
Copyright © 2009 Russel Winder 1

Processors Processors Everywhere,
But How Do I Actually Use Them?

Dr Russel Winder

Partner, Concertant LLP
russel.winder@concertant.com

mailto:russel.winder@concertant.com

Copyright © 2009 Russel Winder 2

Aims and Objectives of the Session

● Investigate some of the consequences for
programming of the “Multicore Revolution”.

● Compare and contrast various features for harnessing
parallelism offered by some programming languages.

● Show that shared-memory multithreading is too low-
level a technique for use in applications
programming.

Have a structured “chin wag”
that is (hopefully) both
illuminating and enlightening.

Copyright © 2009 Russel Winder 3

Structure of the Session

● (Very) briefly summarize the world of parallel
computing.

● Look at some of the concurrency and parallelism
support features in C, C++, Fortran, Java, Scala,
Python, Erlang, Haskell, Clojure, possibly even
Groovy . . .

● Introduce the (supposedly) next generation
languages: X10, Chapel, Fortress.

There is an element of dynamic
binding to the session so the
above is just an initial guide.

Gant will not appear in this
presentation, but SCons will.

Copyright © 2009 Russel Winder 4

Protocol for the Session

● A sequence of slides, interrupted by looking at
various bits of code.

● Example executions of code – with the illuminating
presence of a system monitor.

● Questions and answers from the audience as and
when they crop up.

If an interaction looks like it is
getting too involved, we reserve
the right to stack it for after the
session.

Copyright © 2009 Russel Winder 5

NB

● The sesssion is not about:

– Algorithms – but they are crucial.

– Hardware – but it is essential.

● This is a comparative programming languages
session:

– Looking for “emergent properties” in the directions
programming languages and their uses are heading.

Copyright © 2009 Russel Winder 6

Blatant Advertising

Python for Rookies
Sarah Mount, James Shuttleworth and
Russel Winder

Thomson Learning

Learners of Python need this book.Learners of Python need this book.

Now called Cengage Learning.

Copyright © 2009 Russel Winder 7

Further Blatant Advertising

Developing Java Software
Third Edition

Russel Winder and Graham Roberts

Wiley

Learners of Java need this book.Learners of Java need this book.

Copyright © 2009 Russel Winder 8

Anti Advertising

Developing C++ Software
Second Edition

Russel Winder

Wiley

Learners of C++ Learners of C++ usedused to need this book. to need this book.

Only buy this book if you are
studying the history of C++
and how it has been taught.

Copyright © 2009 Russel Winder 9

The Keywords

● Multiprogramming

● Multitasking

● Multithreading

● Concurrency

● Multiprocessing

● Parallelism

● SISD

● SIMD

● MISD

● MIMD

● Tightly coupled

● Loosely coupled

● Data parallel

● Systolic array

● Multicore

● Vector processor

● Cluster

● Livelock

● Deadlock

● SPMD

● SMMP

Flynn’s Taxonomy

Copyright © 2009 Russel Winder 10

A Bit of History
In the Beginning

● Computer hardware was expensive and hard to find;
maximizing utilization was critical.

● Multitasking (multiple concurrent processes) was
crucial for maximizing availability and utilization.

● Virtualization was flirted with, but, except on IBM
machines, it did not become mainstream – though
recently it has become de rigueur, or at least
fashionable, mostly as it is an income stream for a
number of companies.

Copyright © 2009 Russel Winder 11

A Bit of History
The Early Middle Period

● Tasks/processes seen as too heavyweight.

● Lightweight processes introduced.

● Lightweight processes became threads.

● Issues:

– Tasks/processes had hardware and operating system
support, threads did not.

– Tasks/processes have separate memory; threads are a
shared memory approach.

Copyright © 2009 Russel Winder 12

A Bit of History
The Late Middle Period

● Sun LWP

● PThreads

● . . .

● Boost.Thread

● Java (java.lang.Thread, etc.)

● ???
C# just copies Java.

Operating systems now treat both
processes and threads as core features.

Copyright © 2009 Russel Winder 13

A Bit of History
The Multicore Revolution

● Processors cannot be clocked higher than around
4GHz without generating more heat than can be got
rid of by conventional airflow techniques:

– Users don’t want water-cooled workstations.

– Users don’t want burning laptops.

● Manufacturer “doublethink”:

– More cores running at nearly the same speed as the
old single cores mean more instructions executed per
second, which means faster processors.

– Marketing has switched general expectations from
faster clocks to more cores.

Copyright © 2009 Russel Winder 14

An Effect of the Multicore Revolution

● A “downside”: processor chips are being clocked
slower now than they used to be: single processors
now run slower than they used to. This means single
threaded applications run slower.

● The days of “just wait for the next generation of
processor chips” is no longer a viable way of getting
improved performance.

● Application performance improvement can only be
achieved by harnessing parallelism.

Or a switch to gallium arsenide technology.

Copyright © 2009 Russel Winder 15

Threads as Parallelism Abstraction

● Operating systems (well Linux and Solaris at least)
provide kernel-level threads that give application
access to all the cores on a machine.

● Does not deal with clusters; threads are shared
memory single (operating system) process
parallelism.

Copyright © 2009 Russel Winder 16

A Problem – 

● We know the value of  exactly, it's  (obviously).

● What is it's value represented as a floating point
number?

– We can only obtain an approximation.

– A plethora of possible algorithms to choose from, a
popular one is to employ the following integral
equation.


4
=∫0

1 1

1x2
dx

Copyright © 2009 Russel Winder 17

A Problem Solved

● Use quadrature to estimate the value of the integral
– which is the area under the curve.

=
4
n
∑i=1

n 1

1
i−0.5
n


2

With n = 3 not much
to do, but potentially
lots of error.

Copyright © 2009 Russel Winder 18

Sequential Implementation

● Can see the sequential implementation in any and/or
all of:

– C, C++, Fortran, D

– Java, Scala

– C#

– Groovy, Clojure

– Python, Ruby

– Erlang, Haskell

There is a rationale
to the clustering.
There is a rationale
to the clustering.

Copyright © 2009 Russel Winder 19

Sequential is Not Enough

● The problem is embarrassingly parallel.

● Improve performance by throwing more processors
at the problem, after all we have plenty of them –
post the start of the Multicore Revolution anyway.

Any summation-like problem where the terms are
not interdependent is embarrassingly parallel.
Nearest neighbour algorithms are far trickier – and
therefore far more interesting. This is a topic for a
completely separate presentation.

Copyright © 2009 Russel Winder 20

Where to Start

● C User Group.

● European C++ User Group (ECUG).

● The above merge to become Association of C and
C++ Users.

● The above relabels itself to ACCU in acceptance of the
fact that C and C++ are not the future.

Obviously we should start
with C since it can only get
better from there.

Copyright © 2009 Russel Winder 21

Doing Things with C

● Use a threading package.

● Usually PThreads, but there are others.

● Involves lots of code, and global variables:

– Use global variables for parameters and return values.

– Use parameters for parameters and global variables
for return values.

● Global state means synchronization and mutexes.

Copyright © 2009 Russel Winder 22

C++ Does Thing Better

● Can do things as in C, but why?

● Can use the power of C++:

– Boost.Thread

– C++0x

Anthony Williams is
The Man.

cf. following page.

Copyright © 2009 Russel Winder 23

C++0x

● Anthony Williams (Just Software Solutions) has an
implementation of the new standards threads for use
with current compilers.

● See http://www.stdthread.co.uk

Futures are the future – for
threads-based programming.

Copyright © 2009 Russel Winder 24

Java Gets it Right in the First Place (?)

● Java integrated multithreading from the very outset –
which is one better than C and C++.

● Java also introduced checked and unchecked
exceptions, but checked exceptions are not obviously
a good thing.

Does anyone actually
use Java’s RMI? C# just copies Java.

Copyright © 2009 Russel Winder 25

Parallelism Properly (?) Harnessed

● Supercomputing and HPC dominated by Fortran, with
some C, and a little bit of C++ (but increasing).

● Thread and process management the real problems:

– Process management leads to MPI.

– Thread management leads to OpenMP.

GPUs lead to OpenGL and
GPGPU leads to OpenCL,
for this session we ignore
this sort of parallelism.

Real Programmers use
FORTRAN or possibly
Fortran.

Copyright © 2009 Russel Winder 26

Fortran child of FORTRAN

● I begat II begat III begate IV begat 66 begat G begat H
begat 77 begat 90 begat 95 begat 2003 . . .

– In the beginning it was named FORTRAN. From 1990
onwards they admitted the existence of lower case
letters and it was called Fortran.

● 90 also begat HPF, but that has basically gone away –
in favour of OpenMP.

“I don’t know what the programming language of the next
century will look like, but it will be called Fortran.”

Copyright © 2009 Russel Winder 27

What have the HPC People Really Done?

● OpenMP

– Data parallelism.

– Fine-grain parallelism.

– Thread implemented.

● MPI:

– Message passing.

– Cluster-level
parallelism.

– Process implemented.

Replacing array element operations with
whole array operations in Fortran was a
revolution.

Abstraction is what it is all about. Let the
library do the work.

Copyright © 2009 Russel Winder 28

Manipulating Threads is . . .

● . . . low-level manual labour.

● Working with threads directly is for programmers
who don't believe in abstraction – so why do C and
C++ programmers program threads directly?

Copyright © 2009 Russel Winder 29

C and C++ Programmers Learn . . .

● . . . from Fortran:

– OpenMP and MPI available in C.

– OpenMP and MPI available in C++.

– Boost.MPI makes MPI more C++esque.

Copyright © 2009 Russel Winder 30

Thread Safety

● Java really brought thread-based programming to the
masses.

● C and C++ have threads but they are add ons (well
C++0x brings threads to C++ at least).

● Java brought “thread safety” front and centre:

– Library classes made thread safe.

– Programmers taught to think about concurrency and
thread safety.

– Thread safety kills performance of single-threaded
applications.

Copyright © 2009 Russel Winder 31

Dissension

● Concurrency in Java is hard:

– Threads is the biggest problem in all Java training.

– java.util.concurrency as in Java 5.0 still doesn’t make it
easy enough.

● Occam and Erlang never bought into the threads
model for programming:

– Message passing is the only model.

– No synchronization because there is no shared
memory.

Copyright © 2009 Russel Winder 32

The Problems of Threads

● Shared memory.

● Flow control.

● Shared memory.

● Flow control.

● Shared memory.

● Flow control.

● Shared memory.

● Flow control.

● Shared memory.

● Flow control.

● Shared memory.

● Flow control.

● Share memory.

● Flow control.

Copyright © 2009 Russel Winder 33

Quick Quiz

● Who said:

“Multithreaded programming is fraught with many
challenges, and can rightly be considered something
that the majority of programmers should steer clear
of.”

Copyright © 2009 Russel Winder 34

Consequences

● All computers are parallel processors.

● Multicore processors and multiprocessor systems
offer threads as the mechanism of control.

● The majority of programmers should steer clear of
computers.

● Only write single-threaded programs.





This will bring us to CSP.

Copyright © 2009 Russel Winder 35

What To Do?

● Refuse to use multiple
threads.

● Never use shared
mutable state.

● Always use message
passing.



MPI is not the only
solution here . . .

Copyright © 2009 Russel Winder 36

Intel’s Answer
Threading Building Blocks (TBB)

● C++ template library.

● Provide an alternative to OpenMP as a way of
managing threads.

● Shared memory and threading but from a high-level
perspective.

TBB doesn’t just deal with
threads, it also manages the core
and processor caches and core
instruction streams. It is very
Intel processor specific.

There be AMD chip, Sun chip,
IBM chip versions of the
library.

Copyright © 2009 Russel Winder 37

TBB: Morals and Politics

● The architecture and approach is good:

– High-level expression of algorithm.

– Dependence on significant work from the compiler to
make things efficient.

● Libraries mean lock in:

– TBB is a tool to try and make it impossible for system
manufacturers to use anything other than Intel chips?

Copyright © 2009 Russel Winder 38

Java is Ahead of the Game?

● Java programmers have already recognized the
deficiencies of explicit thread programming to
harness parallelism.

● JSR 166 X (introduced into Java 6.0) introduced data
structures and other infrastructure for better
implementation of parallel algorithms.

● JSR 166 Y (due to be in Java 7.0) takes things further.

Copyright © 2009 Russel Winder 39

Java Learns from Erlang

● Erlang quietly proved that functional languages using
CSP were wonderfully effective and efficacious.

● CSP – Communicating Sequential Processes – is a
mathematically-backed way of properly partitioning
problems to avoid the problems of synchronizing in a
shared memory multithreading system.

Calculus of Communicating
Systems (CCS) appears to have
got lost somewhere.

-Calculus has some future
integrated with CSP.

Copyright © 2009 Russel Winder 40

Functional Is Good . . . Or Is It?

● Functional programming separates program from
execution – uses some form of graph reduction as
operational semantics.

● This separation and the reliance on referentially
transparent, side-effect free code is supposed to
make functional languages good for parallelism.

● Erlang

● Haskell

● Clojure

✔

?
Not having side effects is
always good for parallelism
even in C, C++, Fortran, Java,
etc.

?

Copyright © 2009 Russel Winder 41

Scala Gets it Right?

● Scala allows shared memory multithreading just as
Java does.

● Scala also provides infrastructure for using the Actor
Model.

Actors are processes that can send
messages to each other.
They can also create new actors.

Copyright © 2009 Russel Winder 42

Flowing the Data

● Dataflow computers were tried but never really broke
through.

● Dataflow architectures do not need dataflow
hardware.

● Dataflow architectures allow for rampant parallelism.

Copyright © 2009 Russel Winder 43

The Dataflow Model

operator

operator

operator

operator

operator

operator

Operators operate only
when all their inputs are
ready, and then output
values on their outputs.

Pervasive Software have
created DataRush.

Copyright © 2009 Russel Winder 44

Dataflow: The Lessons

● Eschewing shared memory and threads in favour of
process-based message passing appears to be an
overhead for small problems and/or for few
processors.

● Process based, message passing appears to scale to
large numbers of processes and processors.

● Message passing architectures lead to better
scalability.

● Integrating control flow with data readiness makes
things even easier and more scalable.

● The paradigm shift is not easy.

Copyright © 2009 Russel Winder 45

Parallelism can be Pythonic

● Python is compiled to PVM bytecode.

● CPython implementation of the PVM enforces
execution of one Python thread at a time – there is
the Global Interpreter Lock (GIL).

● Stackless Python doesn't have this.

● But is it a problem?

● Microprocessing package (new in Python 2.6,
previously it was the separate Processing package).

● Parallel Python.
The PVM is not PVM.OCaml also uses a “master lock” to

enforce single threading at a time.

Copyright © 2009 Russel Winder 46

PLNG
Programming Languages, the Next Generation

● DARPA HPCS programme

● First funding round:

– X10

– Chapel

– Fortress

● Second funding round:

– X10

– Chapel

High Productivity
Computing Systems

Defense Advanced
Research Programmes
Agency

Unified Parallel C (UPC)
Co-Array Fortran
Titanium

Copyright © 2009 Russel Winder 47

Programming Models

● Shared Memory

– Threads

– Processes

● Distributed Memory

– Processes

● Partitioned Global Address Space

– Threads with affinity.

Global view systems have become the standard
approach – it avoids manual partitioning.

Copyright © 2009 Russel Winder 48

PLNG – X10

● IBM and various unnamed academics.

● JVM and Java based – well X10 1.5 was.

● X10 1.7 looks more like Scala and there is now a
C++-based as well as a Java-based code generation
system.

● Introduces a partitioned global address space:

– Activity is bound to a processor but can move.

– Affinity of activity and processor is controllable.

X10 is so named because its goal is to create an order of
magnitude improvement on performance compared to Java.

http://x10.codehaus.org

Copyright © 2009 Russel Winder 49

PLNG – Chapel

● Cray and Washington University.

● New language – but with a nod to Python, Scala, C++
and Java.

● Focused on being a language that Fortran, C and C++
programmers can migrate to.

http://chapel.cs.washington.org

Copyright © 2009 Russel Winder 50

PLNG – Fortress

● Sun and ???.

● JVM based.

● The goal is to replace Fortran:

– Definitely aimed at the more mathematical end of
things.

– Remove the reliance on ASCII-based representation of
algorithm.

http://projectfortress.sun.com/Projects/Community

Copyright © 2009 Russel Winder 51

Side-step the Shared Memory Problem:
Hardware

● Sun is putting support for transactional memory in
hardware – the Rock processor.

● PowerPC, ARM, etc. have support for hardware-
supported software transactional memory.

Copyright © 2009 Russel Winder 52

Side-step the Shared Memory Problem:
Software Transactional Memory (STM)

● Haskell supports STM.

● Clojure supports STM.

● Intel compiler offers
STM to C++ users.

The primary example of STM in the Clojure
documentation is to implement pmap. Why
not just treat STM as an infrastructure
implementation tool and use pmap for
implementing the algorithm?

Copyright © 2009 Russel Winder 53

Transactional Memory – Why Bother?

● Given that lightweight process and message passing
based approaches work, why hassle with application
use of shared memory in a multithreaded context?

The primary example of STM in the Clojure
documentation is to implement pmap. Why
not just treat STM as an infrastructure
implementation tool and use pmap for
implementing the algorithm?

Copyright © 2009 Russel Winder 54

Summary – A

● Threads are useful but they are not an application
programmer tool.

● Why bother with an explicit threads API when
OpenMP is available?

● Why not use a language that supports parallelism
directly:

– Erlang, occam, Scala

– C++ + TBB, Java + JSR 166

– Chapel, Fortress

Copyright © 2009 Russel Winder 55

Summary – B

● Focus on the data and its transformation not on
the sequence of actions to achieve the
transformation.

If computing is about
abstraction let’s do it.

Intel C++, Java, Erlang and
Scala all go this way and
point the direction.

Copyright © 2009 Russel Winder 56

Postscript – An Interesting Moral

● RAII (resource acquisition is initialization) is C++'s
Big Win in the abstraction development stakes.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

