
  

GPU Computing
Supercomputing for the Masses



  

Problem
● „Free lunch is over“
● Demand for more computational power stays
● How to overcome this problem?

● I.e. how to write software that benefits from the 
coming hardware performance improvements?

● Current trend: going multi-core
● CPUs with 2, 4, 6, 8, 12, … cores
● How to use them efficiently?



  

GPU Development
● GPU has evolved into a very powerful and 

flexible processor
● Highly multicore (currently upto 1600 processors)
● Very high memory bandwidth (150 GB/s)
● Full IEEE 754-2008 support
● ECC memory support
● High market presence

● Performance still doubles with each generation



  

GPU vs. CPU



  

What does that give us?



  

GPU vs. CPU
● ~2 Tflops GPU vs. 100 Gflops CPU

● this difference created interesting dynamic
● Design philosophy

● CPU optimized for sequential code performance
– Sophisticated control logic
– Large caches
– Relaxed memory model → lower memory bandwidth

● GPU optimized for throughput of massive number 
of threads
– Minimizing control logic
– Small caches
– Simple memory model without legacy constraints



  

GPU vs. CPU

● How to access that raw power?
● Traditionally extremely intricated (GPGPU)



  

Compute Unified Device 
Architecture (CUDA)

● Introduced November 2006 by NVIDIA
● GeForce 8800 - unified programmable processors

● Framework for parallel programming
● Language
● API
● Runtime
● Compiler

● Finally GPU fully programmable for general 
computations → GPU computing

● Upcoming standards OpenCL, DirectCompute



  

CUDA Platform Model
● One host
● One or more devices

● Physically separate
● Consisting of streaming multiprocessors of cores

● Host executes computations on device by 
invoking a kernel (kernel launch)
● Large number of threads
● In SPMD fashion



  

The Hardware



  

CUDA Execution Model
● Kernel

● Executed on device
● Host program

● Defining context for kernels
● Manages execution of kernels

● Kernel launch (defining index space)
● kernel instance (thread) for each point in ind. space
● Execute same program



  

Data Parallel Programming Model
● Primary programming model
● Index space defines

● Threads
● Mapping of data onto threads

● Hierarchical data parallel model
● Hierarchy of thread groups, blocks
● Blocks organized inside a grid
● Explicitly defined by user/host



  

CUDA Threads
● Extremely leightweight
● Each thread has its unique thread ID
● Via built-in variable threadIdx

● 3-component vector, i.e. threadIdx.x, …
● Threads form 1-, 2-, or 3-dim thread blocks
● Convenient mapping from domain, e.g. matrix

● Well-defined mapping threadIdx → thread ID
1.  (x) → x
2.  (x, y) → x + y*DIM_X
3.  (x, y, z) → x + y*DIM_X + z*DIM_Y*DIM_X



  

Grid of Thread Blocks
● Threads organized in thread blocks (3-dim)
● Thread blocks organized in 2-dim grids



  

Scalable Programming Model
● Coarse subdivision of index space into blocks

● Threads inside using fine-grained data parallelism
● Blocks are independent from each other!
● Blocks can be scheduled in any order



  

CUDA Programming Model
● Main program runs on host
● Using GPU as co-processor (device)

● Physically separate
● CUDA threads execute on device

● Both host, device maintain own memory space
● Host memory vs. device memory
● Data can be copied between
● I/O data has to be copied to and from device



  

CUDA Program
● Consists of both host and device code

● Host code is C++
● Device code is „C plus annotations“

● Alternating phases running on host and devices
● Code exhibiting rich data parallelism implemented 

on device
● Otherwise implemented on host



  

NVIDIA C Compiler

● nvcc separates both host and device code
● Host code compiled on host's compiler
● Device code compiled by nvcc for device

– Embedded in host object file
● Linking with CUDA runtime library cudart.dll

● Useful options
● -deviceemu
● -Xptxas -v

1>ptxas info    : Compiling entry function '_Z9matrixMulPfS_S_i'

1>ptxas info    : Used 10 registers, 2076+16 bytes smem, 12 bytes cmem[1]



  

CUDA Program Structure
int main() {

// host data setup
...
// device data setup
...
// transfer of input data to device
...
// execution on device
...
// transfer of results from device
...
// free device and host data
...

}



  

CUDA Memories
● Types

● Constant
● Global
● Shared
● Registers

● API calls
● cudaMalloc, cudaFree
● cudaMemcpy



  

CUDA Program Structure
int main() {

// host data setup
float* a_h = ...; float* b_h = ...; int N = DIM;
// device data setup
float *a_d, *b_d;
cudaMalloc((void **) &a_d, sizeof(float)*N);
cudaMalloc((void **) &b_d, sizeof(float)*N);
// transfer of data to device
cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice);
// “execution” on device

    cudaMemcpy(b_d, a_d, sizeof(float)*N, cudaMemcpyDeviceToDevice);
// transfer of results from device
cudaMemcpy(b_h, b_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
// free device and host data
cudaFree(a_d); cudaFree(b_d);
...

}



  

Kernel
● C function declared with __global__

● New keywords __global__, __device__, __host__
● Specifies code to be executed by all threads
● Instance of single-program multiple-data 

parallel programming style (SPMD)



  

Kernel Launch
● Invoked (aka launched) by host code
● Execution configuration

● Specifies nr. of CUDA threads executing the kernel
● New syntax foo<<<dimGrid, dimBlock>>>(...)

● Executed as grid of threads in thread blocks
● 3-dim thread block (threadIdx)
● 2-dim grid (blockIdx)



  

Kernel Launch Example
__global__ void VecAdd(float* A, float* B, float* C) {

int i = threadIdx.x;
C[i] = A[i] + B[i];

}

...
// configure thread blocks
dim3 dimBlock(dim);        // == dimBlock(dim, 1, 1)
dim3 dimGrid(1, 1);          // == dimGrid(1, 1, 1) == 1
// execution configuration – at runtime kernel launch
VecAdd<<<dimGrid, dimBlock>>>(a_d, b_d, c_d);
...



  

Matrix Multiplication
__global__ void matrixMul(

float* A, float* B, float* C,
int dim)

{
  int r = threadIdx.y;
  int c = threadIdx.x;

  float value = 0.f;
  for (int k=0; k<dim; ++k)
    value += A[r*dim+k] * B[k*dim+c];
  C[r*dim + c] = value;
}

void matrixMul(
float* A, float* B, float* C,
int dim)

{
  for (int r=0; r<dim; ++r) {
    for (int c=0; c<dim; ++c)
    {
      float value=0.f;
      for (int k=0; k<dim; ++k)
       value += A[r*dim+k]*B[k*dim+c];
      C[r*dim + c] = value;
    }
  }
}

// configure thread blocks
dim3 block(dim, dim);
dim3 grid(1, 1);
// execution configuration
matrixMul<<<grid, block>>>(a, b, c);



  

Grid of Thread Blocks rev.
● Threads form a (upto) 3-dim thread block

● Dictated by scarce HW resources
● Currently max. 512 threads per block

● Blocks organized in (upto) 2-dim grid
● How to choose execution configuration?
● Number of blocks guided by size of the data!
● Remember: These blocks are executed 

independently, to guarantee transparent 
scaling.



  

Matrix Multiplication rev.

● Re-adjusting matrix multiplication configuration

int size = 20;
// configure thread blocks
dim3 blockDim(size, size);
dim3 gridDim(dim/size, dim/size);

// execution configuration
matrixMul<<<gridDim, blockDim>>>(a, b, c, dim);



  

Matrix Multiplication rev.
● How to access current block inside kernel?
● Via built-in variable blockIdx

__global__ void matrixMul(float* A, float* B, float* C, int dim)
{

int row = blockIdx.y*blockDim.y + threadIdx.y;
int col  = blockIdx.x*blockDim.x + threadIdx.x;

float value = 0.f;
for (int k=0; k<dim; ++k)

value += A[row*dim+k] * B[k*dim+col];
C[row*dim + col] = value;

}



  

Matrix Multiplication

n 1000 5000 7000 7500 8000

CPU simple 4 799 2583 3255 4460

GPU simple 0,1 14 43 55



  

Memory Access Efficiency

● 2 global memory accesses vs 2 fp operations
● Compute to global memory access (CGMA) ratio

● limits Gflops performance to 25% of mem bandwidth!
● 160GB/s → 40 Gflops << 1 Tflops!!

__global__ void matrixMul(float* A, float* B, float* C, int dim)
{

int row = blockIdx.y*blockDim.y + threadIdx.y;
int col  = blockIdx.x*blockDim.x + threadIdx.x;
float value = 0.f;
for (int k=0; k<dim; ++k)

value += A[row*dim+k] * B[k*dim+col];
C[row*dim + col] = value;

}



  

Shared Memory to the Rescue
● Observation in matrixMul()

● Each global element is read dim times!
● Classic tradeoff

● Global memory is large and slow
● Shared memory is small (16384 bytes) but fast

● Strategy
● Partition data into smaller tiles such that each tile 

fits into shared memory



  

Thread Cooperation and Shared 
Memory

● Again: Thread blocks are required to execute 
independently

● Threads within one block(!) can cooperate
● Synchronizing their execution
● Sharing data

● Intrinsic function __syncthreads()
● Leightweight barrier at which all threads must wait

● Shared memory declaration __shared__
● Low-latency memory near each processor core (L1)



  

Matrix Multiplication rev.



  

Matrix Multiplication rev.
__global__ void matrixMul(float* A, float* B, float* C, int dim) {

__shared__ float As[TILE_DIM][TILE_DIM];
__shared__ float Bs[TILE_DIM][TILE_DIM];
int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;
int row = by*TILE_DIM + ty; int col = bx*TILE_DIM + tx;
// loop through all row/column elements
float value = 0.f;
for (int m=0; m<dim/TILE_DIM; ++m) {

// collaborative loading of tiles into shared memory
As[ty][tx] = A[row*dim + (m*TILE_DIM + tx)];
Bs[ty][tx] = B[(m*TILE_DIM + ty)*dim + col];
__syncthreads();
for (int k=0; k<TILE_DIM; ++k)

Value += As[ty][k] * Bs[k][tx];
__syncthreads();

}
C[row*dim + col] = value;

}



  

Matrix Multiplication

n 1000 5000 7000 7500 8000
CPU simple 4 799 2583 3255 4460
GPU simple 0,1 14 43 55
GPU smarter 0,02 2 6 8 9,5



  

Matrix Multiplication

n 1000 5000 7000 7500 8000
CPU simple 4 799 2583 3255 4460
GPU simple 0,1 14 43 55
GPU smarter 0,02 2 6 8 9,5
GPU sm 3.0 1,4 4 5 6



  

Further Optimization Routes
● Avoid divergence in SIMT execution!

● Will result in repeated execution of the whole kernel
● Coalesce memory access to global memory!

● Read from consecutive DRAM locations
● Data prefetching
● Improve instruction mix, loop unrolling
● Trade of scarce HW resources

● Watch out for performance cliffs
● Try and measure!



  

Higher-level CUDA programming
● Several available libraries

● CUBLAS
– Implementation of BLAS on top of CUDA driver

● CUFFT
– Implementation of FFT

● Thrust
– CUDA library of parallel algorithms with an interface 

resembling the C++ STL



  

Thrust

int main() {
// generate 16M random numbers on the host
thrust::host_vector<int> h_vec(1 << 24);
thrust::generate(h_vec.begin(), h_vec.end(), rand);
// transfer data to the device
thrust::device_vector<int> d_vec = h_vec;
// sort data on the device @ 145M keys/second
thrust::sort(d_vec.begin(), d_vec.end());
// transfer data back to host
thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());
return 0;

}



  

OpenCL
● Initiated by Apple
● Open standard since last year
● Fundamental concepts map directly to CUDA

● Work item ↔ thread
● Work group ↔ block
● NDRange ↔ grid
● Kernel ↔ kernel
● Device ↔ device
● Host ↔ host



  

Conclusions?
● Easy to achieve impressive initial speedup

● Iff there is data parallelism to begin with!
● Transparent scaling with new hardware
● Re-learning

● But that adds to the fun
● Already in use in the real world



  

CUDA In Use



  

CUDA In Use
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