Refactoring Without Ropes

Roger Orr
OR/2 Limited

The term 'refactoring' has become popular in recent
years; but how do we do it safely in actual practice?

Refactoring ...

* “Improving the design of existing code”
Martin Fowler.

* |terative process for changing code safely

... without ropes

 When learning to climb, ropes catch you
when you fall

* Climbing 'for real' is riskier

- Someone has to be in front

- Mistakes become more serious
* The 'three point' rule

- Only move one hand or foot at a time
- 'lterative refactoring'’

What Is refactoring?

Do not alter external behaviour

Improve internal design

Be disciplined

Minimise the chance of introducing bugs

What Is refactoring?

» Refactoring can occur at various levels

- Inside a single method implementation
- Inside a class
- Inside a module

- Inside an application
* The scope does not affect the principles

What doesn't change?

* One key defining characteristic of
refactoring Is that the external behaviour is
unaltered

- Tests unchanged
- Manuals and user guides unchanged
- “Bug-compatible” release

* What Is external for this refactoring?

So ... what changes?

* Internal Implementation

- Algorithms
- Methods added/removed/changed

» Class hierarchies changed
* Tools or lower level components

So ... what changes?

Improve design

Reduce entropy

Improve performance (debatable!)
Prepare for future enhancements

Be disciplined

» Refactoring is not externally defined

- Easy to have scope creep
— Pressure to add 'business benefit’

» EXisting code can be
- Fragile
- Poorly understood
- Undocumented

Introducing bugs?

» All change Is dangerous

- Follow existing patterns
- Use tools

* No new functionality so testing easier
* What to do with existing bugs?

Ropes for refactoring

Complete test coverage at the right level

- Unit tests for small changes
- Integration/system tests

Unambiguous existing code
Safe test environment
Easy release/backout

Sample refactoring

» Replace Parameter with Explicit Methods

void setValue(String name, iInt value) {
iIT (name.equals('height'))
_herght = value;
else 1T (nhame.equals(''width'))
_width = value;
Assert.shouldNeverReachHere();

}

i _ _
» void setHeight(int value) {
_height = value;
}

void setWidth(int value) {
_width = value;
+

IS 1t worth 1t?

e Pros

- Avoids conditional code
- Gain compile time checking
- Self-documenting

e Cons

- Harder to change

Mechanics

Create new methods

Call from appropriate leg of old method
Compile and test

Replace each call site as appropriate
Compile and test

Remove conditional method

Mechanics

* First move (new method)
- Check: remove new method on failure
» Second move (change call sites)

- Check: change call sites back on failure
* Third move (remove old code)

- Check: put old code back

Problems with first move

* Bad design

- Lose sight of overall design by focusing on
specifics

- Code duplication
* Don't completely understand the old code
- Side effects

- Unexpected overloads
- Runtime method discovery

Problems with first move

* Bugs in new methods
- All new code may have flaws
* Lack of complete test coverage

- Non existent
- Not covering enough cases
- Not covering failure modes

Problems with first move

* Bugs in new methods
- All new code may have flaws
* Lack of complete test coverage

- Non existent
- Not covering enough cases
- Not covering failure modes

Problems with second move

» Fall to correctly modify old code

- Change similar, but not identical, code
- Adding wrong arguments
* Don't find all the code to change
- Parallel version management
- Use outside your control

» Can't fix the past (examples and memory)

Problems with second move

o C++ example
// returns true or fTalse
bool tryAction();

 Refactor to:

// returns 0 or error code
int tryAction();

* Think about the code you miss...

Problems with third move

* Never scheduled
- End result is more complexity
- Doesn't get easier with time

* Breaks code

- Know your users
- Clean migration path
— Design In deprecation if necessary

Further complexity

* A method refactoring Is 'simplest case'
* Higher level refactoring is more complex
» Keep the principles in mind

- Move one limb at a time

- Ensure you are still safe
- Make sure you can move back

Further complexity

 Manage complexity by dividing it up

- Easler to ensure simple changes work

- Individual steps may use recurring patterns
» Separate what you can

- Client from server
- Application from configuration

Further complexity

Library code
Distributed programs
Configuration
Database schema
File formats

Release cycles

Library code

e Problems

- Must decouple from client refactoring
— Cannot see all the client code
— Callbacks

Library code
* Side by side

- Add new clean interfaces
- Mark old interfaces as deprecated (...!)
- Interim Is more complex
* Big bang
- Create new library
- Force client to migrate

Library code

e Side effects

- Client code may do things you don't realise
- Client code may rely on things you don't expect

» | eaky libraries

- Internal methods may be used
— Detectable failure is the best outcome

Library code

e Callbacks

- Dependency Inversion

- May be eased by an extra refactor

- Compile time and/or runtime checks

- Hard to handle at runtime — who do you tell?

Callback example

public class Server {

public interface Callback {
public void method(String arg);

}

public void add(Callback callback) {
}

public void execute() {

.=
}

Callback example

public class Client {
public static void main(String[] args) {
Server server = new Server();
server.add(new Server.Callback() {
public void method(String arg) {
System.out.printin("Hello " + arg);

}
D;

try {
server.execute();

System.out.printin("Executed");
}
catch (Exception ex) {
System.out.printin("Execute failed" + ex);

}
}
}

Refactor — rename method

If we rename a method In the Server class
old client code won't execute

If we rename a method Iin Server.Callback
old client code will execute but the callback
may fall — for example it's in another thread.

Bullet proofing callback

public interface Callback?2 {
public void method(String arg, String arg2);

}

public void add(Callback2 callback) {
this.callback = callback;

}

Now if we run old client code against the new server the call to 'add’ fails.
We can also support old clients during the refactor by using a shim class:

public void add(final Callback callback) {
this.callback = new Server.Callback2() {
public void method(String arg, String arg2) {
callback.method(arg);

}
%
}

Further complexity

 Distributed programs

- Decouple client and server refactoring
- Callbacks
- Parallel running

Refactoring the Interface

e First move: new server with old clients

— Additional interfaces
- Additional methods
- Defaulted arguments

 Second move: migrate to new clients
* Third move: remove support for old clients

Refactoring callbacks example

e First move: new clients with old server

- All that changes is the callback interface
 May use same techniques as for library callbacks
- Ignore new arguments and fields

* Second move: new server
- Populates new arguments / fields
* Third move: change client again
- Process the new arguments and fields

Parallel running

* |f you do a lot of refactoring of the interface

- Do | need a more flexible interface?
- Extend protocol to supply a version number
- Add support for multiple simultaneous versions

Further complexity

» Configuration

- Rollback
- Handling of old versions

Configuration example

Many applications have complex
configuration, so reduce risk

First move: parse optional new items

Second move: add new items to the
configuration

Third move: process new items

Further complexity

e Database schema

- Rollback

- Decouple from application change
- Named columns

- Views / stored procedures

Database changes

 Example of adding new column to a table

- Move 1 — add the column to the table (DB)
- Move 2 — write the new column (App)

- Move 3 — populate missing values (Script)
- Move 4 — use the column (App)

 Small steps — each with very low risk

Decoupling interface

* Views and stored procedures
* Support refactoring of database tables
e Can support multiple versions

Further complexity

e File formats

- Detecting changes
- EXxplicit conversion programs

— Implicit conversion
e Reading
 Writing

File formats

Easy to ignore the cost to users of
refactoring file formats.

- MS Word is a good example ...

It's not just the code changes (reading and
writing) but the existing files.

Worst case Is not detecting old files

Critical to read old formats
Good to have way to convert back to old

Further complexity

* Release cycles

- How long Is your release cycle?
- What is the cost of a release?
- What is the likely number of problems?

- How easy Is It to back out?

e 'Actual’ cost
e 'Political' cost

Short cycles

* | like short release cycles

- Incremental business benefit (Agile methods)

- Smaller number of changes in each cycle

* Less to remember
« Easier to diagnose faults
e Easier to drop back

- Mechanism of releasing stays well known

Short cycles

* | don't like short release cycles

- Too many releases to remember
* Need good release tracking
- Too much testing and paperwork
 Management/risk issue — may not be fixable
- Too much manual setup
e Automate it :-)

Summary

» Refactoring works by making changes

- Small
- Controlled
- Easily reversible

 Make sure you know

- What you are changing
- What you are not changing

- Where you are aiming for

