 9 May 2010

© 1993-2009 Object Mentor Incorporated. All Rights Reserved. www.objectmentor.com 1-800-338-6716

Static vs Dynamic

 Decades of war has left a ruined landscape.

 C vs. Pascal
 C++ to the Rescue.
 C++ vs Smalltalk
 Smalltalk’s untimely demise.
 The ascendency of static typing.
 TDD!

– and the revolution begins.
 Python, Ruby, Rails!

24
Sunday, 9 May 2010

© 1993-2009 Object Mentor Incorporated. All Rights Reserved. www.objectmentor.com 1-800-338-6716

Java, C#, C++

 Urgh.
 OO -ish.
 Statically typed.
 Source code dependencies can oppose flow of control.
 Componentizable.
 Wordy and constrained.

25
Sunday, 9 May 2010

© 1993-2009 Object Mentor Incorporated. All Rights Reserved. www.objectmentor.com 1-800-338-6716

Ruby

 OO
 Dynamically Typed.
 Compondentizable
 Monkey-patch-able!

 “I reject your reality and substitute my own.”

 Elegant, and yet...

26
Sunday, 9 May 2010

© 1993-2009 Object Mentor Incorporated. All Rights Reserved. www.objectmentor.com 1-800-338-6716

Ruby

 OO
 Dynamically Typed.
 Compondentizable
 Monkey-patch-able!

 “I reject your reality and substitute my own.”

 Elegant, and yet...

26
Sunday, 9 May 2010

© 1993-2009 Object Mentor Incorporated. All Rights Reserved. www.objectmentor.com 1-800-338-6716

Scala / F#

 Hybrid languages.
 Can be procedural.
 Can be OO.
 Can be functional.
 Statically typed.
 Warty like C++


27
Sunday, 9 May 2010

© 1993-2009 Object Mentor Incorporated. All Rights Reserved. www.objectmentor.com 1-800-338-6716

Clojure

 Functional
 Java Stack
 Very disciplined State/Identity/Value model. STM!

 Atoms
 Agents
 Refs in transactions.

 Lots of Insidious Sequential Parenthesis.

28
Sunday, 9 May 2010

© 1993-2009 Object Mentor Incorporated. All Rights Reserved. www.objectmentor.com 1-800-338-6716

STM

 Refs

 Atoms

 Agents

 Dereference

29

(def current-track (ref "Venus, the Bringer of Peace"))
(def current-composer (ref "Holst"))
(dosync (ref-set current-track "Credo")
 (ref-set current-composer "Byrd"))

(def current-track (atom {:title "Credo" :composer "Byrd"}))
(reset! current-track {:title "Spem in Alium" :composer "Tallis"})
(swap! current-track assoc :title "Sancte Deus")

(def counter (agent 0))
(send counter inc)

@counter

Sunday, 9 May 2010

Moore’s Law is Dead.

Sunday, 9 May 2010

Well, at least for processor speed.

 Individual cycle times aren’t going to get faster.
 Multiple cores are the clear solution.
 And that means:

Sunday, 9 May 2010

Well, at least for processor speed.

 Individual cycle times aren’t going to get faster.
 Multiple cores are the clear solution.
 And that means:

Concurrency
Text

Sunday, 9 May 2010

Concurrency Antidote

 Extreme Localized Scope
 Disciplined model of State/Value/Identity
 Functional Language
 Java Stack

 I vote for Clojure.

Sunday, 9 May 2010

But can mere mortals...

Sunday, 9 May 2010

fin
• unclebob @ objectmentor.com
• fitnesse.org
• cleancodeproject.com

Sunday, 9 May 2010

