

GPU Computing
Supercomputing for the Masses

Problem
● „Free lunch is over“
● Demand for more computational power stays
● How to overcome this problem?

● I.e. how to write software that benefits from the
coming hardware performance improvements?

● Current trend: going multi-core
● CPUs with 2, 4, 6, 8, 12, … cores
● How to use them efficiently?

GPU Development
● GPU has evolved into a very powerful and

flexible processor
● Highly multicore (currently upto 1600 processors)
● Very high memory bandwidth (150 GB/s)
● Full IEEE 754-2008 support
● ECC memory support
● High market presence

● Performance still doubles with each generation

GPU vs. CPU

What does that give us?

GPU vs. CPU
● ~2 Tflops GPU vs. 100 Gflops CPU

● this difference created interesting dynamic
● Design philosophy

● CPU optimized for sequential code performance
– Sophisticated control logic
– Large caches
– Relaxed memory model → lower memory bandwidth

● GPU optimized for throughput of massive number
of threads
– Minimizing control logic
– Small caches
– Simple memory model without legacy constraints

GPU vs. CPU

● How to access that raw power?
● Traditionally extremely intricated (GPGPU)

Compute Unified Device
Architecture (CUDA)

● Introduced November 2006 by NVIDIA
● GeForce 8800 - unified programmable processors

● Framework for parallel programming
● Language
● API
● Runtime
● Compiler

● Finally GPU fully programmable for general
computations → GPU computing

● Upcoming standards OpenCL, DirectCompute

CUDA Platform Model
● One host
● One or more devices

● Physically separate
● Consisting of streaming multiprocessors of cores

● Host executes computations on device by
invoking a kernel (kernel launch)
● Large number of threads
● In SPMD fashion

The Hardware

CUDA Execution Model
● Kernel

● Executed on device
● Host program

● Defining context for kernels
● Manages execution of kernels

● Kernel launch (defining index space)
● kernel instance (thread) for each point in ind. space
● Execute same program

Data Parallel Programming Model
● Primary programming model
● Index space defines

● Threads
● Mapping of data onto threads

● Hierarchical data parallel model
● Hierarchy of thread groups, blocks
● Blocks organized inside a grid
● Explicitly defined by user/host

CUDA Threads
● Extremely leightweight
● Each thread has its unique thread ID
● Via built-in variable threadIdx

● 3-component vector, i.e. threadIdx.x, …
● Threads form 1-, 2-, or 3-dim thread blocks
● Convenient mapping from domain, e.g. matrix

● Well-defined mapping threadIdx → thread ID
1. (x) → x
2. (x, y) → x + y*DIM_X
3. (x, y, z) → x + y*DIM_X + z*DIM_Y*DIM_X

Grid of Thread Blocks
● Threads organized in thread blocks (3-dim)
● Thread blocks organized in 2-dim grids

Scalable Programming Model
● Coarse subdivision of index space into blocks

● Threads inside using fine-grained data parallelism
● Blocks are independent from each other!
● Blocks can be scheduled in any order

CUDA Programming Model
● Main program runs on host
● Using GPU as co-processor (device)

● Physically separate
● CUDA threads execute on device

● Both host, device maintain own memory space
● Host memory vs. device memory
● Data can be copied between
● I/O data has to be copied to and from device

CUDA Program
● Consists of both host and device code

● Host code is C++
● Device code is „C plus annotations“

● Alternating phases running on host and devices
● Code exhibiting rich data parallelism implemented

on device
● Otherwise implemented on host

NVIDIA C Compiler

● nvcc separates both host and device code
● Host code compiled on host's compiler
● Device code compiled by nvcc for device

– Embedded in host object file
● Linking with CUDA runtime library cudart.dll

● Useful options
● -deviceemu
● -Xptxas -v

1>ptxas info : Compiling entry function '_Z9matrixMulPfS_S_i'

1>ptxas info : Used 10 registers, 2076+16 bytes smem, 12 bytes cmem[1]

CUDA Program Structure
int main() {

// host data setup
...
// device data setup
...
// transfer of input data to device
...
// execution on device
...
// transfer of results from device
...
// free device and host data
...

}

CUDA Memories
● Types

● Constant
● Global
● Shared
● Registers

● API calls
● cudaMalloc, cudaFree
● cudaMemcpy

CUDA Program Structure
int main() {

// host data setup
float* a_h = ...; float* b_h = ...; int N = DIM;
// device data setup
float *a_d, *b_d;
cudaMalloc((void **) &a_d, sizeof(float)*N);
cudaMalloc((void **) &b_d, sizeof(float)*N);
// transfer of data to device
cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice);
// “execution” on device

 cudaMemcpy(b_d, a_d, sizeof(float)*N, cudaMemcpyDeviceToDevice);
// transfer of results from device
cudaMemcpy(b_h, b_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
// free device and host data
cudaFree(a_d); cudaFree(b_d);
...

}

Kernel
● C function declared with __global__

● New keywords __global__, __device__, __host__
● Specifies code to be executed by all threads
● Instance of single-program multiple-data

parallel programming style (SPMD)

Kernel Launch
● Invoked (aka launched) by host code
● Execution configuration

● Specifies nr. of CUDA threads executing the kernel
● New syntax foo<<<dimGrid, dimBlock>>>(...)

● Executed as grid of threads in thread blocks
● 3-dim thread block (threadIdx)
● 2-dim grid (blockIdx)

Kernel Launch Example
__global__ void VecAdd(float* A, float* B, float* C) {

int i = threadIdx.x;
C[i] = A[i] + B[i];

}

...
// configure thread blocks
dim3 dimBlock(dim); // == dimBlock(dim, 1, 1)
dim3 dimGrid(1, 1); // == dimGrid(1, 1, 1) == 1
// execution configuration – at runtime kernel launch
VecAdd<<<dimGrid, dimBlock>>>(a_d, b_d, c_d);
...

Matrix Multiplication
__global__ void matrixMul(

float* A, float* B, float* C,
int dim)

{
 int r = threadIdx.y;
 int c = threadIdx.x;

 float value = 0.f;
 for (int k=0; k<dim; ++k)
 value += A[r*dim+k] * B[k*dim+c];
 C[r*dim + c] = value;
}

void matrixMul(
float* A, float* B, float* C,
int dim)

{
 for (int r=0; r<dim; ++r) {
 for (int c=0; c<dim; ++c)
 {
 float value=0.f;
 for (int k=0; k<dim; ++k)
 value += A[r*dim+k]*B[k*dim+c];
 C[r*dim + c] = value;
 }
 }
}

// configure thread blocks
dim3 block(dim, dim);
dim3 grid(1, 1);
// execution configuration
matrixMul<<<grid, block>>>(a, b, c);

Grid of Thread Blocks rev.
● Threads form a (upto) 3-dim thread block

● Dictated by scarce HW resources
● Currently max. 512 threads per block

● Blocks organized in (upto) 2-dim grid
● How to choose execution configuration?
● Number of blocks guided by size of the data!
● Remember: These blocks are executed

independently, to guarantee transparent
scaling.

Matrix Multiplication rev.

● Re-adjusting matrix multiplication configuration

int size = 20;
// configure thread blocks
dim3 blockDim(size, size);
dim3 gridDim(dim/size, dim/size);

// execution configuration
matrixMul<<<gridDim, blockDim>>>(a, b, c, dim);

Matrix Multiplication rev.
● How to access current block inside kernel?
● Via built-in variable blockIdx

__global__ void matrixMul(float* A, float* B, float* C, int dim)
{

int row = blockIdx.y*blockDim.y + threadIdx.y;
int col = blockIdx.x*blockDim.x + threadIdx.x;

float value = 0.f;
for (int k=0; k<dim; ++k)

value += A[row*dim+k] * B[k*dim+col];
C[row*dim + col] = value;

}

Matrix Multiplication

n 1000 5000 7000 7500 8000

CPU simple 4 799 2583 3255 4460

GPU simple 0,1 14 43 55

Memory Access Efficiency

● 2 global memory accesses vs 2 fp operations
● Compute to global memory access (CGMA) ratio

● limits Gflops performance to 25% of mem bandwidth!
● 160GB/s → 40 Gflops << 1 Tflops!!

__global__ void matrixMul(float* A, float* B, float* C, int dim)
{

int row = blockIdx.y*blockDim.y + threadIdx.y;
int col = blockIdx.x*blockDim.x + threadIdx.x;
float value = 0.f;
for (int k=0; k<dim; ++k)

value += A[row*dim+k] * B[k*dim+col];
C[row*dim + col] = value;

}

Shared Memory to the Rescue
● Observation in matrixMul()

● Each global element is read dim times!
● Classic tradeoff

● Global memory is large and slow
● Shared memory is small (16384 bytes) but fast

● Strategy
● Partition data into smaller tiles such that each tile

fits into shared memory

Thread Cooperation and Shared
Memory

● Again: Thread blocks are required to execute
independently

● Threads within one block(!) can cooperate
● Synchronizing their execution
● Sharing data

● Intrinsic function __syncthreads()
● Leightweight barrier at which all threads must wait

● Shared memory declaration __shared__
● Low-latency memory near each processor core (L1)

Matrix Multiplication rev.

Matrix Multiplication rev.
__global__ void matrixMul(float* A, float* B, float* C, int dim) {

__shared__ float As[TILE_DIM][TILE_DIM];
__shared__ float Bs[TILE_DIM][TILE_DIM];
int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;
int row = by*TILE_DIM + ty; int col = bx*TILE_DIM + tx;
// loop through all row/column elements
float value = 0.f;
for (int m=0; m<dim/TILE_DIM; ++m) {

// collaborative loading of tiles into shared memory
As[ty][tx] = A[row*dim + (m*TILE_DIM + tx)];
Bs[ty][tx] = B[(m*TILE_DIM + ty)*dim + col];
__syncthreads();
for (int k=0; k<TILE_DIM; ++k)

Value += As[ty][k] * Bs[k][tx];
__syncthreads();

}
C[row*dim + col] = value;

}

Matrix Multiplication

n 1000 5000 7000 7500 8000
CPU simple 4 799 2583 3255 4460
GPU simple 0,1 14 43 55
GPU smarter 0,02 2 6 8 9,5

Matrix Multiplication

n 1000 5000 7000 7500 8000
CPU simple 4 799 2583 3255 4460
GPU simple 0,1 14 43 55
GPU smarter 0,02 2 6 8 9,5
GPU sm 3.0 1,4 4 5 6

Further Optimization Routes
● Avoid divergence in SIMT execution!

● Will result in repeated execution of the whole kernel
● Coalesce memory access to global memory!

● Read from consecutive DRAM locations
● Data prefetching
● Improve instruction mix, loop unrolling
● Trade of scarce HW resources

● Watch out for performance cliffs
● Try and measure!

Higher-level CUDA programming
● Several available libraries

● CUBLAS
– Implementation of BLAS on top of CUDA driver

● CUFFT
– Implementation of FFT

● Thrust
– CUDA library of parallel algorithms with an interface

resembling the C++ STL

Thrust

int main() {
// generate 16M random numbers on the host
thrust::host_vector<int> h_vec(1 << 24);
thrust::generate(h_vec.begin(), h_vec.end(), rand);
// transfer data to the device
thrust::device_vector<int> d_vec = h_vec;
// sort data on the device @ 145M keys/second
thrust::sort(d_vec.begin(), d_vec.end());
// transfer data back to host
thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());
return 0;

}

OpenCL
● Initiated by Apple
● Open standard since last year
● Fundamental concepts map directly to CUDA

● Work item ↔ thread
● Work group ↔ block
● NDRange ↔ grid
● Kernel ↔ kernel
● Device ↔ device
● Host ↔ host

Conclusions?
● Easy to achieve impressive initial speedup

● Iff there is data parallelism to begin with!
● Transparent scaling with new hardware
● Re-learning

● But that adds to the fun
● Already in use in the real world

CUDA In Use

CUDA In Use

References
● Rob Farber's series „CUDA Supercomputing for

the Masses“, thanks for letting me use his title!
http://www.drdobbs.com/architecture-and-design/207200659

● D. Kirk, W. Hwu „Programming Massively
Parallel Processors“, Morgan Kaufmann, 2010

● NVIDIA „CUDA Programming Guide“
● CUDA Zone on http://www.nvidia.com/object/cuda_home_new.html

http://www.drdobbs.com/architecture-and-design/207200659
http://www.nvidia.com/object/cuda_home_new.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

