

Refactoring Without Ropes

Roger Orr
OR/2 Limited

The term 'refactoring' has become popular in recent
years; but how do we do it safely in actual practice?

Refactoring ...
● “Improving the design of existing code”

Martin Fowler.
● Iterative process for changing code safely

… without ropes
● When learning to climb, ropes catch you

when you fall
● Climbing 'for real' is riskier

– Someone has to be in front
– Mistakes become more serious

● The 'three point' rule
– Only move one hand or foot at a time
– 'Iterative refactoring'

What is refactoring?
● Do not alter external behaviour
● Improve internal design
● Be disciplined
● Minimise the chance of introducing bugs

What is refactoring?
● Refactoring can occur at various levels

– Inside a single method implementation
– Inside a class
– Inside a module
– Inside an application

● The scope does not affect the principles

What doesn't change?
● One key defining characteristic of

refactoring is that the external behaviour is
unaltered
– Tests unchanged
– Manuals and user guides unchanged
– “Bug-compatible” release

● What is external for this refactoring?

So … what changes?
● Internal Implementation

– Algorithms
– Methods added/removed/changed

● Class hierarchies changed
● Tools or lower level components

So … what changes?
● Improve design
● Reduce entropy
● Improve performance (debatable!)
● Prepare for future enhancements

Be disciplined
● Refactoring is not externally defined

– Easy to have scope creep
– Pressure to add 'business benefit'

● Existing code can be
– Fragile
– Poorly understood
– Undocumented

Introducing bugs?
● All change is dangerous

– Follow existing patterns
– Use tools

● No new functionality so testing easier
● What to do with existing bugs?

Ropes for refactoring
● Complete test coverage at the right level

– Unit tests for small changes
– Integration/system tests

● Unambiguous existing code
● Safe test environment
● Easy release/backout

Sample refactoring

void setValue(String name, int value) {
 if (name.equals("height"))
 _height = value;
 else if (name.equals("width"))
 _width = value;
 Assert.shouldNeverReachHere();
}

void setHeight(int value) {
 _height = value;
}
void setWidth(int value) {
 _width = value;
}

● Replace Parameter with Explicit Methods

Is it worth it?
● Pros

– Avoids conditional code
– Gain compile time checking
– Self-documenting

● Cons
– Harder to change

Mechanics
● Create new methods
● Call from appropriate leg of old method
● Compile and test
● Replace each call site as appropriate
● Compile and test
● Remove conditional method

Mechanics
● First move (new method)

– Check: remove new method on failure
● Second move (change call sites)

– Check: change call sites back on failure
● Third move (remove old code)

– Check: put old code back

Problems with first move
● Bad design

– Lose sight of overall design by focusing on
specifics

– Code duplication
● Don't completely understand the old code

– Side effects
– Unexpected overloads
– Runtime method discovery

Problems with first move
● Bugs in new methods

– All new code may have flaws
● Lack of complete test coverage

– Non existent
– Not covering enough cases
– Not covering failure modes

Problems with first move
● Bugs in new methods

– All new code may have flaws
● Lack of complete test coverage

– Non existent
– Not covering enough cases
– Not covering failure modes

The completely The completely The completely The completely The completely The completely The completely The completely The completely The completely ununununununununununexpectedexpectedexpectedexpectedexpectedexpectedexpectedexpectedexpectedexpected

Problems with second move
● Fail to correctly modify old code

– Change similar, but not identical, code
– Adding wrong arguments

● Don't find all the code to change
– Parallel version management
– Use outside your control

● Can't fix the past (examples and memory)

Problems with second move
● C++ example

// returns true or false

bool tryAction();

● Refactor to:
// returns 0 or error code

int tryAction();

● Think about the code you miss...

Problems with third move
● Never scheduled

– End result is more complexity
– Doesn't get easier with time

● Breaks code
– Know your users
– Clean migration path
– Design in deprecation if necessary

Further complexity
● A method refactoring is 'simplest case'
● Higher level refactoring is more complex
● Keep the principles in mind

– Move one limb at a time
– Ensure you are still safe
– Make sure you can move back

Further complexity
● Manage complexity by dividing it up

– Easier to ensure simple changes work
– Individual steps may use recurring patterns

● Separate what you can
– Client from server
– Application from configuration

Further complexity
● Library code
● Distributed programs
● Configuration
● Database schema
● File formats
● Release cycles

Library code
● Problems

– Must decouple from client refactoring
– Cannot see all the client code
– Callbacks

Library code
● Side by side

– Add new clean interfaces
– Mark old interfaces as deprecated (...!)
– Interim is more complex

● Big bang
– Create new library
– Force client to migrate

Library code
● Side effects

– Client code may do things you don't realise
– Client code may rely on things you don't expect

● Leaky libraries
– Internal methods may be used
– Detectable failure is the best outcome

Library code
● Callbacks

– Dependency Inversion
– May be eased by an extra refactor
– Compile time and/or runtime checks
– Hard to handle at runtime – who do you tell?

Callback example
public class Server {

 public interface Callback {
 public void method(String arg);
 }

 public void add(Callback callback) {
 ...
 }

 public void execute() {
 ...
 }
}

Callback example
public class Client {
 public static void main(String[] args) {
 Server server = new Server();
 server.add(new Server.Callback() {
 public void method(String arg) {
 System.out.println("Hello " + arg);
 }
 });
 try {
 server.execute();
 System.out.println("Executed");
 }
 catch (Exception ex) {
 System.out.println("Execute failed" + ex);
 }
 }
}

Refactor – rename method
● If we rename a method in the Server class

old client code won't execute
● If we rename a method in Server.Callback

old client code will execute but the callback
may fail – for example it's in another thread.

Bullet proofing callback
 public interface Callback2 {
 public void method(String arg, String arg2);
 }

 public void add(Callback2 callback) {
 this.callback = callback;
 }

Now if we run old client code against the new server the call to 'add' fails.
We can also support old clients during the refactor by using a shim class:

 public void add(final Callback callback) {
 this.callback = new Server.Callback2() {
 public void method(String arg, String arg2) {
 callback.method(arg);
 }
 };
 }

Further complexity
● Distributed programs

– Decouple client and server refactoring
– Callbacks
– Parallel running

Refactoring the interface
● First move: new server with old clients

– Additional interfaces
– Additional methods
– Defaulted arguments

● Second move: migrate to new clients
● Third move: remove support for old clients

Refactoring callbacks example
● First move: new clients with old server

– All that changes is the callback interface
● May use same techniques as for library callbacks

– Ignore new arguments and fields
● Second move: new server

– Populates new arguments / fields
● Third move: change client again

– Process the new arguments and fields

Parallel running
● If you do a lot of refactoring of the interface

– Do I need a more flexible interface?
– Extend protocol to supply a version number
– Add support for multiple simultaneous versions

Further complexity
● Configuration

– Rollback
– Handling of old versions

Configuration example
● Many applications have complex

configuration, so reduce risk
● First move: parse optional new items
● Second move: add new items to the

configuration
● Third move: process new items

Further complexity
● Database schema

– Rollback
– Decouple from application change
– Named columns
– Views / stored procedures

Database changes
● Example of adding new column to a table

– Move 1 – add the column to the table (DB)
– Move 2 – write the new column (App)
– Move 3 – populate missing values (Script)
– Move 4 – use the column (App)

● Small steps – each with very low risk

Decoupling interface
● Views and stored procedures
● Support refactoring of database tables
● Can support multiple versions

Further complexity
● File formats

– Detecting changes
– Explicit conversion programs
– Implicit conversion

● Reading
● Writing

File formats
● Easy to ignore the cost to users of

refactoring file formats.
– MS Word is a good example …

● It's not just the code changes (reading and
writing) but the existing files.

● Worst case is not detecting old files
● Critical to read old formats
● Good to have way to convert back to old

Further complexity
● Release cycles

– How long is your release cycle?
– What is the cost of a release?
– What is the likely number of problems?
– How easy is it to back out?

● 'Actual' cost
● 'Political' cost

Short cycles
● I like short release cycles

– Incremental business benefit (Agile methods)
– Smaller number of changes in each cycle

● Less to remember
● Easier to diagnose faults
● Easier to drop back

– Mechanism of releasing stays well known

Short cycles
● I don't like short release cycles

– Too many releases to remember
● Need good release tracking

– Too much testing and paperwork
● Management/risk issue – may not be fixable

– Too much manual setup
● Automate it :-)

Summary
● Refactoring works by making changes

– Small
– Controlled
– Easily reversible

● Make sure you know
– What you are changing
– What you are not changing
– Where you are aiming for

