
The DCI
Architecture
Lean and Agile at the Code

Level

James O. Coplien
Gertrud&Cope, Mørdrup,

Denmark
Scrum Foundation

The misguided, CASE-heavy practices of the 1980s fueled the proto-Agile rhetoric of the 1990s and
survived full-force into the advent of Agile practices such as Scrum and XP in the past decade. Part of that
rhetoric has been to go as far from the sins of the 1980s as possible by discarding up-front requirements
(instead we have a promise for a future conversation between a developer and a customer) and
architecture (instead, we have had a succession of short-lived ideas including "metaphor" and TDD).
Experience and recent research have both borne out the value of architecture in software development in
general, as well as its value in sustaining high velocity and change resiliency in Agile projects. In this talk,
Agile expert Jim Coplien will provide tips for putting architecture back into your Agile project without
dragging it back into the dark ages -- and all within the framework of the Agile Manifesto.

1 hour -- 4 minutes per slide, 15 slides

Copyright ©2008, ©2009 Gertrud&Cope. All rights reserved. E-mail: cope@gertrudandcope.com

1

2

What is architecture?

 Architecture is the essence of structure:
form
– Structure obfuscates form!

 Lean architecture: just-in-time delivery of
functionality, just-in-time pouring material
into the forms

 Agile architecture: one that supports
change, end-user interaction, discovery,
and ease of comprehension (of
functionality)

Let’s start with a few basic definitions to establish common ground.

This is a talk about Lean and Agile architecture. What is architecture? Throughout the ages and even in the
field of building construction, architecture has always been about form. Form is the essence of structure.
The word in English for a piece of material, into which molten metal or plastic are poured or injected to
make a new something, is called a form. We focus on form because if we look at structure, it actually
makes it difficult to understand the essence by adding a lot of detail which is irrelevant early in design.

What, then, is Lean Architecture? The principles of Lean include just-in-time delivery, careful organization,
up-front planning, avoiding waste, and overall consistency. Architecture is in principle about consistency. If
we have a consistent system early on that is stable over time, it avoids rework and waste. That takes up-
front planning and careful organization. That in place, we have a guide — a form — into which we can write
code when the need comes along.

A good architecture supports Agile development. A good architecture is Agile if it supports change and has
just enough documentation to do the job — the documentation that really makes a difference. Good
architecture supports the Agile values: support for change, a good model that supports the end user’s
mental model of the system and that helps the developer’s discovery process. Here, we will focus on
helping the developer reason about functionality in the code — functionality that reflects the end user
wishes.

2

3

What is its value?

 Architecture supports “what happens
there”

 Habitable code — by the people who
develop it and the people who use it

 Architecture is what makes code feel
familiar

 A good architecture reduces waste and
inconsistency — muda and mura
– Less rework
– System consistency

 A good architecture defines your test
points
– Everyone, including testers, is an architect

Architecture is what is, but architecture support what the system does. A good architecture makes the code
“comfortable” to have around and to use. We use the word habitable, a term borrowed from the pattern
community (which emerged from building architecture).

A good architecture reduces waste and inconsistency. These are key Lean values: muda and mura. It
means better overall consistency and less rework and waste.

3

Uncle Bob weighs in

One of the more insidious and persistent myths of agile
development is that up-front architecture and design
are bad; that you should never spend time up front
making architectural decisions. That instead you should
evolve your architecture and design from nothing, one
test-case at a time.

Pardon me, but that’s Horse Shit.

— Bob Martin, World Expert on The Scatology of Agile
Architecture
http://blog.objectmentor.com/articles/2009/04/25/the-scatology-of-agile-architecture

Even the strongest Agile advocates weigh in against TDD as the foundation of architecture.

4

TDD does not realize its
architecture claims

 “[T]he results didn't support claims
for lower coupling and increased
cohesion with TDD”

 — Janzen and Saledian, “Does Test-
Driven Development Really Improve
Software Design Quality?” IEEE
Software 25(2), March/April 2008,
pp. 77 - 84.

The empirical evidence continues.

5

6

Architecture and OO

 OO is a paradigm — a way of talking
about form

 OO’s foundations: to capture the end
user’s mental models in the code

 OO captures
– The entities (objects) that users know

about
– The classes that serve as sets of such

objects

Switching gears a bit, let’s turn to the JaOO theme: objects. Object orientation is a way of taking about
form. It’s not the only way, but let’s start there.

What is object orientation anyhow? Instead of starting with the tired old coupling-and-cohesion definitions
(which apply equally well to modules or procedures) or polymorphism (even overloading is a form of
polymorphism), let’s go to the goals of its originators. Dahl and Nygaard were striving to capture the end
user’s mental model in the code. Good OO captures the objects that users know about. Most object-
oriented programming languages uses classes as a kit for building objects; that is largely an issue of
history, and comes from the fact that Dahl and Nygaard chose to base their simulation language in Algol.
(Well, they were paid to write an Algol compiler and were allowed to build Simula into the product.) But the
goal is still focused on the user and the user mental model.

What is that model? The traditional OO view is that it’s all about getting the objects right.

6

7

MVC: The Embodiment of the
OO Vision

 User model ->
into the code ->
presented back
to the user

 The goal of
views is direct
manipulation

The goal of the
controller is to
coordinate
multiple views

Model

mental
model

computer
data

User

Model

User

computer
data

mental
model

View

Controller

*
1

*
*

A quick side note: One of the other people in the wings in the early days of OO was Trygve Reenskaug.
Trygve was disenchanted with Simula because of its lack of encapsulation (it was difficult to send a
message to a receiver that you didn’t create) and with Smalltalk because of the domination of classes in the
programming environment — when it should have been about objects.

In 1978 Trygve brought the user into the picture with a four-part pattern called Model-View-Controller-User.
Its first goal is to let users interact directly with the code that itself was desigend as a reflection of their own
mental models: that’s what View is for.. Its second goal was to allow the user to coordinate several
simultaneous views of the same model; that’s what Controller is for — to create and coordinate those
views.

This, again, is based on the simple model that it is sufficient to model the end user’s notion of the system
objects.

7

8

Architecture is more than that

 The form of the business domain
– What the system is
– Domain model (as in MVC)
– What the programmer cares about
– Deliver as abstract base classes
– Eric Evans’ Domain-Driven Design,

Multi-Paradigm Design for C++

 The form of the system interactions
– What the system does
– Role models: OORAM
– What the end user cares about
– Has long eluded the OO crowd

However, there is a half that is missing. Even in his early work Trygve started using roles. Roles were
collections of responsibilities on objects that corresponded to the end user’s view of those objects. An
object could fill many roles; any given role could be filled by a number of different objects. Note that roles
are themselves one kind of form. These roles captured a bit of what-the-system-does, rather than just what
it is. This is the model that the end user cares about. Except for Trygve’s roles, this notion of object-oriented
modeling escaped the computing community for years, and in particular the programming language folks.

In the mean time, object orientation inspired further work on the what-the-system-is part of form. Model-
View-Controller-User was a way to bring the what-the-system-is picture out to the user. It provided the
programmer tools for organizing and coordinating the interaction between the graphical interface and the
objects inside the program, though it did nothing to enforce that the objects should reflect the end-user
mental model.

Over time, this same idea would appear in the analysis and design space (instead of the programming
space) as domain engineering. Domain engineering is somewhat more general than OO in some respects
and somewhat less general in others.

Multi-paradim design was another stab at domain engineering. Early forms of Agile architecture started to
advocate the use of abstract base classes (form) rather than classes (structure) as the basis for
architecture. The GOF book also strongly advocated programming to interfaces, rather to code. This started
the slide into lean and Agile design. But the what-the-system-does part still hadn’t come of age.

8

9

Back to OO: Other forms in
the end-user’s head

 Users think more about the roles played
by the objects than the objects
– What-the-system-does again!
– Money transfer from a bank account: the roles

are Source Account and Destination Account
– Savings, checking, investment account objects

can all take on these roles — so can your
phone bill

 The association from roles to objects, for a
given use case, is also part of the end
user model

There are other forms in the user’s head beyond what-the-system-is. As described on the previous slide,
users care more about the responsibilities that are carried out inside the system: where the action is.
Related responsibilities tend to group. Their grouping from the user perspective forms something called a
role, which loosely corresponds to an interface in Java or C#. Think of a money transfer at an ATM: you
want to transfer money between two accounts. Your model of the program is that there is a source account
and a destination account. You don’t think of “being source for a transfer” as being a property of a Savings
Account, nor do you view this property as being duplicated in Checking Accounts. It may not be part of the
Account hierarchy at all, but may extend to investments and to a concept called your telephone bill or gas
bill to which amounts are transferred monthly. This role structure Is part of the end user mental model

But users know, in a given transaction, that these roles must bind to real objects. If I want to transfer money
from my savings account to my checking account, then I bind the role of “being source for a transfer) to my
savings account and “being the destination for a transfer” to my checking account. These mappings are
also part of the end user mental model.

This is getting a bit more rich than your grandfather’s architecture, which was just a bunch of objects!

9

10

Yet a few more forms!

 How about the algorithm?
– The algorithm also has form in the user’s

head
1. Start transaction
2. Debit Source Account
3. Credit Destination Account
4. End transaction

– In FORTRAN I could argue the correctness
of program functionality; I can’t do that in
Java

– Object orientation has served the
programmers (the discovery process,
architecture) but not the end users and
customers — and not quality (Hoare)

There’s more! The roles interact with each other to carry out Use Cases. In the code, Use Case scenarios
are algorithms. Consider a Use Case for the money transfer; it might look as above. Where do I find that
Use Case in the code?

Most OO architectures fragment the algorithm across many objects. It’s easy to find the objects, and a
programmer can eventually track down the bits of the algorithm, but it’s difficult to see the whole. The end
user, on the other hand, continues to see this algorithm, this Use Case scenario, as a whole. There is a
disconnect between the end user mental model and the structure of the software. This is not in concert with
the original goals of OO. In general, software with this kind of disconnect leads to poor human interfaces;
Brenda Laurel writes much about this in her book “Computers as Theatre,” and it follows by intuition from
the direct manipulation interface metaphor. It can also confuse architecture in the long term, particularly
when feature evolution (Use Case scenarios, algorithms) are important.

In the old days of FORTRAN and Pascal, I could convert a Use Case scenario into code, give it to my office
mate with the scenario description, and ask him or her to desk check it. Today, after the polymorphism and
object orientation of 1967, I can’t do that. Our ability to reason about systems has been lost. We’ve tried to
compensate with testing, but as Tony Hoare said, “There are two ways of constructing a software design.
One is to make it so simple that there are obviously no deficiencies, and the other is to make it so
complicated that there are no obvious deficiencies.” The deficiencies of today’s software are opaque.

10

System Operations
Separation of Concern

11

Computers can:
 store and retrieve data
 + transform data
 + communicate!!!

Communication becomes first class citizen in computing
Show execution of the three tasks (on clicks)
Class oriented programming: NOODLES

DCI: Separation of concern:
 Each task coded separately (animated on clicks)

11

System Operations
Executed by Contexts

12

A Context (an instance of a context class)
 receives a message
 is reponsible for a use case/task/system operation
 triggers a method in the first role
 execution continues as specified in role methods

 functional decomposition context responsibility/role responsibilities

50 years ago:
 Data store / applications / functional decomposition
 + Red circles: access routines
DCI:
 Data objects / contexts / methodful roles
 + Context binds roles to objects:
 mobilize the objects that actually do the work
NOTE
 Binding role/object not shown,
 late (runtime) binding

12

A link to patterns?

And finally, of course, I want to paint a picture
which allows me to understand the patterns of
events which keep on happening in the thing
whose structure I seek. In other words, I hope
to find a picture, or a structure, which will, in
some rather obvious and simple sense, account
for the outward properties, for the pattern of
events of the thing which I am studying.

— Christopher Alexander, The Timeless Way of
Building, Chapter 5, 1979

13

13

14

These forms beg a new
architecture

Methodful Roles

Identifiers and
M

ethodless R
oles

C
la

ss
es

Use
Case

Trygve Reenskaug has come up with a new architecture to support the end user’s view of Use Cases and
to localize algorithm in an encapsulated role. There are four major forms in this architecture. First is the
basic behavioural form, or architecture, that is defined just in terms of the protocols of the roles. Those are
at the right, and we call them methodless roles. We obviously have the objects; they capture the end user’s
mental model of their world. Classes are an optimization for holding similar stuff that is common to many
similar objects.

What Trygve adds are roles with methods. These roles are compliant with the method-less roles. Each one
contains Use Case information in the form of methods. These methods can invoke methods of self or of
another role. These roles are implemented as classes in most programming languages, though Scala can
implement them as traits, and C++ as templates. They are pure, generic logic without state and with a fuzzy
notion of the type of self or this. Each method-ful role is injected into each class whose objects play that
role at some time during their lifetime. Think of roles as a kind of class, and think of the domain classes (on
the left) also as classes. This “injection” is a kind of gluing operation, or more like a smashing operation,
where the logic of the method-ful roles is added to the logic of the classes. Each class will then behave as
though the methods of the method-ful roles had been copied into it. Of course, we retain one, single closed
copy of each Use Case scenario in the methodful roles.

A Use Case scenario is implemented as an interaction of the algorithms between roles. It’s a kind of
procedural decomposition, much as end users decompose complex tasks into subtasks. We divide up
those subtasks on a per-role basis, consistent with the end user view. At run time we associate a method-
less role (like an object identifier or object pointer in C++) with an object that can support the methods of
that role, and then we just let the scenario run.

14

15

Tricks with Traits

 Need to compose the generic algorithms
of method-ful roles with the classes whose
objects play those roles

 This is a simple class composition
 Can use Traits (à la Schärli) to glue

classes together
– Extra “hidden” field in Smalltalk classes
– Current Squeak implementation maps the

method name into every class using it
– Trivial application of templates in C++

How do we glue classes together? Schärli has pioneered a use of traits in Smalltalk (in Squeak) to change
the way method lookups work, so that two classes can be made to appear as though they are one. He uses
an extra field in each Smalltalk class to hold a descriptor of the classes that are injected with it. This gives
the illusion of composing classes, and we can use it to compose the generic algorithms of the role classes
(method-ful roles) with the domain classes. In C++, we can do the same thing with templates. In Scala, we
can use the traits language feature.

15

16

Domain objects: Ruby

class SavingsAccount <
 AccountWithPrintableBalance
 def initialize(balance) end
 def availableBalance end
 def decreaseBalance(amount) end
 def increaseBalance(amount) end
end

class InvestmentAccount <
! AccountWithPrintableBalance
! def initialize(balance) end
! def availableBalance end
! def increaseBalance(amount)
! end
! def decreaseBalance (amount) . . .
! end
! def dividend end
end

(dumb)

Here is the injection: adding the roles into the domain classes like SavingsAccount and InvestmentAccount.
Of course, we also could have injected the role TransferMoneySource into either or both of these accounts,
too (in practice, we probably would). The classes re relatively dumb: they are little more than smart data. All
of the action -- the Use Case logic -- is in the method-ful roles. The method-ful roles call on these rather
dumb data operations to make the system fly.

16

17

The Role Code: Ruby

module TransferMoneySink
 include MoneySinkAPI, ContextAccessor

 # Object role behaviors

 def transferFrom
 self.increaseBalance amount
 self.updateLog ‘Transfer in’, Time.now,
 context.amount
 end
end

module MoneySourceAPI
! def transfer_out; end
! def pay_bills; end
! def destination_account
! context.destination_account
! end
! def amount; context.amount end
end

module TransferMoneySource
 include MoneySourceAPI, ContextAccessor

 # Object role behavior

 def transferTo
beginTransaction

 raise "Insufficient funds" if balance <
 amount
 self.decreaseBalance amount
 destination_account.transferFrom amount
 self.updateLog "Transfer Out", Time.now,
 amount
 gui.displayScreen
 SUCCESS_DEPOSIT_SCREEN
 endTransaction
 end!
end! ! ! !

Here is the code. We have roles (method-ful roles) for a money sink and a money source, each one of which
represents a role in a money transfer Use Case. We can read the transfer algorithm from the
TransferMoneySource perspective. It is readable. It is testable. One could stub it off and formally test it using
system tests derived directly from Use Case requirements; if we did that, we might call it Behavior-Driven
Development.

(The code has been tested, and compiles and runs.)

17

18

Injection

. . . .
sourceAccountForTransfer = SavingsAccount.new(account)
sourceAccountForTransfer.extend TransferMoneySource
context.setAmount amountToBeTransferred
sourceAccountForTransfer.transferTo
. . . .

Here is the injection: adding the roles into the domain classes like SavingsAccount and InvestmentAccount.
Of course, we also could have injected the role TransferMoneySource into either or both of these accounts,
too (in practice, we probably would). The classes re relatively dumb: they are little more than smart data. All
of the action -- the Use Case logic -- is in the method-ful roles. The method-ful roles call on these rather
dumb data operations to make the system fly.

18

The Code: C++

template <class ConcreteDerived>
class TransferMoneySink: public MoneySink
{
public:
 void transferFrom(double amount, MoneySource *src) {
 ConcreteDerived::increaseBalance(amount);
 updateLog("Transfer in", DateTime(), amount);
 }
};

#define SELF static_cast<const ConcreteDerived*>(this)

#define RECIPIENT \
 ((static_cast<TransferMoneyContext*>(this) \
)->destinationAccount())

template <class ConcreteDerived>
class TransferMoneySource: public MoneySource
{
public: // Role behaviors
 void transferTo(Currency amount) {

 // This code is reviewable and
 // meaningfully testable with stubs!
 beginTransaction();
 if (SELF->availableBalance() < amount) {

 endTransaction();
 throw InsufficientFunds();
 } else {
 SELF->decreaseBalance(amount);
 RECIPIENT->transferFrom(amount);
 SELF->updateLog("Transfer Out",

 DateTime(), amount);
 }
 gui->displayScreen(

SUCCESS_DEPOSIT_SCREEN);
 endTransaction();
 }
public:
 TransferMoneySource(void) { }
};

Here is the code. We have roles (method-ful roles) for a money sink and a money source, each one of which
represents a role in a money transfer Use Case. We can read the transfer algorithm from the
TransferMoneySource perspective. It is readable. It is testable. One could stub it off and formally test it using
system tests derived directly from Use Case requirements; if we did that, we might call it Behavior-Driven
Development.

(The code has been tested, and compiles and runs.)

19

Injecting the roles into
classes

class SavingsAccount:
 public Account,
 public TransferMoneySink<
 SavingsAccount> {
public:
 Currency availableBalance(void);
 void decreaseBalance(Currency);
 void increaseBalance(Currency);
 void updateLog(
 string, DateTime, Currency);
 Currency interest(void) const;
};

class InvestmentAccount:
 public Account,
 public TransferMoneySource<
 InvestmentAccount> {
public:
 Currency availableBalance(void);
 void decreaseBalance(Currency);
 void increaseBalance(Currency);
 void updateLog(
 string, DateTime, Currency);
 Currency dividend(void) const;
};

(dumb)

Here is the injection: adding the roles into the domain classes like SavingsAccount and InvestmentAccount.
Of course, we also could have injected the role TransferMoneySource into either or both of these accounts,
too (in practice, we probably would). The classes re relatively dumb: they are little more than smart data. All
of the action -- the Use Case logic -- is in the method-ful roles. The method-ful roles call on these rather
dumb data operations to make the system fly.

20

21

What do I get?

 Polymorphism is gone
 All objects that play the same role process

the same messages with the same
methods

 Algorithms read like algorithms rather than
fragments

 Rapidly evolving functionality is separated
from stable domain logic

 Can reason about system state and
behavior, not just object state and
behavior

What do I get with this?

In general, you can make virtual functions disappear at the level of the Use Case scenarios. When reading
the interactions between the roles there is no dynamic dispatch: what you see is what you get. You can
read the algorithm as though it were a FORTRAN algorithm. The algorithms read like algorithms; you don’t
have to track down their fragments all over the system.

Furthermore, the more rapidly evolving business logic (in the method-ful roles) is separated from the more
slowly moving domain logic (in the domain classes). This gives good coupling and cohesion that supports
change.

We have also embraced the end user and his or her mental model, and captured it in the program. That is
likely to enhance usability. It also makes it easier to review functionality with end users more directly, or at
least through a more direct comparison with Use Cases.

Last, we have risen to the system level. This paradigm -- called the DCI paradigm -- is about system state
and behavior. Simple OO is about simple object or class state or behavior. That’s inadquate to reason
about system properties or even about what-the-*system*-does.

21

22

Or, from an Agile perspective:

 Allows me to connect with the user mental
model
– Users & interactions instead of processes and

tools
 Can employ shared customer vocabulary

– Customer collaboration, not contracts
 Can reason about form of task sequencing

– More likely to deliver working software
 Exposes the changing part for ready

update
– Embracing change

Because it allows me to connect with the end user mental model, it supports the user/interaction Agile
objective. Because it builds on shared customer vocabulary of Use Case scenarios, it allows me to work
better in terms of customer collaboration. Because I can reason about task sequencing from the code, I am
more likely to deliver working software. And because it exposes the changing part for ready update it is all
about embracing change.

22

23

Learn more at:

 Baby IDE:
– http://heim.ifi.uio.no/~trygver/
themes/babyide/babyide-index.html

 Agile Architecture, the book
 The Artima article:

– http://www.artima.com/articles/
dci_vision.html

 Two Grumpy Old
Men, ROOTs (we
threaten to be back
in 2011)

23

24

 cope@gertrudandcope.com

24

