
Paradigms of  Programming  
Literary Criticism for Code

Steve Freeman & Michael Feathers



Paradigms?

Robert Floyd - ACM Turing Award acceptance: 
‘Paradigms of  Programming’ 1978

Programmatic ways of  approaching problems 

Languages can be changed to support 
paradigms (DSLs)

There is no one perfect language



Today

Procedural

Object Oriented

Functional

Rule-based



The Problem (I)

The problem for this exercise is a listbox controller in a graphical user 
interface. You have to write code which accepts a list of  items for the 
listbox and changes the currently selected item in the list. 

When the listbox is initialized, the current selection is the first element in 
the list.  Two operations: arrowUp and arrowDown allow you to change 
the position of  the current selection.  If  you arrowUp when the first 
element of  the list is selected, it is a no-op.  Likewise, it is  a no-op if  you 
arrowDown when the last element of  the list is selected.  

If  the controller is given an empty list, there is no currently selectioned 
item.

In later iterations, we will expand this behavior to make it more 



The Problem (II)

Now that we have a rudimentary listbox, we have to start to make it a bit more realistic.  
In our listbox, we will introduce the concept of  the "window."  The window is the portion 
of  the listbox which is currently displayed on the graphical user interface.  Imagine a 
listbox with 100 elements. The window might be the set of  elements in the range 
[10..19].

In this iteration, you will have to change the system so that the current selection moves 
within this window.  The arrowUp and arrowDown operations have special behavior at 
the top and bottom of  the window -- they move it.  For example, if  the window is at 
[10..19] in a list, and the current selection is 10, an arrowDown operation will change the 
current selection to 11.  On the other hand, an arrowUp operation will change the the 
current selection to 9 and shift the window up, giving it the range [9..18].

In this iteration, it is sufficient to add behavior for windows in the center of  the list.  You 
do not have to deal with the cases where the window touches the top or bottom of  the list 
yet.



The Problem (III)

In this iteration, we introduce behavior at the edges.  An arrowUp 
operation at the top of  the window when the window is [0..x] for 
some x is a no op.  An arrowDown operation at the bottom of  the 
window when the window is [x..last] for some x is a no op also.

In this iteration, we also calculate the size of  the window.  By 
default, the size of  the window is 10 and it starts at the first 
element of  the list (0).  However, if  the size of  the list is less than 
10, the size of  the window becomes the size of  the list.

Take time in this iteration to refactor your solution. Become as 
comfortable with it as you can.



The Problem (IV)

In this iteration, we add the operations pageUp and pageDown. The 
pageUp operation moves the window up windowSize elements so that 
it is just above it's previous first element.  When the operation is 
complete, no element which was visible in the window before is visible 
in the window afterward.  If  pageUp can not go up windowSize 
elements because it hits the top of  the list, it stops at its last possible 
move up.

The current selection after a pageUp is the last element in the window.

The pageDown operation has the exact opposite behavior.  It moves 
the window downward.  When a pageDown finishes, the current 
selection is the top element of  of  the window.


