
Objects of Value

Kevlin Henney
kevlin@curbralan.com

@KevlinHenney

See http://programmer.97things.oreilly.com

(also http://tr.im/97tepsk and http://tinyurl.com/97tepsk)

and follow @97TEPSK

What Do We Mean by Value?

 The term value is used in many

overlapping and contradictory ways

 The mechanism of pass by value

 A declarative construct, e.g., C# structs

define programmatic value types

 A kind of object representing fine-

grained information in a domain model

 The general notion of quantity or

measure of something in the real world

Many objects have no conceptual
identity. These objects describe
some characteristic of a thing. [...]

When you care only about the
attributes of an element of the
model, classify it as a VALUE OBJECT.
Make it express the meaning of the
attributes it conveys and give it
related functionality. Treat the
VALUE OBJECT as immutable. Don't
give it any identity and avoid the
design complexities necessary to
maintain ENTITIES.

Complementary Perspectives

 The Platonic Perspective

 An idealised view of what values are in

terms of maths and the physical world

 The Computational Perspective

 A model-based view of what values

are in terms of programming concepts

 The Language Perspective

 The computational view bound to the

specifics of a programming language

phenomenon (plural: phenomena):

An element of what we can observe in

the world. Phenomena may be

individuals or relations. Individuals are

entities, events, or values. Relations

are roles, states, or truths.

individual: An individual is a

phenomenon that can be named and

is distinct from every other individual:

for example, the number 17, George

III, or Deep Blue's first move against

Kasparov.

relationship: A kind of phenomenon.

An association among two or more

individuals, for example, Mother(Lucy,

Joe). Also, generally, any pattern or

structure among phenomena of a

domain.

Events. An event is an individual

happening, taking place at some particular

point in time. Each event is indivisible and

instantaneous.

Entities. An entity is an individual that

persists over time and can change its

properties and states from one point in

time to another.

Values. A value is an intangible individual

that exists outside time and space, and is

not subject to change.

States. A state is a relation among

individual entities and values; it can

change over time.

Truths. A truth is a relation among

individuals that cannot possibly change

over time.

Roles. A role is a relation between an

event and individuals that participate in it in

a particular way.

On the Origin of Species

 Value types differ in the generality

and focus of their domain

 Some are mathematical, e.g., integers

 Some are programmatic, e.g., strings

 Some are real world, e.g., ISBNs

 Value types reflect constraints

 E.g., ISBNs have a well-formedness rule

 E.g., int is a bounded subset of integers

Systems of Values

 Operations, relationships and

constraints form systems of values

 E.g., a point in time is a value, as is the

difference between two points in time,

but time point, time period and time

interval are not equivalent types

 E.g., distance divided by time yields

speed (and displacement divided by

time yields velocity)

The Nature of Order

 Some value types have an intrinsic

or natural ordering

 Ordering may be based on magnitude,

lexicographical or ordinal criteria

 Be careful about imposing an

ordering on unordered types

 Ordering is not an essential feature for

all value types

 Consider external comparators instead

povo, sm.
1. Conjunto de indivíduos que falam (em regra) a mesma

lingua, têm costumes e hábitos idênticos, uma história e
tradições communs.

2. Os habitantes duma localidade ou região; povoação.

3. V. povoado.

4. Multidão.

5. V. plebe.

Minidicionário da Língua Portuguesa

Whole Value

Besides using the handful of literal values offered by the language

(numbers, strings, true and false) and an even smaller complement of

objects normally used as values (date, time, point), you will make and

use new objects with this pattern that represent the meaningful

quantities of your business. These values will carry whole, useful

chunks of information from the user interface to the domain model.

Construct specialized values to quantify your domain model and use

these values as the arguments of their messages and as the units of

input and output. Make sure these objects capture the whole quantity,

with all its implications beyond merely magnitude; but keep them

independent of any particular domain. (The word value here implies

that these objects do not have identity of importance.)

Ward Cunningham

"The CHECKS Pattern Language of Information Integrity"

Values as Objects

 From a programming perspective,

we can model values as objects

 Hence value objects and value types

 Value objects have significant state but

insignificant identity

 But there is no dichotomy or conflict

between values and objects

 A value object is a kind or style of

object that realises a value

Patterns of Value

VALUE

OBJECT

IMMUTABLE

VALUE

COPIED

VALUE

MUTABLE

COMPANION

CLONING

COPY

CONSTRUCTOR

CLASS

FACTORY

METHOD

CONVERSION

METHOD

OVERLOAD–

OVERRIDE

METHOD PAIR

BRIDGE

METHOD

TYPE-SPECIFIC

OVERLOAD

CELL

VALUE

VALIDATING

CONSTRUCTOR
IMPLICIT

WIDENING

CONVERSION

OPERATORS

FOLLOW

BUILT-INS

MEANINGFUL

CONSTRUCTION

Good Value

 Construction should result in a

meaningful and well-formed object

 Partial initialisation is problematic for

objects — especially for value objects

 Also consider the constructor to be

transactional

 I.e., a correct object or an exception

 Respect and enforce state invariant

Identity

State

Behaviour

Referential transparency and referential opaqueness are

properties of parts of computer programs. An expression is said

to be referentially transparent if it can be replaced with its value

without changing the program (in other words, yielding a program

that has the same effects and output on the same input). The

opposite term is referentially opaque.

While in mathematics all function applications are referentially

transparent, in programming this is not always the case. The

importance of referential transparency is that it allows a

programmer (or compiler) to reason about program behavior. This

can help in proving correctness, simplifying an algorithm,

assisting in modifying code without breaking it, or optimizing code

by means of memoization, common subexpression elimination or

parallelization.

http://en.wikipedia.org/wiki/Referential_transparency_(computer_science)

Immutable Value

Define a value object type whose
instances are immutable.

Copied Value

Define a value object type whose
instances are copyable.

General POLO Anatomy

 Construction...

 Constructor results in valid object

 Comparison...

 Equality is a fundamental concept

 Total ordering may or may not apply

 Classification and conversion...

 Neither a subclass nor a superclass be

 May support conversions

Value Object Smells

 Anaemia

 Little behaviour beyond field access

 Role creep

 Too much responsibility and external

dependencies

 Unwanted affordances

 Non-meaningful constructor

 Constructor without useful enforcement

or sufficient quality of failure

public final class Date implements ...
{
 ...
 public int getYear() ...
 public int getMonth() ...
 public int getDayInMonth() ...
 public void setYear(int newYear) ...
 public void setMonth(int newMonth) ...
 public void setDayInMonth(int newDayInMonth) ...
 ...
}

public final class Date implements ...
{
 ...
 public int getYear() ...
 public int getMonth() ...
 public int getWeekInYear() ...
 public int getDayInYear() ...
 public int getDayInMonth() ...
 public int getDayInWeek() ...
 public void setYear(int newYear) ...
 public void setMonth(int newMonth) ...
 public void setWeekInYear(int newWeek) ...
 public void setDayInYear(int newDayInYear) ...
 public void setDayInMonth(int newDayInMonth) ...
 public void setDayInWeek(int newDayInWeek) ...
 ...
}

public final class Date implements ...
{
 ...
 public int getYear() ...
 public int getMonth() ...
 public int getWeekInYear() ...
 public int getDayInYear() ...
 public int getDayInMonth() ...
 public int getDayInWeek() ...
 public void setYear(int newYear) ...
 public void setMonth(int newMonth) ...
 public void setWeekInYear(int newWeek) ...
 public void setDayInYear(int newDayInYear) ...
 public void setDayInMonth(int newDayInMonth) ...
 public void setDayInWeek(int newDayInWeek) ...
 ...
 private int year, month, dayInMonth;
}

public final class Date implements ...
{
 ...
 public int getYear() ...
 public int getMonth() ...
 public int getWeekInYear() ...
 public int getDayInYear() ...
 public int getDayInMonth() ...
 public int getDayInWeek() ...
 public void setYear(int newYear) ...
 public void setMonth(int newMonth) ...
 public void setWeekInYear(int newWeek) ...
 public void setDayInYear(int newDayInYear) ...
 public void setDayInMonth(int newDayInMonth) ...
 public void setDayInWeek(int newDayInWeek) ...
 ...
 private int daysSinceEpoch;
}

When it is not necessary to change,
it is necessary not to change.

Lucius Cary

public final class Date implements ...
{
 ...
 public int getYear() ...
 public int getMonth() ...
 public int getWeekInYear() ...
 public int getDayInYear() ...
 public int getDayInMonth() ...
 public int getDayInWeek() ...
 ...
}

public final class Date implements ...
{
 ...
 public int getYear() ...
 public Month getMonth() ...
 public int getWeekInYear() ...
 public int getDayInYear() ...
 public int getDayInMonth() ...
 public DayInWeek getDayInWeek() ...
 ...
}

public final class Date implements ...
{
 ...
 public int year() ...
 public Month month() ...
 public int weekInYear() ...
 public int dayInYear() ...
 public int dayInMonth() ...
 public DayInWeek dayInWeek() ...
 ...
}

date today;

today.set(2010, 4, 16);

today = date(2010, 4, 16);

Does a value type have a meaningful default value?
If so, is it an in-band or out-of-band value?

For copied values, assignment should be
considered the preferred way to rebind a value.
Try to avoid adding redundant modifiers that
duplicate the role of constructors.

Language Defines a Context

 Design is context sensitive

 And design detail is, therefore, affected

by choice of programming language

 Different languages encourage and

enable different choices and styles

 Culture and idioms, features for

immutability, transparency of copying,

presence of nulls, support for operator

overloading, ease of equality, etc.

Operator Overloading

 When overloading operators, ensure

completeness of operator families

 It's jarring and awkward when one

operator is provided but its logical

companions are not

 Be courteous and unsurprising

 C# demands and simplifies much

politeness... C++ does not, but that's no

reason to be impolite

bool operator<(const Type & lhs, const Type & rhs)

{

 return magnitude, lexicographical or ordinal comparison;
}

bool operator<=(const Type & lhs, const Type & rhs)

{

 return !(rhs < lhs);

}

bool operator>(const Type & lhs, const Type & rhs)

{

 return rhs < lhs;

}

bool operator>=(const Type & lhs, const Type & rhs)

{

 return !(lhs < rhs);

}

Two values of a value type are equal if and only
if they represent the same abstract entity. They
are representationally equal if and only if their
datums are identical sequences of 0s and 1s.

If a value type is uniquely represented, equality
implies representational equality.

If we want to emphasize the programmatic
aspect of a type that has an associated
operator==, we say “objects compare
equal”, but never “objects are equal”. [...]

We deliberately avoid equivocal phrases
such as “objects are equal”, “objects are the
same”, or “objects are identical”.

John Lakos
Normative Language to Describe Value Copy Semantics
http://www.open-std.org/jtc1/sc22/WG21/docs/papers/2007/n2479.pdf

What I propose must be “the same” after
copy construction is “whatever the
associated homogeneous equality
comparison operator defines (documents) to
be the salient attributes for that type” – i.e.,
“the specific attributes that must
respectively compare equal in order for the
objects as a whole to compare equal.”
Hence, the (observable) values of these
salient attributes, and not the raw instance
state used to represent them, comprise
what we call the value of the object.

John Lakos
Normative Language to Describe Value Copy Semantics
http://www.open-std.org/jtc1/sc22/WG21/docs/papers/2007/n2479.pdf

bool operator==(const Type & lhs, const Type & rhs)
{

 return

  attribute  SalientAttributesOf(ValueType) 
 lhs.attribute == rhs.attribute;
}

bool operator!=(const Type & lhs, const Type & rhs)
{

 return !(lhs == rhs);

}

Reflexivity: I am me. Symmetry: If you're the same
as me, I'm the same as you.

Transitivity: If I'm the same
as you, and you're the same
as them, then I'm the same
as them too.

Consistency: If there's no change,
everything's the same as it ever was.

Null inequality: I am not nothing.

Hash equality: If we're the same, we
both share the same magic numbers.

No throw: If you call,
I won't hang up.

A Note on Unit Testing

 The contract for equality does not

automatically translate to test cases

 Recast the relationships into a more

propositional form

 It's OK to use value objects directly

in other tests

 Don't mock out values — "Every time a

mock returns a mock, a fairy dies"

[Test]
public void IdenticallyConstructedValuesCompareEqual()
...
[Test]
public void DifferentlyConstructedValuesCompareUnequal()
...
[Test]
public void ValuesCompareUnequalToNull()
...
[Test]
public void IdenticallyConstructedValuesHaveEqualHashCodes()
...

[Test]
public void Identically_constructed_values_compare_equal()
...
[Test]
public void Differently_constructed_values_compare_unequal()
...
[Test]
public void Values_compare_unequal_to_null()
...
[Test]
public void Identically_constructed_values_have_equal_hash_codes()
...

“Write that down,” the King said to the jury,

and the jury eagerly wrote down all three dates

on their slates, and then added them up, and

reduced the answer to shillings and pence.

Lewis Carroll

Alice’s Adventures in Wonderland

